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Nomenclature

Common abbreviations

Abbreviation Description

3DDCT-NIMF 3D discrete cosine transform nonnegative
inverse matrix factorization

3DSVD-NIMF 3D SVD nonnegative inverse matrix factorization
3D DCT Three-dimensional discrete cosine transform
ABU RMSE Abundance RMSE
AWGN Additive white Gaussian noise
BSS Blind source separation
CIC Clock induced charge
DCT Discrete cosine transform
DFT Discrete Fourier transform
ED Euclidean distance
EEA Endmember extraction algorithm
EM RMSE Endmember RMSE
EMCCD Electron-multiplying charge-coupled device
EM Endmember
FS UNCLI final step
FWHM Full width half maximum
HSEG Hierarchical segmentation
HS Spatial second derivative regularization:

Hessian regularization
HSI Hyperspectral imaging
HSSNR Hybrid spatial-spectral noise reduction
HYDICE Hyperspectral digital imagery

collection experiment
ICA Independent component analysis



vi Nomenclature

Abbreviation Description

ISODATA Iterative self-organizing data analysis technique
LA Local averaging
LMM Linear mixing model
MDC-NMF Minimum distance constrained NMF
MewDC-NMF Minimum endmember-wise distance

constrained NMF
MIDWAI Multidimensional image denoising by

weighted addition of images
MiniDisCo-NMF Minimum dispersion constrained NMF
MNF Maximum noise fraction
MPSNR Mean peak signal-to-noise ratio
MSE Mean squared error
MVC-NMF Minimum volume constrained NMF
MVES Minimum volume enclosing simplex
MVSA Minimum volume simplex analysis
MVT Minimum volume transform
NAILRMA Noise adjusted iterative low-rank

matrix approximation
NIMF Nonnegative inverse matrix factorization
NIR Near-infrared
NMF Nonnegative matrix factorization
NN constraint Nonnegativity constraint
OSP Orthogonal subspace projection
PCA Principal component analysis
PDF Probability density function
PQN Projected quasi-Newton
PSNR Peak signal-to-noise ratio
PYRU Pyramid unmixing
RGB Red Green Blue
RHSEG Recursive hierarchical segmentation
RMSE Root-mean-square error
SA Spectral angle
SISAL Simplex identification via split

augmented Lagrangian
SNR Signal-to-noise ratio



Nomenclature vii

Abbreviation Description

SSAHTV Spectral–spatial adaptive hyperspectral TV model
STO constraint Sum-to-one constraint
SU Spectral unmixing
SVD Singular value decomposition
SWIR Short-wavelength infrared
TV Total variation
UNCLI Unmixing of clustered image
VCA Vertex component analysis



viii Nomenclature

Letters

Latin Letters

Symbol Description

0 Matrix of zeros
1 Matrix of ones
A Abundance matrix, A ∈ RR×I

Ar Abundance map of r-th endmember, i.e., r-th row of
A rearranged to original image size: Ar ∈ RX×Y

Ar(x, y) Abundance map Ar at position (x, y)

Ar,xx(x, y) Second derivative of the abundance map Ar in the
direction of x at position (x, y)

Ak Abundance matrix on PYRU level k;
k = 0 denotes full resolution

A Abundance tensor, A ∈ RX×Y×R

Ak Abundance tensor on PYRU level k;
k = 0 denotes full resolution

a Analog-to-digital proportionality
factor of an EMCCD

ai Abundance vector of pixel i
B PYRU iteration formula base, and 3DDCT-NIMF pa-

rameter defining the number of frequency coefficients
considered in the final step

B Matrix of constants for MIDWAI denoising
C Number of pixel clusters
C Matrix of constants for MIDWAI denoising
CY Clustering segmentation map, CY ∈ RX×Y

Ck PYRU segmentation map
c Mean of clock induced charge of EMCCD sensor
cx,f Constant encoding the 3D DCT cosine terms
d Image sensor dark current rate in electrons

per pixel per second
E 3DDCT-NIMF regularization parameter exponent
FW(W ) Characteristic function of w
fl Index of spectral frequency axis



Nomenclature ix

Symbol Description

fx Index of first spatial frequency axis
fy Index of second spatial frequency axis
fw(w) PDF of random variable w

f DCT domain coordinate vector; f = [fx, fy, fl]
T

G EMCCD gain
g Image value at one pixel
g 3DDCT-NIMF scaling vector
I Number of spatial pixels, I = x · y
i Pixel index
i Number of incident photons at the sensor
J Number of matrix blocks in 3DDCT-NIMF
Jrelchange Optimization stopping parameter
j 3DDCT-NIMF matrix block index
K PYRU index of lowest resolution stage
Kj 3DDCT-NIMF block dependent

regularization parameter
k PYRU pyramid stage index; in different contexts:

arbitrary constant value
L Number of spectral bands
L′ Number of spectral bands after

dimensionality reduction
l Index of spectral image dimension
M Number of endmember iterations
M Endmember matrix, M ∈ RL×R

Mr Spectrum of the r-th endmember;
r-th column of M, Mr ∈ R1×L

m Endmember iteration index and Armijo rule
step size decrease iteration number

N PYRU spatial reduction factor
Nj Matrix of j-th inverse endmember

block in DCT domain; Nj ∈ RR×R

n Photon count; number of photons generating photoe-
lectrons at one pixel during the exposure time



x Nomenclature

Symbol Description

P Number of iterations, typically abundance iterations.
In context of 3DDCT-NIMF: constant in regularization
parameter.

Pp(λ) Poisson distribution with parameter λ.
P Matrix containing the R− 1 most significant spectral

principal components of Y, P ∈ RL×(R−1)

p Current iteration, typically when abundance
iterations are considered

Q Objective function
Qdata Data fidelity
R Number of endmembers
r Endmember index
Rspat Spatial regularizer
Rspec Spectral regularizer
S Subgradient matrix
s Armijo rule initial step size
si Subgradient vector of pixel i
sw Scalar spectral weight parameter
T Total number of abundance/endmember sequences
t Current iteration
U Denoised image matrix of 2D image

or orthogonal SVD matrix
V PYRU iteration formula prefactor
V 3DDCT filter matrix or orthogonal SVD matrix
WX 1D DCT transform matrix of size X ×X
WXY 2D DCT transform matrix for unfolded image
w Random variable w

X Number of pixels along first spatial image dimension
x Index of first spatial image dimension
x Hyperspectral image coordinate vector, x = [x, y, l]T

Y Number of pixels along second
spatial image dimension

Y Unfolded image matrix, Y ∈ RL×I , where I = X · Y
Y3DDCT Unfolded 3D DCT tensor, Y3DDCT ∈ RL×I



Nomenclature xi

Symbol Description

Y3DDCT,j j-th block of the unfolded 3D DCT tensor,
Y3DDCT,j ∈ RR×I

Yl l-th band tensor of Poisson distributed
random variables, Yl ∈ RX×Y

Yl l-th band of Y , Yl ∈ RX×Y

Yk Image matrix on PYRU level k;
k = 0 denotes full resolution

Y′ Unfolded image matrix after spectral dimensionality
reduction, Y ∈ RL

′×I

Y Hyperspectral image tensor, Y ∈ RX×Y×L

Y3DDCT 3D DCT transformed hyperspectral
image tensor, Y3DDCT ∈ RX×Y×L

Y3DDCT,j j-th block of Y3DDCT, Y3DDCT,j ∈ RX×Y×R

Yk Image tensor on PYRU level k;
k = 0 denotes full resolution

y Index of second spatial image dimension
y3DDCT,f Frequency coefficient at position f of Y3DDCT

yx Image element at position x of Y
yi i-th column of Y; spectrum of image pixel i
Z MIDWAI: number of neighboring bands

taken into account
Z Measured image matrix of 2D image
zf Noise random variable of frequency

coefficient y3DDCT,f

zx Noise random variable of image value yx

Greek Letters

Symbol Description

α Image sensor quantum efficiency
β Armijo rule step size decrease parameter
γ Algorithm parameter
∆t Exposure time
δ Gradient descent or subgradient step size



xii Nomenclature

Symbol Description

Λl Mean matrix of 2D matrix of
random variables of band l

λ Mean and variance of Poisson distributed random
variable/matrix eigenvalue (meaning is clear from
respective context)

λem Fluorescence emission wavelength
λexc Fluorescence excitation wavelength
λEMCCD Number of electrons in EMCCD
µ Arbitrary regularization parameter
µspat Spatial regularization parameter
µspec Spectral regularization parameter
µ Spectral mean vector of Y

ρ Ratio of the largest absolute frequency
coefficients that is retained

Σ Diagonal matrix of singular values
σ Standard deviation of normal distribution/Armijo

rule sufficient decrease parameter/matrix singular va-
lue (meaning clear from context)

σGK Standard deviation of MIDWAI Gaussian kernel
ψ Noise and model error vector
Ψ Noise and model error matrix

Mathematical operators

Operator Description

d·e Ceiling function; smallest integer larger than
or equal to the argument

b·c Floor function; largest integer smaller than
or equal to the argument

⊗ Kronecker product
� Hadamard matrix product (elementwise

multiplication)
(·).2 Matrix elementwise squaring
‖·‖2 Spectral norm (maximum singular value)



Nomenclature xiii

Operator Description

‖·‖F Frobenius norm
(·)P Projection onto a convex set
‖·‖p Vector `p norm or matrix p-norm
(·)+ Setting negative matrix elements to zero
atr (·) Matrix absolute trace (sum of absolute

diagonal elements)
det (·) Matrix determinant
diag(x) Diagonal matrix containing the elements

of vector x on its diagonal
E{·} Expected value
H(·)(x, y) Hessian of a spatial matrix (·) at position (x, y)

log (·) Natural logarithm
N (i) Neighborhood around pixel i
nnz(·) Number of nonzero matrix elements
sgn (·) Sign function
tr (·) Matrix trace (sum of diagonal elements)
Var{·} Variance
vec(·) Matrix vectorization; stacking all columns

on top of each other





1 Introduction

1.1 Hyperspectral Imaging

Common color cameras acquire an image of a scene by integrating the
visible electromagnetic spectrum within three overlapping wavelength
regions. Extensions of this concept, so-called multispectral cameras, have
more than three color channels. Each of these channels still covers a
more or less wide wavelength range. Hyperspectral cameras, by contrast,
sample the spectrum at up to several hundred evenly spaced wavelengths
(Fig. 1.1).

Figure 1.1 Qualitative illustration of RGB (top), multispectral (middle) and hy-
perspectral (bottom) imaging wavelength bands.

There exist hyperspectral cameras not only for the visible, but also other
parts of the electromagnetic spectrum such as the ultraviolet (UV) and
the infrared (IR). The resulting hyperspectral image does not only contain
color information of the acquired scene, but also spectroscopic information
about each image pixel. For this reason, hyperspectral imaging is also
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referred to as imaging spectroscopy. Figure 1.2 shows an example of a
hyperspectral data cube resulting from the acquisition in the near IR.

x

y

l

Figure 1.2 Hyperspectral data cube of a mineral sample with the spatial indices
x and y and the spectral index l.

The rich spatial and spectral information contained in hyperspectral
images allows for accurate retrieval of characteristics of the considered
scene. Downsides of hyperspectral imaging, however, are the high hard-
ware effort and cost, as well as the large size of the acquired images which
requires both lots of disk space and sophisticated processing algorithms.

