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Abstract 

The Cox law on dynamic spreading relates the difference between the cubic values of the apparent contact 

angle () and the equilibrium contact angle to the instantaneous contact line speed (U). Comparing 

spreading results with this hydrodynamic wetting theory requires accurate data of  and U during the entire 

process. We consider the case when gravitational forces are negligible, so that the shape of the spreading 

drop can be closely approximated by a spherical cap. Using geometrical dependencies, we transform the 

general Cox law in a semi-analytical relation for the temporal evolution of the spreading radius. Evaluating 

this relation numerically shows that the spreading curve becomes independent from the gas viscosity when 

the latter is less than about 1% of the drop viscosity. Since inertia may invalidate the made assumptions in 

the initial stage of spreading, a quantitative criterion for the time when the spherical-cap assumption is 

reasonable is derived utilizing phase-field simulations on the spreading of partially wetting droplets. The 

developed theory allows to compare experimental/computational spreading curves for spherical-cap shaped 

droplets with Cox theory without the need for instantaneous data of  and U. Furthermore, the fitting of 

Cox theory enables estimating the effective slip length. This is potentially useful for establishing 

relationships between slip length and parameters in numerical methods for moving contact lines. 

Keywords: droplet spreading, contact angle, slip length, Cox-Voinov law, phase-field method 
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1. Introduction 

Wetting phenomena such as the spreading of liquids on a solid surface are ubiquitous in nature and 

technology and of fundamental interest for various scientific disciplines and technical applications (Bonn et 

al 2009). A common approach for describing the dynamic wetting of droplets on solid substrates is relating 

the macroscopic apparent (dynamic) contact angle (), which is the angle to which measurements usually 

relate, with the static (equilibrium) contact angle (e) and the contact line speed (U). Different forms of this 

relationship have been proposed by Hoffman (1975), Voinov (1976), Tanner (1979) and Cox (1986). 

According to the asymptotic hydrodynamic theory of Cox (1986) it is 
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Herein,  := µG / µL is the gas-to-drop viscosity ratio. The capillary number Ca := µLU/ represents a non-

dimensional contact line speed normalized by the drop viscosity (µL) and surface tension (). In Eq. (1), L 

is a characteristic macroscopic (outer) length scale (i.e., the capillary length or the size of a spreading drop) 

whereas LS is a microscopic (inner) length scale representing the length of the region where no-slip 

boundary conditions do not apply. Allowing for slip near the moving contact line overcomes the force 

singularity appearing for no-slip boundary conditions (Dussan V. and Davis 1974), resulting in finite but 

large stresses at the contact line (Hocking 1977). These in turn produce rapid changes in curvature since 

they must be balanced by the capillary pressure and hence a rapid change in slope near the contact line is to 

be expected (Hocking 1992), an effect often denoted as viscous bending (Blake 2006). However, relaxing 

the no-slip boundary condition introduces the slip length LS as new unknown parameter. The value of LS 

should be of order of molecular dimensions and the magnitude of the term  := ln (L/LS) is expected to be 

10 (Blake 2006). In practice LS often serves as a fitting parameter of the hydrodynamic wetting model 

(Foister 1990, Eral et al 2013). In this paper, we propose a procedure to determine  by fitting of 

experimental or numerical results for the time-dependent wetting radius. Relating the fitted value of  with 

a suitable macroscopic length scale L yields LS = L exp (). The corresponding value of LS can thus be 
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interpreted as that slip length which best describes the specific droplet spreading process within the 

hydrodynamic theory of wetting, and is denoted here as “effective” slip length. 

The derivation of equations (1) - (3) does not involve any assumption related to the macroscopic shape 

of the drop. However, for  < 135° and very small viscosity ratio (  0) it is 

   3 3
e e( ,0) ,0 ( ) / 9     G G  (4) 

Then, Eq. (1) simplifies to the form 
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The numerical constant  is non-universal and depends on details of the microscopic and macroscopic 

boundary conditions (Cox 1986, Eggers and Stone 2004, Snoeijer and Andreotti 2013). Eq. (5) is 

commonly known as the Cox-Voinov law and is valid in the limit Ca   1. Since L   LS, the dependence 

of the logarithmic function on L is very weak and thus can be assumed constant. Experiments confirm that 

the cubic relation 3 3
e   Ca  holds for contact angles as large as 70  100° provided Ca and the 

Reynolds number Re := LLU/µL are sufficiently smaller than unity (Fermigier and Jenffer 1991, Wang et 

al 2007). 

The principle result in experimental and computational studies on dynamic spreading processes is the 

time evolution of the radius a(t) of the circular contact area (spreading radius or base radius). Often a 

comparison of experimental/numerical results with theoretical or empirical relations is of interest, e.g. for 

model testing or code validation. The comparison with the Cox-Voinov law, Eq. (5), is often performed by 

displaying 3 3
e   over Ca (see e.g. Kim et al (2015) for a recent experimental study and Pahlavan et al 

(2015) for a recent numerical one). For experiments, this procedure is associated with two disadvantages. 

First, it requires the measurement or evaluation of (t) during the entire spreading process; this is elaborate 

and measurements of the apparent contact angle may be ambiguous. Second, it is potentially inaccurate 

because the contact line speed U(t) = da(t)/dt (spreading speed) is obtained by differentiation, and thus may 

lead to scattered data. 

