
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 1

Massively Parallel Stencil Code Solver with
Autonomous Adaptive Block Distribution

Marco Berghoff, Ivan Kondov, Johannes Hötzer

Abstract—In the last decades, simulations have been established in several fields of science and industry to study various phenomena
by solving, inter alia, partial differential equations. For an efficient use of current and future high performance computing systems, with
many thousands of computation ranks, high node-level performance, scalable communication, and the omission of unnecessary
calculations are of high priority in the development of new solvers. The challenge of contemporary simulation applications is to bridge
the gap between the scales of the various physical processes. We introduce the NAStJA framework, a block-based MPI parallel solver
for arbitrary algorithms, based on stencil code or other regular grid methods. NAStJA decomposes the domain of spatially complex
structures into small cuboid blocks. A special feature of NAStJA is the dynamic block adaption which modifies the calculation domain
around the region where the computation currently takes place, and hence avoids unnecessary calculations. This often occurs, inter
alia, in phase-field simulations. Block creation and deletion is managed autonomously within local neighborhoods. A basic load
balancing mechanism allows a re-distribution of newly created blocks to the involved computing ranks. The use of a multi-hop network,
to distribute information to the entire domain, avoids collective all-gather communications. Thus, we can demonstrate excellent scaling.
The present scaling tests substantiate the enormous advantage of this adaptive method. For certain simulation scenarios, we can
show that the calculation effort and memory consumption can be reduced to only 3.5 %, compared to the classical full-domain
reference simulation. The overhead of 70 − 100 % for the dynamic adapting block creation is significantly lower than the gain. The
approach is not restricted to phase-field simulations, and can be employed in other domains of computational science to exploit
sparsity of computing regions.

Index Terms—stencil code, distributed memory, scalable parallel algorithms, massively parallel performance, multi-hop network, load
balancing, partial differential equation, phase-field method

F

1 INTRODUCTION

COMPUTER simulations help to understand the theory
behind phenomena, and especially to investigate those

that are difficult to access in experiments. With increasing
computing power, simulations become larger and more
complex. This leads to an increase of the resolution, the
accuracy, and the gain in knowledge. In computational
materials science, simulations with the phase-field method
reach sizes that open up new ways for microstructure
analysis. Especially for ternary eutectic directional solidi-
fication, large-scale simulations [1], [2] of realistic 3D mi-
crostructure evolution show spiral growth [3] and pattern
formation without influences from the periodic boundary
condition [4]. Similarly, large-scale simulations of dendritic
growth [5] enabled new insights into the growth morphol-
ogy [6], [7]. However, the required high resolution still
remains one of the biggest challenges. A problem which is
encountered with such a high resolution is the modeling
of water droplets on structured surfaces. The phase-field
method is able to simulate multiphase droplets [8] which

● M. Berghoff and I. Kondov are with the Steinbuch Centre for Com-
puting (SCC), Karlsruhe Institute of Technology (KIT), Hermann-von-
Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
E-mail: {marco.berghoff,ivan.kondov}@kit.edu.

● J. Hötzer is with the Institute for Applied Materials (IAM), Karlsruhe
Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe,
Germany,
Institute of Materials and Processes, Karlsruhe University of Applied
Sciences, Moltkestrasse 30, D 76133 Karlsruhe, Germany.
E-mail: johannes.hoetzer@kit.edu.

Manuscript received September 14, 2017; revised February 2, 2018.

are difficult to calculate with traditional tools, such as the
Surface Evolver [9], [10].

Contrary to sharp interface models, finite differences
on regular grids can be used to discretize the phase-field
method. The individual material parameters are interpo-
lated over the diffuse interface. This keeps the calculation
rules the same throughout the domain. In contrast to sharp
interface models, the interface does not need to be tracked
with high computational effort. To enable accurate calcula-
tions, the mesh must be adapted according to the interfacial
changes.

For certain phase-field applications, only the diffuse
interface region between the various phases has to be cal-
culated. The bulk, i.e., the part inside the phases, does
not change in these calculations. For illustration purposes,
we use an example application for the presented method,
which is particularly suitable; for example, a water droplet
on a structured surface. Bridging the scales between a
few micrometers, for the structured surface, and a few
millimeters, for the diameter of a water droplet, requires
large domain sizes. If the water droplet is covered with a
cuboidal simulation domain, most of the domain contains
bulk, which does not require computation. The interface
region that has to be calculated is very small. For a smooth
discretization of the interface region, a width of about ten
grid points is necessary. Water droplets on a chemically
structured surface, with 700 lamellae, have been studied
experimentally. However, this has not been achieved in
simulations [11], [12]. A typical rain droplet of about 3 mm
has the size to cover all 700 lamellae, each with size of



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 2

about 5 µm—the typical diameter of spider dragline silk. In
a phase-field simulation, the lamellae should be significantly
wider than the diffuse interface. For 15 grid points per
lamella, this results in a resolution of around 6 ⋅ 1011 grid
points, in all three dimensions. To meet this challenge, we
have developed new approaches, and have implemented
them in the NAStJA1 framework. The regions outside the
interface do not have to be calculated, and thus are omitted
in NAStJA, which responds to dynamic changes in the
simulation domain. Details will be presented in the section
“Methods”.

Since NAStJA is designed to be both highly efficient
and as general as possible, it supports regular grids with
a computing stencil sweeping through the domain. Many
problems in computational materials science and other
fields can be described using phase-field methods or other
methods based on regular grids, as cellular automata, which
both can be tackled using NAStJA. Besides the phase-field
method, the NAStJA framework supports different methods
for droplets, as was done by Ben Said et al. [8]. Other meth-
ods that NAStJA can handle are phase-field crystal models
like [13], [14] and the cellular Potts model, a cellular automa-
ton for biological cell simulations, according to Graner et
al. [15]. The framework can be simply extended with a wide
range of algorithms that work on finite difference schemes
or other regular grid methods.

The next section gives an overview of related work. Sec-
tion 3 presents details of the methods used by NAStJA, be-
ginning with a brief introduction of the phase-field method.
Then, the data structure and the different communication
layers are shown, followed by the dynamic methods. Mea-
surements and a theoretical estimate of the parallel scaling
are presented in Section 4. Finally, we discuss the results in
Section 5, and draw the conclusions.

2 RELATED WORK

A brief list of phase-field frameworks is given in Section 2.1.
Section 2.2 presents certain methods to reduce the compu-
tational cost by adapting the mesh. This section closes with
a brief overview of autonomously distributed systems in
Section 2.3.

2.1 Frameworks
In the last years, various frameworks with different de-
sign goals have been established to conduct phase-field
simulations. Despite the different programming languages,
ranging from C, C++ to Python, the most frameworks are
parallelized with Message Passing Interface (MPI) to ex-
ploit current high performance computing (HPC) systems.
Open-source frameworks are DUNE [16], [17], FEniCS [18],
[19], FiPy [20], [21], MOOSE [22], [23], OpenPhase [24],
waLBerla [1], [25], and PRISMS [26]. Apart from these,
proprietary codes are also developed, such as MICRESS [27],
[28], Pace3D [29], [30], and COMSOL [31]. Most of these
frameworks focus on the usability, a wide range of features,
already implemented modules, and the flexibility to incor-
porate new models. Although waLBerla has a flexible block-
based concept [32], and a high focus on performance, it does

1. Acronym: Neoteric Autonomous STencil code for Jolly Algorithm

not allow to simulate arbitrary rectangular decomposed
domains, where blocks are newly created and removed, al-
lowing the decomposition to follow the structure during the
simulation. This dynamic creation and deletion of blocks, to
change the decomposition of arbitrary domains during the
simulation, is one of the primary objectives of NAStJA.

2.2 Adaptive Mesh Refinement

Besides the ability to dynamically change the computa-
tional domain on a block level, as NAStJA does, adaptive
mesh refinement (AMR) techniques are used in phase-field
simulations of dendritic growth [33], [34], [35], [36], cell
growth [37], [38], growth of lamellar structures [39], and
wetting phenomena [40], [41]. For this purpose, the grid
resolution is dynamically changed in local regions with
high gradients. An overview of various dynamic AMR
algorithms is summarized by [42].

2.3 Agent-based Modeling

Agent-based modeling is a bottom-up method to model a
wide range of dynamic systems in various fields, such as
artificial life, genetic programming, genetic evolution, or
social studies. Individual elements of the system are com-
putationally represented as agents with decision-making
or action options. The system behavior results from the
behavior of the individual agents, and is not predefined
at system level. The distribution and action of adaptive
autonomous agents is the subject of many studies [43], [44],
[45]. In a certain way, the blocks of NAStJA can be mapped
to agents.

3 METHODS

In this section, we first present a brief overview of the phase-
field method and its equations, and outline the general
requirements for NAStJA. Then the general data structure,
the program flow, and the different communication layers in
NAStJA are introduced. The method for the dynamic block
adaption is also addressed in more detail.