Historically, hyperspectral imaging has its roots in remote sensing [49].
Spaceborne and airborne hyperspectral sensors acquire images of the
earth’s surface or the atmosphere [7]. The analysis of the acquired images
allows for a plethora of possible applications such as vegetation monito-
ring [142].

While it is possible to consider each pixel spectrum of a hyperspectral
image individually and, e.g., compare it with a target spectrum for classi-
fying it, there are more sophisticated methods for information retrieval.
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These methods can be coarsely split into the following main groups [17]:

Classification performs the automatic assignment of each pixel to
one of the available classes using a classifier based on spectral and
possibly spatio-spectral features. Using classification in many cases
assumes that each pixel spectrum mostly consists of only one (pure)
material, but there are also approaches to mixed pixel classification,
see for instance [26].

Target detection Due to the large sensing distance in remote sensing,
the spatial resolution is very low, i.e., one pixel covers a rectangular
area with several or up to dozens of meters edge length on the
ground. This leads to linearly mixed pixels (Fig. 2.1), as one pixel
does not only contain, say, e.g., a tree, but also a large area of grass
around it. For this reason, the acquired spectrum of this pixel is
a superposition of the spectra of tree and grass. So-called target
detection, a subpixel method, aims at answering the question if a
specific spectrum, say tree, is present in a pixel or not. It basically
just aims at delivering this binary decision and does not provide a
quantitative answer [25].

Spectral unmixing, in contrast to target detection, denotes the pro-
cess of fully decomposing all acquired pixel spectra into the pure
spectra and their spatial fractions, the so-called abundances. Figure
1.3 illustrates this decomposition. Spectral unmixing is the main
scope of this thesis.

Further development as well as decreasing costs for hyperspectral imag-
ing hardware has recently lead to a more widespread use of hyperspectral
imaging in laboratory and industrial applications. Examples include me-
dical diagnosis [86] and food safety [43, 137]. Hyperspectral imaging is
also widely used in chemometrics [3, 125].

Although there are still challenges in terms of sensor size, cost and
data analysis, it is conceivable that spectral sensors will be integrated into
smartphones in the next couple of years. Research organizations such
as VTT Technical Research Centre of Finland Ltd [147] and companies
such as Consumer Physics [32] recently have claimed that they have made
significant progress in miniaturization and data processing.
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Data cube
= ×

Abundance mapsEndmembers

Figure 1.3 Spectral unmixing goal: data cube decomposition into pure spectra
(endmembers) and their spatial abundances [24].

1.2 Scope of the Thesis and Own Contribution

The main goal of this thesis is to enhance both the quality and calculation
speed of spectral unmixing by incorporating spatial and spectral infor-
mation. The newly developed methods can be applied to images from
both remote sensing and ground applications. An application of particu-
lar interest for this thesis is industrial sorting. One secondary objective
is therefore the application of unmixing methods to industrial sorting
scenarios.

Many sorting machines are using the same principle: a linescan camera
is placed over a conveyor belt. The camera image is analyzed and a sorting
decision is made, i.e., it is decided if a specific object is to be removed from
the stream or not. At the end of the conveyor belt, air nozzles blow out the
undesired objects. The sorting principle is depicted in Fig. 1.4.

Conventional RGB sensors are not able to distinguish between objects
that have the same color but are of different material, such as small white
stones and white plastic particles. At this point, hyperspectral cameras
come into play. The acquired pixel spectra are more discriminative than a
simple RGB tuple. Sensors using the pushbroom principle are especially
suited; they acquire the full spectra of a pixel line in one shot. Making
use of the spatial motion of the conveyor belt and sequentially acquiring
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Conveyor belt

Camera

Signal processing
Decision making

Air nozzles

Figure 1.4 Belt sorter principle.

line by line builds a full 3D data cube. The challenges limiting the more
widespread use of hyperspectral cameras for such purposes are the general
issues such as high cost and the high data volume that needs to be pro-
cessed and analyzed. Furthermore, hyperspectral sensors have quite low
spatial resolution in comparison with RGB sensors. This is due to the fact
that the available sensor chip area has to record not only the full spatial,
but also spectral information. As this area is limited, there is always a
balance between spectral and spatial resolution. The low spatial resolution
in combination with high belt speeds leads to the same situation as in the
remote sensing scenario: the objects on the belt are blurred, and each pixel
most likely contains a mixture of different materials.

While the main focus of this thesis is set on the development of unmixing
methods that work with reflectance images, a measurement setup for
acquiring hyperspectral fluorescence images has been established during
the work on this thesis, too. The developed denoising algorithm explained
in Sec. 4.7 is applied to the acquired fluorescence images with the results
presented in Sec. 5.3. The classification results of mineral samples based
on hyperspectral fluorescence images are published in [165, 167–170, 172].



6 1 Introduction

1.3 Thesis Overview

The present thesis is split into six chapters. Following the introduction
in this chapter, the fundamentals required for the remainder of the thesis
will be explained in Chapter 2. Chapter 3 will provide an overview of the
most important hyperspectral image processing methods presented in the
literature so far. The focus of this literature review is on methods that are
within the context of the newly developed methods. The first major part of
the thesis is the description of the newly developed methods in Chapter 4.

First, a newly developed denoising algorithm will be presented, follo-
wed by unmixing methods incorporating spatial abundance derivatives.
Afterwards, the unmixing of clustered images and using image pyramids
during unmixing will be explained. While these two methods are based
on the spatial neighborhood and possibly spectral similarity of pixels,
another new method performs a 3D discrete cosine transform (DCT), the-
refore exploiting both spatial and spectral adjacency at the same time. This
method opens the field for many new extensions. First, most images are
represented sparsely in the 3D DCT domain, so by discarding the smallest
coefficients, the image can be approximated with very low error. Second,
it is possible to use inverse matrices, leading to an optimization problem
with convex data fidelity term. This is contrasting the vast majority of ex-
isting unmixing algorithms, which use the non-convex conventional data
fidelity term explained in Sec. 3.2. The third and maybe most important
point is how the signal-to-noise ratio (SNR) depends on the coefficient
position in the transformed cube. The scattering of the signal energy and
therefore the SNR in the cube can be influenced by scrambling regions
of the original image. The unmixing then only uses the regions with the
highest SNR. Alternatively, orthogonal transforms other than the DCT that
suitably shape the SNR could be designed specifically. One example is the
signal-dependent singular value decomposition (SVD) which is also used
for unmixing in a 3D manner.

The second major part of the thesis in Chapter 5 is dedicated to the eva-
luation of the presented newly developed methods. Using hyperspectral
images from both remote sensing and laboratory environment, all methods
will be compared. The last Chapter 6 will conclude the thesis and give an
outlook on possible future research directions.



2 Physical Foundations and
Mathematical Basics

The main goal of this chapter is to provide an overview of the laws of
physics and mathematical methods that are helpful for understanding
the remainder of the thesis. For fulfilling this goal while maintaining
conciseness, only a brief explanation of each subtopic and references for
further reading will be given.

2.1 Spectral Imaging

While the human eye is only able to perceive electromagnetic radiation
in the visible wavelength range from about 380 to 780 nm [12], the acqui-
sition of hyperspectral images is not limited to this wavelength range.
There are commercially available sensors that operate in other parts of
the electromagnetic spectrum. A possible subdivision of the electromag-
netic spectrum in the considered wavelength range where hyperspectral
imaging typically operates is given in Tab. 2.1.

The vast majority of hyperspectral imaging applications use the fre-
quency range from the visible (VIS) to the short-wavelength infrared
(SWIR). Hyperspectral analysis in the visible wavelength range mainly
resolves the color more accurately (intensity over wavelength), which, e.g.,
allows for the discrimination of different types of chlorophyll. For instance
for food analysis applications, the VIS and the NIR (near-infrared) up to
about 1000 nm is the most often used wavelength range [137].

The reason why NIR is frequently used can be explained with physics.
The distinctive spectral features of substances are mainly due to molecu-
lar vibrations. The two general types of such vibrations are stretching
and bending. The frequency (or wavelength) of a molecular vibration
is determined by the energy difference between two vibrational states
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[135]. Due to quantum physics, only discrete levels of energy are allowed,
which has the consequence that only specific, discrete wavelengths are
observed. Molecular fundamental transitions can be mainly found in the
mid-wavelength infrared (MWIR) region. The NIR exhibits absorption
transitions of overtones and combination tones of these fundamental tran-
sitions. For this reason, this wavelength range is used for both qualitative
and quantitative analysis of components in analytical chemistry [138].

For the above mentioned reasons, remote sensing devices operate very
often in both the visible (VIS) and near-infrared (NIR) wavelength region.
The well-known Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
[4] which provided lots of data often used in the remote sensing commu-
nity has 224 contiguous bands with wavelengths from 400 to 2500 nm. The
Hyperspectral Digital Imagery Collection Experiment (HYDICE) operates
in the same range [99]. The EnMAP hyperspectral imager [44] uses a
slightly different range from 420 to 2450 nm.

Table 2.1 Wavelength regions. The abbreviations in parentheses denote the
region name in the DIN 5031-7 [37].

Region name Abbreviation Wavelength/nm

Ultraviolet UV-B (UV-B) 280 – 315
Ultraviolet UV-A (UV-A) 315 – 380
Visible VIS 380 – 780
Near-infrared NIR (IR-A) 780 – 1400
Short-wavelength infrared SWIR (IR-B) 1400 – 3000
Mid-wavelength infrared MWIR (IR-C) 3000 – 8000
Long-wavelength infrared LWIR (IR-C) 8000 – 15000
Far infrared FIR (FIR) 15000 – 106

2.1.1 Spectral Mixing Models

The measured pixel spectra in hyperspectral images are in many cases
mixtures of the spectra of pure substances, the so-called endmembers [73].
If the spatial resolution of the imaging sensor is low compared to the size
of the analyzed objects, the mixing can be described by the linear mixing
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Light source Sensor

a1 a2 a3 a4

(a) Linear mixing.

Light source Sensor

(b) Nonlinear mixing.

Figure 2.1 Spectral mixing models [17]. Linearly mixed spectra are the endmem-
ber spectra weighted by the proportions of their surface cover. Nonlinearly mixed
spectra arise from light interacting with particles of different materials.

model (LMM) with sufficient accuracy. The effect is illustrated in Fig. 2.1(a)
and causes the measured pixel spectra to be endmember spectra weighted
by the proportions of their surface cover. These proportions are called
abundances. The assumption that the spatial resolution is low is mostly
valid in remote sensing, but also hyperspectral cameras used for laboratory
and industrial applications have low spatial resolution. This is due to the
fact that they have to record both spatial and spectral information on the
same sensor area which requires balancing between spatial and spectral
resolution. Images acquired by current hyperspectral cameras typically
consist of several hundred pixels along each of the two spatial dimensions.
Also, one needs to consider that hyperspectral images require a large
amount of disk space. Because of the high number of spectral bands,
hyperspectral images easily have a size of several hundred megabytes. For
this reason, one limits the spatial number of pixels. It can be expected that
further development will increase both spatial and spectral resolution in
the future.

Considering one pixel, the linear mixing model [73] is given by

y = Ma +ψ . (2.1)
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The measured spectrum y ∈ RL×1 is a linear combination of all end-
members contained in the scene. These are collected in the columns
mr = [m1,r, . . . ,mL,r]

T of the endmember matrix M ∈ RL×R. L denotes
the number of bands of the hyperspectral image, and R represents the
number of endmembers that are present in the scene. The endmember
spectra are weighted by the abundance vector a ∈ RR×1 of the given
pixel; this vector encodes the abundances [a1, . . . , aR]T to which each of
the endmember spectra contributes to the mixed pixel y. The vector ψ
accounts for noise as well as model errors.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

...

