Observation of excited Ω_c charmed baryons in e^+e^- collisions

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao 2Beihang University, Beijing 100191 3Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 4Faculty of Mathematics and Physics, Charles University, 121 16 Prague 5University of Cincinnati, Cincinnati, Ohio 45221 6Deutsches Elektron–Synchrotron, 22607 Hamburg 7University of Florida, Gainesville, Florida 32611 8Gifu University, Gifu 501-1193 9Gyeongsang National University, Chinju 660-701 10Hanyang University, Seoul 133-791 11Harvard University, Honolulu, Hawaii 96822 12High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 13J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 14IKERBASQUE, Basque Foundation for Science, 48013 Bilbao 15Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 16Indian Institute of Technology Bhuvaneswar, Satya Nagar 751007 17Indian Institute of Technology Guwahati, Assam 781039 18Indian Institute of Technology Hyderabad, Telangana 502285 19Indian Institute of Technology Madras, Chennai 600036 20Indiana University, Bloomington, Indiana 47408 21Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 22Institute of High Energy Physics, Vienna 1050 23INFN—Sezione di Napoli, 80126 Napoli 24University of Mississippi, University, Mississippi 38677 25INFN—Sezione di Torino, 10125 Torino 26Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195 27J. Stefan Institute, 1000 Ljubljana 28Kanagawa University, Yokohama 221-8686
(Received 21 November 2017; published 9 March 2018)
The Ω_c^0 [1] charmed baryon is a combination of css quarks. Charmed baryons can be treated as a heavy (c) quark and a light (in this case s) diquark [2–4]. The ground state of Ω_c^0 can be considered as a spin-1 diquark in combination with the charm quark, as symmetry rules do not allow a spin-0 diquark. Thus, the ground-state Ω_c^0, although weakly decaying, has a quark structure analogous to the Σ_c and Ξ_c rather than Λ_c and Ξ_c baryons. Until recently, the only excited state of the Ω_c^0 observed was the $J = \frac{3}{2}^+$ state known as the Ω_c^{*0} [5,6], which decays electromagnetically into the ground state. All excitations have restricted decay possibilities, because the decay $\Omega_c^{*0} \rightarrow \Omega_c^0 \pi^0$ would violate isospin conservation. However, provided there is sufficient mass, strong decays into $\Xi_c^0 K_c$, $\Xi_c^0 K_c$, and $\Xi_c^0 \bar{K}_c$ are possible.

Recently, the LHCb collaboration announced the discovery of five narrow resonances in the final state $\Xi_c^+ K_c^-$ [7]. In addition they showed a wide enhancement at the higher mass of 3.188 GeV/c^2, which may comprise more than one state. Here we present the results of an analysis of the same final state using data from the Belle experiment, and confirm many of the LHCb discoveries.

This analysis uses a data sample of e^+e^- annihilations recorded by the Belle detector [8] operating at the KEKB asymmetric-energy e^+e^- collider [9]. It corresponds to an integrated luminosity of 980 fb$^{-1}$. The majority of these data were taken with the accelerator energy tuned for production of the $T(4S)$ resonance, as this is optimum for investigation of B decays. However, the excited charmed baryons in this analysis are produced in continuum charm production and are of higher momentum than those that are decay products of B mesons, so the data set used in this analysis also includes the Belle data taken at beam energies corresponding to the other T resonances and the nearby continuum ($e^+e^\rightarrow q\bar{q}$, where $q \in \{u,d,s,c\}$).

The Belle detector is a large-solid-angle spectrometer comprising six sub-detectors: the Silicon Vertex Detector (SVD), the 50-layer Central Drift Chamber (CDC), the Aerogel Cherenkov Counter (ACC), the Time-of-Flight scintillation counter (TOF), the electromagnetic calorimeter, and the K_L and muon detector. A superconducting solenoid produces a 1.5 T magnetic field throughout the first five of these sub-detectors. The detector is described in detail elsewhere [8]. Two inner detector configurations were used. The first comprised a 2.0 cm radius beam pipe and a 3-layer silicon vertex detector, and the second a 1.5 cm radius beam pipe and a 4-layer silicon detector and a small-cell inner drift chamber.