In this paper, an alternative route is presented for comparing results of dynamic droplet spreading with 

the Cox or Cox-Voinov laws. We assume that gravitational effects are negligible, which is justified 

provided a typical pressure variation caused by gravity is much smaller than the Laplace pressure. This 

precondition is satisfied provided the cubic root of the drop volume is much smaller than the capillary 

length scale (Elyousfi et al 1998). Under these conditions, the spreading is driven by capillary forces alone 
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and the interface forms at each instant in time a spherical cap. Such a spherical-cap assumption has already 

been used by several authors (Hocking and Rivers 1982, Foister 1990, McHale et al 1994, Seaver and Berg 

1994, Rowan et al 1995, de Ruijter et al 1999, de Ruijter et al 2000). Hocking and Rivers (1982) used 

matched asymptotic expansions to solve the Stokes equation both in the outer region (with spherical cap 

assumption) and in the vicinity of the contact line and derived a relation for the wetted radius a as function 

of time (Eq. 6.1), which must be evaluated numerically. Foister (1990) employed the spherical cap 

assumption to compare experimental spreading data with the hydrodynamic theory. McHale et al (1994) 

utilized it to balance the rate of change of free energy with an approximation for the viscous dissipation in 

the drop to derive a spreading law for small droplets.  

Similar to Hocking and Rivers (1982), we employ in this paper the spherical-cap assumption to derive 

a semi-analytical relationship for a(t), which must be evaluated numerically as well. In contrast to Hocking 

and Rivers (1982), we start here from an explicit relation between dynamic contact angle and capillary 

number, namely Cox law. Using geometrical dependencies following from the spherical-cap assumption, 

we transform Eq. (1) into a relationship for a(t) which allows easy and straightforward comparisons with 

experiments and computations. As first novelty of our study, we use this relation to investigate the 

influence of the gas-liquid viscosity ratio on the spreading of a spherical-cap droplet and show that the 

spreading curves following Cox theory become independent from the gas viscosity when the viscosity ratio 

is below about 0.01. While Hocking and Rivers (1982) mention that in experiments the initial drop shape 

usually deviates notably from a spherical-cap, they also state that it is unclear from which time on the 

spherical-cap assumption is reasonable. As second novelty of our study, we provide a quantitative criterion 

for the time when the spherical-cap assumption is reasonable. For this purpose we perform numerical 

simulations of the spreading of a small droplet on a partially wetting flat substrate using a phase-field 

method, where we solve the Cahn-Hilliard-Navier-Stokes equations with and without inertia. Finally, we 

illustrate how comparing the numerical (or experimental) base-radius over time curve with the theoretical 

one allows extracting an effective slip length. Here, the term effective expresses the fact that the slip length 

in numerical computations is not necessarily equal to the physical slip length, which is on the order of 

109m or less for most surfaces (Kim et al 2015). 

2. Theory 

In this section, we transform the general Cox law into a time dependent relation for the spreading radius. 

For this purpose, we consider a drop with constant volume (V) that spreads on a flat chemically 
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homogenous surface. Our fundamental presupposition is, as mentioned before, that the macroscopic droplet 

shape is  during the entire spreading process  closely approximated by a spherical cap. 

For a sessile drop with spherical cap shape, geometric parameters such as drop height, wetted base 

radius, spherical cap radius, contact angle and drop volume are linked by unique algebraic relationships 

(Strella 1970). As a spherical cap has only two degrees of freedom, if a variable is constant it is possible to 

write all the parameters of the system in function of one variable. For a spherical cap droplet with constant 

volume V, the spreading radius a(t) and the apparent contact angle (t) are related as (Rowan et al 1995, 

Berthier et al 2008) 
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The time derivative of Eq. (6) is 
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With the identity 3 22 3cos cos (1 cos ) (2 cos )        , Eq. (8) takes the form given by Voinov 

(1976) (Eq. (4.2)) and McHale et al (1994). 

By introducing Ca = µL(da(t)/dt)/ and  = ln (L/LS) into Eq. (1), the Cox law can be rewritten in the 

form 
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Combining Eq. (8) and Eq. (10) yields 
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An appropriate length scale for transferring Eq. (11) into a non-dimensional form is the volume-

equivalent drop radius RV := (3V/(4))1/3. Based on the capillary-viscous time scale tref := µLRV /, the non-

dimensional time  := t/tref =  t/(µLRV) can be defined. With these definitions Eq. (11) becomes 
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Eq. (12) constitutes a differential relation between the instantaneous macroscopic contact angle  and the 

non-dimensional time . 

Integrating Eq. (12) requires the specification of initial conditions. Let 0  e be the initial contact 

angle at time t =  = 0. Then, the initial spherical cap radius is 
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while the initial base radius is a0 = RS,0sin0. For 0 > e the contact line advances as the droplet spreads out 

and wets the substrate, whereas it recedes for 0 < e where dewetting occurs. 

Integrating Eq. (12) and taking into account Eq. (2) and Eq. (9) yields 
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In the limit   0 Eq. (14) simplifies  by virtue of Eq. (4)  to the form 
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The integrals on the right-hand-sides of Eq. (14) and (15) cannot be solved analytically. However, for a 

given value of  either integral can be solved numerically. Doing this for a set of distinct values i in the 

range e < i < 0 (spreading case) yields the corresponding set of discrete values of non-dimensional time 

i. From the discrete values i, one obtains from Eq. (6) the corresponding discrete values of the spreading 

radius ai, and from the discrete values of i the discrete values of ti. Thus, a relation between ai and ti is 

established which can be used to compare the spreading dynamics of Cox theory with computational or 

experimental results. 