Data cube Y Unfolded image matrix Y
x

y
l

l

i

Figure 2.2 Unfolding of the data cube Y to the image matrix Y. The spectra of
the first row of pixels along x, denoted by the numbers 1–8, are put in the first 8
columns of the image matrix. The second row of pixels follows in the next columns
etc. The index i denotes the pixel spectra in the columns of Y.

Considering the full 3D hyperspectral data cube Y ∈ RX×Y×L with
X × Y spatial pixels and L bands, its unfolded version Y ∈ RL×I contains
all pixel spectra in its columns. This conversion is illustrated in Fig. 2.2.
The number I = X · Y denotes the total number of spatial image pixels.
For the whole image, the LMM (2.1) is given by

Y = MA + Ψ . (2.2)

Just like the image matrix Y contains the pixel spectra in its columns,
the abundance matrix A ∈ RR×I contains the respective pixel abundance
vectors in its columns. For preventing the notation within the respective
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application from becoming bulky, an ambivalent convention is defined,
and for each application, the most suitable version of it is used. This affects
the hyperspectral image itself, but mainly the calculated abundances. Just
like the hyperspectral image is the tensor Y ∈ RX×Y×L, the abundances
of the R endmembers at each of the X × Y pixels form the 3D tensor
A ∈ RX×Y×R (Fig. 2.3). In most cases, the unfolded abundance matrix
A will be used. It contains the abundances of all pixels, the vectors ai,
i = 1, . . . , I , in its columns. Especially for spatial regularization (see Sec.
4.1), however, it is necessary to consider the abundance map Ar ∈ RX×Y

of endmember r, i.e., the r-th row of the unfolded matrix A rearranged
to the original image size X × Y . When it is necessary to address the
abundance of endmember r at pixel (x, y) in this spatial notation, this
is done by Ar(x, y). The same element can be found in the unfolded
matrix A in row r at column i. The abundance representations with the
unfolded matrix A and the spatial abundance maps Ar(x, y), r = 1, . . . , R,
respectively, can be converted from one to the other and vice versa.

...

Abundance matrix A Abundance cube A
x

y

r

A1

A2

A3

A4

r

i

Figure 2.3 Folding the abundance matrix A to the tensor Awhose slices are the
matrices Ar .

In cases in which light interacts with more than one pure substance
before detection (Fig. 2.1(b)), the LMM is not accurate enough. In this case,
nonlinear mixing models (NMMs) are used. The probably most prominent
one is the Hapke model [55], but there are also other, more recent models
[38]. Nonlinear mixing occurs mainly in situations where there is high
spatial resolution, but also when substances are mixed on a molecular
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level. Even in such cases, however, the linear mixing model can sometimes
be applied with sufficient accuracy, see especially chemical analyses such
as, e.g., [112].

For taking physical plausibility into account, the following two con-
straints will be incorporated in all unmixing methods:

All elements of the endmember and abundance matrices M and A

must be nonnegative (nonnegativity (NN) constraint)

ml,r ≥ 0 ∀l, r (2.3)

ar,i ≥ 0 ∀r, i . (2.4)

The sum of all abundances of each pixel has to sum to one:

R∑
r=1

ar,i = 1 ∀i . (2.5)

This constraint is called the sum-to-one constraint (STO constraint).
Its application is reasonable in case the endmembers comprise all
the pure substances present in a scene.

2.1.2 Spectral Variability

In an ideal world, the endmember spectra of each substance are constant
over time and space. In reality, however, there are various effects leading to
spatially and temporally varying endmember spectra. In remote sensing,
these are atmospheric conditions, but also environmental effects such
as the seasons that influence the appearance of vegetation. One very
important factor that does not only influence the earth surface, but also
laboratory and industrial scenes is illumination. In remote sensing, one
major influencing factor is the sunlight; depending on, e.g., solar elevation,
solar azimuth, and local incidence angle [157], the endmember shape
varies with time and spatial position. For ground applications, the object
geometry as well as surface roughness and object reflection properties
have a large impact on the acquired spectra. Minerals exhibit spectral
variability depending on grain size and texture [157]. Furthermore, objects
may show intrinsic spectral variability. For two laboratory images, Fig. 2.4
illustrates the spectral variability.



2.2 Mathematical Background 13

50 100 150 200
0

0.2

0.4

0.6

Wavelength index

R
el

at
iv

e
re

fle
ct

an
ce

(a) Pixel spectra of the mineral sample
shown in Fig. 1.2.

50 100 150 200

0.2

0.4

0.6

0.8

1

Wavelength index

R
el

at
iv

e
re

fle
ct

an
ce

(b) Pixel spectra of one pure powder
compartment of the White Powders
image used in [176] and described in de-
tail in Sec. 5.1.1.

Figure 2.4 Examples of spectral variability.

Incorporating spectral variability into the unmixing process can greatly
improve the unmixing quality. Practically, there are two major options for
doing so: Zare et al. [157] mention endmember sets (i.e., there are multiple
spectra of differing shape considered for one endmember), and modelling
endmembers with statistical distributions. Specific methods that take care
of the problem are described in [133, 157], one of the easiest being the
consideration of only the band regions that exhibit the lowest variability.
Throughout this thesis, endmember variability will not be incorporated in
the methods, but there is an awareness of its existence and influence.

2.2 Mathematical Background

This section explains vector and matrix norms, as well as the fundamentals
of optimization that are required for this thesis. It closes with probability
densities and their scaling.
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2.2.1 Vector Norms

Let a ∈ RR. A frequently used family of vector norms are the `p norms
with p ≥ 1 defined by [19, Sec. A.1.3]

‖a‖p =

 R∑
r=1

|ar|p
1/p

. (2.6)

Its most prominent members are the Euclidean norm for p = 2

‖a‖2 =

√√√√√ R∑
r=1

a2r (2.7)

and the `1 norm for p = 1

‖a‖1 =

R∑
r=1

|ar| . (2.8)

The maximum norm `∞ is defined by

‖a‖∞ = max(a1, . . . , aR) . (2.9)

One very important measure which is not a norm, not even a quasinorm,
but plays a very important role in sparse coding and compressive sensing
is the `0 measure [35]: it simply counts the number of nonzero elements of
a. Its relevance lies in minimizing the number of coefficients required for
sparse approximation of a signal. Because its use results in a combinatorial
problem which is NP-hard (non-deterministic polynomial-time hard), it is
often relaxed by the `1 norm, e.g., in basis pursuit (BP) [29].

2.2.2 Matrix Norms

It is possible to write all matrix elements as a long vector and use a vector
`p norm. Equivalently, the matrix p-norms can be used. For A ∈ RR×I ,
these norms are calculated using

‖A‖p =

 R∑
r=1

I∑
i=1

|ari|p
1/p

. (2.10)



2.2 Mathematical Background 15

Choosing p = 2 yields the Frobenius norm

‖A‖F =

√√√√√ R∑
r=1

I∑
i=1

a2ri . (2.11)

By contrast, the spectral norm of A does not have a vector norm equivalent.
It is defined by the singular values of A, specifically, it is the maximum
singular value:

‖A‖2 = σ1 . (2.12)

The spectral norm will be used for extensions of the 3D DCT unmixing
procedure discussed in Sec. 4.4.7.

When applied to minimizing the error between model and measured
data, the Frobenius norm is equivalent to the least-squares estimator. In
turn, the least-squares estimator is the best linear unbiased estimator when
the noise of the measurements is uncorrelated and described by a normal
distribution with zero mean and equal variance for all measurements
[13]. This means that the estimator is unbiased and provides the least
variance in its estimations among all linear unbiased estimators. For this
reason, the Frobenius norm is often chosen as objective function when
estimating model parameters. If the error has different statistics, different
metrics/distances have to be used [31].

2.2.3 Spectral Angle

For expressing the similarity between a given spectrum y and a reference
spectrum z, the spectral angle (SA) [75] is an often used measure. It is
calculated by

SA(y, z) = arccos

(
y · z

‖y‖2 · ‖z‖2

)
= arccos


L∑
l=1

ylzl√√√√ L∑
l=1

y2l

√√√√ L∑
l=1

z2l

 ,

(2.13)
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where the operation · applied to two vectors denotes the dot product.
The spectral angle is therefore the angle between two spectra in the L-
dimensional space; its great advantage is that it is independent of multipli-
cative effects arising for instance from illumination variations.

2.2.4 Optimization Theory

The vast majority of spectral unmixing methods is based on the matrix
version of the LMM (2.2). The goal is to determine both the endmember
matrix M and the abundance matrix A from the given image matrix Y.
Based on this model, most unmixing methods use optimization to perform
this decomposition. For this reason, some basic concepts of optimization
will be briefly recapitulated in the following.

Let the domain dom Q of the function Q : RR → R be a convex set. If
for all a,b ∈ dom Q, 0 ≤ θ ≤ 1,

Q(θa + (1− θ)b) ≤ θQ(a) + (1− θ)Q(b) (2.14)

holds, Q is convex [19]. The geometric interpretation of this relation is
given in Fig. 2.5: the connecting line between all possible points (a, Q(a))

and (b, Q(b)) is always above the function. Without going into detail
about the existence of stationary points and other function properties
(see [19]), convexity is an advantageous property for a function that is
to be minimized: it will only have one minimum and slope towards this
minimum from any given point. In this favorable case, gradient descent
methods can be used for minimizing such functions and finding the global
minimum.

While there are many operations that preserve convexity [19], the most
important one in the context of this thesis is that the sum of convex func-
tions also is a convex function.

The minimization problem

minimize Q0(a) (2.15)

subject to Qg(a) ≤ 0, g = 1, . . . , G ,

subject to Qh(a) = 0, h = G+ 1, . . . ,H

is called convex if [19]
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the objective function Q0(a) is convex and

the inequality constraint functions Qg(a), g = 1, . . . , G are convex
and

the equality constraint functions Qh(a), h = G+ 1, . . . ,H are affine.

Each local minimum of the minimization problem (2.15) is a global mini-
mum.

(a,Q(a))

(b,Q(b))

Figure 2.5 Convex function in the one-dimensional case: the connecting line
between (a,Q(a)) and (b,Q(b)) is always above the function.

Finding such a minimum with gradient descent methods requires the
calculation of the objective function gradient. Even if the objective function
depends on a matrix, say A ∈ RR×I , it can be converted to a function
depending on the vector vec(A) ∈ RR·I×1 which consists of all elements of
matrix A stacked on top of each other, as long as matrix norms such as the
p-norms (2.10) are used. However, when sticking with matrices, finding the
gradient of a function Q(A) : RR×I → R consists in deriving the function
by each element ari of A and arranging the results to the dimensions of
A in the same order as the matrix elements. Useful calculation rules for
derivatives of a scalar function by a matrix are given for instance in [111].

The function Q(M,A) : RL×R × RR×I → R is called biconvex if it is
convex in M for constant A and vice versa. Note that for such a function
in general, a local minimum is not a global minimum.
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2.2.5 Statistics Basics

The probability density of a random variable z is denoted by fz(z). Scaling
the variable by the constant k ∈ R\{0}, resulting in the new variable

w = k · z , (2.16)

means that the density converts to

fw(w) = 1/ |k| fz(z/k) . (2.17)

A normally distributed random variable z has the density

fz(z) =
1

σ
√

2π
e
− z

2

2σ
2 . (2.18)

The probability density of a sum of random variables is the convolution
of their densities. As a consequence, the inversely Fourier transformed
densities (i.e., the characteristic functions [146]), can be multiplied.