3.1 The Phase-field Method

The phase-field method is based on an entropy [29], a free
energy [46], or a grand-potential functional [2], [46]. It is
developed to ensure consistency with classical irreversible
thermodynamics. An order parameter φα describes the local
fraction of phase α. In the phase-field method, a phase
indicates the aggregate state, such as solid or liquid, the
different grain orientation in multigrain simulations, or sev-
eral materials, e.g., water, oil, or air in droplet simulations.
Each phase fulfills the relation 0 ≤ φα ≤ 1, where φα = 0
denotes the absence of phase α, and φα = 1 denotes the
existence of the phase. All phases must satisfy ∑α φα = 1.
The diffuse transition from 0 to 1 is called interface. In
particular, we have two phases and two order parameters
that effectively reduce to one order parameter φ, because
of the complementarity condition. In the present case, it
is sufficient to use only one order parameter φ. A detailed



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 3

derivation can be found in [47], [48]. The simplified phase-
field equation reads as

∂φ

∂t
= ε∇2

φ − 32
επ2 (1 − 2φ) − 6φ(1 − φ)∆ f , (1)

with ε as a parameter related to the interface width Λ =
επ2/8, and ∆ f as a driving force which is responsible for the
interface movement.

A common way to discretize the phase-field equation (1)
is to use a finite difference scheme and an Euler time integra-
tion [49]. Therefore, the coupling of various data fields, via
synchronized time steps, which is particularly important in
multiphysics applications, is thus easily possible. According
to the notation introduced by [1], an adequate discretization
for the Laplacian is the D3C7 stencil, a three-dimensional
stencil with seven input values, a center point, and six
direct neighbor points. The size of the stencil determines
the size of additional layers which are necessary for the
discretization. These layers are wrapped around the data
fields, and are called halo. In case of this phase-field model,
the halo extends the data field by one grid point in each
direction.

3.2 Architecture of NAStJA
The NAStJA solver divides the domain into blocks of uni-
form, pairwise disjoint cuboids. These blocks contain the
data fields, for which the equations are solved. On the left,
Figure 1 shows blocks distributed to parallel MPI ranks.
A block is an object that builds a skeleton for data fields.
The block specifies its geometry and global position in the
domain, and stores the data fields with regular calculation
grid, which can be seen in the middle and on the right of
Figure 1. In a multiphysics application, the blocks contain
several data fields, e.g., one scalar field for temperature,
one vector field for velocity, and so on. Data fields are used
according to the application. They can be arbitrary data
types like scalar fields, vector fields, and structures in three-
dimensional arrays in memory. For consistency, the data
fields are extended by a halo, where one or more layers
surround the data field. The halo holds a local copy of the
boundary grid layers shared with the neighboring blocks.
The size of the halo depends on the size of the stencil, which
is illustrated on the right of Figure 1. The numerical scheme
is described by a stencil which calculates a central grid point
value by using several neighboring grid point values around
the central point. With every time step, a kernel of this
stencil sweeps over the whole data field.

The sweeping of the kernel, over the data field, is an
action. For multiphysics applications, there may be several
kernels which sweep over the different data fields. Other
actions can be the writing of output data. Among others,
NAStJA offers the output of VTI files (ParaView VTK Image
Data) and mesh data. Also the execution of the boundary
conditions and halo exchanges are actions. Figure 2 illus-
trates these actions in the program flow.

The phase-field application presented in the introduc-
tion only has a small interface region which needs to be
calculated, whereas the other regions are uninteresting. In
addition to the interface region from the example, other
simulations with these properties, where only small parts
are interesting, are conceivable. In this work, we use the

term interface to describe the region where computations are
needed.

All blocks are located on a regular grid, the block-
structured grid. The virtual domain defines the maximum
extension of the block-structured grid that is available,
i.e., it determines the last available block in x-, y- and z-
direction. This is required for domains of a fixed size to
set the correct global boundary condition for each side of
the virtual domain. Furthermore, the blocks are identified
by a unique ID. This is the linearized index of the position
in the block-structured grid, whose calculation requires the
maximum number of blocks per dimension. Figure 3(a)
shows a schematic of the phase-field interface within the
virtual domain of the block-structured grid. The interface
is covered by blocks depicted in Figure 3(b) that build the
computational domain, and blocks outside the computational
domain do not have to be allocated. The computational
domain is distributed over the MPI ranks, see Figure 3(c).
This is an advantage over ordinary simulation tools which
use a costly remeshing or allocate the whole domain, and
use a detection to determine the interface region, while the
calculations of the other regions are omitted, as is done
in [50]. NAStJA can cover complex geometries by blocks
without wasting much memory for regions, where no cal-
culations are needed. The kernel sweeps over the whole
block, even if it has non-interface regions. This is often
faster, because the blocks are small enough to fit into the
cache. The block size can be chosen in such a way that the
processor cache is used optimally, i.e., the whole block or the
stencil input area—usually three layers—fits into the cache.
Uniform calculation of one block, without the need of grid
point index calculation, is a prerequisite to achieve a high
node-level performance on HPC systems.

Usually, the interfaces are moving during the simulation,
as shown in Figure 3(c). For correct results, the interface
must always be covered by the blocks of the computational
domain. If the computational domain does not adapt dy-
namically, the initial computational domain must be large
enough to completely cover the interface at any time. For
this purpose, the computational domain can be extended
with spare blocks, which will contain parts of the interface,
at a later simulation time. The spare blocks are initialized
uniformly with a default value. This value depends on the
side of the interface, on which the spare block is located. In
this phase-field application, φ = 1, inside the structure, and
hence the block is initialized with 1. Outside the structure,
φ = 0, and so the block is initialized with 0. In advance, it
is principally impossible to know the exact way in which
the interface will evolve. Therefore, the extension of the
computational domain must be estimated generously.

Hence, the approach of NAStJA is to dynamically create
and delete blocks during the simulation. While the interface
is moving, the computational domain is adapted to the
interface, see Figure 3(d). The neighboring block is created
before the structure leaves the inside of one block. On the
other hand, it is deleted, if the interface region moves out of
a block.

In the following, we describe how some prior knowledge
about the model and the simulation domain geometry helps
to preserve consistency. Consistency means that the result of
a simulation with omitted blocks is the same as the result



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 4

Ra
nk
0

Ra
nk
1

Ra
nk
2

Ra
nk
3

Velocities
Temperature
Phase Fields

Fig. 1: Data structure for simulations in NAStJA. Blocks with the computing load are distributed to ranks, here rank 0
to rank 3. Each block can contain several data fields, e.g., velocities, phase fields. The data fields are an array of three-
dimensional values, including the halo. A stencil, the red cross on the right, sweeps throughout the field. It loads input
values from one or more fields, calculates the finite difference scheme, and stores the result on the center point.

Initialization

Time loop

Sweep φα

Boundary condition φα

Halo exchange φα

⋮ Other sweeps

⋮ Other actions

Write output data

Fig. 2: After the initialization, the program runs a time loop.
All actions are called one after another, whereby each action
acts on all blocks. Then the next time step is processed.

from a full-domain reference simulation. Figure 4 illustrates
different situations, and demonstrates the procedures that
are necessary to enable the interface to remain consistent.
At the boundary, the stencil always requires values from
the halo. Sides with neighboring blocks receive these values
from the neighbor via the halo exchange. In Figure 4, the
stencil in position 2 accesses values from this halo. This case
is consistent with the full-domain reference simulation. If
there is no neighboring block, the global boundary condition
sets these values. Inside the domain, a special boundary con-
dition is introduced, the inner boundary condition, which is a
Neumann boundary condition without flux. The stencils in
positions 1 and 3 load values from this inner boundary layer,
where the inner boundary condition is applied, whereas
the stencil in position 1 is outside the interface region, and
thus does not change the value during the calculation. As
long as the interface does not touch the inner boundary,
its values do not change, and therefore it has no influence
on the result. The stencil in position 3 loads values from
the interface, and changes the calculated value. The inner
boundary layer would change, and thus distorts the result.
For this reason, the last inner layer of the data field, the test
layer, is used to check whether the values have changed. If
the values have changed, a new block must be created on the
right side of block 2. If the interface moves out of the block,
the entire block, including the halo, is constant, in the case

of the phase-field 0 or 1. Then, the block can be deleted, and
the application of the inner boundary condition is replaced
by the halo exchange.

In the stencil computation, the movement of the interface
per time step is at most by the number of grid points that
the stencil has in the backward direction. For the stencil of
the phase-field method, this is a maximum of one grid point
per time step. The fastest movement of the interface requires
at least n time steps to grow through one block with size n,
from one side to the opposite side. This time can be used to
rebuild and communicate the neighborhood of blocks before
the consistency is violated. Concurrently, this is a restricting
factor for the adaptive actions. In Section 3.4, we will later
see some conditions why knowledge about the blocks in the
neighborhood is indispensable.

3.3 The Different Communication Networks
Before the details of the dynamic block adaption are pre-
sented, we first introduce the different layers of communi-
cation that are used in NAStJA to achieve an autonomous
adaptive and scalable code. Besides the halo exchange, two
further communication networks are needed to accomplish
the knowledge exchange required for the consistency of the
dynamic block adaption. One of these networks provides
the exchange within local groups of directly connected
ranks. If necessary, the other network connects disjunct
groups of ranks, e.g., when two interfaces grow towards
each other. This network bypasses all-gather communica-
tions, and distributes the information efficiently throughout
the whole domain, after several time steps.

