
Models, Optimizations, and Tools for

Large-Scale Phylogenetic Inference,

Handling Sequence Uncertainty,

and Taxonomic Validation

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Oleksii Kozlov

aus Cherson, Ukraine

Tag der mündlichen Prüfung: 17.01.2018

Erster Gutachter: Prof. Dr. Alexandros Stamatakis

Zweiter Gutachter: Prof. Dr. David Posada

Hiermit erkläre ich, dass ich diese Arbeit selbständig angefertigt und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowie die wörtlich oder inhaltlich
übernommenen Stellen als solche kenntlich gemacht habe. Ich habe die Satzung der
Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis beachtet.

Heidelberg, 21.11. 2017
 Oleksii Kozlov

Zusammenfassung

Das Konzept der Evolution ist in der modernen Biologie von zentraler Bedeutung.
Deswegen liefert die Phylogenetik, die Lehre über die Verwandschaften und Abstam-
mung von Organismen bzw. Spezies, entscheidende Hinweise zur Entschlüsselung
einer Vielzahl biologischer Prozesse. Phylogenetische Stammbäume sind einerseits
für die Grundlagenforschung wichtig, da sie in Studien über die Diversifizierung und
Umweltanpassung einzelner Organismengruppen (z.B., Insekten oder Vögel) bis hin
zu der großen Herausforderung, die Entstehung und Entwicklung aller Lebensfor-
men in einem umfassenden evolutionären Baum darzustellen (der sog. Tree of Life)
Anwendung finden. Andererseits werden phylogenetische Methoden auch in prax-
isnahen Anwendungen eingesetzt, um beispielsweise die Verbreitungsdynamik von
HIV-Infektionen oder, die Heterogenität der Krebszellen eines Tumors, zu verstehen.

Den aktuellen Stand der Technik in der Stammbaumrekonstruktion stellen Meth-
oden Maximum Likelihood (ML) und Bayes’sche Inferenz (BI) dar, welche auf der
Analyse molekularer Sequenzendaten (DNA und Proteine) anhand probabilistis-
cher Evolutionsmodelle basieren. Diese Methoden weisen eine hohe Laufzeitkom-
plexität auf (NP -schwer), welche die Entwicklung effizienter Heuristiken unabding-
bar macht. Hinzu kommt, dass die Berechnung der Zielfunktion (sog. Phylogenetic
Likelihood Function, PLF) neben einem hohen Speicherverbrauch auch eine Vielzahl
an Gleitkommaarithmetik-Operationen erfordert und somit extrem rechenaufwendig
ist.

Die neuesten Entwicklungen im Bereich der DNA-Sequenzierung (Next Gener-
ation Sequencing, NGS) steigern kontinuierlich den Durchsatz und senken zugleich
die Sequenzierungskosten um ein Vielfaches. Für die Phylogenetik hat dies zur
Folge, dass die Dimensionen der zu analysierenden Datensätze alle 2–3 Jahre, um
eine Grössenordnung zunhemen. War es bisher üblich, einige Dutzend bis Hun-
derte Spezies anhand einzelner bzw. weniger Gene zu analysieren (Sequenzlänge:
1–10 Kilobasen), stellen derzeit Studien mit Tausenden Sequenzen oder Genen keine
Seltenheit mehr dar. In den nächsten 1–2 Jahren ist zu erwarten, dass die Anal-
ysen Tausender bis Zehntausender vollständiger Genome bzw. Transkriptome (Se-
quenzlänge: 1–100 Megabasen und mehr) anstehen. Um diesen Aufgaben gewachsen
zu sein, müssen die bestehenden Methoden weiterentwickelt und optimiert werden,
um vor allem Höchstleistungsrechner sowie neue Hardware-Architekturen optimal
nutzen zu können.

Außerdem führt die sich beschleunigende Speicherung von Sequenzen in öffentli-
chen Datenbanken wie NCBI GenBank (und ihren Derivaten) dazu, dass eine hohe
Qualität der Sequenzannotierungen (z. B. Organismus- bzw. Speziesname, tax-
onomische Klassifikation, Name eines Gens usw.) nicht zwangsläufig gewährleistet
ist. Das hängt unter anderem auch damit zusammen, dass eine zeitnahe Korrektur
durch entsprechende Experten nicht mehr möglich ist, solange ihnen keine adäquaten

v

Software-Tools zur Verfügung stehen.

In dieser Doktroarbeit leisten wir mehrere Beiträge zur Bewältigung der oben
genannten Herausforderungen.

Erstens haben wir ExaML, eine dedizierte Software zur ML-basierten Stamm-
baumrekonstruktion für Höchstleistungsrechner, auf den Intel Xeon Phi Hardware-
beschleuniger portiert. Der Xeon Phi bietet im Vergleich zu klassischen x86 CPUs
eine höhere Rechenleistung, die allerdings nur anhand architekturspezifischer Op-
timierungen vollständig genutzt werden kann. Aus diesem Grund haben wir zum
einen die PLF-Berechnung für die 512-bit-Vektoreinheit des Xeon Phi umstrukturi-
ert und optimiert. Zum anderen haben wir die in ExaML bereits vorhandene reine
MPI-Parallelisierung durch eine hybride MPI/OpenMP-Lösung ersetzt. Diese hy-
bride Lösung weist eine wesentlich bessere Skalierbarkeit für eine hohe Zahl von
Kernen bzw. Threads innerhalb eines Rechenknotens auf (>100 HW-Threads für
Xeon Phi).

Des Weiteren haben wir eine neue Software zur ML-Baumrekonstruktion na-
mens RAxML-NG entwickelt. Diese implementiert, bis auf kleinere Anpassungen, zwar
denselben Suchalgorithmus wie das weit verbreitete Programm RAxML, bietet aber
gegenüber RAxML mehrere Vorteile: (a) dank den sorgfältigen Optimierungen der
PLF-Berechnung ist es gelungen, die Laufzeiten um den Faktor 2 bis 3 zu reduzieren
(b) die Skalierbarkeit auf extrem großen Eingabedatensätzen wurde verbessert, in-
dem ineffiziente topologische Operationen eliminiert bzw. optimiert wurden, (c) die
bisher nur in ExaML verfügbaren, für große Datensätze relevanten Funktionen wie
Checkpointing sowie ein dedizierter Datenverteilungsalgorithmus wurden nachimple-
mentiert (d) dem Benutzer steht eine größere Auswahl an statistischen DNA-Evo-
lutionsmodellen zur Verfügung, die zudem flexibler kombiniert und parametrisiert
werden können (e) die Weiterentwicklung der Software wird aufgrund der modularen
Architektur wesentlich erleichtert (die Funktionen zur PLF-Berechnung wurden in
eine gesonderte Bibliothek ausgeglidert).

Als nächstes haben wir untersucht, wie sich Sequenzierungsfehler auf die Genau-
igkeit phylogenetischr Stammbaumrekonstruktionen auswirken. Wir modifizieren
den RAxML bzw. RAxML-NG Code dahingehend, dass sowohl die explizite Angabe von
Fehlerwahrscheinlichkeiten als auch die automatische Schätzung von Fehlerraten
mittels der ML-Methode möglich ist. Unsere Simulationen zeigen: (a) Wenn die
Fehler gleichverteilt sind, kann die Fehlerrate direkt aus den Sequenzdaten geschätzt
werden. (b) Ab einer Fehlerrate von ca. 1% liefert die Baumrekonstruktion unter
Berücksichtigung des Fehlermodells genauere Ergebnisse als die klassische Methode,
welche die Eingabe als fehlerfrei annimmt.

Ein weiterer Beitrag im Rahmen dieser Arbeit ist die Software-Pipeline SATIVA

zur rechnergestützten Identifizierung und Korrektur fehlerhafter taxonomischer An-
notierungen in großen Sequenzendatenbanken. Der Algorithmus funktioniert wie

vi

folgt: für jede Sequenz wird die Platzierung im Stammbaum mit dem höchst-
möglichen Likelihood-Wert ermittelt und anschließend geprüft, ob diese mit der
vorgegeben taxonomischen Klassifikation übereinstimmt. Ist dies nicht der Fall,
wird also eine Sequenz beispielsweise innerhalb einer anderen Gattung platziert,
wird die Sequenz als falsch annotiert gemeldet, und es wird eine entsprechende
Umklassifizierung vorgeschlagen. Auf simulierten Datensätzen mit zufällig eingefüg-
ten Fehlern, erreichte unsere Pipeline eine hohe Identifikationsquote (>90%) sowie
Genauigkeit (>95%). Zur Evaluierung anhand empirischer Daten, haben wir vier
öffentliche rRNA Datenbanken untersucht, welche zur Klassifizierung von Bakterien
häufig als Referenz benutzt werden. Dabei haben wir je nach Datenbank 0.2% bis
2.5% aller Sequenzen als potenzielle Fehlannotierungen identifiziert.

vii

viii

Abstract

Evolution is a central paradigm of current biology, and thus phylogenetics, the study of
evolutionary relationships between organisms, is essential for understanding biological pro-
cesses. Phylogenetic trees are as important for fundamental research (e.g, reconstructing
the Tree of Life) as for numerous practical applications (e.g., studying HIV transmis-
sion dynamics or tumor heterogeneity in cancer). State-of-the-art phylogenetic inference
methods, such as Maximum Likelihood (ML) and Bayesian Inference (BI), rely on prob-
abilistic models of molecular sequence evolution. This makes them computationally ex-
pensive both, in theory (NP -hardness), and in practice (extensive use of floating-point
arithmetics and high memory requirements). At the same time, recent advances in DNA
sequencing technology have dramatically increased the data generation pace, creating a
demand for reconstructing ever larger trees from ever longer sequences (whole genomes
or transcriptomes). Additionally, the fast accumulation of sequences in public databases
has led to concerns about metadata quality, as human curation often lags behind the data
tsunami. In this thesis, we make several contributions which address different aspects of
the aforementioned challenges.

First, we adapt ExaML, an MPI-parallelized ML inference code for genome-scale align-
ments, to run efficiently on Intel Xeon Phi hardware accelerators. To this end, we opti-
mize likelihood computations for the 512-bit wide vector unit, and implement a hybrid
MPI/OpenMP parallelization approach which can better handle the high level of intra-
node parallelism that characterizes the Xeon Phi (>100 threads/card).

Then, we introduce RAxML-NG, a novel, fast, scalable, and flexible ML tree inference
tool. It implements roughly the same basic tree search heuristic as the existing and
widely-used program RAxML, but offers improvements in accuracy, speed, scalability, and
user-friendliness. Moreover, RAxML-NG is substantially more flexible with respect to the
evolutionary model that can be specified and used. Finally, the code is easier to maintain
and extend because of its modular design.

Further, we explore the effects of sequencing error and sequence uncertainty metrics
on phylogenetic inference. In simulation, we show that: (a) an uniform error rate can be
reliably estimated from the molecular input data, and (b) using an explicit error model
improves the accuracy of phylogenetic inference from noisy data.

Finally, we developed a software pipeline for semi-automatic identification and correc-

tion of taxonomically mislabeled sequences based on phylogenetic inference and phyloge-

netic placement approaches. We evaluate our approach on simulated datasets where it

attains high accuracy (>95% precision and >90% recall). Then, we apply it to re-validate

the taxonomic labels in four widely-used reference rRNA databases. We find 0.2% to 2.5%

potentially mislabeled sequences in those databases.

ix

x

Acknowledgements

Above all, I want to thank my supervisor, Prof. Dr. Alexandros Stamatakis for his
invaluable assistance. He was always extremely supportive in both scientific and
non-scientific matters, and I felt lucky to work under his guidance.

I am furthermore grateful to my co-advisor Prof. Dr. David Posada, who kindly
agreed to review this thesis. I also appreciate our ongoing collaboration on cancer
cell phylogeny inference, and I would like to thank Prof. Posada for hosting me
during my research visit to Vigo.

My former and current colleagues Fernando Izquierdo-Carrasco, Jiajie Zhang,
Tomas Flouri, Paschalia Kapli, Andre Aberer, Kassian Kobert, Diego Darriba, Lu-
cas Czech, Pierre Barbera, Sarah Lutteropp, Benoit Morel, Rudolf Biczok and Dora
Serdari were always friendly, collaborative and willing to share their knowledge. I
always enjoyed spending my time with them, be it in the lab, on the Neckarwiese, or
at one of the inventive cocktail parties organized by Lucas. I was also happy to share
my workplace and to exchange ideas with our short- and long-term visitors Mark
Holder, Emily Jane McTavish, Rebecca Harris, Nikos Psonis, Khouloud Madhbouh,
and Laura Rubinat. I am grateful to my collaborators Pelin Yilmaz, Karen Meuse-
mann, Ralph Peters, Oliver Niehuis, Manuela Sann, Sara Bank, Oliver Ratmann,
and Micah Dunthorn for productive teamwork and interesting discussions. Further-
more, I would like to express my gratitude to Nick Goldman, Adam Leache and
Deren Eaton for their helpful hints with respect to sequence uncertainty modeling.

Beyond work, I am sincerely thankful to all my friends from Karlsruhe, Hei-
delberg and Ladenburg, who accompanied me in countless leisure activities during
these four years. In particular, I would like to acknowledge Felix and Dasha for be-
ing my faithful team fellows in the ’What?Where?When?’ quiz game, and also for
giving me (maybe a bit too) ample diversion opportunities during the final writing
phase. Speaking of which, nothing helped me to concentrate on the writing like the
music of God is an Astronaut. And Scar Symmetry (among many other great metal
bands) yielded a speedup of at least 2× for coding and cluster job submission tasks.

Finally and importantly, I am grateful to the Klaus Tschira Foundation for
funding my position, and to the Heidelberg Institute for Theoretical Studies for
providing an excellent work environment.

xi

xii

Contents

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution and Overview . 2

2 General Concepts 5
2.1 Evolution . 5
2.2 Phylogenetic Trees . 7
2.3 Distance Metrics for Trees . 9
2.4 Phylogenetic Tree Inference . 9

2.4.1 Sequence Alignment . 10
2.4.2 Distance-based Methods . 12
2.4.3 Maximum Parsimony . 12
2.4.4 Maximum Likelihood . 13
2.4.5 Bayesian Inference . 15

2.5 Probabilistic Models of Molecular Sequence Evolution 16
2.5.1 Markov Chain Model of Substitutions 16
2.5.2 Models of Rate Heterogeneity among Sites 18
2.5.3 Alignment Partitioning . 20

2.6 Computation of Phylogenetic Likelihood Function and its Derivatives 21
2.6.1 P-matrix . 22
2.6.2 Conditional Likelihood Vectors 22
2.6.3 Likelihood Evaluation at the Root 24
2.6.4 Likelihood Function Derivatives 25

3 Efficient Likelihood Computation on Intel Xeon Phi Accelerators 27
3.1 Intel Knights Corner: Platform Overview 28
3.2 Likelihood Kernel Optimization . 30
3.3 Hybrid MPI/OpenMP Parallelization 33
3.4 Evaluation . 35

xiii

3.4.1 Test System . 35
3.4.2 Kernel-level Performance . 35
3.4.3 Application-level Performance on a Single Node 37
3.4.4 Scalability Analysis . 42

3.5 Outlook: Intel Knights Landing . 42

4 RAxML-NG: a Next Generation Phylogenetic Inference Tool 45
4.1 Background and Motivation . 45
4.2 Improvements over RAxML . 46

4.2.1 Flexibility and User-friendliness 46
4.2.2 Performance and Scalability 47
4.2.3 Search Algorithm Modifications 50
4.2.4 Modularization . 52

4.3 Evaluation . 54
4.3.1 Experimental Setup . 54
4.3.2 Results . 57

4.4 Conclusion and Outlook . 60

5 Accounting for Sequence Uncertainty in Phylogenetic Inference 65
5.1 Background and Motivation . 65
5.2 Implementation . 67

5.2.1 Models of DNA Sequence Uncertainty 67
5.2.2 Models of Genotype Evolution and Sequence Uncertainty . . . 68
5.2.3 Sequence Uncertainty Specification 70
5.2.4 Internal Representation of Probabilistic sequences 72
5.2.5 Estimating Uniform Error Rates 72

5.3 Evaluation . 73
5.3.1 Experimental Setup . 73
5.3.2 Results . 75

5.4 Conclusion and Outlook . 81

6 Phylogeny-aware detection of taxonomically mislabeled sequences 85
6.1 Preliminaries . 86

6.1.1 Background . 86
6.1.2 Motivation . 87
6.1.3 The Evolutionary Placement Algorithm 89

6.2 Implementation . 90
6.2.1 SATIVA pipeline . 90
6.2.2 ARB integration . 94
6.2.3 RAxML modifications . 95

6.3 Evaluation on Simulated Data . 96

xiv

6.3.1 Experimental Setup . 96
6.3.2 Results . 98

6.4 Analysis of widely-used 16S Sequence Databases 101
6.4.1 Experimental Setup . 101
6.4.2 Results . 101
6.4.3 Discussion . 102

6.5 Conclusions and Future Directions 104

7 Conclusion and Outlook 107

List of Figures 109

List of Tables 111

List of Acronyms 113

Bibliography 115

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Phylogenetic trees represent evolutionary relationship between biological species.
They play an important role in both basic [62, 92, 163] and applied research [43,
51, 125]. Nowadays, phylogenetic tree inference is mainly based on molecular data
(DNA and protein sequences), which generally provide a substantially more reliable
evolutionary signal compared than phenotypic traits [53]. State-of-the-art tree re-
construction methods such as Maximum Likelihood (ML) and Bayesian Inference
(BI), employ a probabilistic model of sequence evolution. They rely on computing
the so-called phylogenetic likelihood function (PLF), which is both, compute-, and
memory-intensive.

Thanks to the recent technological advances, the throughput of DNA sequenc-
ing has dramatically increased, while prices have dramatically decreased at the
same time. In phylogenetics, this resulted in a shift from classical marker-based
studies involving one or few conserved genes towards phylogenomics, that is, us-
ing whole-transcriptome or whole-genome to infer phylogenies. For instance, the
1KITE project (http://1kite.org/) we are involved in, aims to reconstruct the
evolutionary history of more than 1500 phylogenetically diverse insect species from
transcriptomic data. This entails the analysis of huge datasets comprising thou-
sands of genes and millions of aminoacid and/or nucleotide characters. Similar, even
more ambitious projects, are underway for other organism groups such as birds [1],
plants [101], or bacteria [78]. Recently, plans have been announced [105] to sequence
the full genomes of all ≈1.7 million eukaryotic species that have been described to
date.

Clearly, analyzing these enormous data volumes requires excessive computing
resources, which turns computational phylogenomics into an emerging supercom-
puting application area. Hence, tree reconstruction software has to be optimized

1

http://1kite.org/

for emerging hardware architectures and scale on large cluster systems as well as
supercomputers. In particular, parallelization is becoming increasingly important
not only for supercomputers, but also for desktop systems. Since the early 2000s,
CPU clock rates have been stalling after hitting the power wall. This means, that al-
though the number of transistors per chip is still increasing according to the Moore’s
law, performance improvements in the new CPU generations now mainly stem from
the increased level of parallelism. Modern processor chips comprise multiple cores
and make extensive use of data-level parallelism (often in form of SIMD, Single In-
struction Multiple Data). For instance, the latest Intel Skylake CPUs feature up
to 28 cores and support AVX512 SIMD instructions, which operate on 512-bit vec-
tors and can thus process 16 single-precision floating point numbers in one cycle.
This constitutes a remarkable increase in parallelism compared to, for instance, the
single-core Pentium III (released in 1999) that supported a 128-bit wide SSE vector
instruction set. Specialized hardware accelerators such as GPUs and the Intel Xeon
Phis exhibit even higher core numbers and/or vector unit widths. Hence, phylo-
getic inference codes have to be adapted to such architectures to fully leverage the
capabilities of modern hardware.

Another direct result of the sequence data avalanche is the challenge to maintain
the correctness of annotations in public sequence databases such as NCBI GenBank
and its more specialized derivatives (e.g., SILVA [109]). In particular, the organism
name and its taxonomic affiliation represent important metadata fields as they are
used to classify unknown sequences in downstream applications (e.g., in metagenetic
studies). However, the quality of these taxonomic annotations can be compromised
due to multiple reasons that range from human error (sample misidentification, mis-
spelling) to inherent problems of modern taxonomy (synonyms, phylogenetically in-
consistent ranks). With growing database sizes, manual re-validation and correction
becomes less and less feasible. This calls for the development of (semi-)automatic
methods to support taxonomic curation, which are do currently not exist, albeit
there are a few notable exceptions [2, 90, 119].

1.2 Contribution and Overview

In this thesis, we make several contributions to the field of computational phyloge-
netics that address some of the challenges outlined above.

Firstly, we optimize PLF kernels for the Intel Xeon Phi hardware accelerators.
Subsequently, we integrate the optimized kernels in ExaML, a ML-based phylogenetic
inference tool for analyzing genome-scale datasets. The results of this work have
been presented in the HICOMB2014 workshop (Phoenix, AZ, USA), and published
in the respective conference proceedings [73]. version 3 of ExaML that includes Xeon
Phi support was described in a Bioinformatics application note [72].

2

Further, we introduce RAxML-NG, a complete re-design of a widely-used ML infer-
ence tool RAxML [133]. RAxML-NG offers improvements in accuracy, speed, flexibility,
user-friendliness, and integrates several HPC-related features previously only avail-
able in ExaML. Most importantly, RAxML-NG is much easier to support and extend
thanks to its modular structure. In particular, the functionality shared between
RAxML-NG and other phylogenetic tools developed in our group, has been encapsu-
lated in two C libraries: libpll (PLF kernels and other low-level routines) and
pll-modules (high-level routines for numerical optimization, tree moves etc.). This
substantially simplifies the development of new features as well as optimizations,
and facilitates faster integration into the relevant applications. The development
of these libraries represents a separate project that was led by Tomas Flouris and
Diego Darriba, although the author of this thesis made substantial contributions to
both libraries (see Section 4).

Next, we extend the RAxML and RAxML-NG codes by novel methods to handle se-
quence uncertainty and sequence errors. Under simulation, we find that an uniform
error rate can be reliably estimated from the sequence data using ML optimiza-
tion methods. Furthermore, we show that, accounting for sequence uncertainty
can improve the accuracy of phylogenetic inference. Then, we propose and evalu-
ate a dedicated 2-parameter error model for diploid genotype data, which accounts
for both, sequencing error (nucleotide substitutions), and so-called allelic dropout
(failure to amplify one of the alleles). On simulated datasets, we show that, incor-
porating this error model into the RAxML-NG search algorithm yields more accurate
trees than using the standard, error-agnostic evolutionary models.

A further contribution of this thesis is a software pipeline SATIVA for identifica-
tion and correction of taxonomically mislabeled sequences in large databases. This
tool yields savings in time and human labour by short-listing suspicious sequences
warranting further investigation. We used SATIVA to re-validate the taxonomic
labels in four widely-used rRNA marker databases (Greengenes [90], LTP [161],
RDP [24], and SILVA [109]). The results of this analysis were published [74] in
Nucleic Acids Research. The SILVA database curators, who co-authored this paper,
used our findings to improve taxonomic annotations in their database.

All aforementioned software tools (ExaML, RAxML-NG, and SATIVA) are open-
source and publicly available on GitHub. It is worth noting that, a beta version of
RAxML-NG released in March 2017 has already been downloaded more than 1, 300
times (as of November 2017).

In the course of this thesis, we also contributed to several empirical data analysis
projects which resulted in peer-reviewed journal publications. In particular, as part
of the aforementioned 1KITE consortium we conducted large-scale phylogenetic in-
ferences on whole-transcriptome data, to resolve the evolutionary relationships of
Hymenoptera [8, 106]. Further, we participated in a large simulation study that

3

evaluated several phylogenetic inference methods with respect to their ability to re-
construct HIV transmission dynamics from incomplete sequence data [111]. Finally,
we contributed to a metagenetic study of soil protist diversity in Neotropical rain-
forests [88]. We do not include the results of the aforementioned studies into this
manuscript.

The rest of this thesis is structured as follows. First, we introduce the general
concepts of computational phylogenetics and ML tree inference in Chapter 2. Then,
we describe the adaptation of ExaML to the Intel Xeon Phi in Chapter 3. In
Chapter 4, we provide implementation details about RAxML-NG, and compare it
to existing codes (RAxML/ExaML) in terms of speed and accuracy. In Chapter 5,
we explore the topic of modeling sequencing error and uncertainty in phylogenetic
inference. Chapter 6 is devoted to taxonomic validation and our SATIVA pipeline.
Finally, we conclude and discuss aspects of future work in Chapter 7.

4

Chapter 2

General Concepts

2.1 Evolution

Since the early days of humanity, philosophers were intrigued by the great diversity
of life forms found on Earth: why are there so many different kinds of plants and
animals? how did they emerge? have they always existed in their present form,
or did they undergo changes over time? At first glance, there is little empirical
evidence for evolution: a dog will always give birth to a puppy and not a kitten,
and an acorn, if planted, will grow into an oak tree; this reproduction cycle repeats
for many generations without visible changes. It is therefore not surprising that a
fixed species hypothesis was predominant for a long time in history: very much like
the flat Earth model, it appeared to be more consistent with the observations.

Nevertheless, evolutionary ideas can already be found in the works of ancient
Greek, Roman, and Chinese philosophers [7, 115]. In the Middle Ages, Christian
scholars such as Thomas Aquinas argued that Genesis should be interpreted allegor-
ically, and that the numerous species could have evolved gradually through natural
processes, albeit following a divine master plan [20].

However, it was not before Charles Darwin, that the theory of evolution became
generally accepted in the scientific community. In his famous book On the Origin
of Species (1859) Darwin introduced the idea of a branching pattern of evolution
from common descent (see Figure 2.1a). He furthermore suggested variation and
natural selection as the driving forces of this evolutionary process. Whereas the gen-
eral concept of evolution was adopted relatively quickly, its underlying mechanism
continued to be a matter of scientific debate for many decades. Alternative theo-
ries including Lamarckism (inheritance of acquired characteristics) and orthogenesis
(innate tendency to evolve towards higher complexity) provided seemingly plausible
explanations for the observed evolution patterns. At the same time, these theo-
ries were free from ’random’ and ’unethical’ aspects of Darwin’s natural selection,

5

which made them more appealing to some scientists. In the early 20th century, a
plethora of new empirical data from paleontology, ecology, and population genetics
had been accumulated and needed to be explained. This led to the modern synthe-
sis theory [57], which combined evidence from different biological disciplines, and
re-established natural selection as the main evolutionary mechanism.

Between 1940 and 1970, major advances in biochemistry and biophysics eluci-
dated the molecular basis of evolution. In particular, desoxyribonucleic acid (DNA)
was identified as the carrier of genetic information. In the process of protein synthe-
sis, DNA is first transcribed into the ribonucleic acid (RNA) intermediate, which is
then translated into the actual protein. This information transmission chain (DNA
→ RNA → protein) is known as the central dogma of molecular biology.

DNA, RNA, and proteins are all long polymers, that is, compound molecu-
les built from a sequence of a few basic elements (monomers). DNA consists of
four monomers (also called nucleotides): adenine (A), cytosine (C), guanine (G) and
thymine (T). RNA also contains adenine, cytosine and guanine, but thymine is
replaced by uracil (U). Finally, proteins have 20 ’standard’ amino acids (AA) as
their basic elements. Each amino acid is encoded by one or several specific triplet(s)
of DNA/RNA nucleotides (also known as codons); this translation table is called
genetic code.

DNA forms a double helix with a determined nucleotide pairing in complemen-
tary strands: A pairs with T and C pairs with G. This redundant structure allows for
’proofreading’ and damage repair, which is crucial for DNA stability and hence, its
role as permanent storage of genetic information. Despite proofreading mechanisms,
DNA replication is not absolutely error-free. Mutations resulting from non-repaired
DNA copying errors represent one source of genetic variation.

RNA and protein molecules are single-stranded, and fold into a sequence-specific
3D-structure (secondary structure) due to physical interactions between individual
monomers of the same strand (and the environment). Secondary structure is impor-
tant for the protein/RNA function, and it thus imposes an important constraint on
sequence evolution: mutations that do not affect the secondary structure are likely
to be neutral (or at least not harmful), and hence they are usually observed more
often.

Remarkably, the major molecular components of heredity (DNA/RNA alphabet,
AA alphabet, and the genetic code) are virtually identical in all living species, from
bacteria to humans. This provides yet another strong evidence for evolution from
common descent, as it is highly unlikely that such a complex system could have
emerged multiple times independently and in exactly the same form.

6

(a)

0.2

Cow

S
e

a
l

Hu
m

an

Chic
ken

L
o

a
ch

W
ha

le

Mouse

Frog

(b)

Figure 2.1: Sample phylogenetic trees: (a) A sketch from Darwin’s 1837 notebook (source:
Wikipedia) (b) A present-day phylogenetic tree (visualized with FigTree v1.4.3 [110]).

2.2 Phylogenetic Trees

Following the Darwin’s original idea, the evolutionary history of species (or taxa1) is
commonly represented by a phylogenetic tree, also called a phylogeny (Figure 2.1b).
The outer tree nodes (leaves or tips) correspond to the living (extant) species, and
the inner nodes – to the speciation events, when two novel species arose from a
common hypothetical extinct ancestor. Tip nodes are labeled, that is, they are
assigned unique identifiers (e.g., species names), whereas inner nodes are usually
anonymous. A subtree within a phylogeny represents a group of related organisms
and called clade or lineage.

From a biological point of view, phylogenetic trees are always rooted (Figure 2.2b)
since they represent directed evolution from common descent. However, many phylo-
genetic inference methods (see Section 2.4) generate unrooted trees (Figure 2.2a),
mainly for reasons of algorithmic or computational convenience. In these cases, a
phylogenetic tree can be rooted a posteriori. One popular rooting method relies on
so called outgroups, that is, one or a few taxa which are known to be closely related
to (but not part of) the actual group of interest (ingroup). Under these assumptions,
it is clear that the root must be placed on the branch separating the outgroup from
the ingroup in the inferred phylogeny.

1Please note, that tips of a phylogenetic tree can represent species, strains, individuals, or even
cells of a multicellular organism. Throughout this thesis, we will use an generic term taxon (plural:
taxa) to refer to all of the above.

7

A

B

D E

C

(a)

A B D EC

(b)

A B
D E

C

(c)

Figure 2.2: Different kinds of phylogenetic trees: (a) unrooted bifurcating, (b) rooted bifurcating,
(c) rooted multifurcating

Phylogenetic trees are generally bifurcating, that is, every inner node has exactly
two child nodes. However, multifurcating consensus trees represent a common way
to summarize contradicting relationships from several phylogenies. Further, multi-
furcations can be used to represent a series of speciation events that happened within
a short period of time and hence, can not be reliably resolved with the available data
(fast radiation).

It is worth noting that the number of distinct tree topologies N grows over-
exponentially with respect to the number of taxa n: N(n) =

∏n
i=3(2i − 5) [40].

This has important implications for the tree search algorithms (see next chapter): a
brute force approach for finding the best tree under a given criterion is impractical
for virtually all empirical datasets, as the search space grows explosively with the
number of taxa n. For instance, there are almost 8 trillion possible trees for just 15
taxa.

Each branch in a tree, if removed, gives two subtrees with two complementary
sets of tip labels L and L. Hence, we say that each branch defines a unique bipartition
or split (L|L) of the tree. Splits induced by the branches adjacent to the tip nodes
are trivial, since they are present in all possible topologies. Therefore, only the
non-trivial splits induced by the inner branches are of interest. In particular, a
set of all non-trivial splits uniquely defines the tree topology: for instance, the tree
in Figure 2.2a can be represented by its two non-trivial splits B = {(AB|CDE),
(ABC|DE)}. A split is the elementary ’building block’ of a tree. Therefore, a split-set
representation is convenient whenever we intend to compare or summarize multiple
trees (e.g., when computing distances, see Section 2.3).