2.3 Poisson Noise and EMCCD
Noise Characteristics

In the following, a hyperspectral fluorescence imaging setup created du-
ring the work on this thesis is briefly described. A newly developed
multidimensional denoising algorithm described in Sec. 4.7 is applied
to the images acquired with the setup. In this setup, spectral filtering is
performed with an acousto-optical tunable filter (AOTF, Gooch&Housego
HSi-300). This filter can be tuned to a specific wavelength and bandwidth.
At each of these channels, a full grayscale image is acquired (so-called
spectral scanning). The applied spectral resolution is 4 nm in the wave-
length range from 450 nm to 790 nm. In the present section, the noise
characteristics of the used EMCCD (electron-multiplying charge-coupled
device) camera will be explained. As it can be approximated by a Poisson
distribution that is found quite often in imaging in general, one version of
the denoising algorithm was designed specifically for this type of noise.
The other version accounts for normally distributed noise and will be
applied to remotely sensed images, see Sec. 5.3.1.
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Due to the discrete nature of light and stochastic fluctuations [12, 71],
the number of photon arrivals at the imaging sensor during the exposure
time ∆t is not the same when repeating the acquisition. For this physical
reason, the number of incident photons i arriving at the sensor during ∆t

has to be described by a random variable, even if no noise would be added
by the sensor and readout electronics [71, Sec. 3.4.1]. As a consequence, the
obtained pixel value g is also a random variable. The number of incident
photons i has a Poisson PDF:

fi(i) =
λii
i!

e−λi , (2.19)

where λi equals the expected value E{i}. It is important to note that for
the Poisson PDF, its expected value equals its variance: E{i} = Var{i} =

λi, which means that this kind of noise is signal dependent. For large
values of i, the Poisson distribution can be approximated quite well by a
normal distribution [100, Sec. 2.1]. Not every incident photon generates
a photoelectron in the sensor. The expected value λn of the number of
photoelectrons n generated within the time interval ∆t is therefore given
by [12]

λn = λiα . (2.20)

The quantum efficiency α denotes the fraction of photons that are absorbed
and generate a photoelectron. In addition to this natural noise component,
there is the noise added to the signals in the imaging sensor. According
to the EMVA 1288 standard [45] for industrial cameras, the noise added
to the digital signal of each camera pixel has the following three major
components which are added using a linear signal model:

signal dependent shot noise,

signal independent normally distributed sensor read out and ampli-
fication noise,

uniformly distributed quantization noise.

In addition, there is the Poisson distributed, temperature dependent dark
current whose mean value is considered as well.
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Figure 2.6 Mathematical EMCCD model. The main difference to a conventional
CCD sensor is the EM register block. Red font describes the probability density at
the given stage; Pp(λ) denotes the Poisson distribution. The quantization noise is
neglected in case of high EM gain, see text.

Extending conventional CCD image sensors (see, e.g., [71] for a des-
cription), EMCCDs have an additional electron multiplication register
amplifying the signal before readout, see Fig. 2.6. Therefore, the effective
readout noise is greatly reduced; however, the multiplication register is
an additional noise source that needs to be considered and modelled. For
this reason, a noise model different from the EMVA 1288 standard is consi-
dered. The following description of the noise characteristics of EMCCDs
is based on [60]. The notation has been adapted for the sake of consistency
within this thesis. For EMCCDs, the PDF for obtaining the pixel value g is
given by [60]

fg(g) =
1√
2πσ

exp

(
−λEMCCD −

(ag)2

2σ2

)
+

2

G
fχ(2λEMCCD; 4, 2ag/G) .

(2.21)

Only the case g > 0 is considered here; due to the noise characteristics,
negative values are also possible and occur at very low signal intensities.
In (2.21), a is the analog-to-digital proportionality factor which stands
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for the number of electrons per image value, while G is the gain of the
multiplication register. In accordance with EMVA 1288, the first term of
(2.21) represents the readout noise described by a normal distribution
with standard deviation σ. This term is weighted by exp (−λEMCCD). The
second term is not present in the EMVA 1288 standard and models the
amplified signal. The electrons go through a number of register stages.
In each stage, the electrons are likely to produce additional electrons by
ionization with a certain probability. In the end, there is a large number of
electrons arising from just a few photoelectrons. Describing the process
mathematically and applying some approximations (see [60] for the exact
derivation), the second summand of (2.21) results. fχ is the non-central
χ2 distribution [123, Sec. 5.3] for 2λEMCCD. Its arguments are 4 degrees of
freedom and the noncentrality parameter 2ag/G. The quantization noise
in EMCCDs can be neglected due to the high gain values, meaning that
one quantization step would account only for a fraction of an electron
before the multiplication process.

The expected number of electrons λEMCCD before the multiplication
register amounts to

λEMCCD = λi · α+ d ·∆t+ c , (2.22)

where d stands for the dark current rate in electrons per pixel per second.
The variable c denotes the clock induced charge (CIC) in electrons, i. e.,
additional electrons that are generated during the shift of the electrons
through the pixels on the chip for readout. Due to the fact that the camera
chip is cooled to about −85 ◦C, the temperature-dependent dark current is
considered negligible.

Considering equations (21)–(33) from [60] (see also the appendix of [194]
for a detailed proof), the expected value of the probability density (2.21)
can be calculated by

E{g} =
G

a
λEMCCD (2.23)

and the variance amounts to

Var{g} = e−λEMCCD
σ2

a2
+ 2λEMCCD

G2

a2
. (2.24)
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From (2.23) and (2.24), the ratio between variance and mean is

Var{g}
E{g} =

1

a

(
e−λEMCCD

σ2

GλEMCCD

+ 2G
)
. (2.25)

The first term will be neglected in the following: for the specific camera in
the setup with the selected gain G = 300 and considering only one single
electron (λEMCCD = 1), the first term is much smaller than the second
one. For increasing λEMCCD, this ratio becomes even larger. Therefore, the
approximation is

Var{g}
E{g} ≈

2G

a
. (2.26)

For the Poisson distribution, the variance equals the mean. By multiplying
the generic random variable x with a constant value k, the mean and the
variance of this variable are altered according to

Var{kx} = k2Var(x) (2.27)

and

E{kx} = kE(x) . (2.28)

Choosing the multiplication factor k = a
2G , the ratio (2.26) becomes one,

i.e., expected value and variance become equal. This means that by multi-
plying the obtained image values by k, the resulting random variable has
a variance that equals its mean. In this case, it is possible to compare the
EMCCD density (2.21) with a regular Poisson density: By setting λEMCCD

to fixed values λEMCCD,1 = 5, λEMCCD,2 = 15, it is shown graphically in
Fig. 2.7 that the Poisson density is a very good approximation of (2.21)
multiplied by k. Note that the chosen values of λEMCCD are within the
range of the obtained fluorescence images, see Sec. 5.1.2. Sometimes, as
little as 5 photons per pixel have been registered. Even in such case, the
dominant term in (2.22) is the photoelectrons; as mentioned before, the
dark current is negligible.

The plots in Fig. 2.7 have been obtained with an experimentally mea-
sured a: Using (2.23), the expected value of the image values is G

a times
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Figure 2.7 Comparison between EMCCD density (equation (2.21), dashed red
line) and Poisson density (blue stems). The mean squared error between the shown
discrete values of EMCCD density and Poisson density amounts to 6.77 · 10−5 (a)
and to 1.03 · 10−5 (b).

the number of electrons λEMCCD. The factor G
a has been determined ex-

perimentally for the used Andor iXon3 897 EMCCD camera and results to
17.28 image values per photoelectron for G = 300 [194].

The previous paragraphs have shown that the noise present in the
digital pixel values obtained with an EMCCD sensor can be described
by a Poisson distribution with sufficient accuracy. For this reason, the
denoising algorithm that will be presented in Sec. 4.7 has a version that is
adapted to this kind of noise, see Sec. 4.7.1. When conventional sensors
are used that provide images with dominant normally distributed noise,
the appropriate algorithm version described in Sec. 4.7.2 should be used.





3 State of the Art in
Hyperspectral Image
Processing

This chapter provides a short overview on hyperspectral image processing
in general and describes the main groups of methods in Sec. 3.1. As the
main topic of this thesis is spectral unmixing, the following Section 3.2
takes a closer look at the state of the art regarding this area of research.
The last Section 3.3 is concerned with hyperspectral image denoising and
explains techniques that have been presented in the literature so far.

3.1 Overview

Hyperspectral image processing can be roughly subdivided into two main
groups. The first group of methods deals with image preprocessing such
as image registration, image fusion, image restoration (see Sec. 3.3), image
segmentation [18, 80] and the like. The second, larger group of methods
contains information retrieving methods.

Let us first consider methods that can be assigned to the first group.
Image registration [30] aims at transferring different images into one com-
mon coordinate system. These images can, for instance, differ in size
and/or resolution. Especially in hyperspectral image processing, image
registration is very often closely connected with pansharpening. Hyper-
spectral images commonly have high spectral, but low spatial resolution,
whereas monochrome, panchromatic or color images in most cases have
high spatial resolution, but inherently low spectral resolution. For this
reason, hyperspectral images are often fused, or pansharpened, with such
images for obtaining a both spatially and spectrally highly resolved image.
Loncan et al. [85] give a thorough overview on pansharpening methods
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and provide a quantitative comparison. Pansharpening has been combined
with spectral unmixing in for example [96], where both a hyperspectral
(low spatial, high spectral resolution) and a multispectral (low spectral,
high spatial resolution) image are unmixed within a joint mixing model.
Hyperspectral image restoration can consist of deblurring [2, 82] or denoi-
sing (Sec. 3.3), but also dead or hot sensor pixels or lines and stripes [159]
degrade the images and need to be removed before further processing. As
hyperspectral images consist of a large number of spectral bands which
are in many cases highly correlated and therefore exhibit a large degree
of redundancy [81], many hyperspectral image processing methods are
concerned with band selection. The goal is to select a low number of
bands that are representative for the whole image and contain as much as
possible of the full amount of information available in the original image.
Reducing the number of bands accelerates and sometimes even improves
subsequent analyses such as target detection, endmember extraction and
classification (see Sec. 1.1 and the next paragraph). Michelsburg et al. [97]
used band selection techniques for designing few narrow-band spectral
filters that are optimal for solving specific industrial classification tasks.

The second, larger group of methods contains information retrieving
methods based on hyperspectral images [115]. As already stated in the in-
troduction (see Sec. 1.1), the main subgroups of hyperspectral information
retrieval are classification, target detection and spectral unmixing. While
classification is mainly based on more or less pure pixels, target detection
and spectral unmixing consider spectrally mixed pixels. Note that there
are also techniques that do not follow this coarse taxonomy, e.g., there are
algorithms for mixed pixel classification [26].

Hyperspectral image classification aims at classifying each image pixel
into one of the given classes. Such methods mainly use the spectral bands
as features and thus classify a pixel using its spectrum [22, 54]. Due to the
large number of bands, dimensionality reduction [56], sparsity [30] and
kernel classification [22] are very often employed. More recent methods
incorporate information of the pixel’s neighborhood for creating spatio-
spectral features [9, 46] to improve the classification. A good general
review on hyperspectral image classification can be found in [23].