Halo Exchange. After each calculation step, neighboring
blocks, which have at least one common corner, exchange
their halos. In three dimensions, a block has up to 26 neigh-
bors, including six side neighbors, twelve edge neighbors,
and eight corner neighbors. For full stencils, as is required
for the mesh output, the halo exchange is done for all 26
neighbors. For smaller stencils, the corners, or even the
edges, can be omitted. The present phase-field stencil only
needs an exchange of the six sides. The communication
effort for the halo exchange remains the same for each block,
when the number of used ranks is scaled up.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 5

(a) (b) (c)

∗

∗

∗

∗

∗

∗ (d)

Fig. 3: Two-dimensional representation of a phase-field simulation. The blue line denotes the interface region where the
phase changes from 0 to 1. (a) A block-structured grid is laid over the virtual domain. (b) From this grid, only the blocks
holding a part of the interface region are allocated. These blocks form the computational domain. (c) All blocks of the
computational domain are distributed to the available ranks, here marked by color. During the simulation, the interface
changes and moves in space. (d) The blocks in the computational domain are adapted correspondingly. The stars denote
newly created blocks, and the dashed blocks are deleted.

inner BC Interface

Test stencil Stencil 1

Block 1

Test layer

Stencil 2 Stencil 3

Block 2

Halo exchange

Fig. 4: Representation of two neighboring blocks. For the
sake of illustration, we only consider the x-direction. The
data fields (thick black rectangles) are extended by a halo
(dashed rectangles). The green area denotes the inner
boundary layer (BL). Here, the inner boundary condition
(BC) is applied. The BL holds a copy of the layer next to it.
The purple area denotes the halo exchange between block 1
and block 2. The interface is illustrated by a blue tube, and
the interface region is restricted by the dashed blue line. The
three stencils (red) demonstrate different situations. Stencil 1
loads from the inner BL, where all input values are the same,
because it is not touching the interface. The finite difference
scheme does not change the center value. Stencil 2 loads
values from the interface, and the exchanged halo data from
block 1, and it changes the center value. Stencil 3 has input
values in the interface. It changes the center value on the test
layer. The test layer (yellow) is a layer next to the inner BL,
where a test stencil detects a change of values. The change
of stencil 3 implies the creation of a new block to the right
of block 2.

Neighborhood Communication. The knowledge about the
existence of a block is essential for the dynamic block
adaption. A trivial approach is to hold a list of all blocks on
a master rank, or an up-to-date list of each rank. For both
approaches, collective communications are required. With
an increasing number of ranks, collective communications
become a bottleneck, and limit the scalability. Therefore,

interacting ranks build a local group of ranks with neighbor-
ing blocks, as described in detail later, and act autonomously
within this group. This locality limits the number of connec-
tions per rank, and thus the communication overhead, and
so results in a high scalability.

Global Announcement Network. The third communication
network is a multi-hop broadcast network. The topology of
the global announcement communication network is arbi-
trary, with the restriction that the diameter k must be small
enough to ensure global consistency after k hops. In order
to reduce the communication overhead, the network should
have a small degree d, the number of MPI communication
partners per rank. Each rank has a message manager, which
sends messages to all its neighbors in this topology, and
also receives messages from its neighbors. So, a message is
spread to all ranks, after at most k hops. This sending and
receiving is coupled with the time steps, such that one hop
is done in each time step. Each message is extended by a
time to live (TTL) counter. This counter is initialized with k,
and is decremented with each hop. When the TTL becomes
zero, the message is globally known and can be deleted. For
the topology, we use a multidimensional Manhattan Street
Network (MSN) [51], [52], [53]. The MSN dimension is equal
to the degree d, as d increases with decreasing k.

3.4 Methods for Dynamic Block Adaption
For the dynamic block adaption, several actions are per-
formed between the calculation action and the halo ex-
change action. The first action detects whether the interface
is entering or leaving a block, as described in Figure 4.
From this, a message is built, and is shared. The ranks
decide autonomously where the new block is created. After
the block creation and deletion, the halo exchange has to
be reconfigured for new and deleted blocks. A global an-
nouncement of new blocks is initialized. Finally, an optional
load balancing action can be performed.

For an elaborated description, we firstly define some
terms. Let V = [0, X − 1] × [0,Y − 1] × [0, Z − 1] be the set
of all block representatives. This is called the virtual domain,
with X,Y , and Z as the number of blocks per dimension. The
coordinates represent a position in the block-structured grid.
Obviously, V ⊂ Z3. For two elements, a, b ∈ V is a − b ∈ Z3.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 6

Let ∥ ● ∥∞ denote the maximum pseudometric on Z3. We de-
fine the local neighborhood of a block, which we identify with
its representant b as L(b) ∶= {x ∈V ⊂ Z3 ∣ ∥b − x∥∞ ≤ 2}.
Note that depending on the global boundary conditions,
also periodic blocks are located in L(b). Therefore, V be-
comes a multidimensional torus, which is omitted for clar-
ity. L(b) contains all directly neighboring blocks, and the
neighbors of these neighbors, in total 125 blocks.
D ⊂ V denotes the set of all blocks in the computational

domain. Let H be the set of all ranks, which is denoted by
the MPI rank. Then we have a disjunct union D = ⊍h∈HBh ,
where Bh is the set of the blocks hosted by rank h.

Let H(b) be the host process for a given block b. Since
D is not distributed to all ranks, each rank h only knows a
subset Kh ⊂ D, the known blocks. In a consistent state, the
rank knows all blocks in the local neighborhood that are in
the computational domain, i.e., L(b) ∩Kh = L(b) ∩D for all
b on all h.

For each h, we define the local group Gh ∶=
{H(n) ∣ n ∈ ⋃b∈Bh

(L(b) ∩Kh)}, i.e., the set of all ranks that
host a block in the local neighborhood L(b) of any block
b ∈ Bh of h. Note that it is not mandatory that all blocks of
one rank, or the blocks inside the local group, are topologi-
cally contiguous.

For each partner rank, p ∈ Gh , a communicator connects
p with h. This is done by a communication manager which
manages the meta communications for the handling of the
adaptive blocks. The communication manager keeps the
data for the connection, including partner ranks, connection
status, blocks on each partner rank, and the known blocks of
each partner rank. They are stored in associative containers,
i.e., maps from the C++ Standard Template Library. An
initial state of these data is generated at the beginning of
the simulation.

Block creation. If one rank detects that the interface
reaches the boundary of a block (Figure 4), a message is
generated for the blocks that need to be created. Depending
on the stencil, each detection can produce one (on a side) or
up to seven (on a corner) new blocks. An arbitrary function
determines the host rank for the newly created block. If two
blocks, a and c, on different ranks, A and C, simultaneously
detect the same new block b∗, then both ranks must calcu-
late the same host rank for b∗. This is possible when both
ranks know each other, and use only consistent information
for the determination of the host rank for b∗. For the local
neighborhoods, it is L(a) ⊃ N(b∗) ⊂ L(c), where N(b∗) is
the set of all neighbors of b∗, as demonstrated in Figure 5.

The function implemented in NAStJA to determine the
host rank can be described as follows: Let b∗ be the
new block. Let N ∶= {H(n) ∣ n ∈ Nw(b∗)} be the set of all
host ranks of all neighbors of b∗. Here, w indicates the
different number of neighbors depending on the stencil.
Then the host rank of the new block is given by the rank
r = min{arg minn∈N load(n)}, i.e., the partner rank with the
least load. If two or more ranks have the same least load, the
host rank with the lowest rank is chosen. Here, the function
load gives the number of blocks hosted by this rank.

The message about new blocks is sent to each partner
rank, where the message is processed. On the new host rank,
a block is created and initialized with the correct values.
In case of the example application with the simple phase-

a b∗ c

local neighborhood
of block a

a b∗ c

local neighborhood
of block c

Fig. 5: The local neighborhoods L(a), L(c) of block a and
c, respectively. The block b∗ is newly created. The direct
neighbors N(b∗) (blue rectangle) of b∗ are included in both
neighborhoods. A 2D representation is used to simplify the
illustration.

A B

C

announce a∗

a∗

c

a

b

a∗

Fig. 6: Left: Connection between the ranks A, B and C. C
detects a new block a∗, which will be created on A. C sends
this message to A. Since C and B are not connected, B
does not receive this message, so that A has to announce
a∗ to B in a subsequent step to provide consistency. Right:
Example of a representation of blocks in the virtual domain.
Block a on A and block c on C are shown with their
local neighborhoods depicted in the red and blue rectangle,
respectively. Block b is included in the local neighborhood
of a, but is excluded from the local neighborhood of c, while
B and C are not connected.

field function of one phase, these values are 1 when the
new block is detected on the inner side of the interface /
inside the structure, e.g., inside the droplet, and 0 when it
is detected on the outer side. The receiver rank also knows
the other ranks that are connected to the sender. Hence, the
receiver knows which partners have received the message
about the new blocks from the sender. If the receiver rank
is connected to partners that have not received the message
from the original sender, the new block is added to the list
to announce the block to all these partners. In the next time
step, the list for the announcing blocks is appended to the
message which is sent to its partners by this rank. For each
partner, there is a separate list for announcing blocks.

For these ranks, the halo exchange is retained. All other
partners configure the halo exchange. Figure 6 demonstrates
the creation and the announcement. In Figure 7, the retained
halo exchange is illustrated. After the ranks receive the
message with the announcement, they know the blocks
hosted by the other ranks, and the retained halo exchange is
configured and performed. Since the interface needs some
time to go through a block, the missing halo exchange has
no influence on the simulation result.

Before we explain the deletion of blocks, we describe the
communication and connection between the ranks.

