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Abstract
Pure graphene in the form of few-layer graphene (FLG) – 1 to 6 layers – is biocompatible and non-cytotoxic. This makes FLG an

ideal material to incorporate into dental polymers to increase their strength and durability. It is well known that graphene has high

mechanical strength and has been shown to enhance the mechanical, physical and chemical properties of biomaterials. However, for

commercial applicability, methods to produce larger than lab-scale quantities of graphene are required. Here, we present a simple

method to make large quantities of FLG starting with commercially available multi-layer graphene (MLG). This FLG material was

then used to fabricate graphene dental-polymer composites. The resultant graphene-modified composites show that low concentra-

tions of graphene (ca. 0.2 wt %) lead to enhanced performance improvement in physio-mechanical properties – the mean compres-

sive strength increased by 27% and the mean compressive modulus increased by 22%. Herein we report a new, cheap and simple

method to make large quantities of few-layer graphene which was then incorporated into a common dental polymer to fabricate

graphene-composites which shows very promising mechanical properties.
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Table 1: Chemical composition of MLG and FLG from XPS analysis.

Component Eb (eV) FWHM (eV) Area (eV) Fraction (%) O 1s/C 1s

MLG C 1s 284.01 1.83 8649.91 60.00 0.130
C 1s 285.39 3.09 3151.94 21.87
C 1s 289.44 3.37 736.77 5.12
O 1s 532.39 2.36 4202.32 10.61
O 1s 530.44 2.07 188.13 0.75
N 1s 399.36 2.07 188.13 0.75

FLG C 1s 283.67 1.58 8588.15 56.18 0.170
C 1s 284.83 1.94 3097.75 20.27
C 1s 285.62 3.01 1254.09 8.21
O 1s 532.43 1.58 1384.56 3.30
O 1s 531.86 2.86 4686.88 11.15
N 1s 399.35 2.48 238.66 0.89

Introduction
Now that much of the world’s population are living beyond

their “threescore years and ten” [1], that is to say, on average,

into their 80s [2], there has been an increase in the need for

minimal intervention dentistry [3]. This practice of a complete

management solution for tooth decay has benefited from the ex-

tensive use of dental polymers. However, current dental poly-

mers have a relatively short operational lifetime resulting from

their lack of sufficient strength and durability. Therefore, the

aim was to assess the use of graphene with a common dental

polymer to form a composite material with improved mechani-

cal properties.

One of the main problems facing dental-polymers is that of

location. They are situated within the mouth which is an

extremely demanding setting – exposure to moisture, high tem-

peratures, and abrasion from toothbrushes plus a variety of

foodstuffs all have to be dealt with. These conditions can lead to

problems of mechanical failures cancelling out initial clinical

success and over time requiring further work for restoration

with the associated inconvenience and extra cost. Then there is

the issue of biocompatibility to consider.

Biocompatibility is a prerequisite for all dental materials. They

must be compatible with oral fluids, must not release toxic

products into the oral location and must have sufficient strength

and durability to be fit for purpose [4]. Most other studies of

graphene-dental polymer materials have used graphene oxide

(GO) [5] which may be cytotoxic [6,7]. Therefore, in these tests

glass-ionomers (GIs) prepared with poly(acrylic acid), a

common dental polymer [8], were used with the addition of

few-layer graphene (FLG). Graphene has the advantages of

having a high fracture and mechanical strength, a large surface

area, flexibility and is also biocompatible and thought to be

non-cytotoxic [9-13], but as toxicity depends on many factors

such as size, shape, concentration and dose further studies with

regard to specific applications are needed. Therefore, the aim of

these experiments was to assess the use of graphene with a

glass-ionomer (GI) prepared with poly(acrylic acid) to form a

biocompatible composite material with improved mechanical

properties.

Results and Discussion
Few-layer graphene
For the graphene material it was decided to use commercially

available multi-layer graphene (MLG) from Graphit Kropfmühl

GmbH (EXGR98350 - batch 08.10.2012). The shape and posi-

tion of the Raman 2D band (≈2700 cm−1) provides a useful

analysis for assessing the quality and number of layers in

graphene materials [14,15]. As the FLG material is composed

of “flakes” the edges of the flakes give rise to a D band. The

shape and position of the 2D band in the MLG material is

indicative of multi-layer graphene rather than graphite and

the 2D band in the FLG material is indicative of few-layer

graphene [14]. This allows us to see the conversion of commer-

cial MLG material (Figure 1a, lower) to FLG (Figure 1a, upper,

1b–d).

