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ABSTRACT:

In this paper, we focus on the automatic interpretation of 3D point cloud data in terms of associating a class label to each 3D point.
While much effort has recently been spent on this research topic, little attention has been paid to the influencing factors that affect the
quality of the derived classification results. For this reason, we investigate fundamental influencing factors making geometric features
more or less relevant with respect to the classification task. We present a framework which consists of five components addressing
point sampling, neighborhood recovery, feature extraction, classification and feature relevance assessment. To analyze the impact of
the main influencing factors which are represented by the given point sampling and the selected neighborhood type, we present the
results derived with different configurations of our framework for a commonly used benchmark dataset for which a reference labeling
with respect to three structural classes (linear structures, planar structures and volumetric structures) as well as a reference labeling
with respect to five semantic classes (Wire, Pole/Trunk, Façade, Ground and Vegetation) is available.

1. INTRODUCTION

Modern scanning devices allow acquiring 3D data in the form of
densely sampled point clouds comprising millions of 3D points.
Based on such point clouds, a variety of tasks can be performed
of which many rely on an initial point cloud interpretation. Such
an initial interpretation is often derived via point cloud classifi-
cation where the objective consists in automatically labeling the
3D points of a given point cloud with respect to pre-defined class
labels. In this regard, the main challenges are given by the irreg-
ular point sampling with typically strongly varying point density,
different types of objects in the scene and a high complexity of
the observed scene.

Interestingly, the visualization of the spatial arrangement of ac-
quired 3D points (and thus only geometric cues) is already suf-
ficient for us humans to reason about specific structures in the
scene (Figure 1). For this reason, we follow a variety of investi-
gations on point cloud classification and focus on the use of ge-
ometric features. In this regard, the standard processing pipeline
starts with the recovery of a local neighborhood for each 3D point
of the given point cloud. Subsequently, geometric features are ex-
tracted based on the consideration of the spatial arrangement of
3D points within the local neighborhoods, and these features are
finally provided as input to a classifier that has been trained on
representative training data and is therefore able to generalize to
unseen data. Such a standard processing pipeline already reveals
that the derived classification results might strongly depend on
the given point sampling, the selected neighborhood type, the ex-
tracted geometric features themselves and the involved classifier.

This paper is dedicated to a detailed analysis of fundamental in-
fluencing factors regarding point cloud classification and feature

relevance with respect to the classification task. In contrast to pre-
vious work, we aim at quantifying the impact of the given point
sampling and the selected neighborhood type on geometric fea-
tures and their relevance with respect to the classification task.
For this purpose, we consider

• the original point sampling and a point sampling derived via
voxel-grid filtering,

• four conceptually different neighborhood types (a spherical
neighborhood with a radius of 1m, a cylindrical neighbor-
hood with a radius of 1m, a spherical neighborhood formed
by the 50 nearest neighbors and a spherical neighborhood
formed by the “optimal” number of nearest neighbors),

• a set of 18 low-level geometric 3D and 2D features,
• a classification with respect to structural classes and a clas-

sification with respect to semantic classes,
• three classifiers relying on different learning principles

(instance-based learning, probabilistic learning and ensem-
ble learning), and

• a classifier-independent relevance metric taking into account
seven different intrinsic properties of the given training data.

For performance evaluation, we use a benchmark dataset for
which reference labelings with respect to three structural classes
(linear structures, planar structures and volumetric structures)
and five semantic classes (Wire, Pole/Trunk, Façade, Ground and
Vegetation) are available as shown in Figure 1.

After briefly summarizing related work (Section 2), we present
the proposed framework for 3D point cloud classification and fea-
ture relevance assessment (Section 3). We demonstrate the per-
formance of this framework on a benchmark dataset (Section 4)
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Figure 1. Visualization of a point cloud (left) and two reference labelings: the labeling in the center refers to three structural classes that
are represented by linear structures (red), planar structures (gray) and volumetric structures (green); the labeling on the right refers to
five semantic classes that are represented by Wire (blue), Pole/Trunk (red), Façade (gray), Ground (orange) and Vegetation (green).

and discuss the derived results with respect to different aspects
(Section 5). Finally, we provide concluding remarks and sugges-
tions for future work (Section 6).

