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Abstract: A micro-machined hybrid contactless suspension, in which a conductive proof mass
is inductively levitated within an electrostatic field, is studied. This hybrid suspension has the
unique capability to control the stiffness, in particular along the vertical direction, over a wide range,
which is limited by a pull-in instability. A prototype of the suspension was micro-fabricated, and the
decrease of the vertical component of the stiffness by a factor of 25% was successfully demonstrated.
In order to study the pull-in phenomenon of this suspension, an analytical model was developed.
Assuming quasi-static behavior of the levitated proof mass, the static and dynamic pull-in of the
suspension was comprehensively studied, also yielding a definition for the pull-in parameters of the
hybrid suspension.
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1. Introduction

Micro-machined Contactless Suspensions (µ-CS), employing the phenomena of electromagnetic
levitation, eliminate mechanical attachments between stationary and moving parts in
Micro-Electro-Mechanical Systems (MEMS). As a result, they provide one solution of a fundamental
issue in the micro-world of MEMS related to the domination of friction over inertial forces [1–3].
Through this concept, a new generation of micro-sensors and actuators based on levitation has
been demonstrated.

Depending on the source of the force field, µ-CS can be simply classified as electrostatic,
magnetic and hybrid [4]. For instance, electrostatic suspensions (µ-ECS) were successfully used
in micro-inertial sensors [5–9]. Magnetic suspensions (µ-MCS) can also be further classified
as inductive, diamagnetic and superconducting suspensions and have found applications in
micro-bearings [10–13], micro-gyroscopes [14–16], micro-accelerometers [17,18], bistable switches [19],
nano-force sensors [20,21], manipulation of droplets [22] and solid micro-particles [23,24].
Hybrid suspensions (µ-HCS) combine different force fields, for instance magneto- and electro-static,
variable magnetic and electro-static or magneto-static and variable magnetic fields, which represent
the main difference between µ-HCS and both µ-ECS and µ-MCS.

In particular, the capabilities of µ-HCS were demonstrated in applications as micro-motors [25],
micro-accelerators [26] and micro-gyroscopes [27,28]. A wide range of different operational modes,
such as linear and angular positioning, bistable linear and angular actuation and the adjustment
of the stiffness components of µ-HCS, were demonstrated and experimentally studied in the
prototype reported in [29]. In particular, the stiffness components were adjusted by changing the
equilibrium position of the inductively-levitated, disk-shaped proof mass along the vertical axis.
Recently, a novel µ-HCS, in which the electrostatic forces acting on the bottom and top surfaces
of the inductively-levitated proof mass maintain the equilibrium position of the proof mass and,
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simultaneously, decrease the vertical component of the stiffness by means of increasing the strength of
the electrostatic field, was proposed in [30] and presented in [31]. Thus, µ-HCS establishes a promising
direction for further improvement of a range of different micro-sensors and actuators.

Electrostatic actuation is a key principle available to apply force to a passively-levitated
micro-object (proof mass) for the adjustment of its static and dynamic characteristics. However, due to
the strongly inherent non-linear dependence of the electrostatic forces that act on such a levitating
micro-object on its displacement, the stable levitation of a micro-object is restricted by pull-in
phenomena [32]. Moreover, due to the fact that the spring constant created by a magnetic suspension
of a µ-HCS also has a nonlinear dependence on displacement, the resulting pull-in phenomenon in
µ-HCS cannot be described and characterized by the classic pull-in effect occurring in a spring-mass
system with only electrostatic actuation [33].

In this work, pull-in phenomena based on the combination of an inductive suspension and
electrostatic actuation are analytically and numerically studied in more detail. The qualitative
technique developed in [34] to model micro-machined inductive contactless suspensions, where
the eddy current within the levitated micro-object is approximated by a magnetic dipole, is used.
We note that this method has been recently further generalized in [35,36], where the eddy current
is more accurately approximated by a system of dipoles. Once established, a reduced analytical
model of the µ-HCS, which describes the behavior of a levitated micro-object in the vertical direction,
is developed.

2. Hybrid Suspension

In this section, the fabrication process, as well as the operating principle of the suspension device,
including the necessary service electronics for signal processing and preliminary experimental results,
are discussed.