Figure 2 shows AFM (detail and profile) of the graphene mate-

rial (MLG) before and (FLG) after heat-treatment in air at

500 °C for 2 h (ca. 10% volume loss of starting mass during

heat-treatment). This resulted in the FLG material used in these

experiments.

The XPS analysis (Table 1) shows that the MLG and FLG ma-

terials have similar oxygen content as the O 1s/C 1s ratios are

very similar. The binding energies (Eb) ≈284.6 eV corresponds
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Figure 1: a) Raman spectra of MLG (ca. 10 layers, lower) and FLG (1–6 layers, upper) – both at 514 nm. b) Helium ion microscope (HeIM) overview
of FLG, c) TEM overview of FLG and d) HRTEM detail of FLG showing a single layer.

Figure 2: a) and b) AFM detail and profile of a multi-layer graphene (MLG) flake, ca. 10 graphene layers, c) and d) AFM detail and profile of a few-
layer graphene (FLG) flake, ca. 1–6 graphene layers.
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Figure 3: a) GI composite after strength testing made from FLG-polymer A, b) GI composite after strength testing made from FLG-polymer E,
c) Raman spectra of GI composite made from FLG-polymer E and GI composite made from FLG-polymer A – both at 514 nm, d) SEM overview of
fracture surface of GI composite made from FLG-polymer A, e) SEM overview of fracture surface of GI composite made from FLG-polymer E.

to C–H, C–C, (CH2)n and C=C bonds that are characteristic of

graphite/graphene, ≈286 eV corresponds to C–O–C, ≈288.5 eV

corresponds to O–C=O, ≈531.5–532 eV corresponds to C–O

and ≈533 eV corresponds to C=O [16]. Therefore, it is reason-

able to assume that the loss of carbon and oxygen from the

MLG material compared to the FLG material can be attributed

to the formation of CO and CO2 during the heat-treatment. This

is in accord with the Raman data which shows a clear “finger-

print” for graphene rather than graphene oxide [14,15].

FLG-dental polymers
Six types of FLG-dental polymers were made up; one control

plus five with different loadings of graphene. Figure 3 shows

FLG-polymer A (lowest concentration of FLG) and FLG-

polymer E (highest concentration of FLG used), hence E

appears much darker than A (Figure 3a,b).

The Raman spectra of both FLG-dental polymers show a 2D

band (≈2700 cm−1) which is indicative of FLG [14,15] al-

though in the higher graphene loaded polymer this band is more

pronounced. The fracture sections of both polymers were con-

ducting enough to need no coating to be examined by SEM.

This is indicative of a good percolation network of the FLG ma-

terial in the dental polymer (Figure 3d and 3e). The SEMs were

obtained using an energy selective backscatter (EsB) detector

which gives clear compositional contrast. In these micrographs

the white patches correspond to graphene in the fracture sur-

face of the polymer matrix.

The mean dynamic viscosity, compressive fracture strength and

compressive modulus and associated standard deviations for the

control group and the groups prepared with poly(acrylic acid)

solutions containing graphene are shown in Table 2.

There was a progressive significant increase in the dynamic

viscosity of the poly(acrylic acid) solutions as the concentra-

tion of graphene added to the poly(acrylic acid) solutions was

increased. This increase in viscosity with increasing nano-car-

bon concentration is consistent with that found by other

researchers [17,18]. Further increases in the amount of graphene

added to the poly(acrylic acid) solutions – 2.0 mg, 5.0 mg and

10.0 mg all resulted in significant increases in dynamic

viscosity compared with the control group as illustrated in

Table 2.

There was no significant trend in the compressive fracture

strength data with increasing concentration of graphene added

to the poly(acrylic acid) solutions as shown in Figure 4. The

group prepared using a poly(acrylic acid) solution containing

0.5 mg of graphene produced the highest mean compressive

fracture strength (118.2 ± 8.3 MPa) which was a 27% increase

compared with the control group (93.3 ± 4.6 MPa).
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Table 2: The mean dynamic viscosity, compressive fracture strength and compressive modulus ± standard deviation for the control group and the
groups prepared with poly(acrylic acid) solutions containing graphene.

Group Dynamic viscosity (mPa·s) Compressive fracture strength (MPa) Compressive modulus (GPa)

Control 610 ± 0 93.3 ± 4.6 2.91 ± 0.12
A – 0.5 mg 617 ± 6 118.2 ± 8.3 3.56 ± 0.32
B – 1.0 mg 623 ± 6 111.3 ± 5.2 3.32 ± 0.11
C – 2.0 mg 653 ± 6 116.5 ± 7.8 3.49 ± 0.10
D – 5.0 mg 680 ± 10 111.0 ± 5.8 3.16 ± 0.15
E – 10.0 mg 713 ± 6 105.3 ± 7.1 3.18 ± 0.09

Figure 4: Change in mean compressive fracture strength with increas-
ing graphene concentration.