2. RELATED WORK

In the following, we briefly summarize related work and thereby
address a typical processing pipeline for point cloud classification
that involves the steps of neighborhood recovery (Section 2.1),
feature extraction (Section 2.2) and classification (Section 2.3).
In addition, we address previous work on feature relevance as-
sessment (Section 2.4).

2.1 Neighborhood Recovery

In general, different strategies may be applied to recover local
neighborhoods for the points of a 3D point cloud. In particular,
those neighborhood types in the form of a spherical neighborhood
parameterized by a radius (Lee and Schenk, 2002), a cylindrical
neighborhood parameterized by a radius (Filin and Pfeifer, 2005),
a spherical neighborhood parameterized by the number of near-
est neighbors with respect to the Euclidean distance in 3D space
(Linsen and Prautzsch, 2001) or a cylindrical neighborhood pa-
rameterized by the number of nearest neighbors with respect to
the Euclidean distance in 2D space (Niemeyer et al., 2014) are
commonly used. These neighborhood types are parameterized
with a single scale parameter which is represented by either a
radius or the number of nearest neighbors, and they allow de-
scribing the local 3D structure at a specific scale. To select an ap-
propriate value for the scale parameter, prior knowledge about the
scene and/or the data is typically involved. Furthermore, identical
values for the scale parameter are typically selected for all points
of the 3D point cloud. Recent investigations however revealed
that structures related with different classes may favor a different
neighborhood size (Weinmann et al., 2015a; Weinmann, 2016)
and therefore it seems favorable to allow for more variability by
using data-driven approaches for optimal neighborhood size se-
lection (Mitra and Nguyen, 2003; Lalonde et al., 2005; Demantké
et al., 2011; Weinmann et al., 2015a).

Instead of using a single neighborhood to describe the local 3D
structure at a specific scale, multiple neighborhoods can be used
to describe the local 3D structure at different scales and thus
also take into account how the local 3D geometry behaves across
these scales. The commonly used multi-scale neighborhoods typ-
ically focus on the combination of spherical neighborhoods with
different radii (Brodu and Lague, 2012) or the combination of
cylindrical neighborhoods with different radii (Niemeyer et al.,
2014; Schmidt et al., 2014). Furthermore, it has been proposed
to use multi-type neighborhoods by combining neighborhoods
based on different entities such as voxels, blocks and pillars (Hu

et al., 2013), or multi-scale, multi-type neighborhoods which re-
sult from a combination of both spherical and cylindrical neigh-
borhoods with different scale parameters (Blomley et al., 2016).

In the scope of this work, we intend to analyze the impact of the
neighborhood type on the derived classification results and on the
relevance of single features with respect to the classification task.
Accordingly, we integrate several of the commonly used single-
scale neighborhood types into our framework.

2.2 Feature Extraction

After the recovery of local neighborhoods, geometric features can
be extracted by considering the spatial arrangement of neighbor-
ing points. In this regard, the spatial coordinates of neighbor-
ing points are often used to derive the 3D structure tensor whose
eigenvalues can be used to detect specific shape primitives (Jutzi
and Gross, 2009). The eigenvalues of the 3D structure tensor can
also be used to derive the local 3D shape features (West et al.,
2004; Pauly et al., 2003) which allow a rather intuitive descrip-
tion of the local 3D structure with one value per feature and are
therefore widely used for point cloud classification. In addition
to these local 3D shape features, other features can be used to ac-
count for further characteristics of the local 3D structure, e.g. an-
gular characteristics (Munoz et al., 2009), height and plane char-
acteristics (Mallet et al., 2011), a variety of low-level geometric
3D and 2D features (Weinmann et al., 2015a; Weinmann, 2016),
moments and height features (Hackel et al., 2016), or specific de-
scriptors addressing surface properties, slope, height characteris-
tics, vertical profiles and 2D projections (Guo et al., 2015). For
the sake of clarity, we also mention that there are more complex
features, e.g. sampled features in the form of spin images (John-
son and Hebert, 1999), shape distributions (Osada et al., 2002;
Blomley et al., 2016), or point feature histograms (Rusu et al.,
2009).