In 2016, Belle published [10] the results of an analysis of excited Ξ_c states decaying into Ξ_c^{*0} and a photon and/or pions. To do this, seven different Ξ_c^0 decay modes ($\Xi_c^-\pi^+\pi^+$, $\Lambda K^+\pi^+$, $\Xi_c^0\pi^+$, $\Xi^0\pi^+\pi^+$, $\Sigma^+ K^+\pi^+$, $\Lambda K^0\pi^+$, and $\Sigma^0 K_0^0\pi^+$) were reconstructed. The analysis presented here uses the identical reconstruction chains and the same selection criteria to reconstruct these same ground state Ξ_c^0 baryons. The Ξ_c^0 candidates are made by kinematically fitting the decay daughters to a common decay vertex. The position of the interaction point (IP) is not included in this vertex, as the small decay length associated with the Ξ_c^0 decays, though very short, is not completely negligible. The χ^2 of this vertex is required to be consistent with all the daughters having a common parent. Those combinations with a measured mass within 2 standard deviations of the nominal mass of the Ξ_c^0 [11] are then constrained to that mass and retained for further analysis. The resolution of the Ξ_c^0 signals depends on the decay mode and has a range of 3.2–15.0 MeV/c^2. In Fig. 1, we show the yield and signal-to-noise ratio of the reconstructed Ξ_c^0 candidates by plotting the “pull-mass”, i.e., the difference in the reconstructed mass of the candidate and the nominal mass of the Ξ_c^0 divided by the resolution, for all the modes together. The candidates in this distribution have a requirement on the scaled momentum, $x_p = p^c c/\sqrt{s}/4 - M^2 c^4$, of $x_p > 0.65$, where p^c is the momentum of the combination in the e^+e^- center-of-mass frame, s is the total center-of-mass energy squared, M is the invariant mass of the combination, and c is the speed of light.
light. This requirement is not applied as part of the final analysis as we prefer to place an x_p cut requirement only on the $\Xi_c^+ K^-$ combinations; however, it serves to display the approximate signal-to-noise ratio of our reconstructed Ξ_c^+ baryons.

To investigate resonances decaying into $\Xi_c^+ K^-$, Ξ_c^+ candidates obtained as described above are combined with an appropriately charged kaon candidate not contributing to the reconstructed Ξ_c^+. The kaons used to make these combinations are identified using the same criteria as in the Ξ_c^+ reconstruction. That is, they are selected using the likelihood information from the tracking (SVD, CDC) and charged-hadron identification (CDC, ACC, TOF) systems into a combined likelihood,

$$L(K:h) = \frac{L_K}{L_K + L_h}$$

where h is a proton or a pion, with requirements of $L(K:p) > 0.6$ and $L(K:\pi) > 0.6$. These requirements are approximately 93% efficient.

To optimize the mass resolution, a vertex constraint of the particles is made with the IP included. All decay modes of the Ξ_c^+ are considered together. We then place a requirement of $x_p > 0.75$ on the $\Xi_c^+ K^-$ combination. This requirement is typical for studies of orbitally excited charmed baryons as they are known to be produced with much higher average momenta than the combinatorial background.

Figure 2(a) shows the invariant mass distribution of the $\Xi_c^+ K^-$ combinations in the mass range of interest, which starts at the kinematic threshold. A fit is made to this spectrum, comprising six signal functions and a background threshold function of the form $A\sqrt{\Delta M} + B\Delta M$, where ΔM is the mass difference from threshold, and A and B are free parameters. Each of the signal functions is a Voigtian function (a Breit-Wigner function convolved with a Gaussian resolution). The masses and intrinsic widths of all six are fixed to the values found by LHCb [7]. The resolutions are obtained from Monte Carlo simulation, and vary from 0.72 MeV/c^2 for the lowest-mass peak to 1.96 MeV/c^2 for the high-mass wide resonance. We use an unbinned likelihood fit. Figure 2(b) shows the same distribution for wrong-sign, i.e., $\Xi_c^+ K^+$ combinations. The

![Graphs showing invariant mass distributions](image-url)
background function, with floating values of A and B, fits well to this distribution. Figure 2(c) shows the same distribution using \(\Xi^+_c \) candidates with reconstructed masses between three and five standard deviations from the canonical mass. Again, this sideband distribution shows no significant peaks, and the background function, with floating values of A and B, fits the distribution well.

Table I shows the yield for each of the five narrow resonances and the wide enhancement reported by LHCb. The significance of each signal is calculated by excluding that one peak from the fit, finding the change in the log-likelihood \((\Delta \log(L)) \), and expressing the significance in terms of standard deviation using the formula

\[
\sigma = \sqrt{2\Delta \log(L)}.
\]

Systematic uncertainties are included by calculating the significances using a series of different fits and choosing the lowest resultant significance value. The differences in the fits considered are the use of different masses and widths within the uncertainties of the LHCb result, allowing the presence or not of an extra \(C M^2 \) term in the threshold function, changing the functions fitting the peaks from Voigtian functions to s-wave relativistic Breit-Wigner functions convolved with the resolution functions, and lastly adding or not extra functions representing possible feed-down from \(\Omega_c(3066) \), \(\Omega_c(3080) \) and \(\Omega_c(3119) \) decays to \(\Xi^+_c K^- \) as seen by LHCb, with shapes found by Monte Carlo simulation, and floating yields.

It is clear that these data unambiguously confirm the existence of the \(\Omega_c(3066) \) and \(\Omega_c(3090) \). Signals of reasonable significance are seen for the \(\Omega_c(3000) \) and the \(\Omega_c(3050) \), but no signal is apparent for the \(\Omega_c(3119) \).