2.1. Fabrication

The suspension consists of three structures fabricated independently at the wafer scale, namely
a coil structure and the upper and lower electrode structures. These were aligned and assembled into
a sandwich by flip-chip bonding into one device with the dimensions: 9.2 × 9.2 × 1.74 mm, as shown
in Figure 1. The coil structure consists of two coaxial 3D wire bonded micro-coils similar to those
reported in our previous work [11], namely a stabilization and levitation coil, fabricated on a Pyrex
substrate using SU-8 2150; see Figure 1b. For this particular device, a height of the coils is 600 µm, and
the number of windings is 20 and 12 for the levitation and stabilization coil, respectively, which allow
us to stably levitate an aluminum disk-shaped proof mass with a diameter of 3.2 mm and thickness of
30 µm at a levitation height of 150 µm. The bottom electrode structure was fabricated on an SOI wafer
having a device layer of 40 µm, a buried oxide of 2 µm and a handling layer of 600 µm. The resistivity
of the silicon layer is in the range of 1 Ω cm to 30 Ω cm. Furthermore, the device layer has a 500 nm
oxide layer for passivation, on top of which electrodes are patterned by UV lithography of evaporated
Cr/Au layers (20/150 nm), as shown in the left part of Figure 1c. The SU-8 pillars cover the electrodes
in order to insulate the proof mass and electrodes and reduce the contact area between the proof mass
and the surface, where the proof mass is initially lying flat. The scaled up image at the left of Figure 1c
shows the SU-8 pillar having a diameter of 50 µm and a height of 10 µm. After etching the handle
layer up to the buried oxide by DRIE, the bottom electrode structure was aligned and bonded onto the
coil structure, as shown in Figure 1d.

The top electrode structure was fabricated on a Pyrex substrate. The electrodes patterned by UV
lithography of evaporated Cr/Au layers (20/150 nm) as shown in the right part of Figure 1c have the
same design as those on the bottom structure. To create a gap between the top and bottom structures,
four SU-8 posts of 130 µm in height were fabricated on the top electrode structure. Then, the top
structure was aligned and bonded to the bottom one, as shown in Figure 1a.
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Figure 1. The hybrid suspension: (a) the prototype glued to a PCB. The scaled up image at the bottom
right corner shows the alignment and the SU-8 post for spacing (the top electrode structure is not
connected); (b) the exploded view; (c) the electrodes patterned at the bottom (right) and top (left);
electrode structures: 1, generating negative stiffness; 2, sensing displacement; 3, feedback electrodes;
(d) a view of the aligning electrode and coil structures from the rear (Pyrex glass) of the device.

In order to avoid using an SOI wafer, and thus also to decrease the amount of parallel capacitance
arising in the patterned electrodes due to the conductivity of Si, an alternative fabrication route for
the bottom electrode structure was explored based on an intrinsically-doped Si wafer of 500 µm in
thickness with a 1-µm oxide layer for passivation, as shown in Figure 2. On one side of the Si wafer,
an SU-8 layer of 30 µm to 40 µm in thickness was fabricated by using the epoxy resist SU-8 3025. Then,
the electrodes were patterned on this SU-8 layer by UV lithography as shown in Figure 2a. Instead
of evaporation, the seed layers Cr/Au (20/150 nm) were sputtered on top of the SU-8 layer. Finally,
etching the Si wafer through to the SU-8 layer by DRIE, a cavity for the micro-coils was fabricated as
shown in Figure 2b.

(a) (b)

Figure 2. The bottom electrode structure fabricated by using a Si wafer with an SU-8 layer of 30 µm in
thickness: (a) the front side of the structure; (b) the rear of the structure.

2.2. Operating Principle

The proof mass is levitated between the electrode structures. A potential U is applied to the
top and bottom electrodes (denoted by the number “1”) and generates an electrostatic field (see
Figure 1c), which causes a decrease of stiffness [30]. The series of electrodes numbered “2” are
patterned to realize a differential capacitance for sensing the linear displacement of the proof mass
along the vertical axis. Electrodes numbered with “3” generate the electrostatic feedback-force
needed to operate in a force-rebalance mode. Thus, the prototype can be considered as a levitated
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micro-accelerometer operating in the vertical direction and providing an adjustable positional stiffness
within closed-loop control.

2.3. Preliminary Experimental Results

In order to provide a proof-of-concept and to demonstrate the successful levitation of the proof
mass within the electrostatic field generated by electrodes “1”, a preliminary experimental study has
been performed (see Figure 3).
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Figure 3. The prototype under experimental test: (a) the device is fixed on a PCB (front side);
(b) the interfacial electronics (rear side); (c) top, bottom and coil structures are connected to the
PCB (scaled image); (d) measurements of force against displacement.