In the scope of this work, we do not intend to address feature
design or feature learning. Instead, we aim at generally evalu-
ating the relevance of standard features with respect to the clas-
sification task. Hence, we focus on the extraction of geometric
features that are rather intuitive and represented by a single value
per feature. The features presented in (Weinmann et al., 2015a;
Weinmann, 2016) satisfy these constraints and are therefore used.

2.3 Classification

The extracted features are provided as input to a classifier that
has been trained on representative training data and is therefore
able to generalize to unseen data. In general, different strate-
gies may be applied for classification. On the one hand, stan-
dard classifiers such as a Random Forest classifier (Chehata et
al., 2009), a Support Vector Machine classifier (Mallet et al.,
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2011) or Bayesian Discriminant Analysis classifiers (Khoshel-
ham and Oude Elberink, 2012) can be used which are easy-to-use
and meanwhile available in a variety of software tools. A recent
comparison of several respective classifiers relying on different
learning principles reveals that a Random Forest classifier pro-
vides a good trade-off between classification accuracy and com-
putational efficiency (Weinmann et al., 2015a; Weinmann, 2016).
On the other hand, it might be desirable to avoid a “noisy” be-
havior of the derived labeling due to treating each point individu-
ally and therefore use a classifier that enforces a spatially regular
labeling. In this regard, statistical models of context are typi-
cally involved, e.g. in the form of Associative Markov Networks
(Munoz et al., 2009), non-Associative Markov Networks (Shapo-
valov et al., 2010), or Conditional Random Fields (Niemeyer et
al., 2014; Schmidt et al., 2014; Weinmann et al., 2015b).

In the scope of this work, we intend to consider the classification
results derived with a standard classifier in order to evaluate the
relevance of features with respect to the classification task. To
be able to draw more general conclusions, we involve respective
classifiers relying on different learning principles. Involving con-
textual information to derive a spatially regular labeling would
also have an impact on the derived results, but it would be hard
to have a decoupled conclusion about the impact of the involved
features and the impact of contextual information.

2.4 Feature Relevance Assessment

Due to a lack of knowledge about the scene and/or the data, of-
ten as many features as possible are defined and provided as in-
put to a classifier. However, some features may be more rele-
vant, whereas others may be less suitable or even irrelevant. Al-
though, in theory, many classifiers are considered to be insensi-
tive to the given dimensionality, redundant or irrelevant informa-
tion has been proven to influence their performance in practice. In
particular for high-dimensional data representations, the Hughes
phenomenon (Hughes, 1968) can often be observed according to
which an increase of the number of features over a certain thresh-
old results in a decrease in classification accuracy, given a con-
stant number of training examples. As a consequence, attention
has been paid to feature selection with the objectives of gaining
predictive accuracy, improving computational efficiency with re-
spect to both time and memory consumption, and retaining mean-
ingful features (Guyon and Elisseeff, 2003). Some feature selec-
tion methods allow assessing the relevance of single features and
thus ranking these features according to their relevance with re-
spect to the classification task. In the context of point cloud clas-
sification, it has for instance been proposed to use an embedded
method in the form of a Random Forest classifier which internally
evaluates feature relevance (Chehata et al., 2009). Furthermore,
wrapper-based methods interacting with a classifier and perform-
ing either sequential forward selection or sequential backward
elimination have been used (Mallet et al., 2011; Khoshelham and
Oude Elberink, 2012). However, both embedded methods and
wrapper-based methods evaluate feature relevance with respect
to the involved classifier, thus introducing a dependency on a
classifier and its settings (e.g., for the case of a Random Forest
classifier the number of involved weak learners, their type and
the (ideally high) number of considered choices per variable). In
contrast, filter-based methods are classifier-independent and only
exploit a score function directly based on the training data which,
in turn, results in simplicity and efficiency (Weinmann, 2016).