Global announcement. In the two cases above, we have



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 7

A B

C

announce a∗

a∗

b∗

c

a

b

b∗a∗

Fig. 7: The same situation as in Figure 6. The supplementary
block b, with its neighborhood marked in green, is hosted
by B, which detects a new block b∗, and will host the new
block. This message is received by A, but not by C. The thick
purple line shows the retained halo exchange. A knows that
B has not received the message a∗ from C. The subsequent
step of announcing a∗ to B eliminates the restraint, and the
halo exchange is configured.

b

x∗a b∗

Fig. 8: Initially, block a on rank A and b on B have no
common blocks in their local neighborhoods, i.e., A and B
are not connected. When B creates b∗, A does not recognize
this. Block x∗ is a neighbor of blocks on A and B. Before the
interface moves through b∗, and B can create x∗, the global
announcement has to announce b∗ to A, such that A knows
b∗, which is in the local neighborhood of A. From then on,
A and B will determine the same host rank for x∗.

illustrated that either all existing blocks located in the local
neighborhood are already known, or that they are made
known through blocks on indirectly connected ranks, and
thus the consistency is kept. Apart from that, there are
also cases where a block b∗ is created, which is in a local
neighborhood of a. However, the two host ranks A and B
have no connection, which is shown in Figure 8. Then, a
new block x∗ can be created from A or B, since they do
not know each other. This must be absolutely prevented.
This means the ranks A and B, and thus the blocks a and b,
need to know each other in the local neighborhood before
the block x∗ will be created. As described at the end of
Sec. 3.2, this knowledge transfer must be finished within
the next n time steps, where n is the side length of the
block. For this purpose, the global announcement network
is used by sending messages with block ID and rank. The
diameter of the network topology is limited in such a way
that the knowledge transfer can be finished in sufficient
time. Therefore, the connection setup and detection must be
considered. In the worst case, the connection setup requires
5 time steps. The detection needs more than one time step
to ensure that the connection is already established at the
beginning of the time step. This limits the diameter.

Connection setup process. If a rank h receives a message

A B

C

FCS

c∗FCS

se
t u
p c
on
ne
cti
on

c

b

c∗
a

Fig. 9: A detects a new block c∗, which will be created on
C. A knows B, and knows that c∗ is located inside the local
neighborhood of b, so B and C have to communicate. A
additionally sends an FCS message to B and C, which then
establish a connection.

announcing an unknown block u /∈ Bh that is in the local
neighborhood of any block u ∈ ⋃b∈Bh

L(b), then a connection
between h and r = H(u), the host rank of u, must be created.
A handshake protocol is used to establish the connection
within three to five time steps, which is similar to the TCP
(Transmission Control Protocol) three-way handshake with
the SYN, SYN-ACK, ACK packages [54]. The communica-
tion between the communication managers is based on one
message to/from each partner per time step. The communi-
cation manager also probes messages from unknown ranks.
If there is a first handshake message from an unknown rank,
the rank is added to the list of communicators, such that the
handshake messages that follow are sent and received once
per time step. When the handshake finishes, both partners
are synchronized, and establish the connection in the same
time step. The communicator is not visible outside the com-
munication manager, until the handshake is completed. This
is important because the halo exchange is only configured
and executed from both sides simultaneously.

Fast connection setup. (FCS) In many cases, the rank
detecting a new block knows about new connections. Rank
A, for example, is connected with ranks B and C, while B
and C are not connected. One block on A reaches the border,
and a new block must be created on C. A knows that the
new block has a neighbor on B. Then it sends an additional
message to both, B and C, so that B and C can establish a
connection, as depicted in Figure 9.

Connection establishment. After a handshake reaches the
state ‘established’, or a fast connection setup message is re-
ceived, an additional communication message is exchanged
between the newly connected partners. This message con-
tains all knowledge of the communicator that the partner
has to know, particularly the list of the blocks and the
connections. If this knowledge is transferred, the connection
state is changed to ‘connected’, and all halo exchanges be-
tween blocks on these partner ranks can also be configured.

Block deletion. When a block without interface is detected,
it can be removed, because further calculation will not
change any value. Calculating a block without an interface
takes computing time, but does not influence the result.
Therefore, blocks are only allowed to be deleted if their
existence is known to the whole domain after a global
announcement process. This ensures that the block is known
to all local neighborhoods to which it belongs. All partners



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 8

in the local neighborhood receive the deletion message and
remove the block from their lists. The partners supersede the
halo exchange with the application of the inner boundary
condition. This is a much simpler process than the creation
of blocks. To achieve this, each block is assigned a decreas-
ing counter of minimum time steps to live, depending on the
diameter of the global announcement network. The deletion
is deferred as long as this counter is positive.

3.5 Load Balancing
Even if new blocks are created on the rank with the least
number of blocks, it happens that the ranks have a very
different number of blocks, which results in different calcu-
lation times per time step. Some blocks can be moved from
one rank to another rank, based on a diffusion algorithm.
This load balancing action can be performed independently
on the dynamic block adaption action. The frequency of
the execution of the load balancing action, i.e., each time
step or all n time steps, can be chosen depending on the
load per block and the change rate of blocks per rank. The
load balancing is an autonomous process which uses the
same neighborhood communication as the adapting action.
To avoid an overestimation after the load balancing action,
in which one target rank has more blocks than the source
rank, each rank calculates and communicates an offer of the
number of accepted blocks.

The average number of blocks is calculated for each local
group. The rank then knows the number of spare blocks it
can offer to other ranks. It offers the equally divided spare
blocks to all ranks in its group, which have the maximum
number of blocks. This offer is made in the time step before
the load balancing step, and corrected by the number of
created and deleted blocks in the dynamic block adaption.
Then, every rank selects excessive blocks over the average,
in its local group, and assigns them to the ranks in its
group, depending on their offers. The assignment is chosen
to minimize the halo communication to remote hosts, i.e.,
to keep as many MPI exchanges as possible on the same
rank. The data of the blocks are packed and moved to
their targets. As before, the blocks that are to be deleted
are only allowed to move after they have been announced
throughout the whole domain. In this case, all blocks in the
neighborhood are known, and for each moving block, the
new communication partners are known as well, such that
they can perform a fast communication setup.

In the case where two neighboring blocks are moved
to disconnected hosts, the new host ranks have to perform
another fast communication setup.

4 PERFORMANCE AND SCALABILITY

In this section, we show that the chosen algorithms, based
on a performance model, have a good scalability. Subse-
quently, we present measurement results of the individual
modules in the NAStJA framework.

We consider the times of the individual actions, tsweep,
for the computation stencil sweeping over the data field,
thalo, for the halo exchange, and tdynamic, by gathering all
individual times of the dynamic adaptive block actions,
which include

tdynamic ∶= tdetection + tadaption + tbalance + tglobal, (2)

where tdetection is the time of the detection action. The time of
the dynamic block adaption tadaption and load balance tbalance
actions depends on the neighborhood communication. The
global announcement network communication is measured
by tglobal. For the performance analysis, all disk I/O actions
are neglected.

Within the NAStJA framework, three different paral-
lelization variants are conceivable, with the times

tserial = tsweep, (3a)
tparallel = tsweep + thalo, (3b)

tautonomous = tsweep + thalo + tdynamic. (3c)

The serial variant (tserial) only consists of the calculation
sweep, while tsweep scales asO(n3), with the size of the block
n.

In the parallel variant (tparallel), the time of the halo
exchange (thalo) is added. In case of weak scaling, i.e., the
workload for each rank is the same, tsweep stays constant,
and thalo is an additional constant effort depending on n and
the stencil. A constant number of exchanges are performed.
Up to 26 connections are possible with one or more halo
layer per block. The size of the largest message in the halo
exchange is proportional to O(n2). In a perfectly communi-
cating network, thalo is independent of the number of ranks.

For the autonomous variant (tautonomous), the dynamic
actions tdynamic are added. The time for the detection of
reaching the border tdetection is a pure local function, and
hence is of the same order as tsweep. The global announce-
ment action tglobal has a low number of connections per
rank. For N = 185 088 ranks (the number of cores of the
Hazel Hen, Germany’s highest ranked HPC system in the
TOP500 list [55]), and a block size of only 32 grid points per
dimension, i.e., 323 grid points in total, a six-dimensional
Manhattan Street Network is sufficient, and hence only six
connections are required. The diameter d of the Manhattan
Street Network [51] is given by d ≤ ∑i⌈Ni/2⌉ + 2, where Ni

is the number of ranks in each dimension. The number two
is added for irregular networks, and for networks where
each Ni mod 4 = 0. As an estimate, this gives d ≈ (n n

√
N)/2.

Using the numbers above, Ni = {8, 8, 8, 8, 7, 7}, and thus
d = 25.

The dynamic block adaption tadaption and the optional
load balancing tbalance times are of the same order. In these
steps, every rank has to communicate with all ranks that
host one block in the local neighborhood of any hosted
block. With an increasing number of ranks, the number
of communications increases depending on the distribution
of blocks. Since the number of neighbors is limited to 125
neighbors per block, this results in an upper limit of 125
connections per hosted block. With the assumption of an
ideal communication network, where each connection is
performed in a constant time, we get

tautonomous(p) ≤ b ⋅ t̂parallel +max{p, 125 ⋅ b} ⋅ t̂dynamic, (4)

where p is the number of ranks, b represents the maximum
number of blocks per rank, and t̂parallel is the sum of all
times of the constant scaling actions for one block, including
the calculation and the halo exchange, as described above.
t̂dynamic is the time for one communication, and scales lin-
early with b. For p > 125 ⋅b, the timing becomes independent



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 9

from the number of ranks, which results in a constant
scaling behavior.