Due to the lack of analytical solutions for the integrals in Eq. (14) and Eq. (15), each combination of 

e, 0 and  requires a separate numerical integration. This numerical solution applies by virtue of the non-
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dimensional time to different liquid properties and initial drop volumes. To perform the numerical integration, 

a MATLAB script is used (see supplemental material) where the discrete values of the contact angle are given 

by i = 0  i for i = 1,2,3,… . Here, the step size  = 0.001 is used. The procedure for dewetting (0 < 

e) is similar and the MATLAB script can easily be adapted to handle this case as well. 

3. Numerical simulation 

In this section, the governing equations and numerical set-up for simulating the spreading of a liquid 

droplet on a perfectly smooth, chemically homogenous, solid surface are presented. The simulations are 

performed with a phase-field method as implemented in an in-house finite element code denoted as AMPHI 

(Yue et al 2006, Yue et al 2010). 

3.1 Phase-field method 

In the phase-field method (Jacqmin 1999, Villanueva and Amberg 2006, Ding et al 2007, Khatavkar et al 

2007, He and Kasagi 2008, Kim 2012), the order parameter  serves to describe the distribution of the gas 

and liquid phases. Here,  takes distinct values L = 1 and G = 1 in the bulk phases and varies rapidly but 

smoothly in a thin transition layer (the diffuse interface). The location of the gas-liquid interface is 

represented by  = 0. To determine the phase evolution, the convective Cahn-Hilliard (CH) equation 

 2
BM J

t
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is solved, where 
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is the bulk chemical potential. In the latter equations, M is the (constant) mobility parameter and  is a 

positive constant determining the interfacial thickness. The Cahn number Cn :=  / RV relates the interfacial 

width parameter to the volume-equivalent drop radius.  

In this paper, we consider two incompressible, immiscible, isothermal Newtonian fluids with constant 

physical properties. The flow of both phases is described by the single-field Navier-Stokes equations 

 0 u  (18) 
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The density field and the viscosity field depend on the phase distribution and are computed as 
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Here, H = (1 + ) / 2 is a regularized Heaviside function computed from the order parameter. The last term 

in Eq. (19) represents the surface tension force which is expressed in AMPHI as st BJ  f . 

Within the wall energy relaxation model (Yue and Feng 2011), the following boundary conditions 

apply on the solid substrate: 

 wu u  (21) 
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Here, uw is the wall velocity (which is set to zero here),  is a rate constant and 
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is the surface chemical potential. For the present simulations, we adopt the energy equilibrium model (limit 

  ) where the latter two equations can be combined to yield 
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This boundary condition is consistent with the Cox theory in the sense that the interface retains the 

equilibrium contact angle within the slip zone (z  LS), whereas the apparent contact angle in the outer zone 

is the result of viscous force bending the interface (z >> LS). The same two-region picture can be borrowed 

into the CH solution, except that the length scale of the inner region, the diffusion length LD (cf. Section 

4.4), will be artificially enlarged. Furthermore, wall energy relaxation  when considered  competes with 

CH diffusion in defining the apparent contact angle, the former tending to “rotate” the interface at the 

contact line while the latter to “bend” it in the bulk (Yue and Feng 2011). 

While the wetting boundary condition given by Eq. (25) is often used in phase field simulations, it is 

valid only under the tacit assumption of a perfectly smooth chemically homogenous substrate. In reality, 

dynamic spreading processes are usually affected by topographical or chemical surface heterogeneities. To 

account for these heterogeneities, upscaled/homogenized Cahn-Hilliard phase-field methods have been 

proposed (Wylock et al 2012, Schmuck et al 2012) but are mainly applied for flow through porous media so 

far (Ververis and Schmuck 2017). 
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3.2 Computational set-up and fluid properties 

Figure 1 shows the polar coordinate systems and a sketch of the initial and equilibrium droplet shapes. 

The initial shape is a hemisphere so that the initial contact angle is 0 = 90°. The initial spherical cap radius 

is RS,0 = a0 = 0.5 mm. This corresponds to a drop volume V = 0.2618 mm3 and volume-equivalent drop radius 

RV = 0.397 mm. The equilibrium contact angle is set to e = 60°. Thus, the ratio between terminal and initial 

spreading radius is 

 

1/33
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The liquid phase is coconut oil with a density L = 910 kg/m3 and dynamic viscosity µL = 0.03 Pa s. 

The gas density is G = 1 kg/m3 and the coefficient of surface tension is  = 0.0294 N/m. The gas viscosity 

is µG = 3104 Pas corresponding to  = 0.01. The value of the capillary-viscous time scale is tref = 0.405 ms. 

The already mentioned criterion of Elyousfi et al. (1998) for neglecting gravity reads 
1/3 3 1/3 0.5

L G(4 / 3) ( / ( ))VV R g     . This condition is equivalent to 0.77Eo , where 
2

L G: ( ) /VEo gR     is the Eötvös number. In the present simulation it is Eo = 0.0487 so that 

gravitational effects are negligible. In the simulations, gravity is therefore neglected (g = 0) so that the 

spreading is driven by capillarity alone. 