In many cases, the image pixels cannot be considered as pure, but are
mixtures of several pure substances. Target detection aims at providing a
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binary answer for each pixel, telling if it belongs to the background or if a
target is present in it [104]. As this decision is based on the pixel spectra
and the target not necessarily constitutes the full pixel, target detection
is a subpixel method. Target detection can be subdivided into anomaly
detection and signature-based target detection. Anomaly detection aims
at determining if the pixel stands out from the background by analyzing
its spectral signature and comparing it with the background pixel spectra.
By contrast, signature-based target detection specifically searches for the
presence of the target spectrum [104].

While target detection only yields a binary decision if there is an anomaly
or if a certain spectrum is present in the image pixels, spectral unmixing
aims at providing a quantitative analysis of the image pixels. The next
section discusses the state of the art in spectral unmixing.

3.2 Spectral Unmixing

Hyperspectral image unmixing has been briefly discussed in Sec. 1.1. Note
especially Fig. 1.3 which gives an illustration of the spectral unmixing
decomposition goal into the pure (endmember) spectra and their spatial
abundances. Before going into detail on spectral unmixing methods, it is
useful to take a look at one possible formal definition of spectral unmixing
[16]:

Hyperspectral unmixing refers to any process that separates the pixel spectra
from a hyperspectral image into a collection of constituent spectra, or spectral
signatures, called endmembers and a set of fractional abundances, one set per
pixel. The endmembers are generally assumed to represent the pure materials
present in the image and the set of abundances, or simply abundances, at each
pixel to represent the percentage of each endmember that is present in the pixel.

While the reference discusses the subtleties of this definition, its basic
message is that unmixing consists of determining the endmembers and
abundances which together yield the acquired full image, or at least a close
approximation (cf. Fig. 1.3). Many thoughts and methods described in this
section are based on [16].

The unmixing process can be either supervised or unsupervised, see
Fig. 3.1. Supervised unmixing refers to the process of determining the
endmembers by a so-called endmember extraction algorithm (EEA) in the



28 3 State of the Art in Hyperspectral Image Processing

first step and subsequently estimating the abundances using the determi-
ned endmembers in a second abundance estimation step. Unsupervised
unmixing, by contrast, means that both endmembers and abundances are
determined in the same step.

Image

Endmember
estimation

Abundance
estimation

Supervised unmixing

Unsupervised
unmixing

Figure 3.1 Illustration of supervised and unsupervised unmixing.

This thesis is concerned with linear spectral unmixing; however, there
are a lot of nonlinear unmixing methods, too. Heylen et al. [59] give an
overview of existing nonlinear methods.

Spectral unmixing is in many cases based on the LMM (2.2) in Section
2.1.1. From this linear model, the data fidelity term

Qdata(M,A) = ‖MA−Y‖2F (3.1)
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is derived. The data fidelity (3.1) has the property of bi-convexity, which
means that it is convex in M for constant A and vice versa, but not convex
in both variables simultaneously. This means that unmixing methods
based on this objective function are ill-posed [48] and there is no unique
solution. Depending on the initialization of M and A, very different
solutions can result. For this reason, various methods enforcing additional
constraints on the matrices M and A have been developed. The vast
majority of these methods can be expressed by the general scheme

Q(M,A) = Qdata(M,A) + µspecRspec(M) + µspatRspat(A) . (3.2)

The arguments (M,A) will be suppressed in all following considerations,
because they will be clear from the context. The objective function (3.2)
is the one of the general nonnegative matrix factorization (NMF) [31, 77],
whose goal is to decompose a given nonnegative matrix into a product of
two nonnegative matrices. NMF belongs to the class of methods solving
the blind source separation (BSS) problem [31]. Note that not all unmixing
algorithms are based on NMF and therefore do not make use of (3.2).

Linear mixing is often based on the geometric concept discovered by
Craig [33]: in the R-dimensional space (remember that R stands for the
number of endmembers), all pixel spectra are enclosed by the simplex
spanned by the endmember spectra. Figure 3.2 depicts this concept. Many
endmember extraction algorithms (EEAs) and unmixing methods make
use of this concept; some will be discussed in Sec. 3.2.1 and Sec. 3.2.2,
respectively. In the case the acquired data do not contain pure pixels
of each endmember, the vertices of the simplex are missing. For this
scenario, there are algorithms aiming at finding the vertices of the simplex
of minimum volume that contains all pixel spectra. If the method is
successful, it provides the vertices of this simplex, which correspond to
the true endmember spectra. In highly mixed scenarios, the available pixel
spectra only fill the inner part of the simplex in Fig. 3.2, and there are
not even mixed pixels on the simplex edge. In this case, even minimum
volume-based methods fail, and researchers fall back on statistical methods
[16, 17]. Such methods often interpret the unmixing problem as a statistical
inference problem and use a Bayesian approach. The discussion of such
methods goes beyond the scope of this thesis. It should be noted, however,
that such statistical approaches allow for the straightforward incorporation
of endmember variability, see Sec. 2.1.2.
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m1

m2

m3

y1 = M · a1

y2 = M · a2

Figure 3.2 Geometric representation of the linear mixing model using the ex-
ample of three wavelengths and three endmembers. The pixel values in each of
the three wavelength channels are plotted along the three axes. The endmembers
form the vertices of a simplex, while all possible mixed pixels consisting of the
considered endmembers are located between the vertices.

Another group of unmixing methods also covered in more detail in [16]
are sparse regression and sparse coding approaches. It is known from
compressive sensing theory that real-world signals can be represented
sparsely in other transform domains [35]. This fact can be beneficially
combined with another fact present in hyperspectral image analysis: there
are large spectral libraries available containing hundreds of thousands of
pure spectra such as the USGS (United States Geological Survey) spectral
library [74, 145]. In a semi-supervised fashion, the endmember matrix
M is assigned the full library, and then it is known that the abundance
matrix A is sparse and consists of many zeros, as only few pure spectra
are necessary to reconstruct the acquired pixel spectra. The calculation of
A is conducted by the methods given for instance in [15, 67, 68].

While the methods described so far are only based on spectral informa-
tion, i.e., the outcome of the procedure is the same regardless if the pixel
spectra in the image matrix Y are permuted or not, spatial information
has been exploited in rather few methods. Shi et al. [131] give a review
of unmixing methods incorporating spatial information; it must be stated
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that while many EEAs have been extended by spatial information, the
number of abundance estimation algorithms using spatial information is
still rather low. By considering Fig. 3.3, however, it is intuitively clear that
spatial information has great potential for improving the spectral unmix-
ing abundance estimation. Incorporating the spatial arrangement of the
image spectra makes it possible to take the spatial structure into account
that is lost when only the isolated pixel spectra would be considered.

Figure 3.3 Left: Urban image (Sec. 5.1.1) ground truth with four endmembers:
grass (green), trees (red), roof (blue), asphalt (black). Right: spatial permutation of
the left image [116].

In the following two Sections 3.2.1 and 3.2.2, some endmember ex-
traction algorithms and unsupervised unmixing methods will be briefly
explained. These are the existing procedures on which the newly develo-
ped methods build on or that will be used for comparison in the results
(Chapter 5).

3.2.1 Supervised Unmixing – Endmember Estimation

Explanations of various endmember extraction algorithms can be found,
e.g., in [16, 17, 114]. The two EEAs used in this thesis are N-FINDR [150]
and simplex identification via split augmented Lagrangian (SISAL) [14].

N-FINDR first applies an orthogonal subspace projection (OSP) along
the spectral domain, reducing the spectral dimensionality to R− 1. Subse-
quently, all pixel spectra one after the other are put in place of each column



32 3 State of the Art in Hyperspectral Image Processing

of M, and every time, the simplex volume (cf. Fig. 3.2) is calculated. The
pixel spectra combination providing the largest volume is considered as
the true endmember matrix. When there are pure pixels, this procedure
will provide the true endmembers. The algorithm is run with different
random initializations, though, to provide an estimate for the case no pure
endmembers are present.

SISAL also applies dimensionality reduction first, after which the (re-
duced) endmember matrix M is square. This enables its inversion and
although it does not yield a convex optimization problem, it leads to sub-
optimal solutions of good quality. SISAL is based on finding a simplex of
minimum volume.

3.2.2 Unsupervised Unmixing

Although designed primarily for endmember estimation, minimum vol-
ume constrained NMF (MVC-NMF) [95] is listed in this section. The reason
is that the optimization of the NMF objective function does not only pro-
vide an endmember estimate, but also an abundance estimate. As known
from its name, MVC-NMF aims at finding the minimum volume simplex
containing all the pixel spectra and is based on the regularizer

Rspec = RMVC(M) =
1

2(R− 1)!
det2

([
1
T
R

M̃

])
. (3.3)

This regularizer contains the matrix M̃ = (m̃1, . . . , m̃R) ∈ R(R−1)×R defi-
ned by

M̃ = PT(M− µ1T
R) . (3.4)

The matrix P ∈ RL×(R−1) is calculated using the R − 1 most significant
principal components of Y. The vector µ is the data mean which is also
calculated from Y. The vector 1R is an all-ones column vector of length R.

Minimum dispersion constrained NMF (MiniDisCo-NMF), by contrast
to MVC-NMF, does not include the simplex concept, but minimizes the
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intra-spectra variances of all endmembers. The regularizer is calculated by

Rspec = RMiniDisCo(M)

= tr

((
M− 1

L
1LLM

)T(
M− 1

M
1LLM

))

= tr(MTM)− 1

L
tr(MT

1LLM) (3.5)

with 1LL being a matrix of ones of size L× L. The goal of the regularizer
(3.5) is to promote flat endmember spectra, thus guiding the minimization
procedure to the correct solution. Be reminded that data fidelity objective
function (3.1) is bi-convex; therefore, local optima exist in both MVC-NMF
and MiniDisCo-NMF.

The minimum volume enclosing simplex (MVES) unmixing method [24]
expresses the simplex volume in a low-dimensional space which similarly
to SISAL also leads to an invertible (low-dimensional) endmember matrix.
One major difference between SISAL and MVES is that SISAL requires
the dimensionality reduction to take place before applying the algorithm,
while for MVES, it is inherently contained in the method. Using an inverse
matrix in MVES enables the conversion into a sequence of linear optimiza-
tion problems. Although the total objective function is not convex, MVES
is guaranteed to find the true endmembers in the case pure pixels of each
endmember are present in the image.

As the following unmixing method is especially interesting for the
methods that have been developed newly in the course of the present
thesis, it will be explained in greater detail.

Zymnis et al. [163] introduce a total variation (TV)-like spatial regula-
rization into spectral unmixing. The well-known TV method has been
presented by Rudin, Osher and Fatemi [127] mainly as an image denoising
method and numerous extensions exist nowadays.

Linear filtering for denoising purposes removes mainly high-frequency
coefficients, therefore eliminating (or at least lowering) the noise. This,
however, also smoothes sharp edges, as all frequencies are required to
represent signal jumps. For this reason, TV follows a different approach:
the goal is to approximate the measured (noisy) signal as well as possible,
while on the other hand introducing the constraint that differences of
neighboring values of the denoised signal should have as small values
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as possible. The latter constraint can be reformulated by requiring the
spatial gradient to be as small as possible. For 2D signals, this results in
the following minimization objective function (see, e.g., [124]):

QTV =
1

2

∑
x,y

(
uxy − zxy

)2
+ µ

∑
x,y

√∣∣ux+1,y − uxy
∣∣2 +

∣∣ux,y+1 − uxy
∣∣2 .