In the scope of this work, we intend to evaluate the relevance of
single features with respect to the classification task. For this pur-

pose, we use a filter-based method taking into account different
characteristics of the given training data via a general relevance
metric presented in (Weinmann, 2016). Instead of using the fea-
ture ranking for a sequential forward selection coupled with clas-
sification, we consider the ranking itself with respect to different
reference labelings to draw general conclusions about generally
relevant features, generally irrelevant features and features that
vary in their relevance with respect to the classification task.

3. METHODOLOGY

The proposed framework for point cloud classification and fea-
ture relevance assessment comprises five components address-
ing point sampling (Section 3.1), neighborhood recovery (Sec-
tion 3.2), feature extraction (Section 3.3), classification (Sec-
tion 3.4) and feature relevance assessment (Section 3.5). An
overview on the different components is provided in Figure 2.

3.1 Point Sampling

To investigate the influence of the point sampling on point cloud
classification and feature relevance assessment, we take into ac-
count two different options for the point sampling. On the one
hand, we consider the original point cloud. On the other hand, we
consider a downsampling of the original point cloud via a voxel-
grid filter (Theiler et al., 2014; Hackel et al., 2016) to roughly
even out a varying point density as e.g. expected when using ter-
restrial or mobile laser scanning systems for data acquisition.

3.2 Neighborhood Recovery

A crucial prerequisite for the extraction of geometric features is
represented by an appropriate neighborhood definition. As we
intend to investigate the impact of the neighborhood type on the
classification results and on the relevance of single features, we
integrate different options to recover the local neighborhood of
each considered point Xi into our framework:

• a spherical neighborhood Ns,1m, where the sphere is cen-
tered at Xi and has a radius of 1m,

• a cylindrical neighborhood Nc,1m, where the cylinder is
centered at Xi, has a radius of 1m and is oriented along
the vertical direction,

• a spherical neighborhood Nk=50 comprising the k = 50
nearest neighbors of Xi with respect to the Euclidean dis-
tance in 3D space, and

• a spherical neighborhood Nkopt comprising the optimal
number kopt,i of nearest neighbors of Xi with respect to the
Euclidean distance in 3D space, whereby kopt,i is selected
for each 3D point individually via eigenentropy-based scale
selection (Weinmann et al., 2015a; Weinmann, 2016).

3.3 Feature Extraction

For each neighborhood type, we extract a set of geometric fea-
tures describing the spatial arrangement of points within the local
neighborhood of each considered point Xi. More specifically,
we calculate the features presented in (Weinmann et al., 2015a;
Weinmann, 2016) as these features are rather intuitive and repre-
sented by only a single value per feature. This feature set com-
prises 14 geometric 3D features and four geometric 2D features.

Among the 3D features, some are represented by the local 3D
shape features that rely on the eigenvalues λj with j = 1, 2, 3
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Figure 2. Overview on the proposed methodology: the original point cloud is either kept or downsampled via voxel-grid filtering; local
neighborhoods are subsequently recovered to extract geometric features which are provided as input to a classifier; the training data is
furthermore used to assess feature relevance with respect to the given classification task.

of the 3D structure tensor derived from Xi and its neighboring
points. These features are given by linearity Lλ, planarity Pλ,
sphericity Sλ, omnivariance Oλ, anisotropy Aλ, eigenentropy
Eλ, sum of eigenvalues Σλ and change of curvature Cλ (West
et al., 2004; Pauly et al., 2003). Other 3D features are defined
in terms of geometric 3D properties that are represented by the
height H of Xi, the distance D3D between Xi and the farthest
point in the local neighborhood, the local point density ρ3D, the
verticality V , and the maximum difference ∆H as well as the
standard deviation σH of the height values corresponding to those
points within the local neighborhood.