For the compressive modulus data, there was no significant

trend as the concentration of graphene added to the poly(acrylic

acid) solutions was increased as shown in Figure 5. Significant

increases in the compressive modulus data were reported for all

groups prepared with poly(acrylic acid) solutions containing

graphene compared with the control group as shown in Table 2.

Similarly to the results from the compressive fracture strength

data, the group which produced the highest mean compressive

modulus (3.56 ± 0.32 GPa) was the group containing 0.5 mg of

graphene, which showed a 22% increase compared with the

control group (2.91 ± 0.12 GPa).

From the results of the mechanical testing it is clear that a small

addition of FLG gives a large increase in the FLG-dental

polymer fracture strength and compressive modulus. The latter

is significant as it shows the capacity of the FLG-dental

polymer to withstand loads tending to reduce in size – e.g.,

biting and chewing. The decrease in these enhanced properties

with increasing FLG loading is probably due to aggregation of

Figure 5: Change in mean compressive modulus with increasing
graphene concentration.

the FLG in the polymer matrix. Further optimisation tests are

ongoing.

Conclusion
In summary, we have described herein a new, simple and cheap

method to make large quantities of FLG starting with commer-

cially available multi-layer graphene (MLG) and also the incor-

poration of this graphene into dental polymer composites. We

have demonstrated that the fabricated graphene-dental polymer

composites have significantly enhanced mechanical properties

as compared with the plain dental-polymer material (control

group). The mean compressive strength of the graphene-dental

polymer showed a 27% increase and the mean compressive

modulus showed a 22% increase compared with the control

group – this is a significant increase. A recent review [8] con-

cluded that despite the developments in GI powder and

poly(acrylic acid) constituents they still had inferior mechani-

cal properties compared with dental amalgam and resin based

composites. They go on to say that major improvements have
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yet to be made so that GIs can see real clinical usage. Therefore,

these studies could well be the “major improvements” sought

for as they show that GIs with a low concentration of graphene

lead to major performance improvement in physio-mechanical

properties. This represents a major advance in GI materials rein-

forcement strategy and will breathe a new lease of life into this

research area. These in vitro studies are continuing and cell-line

studies are also planned.

Experimental
Materials
The multi-layer graphene (MLG) material used in this research

was commercially available MLG - EXGR98350 (batch

08.10.2012) supplied by Graphit Kropfmühl GmbH (Hauzen-

berg, Germany). The MLG material was heated in air at 500 °C

for 2 h to give the FLG material.

Graphene-polymer composite preparation
Poly(acrylic acid) powder, 1.0 g, with an average molecular

weight of 40000 was mixed with 2.5 mL of distilled water to

give a concentration of 40%. Then five concentrations of FLG

and these poly(acrylic acid) solutions were made up containing

0.5, 1.0, 2.0, 5.0 or 10.0 mg of FLG (Table 2, group A–E). A

control poly(acrylic acid) solution was also prepared without

graphene by dissolving 1.0 g of the poly(acrylic acid) powder in

2.5 mL of distilled water (Table 2, group control). All the solu-

tions were sonicated for 15 min and then stirred for 24 h.

All the poly(acrylic acid) solutions (A–E and control) were

hand-mixed with a commercial glass-ionomer (GI) restorative

powder (Ionofil Molar; Voco GmbH, Cuxhaven, Germany)

using a powder to liquid mixing ratio of 4:1 (g/g) as recom-

mended by Voco GmbH. In each case 0.188 g of the

poly(acrylic acid) solution was pipetted onto one end of a glass

slab while 0.75 g of the Ionofil Molar powder was placed onto

the opposite end. The GI powder was divided into two halves,

the first half was hand-mixed with all the poly(acrylic acid)

solution for 20 s using a stainless steel spatula, and then the

remaining GI powder was added and mixed for a further 20 s.

Dynamic viscosity measurements
The viscosity of all the poly(acrylic acid) solutions was

measured with a digital viscometer (Brookfield DV-E

Viscometer; Brookfield Engineering Laboratories Inc., Middle-

boro, MA, USA). The poly(acrylic acid) solution was pipetted

into the inner chamber of a small sample adaptor attached to the

viscometer and a spindle was inserted slowly into the chamber

to avoid entrapping air bubbles in the poly(acrylic acid) solu-

tion. The spindle was rotated in the poly(acrylic acid) solution

at 100 rpm until a constant viscosity reading was obtained and

the dynamic viscosity (mPa·s) was recorded. In total, three

viscosity measurements were taken for each of the poly(acrylic

acid) solutions and the mean dynamic viscosity calculated.