 

 

Figure 1. Schematic illustration of the polar coordinate system with initial drop shape (dashed line, contact 

angle 0 = 90°) and final drop shape (solid line, equilibrium contact angle e < 0). 
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The 2D computational domain is a square with size 0  r  H and 0  z  H. In order to minimize the 

influence of the domain size H = 3RS,0 is used. The boundary conditions are as follows. At the axis (r = 0) 

axi-symmetry is specified. At the top and right boundaries of the computational domain (r = z = H) constant 

pressure inlet boundary conditions are applied. At the flat and smooth solid surface (z = 0) the no-slip 

condition holds. The boundary condition for the order parameter at the solid surface, Eq. (25), employs the 

equilibrium contact angle (e = 60°), independent from the contact line speed. Thus at the present stage, 

neither a dynamic contact angle model is used nor is contact angle hysteresis taken into account. In the phase 

field method, the apparent contact angle determined at a certain distance away from the wall may nevertheless 

differ from e as discussed above, see also Yue and Feng (2011) and Kusumaatmaja et al (2016). 

4. Results and discussion 

In this section, we discuss some implications and limitations of the theoretical derivation presented above 

and compare numerical results for the time evolution of the spreading radius with the corresponding curve 

derived from Cox theory using the MATLAB script. 

4.1 Influence of viscosity ratio 

We first discuss the influence of the viscosity ratio () on the motion of the contact line for the general Cox 

law. Since Eq. (14) is linear with respect to  = ln (L/LS), it is sufficient to consider one value only (here  

= 10). Figure 2 shows the time evolution of the spreading radius (normalized by the initial value a0) for four 

different values of , namely 0, 0.01, 0.1 and 1. It is obvious that the spreading curves for  = 0 and  = 

0.01 are almost identical. This indicates that the influence of the gas viscosity on the spreading process is 

negligible for   0.01. As  increases, the spreading process is delayed. We remark that the curve for  = 

1 in Figure 2 is not consistent with the Cox-Voinov law, Eq. (5), since the underlying approximation in Eq. 

(4) is only valid in the limit of very small viscosity ratio. 
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Figure 2. Influence of gas-liquid viscosity ratio () on the spreading of a spherical-cap droplet following 

the Cox theory for  = 10. 

4.2 Limitations for initial stage of spreading 

Even when gravitational forces are negligible, the above theory may become invalid for comparison with 

experimental or computational results in the initial stage of spreading for two reasons. First, the theory in 

Section 2 relies on the assumption that at each instant in time of the spreading process the drop forms a 

spherical cap. Due to the boundary conditions for the contact angle given by Eq. (25), the contact angle in 

the present phase-field simulation immediately adapts from the initial value 0 to the equilibrium value e, 

see Figure 3 a), while away from the wall the interface remains at its initial shape. Thus, at least in the very 

first stage of the simulation, the drop shape differs from a spherical cap and invalidates a comparison of the 

computational results with the above theory. 

The mentioned distortion of the interface near the contact line can induce a capillary wave that travels 

up the drop and may even result in drop ejection (Ding et al 2012). In this context, it is useful to perform a 

simple estimation of the time tcw when the capillary wave is diminished so that for larger times an agreement 

between the numerical results and Cox theory may be expected. The speed of a capillary wave with wave 

length  is cw 2 / ( )LU   . The time required for this wave to travel a distance Lcw is 
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For evaluation of tcw we assume that the capillary wave travels from the contact line to the drop apex and 

back so that Lcw =  R0. As a rough approximation for the mean wave length of the capillary wave during 

this period we take one half of the distance from the contact line to the drop apex so that  =  R0 / 4. Then 

Eq. (27) yields 2 3
cw 0 / (8 ) 2.2 ms    Lt R  corresponding to cw  5.4. 

 

 

Figure 3. Zoom of the computed order parameter field near the contact line for two instants in time 

(simulation with inertia). a) Initial stage of spreading ( = 0.987), b) final equilibrium state ( = 116.4). 

The slope of the straight black line in each subfigure corresponds to the equilibrium contact angle e = 60°.

 

Another possible reason why a good agreement between the simulation results and Cox theory may 

not be expected for short times is inertia, as the simulations start from a static state where the droplet is at 

rest. The non-dimensional spreading curves a()/a0 displayed in Figure 2 arise from pure kinematic relations 

not accounting for inertia. The time-derivative of these curves yields the contact line velocity 
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so that the time evolutions of the capillary number 
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and the Reynolds number 
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can be computed. Here, Oh := µL / (LRV)0.5 denotes the Ohnesorge number. The maximum values of 

Ca() and Re() are obtained for the limit   +0. While the maximum value of the capillary number may 

be less than unity, the maximum value of the Reynolds number may be larger than unity when the 

Ohnesorge number is low. Thus, the requirement Re < 1 for the Cox-Voinov theory to be valid may be not 

met in the initial stage of the computations. In the present numerical study, the Ohnesorge number Oh = 

0.291 is smaller than unity, which indicates that inertia may have an influence in the initial stage of 

spreading. The theory for spherical-cap droplets in Section 2 does not consider the effect of inertia. For 

small values of , the numerical spreading curves may thus be delayed as compared to those computed from 

Cox theory. 

4.3 Effect of inertia 

To quantify the effect of inertia, two phase-field simulations are performed for the same value of Oh 

= 0.291; once with and once without inertia. The computations are carried out with the AMPHI code that 

employs Galerkin finite elements on an adaptive triangular grid that adequately resolves the interfacial region. 