The additional use of 2D features is motivated by the fact that spe-
cific assumptions about the point distribution can be made. Ur-
ban areas are for instance characterized by a variety of man-made
objects of which many are characterized by almost perfectly ver-
tical structures. To encode such characteristics with geometric
features, a 2D projection of Xi and all other points within the
local neighborhood onto a horizontally oriented plane is intro-
duced. Based on these projections, local 2D shape features are
defined by the sum Σξ and the ratioRξ of the eigenvalues ξj with
j = 1, 2 of the 2D structure tensor. Furthermore, geometric 2D
properties are defined by the distance D2D between the projec-
tion of Xi and the farthest point in the local 2D neighborhood
and the local point density ρ2D in 2D space.

3.4 Classification

To be able to draw more general conclusions, we integrate three
different classifiers into our framework: a Nearest Neighbor (NN)
classifier relying on instance-based learning, a Linear Discrimi-
nant Analysis (LDA) classifier relying on probabilistic learning
and a Random Forest (RF) classifier (Breiman, 2001) relying on
ensemble learning. Whereas the NN classifier (with respect to
Euclidean distances in the feature space) and the LDA classifier
do not involve a classifier-specific setting, the RF classifier in-
volves several parameters that have to be selected appropriately
based on the given training data via parameter tuning on a suit-
able subspace spanned by the considered parameters.

3.5 Feature Relevance Assessment

Among a variety of techniques for feature selection as for in-
stance reviewed in (Saeys et al., 2007), filter-based feature se-
lection methods have the advantage that they are classifier-
independent and therefore relatively simple and efficient. More
specifically, such methods evaluate relations between features

and classes to identify relevant features and partially also rela-
tions among features to identify and discard redundant features
(Weinmann, 2016). This is done based on the given training data
by concatenating the values of a feature for all considered data
points to a vector and comparing that vector with the vector con-
taining the corresponding class labels. Thereby, the comparison
is typically performed with a metric that delivers a single value as
a score, thus allowing us to rank features with respect to their rel-
evance to the considered classification task. Such metrics can eas-
ily be implemented, but some of them are also available in soft-
ware packages (Zhao et al., 2010). As different metrics may ad-
dress different intrinsic properties of the given training data (e.g.
correlation, information, dependence or consistency), a common
consideration of several metrics seems to be desirable. For this
reason, we focus on a two-step approach for feature ranking. In
the first step, different metrics are applied to derive separate rank-
ings for the features fi with i = 1, . . . , Nf (andNf = 18 for the
considered set of low-level geometric features) with respect to
different criteria (Weinmann, 2016):

• The degree to which a feature is correlated with the class
labels is described with Pearson’s correlation coefficient
(Pearson, 1896).

• A statistical measure of dispersion and thus an inequality
measure quantifying a feature’s ability to distinguish be-
tween classes is given by the Gini Index (Gini, 1912).

• The ratio between inter-class and intra-class variance is rep-
resented by the Fisher score (Fisher, 1936).

• The dependence between a feature and the class labels is
described with the Information Gain (Quinlan, 1986).

• To derive the contribution of a feature to the separation
of samples from different classes, the ReliefF measure
(Kononenko, 1994) is used.

• To assess whether a class label is independent of a particular
feature, a χ2-test is used.

• To analyze the effectivity of a feature regarding the separa-
tion of classes, a t-test on each feature is used.

Based on these criteria, we define metrics mj with j =
1, . . . , Nm and Nm = 7. In our implementation, smaller values
for the rank reveal features of higher relevance when considering
the respective metric, whereas higher values reveal less suitable
features. In the second step, the separate rankings are combined
by selecting the average rank r̄ per feature fi according to
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r̄(fi) =
1

Nm

Nm∑
j=1

r(fi|mj) (1)

where r(fi|mj) indicates the rank of a feature fi given the metric
mj and hence r(fi|mj) ∈ [1, Nf ]. Finally, we map the derived
average ranks to the interval [0, 1] in order to interpret the result
as relevance R of the feature fi (Weinmann, 2016):

R(fi) = 1− r̄(fi)− 1

Nf − 1
(2)

4. EXPERIMENTAL RESULTS

In the following, we first describe the dataset used for our experi-
ments (Section 4.1). Subsequently, we focus on the impact of the
selected neighborhood type on feature extraction (Section 4.2),
before we present the derived classification results (Section 4.3)
and the results of feature relevance assessment (Section 4.4).