While tree topology of a phylogeny defines the relationships among taxa, the
branch lengths, if specified, are proportional to the evolutionary degree of change
between nodes in the tree. If the evolutionary rate along the tree (from the root
to the tips) is assumed to be constant (the molecular clock hypothesis), then the
branch length between two nodes represents the relative amount of time between

8

the respective speciation events. The absolute time of the evolutionary events can
be obtained via molecular dating approaches, which typically involve a calibration
with the fossils of (presumably) known age.

2.3 Distance Metrics for Trees

In many applications, it is important to have a measure of (dis)similarity among
trees, for instance, to compare the results of different inference programs to each
other and/or to the true reference tree in simulation studies. The most popular pair-
wise dissimilarity metric is the symmetric split distance, also known as Robinson-
Foulds (RF) distance [113], which is defined as follows:

RF (T1, T2) =| B1 ∪B2 | − | B1 ∩B2 | (2.1)

where B1 and B2 are the sets of non-trivial splits in T1 and T2, respectively. Since
an unrooted tree with n taxa has n− 3 internal branches, it is easy to see that the
maximum RF distance (if no splits are shared) is 2(n− 3). We can therefore define
the relative or normalized RF distance nRF as

nRF (T1, T2) =
RF

2(n− 3)
(2.2)

Kuhner and Felsenstein introduced a generalization of the RF distance that takes
into account tree branch lengths under the name branch score [76]. The Kuhner-
Felsenstein (KF) branch score for a pair of trees is defined as a sum of square
differences between the corresponding branch lengths. For the branches (splits)
that are missing in one of the trees, the length is set to 0. The square root of the
KF branch score yields a distance metric which we will call the KF distance:

KF (T1, T2) =

√ ∑
s∈B1∪B2

[b1(s)− b2(s)]2 (2.3)

where B1 and B2 are the sets of non-trivial splits in T1 and T2, respectively,
and bi(s), i = 1 . . . 2 is the length of the branch in Ti corresponding to the split s if
s ∈ Bi, and 0 otherwise.

2.4 Phylogenetic Tree Inference

A phylogenetic tree for a set of taxa is usually inferred based on the features or
traits of these taxa. Historically, mostly morphological and physiological traits were

9

in used (size of the respective bones, Gram staining, lactose metabolism etc.). In the
last decades, the focus has shifted towards molecular data (AA and DNA sequences),
which generally provide more abundant and less biased phylogenetic signal [53].
Importantly, the traits used for comparison must be homologous, that is, they must
have evolved from the same trait in the common ancestor. For instance, wings of bats
and arms of primates are homologous, as they represent different adaptations of the
vertebrate forelimbs. Conversely, wings of insects and wings of birds are analogous,
that is, despite functional similarity they evolved independently (this phenomenon
is called convergent evolution). For molecular data, character homology is usually
inferred computationally in a process called sequence alignment.

2.4.1 Sequence Alignment

In bioinformatics, it is common to represent DNA, RNA, and amino acid polymers as
character strings (or sequences). Although this notation ignores physical and chem-
ical properties of the respective molecules, it has proved to be very helpful in many
applications, since it allows to leverage existing string processing algorithms. Indi-
vidual characters are usually referred to as bases, and sequence length is measured
in base pairs or bp 2. For DNA and RNA, the alphabet contains four nucleotides (A,
C, G, and T resp. U), and for proteins – 20 standard amino acids (A, R, N, D, C, Q, E,
G, H, I, L, K, M, F, P, S, T, W, Y, V). In addition, a special gap character (-) represents
the absence of a base at a certain position, for instance, due to deletion. Sometimes,
a different character (? or N) is used to encode missing data, that is, absence due to
technical reasons such as sequencing failure or fuzzy signal.

For many sequence analysis problems, phylogenetics included, it is important to
know which characters are homologous, that is, which characters have evolved from
the same character in the ancestral sequence. However, because of base insertion
and deletion events (indels) that occur in the process of evolution, this information
about character homology is not readily available. Hence, sequences need to be
aligned by inserting the gap characters at the appropriate positions, such that all
homologous characters are located in the same column (Figure 2.3). This yields
a n × m matrix, where n is the number of taxa (rows), and m is the number of
sites (columns). This matrix is called multiple sequence alignment or MSA. Please
note, that an MSA can contain multiple identical columns. For instance, in the
MSA from Figure 2.3 sites 3 and 4 both contain the same pattern A--, and sites
5, 7, and 9 contain pattern CCC. Therefore, we say that this MSA comprises 9 sites,
but only 6 unique patterns. In some cases, columns with identical patterns can be
compressed and considered as a single MSA column with a corresponding weight

2The word pair refers to the double-helix structure of DNA and does not mean that sequence
length is measured in duplets. For instance, the length of the sequence ACGTA is 5 bp.

10

(see Section 2.6).

Taxon1 AAAACCCC

Taxon2 AACGCTC

Taxon3 CACCCC
=⇒ Alignment

program
=⇒

site # 1 2 3 4 5 6 7 8 9

Taxon1 A A A A C C C - C

Taxon2 A A - - C G C T C

Taxon3 C A - - C C C - C

Figure 2.3: Sequence alignment: by inserting the gap character in the presumed indel positions,
raw sequences (left) are converted into the multiple sequence alignment (MSA) matrix (right).
Each MSA column only contains homologous characters(or gaps).

Sequence alignment can be formulated as an optimization problem under a given
optimality criterion. The SP-score (sum-of-pairs) is a commonly used alignment
quality measure, which is computed as a sum of similarity scores for all possible pairs
of characters that belong to the same MSA column. Pairwise character similarity is
usually defined as some positive constant if both characters are identical (match),
and some negative constant if they differ (mismatch) or if one of the characters is
missing (gap).

For the special case of pairwise sequence alignment (n = 2), efficient algorithms
based on dynamic programming exist: the Needleman-Wunsch algorithm [96] can
compute the exact solution in O(m1 · m2), where m1 and m2 are the lengths of
the sequences being aligned. Furthermore, heuristic methods such as BLAST [6]
and USEARCH [34] allow to obtain millions of near-optimal sequence alignments in
acceptable time.

On the other hand, the MSA problem was shown to be NP-hard [64]. This
makes finding the optimal solution impossible for most empirical datasets and led
to the development of numerous heuristic approaches. CLUSTAL [52] was the first
MSA tool that gained popularity in the 1990s. Nowadays, more rapid and accurate
alternatives such as MUSCLE [33], MAFFT [65], and ClustalOmega [127] are used.

It is easy to see that MSA and phylogenetic tree inference are interrelated prob-
lems as they share the same underlying goal: reconstruction of the evolutionary
history of sequences/taxa. In fact, most MSA heuristics use a ’draft’ phylogenetic
tree (guide tree) to build an initial alignment, which is then used to improve the
tree. This iterative process is continued until some convergence condition is fulfilled.
Conversely, most modern phylogenetic inference methods require an MSA as input.
Therefore, alignment-phylogeny co-estimation is a natural and theoretically appeal-
ing approach. Unfortunately, existing implementations [142] do not scale to large
datasets, although there are some promising recent developments [102].

11

2.4.2 Distance-based Methods

Given a matrix of pairwise distances between sequences, classical hierarchical clus-
tering methods can be used to build a tree. In phylogenetics, two algorithms became
particularly popular: Unweighted Pair Group Method with Arithmetic Mean (UP-
GMA [128]) and Neighbor Joining (NJ [120]). Both algorithms are agglomerative,
that is, they first assign each taxon to its own cluster, and then work ’bottom-up’
by sequentially joining the most similar cluster pairs. The main distinction between
UPGMA and NJ lies in the cluster similarity measures they employ. UPGMA uses
the average distance between pairs of elements in the clusters being merged. In
other words, it strives to maximize the similarity within a cluster. NJ additionally
accounts for the distances to all other clusters, which allows to minimize similarity
between clusters. UPGMA is usually considered inferior to NJ due to the fact that
it generates ultrametric trees (that is, all distances from the root node to the tips
are equal). It is equivalent to assuming a constant evolutionary rate across lineages
(so called molecular clock), which is regarded as biologically unrealistic. Conversely,
NJ can produce non-ultrametric trees and hence it does not rely on the molecular
clock assumption.

Hierarchical clustering methods are relatively fast: although they have a theo-
retical time complexity of O(n3), efficient implementations have substantially better
performance on average (approximately O(n2)). Furthermore, distance-based meth-
ods do not (necessarily) require an MSA, since the input distance matrix can be also
computed from pairwise alignments or even unaligned sequences. For these reasons,
UPGMA and NJ are often used for datasets that are too large to be processed by
more accurate and computationally more expensive methods and/or if the MSA is
challenging.

2.4.3 Maximum Parsimony

A conceptually different approach to phylogenetic inference consists in finding the
best-scoring tree with respect to a certain optimality criterion.

Maximum parsimony (MP) is an optimality criterion which is based on the Oc-
cam’s razor principle: it favors the tree(s) that can explain the observed tip sequences
(MSA) with the minimum number of mutations/substitutions. For a given topology,
the parsimony score of a single MSA site can be computed via a dynamic program-
ming algorithm [123], which finds the minimum number of required mutations across
all possible assignments of characters to the internal tree nodes. The overall MSA
parsimony score is simply the sum of the per-site parsimony scores. Please note
that, since the parsimony score is an integer value, there may be multiple equally
parsimonious trees.

For a MSA with n taxa and m sites, the parsimony score computation requires

12

O(mn) operations. However, the constant factor here is very small if an efficient
implementation based on bitwise arithmetic and vector instructions is used. On
the other hand, a polynomial-time algorithm for finding MP-optimal tree is unlikely
to exist [45], and an exhaustive search is prohibitive due to enormous tree space
(see Section 2.2). Hence, in practice one usually resorts to greedy search heuristics
based on, e.g., stepwise addition or topological rearrangements (see Section 2.4.4).

The main disadvantage of the MP method is that it can be statistically in-
consistent under certain conditions [38]. In particular, there is the well-known
phenomenon of long branch attraction (LBA): distantly related taxa with highly
diverged sequences tend to be grouped together in the inferred tree regardless of
their true evolutionary history.

2.4.4 Maximum Likelihood

Maximum parsimony is a simplistic model that imposes artificial constraints on the
evolutionary process. For instance, it does not allow multiple substitutions to occur
along the same branch (A → T → C). Modelling sequence evolution as a stochastic
process can thus better represent the biological reality (see Section 2.5).

In the probabilistic framework, we can compute the (phylogenetic) likelihood as

L(MSA | T, b̄,M, θ̄) (2.4)

that an observed MSA was generated by a tree (topology) T with branch lengths
b̄ under a certain evolutionary model M with parameters θ̄. Once the evolution-
ary model M is fixed (see Section 2.5.3 for the note on model selection), we can
express the likelihood as a function of parameters T , b̄, and θ̄. This function is
commonly known as the phylogenetic likelihood function (PLF). We can then apply
the maximum likelihood estimation (MLE) approach to find the parameter values
(including the tree topology) which maximize the PLF, and thus provide the best
explanation for the observed data. This method of phylogenetic tree inference is
known as Maximum Likelihood, or ML for short.

Finding the best-scoring tree topology T is a discrete optimization problem that
was proved to be NP-hard under the ML criterion [22]. Furthermore, PLF evalua-
tion is computationally expensive because it involves a large amount of floating point
operations. This led to the development of numerous ML inference tools that offer
different search heuristics and highly optimized PLF implementations. The general
approach consists of two steps. First, one or more starting tree(s) are generated, typ-
ically using NJ or randomized stepwise addition (either fully random or parsimony-
based, see below). Subsequently, a sequence of topological rearrangements (also
called moves, see Figure 2.4) is applied in order to improve the likelihood.

13

Randomized stepwise addition works as follows. We start by building a minimal
tree from 3 taxa randomly selected from the MSA. Then, we iteratively extend
this tree by inserting all remaining taxa in random order. If we intend to generate
a random tree, then the insertion branch for every taxon is selected at random.
Alternatively, we can select the insertion branch that maximizes the parsimony
score of the resulting tree (that is, we apply a greedy heuristic to obtain the MP
tree). In the following, starting trees generated by the randomized stepwise addition
algorithm with parsimony-based and random insertion strategy will be called simply
parsimony and random starting trees, respectively.

For instance, RAxML [133] and ExaML [72] start from a single random or MP
tree, and use greedy hill-climbing based on SPR moves (Subtree Pruning and Re-
grafting, see Figure 2.4a) to find a better topology. Here, ’greedy’ means that only
the moves that increase the likelihood are applied (accepted). PhyML [48] also relies
on SPRs since version 3.0, and additionally employs fast parsimony-based prescoring
to eliminate the least promising moves. IQTree [98] performs NNI moves on a set of
candidate trees. In order to avoid local optima, score-decreasing moves are accepted
with a certain probability. GARLI [166] uses a genetic search algorithm, that is,
it simulates the classical evolutionary forces (random mutation, recombination, re-
production according to the fitness function) acting on a tree population over many
generations.

A

B

D E

C

B D

E

C

A

(a) SPR

A

B

D E

C

A

C

D E

B

(b) NNI

A

B

D E

C

F

A

B

D E

C

F

(c) TBR

Figure 2.4: Commonly used tree moves: a) Subtree Pruning and Regrafting (SPR), b) Nearest
Neighbour Interchange (NNI), c) Tree Bisection and Reconnection

For a fixed tree topology T , MLEs for branch lengths b̄ and model parameters
θ̄ can be obtained with general-purpose numerical optimization methods. In par-
ticular, the Newton-Raphson method is often used for branch length optimization,

14

since derivatives of the PLF can be easily computed. For model parameter opti-
mization, Brent [17] and Broyden–Fletcher–Goldfarb–Shanno (BFGS [41]) methods
are commonly used.

2.4.5 Bayesian Inference

An alternative probabilistic approach, Bayesian inference (BI), relies on Bayes’ the-
orem to calculate the posterior distribution of the relevant evolutionary parameters:

p(θ̄ | x̄) =
p(x̄ | θ̄)p(θ̄)

p(x̄)
(2.5)

where

• x̄ is the observed data (in phylogenetic inference: MSA)

• θ̄ is the parameter vector (tree topology, branch lengths, evolutionary model
parameters)

• p(θ̄ | x̄) is the posterior distribution of the parameter values (given the data)

• p(x̄ | θ̄) is the likelihood of the data given the parameter vector θ̄ (cf. (2.4))

• p(θ̄) is the prior distribution of the parameter values (without the data)

• p(x̄) is the probability of observing the data vector x̄ (integrated over all
possible parameter values θ̄)

In practice, the posterior distribution is usually approximated via Markov Chain
Monte Carlo (MCMC) sampling methods such as the Metropolis-Hastings algo-
rithm [50].

Despite similarities between ML and BI approaches, there are also several key dif-
ferences. Firstly, BI allows to incorporate empirical knowledge by providing priors,
whereas ML implicitly assumes a flat prior distribution for all parameters. More-
over, BI yields posterior probability distributions and not simply point estimates
for parameter values. BI thereby provides a natural way for quantifying result un-
certainty. Although the above properties are often considered to be theoretically
appealing, their practical implications are debated [36].

Some widely-used BI tools include MrBayes [116], BEAST [30], ExaBayes [3], and
PhyloBayes [80]. BI methods are generally more computationally demanding than
ML, in part due to a potentially slow convergence of the sampling process. However,
recent advances in hardware and software implementations make BI on very large
datasets feasible (e.g., [106]).

15

A
qAC --

qAG

qAT

��

CqCA
mm

qCG

||

qCT

G

qGA

MM

qGC

<<

qGT -- TqTG
mm

qTC

MM

qTA

\\

(a)

Q =


−qA qAC qAG qAT
qCA −qC qCG qCT
qAG qCG −qG qGT
qAT qCT qGT −qT



−qi = −
∑
j 6=i

qij, i = {A,C,G, T}

(b)

Figure 2.5: Markov Chain Model of Nucleotide Substitutions: a) States and transitions b)
Substitution rate matrix (Q-matrix).

Although Bayesian inference is not covered in this thesis, we should note that
BI methods heavily depend on PLF computations (80%–90% of total run-time).
Therefore, they will benefit from the optimizations presented in Sections 3 and 4.

2.5 Probabilistic Models of Molecular Sequence

Evolution

2.5.1 Markov Chain Model of Substitutions

Molecular sequence evolution can be modeled as a continuous-time Markov chain
(MC). In case of DNA sequences, the MC has four states A, C, G, and T that cor-
respond to the nucleotides. State transitions correspond to nucleotide substitutions
(Figure 2.5a). The substitution process is defined by an instantaneous transition
rate matrix Q, where qij is the rate of transition from state i to state j. The di-
agonal elements qii are obtained by the requirement that each row must sum to 0
(Figure 2.5b). For a stationary process, the respective transition probabilities pij(t)
for a given time t can be obtained by exponentiating the Q matrix (e.g., [159]):

P (t) = eQt (2.6)

If all transition rates are positive (qij > 0,∀i 6= j), then the Markov chain will
ultimately (after run long enough) reach the unique stationary distribution Π =
(πA, πC , πG, πT), where πi is the proportion of time spent in the state i. Alternatively,

16

if the Markov process is interpreted to produce the DNA sequences in the MSA, then
Π is the equilibrium base composition of the MSA, and πi are the equilibrium or
stationary base frequencies for this MSA (given that, the process ran long enough
to reach the equilibrium).

Most models of DNA evolution assume that Markov process is time-reversible,
that is, πiqij = πjqji, ∀i 6= j. Although this assumption is not meaningful bio-
logically (as evolution does have a direction), it allows to simplify computations.
For a time-reversible model, the Q matrix can be formulated as the product of a
symmetric rate matrix R = {ri↔j} and a diagonal matrix containing the stationary
base frequencies:

Q = R · diag(πi) =


−qA rA↔C · πC rA↔G · πG rA↔T · πT

rA↔C · πA −qC rC↔G · πG rC↔T · πT
rA↔G · πA rC↔G · πC −qG rG↔T · πT
rA↔T · πA rC↔T · πC rG↔T · πG −qT

 (2.7)

The matrix above describes the so-called general time-reversible model or GTR
model [146]. This is the most generic model of DNA evolution as all 6 substitution
rates ri↔j, i 6= j and 4 base frequencies πi can potentially be different. Since base
frequencies must sum up to 1, and since substitution rates are often normalized by
setting rG↔T = 1.0, the GTR model has 8 free parameters (5 substitution rates
+ 3 base frequencies). Apart from GTR, there are more restrictive model with
fewer free parameters. For instance, Jukes-Cantor model (JC69 [63]) assumes equal
substitution rates ri↔j = 1, i 6= j and equal base frequencies πi = 1/4. Thus,
JC69 has no free parameters. The K80 model [66] adds a transition-transversion
ratio κ to distinguish between two types of mutations which are not equally likely
from a biological perspective: rA↔C = rG↔T = κ · rA↔G = κ · rA↔T = κ · rC↔G =
κ · rC↔T . Finally, the HKY85 model [49] combines the transition-transversion ratio
with unequal base frequencies, and has thus 4 free parameters.

In case of protein data, the state space of the Markov process becomes signifi-
cantly larger (20 amino acids vs. 4 nucleotides). Consequently, the GTR model for
protein data has as much as (400−20)/2−1+19 = 208 free parameters. This could
easily lead to over-parametrization and over-fitting if the MSA being analyzed is
not large enough to obtain reliable model parameter estimates. It is therefore com-
mon to use so-called empirical AA models, which comprise substitution rates and
equilibrium base frequencies that were pre-estimated on very large reference MSA
collections. Some of the popular empirical AA models include DAYHOFF [29],
WAG [152], and LG [82], among many others.

17

2.5.2 Models of Rate Heterogeneity among Sites

As mentioned in Section 2.1, certain regions of DNA or AA molecules are under
higher evolutionary pressure, for instance, due to their functional importance. It is
therefore reasonable to assume that some MSA sites evolve faster than others. In
order to account for this phenomenon in phylogenetic inference, several models of
rate heterogeneity among sites (RHAS) have been proposed.

Proportion of invariable sites

The simplest model assumes that a certain proportion of alignment sites are abso-
lutely conserved (i.e., they are identical in all taxa), whereas the remaining sites
evolve at the same constant rate. Under this model (which we will abbreviate as
P-inv henceforth), the likelihood of an alignment site s is computed as follows:

LP-inv(s) = p · L(s, 0) + (1− p) · L(s, r) (2.8)

where p ∈ [0, 1] is the proportion of invariable sites and is usually estimated
from the data. Please note, that p is the only free parameter of the P-inv model.
We do not explicitly classify sites as invariable or variable. Instead, we compute
both L(s, 0) and L(s, r) for every alignment site, and then calculate the final site
likelihood as the weighted sum of those two values.

Γ model

A more elaborate Γ RHAS model proposed by Yang [156] postulates that substi-
tution rate is a random variable X that is distributed with the probability density
function (PDF):

fΓ(x, α, β) =
βαxα−1e−xβ

Γ(α)
(2.9)

where Γ(α) is the gamma function, α is the shape parameter, and β is the inverse
scale parameter. In order to obtain likelihoods that are comparable to the models
without rate heterogeneity, we require mean substitution rate to be 1. Therefore, we
set β := α, such that E[X] = β/α = 1, X ∼ Γ(α, β). Depending on the α parameter
value, the shape of the Γ distribution shape changes from an exponential-like (α < 1,
high rate heterogeneity) to a normal-like (α > 10, low rate heterogeneity). This
property of the Γ distribution allows to fit different rate heterogeneity profiles by
optimizing just a single free parameter (α).

18

In practice, the continuous Γ distribution is approximated by a discrete distri-
bution with K rate categories. The full range of possible rates r : [0,∞) is divided
into K intervals with equal probability mass. For each category, the representative
rate ri is computed as either mean or median rate in the corresponding interval
(see [156] for details). Finally, the site likelihood is obtained by averaging over all
rate categories:

LΓ(s) =
1

K

K∑
i=1

L(s, ri) (2.10)

It is easy to see that for each site, under the Γ RHAS model we need to compute
likelihood multiple times, namely for all per-category rates r1, r2, . . . rK . Conse-
quently, the amount of computations and the required memory grow linearly with
the number of categories K, resulting in a trade-off between accuracy of the dis-
cretization and computational efficiency. Following the recommendation in the orig-
inal paper by Z.Yang [156], many implementations only use four Γ rate categories
by default.

FreeRate model

Albeit flexible, the Γ distribution is not universally applicable: for instance, it can-
not adequately represent multimodal distributions. This problem is solved by the
FreeRate model [158] that does not require evolutionary rates to be drawn from
any pre-defined distribution. Instead, both category rates r1, r2, . . . rK and weights
w1, w2, . . . wK are treated as free parameters. Their values are estimated from the
data under two normalization constraints: (i)

∑K
i=1 wi = 1 and (ii)

∑K
i=1wiri = 1.

Again, the site likelihood is computed as the weighted sum of the per-category
likelihoods:

LR(s) =
K∑
i=1

wiL(s, ri) (2.11)

Using a sufficient number of categories, the FreeRate model can accurately ap-
proximate any distribution of evolutionary rates in the alignment. However, esti-
mating 2(c − 1) free parameters is computationally expensive and requires ample
input data to avoid over-fitting.

PSR model

The PSR model (per-site rates ; originally named CAT) was proposed by Sta-
matakis [129] as a compute- and memory-efficient approximation of the Γ model.

19

Partition P1 P2 P3

Model JC69 HKY85+Γ GTR+FreeRate

Site # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Taxon 1 A A - G C A C C T A G G A A G

Taxon 2 A C C G C A C - T A A G A - -

Taxon 3 A A C - C A T C G C A G T C G

Figure 2.6: An example MSA divided into three partitions: partition P1 has 4 sites and is
assigned the Jukes-Cantor model (JC69) without RHAS, partition P2 has 5 sites and is assigned
the Hasegawa-Kishino-Yano model (HKY85) with the Γ RHAS model, and partition P3 has 6 sites
and is assigned the GTR model with the FreeRate model of rate heterogeneity. For the description
of individual models, please see Sections 2.5.1 and 2.5.2.

Unlike the Γ model and other mixture models as described above, in the PSR model
every alignment site s is explicitly assigned only one rate category c(s), and its
likelihood is calculated as follows:

LPSR(s) = L(s, rc(s)), c(s) ∈ (1, K) (2.12)

This solution eliminates the need to compute multiple likelihood values per site,
which allows to analyze larger alignments and/or increase the number of rate cate-
gories (e.g., RAxML uses 25 categories by default). On the downside, PSR likelihood
scores obtained with different site-to-category assignments are not comparable. Fur-
thermore, PSR branch lengths do not represent the average number of substitution
per site as it the case with other models (although this can be corrected for, and
a respective normalization was implemented in RAxML later on). Therefore, tree
inferences under the PSR model are usually combined with a final branch length
optimization and likelihood re-evaluation under the Γ model on the final tree.

2.5.3 Alignment Partitioning

Not only evolutionary rates, but also substitution patterns can differ among MSA
sites. In order to account for this, an MSA can be split into multiple partitions,
where each partition is assigned its own model of evolution (that is, substitution
matrix, stationary frequencies, RHAS model etc. – see Figure 2.6). The partition-
ing scheme is often devised based on empirical biological knowledge about the MSA
at hand. In particular, each gene of a large multi-gene MSA and/or each codon
position can be assigned to a separate partition. Furthermore, software tools such
as PartitionFinder [79] can be used to optimize the partitioning scheme and to
select an appropriate evolutionary model for each partition. Those tools usually

20

rely on statistical model selection criteria to determine the optimal trade-off be-
tween model fit (that is, likelihood of the data) and the number of free parameters.
This approach can be used both for partition scheme optimization (for instance,
by merging certain empirical paratitions to prevent over-parametrization) and for
assigning an evolutionary model to each partition. Commonly used model selection
criteria include Akaike Information Criterion (AIC [4]) and Bayesian Information
Criterion (BIC [126]).

In a partitioned analysis, there are several ways to estimate the branch lengths
of a tree:

linked branches All partitions share the same branch lengths which are jointly
estimated for the whole MSA.

unlinked branches Branch lengths are estimated independently for each partition
using the corresponding subset of alignment sites. This approach yields multi-
ple per-partition trees that share the same topology, but have different branch
lengths. Due to to the large number of estimated parameters (np, where n is
the number of branches and p is the number of partitions), unlinked branch
lengths model can be prone to over-fitting and phylogenetic terraces [122].

proportional branches Branch lengths are estimated jointly as in the linked mode,
but each partition has an additional scaling factor c, by which all global branch
lengths are multiplied in order to obtain the per-partition branch lengths. This
is an intermediate solution: it accounts for evolutionary rate differences among
genes/partitions, while introducing only one extra parameter per partition.

Phylogenetic inference tools usually allow users to select among branch length
estimation modes. For instance, RAxML supports linked and unlinked branch lengths,
and IQTree supports all three modes.

2.6 Computation of Phylogenetic Likelihood Func-

tion and its Derivatives

Felsenstein’s pruning algorithm [39] offers a practical way to compute the PLF. It
works by traversing the tree in post-order from the tips towards the (virtual) root
and recursively computes the so-called conditional likelihood vectors (CLVs) at each
inner node (Section 2.6.2). At the root, two child CLVs are used to compute the
final tree likelihood (Section 2.6.3).

Here, we will describe the likelihood computation as implemented in RAxML and
in libpll, since those are the implementations relevant for this thesis. In both
codes, the computation is split into several subroutines (PLF kernels), which we
will introduce in this section and use throughout the remaining text. For the sake
of simplicity, we will use the 4-state DNA model in the explanations below. The

21

generalization to an arbitrary number of states is straight-forward.

2.6.1 P-matrix

The P-matrix (P (t)) defines a transition probability between any pair of states i and
j after a certain time t. As shown in Section 2.5.1, the P-matrix can be obtained by
exponentiating the Q-matrix: P (t) = eQt. While analytical solutions exist for simple
models such as JC69 or K80, in the general case (GTR model) eigendecomposition
of the Q matrix is required to perform the exponentiation. In other words, we
need to find an invertible matrix U and a diagonal matrix Λ = diag(λi) such that
Q = UΛU−1. Then, we obtain:

P (t) = eUΛtU−1

= UeΛtU−1 = U · diag(eλit)i=1..4 · U−1 (2.13)

where λi are the eigenvalues of Q and U is the matrix of the corresponding
eigenvectors. Hence, the elements of the P-matrix can be computed as follows:

Pi,j(t) =
4∑

k=1

eλk·t · Ui,k · U−1
k,j (2.14)

In the above formula, the time t is proportional to the branch length b (more
specifically, t = b · r, where r is the rate scaling factor, see below). Therefore, an
individual P-matrix has to be computed for every branch of the tree, and it has to
be updated whenever the corresponding branch length is modified (e.g., during and
after branch length optimization). We call the corresponding subroutine updateP().

2.6.2 Conditional Likelihood Vectors

In a sense, each CLV summarizes the subtree below the corresponding node, as it
stores the conditional likelihood of every state given the respective subalignment
(tip sequences), subtree topology and branch lengths. In case of DNA data, for
instance, a CLV contains (at least) 4 elements per site: CL(A), CL(C), CL(G), and
CL(T). If a mixture RHAS model such as Γ or FreeRate is used (Section 2.5.2), the
CLV size grows to 4K elements per site, where K is the number of rate categories
(Figure 2.7b).

In principle, CLVs at the tip nodes can be initialized with the actual likelihoods
of observing A, C, G or T at the corresponding alignment position (cf. Chapter 5).
However, in most cases MSA do not contain an uncertainty specification, and thus
tip nodes only have ’pseudo-CLVs’: e.g., given a nucleotide A in the alignment, we
set CL(A) = 1.0 and CL(C) = CL(G) = CL(T) = 0.0 in the respective tip CLV entry.

22

CLV(p)
A C G T

rate 1 rate K

...

site 1

...
A C G T A C G T

rate 1 rate K

...

site m

A C G T

CLV(p)
1,1,1

CLV(p)
1,K,3

CLV(p)
m,K,4

(a)

v u

qp

x y
b pv bqv

CLV(p) ...

virtual
root

CLV(v) ...

CLV(q) ...

CLV(u) ...

buv

(b)

Figure 2.7: a) Conditional likelihood vector (CLV) structure for a DNA alignment with m sites
when using a RHAS mixture model with 4 rate categories. b) Tree likelihood computation with
Felsenstein’s pruning algorithm. When computing the likelihood of an unrooted tree, we can place
a virtual root at an arbitrary inner node (see Section 2.6.3).

The CLV of an inner node v can be computed recursively given the CLV of its
two children p and q (Figure 2.7b):

CLV
(v)
s,c,i =

(
4∑
j=1

Pi,j(rcbpv) · CLV
(p)
s,c,j

)(
4∑

k=1

Pi,k(rcbqv) · CLV
(q)
s,c,k

)
(2.15)

where

• s = 1 . . .m is an MSA site,

• c = 1 . . . K is a RHAS rate category

• i = 1 . . . 4 is a model state (in the following order: A, C, G, T),

• rc is an evolutionary rate for rate category c

• bpv and bqv are the lengths of the branches between nodes (p, v) and (q, v),
respectively, and

• P (rcbpv) and P (rcbqv) are the P-matrices for the branch lengths bpv and bqv,
respectively.

In libpll, the CLVs are computed and stored as shown above, whereas in RAxML

they are additionally multiplied with U−1:

ĈLV
(v)

s,c,k =
4∑
i=1

U−1
k,i · CLV

(v)
s,c,i (2.16)

23

The latter representation allows to simplify the computations at the root and
during branch length optimization (see below) at the expense of increased overhead
in the CLV kernel (henceforth denoted as updateCLV()).