To measure the vertical displacement of the proof mass, a circuit for signal processing
and conditioning was developed and fabricated. Using the four pairs of electrodes labeled “2”
(see Figure 1c), the capacitive sensing for the vertical displacement of the proof mass, based on a
capacitance half-bridge and synchronous amplitude demodulation, was implemented. Each electrode
of the pairs “2” was excited by an AC voltage having an amplitude of 3 V at a frequency of 100 kHz.
After traversing a charge amplifier based on OPA2107AU, the output signal was demodulated by
applying a synchronous AM signal. Using switches (ADG441) controlled by a comparator (AD8561),
which in turn is synchronized with the excitation voltage and an amplifier (OPA2107AU), a mixer was
traversed by the signal. The output from the mixer, passing through an instrumentation amplifier,
yielded a differential signal and provided information about the linear displacement.

Coils were fed with a square wave AC current provided by a current amplifier (LCF A093R).
The amplitude and frequency of the current in the coils was controlled by a function generator
(Arbstudio 1104D) via a computer. A PCB for connecting the top electrodes was fabricated in such
way as to leave clear the front of the levitation chip’s electrodes, so that a laser beam could reach the
proof mass without obstruction, as shown in Figure 3c. This provided us with an additional means
to control the linear displacement of the levitated proof mass using a laser distance sensor (LK-G32
with a resolution of 10 nm) and a way to characterize the performance of the capacitive sensing circuit.
By applying an electrostatic force generated by the electrodes “3” to the bottom surface of the proof
mass, a plot of force against displacement was recorded. From the analysis of the plot, the effective
suspension stiffness was estimated.

Assuming that the resulting electrostatic force was applied to the center of the proof mass
and accounting for the area of electrode “3” of 4.3× 10−7 m2, the electrostatic force generated by
the four electrodes was calculated from F = ε0εr A/2 · (U/h)2, where ε0 = 8.85× 10−12 F m−1 is the
vacuum permittivity, εr is the relative permittivity (for air εr ≈ 1) and h is the space between an
electrode’s plane and the equilibrium point of the proof mass.

The results of measurements corresponding to two cases, namely when there is no applied
electrical potential to electrodes “1”, and when electrodes “1” are energized, are shown in Figure 3d.
First, upon energizing electrodes “1”, the proof mass was stably levitated, and a decrease of the stiffness
from 0.043 to 0.03 N m−1 was observed (also see Table 1). Second, a negative stiffness generated by
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electrodes “1” can be calculated [37] from NS = −(ε0εr AEU2)/h3, where AE = 8.0× 10−7 m2, to give
NS ≈ −0.01 N m−1. This agrees well with the difference of the two measurements. The results are
summarized in Table 1.

Table 1. Parameters of the prototype and experimental results.

Parameters of the Prototype

Diameter of the proof mass (mm) 3.2
Thickness of the proof mass (µm) 30
Levitation height (µm) 150
Spacing (µm) 50

Results of Measurements

Stiffness (U = 0) (N m−1) 0.043
Stiffness (U = 11 V) (N m−1) 0.03

3. Analytical Model

A schematic diagram for modeling the hybrid contactless suspension is shown in Figure 4a.
A typical two-coil stabilization and levitation scheme, arranged to provide stable levitation of a
disk-shaped proof mass, is considered. The proof mass is magnetically levitated within the static
electric field generated by the top and bottom electrodes. In the general case, it is assumed that the
potentials that are applied to the top and bottom electrodes are different and denoted as u1 and u2,
respectively, as shown in Figure 4a. The equilibrium point coincides with the origin O, which lies
on the Z′ axis of symmetry. The location of the origin is characterized by the following parameters:
h is the spacing between the bottom electrode’s plane and the origin, and hl is the levitation height
estimated as the distance between the plane formed by the upper turn of the coils and the origin.
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Figure 4. Schematic diagram for modeling the hybrid contactless suspension: (a) u1 and u2 are the
potentials applied to the top and bottom electrodes, respectively; h is the space between an electrode’s
plane and the equilibrium point of the proof mass; hl is the levitation height between the plane
formed by the upper turn of the coils and the equilibrium point of the proof mass; iel and ies are the
eddy currents corresponding to the maximum current density; (b) coordinate frames and generalized
coordinates to define the position of the disc-shaped proof mass around the origin: qv, ql , α and β are
the generalized coordinates corresponding to vertical, lateral and angular displacements, respectively.