4.1 Dataset

For our experiments, we use the Oakland 3D Point Cloud Dataset
(Munoz et al., 2009). This dataset has been acquired with a mo-
bile laser scanning system in the vicinity of the CMU campus in
Oakland, USA. According to the provided specifications (Munoz
et al., 2008; Munoz et al., 2009), the mobile laser scanning sys-
tem was represented by a vehicle equipped with a side-looking
Sick laser scanner used in push-broom mode, and the vehicle
drove in an urban environment with a speed of up to 20km/h.
Accordingly, significant variations in point density can be ex-
pected. To evaluate the performance of an approach for point
cloud classification on this dataset, a split of the dataset into a
training set comprising about 36.9k points, a validation set com-
prising about 91.5k points and a test set comprising about 1.3M
points is provided. For each point, a reference labeling with re-
spect to three structural classes represented by linear structures,
planar structures and volumetric structures is available as well
as a reference labeling with respect to five semantic classes rep-
resented by Wire, Pole/Trunk, Façade, Ground and Vegetation.
Both reference labelings are visualized in Figure 1 for the valida-
tion set. To distinguish between the two classification tasks, we
refer to Oakland-3C and Oakland-5C, respectively.

4.2 Impact of Neighborhood Type on Geometric Features

It can be expected that low-level geometric features reveal a dif-
ferent structural behavior for the different neighborhood types.
Indeed, this can also be observed in our experiments for the in-
volved geometric features. In Figure 3, we exemplarily consider
the behavior of the three dimensionality features of linearity Lλ,
planarity Pλ and sphericity Sλ. A visualization of the number
of considered points within the local neighborhood is provided
in Figure 4 and indicates different characteristics as well. The
neighborhoods Ns,1m and Nc,1m tend towards a larger number
of points within the local neighborhood, whereas the number of
neighboring points is by definition constant for Nk=50 and the
neighborhood Nkopt tends towards a smaller number of points
within the local neighborhood.

4.3 Classification Results

Due to their significantly different impact on feature extraction, it
may be expected that the different neighborhood types will also

Type of OA [%] κ [%]
N NN LDA RF NN LDA RF

Ns,1m 90.80 92.78 91.74 66.09 72.30 69.47
Nc,1m 84.00 78.29 82.26 50.57 41.55 48.30
Nk=50 92.41 91.27 92.52 70.49 67.60 71.39
Nkopt 67.86 90.91 93.83 28.33 67.47 75.24

Table 1. Classification results obtained for Oakland-3C when us-
ing the original point cloud, four different neighborhood types
and three different classifiers.

Type of OA [%] κ [%]
N NN LDA RF NN LDA RF

Ns,1m 90.26 95.11 93.73 79.18 88.78 85.71
Nc,1m 85.22 86.73 85.89 70.01 72.68 71.18
Nk=50 91.09 95.28 95.36 80.61 89.06 89.26
Nkopt 68.06 94.38 94.15 49.17 87.30 86.66

Table 2. Classification results obtained for Oakland-5C when us-
ing the original point cloud, four different neighborhood types
and three different classifiers.

significantly differ in their suitability with respect to the classi-
fication task. To verify this, we use each of the four presented
neighborhood types Ns,1m, Nc,1m, Nk=50 and Nkopt to extract
the 18 geometric features which, in turn, are provided as input to
three classifiers relying on different learning principles. Thereby,
we take into account that the number of training examples per
class varies significantly which might have a detrimental effect on
the classification results (Criminisi and Shotton, 2013). To avoid
such issues, we reduce the training data by randomly sampling
an identical number of 1,000 training examples per class, i.e. the
reduced training set comprises 3k training samples for Oakland-
3C and 5k training samples for Oakland-5C, respectively. Once
a respective classifier has been trained on the reduced training
data, we perform a prediction of the labels for the validation data
and we compare the derived labeling to the reference labeling
on a per-point basis. Thereby, we consider the global evaluation
metrics represented by overall accuracy (OA) and Cohen’s kappa
coefficient (κ). Note that considering OA as the only indicator
might not be sufficient if the number of examples per class is
very inhomogeneous. For this reason, we also consider the κ-
value which allows judging about the separability of classes.