2.6.3 Likelihood Evaluation at the Root

The likelihood of an unrooted tree can be computed by placing a virtual root into
any of its branches. Due to the time-reversibility of the model, the likelihood is
invariant to the virtual root placement. Moreover, we can freely ’slide’ the virtual
root along the branch, without changing the likelihood. In particular, it can coincide
with one of the adjacent nodes to simplify the computations (Figure 2.7b). Then,
likelihood of an MSA site s for rate category c (see Section 2.5.2) can be computed
as follows:

Ls,c =
4∑
i=1

4∑
j=1

CLV
(u)
s,c,i · πi · Pi,j(rcbuv) · CLV

(v)
s,c,j (2.17)

Ls,c =
4∑
i=1

4∑
j=1

CLV
(u)
s,c,i · πi ·

4∑
k=1

eλk·rc·buv · Ui,k · U−1
k,j · CLV

(v)
s,c,j (2.18)

After changing the summation order we obtain:

Ls,c =
4∑

k=1

eλk·rc·buv ·

(
4∑
i=1

πi · Ui,k · CLV
(u)
s,c,i ·

4∑
j=1

U−1
k,j · CLV

(v)
s,c,j

)
(2.19)

Considering (2.16) and since πi · Ui,k = U−1
k,i we can re-write the likelihood cal-

culation for RAxML-style ĈLV vectors as follows:

Ls,c =
4∑

k=1

eλk·rc·buv · ĈLV
(u)

s,c,k · ĈLV
(v)

s,c,k (2.20)

Next, the per-site likelihoods are computed according to the specific RHAS model
(see Section 2.5.2). For instance, for the FreeRate model we have:

Ls =
K∑
c=1

wcLs,c (2.21)

24

Finally, we compute the overall likelihood for the entire MSA. It is generally
assumed that alignment sites evolve independently, and thus for an MSA with m
sites, the overall likelihood is computed as L =

∏m
s=1 Ls. However, this product

is usually a very small number, which can lead to numerical underflow. Hence it
is more convenient to work with the logarithm of the likelihood (log-likelihood).
We therefore take a natural logarithm of each individual per-site likelihood, and
compute the sum across all alignment m sites:

logL = lnL =
m∑
s=1

lnLs (2.22)

Please note, that MSA sites with identical patterns (see Section 2.4.1) will yield
exactly the same likelihood. Thus, we do not need to repeat the likelihood compu-
tation for those duplicated sites. Instead, we build a compressed MSA comprising
only m′ < m unique alignment patterns, and store the number of occurrences for
each pattern in a weight vector ω. The likelihood on a compressed MSA is then
computed as follows:

logL = lnL =
m′∑
s=1

ωs lnLs (2.23)

The PLF kernel that performs the computation described in this subsection is
denoted as computeLH().

2.6.4 Likelihood Derivatives with respect to the Branch Length
Parameter

As mentioned before (Section 2.4.4), branch length optimization often relies on
iterative methods such as Newton-Raphson, which require PLF derivatives. Here,
we explain how those derivatives are computed in RAxML and libpll.

We assume that the virtual root is already placed on the branch that is being
optimized, and that CLV s to the left and right of this branch have been updated
accordingly. Then, we can write the logL as the function of the (root) branch length
b:

logL(b) =
m∑
s=1

lnLs(b) (2.24)

We derive logL(b) analytically, which gives:

25

logL′(b) =
m∑
s=1

L′s(b)

Ls(b)
(2.25)

logL′′(b) =
m∑
s=1

L′′s(b) · Ls(b)− [L′s(b)]
2

[Ls(b)]
2 (2.26)

Now, we need to obtain the per-site likelihood Ls(b) and its derivatives L′s(b)
and L′′s(b). From (2.17) and (2.20) it is easy to see that the product of both CLV s

(resp. ĈLV s) is constant with respect to the branch length value being optimized.
We can therefore pre-compute this product and store it in a temporary array to
speedup the derivative computation (derivativeInit() kernel):

Ss,c,k = ĈLV
(u)

s,c,k · ĈLV
(v)

s,c,k

=

(
4∑
i=1

πi · Ui,k · CLV
(u)
s,c,i

)
·

(
4∑
j=1

U−1
k,j · CLV

(v)
s,c,j

)
(2.27)

Then, in every Newton-Raphson iteration we can compute the per-site likelihood
as well as its first and second derivative as follows (derivativeCore() kernel):

Ls(b) =
K∑
c=1

wc

4∑
k=1

eλk·rc·b · Ss,c,k (2.28)

L′s(b) =
K∑
c=1

wc

4∑
k=1

λk · rc · eλk·rc·b · Ss,c,k (2.29)

L′′s(b) =
K∑
c=1

wc

4∑
k=1

λ2
k · r2

c · eλk·rc·b · Ss,c,k (2.30)

Finally, we plug in (2.28) – (2.30) into (2.25) and (2.26) to obtain the derivatives
of logL.

26

Chapter 3

Efficient Likelihood Computation
on Intel Xeon Phi Accelerators

This chapter is based on two peer-reviewed publications:

• AM Kozlov, A Stamatakis, C Goll. ”Efficient Computation of the Phy-
logenetic Likelihood Function on the Intel MIC Architecture.” In: Pro-
ceedings of HICOMB workshop, held in conjunction with IPDPS 2014,
Phoenix, Arizona, May 2014

• AM Kozlov, AJ Aberer, A Stamatakis. ”ExaML Version 3: A Tool for
Phylogenomic Analyses on Supercomputers.” In: Bioinformatics (2015)
31 (15): 2577-2579.

Contributions: Alexey Kozlov designed the SIMD vectorization and paralleliza-
tion approaches for Xeon Phi, integrated them into the production version of
ExaML, and conducted the performance evaluation. Alexandros Stamatakis and
Andre Aberer developed the original ExaML code, and helped to write the pa-
per. Christian Goll installed and configured the Xeon Phi cards on the HITS
institutional cluster.

As stated in Section 1.1, there is a clear need for further performance improve-
ments in phylogenetic inference in order to handle the constantly growing empirical
datasets. Besides algorithmic advancements, efficient use of novel hardware is a
key factor in achieving this goal. In the last decade, hardware accelerators have
attracted a lot of attention in the HPC community. Although the original “1000x
speedup” hype was debunked, accelerators can still yield significant gains in run-
time and energy-efficiency for a plethora of scientific applications. Nowadays, it is

27

common for Top500 systems to include accelerators such as NVIDIA GPUs or Intel
Xeon Phis, and many popular scientific codes have already been ported to these
architectures. In particular, likelihood computation was previously implemented on
FPGAs [5, 11, 165] and GPUs [59, 141]. Continuing this line of work, I ported and
optimized Phylogenetic Likelihood Function (PLF) kernels on the Intel Xeon Phi.

3.1 Intel Knights Corner: Platform Overview

The first generation of Intel Xeon Phi coprocessors, codenamed Knights Corner
(KNC), became commercially available in late 2012. KNC is a PCIe add-on card
equipped with 57 to 61 physical cores running at ∼1GHz (model-dependent) and
delivers about 1 TFLOPS peak double-precision performance. Each core has a ded-
icated 512KB L2 cache, and can access. the caches of all other cores via the ring
interconnect. Additionally, each card has 6 to 16GB of high-bandwidth GDDR5
memory that is shared among all cores. The instruction set (referred to as AVX-KNC
henceforth) was inherited from the x86 architecture and extended by 512-bit wide
vector operations. This allows to process 8 DP (double precision) or 16 SP (sin-
gle precision) floating point values simultaneously, that is, twice as much as with
AVX/AVX2 on Sandy/Ivy Bridge and Haswell CPUs.

In terms of architecture and programming model, the Xeon Phi is substantially
more similar to regular CPUs than other accelerators such as GPUs. More specifi-
cally, there are several features worth to be noted:

1. Like most modern CPUs, KNC employs thread-based parallelization across
cores as well as instruction-level SIMD parallelism within each core. This
approach offers increased flexibility compared to SIMD-only hardware, since
each thread is absolutely independent and can follow its own program execu-
tion path. Moreover, multiple kernels or program instances can be executed
in parallel, each using a subset of available KNC cores.

2. KNC cache memory is transparent to the programmer. There is no need to
take direct control over the memory hierarchy. Instead, the programmer is
expected to write cache-efficient code (e.g., preserve access locality) and rely
on the hardware and/or compiler to decide, how to cache data. The only
mechanism for influencing this process is to place explicit prefetch hints in the
code.

3. KNC is compatibile with the standard x86 development toolchain (icc, pthreads,
OpenMP, MPI) and does not require dedicated frameworks such as CUDA or
OpenCL.

28

Figure 3.1: Architecture of the Intel Xeon Phi (Knights Corner). Source:
http://semiaccurate.com/2012/08/28/intel-details-knights-corner-architecture-at-long-last/intel_xeon_phi_core/

4. Finally, KNC offers two different program execution modes. In the offload
mode, the main program runs on the host and ’offloads’ compute-intensive
code blocks (kernels) to the coprocessor. Conversely, in native mode, the
entire program is executed exclusively on the coprocessor, without any host
involvement. This is possible, because each KNC card executes a Linux-based
micro-OS, thus, turning it into a self-contained ’host’ system. Furthermore,
the coprocessors obtain IP addresses and can communicate through the sim-
ulated network interface, allowing to use MPI for KNC-KNC and KNC-Host
communication.

The above features facilitate reuse of developer’s knowledge and yield it relatively
straightforward to port existing HPC codes to the KNC. Nevertheless, manual tun-
ing is usually required to achieve optimal performance, and this effort should not be
underestimated (see below).

29

http://semiaccurate.com/2012/08/28/intel-details-knights-corner-architecture-at-long-last/intel_xeon_phi_core/

3.2 Likelihood Kernel Optimization

In theory, getting an existing C code to run on the Intel KNC might be as simple
as recompiling it with the -mmic compiler option. In practice, however, a program
’ported’ in this way, will most probably exhibit suboptimal performance. In fact,
in some cases it might even execute slower than the original CPU version (see e.g.,
[117]). Hence, to fully exploit the hardware capabilities, one still needs to invest
significant effort to optimize, adapt, and tune the code. In the following, we will
describe several optimization techniques, and how we deployed them to improve
PLF kernel efficiency on the KNC.

Vectorization

To attain optimal performance on KNC, the code must be vectorized; there are
several ways to achieve this. First, the Intel compiler offers automatic loop vec-
torization. Multiple loop iterations or arithmetic operations can be combined and
replaced by a single vectorized instruction. For automatic vectorization to be suc-
cessful, several conditions must hold, most importantly: the loop in question must
be the innermost loop, all vectors must be properly aligned (see below), and there
should be no data dependencies between input and output vectors. In difficult cases,
the programmer can provide hints to the compiler by using ivdep (no data depen-
dency) and vector aligned pragmas. Alternatively, it is possible to write vec-
torized code by hand, using so called compiler intrinsics, that is, pseudo-functions
which are usually mapped directly to the corresponding processor instructions. Al-
though this approach offers the highest level of control, it produces less readable
and more error-prone code (see Figure 3.2). For this reason, we used automatic
compiler vectorization whenever possible, while resorting to intrinsics in non-trivial
cases only.

Memory alignment

Most vector instructions operate on values stored in the corresponding vector reg-
isters. Those registers can be efficiently initialized from memory addresses that are
aligned to the vector size boundary (64 bytes or 512 bits in case of KNC). Load-
ing data from unaligned memory locations incurs a significant performance penalty.
This property has several design implications:

• First, all arrays must start at addresses which are a multiple of 64. This can be
ensured by using appropriate memory allocation functions (e.g., mm malloc

or memalign).

• Second, all array sizes (in bytes) must be multiples of 64. We solve this through
padding, that is, by adding empty trailing elements at the end of each array.

30

int l;

#pragma ivdep

#pragma vector aligned

for (l = 0; l < 16; l++)

{

pr[l] = le[l] * ri[l];

}

(a)

__m512d l1 =

_mm512_load_pd(&le[0]);

__m512d l2 =

_mm512_load_pd(&le[8]);

__m512d r1 =

_mm512_load_pd(&ri[0]);

__m512d r2 =

_mm512_load_pd(&ri[8]);

__m512d s1 =

_mm512_mul_pd(l1, r1);

__m512d s2 =

_mm512_mul_pd(l2, r2);

_mm512_store_pd(&pr[0], s1);

_mm512_store_pd(&pr[8], s2);

(b)

vmovapd (%rsp,%r10,1), %zmm0

vmovapd 0x40(%rsp,%r10,1), %zmm1

vmovapd (%rcx,%rdi,8), %zmm2

vmovapd 0x40(%rcx,%rdi,8), %zmm3

vmulpd %zmm4, %zmm0, %zmm2

vmulpd %zmm5, %zmm1, %zmm3

vmovapd %zmm4, (%rsi,%rdi,8)

vmovapd %zmm5, 0x40(%rsi,%rdi,8)

(c)

Figure 3.2: Loop vectorized using pragmas (a) and compiler intrinsics (b). In both cases, the
generated assembly code is the same (c).

• Finally, one has to ensure that all accesses to the array elements are also
aligned. That is, for a double array, all offsets must be a multiple of 8. Most
kernels operate on CLV elements, which have a size of states× rates doubles,
where rates is the number of rate categories per site. Currently, ExaML-KNC
only supports the Γ model of rate heterogeneity [156] with 4 discrete rate
categories. Hence, a CLV element constains 16 DP numbers, and all array
accesses are aligned. However, in order to implement the CAT model of rate
heterogeneity [129] which only has one rate per site, special care must be taken
to keep accesses aligned.

Re-organizing loops

As part of conditional likelihood computations in updateCLV(), the CLV vector of
a child node has to be multiplied with the transition probability matrix P . The
dimension of this matrix is equal to the number of states (e.g., DNA or AA charac-
ters). For DNA data we therefore multiply a 1× 4 vector with a 4× 4 matrix. For
this operation, the innermost loop executes 4 iterations, which is smaller than the
vector unit width on the KNC (8 doubles). Therefore, the loop can not be vectorized
efficiently without changes. Note that, under the Γ model with 4 discrete rates, we
actually need to perform 4 such vector-matrix multiplications for each alignment
site. If we execute these multiplications simultaneously, we obtain 16 iterations in
the innermost loop, which is sufficient for vectorization. Since all iterations must
access contiguous memory locations, we need to re-arrange the input arrays accord-
ingly. Then, the inner loop can be calculated by two fused-multiply-add (FMA)

31

vector operations.

Site blocking

Computing derivatives in derivativeCore() can be split into two phases: for each
alignment site, 16 elements of a vector are preprocessed, then several scalar opera-
tions are applied to obtain the final result. Obviously, the first phase can be easily
vectorized, but the scalar operations pose a problem. To this end, we re-organized
the main loop that iterates over single alignment sites to process alignment sites in
groups of 8. This allows for executing one single vector operation replacing the 8
problematic scalar operations.

Streaming stores

When writing to a memory cell, the old contents of the corresponding cache line have
to be loaded first. If our intention, however, is to overwrite the entire cache line
(64B), this reading operation is not required. KNC introduces a special streaming
store instruction, which allows to avoid this unnecessary read and associated time
penalty. Even though the compiler implements some heuristics to automatically
generate streaming store instructions, the programmer can enforce these by placing
the #pragma vector nontemporal directive in front of the loop. We make use of
this feature in the updateCLV() and derivativeSum() kernels when writing results
to the parent CLV and the summation buffer, respectively.

Manual prefetching

Prefetching is an optimization technique for hiding memory access latency. It relies
on predicting which data elements will be processed by the program in the near
future and fetching those elements into the cache in advance. Thereby, the actual
data access is carried out on the low-latency cache without further delays. On KNC,
prefetching can be controlled by the hardware, by the compiler, or manually by the
programmer (using #pragma prefetch or mm prefetch). In the latter case, it is
up to the programmer to determine the best prefetch distance, that is, for how
many loop iterations ahead in the future, the prefetch instruction shall be issued.
While the optimal value is mainly influenced by memory latency and the amount of
computations per iteration, a direct estimation is complicated by other confounding
factors (e.g., number of threads per core). Thus, in practice one often has to resort
to an empirical tuning approach.

Despite some previous studies reporting near-optimal performance with auto-
matic prefetching [75], we observed notable speedups by manually inserting prefetch-
ing instructions into our code. This can be explained by the streaming access pat-
terns of our kernels. They linearly read input vectors from memory (summing buffers

32

in derivativeCore() and CLVs in other functions), perform relatively few compu-
tations, and then write results to the output vector. In this setting, memory access
latencies dominate runtimes and therefore an optimal prefetching strategy is crucial
for performance.

Offload vs. native mode

At first glance, it seems natural to offload compute-intensive PLF kernels to the
Xeon Phi, and invoke them from the main tree search algorithm running on the
host processor. Although host↔KNC data transfers are costly, they can easily be
avoided by allocating CLVs in coprocessor memory and only sending the node indices
– a solution previously suggested in [59]. However, initial experiments with the
offloading-based version showed that KNC kernel calls induce a substantial overhead,
even if no data transfer is involved. In fact, kernel call latency is comparable to
and partially exceeds the time required for the actual computation. This seems
to be an inherent limitation of the offloading approach: both hardware (initiating
the data transfer over PCIe) and software (calling the offload runtime) components
induce a certain latency [97], which can not easily be alleviated. Since ML inference
algorithms perform thousands of kernel invocations per second, even for small trees,
the offload latency becomes the major bottleneck.

For this reason, we then explored the native execution model. After minor mod-
ifications, we were able to compile the entire ExaML program on the KNC platform
and execute it on the coprocessor without any host involvement. In this native ver-
sion, the kernel invocations are simple function calls with negligible latency. Thus,
we observed a speedup exceeding a factor of two compared to the initial offloading-
based version. Moreover, the code became significantly simpler, because allocating
and orchestrating separate CLVs on the coprocessor is not required any more. In
fact, the only major differences between the CPU and the native KNC implemen-
tations are in the kernel codes.

3.3 Hybrid MPI/OpenMP Parallelization

Originally, ExaML provided MPI-based parallelization only. So, in order to exploit
intra-node parallelism, multiple MPI processes had to be started (e.g., 1 process
per CPU core). However, as our tests have shown, this approach does not fit the
Xeon Phi well, since hundreds of MPI processes per card would need to be started.
To circumvent this problem, we initially implemented an ad hoc OpenMP solution,
where the main loop over alignment site patterns was parallelized in each kernel in-
dividually [73]. Despite performing better than the pure MPI approach, the parallel
efficiency of this initial solution deteriorates with an increasing number of partitions.

33

barrier #1

phase 1

T0

1

T1

3

T2

4

0 1 2 3 4

P0 P1

T0 T1 T2 T0 T1 T2

P0 P1

A B

T0 T1 T2

phase 2

(exponentiateP + precomputeTips)

barrier #2

(main across-sites loop)

partitioned alignment: P1

Figure 3.3: Hybrid MPI/OpenMP parallelization scheme: A. Partitions are distributed among
MPI processes, and then among OpenMP threads. B. The two-phase PLF evaluation procedure
allows for better load balance and less synchronization overhead.

Note that, analyses with hundreds or thousands of partitions represent the standard
ExaML use case (e.g., [62, 92]). The are several reasons for the above inefficiency:

1. Excessive amount of synchronization: For practical reasons, each partition is
processed via a separate kernel call. Consequently, for p partitions there will
be p distinct for-loops over site patterns. Moreover, since every KNC thread is
calculating per-site likelihoods for every partition, synchronization after each
per-partition loop is required.

2. Sequential overhead : Each partition requires some constant amount of com-
putations (with respect to the partition size). For instance, the Q matrix
exponentiation and the pre-computation of conditional likelihoods at the tips
fall into this category. Since these computations are conducted outside the
parallelized for-loops, they are executed sequentially and limit performance
according to Amdahl’s law.

3. Reduced data locality : Due to the OpenMP loop-based parallelization em-
ployed, there is no fixed assignment of alignment site patterns to specific
threads, so cache efficiency decreases because of lack of data locality.

34

Because of these shortcomings, we designed a novel OpenMP parallelization ap-
proach from scratch for ExaML 3.0 (see Figure 3.3). In particular, we use the
algorithm described in [68] to distribute partitions and alignment site patterns not
only among MPI processes, but also (in a second step) among OpenMP threads. In
other words, we now perform two-level load balancing. Initially, partitions (or re-
gions thereof) are assigned to MPI processes. Then, the partitions (or parts thereof)
of a MPI process are assigned to individual threads within this process using the
same algorithm once more. Thereby, we attain a fixed thread-to-alignment pattern
assignment and improve data locality.

To deal with the remaining two issues, we introduce a two-phase PLF calculation:

• In phase 1, we parallelize over partitions: all partitions are distributed evenly
among threads, and each thread performs the constant part of computational
work (mentioned above) for the partition(s) assigned to it.

• In phase 2, we parallelize over sites: each thread performs PLF computations
on its individual part of the alignment.

With this approach, we only require two synchronization points (one after Phase
1 and one after Phase 2) to perform the PLF computation. Thus, the amount of
barriers required is independent of the number of partitions. In addition, work is
now evenly distributed among the KNC threads in both phases which eliminates the
sequential bottleneck.

3.4 Evaluation

3.4.1 Test System

We performed all test runs on the SuperMIC cluster, which is part of the SuperMUC
supercomputer (Leibniz Rechenzentrum, Garching, Germany). On SuperMIC, each
compute node is equipped with 2 Ivy-Bridge host processors (Xeon E5-2650 v2, 2
× 8 cores @ 2.6 GHz) and 2 Intel KNC coprocessors (Xeon Phi 5110P, 2 × 60
cores @ 1.05 GHz). The nodes are connected via Mellanox Infiniband FDR14 using
Mellanox OFED 2.2. Further details on hardware and software configuration of the
test systems are given in Table 3.1.

3.4.2 Kernel-level Performance

Experimental setup

To assess the speedups of individual PLF kernels, we instrumented both CPU and
KNC codes such that we can measure the total time spent in the corresponding

35

System IvyBridge KNC KNL

CPU model 2S Xeon E5-2650 v2 Xeon Phi 5110P Xeon Phi 7210
CPU architecture IvyBridge Knights Corner Knights Landing
Cores 16 @ 2.60 GHz 60 @ 1.05 GHz 64 @ 1.3 GHz
Memory size 32GB DDR3 8GB GDDR5 16GB MCDRAM
Memory bandwidth 120 GB/s 320 GB/s 400 GB/s
Peak DP performance 346 GFLOPS 1011 GFLOPS 2662 GFLOPS
TDP 190 W 225 W 215 W

SUSE SLES 11 SUSE SLES 12.2
Software stack Intel C Compiler (icc) 15.0.4 icc 17.0.2

Intel MPI 5.0.1.035 Intel MPI 2017.2
2S = dual slot, DP = double precision, TDP = thermal design package

Table 3.1: Hardware and software specifications of test systems used for performance evaluation.

functions during one complete program run (tree search). In this way, we registered
per-kernel runtimes and computed relative speedups on a range of simulated DNA
alignments (generated with INDELible v1.03 [42]). According to our previous obser-
vations, only alignment width (number of sites) but not the number of taxa would
influence the relative PLF kernel performance. Hence, all simulated alignments con-
tain 15 taxa while the sequence length is varying between 10,000 (10 Kilobases or
Kbp) and 4,000,000 (4,000 Kbp) sites.

Based on our experience, PLF computation does not benefit from using the
Hyper-Threading feature of the CPUs. Therefore, we always allocated one thread
per physical CPU core in our test runs. In particular, we used 16 threads on the
IvyBridge system. On KNC, however, the situation is slightly different: due to the
specific design of the instruction pipeline, at least 2 threads per core are essential
to fully utilize the hardware. Moreover, 4 threads per core can be used with Hyper-
Threading, although this doesn’t result in further performance improvements for
PLF computation (similar to CPUs). Apart from this, it is often recommended
to reserve one physical core for system task (e.g., running the built-in Linux OS).
Given these considerations and since our Xeon Phi 5110P card has 60 physical cores
(see Table 3.1), we used (60− 1) ∗ 2 = 118 threads on the KNC system.

Results

We measured the highest speedup of 2.8× for the derivativeInit() kernel (see
Figure 3.4). This is expected given that derivativeInit() performs a simple
element-wise multiplication of CLV entries (see Eq. (2.27)), which can be efficiently
vectorized. The other kernels exhibit a less favorable mixture of numerical opera-
tions. Hence, the speedups for these kernels are at most a factor of two. Furthermore,
there is a clear trend towards higher speedups on longer alignments which holds for
all PLF kernels. In particular, KNC version was even slower than the CPU baseline

36

●

●
●

●

● ● ● ●

●

●

● ●

●

●
●

●

0.5

1.0

1.5

2.0

2.5

3.0

10 50 100 250 500 1000 2000 4000

Alignment size (Kbp)

S
pe

ed
up

 (
x)

PLF kernel

●

●

updateCLV

computeLH

derivativeInit

derivativeCore

Figure 3.4: Speedups of the individual PLF kernels on KNC relative to the IvyBridge baseline.

on 10 Kbp alignment, and reached optimal performance on alignments of 1000 Kbp
and longer. These findings are in line with the previously published results for GPU
implementation of PLF [59].

3.4.3 Application-level Performance on a Single Node

Experimental setup

We used INDELible v1.03 [42] to simulate 10 alignments (5 DNA, 5 AA) with repre-
sentative dimensions as observed for empirical datasets (see Table 3.2 for details):

37

• short: single-gene alignment (e.g., classical 16S rRNA analysis),

• medium: multi-gene alignment with a moderate number of genes,

• large: whole-genome alignment or concatenation of hundreds of genes.

Due to the limited size of KNC on-card memory (8 GB), large alignments com-
prise only 20 taxa, whereas medium and short alignments consist of 200 and 2000
taxa, respectively.

For the medium and large alignments, we tested 2 partitioning schemes:

• unpartitioned (AA) or partitioned by codon positions (DNA),

• fine-grained partitioning schemes analogous to schemes generated by auto-
matic partitioning tools (e.g., PartitionFinder [79]).

To assess ExaML performance on the Intel KNC, we measured the execution times
of one full tree search under the following 4 configurations:

• host: 16 MPI ranks are placed on the host CPUs only (reference for speedup
calculation),

• 1xKNC : 1 MPI rank on a single KNC card, 118 OpenMP threads (on short

datasets, a smaller number of threads was used; see discussion below),

• 2xKNC : 1 MPI rank with 118 OpenMP threads on each of the two KNC cards,

• hybrid: 16 MPI ranks on the host CPUs and 30 MPI ranks (× 4 threads) on
each of the two KNC cards.

Results

The experimental results are summarized in Table 3.2, relative speedups are shown
in Figure 3.5.

As we have already observed in the PLF kernels tests (see Section 3.4.2), the
KNCs perform better on longer alignments, where synchronization and sequential
overhead are better amortized. On the other hand, distributing several thousand
kilobases among >100 threads proved to be inefficient. This is in line with our
empirical observations for the ExaML CPU version, where one process per 100–500
alignment site patterns should be used for attaining good parallel efficiency. Hence,
we only used 30 and 40 threads for the dna short 1p and aa short 1p datasets, respec-
tively. Analyzing such extremely short alignments on the KNC only makes sense
when a ’multiplexing’ strategy is applied. If multiple ML searches are executed (e.g.,
with different starting trees), one can start several (independent) ExaML instances in

38

parallel, so that all KNC cores are being used (e.g., 4 independent instances with 30
threads each). In such a ’multiplexing’ configuration, a single KNC card is on par
with the performance of the host cores alone. Thus, more than two-fold speedups
are expected if both KNC cards and the host cores are used.

On the medium and long datasets, speedups on DNA data are higher than on
AA data (1.34×–1.66× vs. 1.04×–1.37×). Also, despite our specific optimizations
for partitioned alignments, the KNC version shows a 5–20% performance decrease
(compared to the unpartitioned analysis) if the number of partitions is large.

In hybrid mode, we attained up to four-fold speedups have been achieved on
large DNA alignments. Since in this configuration the CPU and KNC cores work
together, load balancing becomes essential. Given that ExaML distributes alignment
patterns and partitions evenly among MPI ranks, one can fine-tune the ratio between
MPI ranks on host CPUs and KNCs to improve load balance. For example, in our
experiments we used 30 KNC ranks and 16 host CPU ranks, which yields a ratio of
1.875. Intuitively, this ratio should be close to the KNC/host speedup. Thus, lower
values might yield better results on smaller alignments (e.g., 24/16 = 1.5).

39

Dataset properties Execution time, s Speedup to host, ×
Data type Code # taxa # sites # patterns # part. Host 1×KNC 2×KNC Hybrid 1×KNC 2×KNC Hybrid

DNA

dna short 1p 2000 6K 5322 1 6776 29010 NA NA 0.23 NA NA

dna medium 3p 200 300K 293780 3 9579 6643 4073 3251 1.44 2.35 2.95

dna medium 50p 200 300K 293158 50 9505 7092 4264 3444 1.34 2.23 2.76

dna long 3p 20 4000K 1940554 3 1591 908 482 389 1.75 3.30 4.09

dna long 500p 20 4000K 3084131 500 2542 1528 825 680 1.66 3.08 3.74

AA

aa short 1p 2000 2k 2044 1 41741 132019 NA NA 0.32 NA NA

aa medium 1p 200 60K 56655 1 18911 16304 9070 7423 1.16 2.08 2.55

aa medium 50p 200 60K 56966 50 22098 21169 12165 9534 1.04 1.82 2.32

aa long 1p 20 600K 442153 1 3402 2477 1265 1019 1.37 2.69 3.34

aa long 500p 20 600K 544580 500 4334 3711 1912 1497 1.17 2.27 2.90

Table 3.2: ExaML execution times and speedups on the host cores (Host), on the single (1×KNC) and dual (2×KNC) Xeon Phi
coprocessor(s), and in hybrid mode where host cores and both KNCs are used simultaneously (Hybrid). Results for several nucleotide
(DNA) and protein (AA) alignments with different dimensions and partitioning schemes are shown. The execution times are medians
of 3 independent runs.

40

AA
short_p1

AA
medium_p1

AA
medium_p50

AA
long_p1

AA
long_p500

DNA
short_p1

DNA
medium_p3

DNA
medium_p50

DNA
long_p3

DNA
long_p500

host 1xKNC 2xKNC hybrid host 1xKNC 2xKNC hybrid host 1xKNC 2xKNC hybrid host 1xKNC 2xKNC hybrid host 1xKNC 2xKNC hybrid

0

1

2

3

4

0

1

2

3

4S
pe

ed
up

 (
x)

Platform IvyBridge (host) 1xKNC 2xKNC hybrid

Figure 3.5: ExaML-KNC speedups on DNA and AA alignments

41

3.4.4 Scalability Analysis

In scalability analyses, one usually distinguishes between strong and weak scaling.
Both metrics assess the runtime improvement that can be achieved by using more
cores for solving the problem in parallel. However, strong scaling is calculated
based on a fixed problem (dataset) size, whereas for weak scaling the problem size
is increased with the number of cores (i.e., the working set size is fixed per core).

More formally, strong and weak scaling efficiency are calculated as follows:

Sstrong =
t1,1

N ∗ t1,N
∗ 100% (3.1)

Sweak =
tN,1
tN,N

∗ 100% (3.2)

where N is the number of cores and t1,1, t1,N , tN,1, tN,N are the runtimes for the
respective dataset size (1 or N working units, first index) and the number of cores
(second index).

On the Intel KNC accelerators, strong scaling of ExaML is limited by two factors:

1. The maximum size of an alignment which can be analyzed on a single card
is constrained by the amount of on-board memory (8 GB for the Xeon Phi
5110).