The behavior of an inductively-levitated disk-shaped proof mass (proof mass) within the static
electric field generated by the system of electrodes is strongly non-linear, described by the set of
Maxwell equations. However, taking into account the fact that the induced eddy current density
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within the proof mass is distributed continuously, but not homogeneously, two circuits having
maximum values of eddy current density can be identified as the representative circuit for the
induced eddy current pattern. Furthermore, assuming quasi-static behavior of the levitated proof mass,
a simplification in the mathematical description of the hybrid suspension can be obtained. Applying the
qualitative technique proposed in [36], an analytical model of the suspension is formulated. Since the
design of the suspension is axially symmetric [36], the mechanical part can be represented by
the three generalized coordinates , namely qv, ql and θ representing vertical, lateral and angular
displacements of the levitated disc, respectively, as introduced in Figure 4b. Considering the capacitors
as planar and accounting for θ = α + β, the set describing the motion of the hybrid suspended proof
mass becomes 

∂We

∂e1
+

∂Ψ
∂ė1

= u1;
∂We

∂e2
+

∂Ψ
∂ė2

= u2;

mq̈v + µv q̇v + mg− ∂(Wm −We)

∂qv
= Fv;

mq̈l + µl q̇l −
∂(Wm −We)

∂ql
= Fl ;

Jθ̈ + µθ θ̇ − ∂(Wm −We)

∂θ
= Tθ ,

(1)

where m is the mass, J is the moment of inertia about the axis perpendicular to the disk plane and
passing through the center of mass, µl , µv and µθ are the damping coefficients corresponding to the
appropriate generalized coordinates, g is the gravity acceleration, Fl , Fv and Tθ are the generalized
forces and torque corresponding to the appropriate generalized coordinates, Wm and We are energies
stored in the magnetic and electric fields, respectively, Ψ is the dissipation function of the system and e1

and e2 are the charges on the top and bottom electrodes, respectively. Note that magnetic and electric
energies stored in the systems can be described in a way similar to those reported in [30,36].

A necessary, but not sufficient condition for stable levitation of the proof mass, near its equilibrium
point, is that the second derivatives of electromagnetic energy stored in the system, defined by the
following constants cij = −∂2(Wm −We)/∂qi∂qj, where i = v, l, θ and j = v, l, θ, must correspond to
a positive definite quadratic form [38]. Note that the necessary and sufficient conditions for stable
levitation in micro-machined inductive suspensions require, in addition, taking into accounting the
nonconservative positional force due to the resistivity of the proof mass and the dissipative force acting
on the levitated proof mass [36]. Thus, the nonlinear set of Equation (1) forms a generalized analytical
model of the hybrid contactless suspension and provides opportunities for modeling its dynamics
and stability.

The Accelerometer Equation of Motion

In the framework of the proposed application of the device as an accelerometer, as considered
in Section 2.2, the behavior of the proof mass along the vertical direction in the hybrid contactless
suspension is of special interest and studied in detail below. The static and dynamic responses of the
device along this direction are therefore investigated.

Neglecting the generalized coordinates ql and qθ and also assuming that the resistivity
of the conducting proof mass and its linear and angular velocities is small, no damping
exists and u1 = u2 = U, then the exact quasi-static nonlinear model, which describes the behavior of
the proof mass along the vertical axis, is [30,39]:

m
d2qv

dt2 + mg +
I2

L
dM
dqv

M− A
4

U2

(h− qv)2 +
A
4

U2

(h + qv)2 = Fv, (2)

where I is the amplitude of a harmonic current i in the coils, L is the self-inductance of the proof
mass, M is the mutual inductance between the proof mass and coils and U is the applied voltage to
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the electrodes. Each electrode set has the same area of Ae, A = ε0 Ae, where ε0 is the permeability of
free space.