We note that, for the four narrow signals seen, we find the ratio of yields with respect to LHCb to be \(\approx 0.036 \). If this were also to hold for the \(\Omega_c(3119) \), we would expect an \(\Omega_c(3119) \) signal yield of \(\approx 17 \), whereas we find \(3.6 \pm 6.9 \). Thus our nonobservation of this particle is not in disagreement with LHCb. There is an excess in the Belle data around 3.188 GeV/c^2, which may (as was the case in the LHCb data) be due to one or more particles.

We can measure the masses of the five confirmed signals, by fitting the same distribution without constraining the masses. In all cases, the masses we find are consistent with the LHCb values, as shown in Table I. The systematic uncertainty in the reconstruction of these masses is smaller than the statistical uncertainties. The uncertainty due to the knowledge of the momentum scale is less than 0.05 MeV/c^2, which is small compared with the other uncertainties. The systematic uncertainties in Table I are dominated by the variations of the measured masses when fitting with different values of the intrinsic widths as defined by the uncertainties in the LHCb measurements, and the use of different—yet reasonable—background functions in the fit as was done when calculating the significances of the signals. In addition to the uncertainties shown in Table I, there is an important systematic uncertainty of \((+0.3, -0.4) \) MeV/c^2 common to the Belle and LHCb mass measurements, due to the mass measurement of the ground state \(\Xi^+_c \) [11].

Five states, each with one unit of orbital angular momentum between the diquark and the charm quark, are naturally predicted by the heavy-quark–light-diquark model of baryons [2]. Since the LHCb observation, there have been several theoretical interpretations of the five narrow states found [12–16], either in terms of these five states or by other configurations of the quarks. The wide state at higher mass appears to fit the pattern of wide states at around 500 MeV/c^2 above the ground-state charmed baryons (the \(\Lambda^+_c(2765) \) and \(\Xi^{+0}(3190) \)). A possible explanation is that they are the radial excitations of the ground state, with \(J^P = \frac{1}{2}^+ \).

To conclude, of the five narrow resonances observed in the \(\Xi^+_c K^- \) mass spectrum by LHCb, we strongly confirm the \(\Omega_c(3066) \) and \(\Omega_c(3090) \) with very similar parameters and confirm two more—the \(\Omega_c(3000) \) and \(\Omega_c(3050) \)—with less significance, but cannot confirm the \(\Omega_c(3119) \). In addition, we present indications that there is wide excess, consistent with that found by LHCb, at higher mass.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET5 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology.

TABLE I. Yields of the six resonances, and comparison of the mass measurements to the LHCb values. In rows 4 and 5, the units are MeV/c^2. None of the mass measurements include the uncertainty in the ground-state \(\Xi^+_c \) which is common to both experiments.

<table>
<thead>
<tr>
<th>(\Omega_c)</th>
<th>Excited state</th>
<th>Yield</th>
<th>Significance</th>
<th>LHCb mass</th>
<th>Belle mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3000</td>
<td>3050</td>
<td>3066</td>
<td>3090</td>
<td>3119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield</td>
<td>37.7 ± 11.0</td>
<td>28.2 ± 7.7</td>
<td>81.7 ± 13.9</td>
<td>86.6 ± 17.4</td>
<td>3.6 ± 6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.9σ</td>
<td>4.6σ</td>
<td>7.2σ</td>
<td>5.7σ</td>
<td>0.4σ</td>
</tr>
<tr>
<td></td>
<td>3000.4 ± 0.2 ± 0.1</td>
<td>3050.2 ± 0.1 ± 0.1</td>
<td>3065.5 ± 0.1 ± 0.3</td>
<td>3090.2 ± 0.3 ± 0.5</td>
<td>3119.0 ± 0.3 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>3000.7 ± 1.0 ± 0.2</td>
<td>3050.2 ± 0.4 ± 0.2</td>
<td>3064.9 ± 0.6 ± 0.2</td>
<td>3089.3 ± 1.2 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>(with fixed (\Gamma))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures

- **Figure 2(c):** Shows the same distribution using \(\Xi^+_c \) candidates with reconstructed masses between three and five standard deviations from the canonical mass.
(MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grant No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, No. 11475187, No. 11521505 and No. 11575017; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2014R1A2A01005286, No. 2015R1A2A2A01003280, No. 2015H1A2A1033649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A09005603, No. 2016R1D1A1B20212900; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project and the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and MINECO (Juan de la Cierva), Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation.

[1] Throughout this paper, the inclusion of the charge-conjugate mode decay is implied unless stated otherwise.
[11] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016). We use the “OUR FIT” values of $M(\Xi_c^+) = 2467.93^{+0.28}_{-0.40}$ MeV/c^2, and $M(\Xi_b^0) = 2470.85^{+0.28}_{-0.40}$ MeV/c^2.