Compressive fracture strength tests
The compressive fracture strength was determined by preparing

cylindrical specimens of 6.0 ± 0.1 mm height and 4.0 ± 0.1 mm

diameter in accordance with ISO 9917-1 [19] using a Teflon

split-mould [20]. The split-mould was placed on a Teflon base

covered with an acetate strip and aligned using nylon wedges

and a locating pin. The hand-mixed GI restorative plastic mass

was applied to one side of the split-mould immediately after

mixing using the stainless steel spatula and allowed to flow into

the mould to minimise air bubble incorporation in the set

cylindrical specimens. A second acetate strip was placed on

top of the filled mould and the whole mould assembly was

isolated from the surrounding atmosphere using a glass-slab

and a G-clamp before transfer to a water-bath maintained at

37 ± 1 °C. After 1 h in the water bath, the specimens were re-

moved from the mould, inspected and specimens containing

visual defects were discarded. The flat ends of the specimens

were hand-lapped on P600 silicon carbide paper (Beuhler, Lake

Bluff, Illinois, USA) under water lubrication to ensure parallel

specimen ends for uniform contact with the platens of the

testing apparatus [21]. The specimens were stored in glass

containers filled with 50 mL of distilled water in an incubator at

37 ± 1 °C for a further 23 h prior to testing. Ten nominally iden-

tical cylindrical GI restorative specimens were manufactured for

each group investigated.

The mean diameter of each specimen was determined from

three measurements taken using a digital micrometer accurate to

10 μm (Mitutoyo, Kawasaki, Japan). The compressive fracture

strength of each specimen was made by applying a compres-

sive load to the long axis of the specimen at a cross-head speed

of 1 mm/min using a tensile testing apparatus (Instron Model

5565, High Wycombe, England). In order to mimic the oral

environment, wet filter paper was placed on the flat ends of the

specimen prior to testing [19]. The compressive fracture

strength P (MPa) was calculated using Equation 1 [19],

(1)

where Ff was the load at fracture (N) and r the mean radius of

the specimen (mm). The change in stress Δσ (MPa) and strain

Δε generated in each specimen during compression testing was

quantified using Equation 2 and Equation 3, respectively.

(2)
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(3)

where F was the load (N), r the original mean radius of the

specimen (mm), D the deflection undertaken by the specimen

during testing (mm) and h the original height of the specimen

(mm). Stress/strain plots were derived for each individual speci-

men and the compressive modulus (the ratio of stress to strain

below the fracture limit) was determined by calculating the

slope of the initial straight portion of the stress/strain plot prior

to fracture [20].

Statistics
All data in Table 1 are presented as means ± SD and were

derived from ten independent samples at each FLG concentra-

tion. The one-way ANOVA (p < 0.0001) and Tukey’s post-hoc

tests of the compressive fracture strength data identified signifi-

cant increases for all the groups containing FLG compared with

the control group (p = 0.003). For the compressive modulus

data, the one-way ANOVA (p = 0.0001) and Tukey’s post hoc

tests also identified significant increases for all the groups con-

taining FLG compared with the control group (p = 0.003).

Characterization
The MLG and FLG material was characterized by Raman spec-

troscopy (Renishaw at 514 nm) and the AFM measurements

were performed on a MultiMode V AFM (Veeco) in tapping

mode under ambient conditions. RTESP silicon probes (Veeco)

were used with a nominal tip radius of 10 nm and nominal

spring constant of 40 N/m. Image processing was carried out

using the Nanoscope software. The X-ray photoelectron spec-

troscopy (XPS) measurements were performed on a Theta

Probe spectrometer (Thermo Electron Co., Germany) using

monochromatic Al Kα radiation (photon energy of 15 keV with

maximum energy resolution of 0.47 eV). High resolution spec-

tra for the core level C 1s and O 1s were recorded in 0.05 eV

steps. An electron flood gun was used during the measurements

to prevent sample charging. The FLG material was also charac-

terized by TEM, HRTEM (Jeol ARM at 80 kV) and helium ion

microscopy (HeIM, Zeiss Orion at 30 kV). In addition, FLG-

polymer A and E were characterized by Raman Spectroscopy

(JY T6400 at 514 nm) and SEM (Zeiss Ultra-Plus at 3 kV, EsB

grid at 503 V).
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