(3.6)

Here, uxy is the pixel at position (x, y) of the uncorrupted signal U that
will be approximated, while Z denotes the measured signal. The regula-
rization parameter µ balances both summands. The total variation norm∑
x,y

√∣∣ux+1,y − uxy
∣∣2 +

∣∣ux,y+1 − uxy
∣∣2 enforces a constant signal sequence

by minimizing the absolute gradient. All image elements uxy can be arran-
ged to a vector of size X · Y × 1. The square root term is the discretization
of the absolute gradient, and the square root terms at all pixel positions
can also be arranged to a vector of respective size [124]. The `1 norm of
this vector is just the sum of all its elements, as represented in (3.6).

Applying TV to spectral unmixing, Zymnis et al. [163] propose the
objective function

Q = ‖MA−Y‖2F + µ

I∑
i=1

∑
j∈N (i)

‖ai − aj‖1 . (3.7)

Doing so requires the abundance maps Ar of all endmembers to have as
low spatial gradient values as possible. Note that the matrices Ar ∈ RX×Y

hold the abundances of endmember r at each pixel, rearranged to the
original image dimensions. ai stands for one column of the (unfolded)
abundance matrix A ∈ RR×I , i.e., the abundances of pixel i, wherever in
the image it might be located. The pixel neighborhoodN (i) denotes the set
of indices of the incorporated neighbors of pixel i. This regularization is
beneficial, as natural images are likely to have constant image regions and
jumps. One downside of the 2D (3.6) objective function, however, is the
fact that linearly increasing/decreasing image values will be approximated
by steps instead of a smooth shape. For circumventing this, the TV method
will be extended by methods incorporating different spatial derivatives
of the abundance maps and different norms in Sec. 4.1. These enable
piecewise linear transitions.
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3.3 Hyperspectral Image Denoising

This section gives a brief introduction of hyperspectral image denoising
in preparation of the newly developed denoising algorithm that will be
explained in Sec. 4.7.

The easiest way to denoise a multidimensional image is to split up the
image into several one- or two-dimensional subparts and denoise them
with common denoising techniques. In the case of three-dimensional hy-
perspectral images having two spatial and one spectral dimension, the
pixel spectra can be regarded as one-dimensional signals and treated as
such. On the other hand, the two-dimensional images at each wavelength
can be treated separately with conventional or sophisticated image de-
noising methods such as total variation (TV [127]), non-local means [21],
block-matching and 3D filtering (BM3D, [34]) or their variants. Such ap-
proaches, however, do not take into account the significant amount of
redundancy contained in the multidimensionality.

For 3D hyperspectral images, many methods have been developed that
take advantage of the full dimensionality of the data. One approach is
to extend the conventional 2D TV model [127], which is known for its
edge-preserving property, to three dimensions by adding a third spectral
dimension that is filtered with 1D TV [158]. This approach neglects spatial
and spectral variations of noise and signal; therefore, Yuan et al. [155] pro-
posed a spectral–spatial adaptive hyperspectral TV (SSAHTV) denoising
algorithm taking these into account. Qian et al. [121] follow a different
denoising approach by extending the non-local means filter [21] to 3D
images. The anisotropic diffusion method by Perona and Malik [110] has
also been extended to hyperspectral images by Wang et al. [148].

An approach different to the aforementioned methods is followed by
Lam et al. [76]. They perform principal component analysis (PCA) on
the image to reduce the spectral dimensionality and capture only the
main variance, disregarding the variance caused by noise. The coefficients
associated with the principal components form 2D images; one for each
principal component. These coefficient images are denoised independently
with common 2D denoising techniques, and PCA backprojection yields
the denoised hyperspectral image. A procedure that can be considered
complementary to this approach is described in [30]. It is based on low-
noise images and aims at removing the remaining noise. For preserving the
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physical structure contained in the image, only the principal components
describing small proportions of the image variance are denoised, i.e., the
ones that are completely disregarded by the method in [76]. The denoising
is done by wavelet shrinkage.

The hybrid spatial-spectral noise reduction (HSSNR) scheme described
in [106] also deals with low-noise images. First, the spectral derivative is
calculated which results in an increased noise level. The resulting signal is
denoised independently in the spatial and spectral domains and integrated
spectrally afterwards. This provides the denoised datacube.

Following the natural approach of treating the hyperspectral datacube
as a third-order tensor also leads to denoising algorithms. Letexier and
Bourennane [78] have developed such a technique that is based on the
multidimensional Tucker3 decomposition and multidimensional Wiener
filtering. This technique is compared with other tensor methods [84].
Xu et al. [151] model the denoising problem as a Bayesian least squares
optimization problem and propose a Monte Carlo sampling technique
to determine the a posteriori distribution. The recently proposed noise
adjusted iterative low-rank matrix approximation (NAILRMA) method
[58] is based on the observation that hyperspectral images commonly are
low rank and therefore the goal is to find a low-rank approximation of the
noisy image.



4 Novel Methods

This chapter contains the descriptions of the methods newly developed
during the work on this thesis. Starting from unmixing methods enforcing
local spatial abundance smoothness in the following section, Sec. 4.2 pre-
sents a method taking larger pixel regions into account. This leads to a
calculation time saving and in some cases, especially in the presence of
noise, improves the unmixing results. Section 4.3 presents the use of image
pyramids for accelerating existing unmixing methods. Its mere goal is the
acceleration of the unmixing. These two unmixing methods innovatively
consider image matrix reduction along the spatial domain, and not, as
commonly done, along the spectral domain. The newly developed unmix-
ing method described in Sec. 4.4 incorporates the full adjacency of both
spatial and spectral image elements by applying the 3D discrete cosine
transform (3D DCT) before unmixing. This method even incorporates
the full adjacency in the data cube. As an example of other orthogonal
transforms sharing the beneficial properties of the 3D DCT and that can
be used for using the 3D information is the singular value decomposition
(SVD). The 3D unmixing method based on SVD is described in Sec. 4.5.

The chapter is closed by a newly developed denoising algorithm. While
it is easy to apply and runs much faster than state-of-the-art algorithms, it
offers similar, in many cases even better, denoising capability.

4.1 Unmixing Methods Incorporating
Spatial Abundance Derivatives

Starting from the total variation (TV) method that has been introduced
briefly in Section 3.2.2, newly developed unmixing methods that promote
spatial smoothness will be presented. Most NMF unmixing algorithms
alternatingly minimize the objective function, for instance (3.2), for abun-
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dance matrix A and endmember matrix M. For this reason, a convention
used throughout the thesis is introduced now. For the matrix A, the num-
ber of iterations is P , as it is possible to run multiple iterations for one
matrix before updating the other. For M, the number of iterations is M .
The total number of A/M updates is denoted by T . This means that P
abundance iterations and M endmember iterations are performed, and
this P/M sequence is repeated T times in total.

The following detailed TV description is based on the original paper
[163]. Considering only one pixel, the optimization problem deduced from
(3.7) is given by

minimize ‖yi −Mai‖2F + µ
∑

j∈N (i)

‖ai − aj‖1 (4.1)

subject to ar,i ≥ 0,
∑
r

ar,i = 1 .

It must be noted that this problem contains the vector `1 norm of the
difference (ai − aj), i.e., the sum of absolute vector elements. As the
absolute value is not differentiable, a different method has to be used
for applying a descent method for minimizing (4.1). The subgradient
method described for example in [132] is an optimization method capable
of dealing with non-differentiable objective functions.

Optimizing for ai, the other vectors aj remain constant during this
procedure. The vector

gi = 2MTMai − 2MTyi + µsi (4.2)

is a subgradient of the minimization problem (4.1). It mainly results
from differentiation of its differentiable part, while the vector si ∈ RR is
calculated by si =

∑
j∈N (i)

sgn(ai−aj), where sgn denotes the sign function.

Similarly to a gradient descent method, the objective function value is
iteratively minimized using

a
(p+1)
i :=

(
a
(p)
i − δ(p)gi

)
P
. (4.3)

The variable p stands for the iteration number, while δ(p) is the current
step size. (·)P denotes projection on the probability simplex for ensuring
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compliance of the solution with the STO and the NN constraints (Sec. 2.1.1).
In contrast to [163], not the projection algorithm provided therein, but
the projection algorithm given in [30] is used for all methods described in
this chapter. It is extended to a matrix version enabling the simultaneous
processing of the whole abundance matrix, therefore considering all pixels
at the same time and computing very fast.

All columns of A can be updated simultaneously. Zymnis et al. [163]
state that this is due to the principle of primal decomposition. Alternati-
vely, it can be explained by the gradient calculation of scalar functions that
depend on a matrix (Sec. 2.2.4): the function is differentiated by each ma-
trix element, while all other elements are considered constants. The results
of all element derivatives are put into the same order as the respective
elements in the original matrix. Concatenating all vectors si to the matrix
S leads to the matrix update

A(p+1) :=
(
A(p) − δ(p)(2MTMA(p) − 2MTY + µS(p))

)
P
. (4.4)

After updating A according to this rule several times for constant M, the
matrix M is updated by solving the problem

minimize ‖Y −MA‖2F (4.5)

subject to M ≥ 0 . (4.6)

This time, the gradient descent steps

M(m+1) :=
(
M(m) − δ(m)(M(m)A−Y)AT

)
+

(4.7)

can be applied. The operator (·)+ projects negative matrix values to zero
(NN constraint, Sec. 2.1.1), while the step size is defined to

δ(m) =
1

‖AAT‖2
, (4.8)

where ‖ · ‖2 denotes the matrix spectral norm.
As the elements of Y can have values of different magnitudes depending

on the input image, it is reasonable to use the nonsummable diminishing
step size rule [11] for the update of A. The method is guaranteed to
converge when δ(p) is chosen to δ(p) = k

p [117]. The constant k is chosen
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feasibly; however, there are more effective ways of adjusting the step size
at each iteration which are discussed in Sec. 4.6.1.

The TV method applied to 1D or 2D signals is known to suffer from the
so-called staircase effect: While signal jumps are preserved well, linear or
curvy image regions are approximated by steps. This effect is illustrated
in Fig. 4.1 for a 1D signal. A large number of approaches for mitigating or
even eliminating the staircase effect have been proposed, see, e.g., [20, 62].
One option is to use not the first, but higher order spatial derivatives. This
can be combined with penalizing the values of the respective derivative
not by the vector `1 norm as in (3.6), but for example by the `2 norm
[124]. Apart from the TV denoising result, Fig. 4.1 also illustrates the
denoising using the first derivative and the `2 norm. Additionally, it shows
the use of combinations of the second spatial derivative and the `1/`2
norms. It becomes obvious that in the case of the first spatial derivative,
the `2 norm penalizes high values of the derivative harder than the `1
norm, resulting in a smoothing of the edges that TV preserves so well.
On the other hand, there is no staircase effect in linear signal regions.
The second spatial derivative combined with the `1 norm results in a
piecewise linear denoised signal, while the application of the `2 norm
to the second derivative tends to introduce small oscillations. Figure 4.1
raises the questions how regularizers based on the TV-like objective (3.7),
but combining the first/second derivative and the `1/`2 norm behave
when transferred to spectral unmixing. For this reason, the respective
objective functions will be presented in the following sections.