In this test case,  = 0.5 µm corresponding to  / RS,0 = 0.001 and Cn = 0.00126 is used. The mobility is M = 

8.331011 m3s/kg while the gas-liquid viscosity ratio is set to  = 0.01. According to Figure 2, the results for 

 = 0.01 should not differ from those for  = 0.0005 corresponding to the dynamic viscosity of air (µG = 

1.5105 Pa s). With these parameters the diffuse interface is very thin but at the same time very well resolved 

by the adaptive finite element mesh. Consequently, the simulations fulfil the criteria for the sharp-interface 

limit of the phase-field method (Yue et al 2010). 

Figure 4 shows the time evolution of the spreading radius (normalized by the initial value a0) computed 

by AMPHI with and without inertia. Included in this figure are for comparison two semi-analytical curves of 

the Cox law where the phenomenological parameter  = ln (L/LS) is set to 5 and 6, respectively. For both 

numerical simulations with and without inertia, the terminal spreading radius agrees well with the analytical 

value. The influence of inertia on the spreading process is rather small but still notable, which is consistent 

with the value of Oh. As expected, inertia tends to slow down the spreading process in the initial stage but 

speeds it up in the final stage. Figure 3 b) shows the terminal field of the order parameter in the simulation 
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with inertia in the vicinity of the contact line. The slope of the interface corresponds well with the equilibrium 

contact angle while the value of the terminal spreading radius agrees well with the analytical value given in 

Eq. (26). 

 

  

Figure 4. Time evolution of normalized spreading radius a()/a0. Comparison of simulations results with 

and without inertia force with Cox theory. 

 

Biance et al (2004) estimated the duration of the inertial regime as 
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Though this relation was developed for completely wetting liquids, it may be useful for the present case of 

partially wetting liquids as well. When normalizing Eq. (31) by the capillary-viscous time scale, it follows 
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where K is an (unknown) non-dimensional pre-factor. In the present case it is Oh5/4 = 4.676. To determine 

K, we utilize the spreading curves with and without inertia displayed in Figure 4. Both curves intersect at  

= 5.86 as indicated by the vertical line. Assuming that this intersection-time is representative for inertial 

allows to determine the pre-factor in Eq. (32). Here, it follows K = 1.253. For the present case, the values of 

inertial and cw are thus very similar. 

The value of the normalized spreading radius at the inertial cross-over time is a(inertial)/a0 = 1.1465. 

The corresponding instantaneous contact angle inertial can be determined by solving Eq. (6) iteratively. Here, 

one obtains inertial = 73.51°. The instantaneous values of the capillary number and Reynolds number are 

Ca(inertial) = 0.02 and Re(inertial) = 0.24, respectively. Running the MATLAB script with the initial contact 

angle inertial = 73.51° for different values of , yields a family of spreading curves beginning at inertial. Figure 

5 shows the corresponding spreading curves for  = 5 and  = 6 (with the vertical line denoting inertial = 5.86). 

The curve for  = 5 almost overlaps with the numerical spreading curve (case with inertia). When an 

appropriate value for the macroscopic length scale L is specified, this result can be used to estimate the 

effective slip length in the simulation. For example, following Chebbi (2010) and setting L = RV = 0.397 mm 

yields LS  RVexp(5)  2.67 µm. Often, L is also associated with the capillary length (Snoeijer and Andreotti 

2013). Setting L = ( /(g))0.5 = 1.8 mm then gives the larger value LS  12.1 µm. 
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Figure 5. Time evolution of normalized spreading radius a()/a0. Comparison of simulation result with 

inertia with Cox theory computed with 0 = inertial = 73.51°. 

 

4.4 Relation between slip length and diffusion length in phase-field method 

In the phase-field method, there exists in addition to  (which represents the length scale over which  

varies) a much larger length scale LD over which the Cahn-Hilliard diffusion takes place (and over which 

the chemical potential and the velocity vary). Since diffusion is the driving mechanism for contact line 

motion in the phase-field method, the slip length LS is closely related to LD. Yue and Feng (2011) 

performed phase field simulations of droplet spreading on a partially wetting substrate using the wall 

energy relaxation model. They considered the case of matched viscosities ( = 1) and showed that a 

universal spreading curve agreeing with Cox theory can be achieved by a certain compensation strategy 

between the relaxation parameter and Cahn-Hilliard bulk diffusion. More recently, Kusumaatmaja et al 

(2016) performed extensive phase-field simulations for a plug in planar Couette and Poiseuille flow to 

determine the slip length under the restrictions of Stokes flow, matched phase viscosities (µL = µG = µ) and 

neutral equilibrium contact angle (e = 90°). The authors identified two regimes with different scaling, 

depending whether the ratio LD /  with LD = (M µ)0.5 is larger (sharp interface limit) or smaller (diffuse 
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interface limit) than unity. Furthermore, the dependence of the apparent contact angle on the capillary 

number was found to be in excellent agreement with Cox theory. 

For non-matched viscosity ratios, Yue et al (2010) proposed the relation LD = (M µeff)
0.5 where  

µeff = (µLµG)0.5 = µL0.5 is an effective viscosity. The authors also introduced the non-dimensional group 
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Similar to Jacqmin (2000), Yue et al (2010) suggested a linear relationship between slip length and 

diffusion length. Introducing LS =  LD into  = ln (L/LS) then yields 
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Fitting the spreading curve of a phase-field simulation performed with given parameters µL,  and M by a 

certain value of  thus allows determining  from Eq. (34). For the simulation with AMPHI, Figure 5 

suggests   5. Evaluating Eq. (34) for L = RV yields   5.3, a value which is about twice as large as in the 

relation S = 2.5D suggested by Yue et al (2010). The largest uncertainty here, arises probably from the 

relationship µeff = (µLµG)0.5 = µL0.5 which has been proposed in an ad hoc manner without deeper scientific 

foundation. 