In the general case, the mutual inductance M is a complex non-analytical function. This represents
the main difficulty for the analytical study of the suspension model (2). However, we can account
for some particularities of the micro-machined device, in that the linear sizes of the coils and proof
mass are much larger than the levitation height, hl , and the distribution of the density of the induced
eddy current is not homogenous. The induced eddy current is distributed along the levitated proof
mass in such a way that two circuits corresponding to maximum values of the eddy current density
can be identified, as shown in Figure 4a. The eddy current circuit ies is defined geometrically as a
circle having the same diameter as the proof mass. The second circuit iel is also a circle, but with
the diameter of the levitation coil [36]. Actually, the second circuit can be considered as the current
image of the levitation coil. Due to the mentioned particularities of the device, the force interaction
along the vertical direction is reduced to an interaction between eddy current iel and the levitation coil
current [40]. Considering both the levitation coil and the eddy current circuit as filamentary circles,
the mutual inductance between the levitation coil and eddy current can be described by the Maxwell
formula ([41], page 6); thus:

k2 =
4r2

l
4r2

l + (hl + y)2
; M = µ0rl

[(
2
k
− k
)

K(k)− 2
k

E(k)
]

, (3)

where µ0 is the magnetic permeability of free space, rl is the radius of the levitation coil and K
and E are complete elliptic integrals of the first and second kinds [42]. Then, accounting for (3),
Model (2) becomes:

m
d2qv

dt2 + mg− I2a2

L

[(
2
k
− k
)

K(k)− 2
k

E(k)
]

2
k2

×
[

2− k2

2(1− k2)
E(k)− K(k)

]
·

ξ2(1 + qv
hl
)

hl(1 + ξ2(1 + qv
hl
)2)3/2

− AU2qv

(h− q2
v)

2 = Fv,
(4)

where a = rlµ0 and ξ = hl/(2rl). Model (4) is analytical, nonlinear and quasi-exact, but due to the
elliptic integrals, it can be studied only numerically. For further analysis, Model (4) is presented in
dimensionless form as follows:

d2λ

dτ2 + 1− η

[(
2
k
− k
)

K(k)− 2
k

E(k)
]

2
k2

×
[

2− k2

2(1− k2)
E(k)− K(k)

]
· ξ2(1 + λ)κ

(1 + ξ2(1 + λ)2)3/2−
βλ

(1− λ2)2 = F̃,
(5)

where τ =
√

g/ht, λ = qv/h, η = I2a2/(mghL), β = AU2/(mgh2), κ = h/hl and F̃ = Fv/mg.
Moreover, upon ensuring a condition described further below, Equation (3) can be approximated

well by the logarithmic function [34]:

M = µ0rl

[
ln

4
ξ(1 + y/hl)

− 2
]

. (6)

Hence, accounting for the latter equation, the following reduced analytical model of a suspension
is proposed:

m
d2y
dt2 + mg− I2a2

L
1

hl + y

[
ln

4
ξ(1 + y/hl)

− 2
]
− AU2qv

(h2 − q2
v)

2 = Fv. (7)
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In dimensionless form, Equation (7) becomes:

d2λ

dτ2 + 1− η
κ

1 + κλ

[
ln

4
ξ(1 + κλ)

− 2
]
− βλ

(1− λ2)2 = F̃. (8)

As is shown in Appendix A below, the accuracy of approximation of modeling the electromagnetic
force is dependent on the parameter ξ. If ξ is less than 0.3, the electromagnetic force is approximated by
the logarithmic function (6) with an error less than 6%. When parameter ξ vanishes, the error between
the exact Equation (3) and the approximation (6) also vanishes. It is worth noting that, for all known
prototypes of µ-HCS published in the literature, parameter ξ is less than 0.25. This fact indicates
the applicability of the reduced model for further analytical study of µ-HCS, as has already been
successfully demonstrated for instance in [32]. Hence, Model (8) is the main framework for further
analysis of the static and dynamic pull-in.

4. Static Pull-In Instability

We now study the load-free behavior of the device upon changing the strength of the electric
field, characterized by the dimensionless parameter β (dimensionless squared voltage). For this reason,
Equation (8) is written as a set in terms of the phase coordinates [31]:

dλ

dτ
= ω;

dω

dτ
= −1 + η

κ

1 + κλ

[
ln

4
ξ(1 + κλ)

− 2
]
+

βλ

(1− λ2)2 .
(9)