As a first step, a regularizer replacing the TV-like one of (3.7) will be
explained that incorporates the `2 norm of the second spatial derivative.
Its goal is to approximate linear changes in the abundance maps as closely
as possible, without introducing artifacts such as the staircase effect. The
method has been developed by the author and was published in [176].

For an arbitrary continuous 2D function f(x, y), the second derivative is
its Hessian

H(f) =

 ∂
2
f

∂x
2

∂
2
f

∂x∂y

∂
2
f

∂y∂x
∂
2
f

∂y
2

 . (4.9)

Transferring this to spatial abundance regularization, the reader be remin-
ded that the abundance map Ar is a matrix of size X × Y containing the
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Original signal Noisy signal

TV: First derivative, `1 norm First derivative, `2 norm

Second derivative, `1 norm Second derivative, `2 norm

Figure 4.1 Denoising of a noisy signal of length 1000 with combinations of the
first and second spatial derivatives combined with their `1/`2 norm.

pixelwise abundances of substance r in its respective spatial arrangement.
Calculating the Frobenius norm of the Hessian of Ar at pixel position (x, y)

results to

‖H(Ar)(x, y)‖F =

√
A2
r,xx(x, y) + A2

r,xy(x, y) + A2
r,yx(x, y) + A2

r,yy(x, y) .

(4.10)

The term Ar,xx denotes the second derivative of Ar along direction x.
The derivatives along the respective other directions are denoted by the
terms Ar,xy, Ar,yx and Ar,yy. In the following, the second derivative
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regularizer based on its Frobenius norm will be abbreviated as Hessian
(HS) regularization.

Adding the terms of (4.10) for all endmembers r and all pixels provides
the second-order regularizer

RHS (A) =

R∑
r=1

X∑
x=1

Y∑
y=1

‖H(Ar)(x, y)‖F . (4.11)

The final HS objective function results to

QHS = ‖MA−Y‖2F + µspatRHS (A) . (4.12)

When optimizing for pixel ai, the pixels in its neighborhood which are
required for calculating the spatial derivatives Ar,xx, Ar,xy etc. remain
constant. The objective function (4.12) inherits the bi-convexity of the
pure data fidelity term ‖MA−Y‖2F (3.1). The derivatives Ar,xx etc. are
basically affine combinations of the abundance values (i.e., the elements of
A), as they are only added and subtracted, which will be shown later in
this section. The Frobenius norm is a matrix norm and therefore convex,
as all norms are convex [19, Sec. 3.1.5]. According to [19, Sec. 3.2.2], a
composition of an affine mapping and a convex function is also convex.
Therefore, (4.12) is convex in A. In contrast to the TV-like regularizer (3.7),
the objective function (4.12) is differentiable. For this reason, the gradient
projection method [72] is used.

The full HS optimization problem is given by the objective function
(4.12) and the NN and STO constraints:

minimize ‖MA−Y‖2F + µspatRHS (A) (4.13)

subject to A ≥ 0,
∑
∀r

ar,i = 1 ,

where the inequality A ≥ 0 means that each element of A has to be ≥ 0. In
[176], the minimization is solved with square summable but not summable
step sizes fulfilling

∞∑
p=1

δ(p) =∞,
∞∑
p=1

(
δ(p)
)2

<∞ . (4.14)
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The step size is chosen to be the same as the one of the TV-like optimization:

δ(p) =
k

p
. (4.15)

When updating the abundance values according to

A(p+1) :=

(
A(p) − δ(p) ∂QHS

∂A

)
P

, (4.16)

the gradient ∂QHS

∂A of QHS with respect to A has to be calculated. While
doing so, care should be taken. According to [90], the Frobenius norm of
the Hessian (4.11) is rotationally invariant. This, however, only holds in
the continuous case. When approximating the continuous second spatial
derivatives by the forward differences

Ar,xx(x, y) = Ar(x, y)− 2Ar(x+ 1, y) + Ar(x+ 2, y) (4.17)

Ar,xy(x, y) = Ar(x, y)−Ar(x+ 1, y)−Ar(x, y + 1) + Ar(x+ 1, y + 1)

Ar,yx(x, y) = Ar,xy(x, y)

Ar,yy(x, y) = Ar(x, y)− 2Ar(x, y + 1) + Ar(x, y + 2) ,

wavelike artifacts are introduced into the abundance estimation, see Fig.
4.2. For this reason, the central differences [8]

Ar,xx(x, y) = Ar(x− 1, y)− 2Ar(x, y) + Ar(x+ 1, y) (4.18)

Ar,xy(x, y) = Ar(x, y + 1)−Ar(x, y)−Ar(x− 1, y + 1) + Ar(x− 1, y)

Ar,yx(x, y) = Ar(x+ 1, y)−Ar(x, y)−Ar(x+ 1, y − 1) + Ar(x, y − 1)

Ar,yy(x, y) = Ar(x, y − 1)− 2Ar(x, y) + Ar(x, y + 1)

will be used for HS unmixing. Their usage does not introduce any artifacts.
Having defined the discrete approximation of the continuous derivatives,
it is now possible to calculate the regularizer’s (4.11) gradient ∂RHS

∂A . This
is a matrix of the same size as A. Considering the abundance of the r-th
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Figure 4.2 Qualitative visualization of the wavelike artifacts caused by the use of
the forward differences (4.17) for HS regularization. Shown are the five abundance
maps of an artificial image of size 50 × 50. First line: ground truth, second line:
abundance estimation using (4.12).

endmember at position (x, y), one element of the gradient is given by(
∂RHS

∂A

)
r

(x, y) = (4.19){
10Ar(x, y)− 3Ar(x, y + 1)− 3Ar(x, y − 1)− 3Ar(x− 1, y)

−3Ar(x+ 1, y) + Ar(x− 1, y + 1) + Ar(x+ 1, y − 1)
}
/{

[Ar(x− 1, y)− 2Ar(x, y) + Ar(x+ 1, y) ]
2

+ [Ar(x, y + 1)−Ar(x, y)−Ar(x− 1, y + 1) + Ar(x− 1, y)]
2

+ [Ar(x+ 1, y)−Ar(x, y)−Ar(x+ 1, y − 1) + Ar(x, y − 1)]
2

+ [Ar(x, y − 1)− 2Ar(x, y) + Ar(x, y + 1)]
2
}(1/2)

.

The denominator can become zero when the abundances of endmember r
at the respective pixel and around it have the same value. Although this is
numerically unlikely to happen, the gradient is set to zero in such a case,
because the second spatial derivative is already zero and the respective
abundance value should remain unchanged, see the update (4.16).

Having extended the TV regularization to `2 penalization of the second
derivative, the two other combinations of first/second derivative and



4.1 Unmixing Methods Incorporating Spatial Abundance Derivatives 45

`1/`2 norm are still open. They have been developed newly as well and
are published in [166].

The regularizer of the first spatial derivative combined with the `2 norm
is given by

RD1−L2 =

I∑
i=1

∑
j∈N (i)

∥∥ai − aj
∥∥2
2
, (4.20)

where the square has been added to penalize large regularizer values
harder. It also leads to easier calculation of the gradient. The regularizer
(4.20) can be rewritten

RD1−L2 =

I∑
i=1

∑
j∈N(i)

R∑
r=1

(ari − arj)2 , (4.21)

which leads to the gradient(
∂RD1−L2
∂A

)
ri

=
∑
j∈N(i)

2
(
ari − arj

)
(4.22)

at matrix position ri.
Application of the `1 norm to the second spatial derivative yields

RD2−L1(A) =

R∑
r=1

X∑
x=1

Y∑
y=1

∥∥H(Ar(x, y)
)∥∥

1
. (4.23)

Like the TV regularizer (4.1), this regularizer also is not differentiable. The
subgradient method provides the matrix SD2-L1 with elements

(SD2-L1)r (x, y) = −2 sgn (Ar (x− 1, y)− 2Ar (x, y) + Ar (x+ 1, y))

+ sgn (Ar (x, y + 1)−Ar (x, y)−Ar (x− 1, y + 1) + Ar (x− 1, y))

+ sgn (Ar (x+ 1, y)−Ar (x, y)−Ar (x+ 1, y − 1) + Ar (x, y − 1))

− 2 sgn (Ar (x, y − 1)− 2Ar (x, y) + Ar (x, y + 1)) . (4.24)

The HS results are briefly analyzed in Sec. 4.6. For more analyses, see [176].
The results of the other regularizers are given in [166].
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4.2 Unmixing of Clustered Image (UNCLI)

In Section 4.1, unmixing methods exploiting the characteristics of spatial
abundance derivatives have been presented. These are based on the local
neighborhood around a considered pixel such as the 8-connected pixels,
see Fig. 4.3.

(a) TV 8-connected neighborhood (b) HS neighborhood

Figure 4.3 Pixel neighborhoods used for spatial regularization. The central pixel
is shown in red, the other incorporated pixels in blue. The HS neighborhood results
from the central differences (4.18).

When analyzing real hyperspectral images in more detail, it becomes
obvious that spatial information within even larger image regions can
be used beneficially. Figure 4.4 shows the ground truth of the Urban
image (see Sec. 5.1.1) which illustrates a remote view of an urban scene.
The image mainly contains roof, asphalt, grass and trees. It can be seen
that many pixels have very similar abundances, e.g., the asphalt pixels.
The figure also shows the spectra of all pixels that consist of at least 97 %
asphalt. When considering the fact that hyperspectral image processing is
time-consuming, it becomes clear that it would be beneficial to reduce the
size of the image matrix Y by some operation, such that less pixels (i.e.,
columns of the image matrix) have to be considered without losing much
accuracy. Such an approach is a technique of object-space reduction [42], as
it reduces the number of objects, i.e., pixels. By contrast, methods such as
PCA along the spectral domain, orthogonal subspace projection (OSP) [56]
or maximum noise fraction (MNF) [52] aim at reducing the feature-space,
i.e., the number of bands, and not the number of pixels.

One natural approach of reducing the image matrix size is to cluster the
image pixels according to their similarity in the sense of some measure.
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Figure 4.4 Top: Urban image (Sec. 5.1.1) ground truth with four endmembers:
grass (green), trees (red), roof (blue), asphalt (black). Middle: spectra of pixels with
≥97 % asphalt abundance. Bottom: image matrix Y and reduced image matrix
Yreduced.
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This is not only useful because most images have smaller or larger regions
containing very similar abundances, but also when spectral regularization
is incorporated, e.g., MiniDisCo-NMF [63], MVC-NMF [95] (see Sec. 3.2.2),
minimum endmember-wise distance constrained NMF (MewDC-NMF)
[94] or minimum distance constrained NMF (MDC-NMF) [154]. In gene-
ral, updating the abundance matrix A in the pure data fidelity objective
function (3.1) is much more demanding than updating M because of the
matrix sizes (e.g., 10× 10000 vs. 200× 10). When using spectral regulari-
zation for endmember extraction, the abundance matrix is more or less
a by-product that is not of significant interest. In this case, it is of great
benefit to use a compressed abundance matrix to get the desired endmem-
ber matrix M more quickly. As will be shown in the results (Sec. 5.4), the
endmember estimation results additionally are significantly improved in
the presence of noise. Even when not performing endmember estimation,
but unsupervised unmixing, where the calculated abundance matrix is of
interest, its estimate can be very precise when suitable clustering methods
are used. This means that there is a large gain in calculation time, while
the abundance and endmember estimation results are equally as good
or even better. The new approach will be called unmixing of clustered
image (UNCLI). As it can be combined with the vast majority of unmixing
algorithms, it is a meta-approach. Its principle was published by Bauer
et al. [175]. It must be stated that the author is not aware of any other
object-space reduction methods in the area of spectral unmixing abun-
dance estimation. The brief report [109] describes a similar idea, but does
not provide a thorough investigation of the results.