Large block sizes have a significant influence on the
constant part, and thus improve the scaling. The only com-
munication time that is influenced by the block size is thalo,
which increases as the power of two, when the block size
increases as the power of three. More expensive calcula-
tions, i.e., longer tsweep, improve the scaling additionally by
increasing the constant part. However, the cluster intercon-
nects, and implementations of the message passing interface
(MPI) deviate from a perfect communication network. In the
following, we will investigate to what extent our theoretical
estimation of the parallel scaling holds for NAStJA.

4.1 Measurements

To perform the scaling test, we use the systems ForHLR II,
located at Karlsruhe Institute of Technology (fh2), and JU-
RECA, located at Forschungszentrum Jülich (jureca).

ForHLR II has 1152 20-way Intel Xeon compute nodes.
Each of these nodes contains two deca-core Intel Xeon
processors E5-2660 v3, with Haswell architecture, which run
at a basic clock rate of 2.6 GHz, and have 10×256 KB of level
2 cache, and 25 MB of shared level 3 cache. Each node has
64 GB of main memory, and an FDR adapter to connect to
the InfiniBand 4X EDR interconnect. In total, 512 nodes can
be used, which are connected by a quasi fat tree topology,
with a bandwidth ratio of 10:11 between the switches and
leaf switches. The implementation of Open MPI is used.

JURECA consists of 1872 24-way Intel Xeon compute
nodes. Each of these nodes contains two dodeca-core Intel
Xeon E5-2680 v3 Haswell CPUs which run at a base clock
rate of 2.5 GHz and have 12 × 256 KB of level 2 cache, and
30 MB of shared level 3 cache. Each node has at least 128 GB
of main memory, and a Mellanox EDR InfiniBand adapter
with a non-blocking fat tree topology. The test runs with
Intel MPI.

All scaling tests were performed in the setting of a weak
scaling. As the basis value (t1), we use the runtime on 20
cores of one full node on fh2, and 24 cores on jureca. The
side length of a cubic block is varied, as well as the number
of blocks per rank. During testing, we omit the disk I/O
routines. The parallel efficiency η, used in the following, is
defined by

η = t1

tp
, (5)

where tp is the parallel runtime with p nodes. We have
explicitly decided not to start with one rank as the basis
value, to avoid effects that occur for a small number of
ranks. These effects are influenced by the shared L3 cache
of the processors in both machines, so that the usable cache
per rank is increased for fewer ranks. For the calculation
and communication times, we present absolute timings to
see how the massively parallel simulation will behave,
compared to a serial simulation. The test size increases by a
power of two, for up to 256 nodes, corresponding to 5 120
cores on fh2 and 6 144 cores on jureca. We were able to
run several simulations on 512 nodes, and 10 240 cores on
fh2. Nevertheless, fh2 is composed of two islands, so that
simulations of this size use 2/3 of the larger island. The

switches are selected from the batch system which cannot
be changed in the productive environment. In the following
results, gaps occur at 128 or 256 nodes, which are caused
by the topology of the switches. In cooperation with the
operators, this has been further investigated, but cannot
be fully explored on a productive machine. Usually, we
present the best of several runs. Strongly deviating runs
were repeated to eliminate most of the effects of productive
HPC environments.

To consider the different parts of NAStJA, five scenarios
are designed to test the different communication compo-
nents separately. The scenarios are designed based on the
previous scenarios, and test an additional module. First,
the halo exchange is tested with an artificial workload, and
then with a phase-field calculation, with a six-side exchange
and a 26-side full exchange, followed by a synthetic test
of the global announcement network. Finally, all modules
are tested together to get the impact of the neighborhood
communication, which cannot be tested separately.

Scenario 1 (artificial workload). An ideal calculation is sim-
ulated by a testing sleep function to test the communication.
The chosen duration of 65 ms is based on the experience
with highly optimized code for expensive calculations [1].
The halo is exchanged with the six direct neighbors, and is
tested on fh2, using OpenMPI, and on jureca, using Intel
MPI, with up to 32 blocks per rank. The block size is chosen
as 100 grid points per dimension.

The timing is normalized to one block, and the efficiency
is shown in Figure 10. In the case of a single block per
rank, the measured times on fh2 and jureca are nearly the
same (difference < 1 ms) on 1 up to 128 nodes. This gives
rise to a parallel efficiency close to unity, for up to 128
nodes. On 256 nodes, the time measured on jureca increases
significantly, and the efficiency drops to 50 %. Running with
two blocks per rank on jureca changes the efficiency: it is
nearly constant around 50 %, on 2 up to 128 nodes, followed
by a small decrease by a further 20 %. In contrast, the code
on fh2 performs and scales well for up to 256 nodes, with
1, 8, and 32 blocks per rank. This difference between fh2
and jureca may be attributed to different ratios of inter- and
intra-node communication latencies for the two systems. On
fh2, the parallelization overhead, which is defined as the
ratio between the pure calculation time (65.1 ms) and the
measured average time (67.2 ms), varies from about 3 %,
on one node, to only 4 %, on 256 nodes, with a measured
average total time of 67.9 ms. A small gap is seen for two
nodes, where the communication changes from intra-node
communication to inter-node communication. The efficiency
for 256 nodes is 99.0 %, 99.3 %, 99.6 % for 1, 8, and 32
blocks, respectively. The halo exchange can be performed in
a nearly theoretically optimal time. The efficiency increases
by increasing the workload per rank, even if the number of
communications is increased. For this measurement, we in-
tentionally choose a short computing time per step. Because
this time will be longer in real-life use cases, the efficiency
is expected to be even better, according to Eqs. (3c), (5), so
that this measurement provides a lower bound estimate of
the efficiency for any workload under the conditions of this
scenario.

Scenario 2 (static simulation domain). In this scenario, the
previous workload is replaced by a real calculating function.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 10

1 4 16 64 256

100

150

200

Nodes

Ti
m
e
t/ms

fh2: 1 blk jureca: 1 blk
fh2: 8 blk jureca: 2 blk
fh2: 32 blk

(a)

1 4 16 64 256

68

70

72

Nodes

Ti
m
e
t/ms

fh2: 1 blk jureca: 1 blk
fh2: 8 blk jureca: 2 blk
fh2: 32 blk

(b)

1 4 16 64 256

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

fh2: 1 blk jureca: 1 blk
fh2: 8 blk jureca: 2 blk
fh2: 32 blk

(c)

Fig. 10: Scaling at a constant workload per rank, with a halo
exchange of six sides, normalized to one block, scenario 1.
(a) Average time per time step, (b) details for times of 66 −
72 ms, and (c) efficiency.

The calculation is performed by the phase-field method
from Sec. 3.1. A planar crystal front is set in an undercooled
melt. As the crystal grows, the solid–liquid interface moves
in one direction. For this scenario, a halo exchange with
six neighbors is sufficient. Tests are performed on fh2 and
jureca, with up to four blocks per rank. The block edge size
is varied over 80, 100, and 120 grid points. Additionally, for
size 100, several runs with 1, 2, and 4 blocks per rank are
performed.

Figure 11 compares the runtimes and the efficiency. The
scaling behavior on fh2, and on jureca, with a different
number of blocks, is similar to that found in scenario 1: with
one block per rank, the times on the two systems are very
similar. Again, with more than one block per rank, the times
on jureca increase significantly on two and more nodes
(see Figure 11(b)). This may be attributed to the different
ratios of intra- and inter-node communication latencies, for
the two HPC systems. A small drop, and more than one
block, is seen for 256 nodes. The same drop is present

1 8 64 512

0

100

200

Nodes

Ti
m
e
t/ms

fh2

80-1 blk 100-4 blk
100-1 blk 120-1 blk
100-2 blk

(a)

1 4 16 64 256

0

100

200

Nodes

Ti
m
e
t/ms

jureca

80-1 blk 100-4 blk
100-1 blk 120-1 blk
100-2 blk

(b)

1 8 64 512

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

fh2

80-1 blk
100-1 blk
100-2 blk
100-4 blk
120-1 blk

(c)

1 4 16 64 256

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

jureca

80-1 blk 100-4 blk
100-1 blk 120-1 blk
100-2 blk

(d)

Fig. 11: Scaling of phase-field calculations, and a halo ex-
change of six neighbors, scenario 2. (a), (b) Average time per
time step, and (c), (d) efficiency. The results are from runs
on (a), (c) fh2, and (b), (d) jureca. Runs with a block edge
size of 80, 100, and 120 are shown, as well as 1, 2, or 4 blocks
per rank.

for the 120-edged block in one of the two runs. With a
higher amount of nodes, the probability increases to obtain
assigned switches that have more hops between them. With



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 11

1 8 64 512

18

20

22

24

Nodes

Ti
m
e
t/ms

fh2

100-1 blk (halo 26)
100-1 blk (halo 6)

(a)

1 8 64 512

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

fh2

100-1 blk (halo 26)
100-1 blk (halo 6)

(b)

Fig. 12: Scaling of phase-field calculations, with a full halo
exchange to 26 neighbors, compared to 6 neighbors, sce-
nario 3. (a) Average time per time step, and (b) efficiency.

up to 128 nodes, the four-block simulation shows a better
efficiency, 94 %, than the other one, which can be argued
by the larger increase of computational time, compared to
the communication times. The run with a block size of 120
needs 30.0 ms of average time per step, and 27.8 ms of pure
calculation time, such that the overall overhead is 8 % for
one node. This scales with an efficiency of 86 %, on 256
nodes, and 69 %, on 512 nodes. Runs with a block size of 100
show an efficiency of 87 %, on up to 256 nodes, and a smaller
efficiency decrease on 512 nodes, with 84 %. As expected, a
longer computation time results in a better efficiency for
the one block calculations, with a block size of 80 and 100.
In the following scenarios, communication is examined in
more detail. Due to unexpected performance variations on
jureca, the studies are only continued on fh2.