The semi-analytical procedure developed in this paper may be of particular benefit for the advancement 

of numerical methods for moving contact lines. For the phase-field method, it offers the opportunity to refine 

Eq. (34) and establish a clear quantitative relationship between the mobility and the effective slip length LS 

for droplet spreading phenomena with non-matched viscosities. Similar to the scaling found by 

Kusumaatmaja et al (2016) for a meniscus displacing with constant speed, this relation should be unique and 

independent of discretization and code implementation; at least as long as the diffuse interface is well 

resolved. The only uncertainty is the effective viscosity. Establishing such a relation for the phase-field 

method requires  especially for cases where the contact line speed is not constant in time  considerable 

computations for a wide parameter space. This is beyond the scope of this paper but will be considered in 

future work. 

For sharp interface methods there is no such relation as Eq. (34). From literature it is known that flows 

involving moving contact lines computed by the volume-of-fluid (VOF) method are often mesh dependent 

(Renardy et al 2001, Schönfeld and Hardt 2009, Afkhami et al 2009, Legendre and Maglio 2015). As a 

remedy, Renardy et al (2001) related the slip length in their VOF method to the grid resolution near the wall 
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while Afkhami et al (2009) proposed a mesh-dependent dynamic contact angle model. The procedure 

developed in the present paper may be used to establish quantitative relationships between effective slip 

length and grid resolution for sharp interface methods as well. For convenience, we shortly summarize this 

procedure in the next subsection. 

4.5 Procedure for estimating the effective slip length from spreading curves 

In this paper, a semi-analytical procedure is presented that allows estimating the effective slip length LS of 

spreading droplets from base-radius over time curves obtained either from numerical computations or from 

experiments. The procedure is meaningful if two preconditions are met. First, the maximum values of the 

capillary number and the Reynolds number must both be sufficiently smaller than unity. Second, the 

spherical-cap assumption must be justified. The latter condition is directly linked to the influence of 

gravitational forces and is easily met in numerical computations where gravity is set to zero. In 

computations with gravity and in experiments, gravitational effects are negligible provided the Eötvös 

number is sufficiently small. Results of numerical studies (Chen et al 2009, Dupont et al 2011, Cai et al 

2015) indicate that for the terminal drop shape this is the case for Eo  0.1. 

When the above preconditions are met, the procedure consists of the following four steps: 

1. Compute the Ohnesorge number Oh = µL / (LRV)0.5 and estimate from Eq. (32) the duration of the 

inertial regime inertial = KOh5/4 by using either the present value of the pre-factor (K = 1.253) or 

simply K = 1. 

2. Determine from the instantaneous (numerical or experimental) value of the spreading radius at the 

inertial time a(inertial) the corresponding instantaneous contact angle inertial by solving Eq. (6) 

iteratively. 

3. Run the present MATLAB script (see supplemental material) with 0 = inertial to determine the 

spreading curves of the general Cox law for different values of  = ln (L/LS). 

4. Determine the value  = fit which best fits to the experimental or numerical spreading curve for  

  inertial and estimate the effective slip length by relation LS  L exp(fit) with an appropriate 

value of the macroscopic length scale (L), e.g. L = RV as used here. 
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5. Conclusions 

Experimental or computational results on spreading processes naturally emerge as base-radius over time 

curves. In this paper, a semi-analytical method is presented that allows direct comparison of such curves 

with those arising from the general Cox relation between apparent contact angle and contact line speed. The 

approach is valid when the capillary number and Reynolds number are both sufficiently smaller than unity 

and when gravitational effects are negligible so that the drop forms at each instant in time a spherical cap. 

For these conditions it is shown that the spreading dynamics according to the general Cox law become 

independent from the gas viscosity when the gas-liquid viscosity ratio is below about 0.01. 

The presented procedure is useful for a straightforward comparison of computational or experimental 

results on droplet spreading in the capillary-viscous regime with Cox theory. To exclude the effect of inertia, 

which may invalidate the comparison with Cox theory for the initial stage of spreading, a non-dimensional 

time scale (inertial) is derived when the effect of inertia has diminished. This time scale is related to the 

Ohnesorge number by a power law. For times larger than inertial, comparison of computational or experimental 

spreading curves with Cox theory allows fitting of  = ln (L/LS) and thus determining the effective slip length. 

A potential advantage of the presented semi-analytical method for experimental studies is that for 

comparison with Cox theory neither a measurement of the apparent contact angle nor a computation of the 

contact line speed by differentiation of the spreading radius is necessary. However, the preconditions for 

validity of the method (especially the spherical-cap assumption) may be quite restrictive and require a 

sensitive experimental system and careful selection of the solid/liquid pair. 

For numerical computations, the spherical-cap assumption is not as restrictive as in experiments since 

the gravity force can be turned off so that the spreading is driven by capillary forces alone. The semi-

analytical procedure developed in this paper may thus be in particular useful for the advancement of 

numerical methods for moving contact lines. For phase-field methods, it offers the opportunity to establish a 

quantitative relationship between the effective slip length and the mobility (which is usually treated as a 

numerical parameter rather than a physical one) for the practically relevant case of droplet-spreading with 

non-matched viscosities. In order to establish such a relationship, considerable computations for a wide 

parameter space are required. This task will be considered in future work. 