First, we consider the classification of the original point cloud.
For Oakland-3C, the derived classification results are provided in
Table 1. The overall accuracy is between 67% and 94%, while
the κ-value is between 28% and 76%. For Oakland-5C, the de-
rived classification results are provided in Table 2. The overall
accuracy is between 68% and 96%, while the κ-value is between
49% and 90%. For the results obtained with the Random Forest
classifier for Oakland-3C and Oakland-5C, a visualization of the
derived labeling is depicted in Figure 5.

Furthermore, we consider the classification of the point cloud that
results from a downsampling of the original point cloud with a
voxel-grid filter. Thereby, the side length of the voxel is exem-
plarily selected as 10cm, and all points inside a voxel are replaced
by their centroid. For the considered validation data, only 59,787
of 91,515 points (i.e. 65.33%) are kept for a subsequent neigh-
borhood recovery, feature extraction and classification. Finally,
the derived labeling is transferred back to the original point cloud
by associating each point of the original point cloud with the la-
bel derived for the closest point in the downsampled point cloud.
The respective classification results corresponding to the com-
plete validation data are provided in Table 3 for Oakland-3C and
in Table 4 for Oakland-5C, respectively.
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Figure 3. Behavior of the three dimensionality features of linearity Lλ (top row), planarity Pλ (center row) and sphericity Sλ (bottom
row) for the neighborhood types Ns,1m, Nc,1m, Nk=50 and Nkopt (from left to right): the color encoding indicates high values close
to 1 in red and reaches via yellow, green, cyan and blue to violet for low values close to 0.

Figure 4. Number of points within the local neighborhood when using the neighborhood typesNs,1m,Nc,1m,Nk=50 andNkopt (from
left to right): the color encoding indicates neighborhoods with 10 or less points in red and reaches via yellow, green, cyan and blue to
violet for 100 and more points.

Figure 5. Classification results obtained for Oakland-3C (top row) and Oakland-5C (bottom row) when using the original point cloud,
the neighborhood typesNs,1m,Nc,1m,Nk=50 andNkopt (from left to right) and a Random Forest classifier.

Type of OA [%] κ [%]
N NN LDA RF NN LDA RF

Ns,1m 76.66 93.20 92.60 40.45 73.65 71.51
Nc,1m 85.24 82.10 83.07 53.11 47.84 49.62
Nk=50 92.96 92.37 93.92 72.18 70.91 75.04
Nkopt 78.38 93.63 94.45 41.70 75.12 77.06

Table 3. Classification results obtained for Oakland-3C when us-
ing the downsampled point cloud, four different neighborhood
types and three different classifiers.

4.4 Feature Relevance Assessment

To assess feature relevance with respect to a given classification
task, we evaluate the general relevance metric based on the re-

Type of OA [%] κ [%]
N NN LDA RF NN LDA RF

Ns,1m 91.11 95.70 94.00 80.91 90.08 86.26
Nc,1m 86.05 86.32 85.58 71.59 72.05 70.71
Nk=50 92.59 93.99 94.95 83.58 86.27 88.29
Nkopt 76.76 95.11 94.24 58.85 88.81 86.85

Table 4. Classification results obtained for Oakland-5C when us-
ing the downsampled point cloud, four different neighborhood
types and three different classifiers.

duced training data with 1,000 examples per class. The result
of feature relevance assessment based on a subset of the orig-
inal training data is provided in Figure 6 for Oakland-3C and
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Oakland-5C when using different neighborhood types, and the
respective result of feature relevance assessment based on a sub-
set of the voxel-grid-filtered training data is provided in Figure 7.