Scenario 3 (full stencil). In addition to the previous sce-
nario 2, the calculation uses a full stencil. The halo exchange
is extended to 26 sides to meet the requirements of full sten-
cils. It is tested on fh2, with the calculation from scenario 2,
and with one block per rank. The block edge size is 100 grid
points.

The results compared with scenario 2 are shown in
Figure 12. Compared to scenario 2, the measured pure
calculation time 16.1 ms is not changed. The average time
per step is increased up to 24.5 ms, and the overall overhead
is increased to 52 %. The scalability is characterized by an ef-
ficiency of 96 %, for 512 nodes and 10 240 cores, respectively.
With 26 sides, the ranks are entangled more strongly, and
therefore a larger but equable overhead occurs. This larger
overhead results in a better scalability than the six-side halo

1 8 64 512

80

100

120

140

160

Nodes

Ti
m
e
t/ms

fh2

MSN
100

2000

(a)

1 8 64 512

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

fh2

MSN
100

2000

(b)

Fig. 13: Scaling of the global announcement network, sce-
nario 4, for sizes of 100 and 2000 values, and the Manhattan
Street Network (MSN) topology. (a) Average time of one
time step, and (b) efficiency.

exchange in scenario 2, with an efficiency of 84 %.
Scenario 4 (global announcement). A synthetic test of the

global announcement network, with a halo exchange of 26
sides, and a testing sleep function of 65 ms, is performed on
fh2, with one block per rank, and with a size of 100 grid
points.

Figure 13 shows the Manhattan Street Network, which
is compared to all-gather-communication, with 100 and
2000 values per rank. As expected, the runtime increases
exponentially for the collective all-gather-communications,
even for small messages with only 100 values per rank. This
is a significant drawback of the collective communication.
In contrast, the Manhattan Street Network approach scales
very well, with an efficiency of 95 %, for 512 nodes.

Scenario 5 (all communications). The first four scenarios
demonstrate a good communication behavior of NAStJA,
for the halo exchange and the global announcement. In
this scenario, the neighborhood communication is activated.
In addition to the previous tests, the dynamic creation
and deletion of blocks, as well as the load balancing, are
activated. This scenario uses the full halo exchange of 26
sides, with a block edge size of 100 grid points. The same
phase-field calculation of a growing crystal front, as in
scenario 2, is used on fh2. A virtual domain, with one block
in crystal growth direction, is used to measure the overhead
and scaling of the communication for the dynamic block
adaption, without the creation or deletion of new blocks.
The behavior of deleting and creating blocks is investigated
in a second test series, with a virtual domain of four blocks



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 12

1 8 64 512

20

40

60

Nodes

Ti
m
e
t/ms

fh2

100-1 blk
100-4 blk

(a)

(a) Average time per step

1 8 64 512

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

fh2

100-1 blk
100-4 blk

(b)

(b) Efficiency

Fig. 14: Scaling of the dynamic rank in scenario 5, for one
and four initial blocks in growth direction. (a) Average time
of one time step, and (b) efficiency.

in crystal growth direction. The runs are initialized with all
four blocks in crystal growth direction. The interface is only
in one block, so that the three blocks without interface dis-
appear as expected. During growth, the interface is moving,
and a second block is created. For this test run, the average
count of blocks per rank is 2.0495.

The results are presented in Figure 14. The simulation
with four blocks requires around twice the time as the
simulation with one block, which matches with the average
count of blocks. On 128 nodes, the measured times strongly
increase by about 10 ms, for both the one- and four-block
cases. The overall overhead is 11 %. On one node with
one block, a total average runtime of 17.85 ms is measured,
compared to a calculation time of 16.14 ms. For one block,
the efficiency decreases to 78 %, for 128 nodes (best run),
and to 55 % (worst run). For the worst run, the efficiency
stays at this level, 54 %, for up to 512 nodes. The four-
block run shows an efficiency of 87 % before the gap on 64
nodes, and an efficiency of 70 % for 256 nodes. After the new
gap, the efficiency on 512 nodes is still 51 %. The 128 node
runs with one block show a large difference in runtime. For
the dynamic module, a few more small messages are sent,
compared to the scenarios that only use static distribution.

The different number of used switches, and therefore the
different number of hops for the two 128 node runs, serves
as an indicator. The worst run uses eleven switches, while
the best one is only distributed over three switches.

A more detailed view of these scaling results is shown

1 8 64 512

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

4 blocks per rank

Exchange Sweep
Detection Total
Dynamic

(a)

1 8 64 512

0

0.2

0.4

0.6

0.8

1

Nodes

E�
ci
en

cy
η

4 blocks per rank

Exchange Sweep
Detection Total
Dynamic

(b)

Fig. 15: Efficiency of the individual actions for (a) one
and (b) four blocks per rank. For one block, the fit to the
performance model is shown by the gray lines.

in Figure 15. The results for one and four blocks are
split into contributions of the individual actions. The non-
communicating parts—the sweep calculation and the detec-
tion of the reaching of the border—show a perfect efficiency.
The measured efficiencies for the border detection of four
blocks, on more than 64 nodes, are higher than 100 %,
due to a slightly faster detection than on one node, and
therefore are not shown in Figure 15(b). The dynamic parts
in Figure 15(a) show a higher decrease, where especially
a drop from one to two nodes is recognizable. Here, the
communication changes from intra- to inter-node commu-
nications. For up to 64 nodes, the efficiency follows a linear
regime, then it drops until 256 nodes. For 256 and 512 nodes,
the efficiency is constant again. In Figure 15(a), the gray lines
fit the time to a linear function for 2 to 64 nodes, and to a
constant function for 256 to 512 nodes. This corresponds
to the estimated behavior of the performance model (3c),
which first has a linear time increase, and finally has a
constant time. The measured value for 128 nodes is in the
transition from linear to constant. With four blocks, the
efficiency increases slightly from 256 and 512 nodes, as seen
in Figure 15(b). The halo exchange time decreases, although
the number of communications per block is constant. How-
ever, the scaling in scenario 1 to 3 shows the expected
behavior, as presented in Figures 10 – 12. The individual
communication parts cannot be completely separated from
each other, so that the efficiency of the halo exchange is
adapted to the efficiency of the dynamic part. The average
times of the individual actions are listed in Table 1. It should
be noted that only one block fits the cache, such that the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 13

Nodes/Blocks 1/1 512/1 1/4 512/4

Halo Exchange 945.90 2 401.46 3 824.86 8 729.36
Detection 0.76 0.82 517.68 504.76
DynBlock 887.48 7 250.14 2 737.88 18 988.70
Load Balance 304.28 7 436.39 688.96 20 034.40
Sweep 16 173.50 16 240.40 33 717.20 33 831.50

TABLE 1: Average times of the individual actions for one
and four blocks, on one and 512 nodes, in µs.

detection produces cache misses in the case of more than
one block per rank, which increase the time.

5 DISCUSSION

The measurements in the previous section confirm that
the design of NAStJA is well chosen. The individual com-
munication levels show a good to excellent scalability. In
cases with small stencils, with a six-side exchange, the halo
exchange scales very well, as well as with full stencils that
additionally require communication to diagonal neighbors,
and have 26 exchanges in total. The global exchange also
scales excellently, because of the usage of the multi-hop
process, instead of a collective communication which does
not scale, as shown in Figure 13. The communication for
the adaptive action first appears to influence the efficiency
strongly. However, the used algorithm can completely dis-
pense with collective communications, which scale worse
than the local neighborhood communications. The results of
the measurements show that the efficiency of many nodes
(from 128 onwards) is approximately constant, which would
not be the case when using collective communications.
However, the saved part of the computational domain,
and thus the saved work load, can be enormous. As an
illustration, blocks with an edge size of 80 grid points are
used to cover a quarter of a spherical segment with the
radius 5 000 (center height 1 000). As a result, only 10 436
blocks are required, when considering an interface of 16
grid points. Compared to this, 297 675 blocks are required
to cover the spherical segment with a cuboid of blocks.
Here, the expansion of the domain is not yet taken into
account in an advanced simulation. This means that the
adaptive approach only requires 3.5 % of the usually re-
quired computational domain and computing effort. This
puts the overhead of factor 2 of the communications into
perspective. Theoretically, this is a speedup of over 14, for
this very advantageous case. Less advantageous cases are
also expected to benefit from this method. In summary,
a higher computing load, such as more difficult calcula-
tions or larger blocks, leads to a better scalability, because
the communication time stays constant or only increases
quadratically, in the case of the halo-exchange, while the
block size increases cubically.