For spreading processes where gravitational forces are not negligible, the drop shape will deviate from 

a spherical cap. Similar as noted by Hocking and Rivers (1982) for their analytical study, the present method 

may be extended to such situations by introducing an appropriate (yet unknown) functional relationship for 

the instantaneous drop shape (e.g. in terms of the Eötvös number) into Eq. (6). 
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Supplementary material 

A MATLAB script is provided that performs the numerical integration of Eq. (14) for a set of discrete 

contact angles. This yields the discrete time evolution of the spreading radius according to Cox theory (for 

which a sample output is provided as well). This material is available free of charge via the Internet. 
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Supplemental Material: MATLAB script 

clear; 
  
%%%%% Begin of Section for Parameter Input %%%%%%  
  
% Volume of the droplet [m^3] 
volume = 2.618e-10; 
  
% Dynamic viscosity of liquid phase forming the droplet [Pa s]; 
mu_L = 0.03; 
  
% Coefficient of surface tension [N/m] 
sigma = 29.4e-3; 
  
% Gas-to-liquid viscosity ratio [-] 
eta = 0.01; 
  
% Natural logarithm of ratio btw. macro- and micro-scopic length scale [-] 
lamda = 10; 
  
% Initial contact angle [-] 
theta_0 = 90*pi/180; 
  
% Equilibrium contact angle [-] 
theta_e = 60*pi/180; 
  
% Incremental step size in apparent contact angle (theta_a) 
step_size = 0.0001; 
  
% Scaling factor for static contact angle to avoid a zero denominator [-] 
eps = 1.0000001; 
  
%%%%% End of Section for Parameter Input %%%%%% 
  
%%%%% Begin of Section for Calculation %%%%%% 
  
% Compute volume-equivalent radius of droplet [m] 
R_V = ((3*volume)/(4*pi))^(1/3); 
  
% Compute initial spherical cap radius of droplet [m] 
R_S0 = (3*volume/(pi*(2-3*cos(theta_0)+(cos(theta_0)^3))))^(1/3); 
  
% Compute initial base radius of drop [m] 
a_0 = R_S0 * sin(theta_0); 
  
% Compute reference time scale (capillary-viscous time scale) 
t_ref = ( mu_L * R_V ) / sigma; 
  
% Constant prefactor  
C = ( mu_L * lamda ) / ( sigma * (pi/(3*volume))^(1/3) ); 
  
% Function in Cox theory 



24 

one_over_f_Cox =@(x)  (eta*(x.^2-(sin(x)).^2).*(pi-x + sin(x).*cos(x)) + ((pi-
x).^2 -(sin(x)).^2).*(x-sin(x).*cos(x)))./(2*sin(x).*( eta^2*(x.^2-(sin(x)).^2) 
+ 2*eta*(x.*(pi-x)+(sin(x)).^2) + (pi-x).^2 -(sin(x)).^2 )) ;  
  
% Calculate G function for equilibrium contact angle 
G_e = quad(one_over_f_Cox, 0, theta_e); 
   
% Build one-to-one maping for G and theta_a 
     
% Counting index for building one-to-one mapping 
k=1; 
  
for theta_a= (theta_e * eps):step_size:theta_0 
     
G(k) = quad(one_over_f_Cox, 0, theta_a); 
  
k=k+1; 
  
end 
  
k=1; 
  
for theta_a= (theta_e * eps):step_size:theta_0 
     
F(k) =  C/((G(k)-G_e)*( (2+cos(theta_a))*(2-
3*cos(theta_a)+(cos(theta_a))^3)^(1/3)) ) ; 
k=k+1; 
  
end 
  
m = 1; 
  
for theta_a= (theta_e * eps):step_size:theta_0 
     
for i= m:(k-1) 
    Q(i) =  F(i)*step_size ; 
end 
  
sum = 0; 
  
for i=m:(k-1) 
    sum = sum + Q(i); 
end 
  
t(m) = sum; 
  
m=m+1; 
  
end 
  
% Counting index for building one-to-one mapping relation btw. a and theta_a 
k=1; 
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for theta_a= (theta_e*eps):step_size:theta_0 
    a(k) = ((3*volume/pi)^(1/3))*sin(theta_a)/((2-
3*cos(theta_a)+(cos(theta_a)).^3).^(1/3)); 
    k=k+1; 
end 
  
%%%%% End of Section for Calculation %%%%%% 
  
% Based on: 
% (1) one-to-one mapping relation btw. t and theta_a,  
% (2) one-to-one mapping relation btw. a  and theta_a 
% we build one-to-one mapping relation btw. t and a, with the help of 
% theta_a as the bridge. 
  