From (9), the equilibrium state of the system can be defined as:

f (λ, β) = −1 + η
κ

1 + κλ
[D− ln(1 + κλ)] +

βλ

(1− λ2)2 , (10)

where D = ln 4
ξ − 2 is the design parameter depending on ξ. At the equilibrium point λ = 0,

the function f must equal zero; this point requires that parameter η = 1/D. Hence, the static
equilibrium state of the system, which relates the vertical coordinate with the strength of the electric
field, is:

f (λ, β) = − κλ

1 + κλ
− ln(1 + κλ)

D(1 + κλ)
+

βλ

(1− λ2)2 ≡ 0. (11)

Since the vertical displacement of the proof mass is limited by the positions of the top and
bottom electrodes, the variable λ is varied within a range of −1 ≤ λ ≤ 1. Furthermore, taking into
account that constant D and κ can be considered within the following ranges of 1 < D < 4.0 and
0 < κ ≤ 1, the bifurcation diagram, which relates the distribution of saddles (unstable equilibrium),
centers (stable equilibrium) and bifurcations with the dimensionless square voltage β is shown in
Figure 5a. Note that the presented prototype of the hybrid suspension in Section 2 has the following
values of dimensionless parameters, namely D = 2.0456, ξ = 0.07 and κ = 0.3333. Analysis of the
diagram shows that two bifurcation points can be recognized, denoted as A and B. Both bifurcation
points correspond to the pull-in instability. This means that, once the strength of the electric field
has achieved the value characterized by βA, the proof mass is pulled in and moves toward the top
electrodes. At point B, where the strength of the electric field is characterized by βB, the proof mass at
the position characterized by λB is also pulled in, but moves already toward the bottom electrodes.

The bifurcation point A is defined by the following parameters:

λA = 0; βA = κ(1 + 1/D). (12)
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Figure 5. Bifurcation diagram: (a) dashed red lines show the evolution of the bifurcation map
depending on constant D (κ = 1.0); solid lines depict the evolution of the bifurcation map depending
on spacing κ = h/hl (D = 2.0); (b) comparison of the quasi-exact and reduced models for D = 2.0,
κ = 1.0 and ξ = 0.07 (the relative error is less than 2%).

Parameters βB and λB characterizing bifurcation point B (static pull-in instability) are defined
numerically as the solution of the following set of equations:

−3Dκ2λ4 − κ(4D + 1)λ3 − κ2Dλ2 + κλ− (2κλ3 + 3λ2 + 2κλ + 1) ln(1 + κλ) = 0;

β =

(
κλ +

ln(1 + κλ)

D

)
(1− λ2)

λ(1 + κλ)
.

(13)

when κ is small, then the set (13) has an approximate solution:

λB ≈ −
κ

4
D + 3/2

D + 1
; βB ≈ κ(1 + 1/D)

(
1 +

κ2

4
D + 3/2

D + 1

)
. (14)

In addition, a comparison between reduced Model (8) and the quasi-exact model (5) is performed
for the considered design of the hybrid suspension in this work, characterized by the following
dimensionless parameters D = 2 and ξ = 0.07. The result of this comparison is presented in Figure 5b.
Analysis of Figure 5b reveals that the relative error is not in excess of 2%.

The ranges of parameters λ = 0, 0 ≤ β < βA and −λB < λ < 0 and βA ≤ β < βB establish a
stable state of equilibrium (see Figure 5a). A region near the bifurcation point A is of special interest,
because it defines a state of zero stiffness of the suspension. As seen, a decrease of stiffness leads to
decreasing a range of linear displacement of the proof mass. Near bifurcation point A, the range of
displacement becomes:

h
∆β

κ(1 + 1/D)
= h

κ(1 + 1/D)− β

κ(1 + 1/D)
≥ 4y. (15)

Using Equation (15), the minimum possible value of linear stiffness still capable of upholding
stable levitation can be estimated. For instance, in the fabricated design of the suspension (see Table 1),
upon controlling the linear displacement of the proof mass ∆y within a range of ±1 µm, the relative
minimization of the stiffness can be expected to be around 0.007. This means that the initial stiffness
generated by the inductive suspension can be reduced by two orders of magnitude. Note that the
design of the suspension corresponds to a bifurcation curve with κ = 0.3333, as shown in Figure 5a.
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5. Dynamic Pull-In Instability

An equation for the integral curves of set (9) can be obtained as follows:

dω

dλ
=

− κλ

1 + κλ
− ln(1 + κλ)

D(1 + κλ)
+

βλ

(1− λ2)2

ω
. (16)