2. As we distribute an alignment of fixed size over multiple co-processors, the
number of site patterns per card and per core decreases, and so does efficiency.

In most practical cases, it will therefore be suboptimal to run an analysis on
multiple cards, if one single card can handle the data in terms of memory require-
ments. On the other hand, one might have to use multiple KNCs if the dataset does
not fit into the memory of a single card. To account for this scenario, we evaluated
the weak scaling behavior of ExaML-KNC on large datasets.

As Figure 3.6 shows, our implementation scales reasonably well: it attains a
parallel efficiency of about 80% on 16 KNC cards and about 70% on 32 KNC cards.
The difference in scalability between DNA and AA alignments amounts to only
1–3% and is therefore negligible.

3.5 Outlook: Intel Knights Landing

In 2016, Intel introduced the second generation of Xeon Phi accelerators codenamed
Knights Landing (KNL). Compared to the KNC , they offer up to 3× higher peak

42

●

●

●

●

●

●

50

70

80

90

100

1 2 4 8 16 32

Number of KNC cards (x118 processes)

P
ar

al
le

l e
ffi

ci
en

cy
 (

%
)

Data type

● DNA

AA

Figure 3.6: Weak scaling of ExaML-KNC. Each KNC card has been assigned a part of an alignment
comprising 50 taxa and 1000k DNA sites or 200k AA sites, divided into 100 partitions.

performance while providing a very similar developer-friendly programming model.
In particular, the KNL vector unit has the same width as on the KNC (512 bit), and
the corresponding SIMD instrunction set (AVX512) is to a large extent compatible
with that of the KNC. Moreover, the AVX512 instruction set will be used in the
recently announced Intel CPUs based on Skylake-X/Skylake-SP microarchitecture.
Therefore, existing KNC codes can be easily adapted to these new platforms.

Indeed, ExaML-KNC required only minimal modifications to compile and run on
KNL. Apart from changing the compiler flags, there was only a single vector in-
trinsic (mm512 reduce gmax pd) which was missing in AVX512 and thus had to
be replaced. Our preliminary performance evaluation showed that ExaML-KNC runs
2.5× – 4.2× faster on the KNL than on the KNC (Figure 3.7). This is very close to
the theoretical peak performance ratio of the two Xeon Phi cards being used (KNL:
2662 GFLOPS vs. KNC : 1011 GFLOPS, see Table 3.1). We therefore conclude
that ExaML-KNC attains near-optimal performance on the KNL even without further
specific optimizations.

43

AA
medium_p1

AA
medium_p50

AA
long_p1

AA
long_p500

DNA
medium_p3

DNA
medium_p50

DNA
long_p3

DNA
long_p500

host KNC KNL host KNC KNL host KNC KNL host KNC KNL

0

1

2

3

4

0

1

2

3

4

S
pe

ed
up

 (
x)

Platform IvyBridge (host) 1xKNC 1xKNL

Figure 3.7: Preliminary evaluation of ExaML-KNC performance on Intel Knights Landing (KNL)
accelerators.

44

Chapter 4

RAxML-NG: a Next Generation
Phylogenetic Inference Tool

This chapter is based on yet unpublished work by Alexey Kozlov, Diego Darriba,
and Tomas Flouri. The respective codes are freely available on Github:

• RAxML-NG: https://github.com/amkozlov/raxml-ng

• pll-modules: https://github.com/ddarriba/pll-modules

• libpll: https://github.com/xflouris/libpll

Contributions: Alexey Kozlov designed, implemented and tested the RAxML-NG

program. Diego Darriba and Alexey Kozlov developed the pll-modules li-
brary (numerical optimization methods, tree topology operations, SPR-based
tree search primitives). Tomas Flouri, Diego Darriba and Alexey Kozlov devel-
oped the libpll library (low-level PLF computation kernels, MSA and tree I/O
utilities). Additional contributions to libpll and pll-modules (not covered
in this chapter) were made by Pierre Barbera and Benoit Morel. Alexandros
Stamatakis designed the original tree search algorithm (implemented in RAxML)
and provided guidance on its re-implementation as well as PLF computation
techniques.

4.1 Background and Motivation

RAxML [130, 134] is a widely-used software for ML-based phylogenetic inference. The
four main papers on RAxML have been cited more than 20,000 times according to
Google Scholar (as of November 2017). More recently, we released ExaML [72, 135],

45

https://github.com/amkozlov/raxml-ng
https://github.com/ddarriba/pll-modules
https://github.com/xflouris/libpll

a light-weight version of RAxML that has been specifically optimized to process large
phylogenomic alignments and attain high scalability on supercomputers. In partic-
ular, ExaML features more efficient parallelization and data distribution approaches.
At also supports binary input file format and checkpointing. On the other hand,
many important functions of classical RAxML such as bootstrapping and ascertain-
ment bias correction [83, 85] are not implemented in ExaML. At the same time, the old
code-base of RAxML (largely inherited by ExaML) that had been growing for over 15
years hampered the implementation of new features. Furthermore, the maintenance
overhead (i.e., identifying and fixing bugs) became excessively high.

This motivated us to re-write the software from scratch in a clean and modular
way. In a first step, the core likelihood computation kernel was encapsulated in
libpll, a flexible, yet efficient library with a well-defined interface (not part of this
thesis). Subsequently, we leveraged libpll to re-implement the modified version
of the RAxML tree search algorithm in a new tool called RAxML-NG (for RAxML
Next Generation). In the process of re-implementation, several known bottlenecks
were eliminated (Section 6.2.3) and the functionality was extended in multiple ways
(Section 4.2). Moreover, several high-level tree search primitives (e.g., enumerating
and scoring SPR moves) were transferred to the pll-modules library, making them
available for other phylogenetic codes as well.

4.2 Improvements over RAxML

4.2.1 Flexibility and User-friendliness

New DNA models with flexible parametrization

In RAxML, only the GTR model of DNA substitution (see Section 2.5.1) was fully
supported. Although limited support for JC69 [63] and K80 [66] models was added
in the latest versions, it was impossible to assign different models to distinct parti-
tions (for instance, GTR for partition 1 and K80 for partition 2).

RAxML-NG supports all 22 ’classical’ GTR-derived models [40], and allows for
arbitrary combinations thereof in partitioned analyses. Furthermore, all model pa-
rameters (substitution rates, equilibrium frequencies, proportion of invariant sites
etc.) can be fixed to user-specified values.

Rate heterogeneity across sites

In addition to the Γ and the P-inv (Section 2.5.2) RHAS models available in RAxML,
RAxML-NG now also supports the FreeRate model. The PSR model will also be
implemented soon.

46

In RAxML, the number of Γ rate categories was hard-coded and fixed to 4. In
RAxML-NG, the number of categories for both the Γ and the FreeRate models can
be specified by the user, although 4 categories are still the default. In partitioned
analyses, RAxML-NG allows to set individual per-partition RHAS models, whereas in
RAxML all partitions needed to have the same RHAS model (albeit with independent
parameters).

Vectorization and parallelization

RAxML supports multiple SIMD instruction sets (scalar, SSE3, AVX, AVX2) and sev-
eral parallelization approaches (sequential, PThreads, MPI, and hybrid with MPI
and PThreads). However, a specific vectorization and parallelization scheme has
to be selected at compile-time, by using the respective Makefile. Albeit the compi-
lation process is described in the RAxML manual, for many users without a strong
computational background, it proved to be challenging to select the optimal ver-
sion for their system. Moreover, even if multiple versions were pre-installed in the
cluster environment, we repeatedly observed users running the ’default’ binary (for
instance, the single-threaded non-vectorized one) and thereby wasting computing
time and energy.

In order to prevent such inefficient usage and to improve user experience, we
implemented runtime SIMD auto-detection in RAxML-NG. This guarantees that the
most advanced instruction set provided by the CPU will be used. Furthermore,
it allows to build a statically-linked portable binary which can be used across dif-
ferent Unix/Linux systems and x86-64 CPU models. Also, we automatically de-
tect the number of CPU cores and set the default number of threads accordingly.
RAxML-NG parallelization is fully configurable in runtime, so all running modes from
single-threaded to hybrid MPI/PThreads are available with the same executable (if
compiled with MPI support).

4.2.2 Performance and Scalability

Hybrid MPI/PThreads parallelization

RAxML uses the fork-join parallelization model, which requires a synchronization af-
ter each PLF kernel call. This approach becomes inefficient when the number of
processes is large and/or the synchronization cost is high, as it is the case in large
distributed systems. This is much less of concern for RAxML, since it implements the
fine-grained parallelization (across alignment sites) only within a single node (with
PThreads), whereas the inter-node parallelization with MPI is coarse-grained (across
starting trees and bootstrap replicates). The latter requires virtually no communi-
cation between processes and is therefore very efficient for small- to medium-size

47

datasets.
However, scalability of this coarse-grained approach to large phylogenomic align-

ments is limited, not only due to longer execution times, but also because of the
high memory requirements for the PLF computation on the whole alignment, which
can easily exceed the available amount of RAM on a single node. Therefore, ExaML
implements MPI-based parallelization across alignment sites using an alternative
approach [135]. Each thread (or MPI rank) executes its own consistent copy of the
tree search algorithm, and there are only two synchronization points: evaluating
the tree likelihood at the virtual root (see Section 2.6.3), and computing the PLF
derivatives during the branch length optimization with the Newton-Raphson method
(see Section 2.6.4). In both cases of synchronization, a single MPI Allreduce oper-
ation is performed (parallel sum reduction followed by the resulting sum broadcast
to all MPI ranks). This solution does not only avoid unnecessary, potentially costly
synchronizations, but also substantially reduces code complexity.

In RAxML-NG, we implement ExaML-style fine-grained parallelization, but in a
hybrid MPI/PThreads setting. Hence, the parallel reduction is performed in three
steps: (i) first, all threads of a rank synchronize between themselves, then, (ii) an
MPI Allreduce operation is performed to compute a global sum across all MPI ranks
and distribute it to all ranks, and finally, (iii) this global sum is broadcasted to all
threads.

In our experience, hybrid MPI/PThreads approach yields better scaling to thou-
sands of CPU cores (see [72] and Figure 4.5). Nevertheless, RAxML-NG can also be
configured to run in pure MPI parallelization mode by setting the number of threads
per MPI rank to 1.

Per-rate CLV scalers

When evaluating the likelihood of large trees with Felsenstein’s pruning algorithm,
there is a risk of numerical underflow during the CLV computation at the inner
nodes (see Section 2.6.2). In RAxML/ExaML, this problem is alleviated by applying
numerical scaling : if all CLV entries for a certain alignment site (and node) are
below a threshold ε > 0, they are multiplied with a large constant M to prevent
underflow. We furthermore keep track of the total number of scaling multiplications
being made in a dedicated scaling vector σ that is associated with every inner node.
The length of this vector is equal to the number of alignment sites m, and its
elements σs, s = 1 . . .m store the scaling factors (or scalers) for the CLV entries at
site s. During the final likelihood computation at the virtual root, we use scalers to
correct for the CLV multiplications.

Although this scaling approach is sufficient to prevent overflow for most datasets,
it is still prone to underflow under the Γ RHAS model on very large trees with thou-
sands of taxa [60]. This is due to the fact that the scaling (that is, the multiplication)

48

is applied on a per-site basis. In other words, only if all CLV entries for all rate
categories drop below the threshold, the scaling is applied to all CLV entries simul-
taneously. Hence, if conditional likelihoods vary substantially among individual Γ
rate categories (which is often the case for low values of the α parameter, that is,
for datasets with high rate heterogeneity), then CLV entries for one or more cate-
gories can underflow. This is not (yet) a problem, since at least one rate category is
guaranteed to have non-zero CLV entries. However, computing the tree likelihood
at the virtual root involves the multiplication of two CLVs associated with the re-
spective adjacent nodes, left and right from the virtual root (see Section 2.6.3).
Consequently, if for a certain alignment site, there is no single category for which
both left and right CLVs did not underflow, then the site likelihood computed ac-
cording to the equations (2.17) – (2.21) will be equal to zero. Obviously, this is an
invalid likelihood value resulting from the information loss due to underflow in CLVs.
In practice, this prohibits the application of the Γ model of rate heterogeneity (as
implemented in RAxML/ExaML) to some important empirical datasets (for instance,
large marker gene databases such as LTP [161] and SILVA [109], see Section 6.4.1).

We solved this problem by introducing the per-category scaling mode in libpll.
In this mode, we perform the underflow check and scaling for each Γ rate category
individually. We also extend the scaling vector to the length mK (where K is the
number of rate categories), such that it can store all individual per-category scalers
σs,c, s = 1 . . .m, c = 1 . . . K. The log-likelihood at the virtual root can then be
computed as follows:

logLs = log

(
1

K

K∑
c=1

(
Ls,cM

−σs,c
))

(4.1)

For computational convenience, we do not apply the above formula directly,
but simplify it in the following way. Let us define the minimum scaler across all
categories µs = minc{σs,c} and the relative per-category scalers ρs,c = σs,c − µs.
Then we can re-write (4.1) as:

logLs = log

(
M−µs · 1

K

K∑
c=1

(
Ls,cM

−ρs,c
))

(4.2)

and further simplify it to:

logLs = µs · log(M−1) + log

(
1

K

K∑
c=1

(
Ls,cM

−ρs,c
))

(4.3)

49

Finally, we truncate the relative scaler ρs,c at a certain value (currently: 4), since
the overall likelihood contribution of categories with larger scaling factors will be
negligible.

Obviously, per-category scaling incurs a certain overhead in terms of both compu-
tation and memory consumption (for storing the larger scaling vectors). Therefore,
this mode is optional in RAxML-NG, but it is enabled by default on datasets with
more than 2,000 taxa, where this underflow is likely to occur.

Checkpointing

In a cluster or supercomputer environment, the maximum execution time of user
jobs is usually limited (e.g., 24 or 48 hours limits are very common). Therefore,
long-running analyses can only be executed if the program has an ability to save its
intermediate execution state (checkpoint) in a file, and use this information later on
to restart from that stage. Checkpointing was supported by ExaML, but standard
RAxML lacked this important feature. In RAxML-NG, we implement checkpointing in
a more efficient and user-friendly way: checkpoint files are more compact than for
ExaML, and restarting from a checkpoint is fully transparent to the user (that is, no
command line modifications are needed). The latter is particularly convenient in
some cluster systems, where the job scheduler is configured to automatically restart
user jobs that have been interrupted due to external reasons (hardware failure,
maintenance etc.).

4.2.3 Search Algorithm Modifications

In general, RAxML-NG implements the same hill-climbing search heuristic as RAxML

(see [137] and [131] for details). The basic building block of this heuristic is a so-
called SPR round: all possible subtrees are subsequently removed from the currently
best tree Tb, re-insertions into all neighboring branches up to a specified rearrange-
ment distance are performed, and corresponding induced topologies T ′b are scored.
There are two scoring methods: in the fast SPR mode, the log-likelihood of each in-
duced topology with original branch length values is computed, whereas in the slow
mode three branches adjacent to the insertion point are additionally optimized using
the Newton-Raphson method. If any of the induced topologies T ′b yields a higher
log-likelihood score than the currently best tree, the corresponding SPR move is
immediately applied, and we continue the optimization process with the new best
tree Tb := T ′b.

Briefly, the complete search algorithm of RAxML and RAxML-NG comprises the
following steps:

1. Initial optimization of all branch lengths and evolutionary model parameters

50

on the starting topology (using log-likelihood improvement threshold of ε =
10.0)

2. Determination of the best rearrangement distance: we perform SPR rounds in
the fast mode with increasing rearrangement distance to detect the optimal
distance value for the dataset at hand. More specifically, we start with a
distance of 5, and increase it in steps of 5 until no log-likelihood improvement
can be achieved, or until the maximum rearrangement distance is reached.
The last (and hence, the highest) rearrangement distance that yielded a log-
likelihood improvement is selected as the ’best’ distance Db and is subsequently
used in the fast SPR iterations.

3. Intermediate model parameter optimization (ε = 5.0)

4. Fast SPR iterations. We perform SPR rounds in the fast mode with a fixed
rearrangement distance Db determined above. We maintain a list BN of 50
(RAxML) or 60 (RAxML-NG) best-scoring subtrees (that is, pruning nodes). At
the end of the round, every subtree in BN is pruned again, re-inserted into
neighboring branches up to a distance of Db, and scored in the slow mode.
Now, we maintain another list BT of 20 best-scoring topologies resulting from
the slow re-insertions. Finally, all trees in BT undergo a full branch length
optimization, and a tree with the highest log-likelihood is selected as the new
best tree Tb. The iteration process terminates when no better topology was
found after an SPR round.

5. Intermediate model parameter optimization (ε = 1.0)

6. Slow SPR iterations. We perform SPR rounds in the slow mode, and maintain
a list BT of 20 best-scoring topologies. At the end of each SPR round, all trees
in BT undergo a full branch length optimization, and a tree with the highest
log-likelihood is selected as the new best tree Tb. The rearrangement distance
is initially set to 5, and is increased in steps of 5 if no better tree was found after
an SPR round. Conversely, if a better tree was found after an SPR round, the
rearrangement distance is reset to 5. The iteration process terminates when
the maximum rearrangement distance is reached (default: 25).

7. Final model parameter optimization (user-specified threshold, default:ε = 0.1)

In RAxML-NG, several implementation details have been changed compared to
RAxML:

• Subtree enumeration: As described above, each SPR round involves prun-
ing and regrafting all possible subtrees of the current best tree. In RAxML-NG,

51

we use a simple approach to subtree enumeration: we iterate over a list of
inner nodes of the tree, and then prune and regraft three subtrees induced
by three branches adjacent to each inner node. Conversely, RAxML (implic-
itly) iterates over branches, and performs (at most) two SPRs per each branch
(that is, it prunes left and right subtrees). Most importantly, the selection of
best-scoring topologies for the BT list and nodes for the BN list (see above)
is also performed on a per-branch basis. In other words, at most one node of
each adjacent pair can be added to the best-scoring list, and can thus undergo
a thorough evaluation at the end of the SPR round (see above). Hence, if both
adjacent nodes (and respective subtrees) have promising SPRs, one of them
will be missed. Most likely, this inefficiency of RAxML is the main reason why
it failed to find the best-known ML tree in some of our tests (see Section 4.3).

• Best rearrangement distance. In RAxML, the minimum rearrangement dis-
tance was always set to 1, and only the maximum distance was increasing. In
other words, in the first SPR round, the re-insertions into all branches at the
distance between 1 and 5 nodes from the pruning point were attempted, in
the second round – at the distance between 1 and 10, and so on. In RAxML-NG,
we increase the minimum rearrangement distance as well: that is, the distance
interval is 1 to 5 in the first SPR round, 5 to 10 in the second SPR round,
and so on. We think that this new approach better reflects the original idea
of distance probing, as we want to set a larger best distance (e.g., 10) only if
the improvement can not be reached by SPRs with a shorter range (e.g., 5).

• Branch length optimization. While libpll and RAxML operates with the
actual branch length values b ∈ [0,∞) , RAxML converts them into a normalized
form b̂ = e−b/c ∈ (0, 1], where c is a scaling constant. Obviously, this represen-
tation affects the branch length optimization process, and thus can contribute
to the discrepancy between the results of RAxML and RAxML-NG. However, it
is currently, unclear whether the choice of representation has any systematic
effect.

4.2.4 Modularization

Unlike its predecessors RAxML and ExaML, RAxML-NG is designed in a modular way
and heavily relies on the functionality provided by two software libraries, libpll and
pll-modules (see Figure 4.1). In particular, libpll encapsulates an efficient im-
plementation of parsimony score and PLF computation, with specifically optimized
kernels for the most frequently used input data types (DNA and protein) and SIMD
instruction sets (SSE3, AVX , and AVX2). It furthermore provides a basic tree struc-
ture with corresponding operations (for instance, tree traversals) as well as parsers

52

libpll

pll-modules

RAxML-NG EPA-NGModelTest-NG

Numerical optimization
(Newton, Brent, L-BFGS-B)

other apps

other apps

PLF kernels
(SSE3, AVX, AVX2)

File I/O
(MSA & trees)

Parsimony score
& stepwise addition

Tree datatypes
& operations

Parallelization Binary I/O

MSA validation
& statistics

Tree movesDiscrete tree operations

Figure 4.1: RAxML-NG in the context of the phylogenetic software ecosystem at our lab. Encapsu-
lation of shared functionality in libpll and pll-modules libraries allows for code reuse, efficient
testing, and faster integration of new features as well as optimizations.

for several common MSA and tree datatypes (FASTA, PHYLIP, and Newick). The
pll-modules library builds on top of libpll and provides high-level functional-
ity that includes MSA processing utilities, discrete tree operations (consensus tree
building, branch support calculation), and numeric optimization methods that are
required for model and branch length optimization (currently: Brent, Newton, and
L-BFGS-B).

Apart from RAxML-NG, two other phylogenetic codes developed in our group rely
on libpll and pll-modules libraries: (a) ModelTest-NG [28] by Diego Darriba
(best-fit model selection for DNA and AA alignments), and (b) EPA-NG [9] by Pierre

53

Barbera (efficient and scalable re-implementation of the evolutionary placement al-
gorithm, see Section 6.1.3).

This thesis contributed multiple functions that are essential for RAxML-NG, but
also relevant for other applications, to the libpll and pll-modules libraries:

(a) numerous low-level optimizations of PLF kernels

(b) support for per-category rate CLV scalers (see Section 4.2.2)

(c) flexible parallelization support with callback functions for parallel all-reduce
operations

(d) high-level methods for tree likelihood evaluation, model parameter and branch
length optimization on partitioned alignments

(e) basic tree search capabilities (enumeration and scoring of all possible SPRs
for a given topology, which is the central part of the RAxML/RAxML-NG search
algorithm)

(f) MSA validation and statistics calculation

In addition to the benefits for testing and maintenance, the modular structure
of RAxML-NG also facilitates integration of new features. This was exemplified by
the recent implementation of the site repeats optimization technique [69] in libpll

(carried out by Benoit Morel and not covered in this thesis). At least three applica-
tions developed in our group – ModelTest-NG, EPA-NG, and RAxML-NG– immediately
profited in form of reduced memory consumption and/or running times. Another
example is the SPR-based tree search functionality which is now also used in the
ModelTest-NG code.

4.3 Evaluation

4.3.1 Experimental Setup

Test system configuration

We performed all benchmarks cluster at HITS, which consists of 224 compute nodes
with dual-slot Intel Haswell CPUs (see Table 4.1). We compared RAxML-NG to
three other state-of-the-art ML tree inference tools: IQTree, RAxML, and ExaML (see
Table 4.2).

54

System HITS cluster

Hardware Software

CPU model 2 × Xeon E5-2630 v3
OS

CentOS Linux

CPU architecture Haswell release 7.2.1511

Cores 16 @ 2.40 GHz Compiler GCC 5.4.0

Memory size 64GB DDR4 MPI Open MPI 1.10.3

Table 4.1: Hardware and software specifications of test system used for performance evaluation.

Tool Version Release date References

ExaML 3.0.19 May 2017 [72, 135]

IQTree 1.5.5 June 2017 [21, 98]

RAxML 8.2.10 March 2017 [134]

RAxML-NG 0.5.1 November 2017 [71]

Table 4.2: ML inference tools used for benchmarking.

Datasets

For the RAxML-NG evaluation, we picked 10 empirical protein and DNA datasets with
varying number of taxa, alignment sites and partitions (Table 4.3). In particular,
we included:

(a) four short alignments downloaded from TreeBase [121] that were analyzed
without partitioning (dna M7024, dna M8385, aa M8630, and aa M10372),

(b) four medium-size partitioned alignments recently used to benchmark fast ML-
based tools by Zhou et al. [164] (dna WickD3b, dna PrumD6, aa NagyA1 and
aa WhelA7), and

(c) two genome-scale datasets with thousands of partitions from two recent phy-
logenomic studies (dna hymeALL [106] and aa bird4M [62]).

The number of taxa in our test datasets varies from 48 in aa bird4M to 767 in
dna M7024. For the partitioned datasets, we used the original partitioning scheme
and models as provided in the respective references. For the unpartitioned datasets,
we used the GTR model for DNA data and the LG model for protein data (combined
with the Γ model of RHAS). Although we did not perform the formal model testing,
GTR+Γ and LG+Γ models are known to fit most empirical datasets reasonably

55

well [82]. Moreover, since we only compare tree search efficiency and speed (see
discussion below), the choice of evolutionary models is of secondary importance.

The memory requirements of the two largest datasets (dna hymeALL and aa bird4M)
exceed the amount of RAM available on a single node (64GB). Hence, we were un-
able to analyze them with RAxML and IQTree, as these tools do not support fine-grain
parallelization across multiple nodes (see Section 4.2.2)

Designator Data # taxa # alignment # unique # parti- Reference

type sites patterns tions

dna M7024 DNA 767 5,814 3492 1 [108]

dna M8385 DNA 212 19,972 11,673 1 [154]

aa M8630 AA 50 21,154 15,022 1 [56]

aa M10372 AA 169 22,426 18,663 1 [25]

dna WickD3b DNA 103 290,718 277,375 8 [153]

dna PrumD6 DNA 200 394,684 236,674 75 [107]

aa NagyA1 AA 60 172,073 156,312 594 [94]

aa WhelA7 AA 70 59,725 58,419 210 [151]

dna hymeALL DNA 174 3,011,099 2,248,590 4,116 [106]

aa bird4M AA 48 4,432,759 2,341,493 8,000 [62]

Table 4.3: Characteristics of the datasets used for the RAxML-NG evaluation.

Evaluation strategy

For each dataset and ML inference tool, we ran 20 independent tree searches. We
used RAxML to generate 20 starting trees per dataset: 10 fully random trees and
10 trees using parsimony-based randomized step-wise addition. We then used those
starting trees in the respective replicate runs of RAxML, ExaML, and RAxML-NG. Unlike
other evaluated methods, IQTree is designed to use a collection of starting trees (99
parsimony tree + 1 NJ tree by default). Therefore, we did not force IQTree to
use a single starting tree, but instead performed all 20 tree searches with the same
(default) parameters, but with different random seeds.

We compared RAxML-NG to alternative methods with respect to three perfor-
mance metrics: search efficiency (using the log-likelihood of the inferred trees as a
proxy), inference speed, and scalability to a large number of cores or compute nodes.

The evaluation of the tree inference tools is complicated by the fact that the true
evolutionary history is usually unknown, and thus no reference trees are available

56

for empirical datasets. Simulated alignments, on the other hand, do not necessarily
reflect the full complexity of real-world data, since they are usually generated under
the same model of evolution that is subsequently used for the tree inference. In
our evaluation, we use empirical datasets and consider the log-likelihood scores of
the inferred trees as a relative performance measure for tree search algorithms.
Please note that ML inference is based on the theoretical assumption that the tree
with the highest log-likelihood represents the biologically most plausible hypothesis.
In practice, however, this assumption can be invalidated by issues such as model
misspecification, noisy sequence data, and/or insufficient phylogenetic signal in the
alignment. In fact, even on simulated data with a known evolutionary model and
no sequencing or alignment errors, we repeatedly observed that the true reference
tree had a lower log-likelihood score than certain alternative – and thus incorrect –
tree topologies. This phenomenon is best explained by a lack of phylogenetic signal,
since we observed it mainly in short alignments with thousands of taxa from [72]
and [86]. Short alignments are generally problematic, since the ML criterion has
been shown to be statistically consistent only if the number of alignment sites goes
to infinity [157]. These methodological issues, albeit important, are not relevant for
the benchmarks we perform in this chapter. Here, we merely compare the efficiency
of search heuristics implemented in the respective tools.

Another practical complication is that log-likelihood scores reported by different
ML inference programs can not be directly compared due to, for instance, different
thresholds for minimum and maximum parameter values (e.g., branch lengths, α
shape parameter etc.). Therefore, we re-evaluated all trees with ExaML (using the
-f E option) to be sure that the log-likelihood scores are only affected by the tree
topology and not by program-specific implementation details.

4.3.2 Results

Search efficiency

We plot the obtained normalized log-likelihood scores for all tools and replicate
searches in Figure 4.2 (small datasets), Figure 4.3 (medium-size datasets), and
Figure 4.4 (large datasets). For better readability, we normalize the log-likelihoods
score by subtracting the ’best-observed’ log-likelihood score for the respective dataset
(among all tools and replicates). More formally, we for every inference tool i and
replicate j, we compute the normalized log-likelihood score nLLi,j as follows:

nLLi,j = logLi,j −max{logLt,r}t={IQTree,ExaML,RAxML,RAxML−NG}
r=1..20 (4.4)

Clearly, nLLi,j ≤ 0, and the best-observed topology has a normalized log-likelihood
score of zero.

57

Overall, RAxML-NG showed the best search performance, finding the best-known
ML tree at least once for all 10 datasets. It is closely followed by IQTree (7 out
of 8, two largest datasets not analyzed). RAxML and ExaML searches converged to a
local optimum more often, which resulted in a failure to discover the best-known
topology for 3 out 8 (RAxML, two largest datasets not analyzed) and 4 out of 10
(ExaML) test datasets. It should be noted, however, that on the aa bird4M dataset,
ExaML on average returned better topologies, and recovered the best-known tree in
more replicate searches than RAxML-NG did (5 vs. 3 out of 20).

On two datasets, aa M8630 and aa WhelA7, all methods converged to the best-
known topology in all 20 replicate searches. These alignments only contain moderate
number of taxa (50 and 70), relatively long sequences (>20,000 AA sites), and thus
exhibit a very strong phylogenetic signal with a clear, presumably global, optimum.
On the contrary, several other datasets (aa M10372, aa NagyA1, dna WickD3b, and
dna PrumD6) seem to exhibit multiple local optima, in which methods searching
from a single starting tree – RAxML, ExaML and, to a lesser extent, RAxML-NG– can
be easily trapped. These results provide further evidence for the well-known rule-
of-thumb: it is important to use multiple starting trees, and include both random
and parsimony-based starting topologies.

Finally, on short DNA alignments (dna M7024 and dna M8385), all four meth-
ods show a substantial variability in results. This is characteristic of the ’rough’
likelihood surface without clear optima, which is typical for the datasets with this
shape (i.e., many taxa and relatively few alignment sites).

Inference speed

Apart from tree search efficiency, we also benchmarked IQTree, ExaML, RAxML, and
RAxML-NG with respect to their computational speed. Since all programs in our
evaluation support parallelization, we measured and compared parallel runtimes
using 16 threads (1 compute node) for small and medium datasets, and 512 threads
(32 compute nodes, only ExaML and RAxML-NG) for the two largest datasets.

RAxML-NG was the fastest program on all datasets but one: on an extremely
short DNA alignment dna M7024 (<3500 patterns), RAxML and ExaML were 1.5×
faster, but also returned worse trees than RAxML-NG. For the remaining alignments,
the relative performance of the programs exhibits substantial variation. RAxML-NG

yields the highest speedups on long AA alignments: for instance, it is 4.5× faster
than RAxML on aa WhelA7, and 2.9× faster than ExaML on aa bird4M. On DNA data,
however, RAxML-NG speedups are much more modest (up to 1.2× on dna hymeALL
compared to ExaML). This discrepancy is not surprising, as PLF computation for
DNA data was already highly optimized in RAxML, and thus, additional optimiza-
tions in libpll mainly focused on PLF kernels for AA data. On the other hand,
the moderate RAxML-NG speedups on DNA dataset are compensated (and partially

58

explained) by the fact that it inferred better trees than RAxML and ExaML.

Finally, RAxML-NG is between 1.2× (dna M8385) and 2.6× (aa M8630) faster
than the IQTree program, which showed similar tree search efficiency in our analy-
ses. Of note, our findings are consistent with the results of independent evaluation
recently carried out by Zhou et al. [164, Table S6]. According to their measurements,
RAxML-NG was ≈ 2× faster than IQTree, and between 2× (DNA data) and 3× (AA
data) faster than RAxML on single-gene alignments.