% Plot the built relation as first checking: 
plot(t, a); 
  
% Write results in matrix A 
% - Set matrix elements to zero:  
A(k-1,4)=0; 
% - Fill matrix with results: 
A(:,1) = t / t_ref; 
A(:,2) = t; 
A(:,3) = a / a_0; 
A(:,4) = a; 
  
% Write results to file 
% --- Write header 
fileID = fopen('Cox_theory.txt','w'); 
fprintf(fileID,'%16s %16s %16s %16s \r\n','%  ln(L/L_S) [-]','theta_e 
[°]','theta_0 [°]','eta [-]'); 
fprintf(fileID,'%c %14.6f %16.8f %16.8f %16.8f 
\r\n','%',lamda,180*theta_e/pi,180*theta_0/pi,eta); 
fprintf(fileID,'%16s %16s %16s %16s \r\n','%        V [m^3]','R_V [-]','R_S,0 
[m]','t_ref [s]'); 
fprintf(fileID,'%c %14.7E %16.8E %16.8E %16.8E 
\r\n','%',volume,R_V,R_S0,t_ref); 
fprintf(fileID,'%16s %16s %16s %16s \r\n','tau','t','a/a_0','a'); 
fprintf(fileID,'%16s %16s %16s %16s \r\n','[-]','[s]','[-]','[m]'); 
% --- Write data 
fprintf(fileID,'%16.8E %16.8E %16.8E %16.8E \r\n',0,0,1,a_0); 
for i = 1:(k-1) 
    fprintf(fileID,'%16.8E %16.8E %16.8E %16.8E \r\n',A(k-i,1),A(k-i,2),A(k-
i,3),A(k-i,4)); 
end 
fclose(fileID); 
  
% End of MATLAB script 
 

  



26 

Sample output of MATLAB script 

%  ln(L/L_S) [-]      theta_e [°]      theta_0 [°]          eta [-]  
%      10.000000      60.00000000      90.00000000       0.01000000  
%        V [m^3]          R_V [-]        R_S,0 [m]        t_ref [s]  
%  2.6180000E-10   3.96850572E-04   5.00000390E-04   4.04949564E-04  
             tau                t            a/a_0                a  
             [-]              [s]              [-]              [m]  
  0.00000000E+00   0.00000000E+00   1.00000000E+00   5.00000390E-04  
  2.21820501E-03   8.98261150E-07   1.00004934E+00   5.00025057E-04  
  4.43700167E-03   1.79676189E-06   1.00009934E+00   5.00050057E-04  
  6.65639025E-03   2.69550233E-06   1.00014934E+00   5.00075058E-04  
  8.87637103E-03   3.59448257E-06   1.00019934E+00   5.00100058E-04  
  1.10969443E-02   4.49370273E-06   1.00024934E+00   5.00125058E-04  
  1.33181102E-02   5.39316292E-06   1.00029934E+00   5.00150058E-04  
  1.55398692E-02   6.29286324E-06   1.00034934E+00   5.00175058E-04  
  1.77622214E-02   7.19280379E-06   1.00039934E+00   5.00200058E-04  
  1.99851671E-02   8.09298470E-06   1.00044934E+00   5.00225058E-04  
  2.22087066E-02   8.99340606E-06   1.00049934E+00   5.00250058E-04  
  2.44328402E-02   9.89406799E-06   1.00054934E+00   5.00275058E-04  
  2.66575682E-02   1.07949706E-05   1.00059934E+00   5.00300058E-04  
  2.88828907E-02   1.16961140E-05   1.00064934E+00   5.00325058E-04  
  3.11088081E-02   1.25974983E-05   1.00069934E+00   5.00350058E-04  
  3.33353207E-02   1.34991236E-05   1.00074934E+00   5.00375058E-04  
  3.55624286E-02   1.44009900E-05   1.00079934E+00   5.00400058E-04  
  3.77901323E-02   1.53030976E-05   1.00084934E+00   5.00425058E-04  
  4.00184319E-02   1.62054465E-05   1.00089934E+00   5.00450058E-04  
  4.22473277E-02   1.71080369E-05   1.00094934E+00   5.00475058E-04  
  4.44768200E-02   1.80108688E-05   1.00099934E+00   5.00500058E-04  
  4.67069091E-02   1.89139424E-05   1.00104934E+00   5.00525058E-04  
  4.89375952E-02   1.98172578E-05   1.00109934E+00   5.00550058E-04  
  5.11688785E-02   2.07208150E-05   1.00114934E+00   5.00575058E-04  
  5.34007595E-02   2.16246143E-05   1.00119934E+00   5.00600059E-04  
  5.56332383E-02   2.25286556E-05   1.00124934E+00   5.00625059E-04  
  5.78663152E-02   2.34329391E-05   1.00129934E+00   5.00650059E-04  
  6.00999906E-02   2.43374649E-05   1.00134934E+00   5.00675059E-04  
  6.23342645E-02   2.52422332E-05   1.00139934E+00   5.00700059E-04  
  6.45691374E-02   2.61472440E-05   1.00144934E+00   5.00725059E-04  
  6.68046095E-02   2.70524975E-05   1.00149934E+00   5.00750059E-04  
  6.90406811E-02   2.79579937E-05   1.00154934E+00   5.00775059E-04  
  7.12773524E-02   2.88637327E-05   1.00159934E+00   5.00800059E-04  
  7.35146237E-02   2.97697148E-05   1.00164934E+00   5.00825060E-04  
  7.57524953E-02   3.06759399E-05   1.00169934E+00   5.00850060E-04  
  7.79909675E-02   3.15824082E-05   1.00174934E+00   5.00875060E-04  
  8.02300404E-02   3.24891199E-05   1.00179934E+00   5.00900060E-04  
  8.24697146E-02   3.33960749E-05   1.00184934E+00   5.00925060E-04  
  8.47099900E-02   3.43032735E-05   1.00189934E+00   5.00950060E-04  
... 
  