5. DISCUSSION

The derived results reveal that, in comparison to the classification
of the original point cloud (Tables 1 and 2), the classification of
a voxel-grid-filtered point cloud and a subsequent transfer of the
classification results to the original point cloud seem to be able to
better cope with the varying point density (Tables 3 and 4). Fur-
thermore, it can be seen that different neighborhood types have
a different impact on geometric features (Figure 3). This might
also be due to their different behavior, since the spherical and
cylindrical neighborhood types parameterized by a radius tend to
a larger number of points within the local neighborhood, whereas
the neighborhoods derived via eigenentropy-based scale selection
tend to be comparably small (Figure 4). As the latter neighbor-
hood type provides a data-driven neighborhood size selection for
each individual point of a point cloud, this neighborhood type
takes into account that structures related to different classes might
favor a different neighborhood size. This is not taken into account
with the other neighborhood types which rely on a heuristically
selected value for the scale parameter that is kept identical for
all points of the point cloud. The derived classification results
(Tables 1-4, Figure 5) also reveal that the cylindrical neighbor-
hood type is not that suitable for classifying terrestrial or mobile
laser scanning data, whereas using the other neighborhood types
yields appropriate classification results for almost all cases. For
classification, the LDA classifier and the RF classifier outperform
the NN classifier. Due to the simplifying assumption of Gaussian
distributions in the feature space – which cannot be guaranteed
for the acquired data – the LDA classifier has a conceptual limi-
tation. Hence, we consider the RF classifier as favorable option
for classification. Finally, as expected, it becomes obvious that
the relevance of single features varies depending on the classi-
fication task, the point sampling and the selected neighborhood
type (Figures 6 and 7). In this regard, the most relevant features
are represented by Oλ, Eλ, Cλ, ∆H , σH and Rξ.

6. CONCLUSIONS

In this paper, we have presented a framework for point cloud
classification which consists of five components addressing point
sampling, neighborhood recovery, feature extraction, classifica-
tion and feature relevance assessment. Using different config-
urations of the framework, i.e. different methods for some of
its components, we have analyzed influencing factors regarding
point cloud classification and feature relevance with respect to
two different classification tasks. Concerning the point sampling,
the downsampling of a point cloud via a voxel-grid filter, a subse-
quent classification and the transfer of the classification results to
the original data tend to slightly improve the quality of the derived
classification results in comparison to performing a classification
on the original data. Among the considered neighborhood types,
the cylindrical neighborhood type clearly reveals less suitability
for classifying terrestrial or mobile laser scanning data, whereas
the spherical neighborhoods (parameterized by either a radius or
the number of nearest neighbors) have proven to be favorable.
For classification, the LDA classifier and the RF classifier have
delivered appropriate classification results. Furthermore, the rel-
evance of features varies depending on the classification task, the
point sampling and the selected neighborhood type. Among the
most relevant features are the omnivarianceOλ, the eigenentropy

Eλ, the change of curvature Cλ, the maximum difference ∆H as
well as the standard deviation σH of height values, and the ratio
Rξ of the eigenvalues of the 2D structure tensor.

In future work, a more comprehensive analysis of influencing
factors regarding point cloud classification and feature relevance
with respect to the classification task is desirable. This certainly
includes other types of features, but also a consideration of the
behavior of multi-scale neighborhoods. The latter considerably
increase the computational burden with respect to both process-
ing time and memory consumption, so that more sophisticated
approaches are required when dealing with larger datasets. A re-
spective approach towards data-intensive processing has recently
been presented and relies on a scale pyramid that is created by
repeatedly downsampling a given point cloud via a voxel-grid fil-
ter (Hackel et al., 2016). Furthermore, it seems worth analyzing
different approaches to impose spatial regularity on the derived
classification results, e.g. via statistical models of context.
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Figure 6. Feature relevance for Oakland-3C (top) and Oakland-5C (bottom) when using the reduced version of the original training
data (1,000 examples per class) and the neighborhood typesNs,1m (blue),Nc,1m (green),Nk=50 (yellow) andNkopt (red).
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Figure 7. Feature relevance for Oakland-3C (top) and Oakland-5C (bottom) when using a reduced version of the voxel-grid-filtered
training data (1,000 examples per class) and the neighborhood typesNs,1m (blue),Nc,1m (green),Nk=50 (yellow) andNkopt (red).
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