Please note, that we measured RAxML-NG run times without enabling the recently
integrated site repeats optimization [69] (available since version 0.5.0). In our pre-
liminary tests, this optimization yielded additional speedups of 1.1× – 1.6×, and
was particularly efficient for DNA alignments with many taxa.

Scalability

We also tested the scalability of RAxML-NG and ExaML on larger number of cores
(up to 2048) on two large phylogenomic datasets (dna hymeALL and aa bird4M).
Because of the high memory requirements of these alignments, they could not be
analyzed on a single node of our cluster. Therefore, we have to use the run time
on 32 cores (2 compute nodes) as the reference value for assessing scaling efficiency.
Scaling efficiency is the percentage of the ideal (linear) speedup that a given program
attains in practice. For instance, a speedup of 3 on 4 cores has a scaling efficiency
of 75% (see also Section 3.4.4).

Overall, RAxML-NG shows better scaling than ExaML (Figure 4.5). This can be
attributed to the hybrid MPI/PThread parallelization, which already proved to be
better suited for large core counts in our previous experiments (Section 3.3). More-
over, we obtained superlinear speedups of up to 115% and 140% on the dna hymeALL
and the aa bird4M datasets, respectively. This effect is in line with our previous ob-
servations [3, 72], and can be explained by the improved cache efficiency: when
every core has to process a smaller alignment chunk, the respective CLVs still fit
in cache, thus reducing the memory access latency. Additionally, increased (accu-
mulated) memory bandwidth of multiple compute nodes can also contribute to the
observed parallel efficiency improvements. Despite those positive effects of paral-
lelization, there is a clear optimum (512 cores for dna hymeALL and 64-128 cores
for aa bird4M), after which using more cores yields lower parallel efficiency. This is
expected, since growing communication and synchronization overhead can not be
amortized anymore by decreasing amount of computation performed per core.

59

4.4 Conclusion and Outlook

As we show, RAxML-NG offers improvements in tree inference accuracy and speed
over its predecessors RAxML and ExaML. It also compares favorably to the IQTree

program, which employs a conceptually different search algorithm. Moreover, due
to to the hybrid parallelization approach RAxML-NG scales better than ExaML. Apart
from this, with RAxML-NG we resolve several long-standing shortcomings and limita-
tions of RAxML, such as numerical underflow with the Γ model on large datasets, or
lack of flexibility with respect to the DNA and RHAS model specification for parti-
tioned alignments. Finally, we replace an unmaintainable legacy code by a modular
software that will be easy to maintain and extend.

RAxML-NG is currently under active development. Firstly, we plan to re-implement
the most widely-used features of the RAxML program such as topological constraints,
bootstopping [104], and the PSR model [129] of rate heterogeneity. Secondly, we
are now working on the integration with the terraphast library [14] for detection
of phylogenetic terraces [122]. Other potential future features include the imple-
mentation of fast support measures [84] and advanced mixture models (for instance,
PhyloBayes’ CAT [81] model).

60

●

●

●●

●

●●

●
●

●●

aa_M10372, nLL aa_M10372, time

aa_M8630, nLL aa_M8630, time

dna_M8385, nLL dna_M8385, time

dna_M7024, nLL dna_M7024, time

IQ−Tree RAxML ExaML RAxML−NG IQ−Tree RAxML ExaML RAxML−NG

1000

2000

3000

4000

400

800

1200

1600

200

300

400

500

1000

2000

3000

4000

−300

−200

−100

0

−90

−60

−30

0

−0.50

−0.25

0.00

0.25

0.50

−1.5

−1.0

−0.5

0.0

Lo
g−

lik
el

ih
oo

d
un

its
 /

s

ML inference tool IQ−Tree RAxML ExaML RAxML−NG

Figure 4.2: Tree search efficiency and speed of IQTree, ExaML, RAxML, and RAxML-NG on small
unpartitioned datasets. Left: Distance to the best-observed tree in log-likelihood units (normalized
log-likelihood score). Right: Wall-clock execution time with 16 threads (1 compute node).

61

●

●●

●

●●

●

●

●

●

aa_WhelA7, nLL aa_WhelA7, time

aa_NagyA1, nLL aa_NagyA1, time

dna_PrumD6, nLL dna_PrumD6, time

dna_WickD3b, nLL dna_WickD3b, time

IQ−Tree RAxML ExaML RAxML−NG IQ−Tree RAxML ExaML RAxML−NG

3000

4000

5000

6000

7000

8000

9000

5000

10000

15000

20000

10000

20000

3000

6000

9000

−30

−20

−10

0

−4000

−3000

−2000

−1000

0

−12

−9

−6

−3

0

−0.50

−0.25

0.00

0.25

0.50

Lo
g−

lik
el

ih
oo

d
un

its
 /

s

ML inference tool IQ−Tree RAxML ExaML RAxML−NG

Figure 4.3: Tree search efficiency and speed of IQTree, ExaML, RAxML, and RAxML-NG on medium-
size partitioned datasets. Left: Distance to the best-observed tree in log-likelihood units (normal-
ized log-likelihood score). Right: Wall-clock execution time with 16 threads (1 compute node).

62

●

●

aa_bird4M, nLL aa_bird4M, time

dna_hymeALL, nLL dna_hymeALL, time

ExaML RAxML−NG ExaML RAxML−NG

2000

2500

3000

3500

4000

4500

2500

5000

7500

−10000

−5000

0

−3000

−2000

−1000

0

Lo
g−

lik
el

ih
oo

d
un

its
 /

s

ML inference tool ExaML RAxML−NG

Figure 4.4: Tree search efficiency and speed of ExaML and RAxML-NG on very large partitioned
datasets. Left: Distance to the best-observed tree in log-likelihood units (normalized log-likelihood
score). Right: Wall-clock execution time with 512 threads (32 compute nodes).

63

Figure 4.5: Strong scaling efficiency of RAxML-NG vs. ExaML on large phylogenomic datasets.

64

Chapter 5

Accounting for Sequence
Uncertainty in Phylogenetic
Inference

Part of the work described in this chapter was first presented in the following
conference poster:

• Alexey Kozlov, Alexandros Stamatakis: ”Accounting for Sequence Un-
certainty in Maximum Likelihood Phylogenetic Inference”, Poster at Sym-
posium of the SMBE, Vienna, Austria, July 2015.

Contributions: Alexandros Stamatakis, Nick Goldman, David Posada and
Alexey Kozlov designed the sequence uncertainty-aware phylogenetic inference
models. Alexey Kozlov developed a proof-of-concept implementation of these
models in RAxML-QS and RAxML-NG, and carried out the evaluation.

5.1 Background and Motivation

Traditionally, phylogenetic inference methods take a multiple sequence alignment
(MSA) as input. This MSA is deterministic, that is, at each position the MSA con-
tains a symbol from a discrete alphabet, coding for a specific base (nucleotide/amino
acid) or a “gap” (insertion/deletion or missing data). Obviously, this is a simplifi-
cation, since empirical sequence data characters always exhibit an associated uncer-
tainty because of the sequencing technology deployed and respective induced errors.
This uncertainty usually stems from sequencing, read mapping, and/or alignment
error, but can also reflect the actual heterogeneity of the biological sample. The

65

latter case is exemplified by alternative alleles of a diploid organism or nucleotide
polymorphisms present in the individuals of a sequenced population (e.g., in viral
quasi-species). In practice, researchers usually use ad-hoc filtering methods to reduce
sequence uncertainty, for instance, by discarding low-quality reads or low-confidence
alignment regions [18, 144]. However, such filtering could also remove potentially
useful information, and thus become problematic for datasets with closely related
sequences or high error rates [145].

These considerations are particularly relevant for single-cell sequencing (SCS)
data. This emerging technology allows to elucidate the genomic variation at the level
of individual cells, in contrast to classical ’bulk’ sequencing which only determines
the consensus genome sequence of a population of cells. Among other promising
applications, SCS technology can deliver the data needed to reconstruct the evo-
lutionary history of cancer cell populations, which will in turn help to understand
patterns of tumor heterogeneity and mechanisms of cancer progression [54, 95, 150].
However, SCS data exhibits particularly high noise levels, making its analysis ex-
tremely challenging. Although data quality is expected to improve as the technology
matures, it is unlikely to attain the accuracy levels of bulk tissue sequencing due
to inherent issues associated with the SCS approach. In particular, genomic DNA
is amplified from a single template, so there is no positive averaging effect. This
leads to increased error rates and non-uniform read coverage along the genome [95].
Moreover, failure to amplify a stretch of DNA from one of the chromosomes on a
pair results in a specific type of false negative error known as allelic dropout (ADO):
a heterozygous genotype cannot be detected since it appears as being homozygous
in the sequencing data. Phylogenetic tree inference from noisy single-cell data is a
hot research topic, and several tools featuring specialized error correction models
have recently been proposed [61, 118, 162].

Probabilistic models of evolution and the ML tree inference framework offer a
natural way to incorporate sequence data uncertainty. The most straightforward
method of uncertainty specification is the IUPAC ambiguity code [100], which can
encode alternative nucleotides at the same alignment position (for instance, char-
acter R stands for ’either A or G’). Most ML inference programs support this type
of sequence uncertainty. Another simple model of sequencing error that assumes a
constant error rate has been suggested by Felsenstein [40]. Recently, Kuhner and
McGill evaluated this model in a simulation study [77], concluding that such an er-
ror correction improves the branch length estimates, given that this constant error
rate is known at least approximately. We extend this work by implementing a ML
estimation of Felsenstein’s error rate parameter, thus, making the model applicable
to cases where the true error rate is unknown. We also suggest more elaborate se-
quence uncertainty models, which can take into account the error rate heterogeneity
among alignment positions. Additionally, we develop a specialized error model for

66

genotype data which models dropout events.

5.2 Implementation

5.2.1 Models of DNA Sequence Uncertainty

We implement three sequence uncertainty models for DNA data:

1. UFE (uniform error). Here, we assume a single constant error rate ε, which
applies to all alignment positions. Under this model, the likelihood of having
a true state x ∈ {A,C,G, T} at the alignment row i ∈ [1, n] and column
j ∈ [1,m], given the observed state Sij, can be computed as follows:

Lij(x) = P (Sij = y | x, ε) =

{
1− ε if x = y

ε/3 if x 6= y
(5.1)

Please note, that this is exactly the model that was previously suggested in
[40] and evaluated in [77].

2. PSE (position-specific error). This is an extension of the previous model,
which allows for variable error rates across alignment positions. In particular,
each individual position at alignment row (taxon) i ∈ [1, n] and site j ∈ [1,m]
is assigned an individual error rate εij. Hence, the likelihood computation
from (5.1) is modified as follows:

Lij(x) = P (Sij = y | x, εij) =

{
1− εij if x = y

εij/3 if x 6= y
(5.2)

3. PSL (explicit per-state likelihoods). In some applications, per-state like-
lihoods at every alignment position are provided by the upstream software
(for instance, variant-calling tools such as GATK [91]). In this case, we can
directly initialize per-position and per-state likelihoods with the values given
in the corresponding input file (see Section 5.2.3):

Lij(x) = Sijx (5.3)

where Sijx is the likelihood of state x ∈ {A,C,G, T} at alignment row (taxon)
i ∈ [1, n] and site j ∈ [1,m].

67

All three DNA error models (UFE, PSE, and PSL) were initially implemented
in RAxML-QS, a modified version of RAxML (code available under https://github.

com/amkozlov/raxml-qs). Later on, we ported the UFE and PSL models into the
new RAxML-NG code (see Chapter 4). Although the PSE model is currently not
supported by RAxML-NG, it can easily be integrated upon demand.

5.2.2 Models of Genotype Evolution and Sequence Uncer-
tainty

Genotype data encoding

Most higher organisms are either diploid or polyploid, that is, their cells contain more
than just one genome copy in multiple homologous chromosomes. For instance, hu-
mans are diploid, and so our cells carry two sets of chromosomes: one inherited from
the mother (maternal) and another from the father (paternal). If both homologous
chromosomes encode the same nucleotide at a certain position (e.g., A/A), we call
this a homozygous site or allele. Conversely, a site where parental and maternal
chromosomes differ (e.g., A/C), is called heterozygous. Usually, heterozygous sites
constitute a very small fraction of the genome sequence (≈1/1000), and they can
thus be ignored in classical species-level phylogenetic analyses. However, the sig-
nal from heterozygous sites becomes important for inferring relationships between
individuals of the same species or even between single cells of the same individual,
as in these cases the overall sequence variation is much lower. This motivates the
development of evolutionary models for (diploid or polyploid) genotypes.

A genotype can be encoded by a pair of nucleotides x1/x2, x1, x2 ∈ {A,C,G, T}.
If we know the assignment of x1 and x2 to their corresponding maternal and pa-
ternal chromosomes (phasing), then genotype is an ordered pair. Thus, we need 16
states to represent all possible phased genotypes. With current sequencing technol-
ogy, however, the phasing is usually unknown. In this case, we cannot distinguish,
for instance, between genotypes A/C (maternal A/paternal C) and C/A (maternal
C/paternal A). Hence, we can only use 10 states to represent all possible unordered
pairs (unphased genotypes): AA CC GG TT AC AG AT CG CT GT (for convenience, we
will use the notation where nucleotide characters are ordered lexicographically within
each pair).

Models of genotype evolution

Now, we can define Markov Chain models of genotype evolution in the same way
as for DNA and protein data (see Section 2.5.1). In order to reduce the number of
free parameters, we will only consider substitution matrices with identical nucleotide
mutation rates for all genotypes. In other words, we assume rAC↔AA = rAC↔CC =

68

https://github.com/amkozlov/raxml-qs
https://github.com/amkozlov/raxml-qs

rA↔C . Furthermore, we do not consider double mutations, that is, we set rxx↔yy =
0.∀x 6= y. Finally, we do not model recombination, since we focus on somatic
cell evolution, where recombination does not occur. Under these assumptions, we
can derive the ’genotype equivalents’ for all GTR-based substitution models: for
instance, JC69, HKY85 etc.

Model of genotype sequence uncertainty

Here, we describe a genotype uncertainty model proposed by David Posada (pers.
comm.), which we will call GTE (genotype error). This model has two free
parameters: sequencing error rate ε and allelic dropout rate δ. More specifically, ε is
the probability that nucleotide x will be observed as another nucleotide y 6= x (either
due to amplification error or sequencing error). At the same time, δ is the probability
that the amplification of one of the chromosomes has failed (and thus we observe
the homozygous genotype defined by the nucleotide in the amplified chromosome).
Furthermore, we do not consider multiple sequencing errors within one genotype:
for instance, the situation GT (true) → AG → AC (observed) is considered as being
impossible. Thus, we set P (AC | GT) = 0. Under these assumptions, the likelihood
of a true genotype x, given the observed genotype y, is computed as follows:

Lij(x) = P (Sij = y | x, ε, δ) =



1 if y = ’-’(gap)

P0(x) if x = y

P1(x, y) if d(x, y) = 1

εδ/6 if d(x, y) = 2 ∧ y ∈ H
0 otherwise

(5.4)

where

• H = {AA, CC, GG, TT} is a set of all homozygous genotypes

• d(x, y) is a mutation distance between genotypes x and y:

d(x, y) = d(x1x2, y1y2) =


0 if x1 = y1 ∧ x2 = y2

2 if x1 6= y1 ∧ x2 6= y2

1 otherwise

(5.5)

• L0 is the probability of observing the true genotype x:

P0(x) =

{
1− ε+ εδ/2 if y ∈ H
1− ε− δ + εδ otherwise

(5.6)

69

• L1 is the probability of observing the genotype y with a mutation distance
d(x, y) of 1 from the true genotype x:

P1(x, y) =


ε(1− δ)/3 if x ∈ H
δ/2 + ε/6− εδ/3 if x 6∈ H ∧ y ∈ H
ε(1− δ)/6 otherwise

(5.7)

The GTE model is currently implemented in an experimental branch of RAxML-NG.

5.2.3 Sequence Uncertainty Specification

For the UFE and GTE models, the uniform error rates (sequencing error and ADO)
can be specified as command line parameters. Alternatively, they can also be directly
estimated as free parameters from the alignment data (see Section 5.2.5).

For the PSE and PSL models, we use an enriched MSA file (which we will call
probabilistic MSA or pMSA) to specify the position-specific error rates or per-state
likelihoods, respectively. To the best of our knowledge, an established MSA file
format which allows to accommodate sequence uncertainty information in appro-
priate way does not exist. There exist, however, similar formats in related areas of
bioinformatics, which can be adapted to our purposes.

In particular, FASTQ [23] is a file format commonly used to represent per-base
quality scores in read sequencing data. Unfortunately, this information is typically
lost (or, more precisely, utilized and not propagated) in the process of read mapping
and alignment. Still, we can technically use FASTQ to represent a probabilistic
MSA, in analogy to FASTA that is commonly used to store conventional, determin-
istic alignments.

Further, the Variant Call Format (VCF [27]) is a widely used file format to rep-
resent genomic variation (in particular, single nucleotide variants or SNPs). Among
many other attributes, it allows to specify the likelihood of every variant (genotype).
While we have implemented an experimental support for VCF input files, it turned
out that the interpretation of genotype likelihoods is not always consistent across
different variant calling tools (e.g., due to different normalizations). Moreover, the
VCF format is comparatively complicated, which makes it inconvenient for those
users who intend to provide custom likelihoods and thus need to generate the input
pMSA on their own. Therefore, we decided to adopt a substantially simpler CATG
format for specifying per-state likelihood.

We will briefly describe the FASTQ and CATG file formats below.

70

@taxon1

TCGTCCATCCACGTAAGATCAAGTGACTGAGTATGCATATCTGTACACACCAGTCTAGTGCACTCAAATCCCTAGCTGTTTCTTTCCTAATTG

+

4=B;=@;=:<77687=3?=<<<229:@75;;:;9:81A;5@817924=5579:5848;97;:/<65986-59<54/;4/80+7,3158;3523

@taxon2

TCATCCATCCACGTTAGATCAACTGACTGAATATGCATATCTGTAAACACATGTCCAGTAAACTCAAATGCCTAGCTCTTCCTTCCCTAATTT

+

;70@=;7@6;;?79<<69<19/;4681199>;35A=9=?1/6<7601:::-<3<3=6838020B82979;7B5=>248793.3<084668465

@taxon3

TCATCCTTCCACGTTAGATCAACTGACTAAGTAAGCATATCTTTAAACACATGTCCAGTGAACTCAAATGGCTAGCTCTTTCCTCACTAATTT

+

/?858?9738:4.;/;>6><>7?771:</..6B69:?<:94;268.49=9>?96>447;0:753@B31;8<3B6860:=/285=3:?E/=@;@

@taxon4

TCGTGTAGCTATGTAGGATCAGCCGAGTATGTATGTATATCATTAATCACAGGCCCAGCGAATTGAAAGGCCTAGCTCTGTCCCCGGAAATGT

+

<788<89;?3@1.=<5=5>46,/6767=5@09845878/@==+:6699>?;2:3958:=3244=78<>-96B<77199339=67@249;76:8

@taxon5

TCTTCCCGCAACGTCGAATTAACGGAGTGAGTATGCGGACCTGTAAACACAGGTCCAGGGAATTGAAATACGTAGGTCTGTCTTCGGTTATTT

+

9;55<1.@8>979<445A88+-9390=3554758=@788525947::<>9942998E;?9:2@<5/593>769:5:=:>6277A7998687::

Figure 5.1: Sample FASTQ file

FASTQ file format

A FASTQ file contains four lines for every sequence (Figure 5.1). The first line
starts with the special character ’@’ (commercial at) followed by a sequence iden-
tifier. The second line contains the actual sequence, and the third line is a delim-
iter (a single ’+’ symbol). Finally, the forth line contains per-base Phred quality
scores [37] encoded as ASCII characters. The Phred quality score is computed as
Q := −10 log10 ε, where ε is the probability of the respective base being wrong.
Thus, we can calculate the per-position error probability from the respective quality
score as follows:

εij = 10−
Qij
10 (5.8)

CATG file format

The CATG format is a simple text-based format for representing sequence uncer-
tainty, which was originally proposed by Deren Eaton, the author of the PyRAD
software [31]. The format is similar to ’transposed’ PHYLIP (alignment sites are
given in rows instead of columns), and allows to specify per-state likelihoods for
each alignment position.

A CATG file starts with a two-line header: the first line contains the number
of taxa (n) and alignment sites (m), and the second line – a tab-separated list of
n taxon names. The following m lines contain the actual alignment data for sites

71

5 6

taxon1 taxon2 taxon3 taxon4 taxon5

TTTTT 0.1,0.1,0.3,0.5 0.1,0.3,0.2,0.4 0.3,0.3,0.0,0.4 0.0,0.2,0.1,0.7 0.3,0.3,0.0,0.4

TTTGG 0.0,0.0,0.3,0.7 0.2,0.2,0.1,0.5 0.1,0.3,0.1,0.5 0.3,0.0,0.5,0.2 0.1,0.1,0.4,0.4

TTTAT 0.1,0.3,0.1,0.5 0.3,0.3,0.1,0.3 0.2,0.0,0.3,0.5 0.5,0.0,0.1,0.4 0.2,0.2,0.2,0.4

TTTTT 0.1,0.0,0.2,0.7 0.0,0.1,0.3,0.6 0.3,0.2,0.1,0.4 0.1,0.3,0.2,0.4 0.0,0.3,0.2,0.5

TTTTG 0.2,0.2,0.1,0.5 0.2,0.2,0.2,0.4 0.1,0.2,0.3,0.4 0.3,0.0,0.2,0.5 0.0,0.1,0.7,0.2

TCCTG 0.3,0.0,0.3,0.4 0.0,0.6,0.0,0.4 0.3,0.4,0.1,0.2 0.3,0.1,0.0,0.6 0.0,0.3,0.5,0.2

Figure 5.2: Sample CATG file

1 to m. In these lines, columns 2 to n contain comma-separated lists of per-state
likelihoods for the respective taxa (in the same order as given in the 2nd header line).
The first column contains a consensus state for each taxon in the IUPAC encoding.
Although this consensus information is redundant, it improves the readability of the
file.

5.2.4 Internal Representation of Probabilistic sequences

In standard RAxML, only inner nodes have full CLV vectors associated to them. For
the tip nodes, trivial ’pseudo-CLVs’ can be computed on-the-fly from the respective
discrete aligned sequence (Figure 5.3). For instance, given a character C in the
alignment, the corresponding pseudo-CLV entry will contain a value of 1.0 for state
C and zeros for all remaining states (A, G, and T).

In RAxML-QS, we also allocate CLV vectors for the tip nodes. These tip CLVs
are initialized with the per-state likelihood values computed according to equations
(5.1) – (5.3). If a RHAS model is used (see Section 2.5.2), then the tip likelihoods
are replicated for all K rate categories:

∀c ∈ [1, K] : CLV
(i)
j,c,x = Lij(x), x ∈ {A,C,G, T} (5.9)

where i ∈ [1, n] is the number of the tip (sequence) and j ∈ [1,m] is the alignment
site.

5.2.5 Estimating Uniform Error Rates

In order to obtain a ML estimate for the uniform sequencing error rate parameter,
we apply Brent’s root-finding method [17]. This method was already available in
RAxML, where it is used to optimize the α shape parameter of the Γ distribution (in
the Γ RHAS model).

After each iteration of the Brent’s algorithm, we re-compute all per-state likeli-
hoods according to equation (5.1) using the new value ε′ of the error rate ε. Then,
we update the CLVs according to equation (5.9).

72

0.0

A

Tip vector

Standard RAxML RAxML-QS with
sequence uncertainty support

1.0 0.0 0.0

C G T

... 0.1

A

CLV 0.7 0.1 0.1

C G T

...
(pseudo-CLV)

Figure 5.3: Tip CLV representation in standard RAxML (left) and in the modified version with
sequence uncertainty support (right).

For the GTE model, we use the same approach to estimate the ADO rate.

5.3 Evaluation

5.3.1 Experimental Setup

DNA data

We evaluate our sequence uncertainty models on five datasets, including both sim-
ulated and empirical data (Table 5.1).

In particular, we used INDELible [42] to simulate three datasets with varying
characteristics:

(a) short, slow-evolving sequences (simSLOW, mutation rate = 0.34)

(b) short, fast-evolving sequences (simFAST, mutation rate = 1.00)

(c) longer, slow-evolving sequences (simLONG, mutation rate = 0.34)

73

All three datasets were simulated under the Kimura substitution model (K80 [66])
with a transition/transversion ratio of κ; = 2.0. We chose this particular model be-
cause it was used in the aforementioned study by Kuhner and McGill [77]. Also, the
K80 model offers a good trade-off between model complexity and biological realism:
it is not as restrictive as the Jukes-Cantor model, but also not as parameter-rich
as the full GTR model and thus easier to explore in simulation. Furthermore, we
simulated rate heterogeneity across sites according to the Γ model with the shape
parameter α := 1.0 (this value corresponds to the moderate level of rate heterogene-
ity commonly observed in empirical alignments). For each dataset, we generated
100 replicate alignments by running INDELible with varying random number seeds.

Furthermore, we included two empirical datasets: a small set of 23 aligned HIV
pol region sequences (realHIV), and a larger concatenated alignment of 34 genes from
125 mammalian species (realMAM).

Designator Organism group, gene # taxa # sites Reference

simSLOW (simulation, low mutation rate) 50 2,000

simLONG (simulation, low mutation rate) 50 20,000

simFAST (simulation, high mutation rate) 50 2,000

realHIV HIV-I virus, pol 23 2,841 [160]

realMAM Mammals, multiple genes 125 29,149 [136]

Table 5.1: Characteristics of the datasets used for the sequence uncertainty model evaluation.

For each dataset and replicate, we generated modified alignments with randomly
introduced errors at varying levels (mean error rate ε of 1%, 5%, and 10%) using the
following procedure. For every alignment position, we draw an error probability εij
from the exponential distribution with the scale ε, that is, εij ∼ Exp(1

ε
). In the mod-

ified alignment, the original base at the position (i, j) is substituted with probability
εij. We also convert the true position-specific error probabilities into Phred quality
scores, and store them in a FASTQ file (see Section 5.2.3) for later use in the PSE
model evaluation. We use the exponential distribution of error probabilities since it
roughly reflects the empirical error profile of the modern sequence machines (e.g.,
Illumina [58, 147]). Still, this is a simplification which ignores multiple aspects of
empirical data, such as non-uniform quality across positions in the read and effects
of downstream processing (assembly/mapping and alignment).

In our evaluation, we ran RAxML-QS in four different modes:

(a) STD: standard ML tree inference without error correction

(b) eUFE: UFE model with ML estimate of the uniform error rate,

74

(c) tUFE: UFE model with the true error rate used to generate the alignment as
input parameter,

(d) tPSE: PSE model with the true position-specific error rates used to generate
the alignment (as stored in the FASTQ file).

In all cases, we used the GTR substitution model with empirical equilibrium
base frequencies and the Γ RHAS model.

We assess the accuracy of phylogenetic inference by computing the Kuhner-
Felsenstein (KF) distance (see Section 2.3) to the true tree (simulated datasets) or
to the best-known ML tree (empirical datasets). We use the DendroPy library [143]
for the KF distance calculation. Furthermore, we assess the accuracy of ML error
rate estimates in the eUFE mode.

Genotype data

We used coaltumor (coalescent simlulator of tumor genealogies by David Posada,
https://github.com/dapogon/coaltumor) to generate sequence data for 20 tu-
mor cells under varying ADO rates (0%, 10%, 30%, 50%) and sequencing error
levels (0%, 0.01%, 1%, 10%). We generated 200 replicate alignments for each con-
dition. We used the HKY substitution model with κ := 2.0 and the Γ model of rate
heterogeneity with α := 1.0.

We evaluate the accuracy of both error rate estimation and phylogenetic inference
under several GTR-based substitution models. In the following, we only report
results for thee best-performing models, both without error correction (JC69, K80,
and HKY85) and with the GTE error model (JC69+E, K80+E, and HKY85+E).

Finally, we compare the accuracy of our approach with the state-of-the-art
method for cell phylogeny reconstruction, SiFit [162].

5.3.2 Results

Estimating the uniform error rate

On all DNA datasets tested, the ML optimization approach yielded an accurate
approximation of the true error rate values (Figure 5.4). As expected, better es-
timates were observed for the simulated dataset with longer sequences (simLONG),
as it contains more abundant signal for the estimation.

On the genotype data, ML estimates for both the sequencing error and the ADO
rate were accurate for moderate error levels, but showed large deviations on the
most distorted datasets with 10% sequencing error and 50% ADO, respectively (see
Figure 5.5 and Figure 5.6). From the three evolutionary models tested, K80+E
and HKY85+E were superior to the simplistic JC69+E model. Please note, that

75

https://github.com/dapogon/coaltumor

Figure 5.4: ML estimates of the uniform error rate from DNA alignment data. Black dashed line
indicates the true (simulated) error rate.

the term ’error rate’ is ambiguous for genotype datasets. In the simulations, we
set the target DNA sequence error rate εDNA and not the genotype error rate. On
the other hand, ML estimation does work on the genotype data and reports the
genotype sequence error rate as εGT = 2εDNA(1 − εDNA). Hence, for instance, a
simulated DNA error of 10% corresponds to a true genotype error of 18%. In order
to avoid the confusion, we indicate both the DNA and the genotype (GT) error rates
in Figure 5.5.

Impact on phylogenetic inference accuracy

On the DNA datasets, we observe negligible topological deviations due to induced
sequence error (data not shown). However, branch length estimates were substan-
tially affected by the errors: on the simSLOW, the simLONG, and the realMAM
datasets, the Kuhner-Felsenstein (KF) distance ([76], Eq. (2.3)) to the true tree
increases from <0.1 on the original error-free alignments to 0.5–0.7 (5% induced
error) to 0.8–1.4 (10% induced error). Although this effect is less pronounced on the
simFAST and the realHIV datasets, the KF distance increases by a factor of 3 to 5
on alignments with 10% induced errors (as compared to 0% error).

Using the error model allows to revert this decrease in branch length accuracy
to a large extent: even with 10% sequence error, deviations from the true branch
lengths are only slightly above the respective values for the error-free alignments.
Remarkably, the UFE model performs equally well regardless of whether the true
error rate is specified or if it is directly estimated from the alignment data.

On the other hand, a more elaborate PSE model is only marginally better, and

76

only so for some datasets and error levels (for instance, realMAM with 10% error).
This can possibly be attributed to the simplistic error profile used in our simulations
(exponentially distributed position-specific error rates). Hence, it remains to be seen
whether the information about position-specific error probabilities can be still useful
with the more complicated error profiles we suspect to occur in empirical data.

77

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●
●

●

● ●
●●

●●●●●●●●●●●
●●●

●●●●●

●●

DNA: 1 % / GT: ~2 % DNA: 10 % / GT: 18 %

DNA: 0 % / GT: 0 % DNA: 0.1 % / GT: ~0.2 %

JC69+E K80+E HKY85+E JC69+E K80+E HKY85+E

0

2

5

10

15

18

0

2

5

10

15

18

G
en

ot
yp

e
er

ro
r

ra
te

Model JC69+E K80+E HKY85+E

True vs. estimated sequencing error rate

Figure 5.5: ML estimates of the sequencing error rate from genotype alignment data. Black
dashed line shows the true (simulated) error rate.