6 CONCLUSION

We have shown that for the given example, the saving of
computational effort is enormous, as the required effort just
corresponds to 3.5 % of the effort required with traditional
solutions. The methods of the NAStJA framework are work-
ing very well, and are highly recommended. The expensive

communication results in an overhead of around 100 % for
one block, and 70 % for four blocks per rank. This is an
indicator that an increase of the workload increases the
scalability.

Although the sample problem is very specific, the used
properties of the phase-field method, i.e., calculations only
performed in the interface region, and the limited growth
rate, can also be found in other fields of application. First
of all, the multiphase-field method should be mentioned,
which is used for multigrain simulations or geological sim-
ulations. Cellular automata, such as the cellular Potts model,
are also conceivable, which can describe biological cells for,
e.g., tissue growth. The NAStJA framework supports many
of these methods, such as a phase-field method, a phase-
field crystal model, and the cellular Potts model. It is flexibly
designed, such that it can be simply extended to a wide
range of algorithms that act on finite difference schemes. In
addition, other methods on regular grids, such as cellular
automata, are also supported.

Furthermore, the usage of blocks in a block-structured
grid has some additional, great advantages for the distribu-
tion concept, and is very flexible and readily extensible. The
user can choose the block size such that the whole block
or the layers required for the stencil calculations fit into the
processor cache, e.g., three layers, as for the example stencil
presented here. Load balancing is much simpler when the
geometry of the halo exchange does not change, even in
the case of off-loading the operations of whole blocks to
accelerator devices, such as GPUs, Xeon Phi, and vector
cards. The dynamic block adaption can be extended to
different data fields, such that only the required fields are
calculated. An adaption to the resolution is also conceivable,
where the resolution of the calculation grid is based on a
block level. Since the neighborhood communication is the
most expensive one, and hence mostly limits the scalability
factor, it is conceivable not to perform the adaptive action
during every time step.

In particular, it can be assumed that the interface does
not cross the boundary until the next adaptive action. If
it comes into contact with the boundary, the interface is
influenced by this. Small artifacts are formed in the interface.
In later time steps, when the interface can move freely, and
without boundary influences, the smoothing behavior of
the phase-field interface compensates these artifacts. This
would lead to an even better scalability.

Further possible studies include the influence of the
block size on the overall efficiency. A smaller block size
reduces the part of the areas that have to be calculated
in the blocks. However, more blocks are needed, that are
deleted or created more often, which results in a higher com-
munication effort. Where is the sweet spot? In the current
state of the NAStJA framework, users have to write their
own sweeps to perform calculations on their data fields. In
addition, they can provide actions to perform special tasks
for their simulation besides the calculations, e.g., counting,
communicating, or modifying the data fields. It is planned
to provide a mechanism to assemble actions and sweeps to
an application, via entries in the configuration file. It is also
imaginable to provide API access to common utilities in a
later version, so that the actions and sweeps only have to
be built by the users themselves. There are also plans to



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 14

release NAStJA under an open source license soon. Until
then, academic preview licenses are available.

ACKNOWLEDGMENTS

This work was performed on the computational resource
ForHLR II, funded by the Ministry of Science, Research
and the Arts Baden-Württemberg and the DFG (“Deutsche
Forschungsgemeinschaft”). We thank M. Soysal and R. Wal-
ter for the explanation of the topology and the fruitful
discussions. The authors gratefully acknowledge the com-
puting time granted by the JARA-HPC Vergabegremium
on the supercomputer JURECA [56], at Forschungszentrum
Jülich.

REFERENCES

[1] M. Bauer, J. Hötzer, M. Jainta, P. Steinmetz, M. Berghoff, F. Schorn-
baum, C. Godenschwager, H. Köstler, B. Nestler, and U. Rüde,
“Massively parallel phase-field simulations for ternary eutectic di-
rectional solidification,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
ACM, 2015, p. 8.

[2] J. Hötzer, M. Jainta, P. Steinmetz, B. Nestler, A. Dennstedt,
A. Genau, M. Bauer, H. Köstler, and U. Rüde, “Large scale phase-
field simulations of directional ternary eutectic solidification,”
Acta Materialia, vol. 93, no. 0, pp. 194 – 204, 2015.

[3] J. Hötzer, P. Steinmetz, M. Jainta, S. Schulz, M. Kellner, B. Nestler,
A. Genau, A. Dennstedt, M. Bauer, H. Köstler et al., “Phase-field
simulations of spiral growth during directional ternary eutectic
solidification,” Acta Materialia, vol. 106, pp. 249–259, 2016.

[4] P. Steinmetz, Y. C. Yabansu, J. Hötzer, M. Jainta, B. Nestler, and
S. R. Kalidindi, “Analytics for microstructure datasets produced
by phase-field simulations,” Acta Materialia, vol. 103, pp. 192–203,
2016.

[5] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada,
T. Endo, N. Maruyama, and S. Matsuoka, “Peta-scale phase-
field simulation for dendritic solidification on the TSUBAME 2.0
supercomputer,” 2011 International Conference for, High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1–11, 2011.

[6] T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka, and T. Aoki,
“Unexpected selection of growing dendrites by very-large-scale
phase-field simulation,” Journal of Crystal Growth, vol. 382, pp. 21–
25, 2013.

[7] T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, and
T. Aoki, “Two-dimensional phase-field study of competitive grain
growth during directional solidification of polycrystalline binary
alloy,” Journal of Crystal Growth, p. –, 2016.

[8] M. Ben Said, M. Selzer, B. Nestler, D. Braun, C. Greiner, and
H. Garcke, “A phase-field approach for wetting phenomena of
multiphase droplets on solid surfaces,” Langmuir, vol. 30, no. 14,
pp. 4033–4039, 2014.

[9] K. A. Brakke, “The surface evolver,” Experimental mathematics,
vol. 1, no. 2, pp. 141–165, 1992.

[10] W. C. Carter, “Surface evolver as a tool for materials science
research,” Mathematics of Microstructure Evolution, pp. 1–14, 1995.

[11] S. Brandon, N. Haimovich, E. Yeger, and A. Marmur, “Partial
wetting of chemically patterned surfaces: The effect of drop size,”
Journal of colloid and interface science, vol. 263, no. 1, pp. 237–243,
2003.

[12] H. P. Jansen, O. Bliznyuk, E. S. Kooij, B. Poelsema, and H. J.
Zandvliet, “Simulating anisotropic droplet shapes on chemically
striped patterned surfaces,” Langmuir, vol. 28, no. 1, pp. 499–505,
2011.

[13] K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, “Phase-
field crystal modeling and classical density functional theory of
freezing,” Physical Review B, vol. 75, no. 6, p. 064107, 2007.

[14] M. Berghoff and B. Nestler, “Phase field crystal modeling of
ternary solidification microstructures,” Computational Condensed
Matter, vol. 4, pp. 46–58, 2015.

[15] F. Graner and J. A. Glazier, “Simulation of biological cell sorting
using a two-dimensional extended potts model,” Physical Review
Letters, vol. 69, no. 13, p. 2013, 1992.

[16] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn,
M. Ohlberger, and O. Sander, “A generic grid interface for parallel
and adaptive scientific computing. part i: abstract framework,”
Computing, vol. 82, no. 2, pp. 103–119, 2008.

[17] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Korn-
huber, M. Ohlberger, and O. Sander, “A generic grid interface for
parallel and adaptive scientific computing. part ii: Implementation
and tests in dune,” Computing, vol. 82, no. 2-3, pp. 121–138, 2008.

[18] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, “The fenics
project version 1.5,” Archive of Numerical Software, vol. 3, no. 100,
pp. 9–23, 2015.

[19] M. J. Welland, D. Karpeyev, D. T. O’Connor, and O. Heinonen,
“Miscibility gap closure, interface morphology, and phase mi-
crostructure of 3d li x fepo4 nanoparticles from surface wetting
and coherency strain,” ACS nano, vol. 9, no. 10, pp. 9757–9771,
2015.

[20] J. E. Guyer, D. Wheeler, and J. A. Warren, “Fipy: partial differen-
tial equations with python,” Computing in Science & Engineering,
vol. 11, no. 3, 2009.

[21] D. Wheeler, J. A. Warren, and W. J. Boettinger, “Modeling the early
stages of reactive wetting,” Physical Review E, vol. 82, no. 5, p.
051601, 2010.

[22] M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, and P. Talbot, “An
object-oriented finite element framework for multiphysics phase
field simulations,” Computational Materials Science, vol. 51, no. 1,
pp. 20–29, 2012.

[23] P. C. Millett, M. R. Tonks, K. Chockalingam, Y. Zhang, and S. Biner,
“Three dimensional calculations of the effective kapitza resistance
of uo 2 grain boundaries containing intergranular bubbles,” Jour-
nal of Nuclear Materials, vol. 439, no. 1, pp. 117–122, 2013.

[24] I. Steinbach, “Phase-field models in materials science,” Modelling
and simulation in materials science and engineering, vol. 17, no. 7, p.
073001, 2009.

[25] C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, and
U. Rüde, “A framework for hybrid parallel flow simulations
with a trillion cells in complex geometries,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. ACM, 2013, p. 35.

[26] K. Thornton, S. Rudraraju, and S. DeWitt, “PRISMS-PF,”
2017. [Online]. Available: https://github.com/prisms-center/
phaseField

[27] I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G. J.
Schmitz, and J. L. Rezende, “A phase field concept for multiphase
systems,” Physica D: Nonlinear Phenomena, vol. 94, no. 3, pp. 135–
147, 1996.