Integrating (16), the equation of energy is obtained as:

ω2 + 2λ− 2
ln(1 + κλ)

κ
+

ln2(1 + κλ)

Dκ
− β

1− λ2 = G, (17)

where G is an arbitrary constant of the integration. From the analysis of (17), it is very important to
note the following observation, that in order to operate the device properly, it is required to remove
the energy of the electric field characterized by parameter β from the system, in order to satisfy the
initial conditions. Since G is an arbitrary constant, it can be chosen to be equal to −β. Then, the final
form of the integral equation becomes:

ω2 + 2λ− 2
ln(1 + κλ)

κ
+

ln2(1 + κλ)

Dκ
− βλ2

1− λ2 = G′. (18)

From (18), the dynamic equilibrium state can be written as:

fd(λ, β) = 2λ− 2
ln(1 + κλ)

κ
+

ln2(1 + κλ)

Dκ
− βλ2

1− λ2 ≡ 0. (19)

Using (19), the bifurcation diagram can be plotted as shown in Figure 6. Similar to the static
bifurcation diagram, it has two pull-in instability points (see Figure 6). One point has the same
coordinates as point A shown in (12) corresponding to the static pull-in instability, but Bd has different
coordinates compared to the static pull-in point B and can be found by numerically solving the
following set:

2κλ2(1− λ2)

1 + κλ
− 4λ +

[
κλ(1− λ2)

1 + κλ
+ 2D− ln(1 + κλ)

]
2

κD
ln(1 + κλ) = 0;

β =

(
2λ− 2

ln(1 + κλ)

κ
+

ln2(1 + κλ)

Dκ

)
(1− λ2)

λ2 .
(20)
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Actuators 2018, 7, 11 11 of 14

Similar to Section 4, we consider the case when κ is small, then the set (20) has an approximate
solution:

λBd ≈ −κ
D/3 + 1/2

D + 1
; βBd ≈

κ

D

(
1− κ2 (D/3 + 1/2)2

(D + 1)2

)
. (21)

Note that, when the spacing κ tends to zero, the static and dynamic pull-in displacements tend to
their zero initial position, and pull-in voltages also tend to zero. Once κ = 0, all static and dynamic
pull-in points merge into one zero point.

6. Conclusions

In this article, a micro-machined hybrid suspension based on combining electromagnetic inductive
and electrostatic actuation, which provides, in particular, control over and decrease of the vertical
component of stiffness, was presented. We discussed the micromachined fabrication process of
the device establishing three micro-structures, namely coil, top electrode and bottom electrode
structure. In particular, two possible ways of fabrication of the bottom electrode structures based
on SOI and Si wafer were considered. Using the developed micro-machined process, a prototype of
the suspension was successfully fabricated. The preliminary experimental study of this prototype
was performed and successfully demonstrated the proof of concept of the device proposed in [30].
In particular, the disk-shaped aluminum proof mass was levitated between the top and bottom
structures generating the electrostatic field. A decrease of the vertical component of the stiffness by
25% was successfully observed.

A generalized analytical model of the suspension was also developed. In order to study the
behavior of the hybrid suspension along the vertical direction as a particular case of the developed
model, a quasi-exact nonlinear model was formulated. Then, using the design particularities of a
micro-machined version of the suspension, a reduced model was proposed. It is worth noting that
the applicability of the analytical technique used for modeling a hybrid suspension has been already
successfully demonstrated for instance in [32]. Using the reduced nonlinear model, the static and
dynamic responses of the suspension were analytically and comprehensively investigated, and the
static and dynamic pull-in parameters were identified. In particular, it was shown that within the
framework of the developed prototype, the initial stiffness generated by the inductive suspension
could be reduced by two orders of magnitude.
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Appendix A

The accuracy of approximation of modeling the electromagnetic force by means of the reduced
model (8) depending on the parameter ξ = hl/(2rl), as shown in Figure A1. Analysis of Figure A1
shows that, if the parameter ξ is less than 0.3, the electromagnetic force is approximated by the
logarithmic function (6) with an error less than 6%.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

λ

R
el

at
iv

e 
er

ro
r, 

%

0.07ξ =
0.1ξ =

0.2ξ =

0.4ξ =

0.3ξ =

Figure A1. Accuracy of modeling the electromagnetic force by means of the reduced model (8) as
compared to the quasi-exact model (5).
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