78

●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●●

●

●●
●

●●

●●
●●

●

●●
●

●

●

●

●
●●

●

●●●●
●●
●●●●
●

●
●
●●●●●
●●

●●

●

●●●●

●

DNA: 30 % / GT: 42 % DNA: 50 % / GT: 50 %

DNA: 0 % / GT: 0 % DNA: 10 % / GT: 18 %

JC69+E K80+E HKY85+E JC69+E K80+E HKY85+E

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70A
D

O
 r

at
e

Model JC69+E K80+E HKY85+E

True vs. estimated ADO rate

Figure 5.6: ML estimates of the ADO rate from genotype alignment data. Black dashed line
shows the true (simulated) ADO rate.

79

● ● ●

●●●● ●●●● ●
●
●

●
●

●
●

●
●

●
●

●

●●
●

●●●

●● ●● ●

●

●●●●

●
●
●● ●●

●●

●●
●
● ●

●
●
● ●

●
●
● ●

●

●
●

●●

●

●
●●
●

●

●

●

●
●●
●

●

●

●

●●
●

●

●

●● ●

●

●● ●

●

●●●
●

●●●●●●●●●●●●●●●●●●●

●● ●●● ●●●●●●●●●●●

●● ●●●●●●●●●

●●

●●

●●●●●●●●●●●● ●

●●

●●●●

● ● ●●●●

●●

● ● ●

simSLOW simLONG simFAST realHIV realMAM
0 %

1 %
5 %

10 %

STD eUFE tUFE tPSE STD eUFE tUFE tPSE STD eUFE tUFE tPSE STD eUFE tUFE tPSE STD eUFE tUFE tPSE

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

K
F

 d
is

ta
nc

e

S
im

ulated error rate

Error model no correction (STD) estimated uniform (eUFE) true uniform (tUFE) true position−specific (tPSE)

Kuhner−Felsenstein distance to the true/best−known tree

Figure 5.7: Phylogenetic inference accuracy with and without accounting for sequence uncertainty (DNA data).

80

On the more challenging genotype alignments, tree inference under the GTE
error model is clearly superior in terms of topological accuracy (see Figure 5.8 and
Figure 5.9). This effect holds for all respective model pair comparisons (that is,
JC69 vs. JC69+E, K80 vs. K80+E, and HKY85 vs. HKY85+E) as well as for both
modelled error types (sequencing error and ADO). More specifically, we assessed
the tree inference accuracy by computing the normalized RF distance (nRF, see
Section 2.3) between the true tree used for simulation and the respective inferred
tree.

On error-free alignments, all models yield very similar results, meaning that
error-aware models do not decrease accuracy in the absence of errors. As the error
rate increases, models with GTE attain better results, although this effect is more
accentuated for ADO than for sequencing error. For instance, with 30% ADO the
HKY85+E model yields an average nRF of 0.14 (averaged over all 200 replicates),
whereas the corresponding model without error correction, HKY85, has an average
nRF of as much as 0.29.

Of the three substitution matrices tested, K80+E shows the best results. It
is somewhat surprising that it even outperforms the HKY85+E model, that is,
the true model under which the data was simulated. One possible explanation
of this phenomenon is that the empirical genotype frequencies computed from the
alignment represent a very poor estimate of the actual equilibrium frequencies, since
the evolutionary process has not yet reached stationarity. Therefore, K80+E model
which assumes equal genotype frequencies is more realistic in this setting.

Finally, all three models incorporating sequence uncertainty consistently outper-
formed SiFit, but the difference only becomes pronounced for the high error rates.
For instance, with 50% ADO HKY85+E has an average nRF of 0.25 as compared
to 0.32 for SiFit.

5.4 Conclusion and Outlook

In this chapter, we propose and evaluate several error models which account for
uncertainty in DNA and genotype sequences. We show that, although ML tree
inference is generally robust to noise, and can recover the correct topology under
moderate error levels, explicit error modeling can nonetheless improve the accuracy
of branch length estimation. In this respect, we corroborate previous findings [77],
and generalize them to more datasets, models, and inference tools. At the same
time, we show that on noisy single-cell sequencing data explicit error models can
potentially yield more accurate tree topologies. Moreover, in our preliminary tests,
our approach outperforms the most recently published tool for phylogenetic inference
from singe-cell data (SiFit [162]).Finally, we integrate our sequence uncertainty
models in the widely used phylogenetic inference software (RAxML/RAxML-NG), thus

81

making them available to a broad research community.
In general, we consider cell tree inference from noisy single-cell sequencing data

as the most promising application for sequence uncertainty models. Despite en-
couraging preliminary results, there are multiple potential improvements to our
approach. For instance, using genotype likelihoods provided by variant callers such
as GATK [91] or OncoNEM [118] represents a potentially better alternative to ML
estimation of uniform error rates. Furthermore, applying nonstationary Markov
models [67] appears justified in this setting, since equilibrium state is unlikely to be
reached within the short timespan of cancer cell evolution.

Apart from that, position-specific error models can be used in the context of
phylogenetic placement (see Section 6.1.3). In this scenario, the gene assembly step
is missing, and raw reads are directly mapped to the reference alignment. Therefore,
the original FASTQ quality scores remain readily available in the MSA and can thus
be exploited for estimating sequence uncertainty.

Another potential research direction is to exploit the alignment quality scores
provided by probabilistic aligners. For instance, HMMER [32] can output per-
column alignment confidence scores, and FSA [16] estimates the probabilities of
pair-wise homology for all candidate character pairs. Incorporating this information
into ML-based phylogenetic inference methods will allow for ’smoothing’ or ’down-
weighting’ unreliable or ambiguous alignment regions. This approach will provide a
reasonable alternative to the ’hard’ filtering methods commonly used today, which
exclude such regions based on mostly arbitrary thresholds and criteria [145].

82

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●

●

●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●

●●●

●●●

●

●●●●

●

●●●

●●●

●●●

●

●●●●

●

●●●

●●●

●●

●

●●●●●

●

●●●

●●●

●●

●

●●●●●

● ●

●●

●

●●●●●●

●

●●●●

●●

●●

●

●●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●

●

●●

●

●●

●

●●

●●●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●●●

●●

●●●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●● ●● ●● ●●

●●

●

●

●

●

ERR: 1 % ERR: 10 %

ERR: 0 % ERR: 0.1 %

JC69 JC69+E K80 K80+E HKY85 HKY85+E SiFit JC69 JC69+E K80 K80+E HKY85 HKY85+E SiFit

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8nR
F

 d
is

ta
nc

e

Method JC69 JC69+E K80 K80+E HKY85 HKY85+E SiFit

Normalized RF distance to the true tree

Figure 5.8: Phylogenetic inference accuracy of evaluated methods at varying sequencing error
levels (genotype data).

83

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●

●

●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●

●●●●

●●

●

●

●

●●●●

●

●

●

●●

●●●●

●●●

●

●●●●●

●

●● ●

●

●●

●●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●

●

●●

●

●●●●●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

ADO: 30 % ADO: 50 %

ADO: 0 % ADO: 10 %

JC69 JC69+E K80 K80+E HKY85 HKY85+E SiFit JC69 JC69+E K80 K80+E HKY85 HKY85+E SiFit

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8nR
F

 d
is

ta
nc

e

Method JC69 JC69+E K80 K80+E HKY85 HKY85+E SiFit

Normalized RF distance to the true tree

Figure 5.9: Phylogenetic inference accuracy of evaluated methods at varying ADO levels (geno-
type data).

84

Chapter 6

Phylogeny-aware detection of
taxonomically mislabeled
sequences

This chapter is based on the following peer-reviewed publication:

• AM Kozlov, J Zhang, P Yilmaz, FO Glöckner, A Stamatakis.
”Phylogeny-aware identification and correction of taxonomically misla-
beled sequences.” In: Nucleic Acids Res 2016; 44 (11): 5022-5033

Contributions: Jiajie Zhang devised the original algorithmic idea and generated
the simulated datasets for the publication. Alexey Kozlov and Jiajie Zhang fur-
ther developed the algorithm and implemented it as a Python pipeline. Alexey
Kozlov made necessary modifications in the RAxML code, integrated the pipeline
into the ARB workbench, designed and performed the evaluation on large empiri-
cal reference databases. Pelin Yilmaz tested and evaluated the tool on Cyanobac-
teria taxonomy (not covered in this chapter). All co-authors contributed to
writing the manuscript, with Alexey Kozlov and Pelin Yilmaz taking the lead.

In this Chapter, we address the problem of taxonomic curation, that is, identi-
fying and maintaining valid taxonomic annotations in public sequence databases
(Section 6.1.2). We propose a method called SATIVA (Semi-Automatic Taxonomy
Improvement and Validation Algorithm) that automatically detects putatively mis-
annotated sequences, thereby assisting taxonomic curation efforts. We describe the
SATIVA pipeline in Section 6.2, followed by a performance assessment on simulated
(Section 6.3) and empirical data (Section 6.4). Finally, we discuss limitations of
our method as well as possibilities for future improvements (Section 6.5).

85

6.1 Preliminaries

6.1.1 Background

Taxonomy is the science of classifying and naming groups of organisms, usually based
on shared characteristics and/or presumed natural relatedness. Although first at-
tempts to classify living organisms can be traced back to antiquity (e.g., Aristotle),
modern taxonomy has its origin in the work of Carl Linnaeus. His unique bino-
mial system standardized species naming across all domains of life, from bacteria
to animals. Although Linnaeus’ naming system is still being used today, methods
of taxonomic classification have witnessed a paradigm change over the last decades.
Historically, taxonomic classification was largely based on organism phenotype, that
is, on visible morphological or physiological similarities. Obviously, this approach is
better suited for macroscopic organisms such as animals and plants, whose morpho-
logical traits can be readily observed. Still, there is a serious risk of misinterpretation
due to so called convergent evolution: similar traits can emerge independently in
multiple distant lineages. Phenotypic characterization is even more problematic for
microbial organisms (Bacteria, Archaea, and microscopic Eukaryota) as they are
often difficult to cultivate [26] and have only a limited number of morphological
traits due to their simple anatomy. Therefore, it was a major breakthrough when
advances in molecular biology and bioinformatics allowed to characterize organism’s
genotype. Despite certain limitations, phylogenetic relationships as inferred from
molecular data (DNA or amino acid sequences) provided a solid basis for modern
taxonomy.

For the practical reasons (sequencing cost, computational feasibility), phyloge-
netic analysis is often based on just one or few genes that are well-conserved and
ubiquitous in the organism group of interest, so called marker genes or markers. The
most universal and widely-used marker is the small subunit ribosomal RNA (SSU,
often referred to as 16S rRNA for Bacteria and Archaea and 18S rRNA for Eu-
karyota). Being part of the ribosome, SSU rRNA is present in all living organisms,
and, thanks to its conserved secondary structure, SSU sequences from evolutionary
distant lineages can still be aligned. Notably, Carl Woese’s unified classification of
life into three domains (Bacteria, Archaea and Eukaryota) was based on a phyloge-
netic tree inferred from SSU rRNA sequences [155]. For studies focusing on specific
organism groups, other marker genes offer better resolution than SSU. For instance,
the interal transcribed spacer (ITS) has been established as a marker for fungi, and
the cytochrome c oxidase I (COI) is commonly used for animals.

Another key advancement was the development of the environmental PCR method
by Norman R. Pace and colleagues [103]. It enabled the amplification of rRNAs di-
rectly from environmental samples and thereby opened a way for assessing microbial
diversity at a molecular scale [44, 124]. Following this research avenue, recent studies

86

correlated changes in the gut microbial composition with human conditions such as
obesity, diabetes, and inflammatory bowel disease [15, 46, 70]. The prerequisite for
carrying out such environmental studies is the availability of a reliable taxonomic
classification of the environmental sequences. In turn, this requires a reference se-
quence database with a stable and well-curated taxonomy.

6.1.2 Motivation

Over the last decades, millions of marker gene sequences have been accumulated in
primary sequence databases such as NCBI’s GenBank and the European Nucleotide
Archive (ENA). Unfortunately, the usefulness of these invaluable data resources is
hampered by partially unreliable sequence metadata, including important attributes
such as species name and taxonomic classification. As sequence annotation is usually
conducted by the submitting author, its quality depends on his/her qualification and
willingness to invest time and effort. Furthermore, primary database maintainers
are generally not allowed to modify sequence metadata; only the original submitter
can perform an amendment. Due to this policy, even well-known annotation errors
often remain unrectified in GenBank entries.

In order to alleviate this problem and to provide easy access to reliable refer-
ence sequence collections, several secondary gene-specific databases have recently
emerged. These databases are regularly updated by querying a primary database
(e.g., GenBank) for the relevant marker sequences, which are then subjected to
quality filtering and taxonomic validation. Some databases also allow for direct
sequence submission and/or support community-driven taxonomic curation, often
combined with some sort of post-submission checks. The most widely-used sec-
ondary databases include BOLD [112] (mostly animal COI), UNITE [2] (fungal
ITS), PR2 [47] (protist 18S), SILVA [109] (prokaryotic 16S and eukaryotic 18S),
RDP-II [24] and Greengenes [90] (prokaryotic 16S).

Even though the annotation quality in secondary databases is considerably higher
than in GenBank, they still do contain (taxonomic) errors. This is in part due to
imperfection of the algorithms used for quality-filtering and classification. Another
problem is that of error propagation: given the iterative update procedure used by
most secondary databases, potentially incorrect annotations of existing sequences
are used to classify new sequences, which will in turn obtain an erroneous label. Of
course, such mistakes can be eliminated by means of manual curation and contin-
uous re-assessment of old classifications based on the new data. However, growing
database sizes make this approach less practical: some erroneous annotations might
escape the curator’s attention, and thus persist in the database and propagate to
future releases (see example in Box 4.1).

87

Box 4.1: A case of error propagation
In SILVA release 119, a new sequence with the NCBI accession KF053060 was added

to the database. It was initially annotated as Alcaligenes faecalis (order Burkholderiales,
phylum Proteobacteria) in NCBI GenBank, and SILVA adopted this classification as well.
Later on, the sequence record in GenBank was amended. First, the organism name was changed
to Bacillus sp., and the taxonomic path was adjusted accordingly (order Bacillales, phylum
Firmicutes). Then, the sequence itself was also corrected, and the new revision obtained
accession number KF053060.2 (revision history: https://www.ncbi.nlm.nih.gov/nuccore/

KF053060.2?report=girevhist).
In the subsequent release of SILVA (r123), sequence data for this accession was updated

to the latest version (KF053060.2), but the original taxonomic path was preserved. Further-
more, six sequences highly similar to KF053060 were added, and they were also classified as
members of the Alcaligenes genus (see Table S2). This was in disagreement with the GenBank
annotation, where they were classified as Bacillus. Presumably, the erroneous taxonomy was
derived from an existing misclassified sequence (KF053060), which was highly similar to the
new sequences.

SATIVA suggested to re-classify all seven aforementioned sequences into the Bacillus genus.
This is consistent with the current taxonomic annotation in NCBI GenBank and RDP-II. Fur-
ther, this re-classification was carried out in the subsequent release of SILVA (r128, September
2016).

NCBI accession NCBI organism name NCBI taxonomy SILVA taxonomy

Added in SILVA 119
KF053060 Bacillus sp. BAB-2669 Bacteria;

Firmicutes;
Bacilli;
Bacillales;
Bacillaceae;
Bacillus

Bacteria;
Proteobacteria;
Betaproteobacteria;
Burkholderiales;
Alcaligenaceae;
Alcaligenes

Added in SILVA 123
JX093131 uncultured Bacillus sp. Bacteria;

Firmicutes;
Bacilli;
Bacillales;
Bacillaceae;
Bacillus

Bacteria;
Proteobacteria;
Betaproteobacteria;
Burkholderiales;
Alcaligenaceae;
Alcaligenes

JX093151 uncultured Bacillus sp.
KC442332 Bacillus sp. CH6
KF721697 uncultured Bacillus sp.
KF722496 uncultured Bacillus sp.
KF740382 Bacillus sp. ZYJ-39

Therefore, we developed a novel phylogeny-aware method that can automatically
identify putative mislabels in large databases and suggest new, corrected taxonomic
annotations for them. In order to detect conflicts between taxonomic and phylo-
genetic assignments, our method relies on the Evolutionary Placement Algorithm
(EPA [12]), which we will briefly outline in the following section.

88

https://www.ncbi.nlm.nih.gov/nuccore/KF053060.2?report=girevhist
https://www.ncbi.nlm.nih.gov/nuccore/KF053060.2?report=girevhist

6.1.3 The Evolutionary Placement Algorithm

The concept of phylogenetic or evolutionary placement was popularized by Mat-
sen [89] and Berger and Stamatakis [12, 138] who independently developed highly
efficient implementations of analogous algorithms between 2009 and 2011. In that
time, metagenomic studies started to gain momentum, generating millions of short
reads from multiple distinct species in the environment being surveyed. One pos-
sibility to analyze this sort of data would be to build a phylogenetic tree including
(unlabeled) short reads as well as some ‘reference‘ sequences with known annota-
tions. However, de novo phylogenetic inference with classical state-of-the-art meth-
ods is practically impossible in this setting. Firstly, it is extremely challenging
computationally, since phylogenetic inference under maximum likelihood is shown
to be NP-hard [114]. Secondly, even with enough computing power, it is barely
possible to resolve the relationships among a huge number of short sequences due
to the lack of phylogenetic signal therein [93, 139]. Because of these limitations,
evolutionary placement was proposed as a ’lightweight’ alternative to phylogenetic
inference: it does not aim to obtain the fully-resolved tree, but can determine the
most likely placement of the (millions of) query sequences (e.g., short reads) on the
(much smaller) annotated reference tree.

The evolutionary placement workflow consists of the following steps:

1. Annotated, quality-filtered, full-length sequences for the organism group of
interest are used to build a reference alignment.

2. Classical phylogenetic methods (e.g., ML inference) are applied to obtain a
reference tree.

3. Query sequences (QS) are aligned to the reference alignment.

4. Each query sequence qi is grafted to every branch bk of the reference tree inde-
pendently, and the likelihood score of each respective extended tree LH(qi, bk)
is evaluated.

5. For each branch bk of the reference tree its expected likelihood weight (ELW)
[140, 148] is calculated as the ratio of LH(qi, bk) and the sum of likelihoods
for all possible QS placements:

ELW (qi, bk) =
LH(qi, bk)∑
j

LH(qi, bj)
(6.1)

6. The branch with the maximum ELW score is considered to represent the most
likely QS placement. Alternatively, a set of best-scoring branches whose sum

89

of ELW scores is above a certain threshold (e.g., 0.95) can be reported and
considered for downstream analyses.

In our mislabel detection method, we will use the evolutionary placement algo-
rithm implemented in RAxML ([12], called RAxML-EPA henceforth).

6.2 Implementation

6.2.1 SATIVA pipeline

We implemented our taxonomic curation method in a Python pipeline called SATIVA

(https://github.com/amkozlov/sativa), which is based on a modified versions of
RAxML and RAxML-EPA (see Section 6.2.3). It also employs ETE library [55] for tree
topology manipulation and alignment parsing.

SATIVA requires two input files: a multiple sequence alignment (in FASTA or
PHYLIP format) and a list of taxonomic annotations with matching sequence iden-
tifiers. The output is a tab-delimited text file which contains the putative mislabel
identifiers as well as the original and suggested taxonomic annotations including
confidence values.

SATIVA provides several parameters which allow to set the trade-off between run-
time and the thoroughness of mislabel detection. First, the user can set the number
of RAxML tree searches (with different starting trees) that SATIVA will conduct to
attain the best-scoring ML reference tree. While using multiple starting trees can
potentially yield a better reference tree, it also leads to an about linear increase in
tree inference time. Further, SATIVA can be configured to run in the ’fast’ mode,
in which a topological convergence criterion [132] is used to stop the tree search
earlier (this corresponds to -D option of RAxML). Conversely, in the ’thorough’ mode
(default) SATIVA uses a likelihood-based stopping criterion, which is typically 1.5 to
2.1 times slower [132].

In the following text, we give the detailed step-by-step description of the pipeline
(Figure 6.1).

Building a taxonomically-labeled reference tree.

Using the input set of taxonomic annotations, we initially build a rooted, multifur-
cating tree that represents the underlying taxonomy. In this tree (which we hence-
forth call taxonomic tree), leaf nodes correspond to the sequences, and inner nodes
to higher taxonomic ranks such as genus or family. Then, we perform a Maximum
Likelihood (ML) tree inference with RAxML [134], using the input sequence alignment
and the taxonomic tree as a topological constraint. Thereby, we obtain a strictly
bifurcating tree (a reference tree) that is fully congruent with the original taxonomic

90

https://github.com/amkozlov/sativa

Figure 6.1: SATIVA processing workflow.

tree. Further, we label each inner node of this strictly bifurcating reference tree by
the lowest common rank of its corresponding child nodes (see Figure 6.2, A). For
instance, given annotations (’Escherichia’, ’E.coli’) and (’Escherichia’, ’E.albertii’)
at the child nodes, the parent node will be labeled as (’Escherichia’).

Leave-one-out test

We prune one sequence at a time from the reference tree, and use the EPA algorithm
to place it back into all branches of the remaining reference tree. Then, we use the
taxonomy assignment approach described below to calculate a new taxonomic label
for the pruned sequence. If there is a disagreement between the new and the original
taxonomic label, we put the sequence into a preliminary mislabels list.

Note that, when comparing taxonomic labels, we do not consider missing rank
annotations as disagreements. For instance, if the original annotation is (’Enter-
obacteriaceae’, ’Escherichia’), new annotations (’Enterobacteriaceae’, ’Klebsiella’)
or (’Enterobacteriaceae’, ’Klebsiella’, ’K. pneumoniae’) will be reported as a mis-
label, whereas (’Enterobacteriaceae’, ’Escherichia’, ’E. coli’) and (’Enterobacteri-
aceae’) will not.

91

Figure 6.2: Example illustrating the taxonomic assignment method implemented in SATIVA. A.
We start with a resolved, bifurcating reference tree which has taxonomic annotations at the tips
(i.e., sequence annotations). First, we perform a post-order tree traversal and assign taxonomic
labels to internal nodes (shown in red) by taking the longest common annotation of the respective
child nodes. Then, we enumerate the branches and store the mapping between the branch num-
bers and the taxonomic annotations of their adjacent nodes. B. We use the RAxML-EPA algorithm
to calculate the most likely placements of the QS on the reference tree. For our purposes, each
placement is represented by a pair (branch number, likelihood weight). C. We compute the accu-
mulated likelihood weight (aELW) for each taxonomic rank by summing over the weights of the
corresponding branches. The branches in parentheses have two competing annotations, and their
weights contribute partially to both respective aELWs (see main text for details). D. We assign
the QS to the taxonomic rank with the highest aELW . At each taxonomic level, we compute a
confidence score by summing over aELW s of all annotations which do not contradict the assigned
one at this level.

Identification of mislabels

Once all sequences have been subjected to the leave-one-out test, we prune all se-
quences in the preliminary mislabels list from the reference tree at once. Then, we
use EPA to independently place each of them back into the remaining tree and re-

92

calculate the taxonomic annotations. Once again, we compare the new annotations
with the original ones, and put sequences in the final mislabels list if they differ.
In addition, the calculated taxonomic annotation for each final mislabeled sequence
will be reported as a suggested correction. Further, we report the mislabel confidence
score, which is equal to the assignment confidence score (see above) at the highest
taxonomic rank level for which the original and the new taxonomic labels differ.

This two-step approach allows to reduce the noise or misleading signal introduced
by mislabels in the reference phylogeny. In particular, we observed a phenomenon
which we call ’reciprocal’ mislabels: if one out of two highly similar (’sibling’) se-
quences was taxonomically mislabeled (and thus placed in a remote clade of the
reference tree), both of them were incorrectly reported as mislabels in the leave-
one-out test. For each sequence, a re-classification into the rank of its sibling was
proposed. In other words, suggested corrections were reciprocal. This situation can
be resolved by simultaneously pruning both sequences from the reference tree and
placing them back independently.

Taxonomic assignment algorithm

We use the following approach to assign a taxonomic annotation to a so-called query
sequence (QS), that is, a sequence which is not present in the reference tree. First, we
use the RAxML-EPA to evaluate all possible QS placements and obtain the respective
likelihood weights (ELW s) for all branches of the reference tree (see Figure 6.2,
B).

Then, we use those likelihood weights to calculate the accumulated ELW (aELW)
for each taxonomic rank (see Figure 6.2, C). In order to map branches to taxonomic
ranks, we use a taxonomically-labeled reference tree constructed in the previous step.
In particular, for each branch bk, we analyze the taxonomic ranks ru and rl assigned
to the both nodes adjacent to this branch. We distinguish two cases:

(a) If both taxonomic ranks are identical (ru = rl = ri), then the entire likelihood
weight of the branch will contribute to the aELW of this ranks:

aELW (ri) := aELW (ri) + ELW (bk) (6.2)

(b) If the taxonomic ranks differ, then the likelihood weight is distributed between
both ranks:

aELW (ru) := aELW (ru) + c · ELW (bk) (6.3)

aELW (rl) := aELW (rl) + (1− c) · ELW (bk) (6.4)

where parameter c defines the distribution ratio. In the current implemen-
tation, we distribute weights (almost) equally by setting c := 0.49 (a small
imbalance is needed to avoid ties).

93

Thereafter, we select the taxonomic annotation with the highest aELW as new,
phylogeny-aware annotation for the QS.

Note that ’nested’ taxonomic annotations such as (’Escherichia’, ’E.coli’) and
(’Escherichia’) are considered as distinct at this step of our algorithm. This allows
to directly compare competing annotations at different taxonomic levels to each
other and select the most likely one according to the aELW .

Finally, we calculate an overall assignment confidence score for the QS by sum-
ming over the aELW s for all annotations that are in concordance with the proposed
taxonomic annotation of the QS. So, if (’Enterobacteriaceae’, ’Escherichia’) is se-
lected as the most likely QS assignment, the aELW for the annotation (’Enterobac-
teriaceae’, ’Escherichia’, ’E.coli’) will also contribute to the assignment confidence
score at both, the family and genus level. At the same time, aELW s for (’En-
terobacteriaceae’, ’Klebsiella’) or (’Enterobacteriaceae’) annotations will contribute
to the family assignment confidence score, but not to the genus level assignment
confidence score (see Figure 6.2, D).

6.2.2 ARB integration

To make SATIVA easy-to-use for taxonomists, we integrated it with the ARB soft-
ware [87], which is a widely used tool for maintaining and curating large rRNA
databases. ARB is built around an efficient sequence storage engine, it provides a
graphical workbench for editing sequences and associated metadata as well as im-
port/export tools, and offers advanced tree visualization capabilities. SATIVA is
currently available in the development version of ARB, which can be downloaded
at http://www.arb-home.de/downloads.html. Within ARB, the user can invoke
SATIVA by simply marking a subset of sequences in the workbench and selecting
“Validate taxonomy” from the menu. The results of the analysis are written back to
the ARB database fields, and putatively mislabeled sequences will be highlighted on
the tree (see Figure 6.3). Furthermore, ARB can be used to easily visualize results
and customize the visualization using ARB features such as “search by field value”
and “set field value”. For instance, mislabeled sequences can be highlighted with
different colors based on their rank level incongruence (e.g., phylum, class etc.) or
mislabel confidence value. Finally, ARB can also write SATIVA results to an external
file.

94

http://www.arb-home.de/downloads.html

Figure 6.3: SATIVA results displayed in the ARB workbench. Two sequences annotated as
Clostridiales species in LTP123 have been identified as mislabels (marked in red). The suggested
re-classification as Fusobacterium is consistent with the SILVA123 annotation (placement in the
tree).

6.2.3 RAxML modifications

In order to handle large empirical datasets with thousands of taxa (see Section 6.4.1),
we had to introduce several optimizations and extensions to the original RAxML code:

Leave-one-out test The aforementioned EPA-based leave-one-out test was imple-
mented directly in the RAxML code. Although it would be possible to lever-
age the existing RAxML-EPA implementation and run it multiple times (once
for every sequence in the dataset on the respective pruned reference tree),
it would incur additional overhead due to re-loading/parsing the alignment,
re-computing the CPVs etc. Since this overhead grows quadratically with
the number of sequences in the alignment, it becomes a bottleneck on large
datasets.

Checkpointing In order to facilitate long runs in the cluster environment with
fixed job runtime limits, we implemented checkpointing in both, tree inference
(analogous to ExaML) and EPA leave-one-out modes.

95

Topological operations The cost of bookkeeping operations such as comparing
and saving/restoring tree topologies is usually negligible compared to likeli-
hood computations. Therefore, the respective routines were not optimized
in the original RAxML code. However, on very large trees (10,000 to 500,000
taxa) the näıve implementation of these bookkeeping operations led to a no-
ticeable slowdown. We therefore carried out several additional optimization,
for instance, we removed some excessive tree saving operation and substan-
tially accelerated identification of duplicate topologies by using hash-based
comparisons.

Per-rate scalers It is known that using the Γ model [156] of across-site rate het-
erogeneity with large trees can lead to numerical underflow problems [60]. We
resolved this issue by introducing individual scalers per each Γ rate category
(see Section 4.2.2 for details).

CAT model optimization When optimizing per-site rates under the CAT model
of across-site rate heterogeneity [129], many expensive-to-compute exponenti-
ation operations can be avoided by applying a pre-computation technique that
takes into account the structure of the optimization algorithm. Once again,
this part of the code is only relevant for large trees, as its overhead grows
linearly with the number of taxa.

Applying the above optimizations yielded a cumulative speedup of more than
an order of magnitude, and enabled SATIVA to analyze the largest empirical dataset
with 536,224 sequences. Note that, these optimizations are also of great value to
stand-alone RAxML analysis of very large datasets w.r.t. the number of taxa. We
therefore made our modified version of RAxML publicly available on GitHub (https:
//github.com/amkozlov/sativa), and applied similar optimizations in the newly
developed RAxML-NG code (see Section 4).

6.3 Evaluation on Simulated Data

6.3.1 Experimental Setup

We based our simulations on version 123 of the LTP database (LTP123). First,
we used RAxML to infer a constrainted, fully bifurcating ML tree from the LTP123
reference alignment, using the LTP123 taxonomy as constraint tree. Next, we parti-
tioned the alignment into 11 regions which reflect the known secondary structure of
the 16S rRNA gene: we defined nine partitions for variable regions V1-V9, one for all
conserved regions, and one for the ’flanking’ regions not found in the E.coli reference

96

https://github.com/amkozlov/sativa
https://github.com/amkozlov/sativa

sequence. We then estimated the GTR (General Time Reversible) model parame-
ters and branch lengths for each partition individually. These parameters as well as
the ML tree topology were subsequently used to simulate sequence alignments with
INDELible [42]. We tuned the INDELible simulation parameters (insertion/deletion
rate and sequence length at the root) such that for each partition, the length and
proportion of gaps approximately match the corresponding region of the empirical
alignment.

Clearly, the simulated alignment we is fully consistent with the original LTP123
taxonomy. In other words, we assume that the LTP taxonomy contains no mislabels
in the simulated alignment. Therefore, we can deliberately introduce taxonomic
mislabels by randomly changing the original (’true’) sequence annotations to the
new (’incorrect’) ones. We used this approach to generate six test taxonomies:
three replicates with 1% mislabels (SIM1) and three replicates with 5% mislabels
(SIM5). The distribution of mislabels among the taxonomic rank levels was based
on the proportions observed in the empirical LTP123 dataset (see Table 6.1).

Taxonomic rank
Dataset

SIM1 SIM5

% mislabels % mislabels

Phylum 0.05% 0.25%
Class 0.10% 0.50%
Order 0.15% 0.75%
Family 0.35% 1.75%
Genus 0.35% 1.75%

Total 1.00% 5.00%

Table 6.1: Simulated datasets used for SATIVA evaluation.