[28] M. Mecozzi, J. Eiken, M. Santofimia, and J. Sietsma, “Phase field
modelling of microstructural evolution during the quenching and
partitioning treatment in low-alloy steels,” Computational Materials
Science, vol. 112, pp. 245–256, 2016.

[29] B. Nestler, H. Garcke, and B. Stinner, “Multicomponent alloy solid-
ification: phase-field modeling and simulations,” Physical Review
E, vol. 71, no. 4, p. 041609, 2005.

[30] A. Vondrous, M. Selzer, J. Hötzer, and B. Nestler, “Parallel com-
puting for phase-field models,” The International Journal of High
Performance Computing Applications, vol. 28, no. 1, pp. 61–72, 2014.

[31] COMSOL Inc., “COMSOL,” 2017. [Online]. Available: https:
//comsol.de

[32] F. Schornbaum and U. Rüde, “Massively parallel algorithms for
the lattice boltzmann method on nonuniform grids,” SIAM Journal
on Scientific Computing, vol. 38, no. 2, pp. C96–C126, 2016.

[33] N. Ofori-Opoku and N. Provatas, “A quantitative multi-phase
field model of polycrystalline alloy solidification,” Acta Materialia,
vol. 58, no. 6, pp. 2155–2164, 2010.

[34] G. Amberg, “Semisharp phase field method for quantitative phase
change simulations,” Physical review letters, vol. 91, no. 26, p.
265505, 2003.

[35] T. Takaki, T. Fukuoka, and Y. Tomita, “Phase-field simulation
during directional solidification of a binary alloy using adaptive
finite element method,” Journal of crystal growth, vol. 283, no. 1, pp.
263–278, 2005.

[36] M. Greenwood, K. Shampur, N. Ofori-Opoku, T. Pinomaa,
L. Wang, S. Gurevich, and N. Provatas, “Quantitative 3d phase
field modelling of solidification using next-generation adaptive
mesh refinement,” Computational Materials Science, vol. 142, pp.
153–171, 2018.

https://github.com/prisms-center/phaseField
https://github.com/prisms-center/phaseField
https://comsol.de
https://comsol.de


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 00, NO. 0, SEPTEMBER 2017 15

[37] C. Lan and Y. Chang, “Efficient adaptive phase field simulation
of directional solidification of a binary alloy,” Journal of Crystal
Growth, vol. 250, no. 3, pp. 525–537, 2003.

[38] Y. Li and J. Kim, “Phase-field simulations of crystal growth with
adaptive mesh refinement,” International Journal of Heat and Mass
Transfer, vol. 55, no. 25, pp. 7926–7932, 2012.

[39] R. Folch and M. Plapp, “Quantitative phase-field modeling of two-
phase growth,” Physical Review E, vol. 72, no. 1, p. 011602, 2005.

[40] X. Cai, H. Marschall, M. Wörner, and O. Deutschmann, “A phase
field method with adaptive mesh refinement for numerical simula-
tion of 3d wetting processes with openfoam®,” in 2nd International
Symposium on Multiscale Multiphase Process Engineering (MMPE),
Hamburg, Germany, 2014.

[41] X. Cai, H. Marschall, M. Wörner, and O. Deutschmann, “Numer-
ical simulation of wetting phenomena with a phase-field method
using openfoam®,” Chemical Engineering & Technology, vol. 38,
no. 11, pp. 1985–1992, 2015.

[42] N. Provatas, M. Greenwood, B. Athreya, N. Goldenfeld, and
J. Dantzig, “Multiscale modeling of solidification: phase-field
methods to adaptive mesh refinement,” International Journal of
Modern Physics B, vol. 19, no. 31, pp. 4525–4565, 2005.

[43] P. Maes, “Modeling adaptive autonomous agents,” Artificial life,
vol. 1, no. 1 2, pp. 135–162, 1993.

[44] M. Scheutz and P. Schermerhorn, “Adaptive algorithms for the
dynamic distribution and parallel execution of agent-based mod-
els,” Journal of Parallel and Distributed Computing, vol. 66, no. 8, pp.
1037–1051, 2006.

[45] N. Fachada, V. V. Lopes, R. C. Martins, and A. C. Rosa, “Paral-
lelization strategies for spatial agent-based models,” International
Journal of Parallel Programming, vol. 45, no. 3, pp. 449–481, 2017.

[46] A. Choudhury and B. Nestler, “Grand-potential formulation
for multicomponent phase transformations combined with thin-
interface asymptotics of the double-obstacle potential,” Physical
Review E, vol. 85, no. 2, p. 021602, 2012.

[47] M. Berghoff, M. Selzer, and B. Nestler, “Phase-field simulations
at the atomic scale in comparison to molecular dynamics,” The
Scientific World Journal, vol. 2013, 2013.

[48] M. Berghoff, Skalenübergreifende Modellierung und Optimierung vom
atomistischen kristallinen Phasenfeldmodell bis zur mesoskopischen
Phasenfeldmethode. KIT Scientific Publishing, 2015, vol. 49.

[49] J. Hötzer, O. Tschukin, M. B. Said, M. Berghoff, M. Jainta,
G. Barthelemy, N. Smorchkov, D. Schneider, M. Selzer, and
B. Nestler, “Calibration of a multi-phase field model with quan-
titative angle measurement,” Journal of materials science, vol. 51,
no. 4, pp. 1788–1797, 2016.

[50] M. Berghoff, M. Selzer, A. Choudhury, and B. Nestler, “Efficient
techniques for bridging from atomic to mesoscopic scale in phase-
field simulations,” Journal of Computational Methods in Sciences and
Engineering, vol. 13, no. 5, 6, pp. 441–454, 2013.

[51] B. Khasnabish, “Topological properties of manhattan street net-
works,” Electronics Letters, vol. 25, no. 20, pp. 1388–1389, 1989.

[52] T.-Y. Chung and D. P. Agrawal, “Design and analysis of mul-
tidimensional manhattan street networks,” IEEE transactions on
communications, vol. 41, no. 2, pp. 295–298, 1993.

[53] F. Comellas, C. Dalfó, and M. A. Fiol, “Multidimensional manhat-
tan street networks,” SIAM Journal on Discrete Mathematics, vol. 22,
no. 4, pp. 1428–1447, 2008.

[54] J. Postel, “Transmission control protocol,” Internet Requests for
Comments, RFC Editor, STD 7, 1981, http://www.rfc-editor.org/
rfc/rfc793.txt.

[55] TOP500.org, “Top500 List - November 2017,” 2017. [Online].
Available: https://www.top500.org/list/2017/11/

[56] Jülich Supercomputing Centre, “JURECA: General-purpose super-
computer at Jülich Supercomputing Centre,” Journal of large-scale
research facilities, vol. 2, no. A62, 2016.

Marco Berghoff received his diploma in math-
ematics from the University of Paderborn, Ger-
many, with a focus on microlocal analysis, nu-
merics, and physics. He has been a member
of the Karlsruhe Institute of Technology, at the
Institute for Applied Materials, where he received
his PhD in Computational Materials Science.
He has years of experience in multiscale mod-
eling and high performance optimization, with
the atomistic phase-field crystal model and the
mesoscopic phase-field method. As a postdoc-

toral researcher in the Simulation Laboratory “NanoMicro”, he has in-
troduced the framework NAStJA, and currently leads the developments.
He is involved in several activities within this project, in particular in the
development of large-scale simulations for biological or material science
research topics.

Ivan Kondov has received his PhD degree in
theoretical physics at the Chemnitz University
of Technology, with a thesis dealing with effi-
cient and scalable numerical schemes for solv-
ing quantum master equations. As a postdoc at
the Technical University of Munich, he worked
on the simulation of interfacial electron trans-
fer processes. Since 2010, he has been the
leader of the Simulation Laboratory “NanoMi-
cro” at Steinbuch Centre for Computing (SCC),
at Karlsruhe Institute of Technology, and since

2015, he has been deputy head of the department “Scientific Computing
and Simulation”. His current research includes multiscale modeling and
simulations using high performance computing, workflows for model and
data integration, hierarchical modeling of tightly coupled multiscale sys-
tems, employing the concepts of model-driven architecture and service-
oriented architecture in computational materials science, and preparing
HPC applications for the exascale.

Johannes Hötzer started work on the phase-
field model during his master studies of com-
puter science, and composed his master the-
sis on the optimization and parallelization of
PACE3D. In his PhD, he focused on large-scale
simulations of sintering processes, and on di-
rectional solidification of ternary eutectics. He
has several years of experience in phase-field
modeling, as well as high performance comput-
ing, and is the group leader of activities in “High
Performance Materials Computing and Data Sci-

ence”. The focus of his work is on the solidification of ternary eutectics,
and on sintering processes. For several semesters, he has given a
lecture on “High Performance Computing”, with an integrated computer
lab for students of computer science and mechanical engineering.

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://www.top500.org/list/2017/11/

	Introduction
	Related Work
	Frameworks
	Adaptive Mesh Refinement
	Agent-based Modeling

	Methods
	The Phase-field Method
	Architecture of NAStJA
	The Different Communication Networks
	Methods for Dynamic Block Adaption
	Load Balancing

	Performance and Scalability
	Measurements

	Discussion
	Conclusion
	Acknowledgment
	References
	Biographies
	Marco Berghoff
	Ivan Kondov
	Johannes Hötzer