To the best of our knowledge, there are no established tools for automatic mis-
label identification. Thus, a direct accuracy and performance comparison is not
feasible at present. However, since with SATIVA we also introduce a novel method
for taxonomic assignment of new sequences, we included two widely used taxonomic
classification methods (UCLUST [35] and RDP [149]) into our performance evalua-
tion. To this end, we implemented two methods denoted as RDP-LO and UCLUST-LO,
which use a SATIVA-like leave-one-out approach to detect mislables, but rely on
RDP and UCLUST, respectively, for taxonomic classification. More specifically, we
remove one sequence at a time from a database with n sequences and use the re-
maining sequences and taxonomic labels as new reference. Then, we use RDP and
UCLUST to assign a new taxonomic label to the removed sequence using the new
reference with n−1 sequences. If the new taxonomic label is different from the orig-
inal one, we consider it as mislabel and the inferred taxonomic label as the proposed

97

new classification. For both RDP and UCLUST, we used the implementations that
are available in the QIIME v1.8.0 [19] pipeline with default parameters.

6.3.2 Results

We deployed two metrics to quantify the ability of competing tools to identify mis-
labels on simulated data. Firstly, we used the accuracy of mislabel identification.
To this end, we compared the output of each program to the true list of mislabels:
each sequence was counted as true positive (TP) if it was present in both lists, and
as false negative (FN) or false positive (FP) if it was missing from the inferred or
ground truth list, respectively. Then, we used the standard formulas to calculate
precision and recall values at each taxonomic level (s. Table 6.2). Secondly, we
evaluated the correction accuracy by comparing the suggested taxonomic annota-
tion for mislabels with the true one (s. Table 6.3). If a mislabel was not identified
as such, we assumed its inferred annotation to be equal to the original, uncorrected
one. In other words, such sequences were counted as false positives at taxonomic
levels that were (deliberately) mislabeled in the respective simulations.

Since all three methods provide confidence values for taxonomic placements
(RDP, UCLUST) or identified mislabels (SATIVA), it is possible to use a thresh-
old to exclude results with low confidence. For each method, we empirically eval-
uated several confidence thresholds and chose the value which yielded the highest
F-measure (that is, the best precision/recall trade-off). Specifically, we set the con-
fidence threshold to 0.7 for UCLUST-LO, 0.8 for RDP-LO and 0.51 for SATIVA.

Among the three algorithms tested, SATIVA shows the best mislabel identifica-
tion accuracy: at least 96.9% of all mislabels are recognized, while the false positive
rate below than 9%. RDP-LO achieved similar recall values to SATIVA (e.g., 97.7%
vs. 98.4% on the SIM1 dataset with 1% mislabels). However, its precision was unac-
ceptably low (12.0% on SIM1 / 38.2% on SIM5). Finally, the UCLUST-LO algorithm
shows higher precision, but lower recall than RDP-LO, and is clearly inferior to SATIVA

in terms of both, precision and recall.
Our measurements of precision for UCLUST-LO and RDP-LO might appear to con-

tradict earlier studies (e.g., [149]), where much higher values have been reported.
Note that, here we measure the precision of mislabel identification, which is differ-
ent from the precision of taxonomic classification. Specifically, in the latter case
all sequences with correctly inferred taxonomic annotation are considered true pos-
itives. In our test, however, only those sequences that were deliberately mislabeled
and correctly identified by the method are counted as true positives. All other, non-
mislabeled sequences, which were recognized as such, represent true negatives. And
since in our test datasets mislabeled sequences constitute only a small fraction of
the data (1% or 5%), the impact of false positives on precision is substantially more
pronounced. This also explains the significantly higher precision values for the SIM5

98

dataset (5% ’true’ mislabels) as compared to the SIM1 dataset (1% mislabels).
In the correction accuracy test, SATIVA and RDP-LO performed almost equally

well, achieving precision and recall of around 95% on the SIM1 dataset, and slightly
lower precision on the dataset with 5% mislabels (≈90% SATIVA/ ≈92% RDP-LO).
UCLUST-LO showed higher recall (98.8% on SIM1 / 98.0% on SIM5), but this comes
at the expense of substantially reduced precision (81.2% / 74.2%).

99

Level

Dataset / percentage of ’true’ mislabeled sequences
SIM1 / 1 % SIM5 / 5 %

Precision Recall Precision Recall
RDP-LO UCLUST-LO SATIVA RDP-LO UCLUST-LO SATIVA RDP-LO UCLUST-LO SATIVA RDP-LO UCLUST-LO SATIVA

Phylum 0.625 1.000 1.000 1.000 0.933 1.000 0.813 0.947 1.000 1.000 0.828 1.000
Class 0.675 0.958 0.900 1.000 0.852 1.000 0.785 0.896 0.983 0.989 0.793 1.000
Order 0.409 0.796 1.000 1.000 0.867 1.000 0.661 0.860 0.977 0.995 0.726 0.995
Family 0.311 0.657 0.965 0.973 0.811 0.991 0.605 0.833 0.971 0.976 0.745 0.987
Genus 0.054 0.130 0.893 0.965 0.832 0.965 0.217 0.416 0.822 0.949 0.757 0.928
Total 0.120 0.274 0.939 0.977 0.836 0.984 0.382 0.619 0.917 0.971 0.757 0.969

Table 6.2: Accuracy of mislabel identification on simulated data. Taxonomic levels are the levels where sequences were deliberatly
misclassified in the ground truth. That is, a recall value of 0.974 at the family level means that 97.4 % of sequences with an incorrect
family label were successfully identified.

Level

Dataset / percentage of ’true’ mislabeled sequences
SIM1 / 1 % SIM5 / 5 %

Precision Recall Precision Recall
RDP-LO UCLUST-LO SATIVA RDP-LO UCLUST-LO SATIVA RDP-LO UCLUST-LO SATIVA RDP-LO UCLUST-LO SATIVA

Phylum 1.000 0.997 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000
Class 1.000 0.984 1.000 1.000 1.000 1.000 0.999 0.968 1.000 0.999 0.999 0.999
Order 1.000 0.965 1.000 1.000 1.000 1.000 0.997 0.931 0.999 0.999 0.999 0.999
Family 0.984 0.894 0.994 1.000 1.000 0.997 0.981 0.843 0.992 0.997 0.999 0.996
Genus 0.930 0.812 0.946 0.959 0.988 0.949 0.919 0.742 0.899 0.964 0.980 0.954

Table 6.3: Accuracy of the suggested taxonomic annotation for mislabels on simulated data. Note that, errors are propagated down
along the taxonomy, that is, an incorrect family label also implies an incorrect genus label, etc.

100

6.4 Analysis of widely-used 16S Sequence Databases

6.4.1 Experimental Setup

We analyzed four established databases of taxonomically annotated 16S rRNA se-
quences of Bacteria and Archaea: RDP-II [24], Greengenes [90], the ‘All-Species’
Living Tree Project (LTP) [161], and SILVA [109]. These databases have differ-
ent underlying taxonomies, and vary in their size and taxonomic composition. In
particular, LTP includes bacterial and archaeal type strains only, and thus con-
tains a moderate number of sequences (11,939 as of release 123, September 2015).
RDP-II, Greengenes, and SILVA, however, contain all rRNA sequences available in
public databases that passed a database-specific quality check. Hence, they contain
orders of magnitude more entries (1.2–3 million sequences). Furthermore, SILVA
and Greengenes provide so-called non-redundant reference datasets (referred to as
’NR99’ henceforth), which exclude highly similar (¿99% sequence identity) and par-
tial sequences.

In order to make results for different taxonomies comparable and to maximize the
coverage of each individual database, we divided our analysis into two parts. First,
we evaluate taxonomic annotations of type strains only, using the same sequence
set and alignment (LTP v123) for all four databases (datatsets GG13 T, LTP123 T,
RDP11 T and SLV123 T in Table 6.4). Second, we evaluate the NR99 subsets (that
is, representatives of the 99% identity clusters) for Greengenes and SILVA (datasets
GG13 NR99 and SLV123 NR99), thereby also including environmental sequences into
our analysis.

For the type strain datasets, we executed SATIVA in ’thorough’ mode, using 10
RAxML runs to infer the reference tree. For the NR99 datasets, we used the ’fast’
mode and 1 RAxML run, for computational reasons. The confidence cut-off was set
to 0.51 for all datasets.

6.4.2 Results

We used our approach to assess the phylogenetic consistency and identify mislabels
in four widely-used 16S databases. We ran SATIVA on the representative datasets
(see Table 6.4) and evaluated the percentage of mislabels reported for each tax-
onomic rank (see Figure 6.4a) as well as for several major bacterial phyla (see
Figure 6.4b).

Among type strain datasets, GG13 T exhibits by far lowest percentage of identified
mislabels (0.27%), followed by RDP11 T (1.27%), SLV123 T (1.54%) and LTP123 -

T (2.52%). In all taxonomies but Greengenes, the vast majority of mislabels was
detected at the genus level. Therefore, the estimated percentage of mislabels at
higher taxomomic levels (family and above) is more similar across datasets: GG13 T

101

Dataset Taxonomy Alignment # sequences

Type strains only

GG13 T Greengenes 13.8 LTP v123 10 635

LTP123 T LTP v123 LTP v123 11 939

RDP11 T RDP v11 LTP v123 11 775

SLV123 T SILVA v123 LTP v123 11 939

Non-repetitive subsets (99 % identity filter)

GG13 NR99 Greengenes 13.8 Greengenes 13.8 203 452

SLV123 NR99 SILVA v123 SILVA v123 536 224

Table 6.4: Empirical datasets derived from widely-used microbial 16S sequence databases

0.20%, SLV123 T 0.31%, RDP11 T 0.41% and LTP23 T 1.37%.

On the datasets which also include environmental sequences (GG13 NR99 and
SLV123 NR99), the Greengenes taxonomy shows less inconsistency (0.27% mislabels)
compared to SILVA (1.55%). Again, the difference becomes less pronounced if genus-
level mislabels are excluded (0.17% vs. 0.67%).

As Figure 6.4b shows, the distribution of mislabels among individual phyla is
non-uniform. In all taxonomies, Actinobacteria and Bacteroidetes appears to con-
tain less mislabels (0.15%–1.15% and 0%–1.92%, respectively) than Proteobacteria
(0.38%–2.74%) and Firmicutes (0.34%–3.89%).

6.4.3 Discussion

According to our analysis, Greengenes, RDP, SILVA, and, to a lesser extent, LTP,
are consistent at higher taxonomic levels. The few sequences proposed for re-
classification into a different phylum or class are most probably due to an incor-
rect culture in the collection. Although putatively mislabeled sequences are more
common at lower ranks (e.g., family or genus), their overall percentage is below
3% for all taxonomies. This implies that current taxonomic frameworks represent
the phylogenetic signal of 16S rRNA well, but that there is nevertheless room for
improvement.

We identified the highest amount of putative mislabels in the LTP taxonomy, es-
pecially at higher taxonomic ranks. This can be explained by the fact, that the LTP
classification strictly follows Bergey’s taxonomic outlines and LPSN. Conversely, the
other three taxonomies adapt their classifications in order to better reflect the 16S
tree topology, even if it involves changes that violate the formal rules of taxonomic
and nomenclature code. For instance, non validly published names are widely used

102

LTP123_T RDP11_T SLV123_T SLV123_NR99 GG13_T GG13_NR99

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Phylum Class Order Family Genus

(a) by taxonomic rank

Proteobacteria Firmicutes Bacteroidetes Actinobacteria Others

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

LTP123_T RDP11_T SLV123_T SLV123_NR99 GG13_T GG13_NR99

(b) by phylym

Figure 6.4: Percentage of identified putative mislabels in the empirical datasets

103

to split non-monophyletic taxa (e.g., ’Clostridium III’ or ’Bacillaceae 1’) or to rep-
resent uncertainty in classification (e.g., ’Clostridiales Incertae Sedis’). Although
such changes might be justified from the practical standpoint, they make direct
comparison between LTP and other taxonomies impossible. Therefore, we suggest
that LTP should be viewed as a ’baseline’ in our comparison.

At the other end of the scale, the Greengenes taxonomy shows an extremely low
percentage of mislabeled sequences (<0.3%). This suggests that this taxonomy is
phylogenetically very consistent, most likely owing to the fact that it is based on a
de novo phylogeny. On the other hand, the surprisingly few genus-level mislabels
(0.08%) could be partially explained by the lack of annotation at this level. More
specifically, as much as 29% of the sequences in GG13 T and 54% in GG13 NR99 are
not assigned to a genus. For comparison: just 0.04% of the sequences in SLV123 T

and 16% in SLV123 NR99 do not have a genus-level annotation.
Interestingly, the overall percentages of identified mislabels in full non-repetitive

datasets (GG13 NR99 and SLV123 NR99) and in the corresponding type strain datasets
(GG13 T and SLV123 T) are highly similar. However, SILVA NR99 shows substantially
more mislabels at higher taxonomic levels compared to SLV123 T (0.12% vs. 0.03%
at the phylum level and 0.08% vs. 0% at the class level). This finding suggests that
in the SILVA database, at least the most obvious mis-annotations for type strain
sequences were fixed.

6.5 Conclusions and Future Directions

Public sequence databases, both primary and secondary, represent an invaluable
resource for biological, medical and environmental research. It is therefore of fun-
damental importance to guarantee the highest possible quality of both data and
metadata stored therein. In particular, incorrect species names and/or taxonomic
affiliations pose a serious problem as they can affect downstream analyses (e.g.,
metagenomic studies). We contributed to solving this problem by developing a tool
which can automatically analyze large datasets and short-list the putatively misla-
beled sequences. It helps to increase the rate of taxonomic curation by eliminating
the need for a visual tree inspection, an error-prone and labor-intensive process. As
we have shown in this chapter, out tool attains high accuracy on simulated data,
and can be applied to large empirical datasets. Moreover, our findings were used to
improve taxonomic annotations in the latest release of the SILVA database (r128).

Despite those encouraging results, we realize that large-scale taxonomic cura-
tion is an extremely difficult endeavor, issuing many theoretical, organisational and
technical challenges.

First, analyzing large marker databases with existing methods is computationally
very demanding: running SATIVA on the largest empirical dataset in our study

104

(SLV123 NR99) took almost 20 days of wall-time (and > 600, 000 CPU-hours) on
a large cluster. To this end, we work on more efficient low-level optimizations,
heuristics and parallelization techniques for both phylogenetic tree inference (see
Section 4) and evolutionary placement [9, 10].

Further technical issues include chimeric and/or poor-quality sequences, syn-
onymous taxonomic names, alignment of distant homologues (especially with fast-
evolving markers such as ITS), to name just a few. Although most of them could
be solved, at least to some extent, using appropriate tools and techniques, they do
contribute to the uncertainty in the results of SATIVA, or any other sequence-based
mislabel identification method.

From a theoretical standpoint, a conflict between taxonomic annotation and phy-
logenetic placement – that is, what we call a ’mislabel’ throughout this chapter –
could have several different explanations. In the simplest case, it could be an indi-
vidual sequence misidentified due to, for instance, human data entry error or sample
contamination. Such mislabels are usually easy to detect, and once identified, they
could be trivially corrected by changing the sequence annotation in the database
record. The situation becomes much more complicated, however, if the inconsis-
tency between taxonomy and phylogeny is genuine: e.g., a species classified into a
(phylogenetically) incorrect genus, or a higher taxonomic rank being paraphyletic or
polyphyletic with respect to the evolutionary tree. In such cases, conflict resolution
would require a formal amendment to the taxonomic classification, which consti-
tutes a time-consuming and cumbersome process. Furthermore, such amendments
are sometimes deliberately rejected by the community, for instance, due to an unwill-
ingness to change historically established names of medically important organisms.
One famous example is the Shigella bacterial genus: its species are grouped together
with Escherichia coli in molecular phylogeny, but the existing name and genus rank
were preserved to avoid confusion in the medical context. Some marker sequence
databases try to circumvent this problem by introducing their own, ’unofficial’ tax-
onomy which better reflects the evolutionary history of the given marker gene. This
pragmatic solution has its merits, but it also complicates result interpretation by
introducing name ambiguity: given the example above, it is not clear whether the
Escherichia genus includes or excludes the Shigella species.

Finally, it is worth noting that rather than correcting the errors post hoc, it
would be much more efficient to prevent suboptimal taxonomic annotations from
being deposited in public databases. One way to deal with this problem would be
to encourage submitters to follow the best practices in sequence quality control [99]
and use specialized tools to check annotations prior to submission [119]. A more
reliable solution could involve an automatic (and compulsory) validation enforced by
the respective database. For organism groups without a well-established taxonomy,
devising a phylogenetically consistent taxonomic framework from scratch is a viable

105

option, as exemplified by the UniEuk project [13].

106

Chapter 7

Conclusion and Outlook

In this thesis, we embarked upon multiple challenges in the area of computational
phylogenetics, and made multiple contributions to the field.

Firstly, we ported and optimized the ExaML code to run on the Intel Knights
Corner hardware accelerators (1st generation of the Xeon Phi). Our ExaML-KNC

implementation attained speedups which are comparable to other scientific codes
ported to Xeon Phi, and it is freely available as production-level software. In the
context of the 1KITE project, we also used ExaML-KNC ourselves to analyze large
empirical datasets comprising millions of DNA and AA alignment sites.

Although some unfortunate features of the Knights Corner platform (low on-card
memory amount, high MPI interconnect latency) limit its usefulness for large-scale
phylogenetic analyses, our work on PLF kernel optimization for the 512-bit vector
unit created a basis for future developments. In particular, we are currently working
towards porting the libpll PLF kernels to the new AVX512 SIMD instruction set
available in the latest Intel processors (Skylake-X and Skylake-SP) and hardware
accelerators (Knights Landing).

Further, we introduced RAxML-NG, which will supersede the existing and widely-
used ML-based tree inference tools RAxML and ExaML. RAxML-NG outperforms these
older tools in terms of tree search efficiency, speed and scalability, while also offering
higher flexibility and user-friendliness. Importantly, RAxML-NG will also be easier to
maintain and extend due to its modular design. With RAxML-NG we have developed
a single code that scales from the laptop to supercomputer.

In the future, we want to explore new search strategies, in particular, using
multiple starting trees and/or maintaining a population of trees in the course of the
tree search. We expect that this approach will help to escape local optima, which
still do constitute a problem of the RAxML-NG search heuristic. This conjecture is
further supported by the performance of the IQTree program in our evaluation: it
returned consistently high log-likelihoods with low variation, presumably since it
does not rely on optimizing a single startingtree as RAxML/ExaML/RAxML-NG do.

107

Flexible parallelization is another possible direction of RAxML-NG improvement.
The current fine-grain parallization approach requires at least 1,000–5,000 alignment
sites per core to attain reasonable parallel efficiency, and is thus not suitable for taxa-
rich alignments comprising only one or a few gene(s). Ironically, optimization of the
time-critical per-site loops in the PLF kernels only aggravates this problem, since
even more parallel workload is needed to amortize the sequential overhead (according
to Amdahl’s law). To this end, it will be worth exploring orthogonal parallelization
schemes such as computing multiple CLVs and/or evaluating alternative SPR moves
in parallel. However, these approaches also introduce additional complexity in terms
of load balancing, data distribution, and increased memory footprint.

With respect to sequence error modeling, we showed that even simple models,
that assume an uniform error distribution and have no prior information about the
actual noise level, can improve branch length estimates compared to the classical
error-agnostic models of evolution. It should be noted, however, that this positive
effect is mainly observed for relatively high error rates (5%–10%), which are unlikely
to occur in empirical sequence alignments obtained with traditional methods (NGS
sequencing with high coverage). However, single-cell sequencing data exhibits sub-
stantially higher noise levels. Thus, an explicit modeling of sequence uncertainty
can be beneficial. To this end, we implemented a dedicated error model for diploid
genotype data, and compared its performance to SiFit [162], a state-of-the-art
method specifically developed for analyzing noisy single-cell data. Although our
method showed better performance compared to SiFit, the absolute tree inference
accuracy from noisy data (10% sequencing error or 30% ADO) was still compara-
tively low (nRF distance to the true tree: 0.15–0.20). Therefore, we plan to explore
more sophisticated error models and/or exploit external information about sequence
uncertainty (e.g., incorporate genotype likelihoods reported by variant callers).

Support for sequence error models and diploid genotype data is currently being
developed in the experimental branch of RAxML-NG, and this functionality will be
transferred to the production version as the code matures.

With SATIVA, we introduced a practical way to detect incorrect taxonomic an-
notations in large sequence databases. It will help reference database curators to
spot problematic sequences more easily, resulting in improved annotation quality
and faster update cycles. On the other hand, individual researchers who rely on the
sequences retrieved from GenBank and other public databases for their studies will
benefit from the semi-automatic validation of their particular reference subset.

The scalability of the SATIVA pipeline to large datasets can be improved by up-
grading its most performance-critical components, RAxML and RAxML-EPA, to their
respective successors RAxML-NG and EPA-NG [9], which have been recently developed
in our group. It will further benefit from the aforementioned coarse-grained paral-
lelization in RAxML-NG.

108

List of Figures

2.1 Sample phylogenetic trees . 7

2.2 Rooted and unrooted trees . 8

2.3 Multiple Sequence Alignment . 11

2.4 Commonly used tree moves . 14

2.5 Markov Chain Model of Nucleotide Substitutions 16

2.6 A partitioned MSA . 20

2.7 Conditional Likelihood Vector (CLV) 23

3.1 Intel Xeon Phi architecture . 29

3.2 Vectorization with pragmas and compiler intrinsics 31

3.3 Hybrid MPI/OpenMP parallelization of ExaML-KNC 34

3.4 PLF kernel speedups on KNC . 37

3.5 ExaML-KNC speedups on DNA and AA alignments 41

3.6 Weak scaling of ExaML-KNC . 43

3.7 ExaML-KNC performance on Intel Knights Landing 44

4.1 RAxML-NG and related software tools 53

4.2 Tree search efficiency and speed (small datasets) 61

4.3 Tree search efficiency and speed (medium datasets) 62

4.4 Tree search efficiency and speed (large datasets) 63

4.5 Strong scaling efficiency of RAxML-NG vs. ExaML 64

5.1 Sample FASTQ file . 71

5.2 Sample CATG file . 72

5.3 Sequence uncertainty representation in CLVs 73

5.4 ML estimates of the uniform error rate on DNA data 76

5.5 ML estimates of the sequencing error rate on genotype data 78

5.6 ML estimates of the allelic dropout rate on genotype data 79

5.7 Inference accuracy on DNA data . 80

5.8 Inference accuracy on genotype data w.r.t. sequencing error rate . . . 83

5.9 Inference accuracy on genotype data w.r.t. ADO rate 84

109

6.1 SATIVA processing workflow. 91
6.2 Taxonomic assignment method implemented in SATIVA 92
6.3 SATIVA results displayed in the ARB workbench 95
6.4 Mislabel identification results on empirical datasets 103

110

List of Tables

3.1 Test system specifications . 36
3.2 Test datasets and ExaML execution times 40

4.1 Specification of the test system used for RAxML-NG evaluation 55
4.2 ML inference tools used for benchmarking. 55
4.3 Datasets used for the RAxML-NG evaluation 56

5.1 Datasets used for the uncertainty model evaluation 74

6.1 Simulated datasets used for SATIVA evaluation. 97
6.2 Accuracy of mislabel identification on simulated data 100
6.3 Accuracy of the suggested corrections on simulated data 100
6.4 Empirical datasets used for SATIVA evaluation 102

111

112

List of Acronyms

AA Amino acid.

ADO Allelic DropOut.

AVX Advanced Vector Extensions.

bp base pair.

CLV Conditional Likelihood Vector.

CPU Central Processing Unit.

DNA Deoxyribonucleic acid.

EPA Evolutionary Placement Algorithm.

GB Gigabyte.

GFLOPS Giga (billions of) FLoating-point OPerations per Second.

GTR General Time Reversible.

KF Kuhner-Felsenstein (distance metric for trees).

KNC Knights Corner (Intel Xeon Phi accelerator).

KNL Knights Landing (Intel Xeon Phi accelerator).

MC Markov Chain.

ML Maximum Likelihood.

MP Maximum Parsimony.

MPI Message Passing Interface.

MSA Multiple Sequence Alignment.

113

NGS Next Generation Sequencing.

NJ Neighbour Joining.

NNI Nearest Neighbour Interchange.

PLF Phylogenetic Likelihood Function.

RF Robinson-Foulds (distance metric for trees).

RHAS Rate Heterogeneity Across Sites.

RNA Ribonucleic acid.

SIMD Single Instruction Multiple Data.

SPR Subtree Pruning and Regrafting.

TBR Tree Bisection and Reconnection.

114

Bibliography

[1] The bird 10,000 genomes (b10k) project.
https://b10k.genomics.cn/index.html. Website. Accessed November 3,
2017.

[2] K. Abarenkov, R. Henrik Nilsson, K. H. Larsson, I. J. Alexander, U. Eber-
hardt, S. Erland, K. Hoiland, R. Kjoller, E. Larsson, T. Pennanen, R. Sen,
A. F. Taylor, L. Tedersoo, B. M. Ursing, T. Vralstad, K. Liimatainen, U. Peint-
ner, and U. Koljalg. The UNITE database for molecular identification of fungi–
recent updates and future perspectives. New Phytol, 186(2):281–5, 2010.

[3] A. J. Aberer, K. Kobert, and A. Stamatakis. ExaBayes: Massively paral-
lel bayesian tree inference for the whole-genome era. Molecular Biology and
Evolution, 31(10):2553–2556, 2014.

[4] H. Akaike. A new look at the statistical model identification. IEEE Transac-
tions on Automatic Control, 19(6):716–723, Dec 1974.

[5] N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis. Exploring FPGAs
for accelerating the phylogenetic likelihood function. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–8,
2009.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[7] Aristotle. Physics. Hosted by MIT’s Internet Classics Archive, retrieved 1
August 2017.

[8] S. Bank, M. Sann, C. Mayer, K. Meusemann, A. Donath, L. Podsiadlowski,
A. Kozlov, M. Petersen, L. Krogmann, R. Meier, P. Rosa, T. Schmitt, M. Wur-
dack, S. Liu, X. Zhou, B. Misof, R. S. Peters, and O. Niehuis. Transcriptome
and target DNA enrichment sequence data provide new insights into the phy-
logeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phy-
logenetics and Evolution, 116(Supplement C):213 – 226, 2017.

115

[9] P. Barbera. EPA-NG: Massively parallel phylogenetic placement of genetic se-
quences. https://github.com/Pbdas/epa-ng, 2017. Website. Accessed Novem-
ber 20, 2017.

[10] P. Barbera, A. Kozlov, T. Flouri, D. Darriba, L. Czech, and A. Stamatakis.
Massively parallel evolutionary placement of genetic sequences. In ISC 2017
PhD Symposium, Frankfurt am Main, Germany, June 2017.

[11] S. Berger, N. Alachiotis, and A. Stamatakis. An optimized reconfigurable sys-
tem for computing the phylogenetic likelihood function on DNA data. In Paral-
lel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW),
2012 IEEE 26th International, pages 352–359, 2012.

[12] S. A. Berger, D. Krompass, and A. Stamatakis. Performance, accuracy, and
web server for evolutionary placement of short sequence reads under maximum
likelihood. Systematic Biology, 60(3):291–302, 2011.

[13] C. Berney, A. Ciuprina, S. Bender, J. Brodie, V. Edgcomb, E. Kim, J. Rajan,
L. W. Parfrey, S. Adl, S. Audic, D. Bass, D. A. Caron, G. Cochrane, L. Czech,
M. Dunthorn, S. Geisen, F. O. Glöckner, F. Mahé, C. Quast, J. Z. Kaye,
A. G. B. Simpson, A. Stamatakis, J. del Campo, P. Yilmaz, and C. de Vargas.
UniEuk: Time to speak a common language in protistology! Journal of
Eukaryotic Microbiology, 64(3):407–411, 2017.

[14] R. Biczok, P. Bozsoky, P. Eisenmann, J. Ernst, T. Ribizel, F. Scholz, A. Tre-
fzer, F. Weber, M. Hamann, and A. Stamatakis. Two C++ libraries for
counting trees on a phylogenetic terrace. bioRxiv, 2017.

[15] B. P. Boerner and N. E. Sarvetnick. Type 1 diabetes: role of intestinal mi-
crobiome in humans and mice. Annals of the New York Academy of Sciences,
1243(1):103–118, 2011.

[16] R. K. Bradley, A. Roberts, M. Smoot, S. Juvekar, J. Do, C. Dewey, I. Holmes,
and L. Pachter. Fast statistical alignment. PLOS Computational Biology,
5(5):1–15, 05 2009.

[17] R. Brent. An algorithm with guaranteed convergence for finding a zero of a
function. In Algorithms for Minimization Without Derivatives, Prentice-Hall
series in automatic computation, chapter 4. Prentice-Hall, 1972.

[18] S. Capella-Gutiérrez, J. M. Silla-Mart́ınez, and T. Gabaldón. trimAl: a tool
for automated alignment trimming in large-scale phylogenetic analyses. Bioin-
formatics, 25(15):1972–1973, 2009.

116

[19] J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman,
E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A.
Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone,
D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J.
Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and
R. Knight. QIIME allows analysis of high-throughput community sequencing
data. Nature Methods, 7(5):335–336, 2010.

[20] W. E. Carroll. Creation, evolution, and Thomas Aquinas. Revue des Questions
Scientifiques, 171(4):319–347, 2000.

[21] O. Chernomor, A. von Haeseler, and B. Q. Minh. Terrace aware data structure
for phylogenomic inference from supermatrices. Systematic Biology, 65(6):997–
1008, 2016.

[22] B. Chor and T. Tuller. Maximum likelihood of evolutionary trees is hard.
In Proceedings of the 9th Annual International Conference on Research in
Computational Molecular Biology, RECOMB’05, pages 296–310, Berlin, Hei-
delberg, 2005. Springer-Verlag.

[23] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Research, 38(6):1767–1771, 2010.

[24] J. R. Cole, Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T.
Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. Ribosomal Database
Project: data and tools for high throughput rRNA analysis. Nucleic Acids
Research, 42(D1):D633–D642, 2014.

[25] R. E. Collins and P. G. Higgs. Testing the infinitely many genes model for
the evolution of the bacterial core genome and pangenome. Molecular Biology
and Evolution, 29(11):3413–3425, 2012.

[26] T. P. Curtis, W. T. Sloan, and J. W. Scannell. Estimating prokaryotic diversity
and its limits. Proceedings of the National Academy of Sciences, 99(16):10494–
10499, 2002.

[27] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo,
R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin,
and . The variant call format and VCFtools. Bioinformatics, 27(15):2156–
2158, 2011.

117

[28] D. Darriba, D. Posada, and A. Stamatakis. ModelTest-NG: Best-fit evolution-
ary model selection. https://github.com/ddarriba/modeltest, 2017. Website.
Accessed November 20, 2017.

[29] O. B. Dayhoff MO, Schwartz RM. A model of evolutionary change in pro-
teins. In Atlas of Protein Sequence and Structure., page 345–352. National
Biomedical Research Foundation, Washington, DC, 1978.

[30] A. J. Drummond, M. A. Suchard, D. Xie, and A. Rambaut. Bayesian phylo-
genetics with BEAUti and the BEAST 1.7. Molecular biology and evolution,
29(8):1969–1973, 2012.

[31] D. A. R. Eaton. PyRAD: assembly of de novo RADseq loci for phylogenetic
analyses . Bioinformatics, 30(13):1844–1849, 2014.

[32] S. R. Eddy. Multiple alignment using hidden Markov models. In ISMB-
95: Proceedings, Third International Conference on Intelligent Systems for
Molecular Biology, volume 3, pages 114–120. AAAI Press, 1995.

[33] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[34] R. C. Edgar. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26(19):2460–2461, 2010.

[35] R. C. Edgar. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26(19):2460–2461, 2010.

[36] P. Erixon, B. Svennblad, T. Britton, B. Oxelman, and J. Sullivan. Reliability
of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics.
Systematic Biology, 52(5):665–673, 2003.

[37] B. Ewing and P. Green. Base-calling of automated sequencer traces using
phred. ii. error probabilities. Genome Research, 8(3):186–194, 1998.

[38] J. Felsenstein. Cases in which parsimony or compatibility methods will be
positively misleading. Systematic Biology, 27(4):401–410, 1978.

[39] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likeli-
hood approach. Journal of Molecular Evolution, 17(6):368–376, 11 1981.

[40] J. Felsenstein. Inferring phylogenies. Sinauer Associates Sunderland, 2004.

[41] R. Fletcher. Practical methods of optimization. Number v. 1 in Wiley-
interscience publication. Wiley, 1987.

118

[42] W. Fletcher and Z. Yang. INDELible: a flexible simulator of biological se-
quence evolution. Molecular biology and evolution, 26(8):1879–1888, 2009.

[43] D. Futuyma. The uses of evolutionary biology. Science, 267(5194):41–42, 1995.

[44] J. A. Gilbert, J. K. Jansson, and R. Knight. The Earth Microbiome project:
successes and aspirations. BMC Biology, 12(1):1–4, 2014.

[45] R. Graham and L. Foulds. Unlikelihood that minimal phylogenies for a re-
alistic biological study can be constructed in reasonable computational time.
Mathematical Biosciences, 60(2):133–142, 1982.

[46] S. Greenblum, P. J. Turnbaugh, and E. Borenstein. Metagenomic systems
biology of the human gut microbiome reveals topological shifts associated with
obesity and inflammatory bowel disease. Proceedings of the National Academy
of Sciences, 109(2):594–599, 2012.

[47] L. Guillou, D. Bachar, S. Audic, D. Bass, C. Berney, L. Bittner, C. Boutte,
G. Burgaud, C. de Vargas, J. Decelle, J. Del Campo, J. R. Dolan, M. Dun-
thorn, B. Edvardsen, M. Holzmann, W. H. Kooistra, E. Lara, N. Le Bescot,
R. Logares, F. Mahe, R. Massana, M. Montresor, R. Morard, F. Not,
J. Pawlowski, I. Probert, A. L. Sauvadet, R. Siano, T. Stoeck, D. Vaulot,
P. Zimmermann, and R. Christen. The Protist Ribosomal Reference database
(PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences
with curated taxonomy. Nucleic Acids Reseach, 41(Database issue):D597–604,
2013.

[48] S. Guindon, J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gas-
cuel. New algorithms and methods to estimate maximum-likelihood phyloge-
nies: assessing the performance of PhyML 3.0. Systematic biology, 59(3):307–
321, 2010.

[49] M. Hasegawa, H. Kishino, and T.-a. Yano. Dating of the human-ape splitting
by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution,
22(2):160–174, Oct 1985.

[50] W. K. Hastings. Monte Carlo sampling methods using Markov Chains and
their applications. Biometrika, 57(1):97–109, 1970.

[51] A. P. Hendry, M. T. Kinnison, M. Heino, T. Day, T. B. Smith, G. Fitt,
C. T. Bergstrom, J. Oakeshott, P. S. Jørgensen, M. P. Zalucki, G. Gilchrist,
S. Southerton, A. Sih, S. Strauss, R. F. Denison, and S. P. Carroll. Evolu-
tionary principles and their practical application. Evolutionary Applications,
4(2):159–183, 2011.

119

[52] D. G. Higgins and P. M. Sharp. CLUSTAL: a package for performing multiple
sequence alignment on a microcomputer. Gene, 73(1):237 – 244, 1988.

[53] D. Hillis and J. Wiens. Molecules versus morphology in systematics: conflicts,
artifacts, and misconceptions. Phylogenetic analysis of morphological data,
pages 1–19, 2000.

[54] Y. Hou, L. Song, P. Zhu, B. Zhang, Y. Tao, and X. Xu. Single-cell exome
sequencing and monoclonal evolution of a JAK2-negative myeloproliferative
neoplasm. Cell, 148, 2012.

[55] J. Huerta-Cepas, J. Dopazo, and T. Gabaldón. ETE: a Python Environment
for Tree Exploration. BMC bioinformatics, 11(1):24, 2010.

[56] F. Husńık, T. Chrudimský, and V. Hypša. Multiple origins of endosymbio-
sis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex
phylogenetic approaches. BMC Biology, 9(1):87, Dec 2011.

[57] J. Huxley. Evolution, the Modern Synthesis. G. Allen & Unwin Limited, 1942.

[58] Illumina Inc. Quality scores for next-generation sequencing. techincal
note. https://www.illumina.com/documents/products/technotes/technote Q-
Scores.pdf, 2011.

[59] F. Izquierdo-Carrasco, N. Alachiotis, S. Berger, T. Flouri, S. Pissis, and A. Sta-
matakis. A generic vectorization scheme and a GPU kernel for the phylogenetic
likelihood library. In Parallel and Distributed Processing Symposium Work-
shops PhD Forum (IPDPSW), 2013 IEEE 27th International, pages 530–538,
2013.

[60] F. Izquierdo-Carrasco, S. Smith, and A. Stamatakis. Algorithms, data struc-
tures, and numerics for likelihood-based phylogenetic inference of huge trees.
BMC bioinformatics, 12(1):470, 2011.

[61] K. Jahn, J. Kuipers, and N. Beerenwinkel. Tree inference for single-cell data.
Genome Biol, 17, 2016.

[62] E. D. Jarvis, S. Mirarab, A. J. Aberer, B. Li, P. Houde, C. Li, S. Y. Ho, B. C.
Faircloth, B. Nabholz, J. T. Howard, et al. Whole-genome analyses resolve
early branches in the tree of life of modern birds. Science, 346(6215):1320–
1331, 2014.

[63] T. Jukes and C. Cantor. Evolution of protein molecules. In H. Munro, editor,
Mammalian Protein Metabolism, pages 21–132. Academic Press, New York,
USA, 1969.

120

[64] W. Just. Computational complexity of multiple sequence alignment with SP-
score. Journal of computational biology, 8(6):615–623, 2001.

[65] K. Katoh and D. M. Standley. MAFFT multiple sequence alignment software
version 7: Improvements in performance and usability. Molecular Biology and
Evolution, 30(4):772–780, 2013.

[66] M. Kimura. A simple method for estimating evolutionary rates of base sub-
stitutions through comparative studies of nucleotide sequences. Journal of
Molecular Evolution, 16(2):111–120, Jun 1980.

[67] S. Klopfstein, L. Vilhelmsen, and F. Ronquist. A nonstationary Markov model
detects directional evolution in Hymenopteran morphology. Systematic Biol-
ogy, 64(6):1089–1103, 2015.

[68] K. Kobert, T. Flouri, A. Aberer, and A. Stamatakis. The divisible load bal-
ance problem and its application to phylogenetic inference. In D. Brown and
B. Morgenstern, editors, Algorithms in Bioinformatics, volume 8701 of Lecture
Notes in Computer Science, pages 204–216. Springer Berlin Heidelberg, 2014.

[69] K. Kobert, A. Stamatakis, and T. Flouri. Efficient detection of repeating
sites to accelerate phylogenetic likelihood calculations. Systematic Biology,
66(2):205–217, 2017.

[70] A. D. Kostic, R. J. Xavier, and D. Gevers. The microbiome in inflamma-
tory bowel disease: Current status and the future ahead. Gastroenterology,
146(6):1489 – 1499, 2014. The Gut Microbiome in Health and Disease.

[71] A. Kozlov, A. Stamatakis, D. Darriba, T. Flouri, and B. Morel. RAxML-
NG: Next Generation tool for Maximum Likelihood phylogenetic inference.
https://github.com/amkozlov/raxml-ng, 2017. Website. Accessed November
3, 2017.

[72] A. M. Kozlov, A. J. Aberer, and A. Stamatakis. ExaML version 3: a tool for
phylogenomic analyses on supercomputers. Bioinformatics, pages 2577–2579,
2015.

[73] A. M. Kozlov, C. Goll, and A. Stamatakis. Efficient computation of the
phylogenetic likelihood function on the Intel MIC architecture. In Parallel
Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE Inter-
national, pages 518–527, May 2014.

[74] A. M. Kozlov, J. Zhang, P. Yilmaz, F. O. Glöckner, and A. Stamatakis.
Phylogeny-aware identification and correction of taxonomically mislabeled se-
quences. Nucleic acids research, 44(11):5022–5033, 2016.

121

[75] R. Krishnaiyer, E. Kultursay, P. Chawla, S. Preis, A. Zvezdin, and H. Saito.
Compiler-based data prefetching and streaming non-temporal store genera-
tion for the Intel(R) Xeon Phi(TM) coprocessor. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1575–1586, 2013.

[76] M. K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Molecular Biology
and Evolution, 11(3):459–468, 1994.

[77] M. K. Kuhner and J. McGill. Correcting for sequencing error in maximum
likelihood phylogeny inference. G3: Genes, Genomes, Genetics, 4(12):2545–
2552, 2014.

[78] N. C. Kyrpides, P. Hugenholtz, J. A. Eisen, T. Woyke, M. Göker, C. T.
Parker, R. Amann, B. J. Beck, P. S. G. Chain, J. Chun, R. R. Colwell,
A. Danchin, P. Dawyndt, T. Dedeurwaerdere, E. F. DeLong, J. C. Detter,
P. De Vos, T. J. Donohue, X.-Z. Dong, D. S. Ehrlich, C. Fraser, R. Gibbs,
J. Gilbert, P. Gilna, F. O. Glöckner, J. K. Jansson, J. D. Keasling, R. Knight,
D. Labeda, A. Lapidus, J.-S. Lee, W.-J. Li, J. MA, V. Markowitz, E. R. B.
Moore, M. Morrison, F. Meyer, K. E. Nelson, M. Ohkuma, C. A. Ouzounis,
N. Pace, J. Parkhill, N. Qin, R. Rossello-Mora, J. Sikorski, D. Smith, M. So-
gin, R. Stevens, U. Stingl, K.-i. Suzuki, D. Taylor, J. M. Tiedje, B. Tindall,
M. Wagner, G. Weinstock, J. Weissenbach, O. White, J. Wang, L. Zhang, Y.-
G. Zhou, D. Field, W. B. Whitman, G. M. Garrity, and H.-P. Klenk. Genomic
encyclopedia of bacteria and archaea: Sequencing a myriad of type strains.
PLOS Biology, 12(8):1–7, 08 2014.

[79] R. Lanfear, B. Calcott, S. Y. W. Ho, and S. Guindon. PartitionFinder: Com-
bined selection of partitioning schemes and substitution models for phyloge-
netic analyses. Molecular Biology and Evolution, 29(6):1695–1701, 2012.

[80] N. Lartillot, T. Lepage, and S. Blanquart. PhyloBayes 3: a bayesian software
package for phylogenetic reconstruction and molecular dating. Bioinformatics,
25(17):2286–2288, 2009.

[81] N. Lartillot and H. Philippe. A Bayesian mixture model for across-site het-
erogeneities in the amino-acid replacement process. Molecular Biology and
Evolution, 21(6):1095–1109, 2004.

[82] S. Q. Le and O. Gascuel. An improved general amino acid replacement matrix.
Molecular Biology and Evolution, 25(7):1307–1320, 2008.

122

[83] A. D. Leaché, B. L. Banbury, J. Felsenstein, A. n.-M. de Oca, and A. Sta-
matakis. Short tree, long tree, right tree, wrong tree: New acquisition bias
corrections for inferring SNP phylogenies. Systematic Biology, 64(6):1032–
1047, 2015.

[84] F. Lemoine, J.-B. Domelevo Entfellner, E. Wilkinson, T. De Oliveira, and
O. Gascuel. Boosting Felsenstein phylogenetic bootstrap. bioRxiv, 2017.

[85] P. O. Lewis. A likelihood approach to estimating phylogeny from discrete
morphological character data. Systematic biology, 50(6):913–925, 2001.

[86] K. Liu, C. R. Linder, and T. Warnow. RAxML and FastTree: Comparing
two methods for large-scale maximum likelihood phylogeny estimation. PLOS
ONE, 6(11):1–11, 11 2011.

[87] W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar,
A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber,
A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss,
R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis,
N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K.-H. Schleifer.
ARB: a software environment for sequence data. Nucleic Acids Research,
32(4):1363–1371, 2004.

[88] F. Mahé, C. de Vargas, D. Bass, L. Czech, A. Stamatakis, E. Lara, D. Singer,
J. Mayor, J. Bunge, S. Sernaker, et al. Parasites dominate hyperdiverse soil
protist communities in Neotropical rainforests. Nature Ecology & Evolution,
1:0091, 2017.

[89] F. A. Matsen, R. B. Kodner, and E. V. Armbrust. pplacer: linear time
maximum-likelihood and bayesian phylogenetic placement of sequences onto
a fixed reference tree. BMC Bioinformatics, 11(1):538, Oct 2010.

[90] D. McDonald, M. N. Price, J. Goodrich, E. P. Nawrocki, T. Z. DeSantis,
A. Probst, G. L. Andersen, R. Knight, and P. Hugenholtz. An improved Green-
genes taxonomy with explicit ranks for ecological and evolutionary analyses
of bacteria and archaea. The ISME journal, 6:610–8, 2012.

[91] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernyt-
sky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo.
The Genome Analysis Toolkit: A MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Research, 20(9):1297–1303, 2010.

123

[92] B. Misof, S. Liu, K. Meusemann, R. S. Peters, A. Donath, C. Mayer, P. B.
Frandsen, J. Ware, T. Flouri, R. G. Beutel, et al. Phylogenomics resolves the
timing and pattern of insect evolution. Science, 346(6210):763–767, 2014.

[93] B. M. Moret, U. Roshan, and T. Warnow. Sequence-length requirements
for phylogenetic methods. Lecture Notes in Computer Science, 2452:343–356,
2002.

[94] L. G. Nagy, R. A. Ohm, G. M. Kovács, D. Floudas, R. Riley, A. Gácser,
M. Sipiczki, J. M. Davis, S. L. Doty, G. S. De Hoog, et al. Latent homology and
convergent regulatory evolution underlies the repeated emergence of yeasts.
Nature communications, 5:4471, 2014.

[95] N. Navin. Cancer genomics: one cell at a time. Genome Biol, 15, 2014.

[96] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443 – 453, 1970.

[97] C. Newburn, R. Deodhar, S. Dmitriev, R. Murty, R. Narayanaswamy,
J. Wiegert, F. Chinchilla, and R. McGuire. Offload compiler runtime for
the Intel R© Xeon Phi coprocessor. In J. M. Kunkel, T. Ludwig, and H. W.
Meuer, editors, Supercomputing, volume 7905 of Lecture Notes in Computer
Science, pages 239–254. Springer Berlin Heidelberg, 2013.

[98] L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, and B. Q. Minh. IQ-TREE:
A fast and effective stochastic algorithm for estimating maximum-likelihood
phylogenies. Molecular Biology and Evolution, 32(1):268–274, 2015.

[99] R. H. Nilsson, L. Tedersoo, K. Abarenkov, M. Ryberg, E. Kristiansson,
M. Hartmann, C. L. Schoch, J. A. A. Nylander, J. Bergsten, T. M.
Porter, A. Jumpponen, P. Vaishampayan, O. Ovaskainen, N. Hallenberg,
J. Bengtsson-Palme, K. M. Eriksson, K.-H. Larsson, E. Larsson, and
U. Kõljalg. Five simple guidelines for establishing basic authenticity and
reliability of newly generated fungal its sequences. MycoKeys, 4:37–63, sep
2012.

[100] Nomenclature Committee of the International Union of Biochemistry (NC-
IUB). Nomenclature for incompletely specified bases in nucleic acid sequences:
Recommendations 1984. Proceedings of the National Academy of Sciences of
the United States of America, 83(1):4–8, 1986.

124

[101] D. Normile. Plant scientists plan massive effort to sequence 10,000
genomes. http://www.sciencemag.org/news/2017/07/plant-scientists-plan-
massive-effort-sequence-10000-genomes, 2017. Website. Accessed November
3, 2017.

[102] M. Nute and T. Warnow. Scaling statistical multiple sequence alignment to
large datasets. BMC Genomics, 17(10):764, Nov 2016.

[103] N. Pace. A molecular view of microbial diversity and the biosphere. Science,
276:734–740, 1997.

[104] N. D. Pattengale, M. Alipour, O. R. Bininda-Emonds, B. M. Moret, and
A. Stamatakis. How many bootstrap replicates are necessary? Journal of
Computational Biology, 17(3):337–354, 2010.

[105] E. Pennisi. Biologists propose to sequence the DNA of all life
on earth. http://www.sciencemag.org/news/2017/02/biologists-propose-
sequence-dna-all-life-earth, 2017. Website. Accessed November 3, 2017.

[106] R. S. Peters, L. Krogmann, C. Mayer, A. Donath, S. Gunkel, K. Meusemann,
A. Kozlov, L. Podsiadlowski, M. Petersen, R. Lanfear, P. A. Diez, J. Heraty,
K. M. Kjer, S. Klopfstein, R. Meier, C. Polidori, T. Schmitt, S. Liu, X. Zhou,
T. Wappler, J. Rust, B. Misof, and O. Niehuis. Evolutionary history of the
hymenoptera. Current Biology, 27(7):1013 – 1018, 2017.

[107] R. O. Prum, J. S. Berv, A. Dornburg, D. J. Field, J. P. Townsend, E. M.
Lemmon, and A. R. Lemmon. A comprehensive phylogeny of birds (Aves)
using targeted next-generation DNA sequencing. Nature, 526(7574):569–573,
2015.

[108] R. A. Pyron, F. T. Burbrink, G. R. Colli, A. N. M. de Oca, L. J. Vitt, C. A.
Kuczynski, and J. J. Wiens. The phylogeny of advanced snakes (Colubroidea),
with discovery of a new subfamily and comparison of support methods for
likelihood trees. Molecular Phylogenetics and Evolution, 58(2):329 – 342, 2011.

[109] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies,
and F. O. Glockner. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids Research,
41(Database issue):D590–6, 2013.

[110] A. Rambaut. FigTree v1.4.3, October 2016.

125

[111] O. Ratmann, C. Wymant, C. Colijn, S. Danaviah, M. Essex, S. D. Frost,
A. Gall, s. gaiseitsiwe, M. Grabowski, R. Gray, et al. HIV-1 full-genome phy-
logenetics of generalized epidemics in sub-Saharan Africa: impact of missing
nucleotide characters in next-generation sequences. AIDS Research and Hu-
man Retroviruses, 33(11):1083–1098, November 2017.

[112] S. Ratnasingham and P. D. N. Hebert. BOLD: The Barcode of Life Data
system. Molecular Ecology Notes, 7(3):355–364, 2007.

[113] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53(1):131 – 147, 1981.

[114] S. Roch. A short proof that phylogenetic tree reconstruction by maximum
likelihood is hard. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 3(1):92, 2006.

[115] C. A. Ronan. The Shorter Science and Civilisation in China: An Abridgement
by Colin A. Ronan of Joseph Needham’s Original Text. Cambridge; New York:
Cambridge University Press, 1995.

[116] F. Ronquist, M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna,
B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice across a large model space.
Systematic biology, 61(3):539–542, 2012.

[117] C. Rosales. Porting to the Intel Xeon Phi: Opportunities and challenges. 2013.

[118] E. M. Ross and F. Markowetz. OncoNEM: inferring tumor evolution from
single-cell sequencing data. Genome Biol, 17, 2016.

[119] B. Rulik, J. Eberle, L. von der Mark, J. Thormann, M. Jung, F. Köhler,
W. Apfel, A. Weigel, A. Kopetz, J. Köhler, F. Fritzlar, M. Hartmann,
K. Hadulla, J. Schmidt, T. Hörren, D. Krebs, F. Theves, U. Eulitz, A. Skale,
D. Rohwedder, A. Kleeberg, J. J. Astrin, M. F. Geiger, J. W. Wägele,
P. Grobe, and D. Ahrens. Using taxonomic consistency with semi-automated
data pre-processing for high quality DNA barcodes. Methods in Ecology and
Evolution, 2017.

[120] N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425,
1987.

[121] M. J. Sanderson, M. J. Donoghue, W. H. Piel, and T. Eriksson. TreeBASE: a
prototype database of phylogenetic analyses and an interactive tool for brows-
ing the phylogeny of life. American Journal of Botany, 81(6):183+, 1994.

126

[122] M. J. Sanderson, M. M. McMahon, and M. Steel. Terraces in phylogenetic
tree space. Science, 333(6041):448–450, 2011.

[123] D. Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied
Mathematics, 28(1):35–42, 1975.

[124] S. Schloissnig, M. Arumugam, S. Sunagawa, M. Mitreva, J. Tap, A. Zhu,
A. Waller, D. Mende, J. Kultima, J. Martin, K. Kota, S. Sunyaev, G. We-
instock, and P. Bork. Genomic variation landscape of the human gut micro-
biome. Nature, 493(7430):45–50, 2013.

[125] R. Schwartz and A. A. Schäffer. The evolution of tumour phylogenetics: prin-
ciples and practice. Nature Reviews Genetics, 18(4):213–229, 2017.

[126] G. Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):461–464,
03 1978.

[127] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez,
H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, and D. G. Higgins.
Fast, scalable generation of high-quality protein multiple sequence alignments
using Clustal Omega. Molecular Systems Biology, 7(1), 2011.

[128] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic
relationships. University of Kansas Science Bulletin, 38:1409–1438, 1958.

[129] A. Stamatakis. Phylogenetic Models of Rate Heterogeneity: A High Perfor-
mance Computing Perspective. In Proc. of IPDPS2006, HICOMB Workshop,
Proceedings on CD, Rhodos, Greece, April 2006.

[130] A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics,
22(21):2688–2690, 2006.

[131] A. Stamatakis. RAxML-VI-HPC: Maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics,
22(21):2688–2690, 2006.

[132] A. Stamatakis. Phylogenetic Search Algorithms for Maximum Likelihood,
pages 547–577. John Wiley & Sons, Inc., 2011.

[133] A. Stamatakis. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics, 30(9):1312–1313, 2014.

[134] A. Stamatakis. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics, 30(9):1312–1313, 2014.

127

[135] A. Stamatakis and A. Aberer. Novel parallelization schemes for large-scale
likelihood-based phylogenetic inference. In Parallel Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, pages 1195–1204,
2013.

[136] A. Stamatakis and N. Alachiotis. Time and memory efficient likelihood-based
tree searches on phylogenomic alignments with missing data. Bioinformatics,
26(12):i132–i139, 2010.

[137] A. Stamatakis, T. Ludwig, and H. Meier. Raxml-iii: a fast program for max-
imum likelihood-based inference of large phylogenetic trees. Bioinformatics,
21(4):456–463, 2005.

[138] M. Stark, S. A. Berger, A. Stamatakis, and C. von Mering. MLTreeMap -
accurate maximum likelihood placement of environmental DNA sequences into
taxonomic and functional reference phylogenies. BMC Genomics, 11(1):461,
Aug 2010.

[139] M. A. Steel and L. A. Székely. Inverting random functions ii: Explicit bounds
for discrete maximum likelihood estimation, with applications. SIAM Journal
on Discrete Mathematics, 15(4):562–575, 2002.

[140] K. Strimmer and A. Rambaut. Inferring confidence sets of possibly mis-
specified gene trees. Proceedings of the Royal Society B-Biological Sciences,
269(1487):137–142, 2002.

[141] M. A. Suchard and A. Rambaut. Many-core algorithms for statistical phylo-
genetics. Bioinformatics, 25(11):1370, 2009.

[142] M. A. Suchard and B. D. Redelings. BAli-Phy: simultaneous Bayesian infer-
ence of alignment and phylogeny. Bioinformatics, 22(16):2047–2048, 2006.

[143] J. Sukumaran and M. T. Holder. DendroPy: a Python library for phylogenetic
computing. Bioinformatics, 26(12):1569–1571, 2010.

[144] G. Talavera and J. Castresana. Improvement of phylogenies after removing
divergent and ambiguously aligned blocks from protein sequence alignments.
Systematic biology, 56(4):564–577, 2007.

[145] G. Tan, M. Muffato, C. Ledergerber, J. Herrero, N. Goldman, M. Gil, and
C. Dessimoz. Current methods for automated filtering of multiple sequence
alignments frequently worsen single-gene phylogenetic inference. Systematic
biology, 64(5):778–791, 2015.

128

[146] S. Tavaré. Some Probabilistic and Statistical Problems in the Analysis of DNA
Sequences, volume 17, pages 57–86. Amer Mathematical Society, 1986.

[147] S. M. Utturkar, D. M. Klingeman, J. M. Bruno-Barcena, M. S. Chinn, A. M.
Grunden, M. Köpke, and S. D. Brown. Sequence data for Clostridium au-
toethanogenum using three generations of sequencing technologies. Scientific
data, 2, 2015.

[148] C. von Mering, P. Hugenholtz, J. Raes, S. Tringe, T. Doerks, L. Jensen,
N. Ward, and P. Bork. Quantitative phylogenetic assessment of microbial
communities in diverse environments. Science, 315(5815):1126–30, 2007.

[149] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole. Näıve Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Applied and Environmental Microbiology, 73(16):5261–5267, 2007.

[150] Y. Wang, J. Waters, M. L. Leung, A. Unruh, W. Roh, and X. Shi. Clonal evo-
lution in breast cancer revealed by single nucleus genome sequencing. Nature,
512, 2014.

[151] N. V. Whelan, K. M. Kocot, L. L. Moroz, and K. M. Halanych. Error, signal,
and the placement of Ctenophora sister to all other animals. Proceedings of
the National Academy of Sciences, 112(18):5773–5778, 2015.

[152] S. Whelan and N. Goldman. A general empirical model of protein evolution
derived from multiple protein families using a maximum-likelihood approach.
Molecular Biology and Evolution, 18(5):691–699, 2001.

[153] N. J. Wickett, S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci,
S. Ayyampalayam, M. S. Barker, J. G. Burleigh, M. A. Gitzendanner, et al.
Phylotranscriptomic analysis of the origin and early diversification of land
plants. Proceedings of the National Academy of Sciences, 111(45):E4859–
E4868, 2014.

[154] B. M. Wiegmann, M. D. Trautwein, I. S. Winkler, N. B. Barr, J.-W. Kim,
C. Lambkin, M. A. Bertone, B. K. Cassel, K. M. Bayless, A. M. Heim-
berg, B. M. Wheeler, K. J. Peterson, T. Pape, B. J. Sinclair, J. H. Skev-
ington, V. Blagoderov, J. Caravas, S. N. Kutty, U. Schmidt-Ott, G. E. Kamp-
meier, F. C. Thompson, D. A. Grimaldi, A. T. Beckenbach, G. W. Courtney,
M. Friedrich, R. Meier, and D. K. Yeates. Episodic radiations in the fly tree
of life. Proceedings of the National Academy of Sciences, 108(14):5690–5695,
2011.

129

[155] C. R. Woese, O. Kandler, and M. L. Wheelis. Towards a natural system of
organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Pro-
ceedings of the National Academy of Sciences of the United States of America,
87(12):4576–4579, 1990.

[156] Z. Yang. Maximum likelihood phylogenetic estimation from DNA sequences
with variable rates over sites. J. Mol. Evol., 39:306–314, 1994.

[157] Z. Yang. Statistical properties of the maximum likelihood method of phylo-
genetic estimation and comparison with distance matrix methods. Systematic
Biology, 43(3):329–342, 1994.

[158] Z. Yang. A space-time process model for the evolution of DNA sequences.
Genetics, 139(2):993–1005, 1995.

[159] Z. Yang. Molecular Evolution: A Statistical Approach. OUP Oxford, 2014.

[160] Z. Yang, R. Nielsen, N. Goldman, and A.-M. K. Pedersen. Codon-substitution
models for heterogeneous selection pressure at amino acid sites. Genetics,
155(1):431–449, 2000.

[161] P. Yarza, M. Richter, J. Peplies, J. Euzeby, R. Amann, K.-H. Schleifer,
W. Ludwig, F. O. Glöckner, and R. Rosselló-Móra. The All-Species Liv-
ing Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type
strains. Systematic and Applied Microbiology, 31(4):241 – 250, 2008.

[162] H. Zafar, A. Tzen, N. Navin, K. Chen, and L. Nakhleh. SiFit: inferring
tumor trees from single-cell sequencing data under finite-sites models. Genome
Biology, 18(1):178, Sep 2017.

[163] A. E. Zanne, D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith,
R. G. FitzJohn, D. J. McGlinn, B. C. O’Meara, A. T. Moles, P. B. Reich,
et al. Three keys to the radiation of angiosperms into freezing environments.
Nature, 506(7486):89–92, 2014.

[164] X. Zhou, X.-X. Shen, C. T. Hittinger, and A. Rokas. Evaluating fast max-
imum likelihood-based phylogenetic programs using empirical phylogenomic
data sets. bioRxiv, 2017.

[165] S. Zierke and J. Bakos. FPGA acceleration of the phylogenetic likelihood func-
tion for Bayesian MCMC inference methods. BMC Bioinformatics, 11(1):184,
2010.

130

[166] D. J. Zwickl. Genetic algorithm approaches for the phylogenetic analysis of
large biological sequence datasets under the maximum likelihood criterion. PhD
thesis, The University of Texas at Austin, 2006.

131

132

	Acknowledgements
	Introduction
	Motivation
	Contribution and Overview

	General Concepts
	Evolution
	Phylogenetic Trees
	Distance Metrics for Trees
	Phylogenetic Tree Inference
	Sequence Alignment
	Distance-based Methods
	Maximum Parsimony
	Maximum Likelihood
	Bayesian Inference

	Probabilistic Models of Molecular Sequence Evolution
	Markov Chain Model of Substitutions
	Models of Rate Heterogeneity among Sites
	Alignment Partitioning

	Computation of Phylogenetic Likelihood Function and its Derivatives
	P-matrix
	Conditional Likelihood Vectors
	Likelihood Evaluation at the Root
	Likelihood Function Derivatives

	Efficient Likelihood Computation on Intel Xeon Phi Accelerators
	Intel Knights Corner: Platform Overview
	Likelihood Kernel Optimization
	Hybrid MPI/OpenMP Parallelization
	Evaluation
	Test System
	Kernel-level Performance
	Application-level Performance on a Single Node
	Scalability Analysis

	Outlook: Intel Knights Landing

	RAxML-NG: a Next Generation Phylogenetic Inference Tool
	Background and Motivation
	Improvements over RAxML
	Flexibility and User-friendliness
	Performance and Scalability
	Search Algorithm Modifications
	Modularization

	Evaluation
	Experimental Setup
	Results

	Conclusion and Outlook

	Accounting for Sequence Uncertainty in Phylogenetic Inference
	Background and Motivation
	Implementation
	Models of DNA Sequence Uncertainty
	Models of Genotype Evolution and Sequence Uncertainty
	Sequence Uncertainty Specification
	Internal Representation of Probabilistic sequences
	Estimating Uniform Error Rates

	Evaluation
	Experimental Setup
	Results

	Conclusion and Outlook

	Phylogeny-aware detection of taxonomically mislabeled sequences
	Preliminaries
	Background
	Motivation
	The Evolutionary Placement Algorithm

	Implementation
	SATIVA pipeline
	ARB integration
	RAxML modifications

	Evaluation on Simulated Data
	Experimental Setup
	Results

	Analysis of widely-used 16S Sequence Databases
	Experimental Setup
	Results
	Discussion

	Conclusions and Future Directions

	Conclusion and Outlook
	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