Although clustering algorithms have been used previously in quite a few
hyperspectral image processing steps for purposes such as compression
[98] and classification [140], they have not yet been used for the accelera-
tion of the unmixing process by reducing the amount of data. Regarding
the existing literature in the area of spectral unmixing, the paper of Lu
et al. [88] is especially interesting. They use the structural information
present in an image for improving the unmixing results with their struc-
ture constrained sparse NMF (CSNMF) method. The k-means algorithm
is used to divide the image into a number of clusters and for each pixel, a
regularization term ensuring that the pixel’s abundances are close to the
cluster centroid’s abundances is included. Additionally, a sparsity regu-
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larizer is incorporated. CSNMF outperforms state-of-the-art algorithms
like SISAL [14], L1/2-NMF [120] and MVES [24] in the case of high noise
levels. The calculation of CSNMF, however, is more time consuming than
the calculation of the aforementioned algorithms.

4.2.1 UNCLI Procedure

The UNCLI clustering is applied to the original image. It is possible to
perform an optional dimensionality reduction step along the wavelength
axis before the clustering for even further acceleration. Methods like PCA
or MNF can be used for this dimensionality reduction step. Subsequently,
the chosen unmixing algorithm is applied to the clustered image. It must
be noted that the spectral dimensionality reduction is applied only for
accelerating the clustering; unmixing is performed using the full spectral
dimensionality. Using the reduced spectral dimensionality for UNCLI
could be subject to future work.

When dimensionality reduction is applied, the original image Y ∈ RL×I

is reduced to Y′ ∈ RL
′×I , L′ < L. The clustering result is encoded in the

segmentation map CY ∈ RX×Y . Its elements CY,xy ∈ {1, . . . , C} define
each pixel’s mapping to one of the C clusters, C ∈ N. Using this map,
the clustered image matrix Yclust ∈ RL×C is created. Its columns contain
the cluster mean spectra. Although throughout this thesis, no weighting
is applied for calculating the mean spectra, it would be possible to use
weighted averaging such as the one given in [162].

The following unmixing step yields the calculated matrices Aclust and
M. The segmentation map CY is required for assigning each original pixel
contained in the respective cluster the abundance calculated for the cluster
mean spectrum. The full UNCLI procedure is given in Algorithm 1.

4.2.2 Used Clustering Methods

For clustering hyperspectral images, several methods have been proposed
in the literature. For a brief overview, see, e.g., [107]. In principle, each of
the methods described there can be used for the newly developed UNCLI
method, as its main goal is to merge data but still achieve an unmixing
result quality which is close to the one of full image unmixing.
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Algorithm 1 UNCLI procedure.
1) Given Y

2) if dimension_reduction==true then
Y′ = PCA(Y)
Calculate segmentation map CY by clustering Y′

else
Calculate segmentation map CY by clustering Y

endif
3) Calculate cluster matrix Yclust using CY

4) Perform unmixing with arbitrary method using Yclust. This yields
endmember matrix M and abundance matrix Aclust

5) Calculate abundance matrix A of original image from Aclust using CY

It is often not obvious from the clustering procedure which impact the
used clustering technique will have on the unmixing result. As long as
the number of clusters is not too small (low spatial resolution) or too
high (no benefit from clustering), it can be chosen from a relatively wide
range, as there is no ideal cluster number which is defined for example
by the number of objects present in the scene. The main and only goal
is the acceleration of the unmixing process, while providing improved
estimations, or at least acceptable unmixing error values. It is also not
important if the method clusters adjacent or distant pixels, as long as they
have similar spectra. Several clustering methods were tested. They will be
described shortly in the following:

RHSEG The recursive hierarchical segmentation (RHSEG) algorithm
[144] is an enhancement of the hierarchical segmentation (HSEG) method
[143, 144]. It overcomes HSEG’s drawback of high computational load in
the case of spectral clustering by using a divide-and-conquer technique.
The original HSEG method enables both spatial and spectral clustering
which is balanced by the parameter sw. For sw = 0, the pixels are clustered
exclusively by spatial neighborhood considerations, while sw = 1 means
pure spectral clustering. In the latter case, the computational load is
significant, as all pixel spectra have to be considered instead of just more
or less adjacent ones. In general, the dissimilarity criterion contained in
the algorithm can be chosen to any distance measure between two spectra.
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For the analyses presented in Sec. 5.4, Euclidean distance (ED) and spectral
angle (SA, Sec. 2.2.3) will be considered as dissimilarity criteria. For the
RHSEG algorithm, the implementation provided in [102] is used. Each
band of the hyperspectral image that is to be clustered is stored on the
hard disk in a separate file. Also, a parameter file is saved. The compiled
RHSEG .exe-file is called from within MATLAB with shell commands and
reads the provided files. After the calculation, the results are also saved as
an image and imported in MATLAB.

k-means The well-known k-means algorithm [39] is also used for spec-
tral clustering: Given k initial cluster centers, each data point is assigned
to the cluster center it has the least distance to. Iteratively, new cluster
centers are calculated, the other data points are assigned again to the new
cluster centers and so on. Eventually, the algorithm converges. As imple-
mentation, MATLAB’s kmeans method was used selecting the distance
measures squared Euclidean distance and correlation.

ISODATA (iterative self-organizing data analysis technique) [5] is an
algorithm based on k-means. It does not need an a priori definition of the
number of clusters. Only a rough range of possible numbers has to be
defined, the exact number is determined by the algorithm. For ISODATA,
ED and SA are used as distance measures. ISODATA is implemented in
MATLAB based on [70].

Superpixel Another used clustering method is the graph-based image
segmentation method by Felzenszwalb and Huttenlocher [47]. It will
be called superpixel (SP) in the following, as it belongs to the class of
superpixel methods. SP also uses Euclidean distance and spectral angle.
The implementation is provided in [41]. The compiled .exe file will be
called the same way as the one of RHSEG.

LA It is interesting to see how the aforementioned clustering methods
perform. As a benchmark, it will also be considered how simple local
averaging (LA) within rectangular windows performs. It is intuitively clear
that this averaging will have a positive effect on the unmixing results in
the case of homogeneous regions as eventually present noise will average
out. However, the more important question is how it will influence the
unmixing results in the case of merging pixels with spatially varying
abundances and if more sophisticated clustering methods are needed in
such a case, or if this simple method already provides acceptable results.
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See Fig. 4.5 on how LA deals with window sizes that do not exactly fit in
the image dimensions.

dX mod S
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Figure 4.5 Local averaging method. In case the image dimensions X,Y are not
divisible by the window size S without remainder, the image edges are treated as
shown.

4.3 Pyramid Unmixing (PYRU)

In the previous Section 4.2, the UNCLI (UNmixing of CLustered Image)
method describing the unmixing of clustered images has been presented.
In anticipation of the UNCLI results that will be presented in Sec. 5.4, it can
be stated that the local averaging (LA) method provides results that are not
significantly worse than the ones obtained with sophisticated clustering
methods. This motivates the application of LA to spectral unmixing in a
slightly different way: remember the fact that the abundance update of the
NMF objective function (3.1) is computationally much more demanding
than the endmember update (this fact was already used in the UNCLI
motivation). The new idea is to calculate endmembers and abundances
using abundance approximations of lower spatial resolution in the first
step, and use this coarse abundance approximation as initialization of the
subsequent full resolution unmixing process. The low-resolution unmixing
step can be split into several stages of increasing spatial resolution. Starting
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from a very low spatial resolution, this process can be described by lowpass
image pyramids, see Fig. 4.6 [12, 71]. For this reason, the method is termed
pyramid unmixing (PYRU). Although it is used here in the context of NMF,
in general it is not limited to unmixing methods making use of NMF.

The main goal of PYRU is to speed up the calculation of the unmix-
ing results, i.e., the same objective function value as obtained by regular
unmixing is obtained in shorter time with PYRU. One factor that is be-
neficial for achieving this goal is the following one: in many cases, the
abundance maps are initialized randomly, or by the constant 1/R, or by the
fully-constrained least-squares solution using the endmembers previously
calculated by an endmember extraction algorithm. All these possibilities
share the disadvantage that no spectral regularization has been taken
into account for obtaining the abundances. By using PYRU, the spectral
regularization can already be applied to the low-resolution levels, mea-
ning that the resulting low-resolution abundance initialization of the full
resolution unmixing step already has the regularization effect included.
This means that most of the computational effort has been shifted to the
low-resolution levels, where it can be accomplished faster, and optimally,
only few optimization steps on the full resolution level are necessary.

4.3.1 Method Description

The PYRU procedure starts at the lowest spatial resolution image, i.e. the
top one in Fig. 4.6, so let’s assume here that it is Y2. After performing some
unmixing steps on this level, the resulting abundance map is upsampled
to the next higher resolution and unmixing is conducted on the next level
image (one pyramid level below). Upsampling in this context means
that all the pixels of the higher resolution image Y1 that have been used
for creating one pixel of Y2 are assigned the abundance calculated for
this pixel of Y2. After the unmixing calculations on level Y1 have been
finished, the results are upsampled and the procedure continues on the
next higher resolution image, in the considered example the full resolution
image. Although image pyramids in general are based on a reduction
factor of N = 2 which means N × N = 4 pixels on the full resolution
are averaged to obtain the next higher pyramid level, N in the context of
PYRU can be chosen from powers of 2. Setting N = 4 means that every
second pyramid level is skipped. The averaging can be described by the
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convolution of each band’s 2D image with a square filter kernel of size
N ×N multiplied by N2. Subsequently, downsampling by N is applied.
Note that the spectral regularization parameter µspec is not adapted to
each pyramid level; it is the same for all levels.

Y0

Y1

Y2

Figure 4.6 PYRU image pyramid; only one image band of each level is shown.
The full resolution image is denoted by Y

0, the lower resolution images are Y
1

and Y
2, respectively. These are obtained by averaging N ×N pixels (here: N = 2)

from the previous higher resolution image.

4.3.2 Implementation

When implementing the PYRU method, some practical aspects must be
considered. The main point is how to efficiently perform the calculation of
the low resolution images from the original one and the upsampling of the
calculated abundance maps. The image pyramid is based on 2D images,
while one 2D band of the hyperspectral image forms one line of the image
matrix Y. The information about neighboring pixels is lost in the matrix
data representation.

In the first step, the dimension reduction of the image is performed.
For each pyramid level, the downsampled image is stored in a 3D tensor
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YK . Also for each level, a two-dimensional so-called segmentation map
Ck (k = 1, . . . ,K, where K + 1 is the total number of levels) is created
and stored. It has the size of the previous (higher resolution) image and
contains the information which pixels of the higher resolution image
form one pixel of the lower resolution image. Then, the image at the
highest pyramid level is converted to the matrix YK and the unmixing is
performed, which yields the abundance maps AK . These are converted to
the abundance cube AK using the segmentation map, upsampled and the
process continues on the next lower level. Figure 4.7 shows this procedure.

In case the size of the image to be downsampled is not divisible by N ,
the last original pixels form one downsampled pixel (this is by contrast to
UNCLI, cf. Fig. 4.5). One example: when the size is 199 and N = 4, only
the last 3 original pixels are considered for the last downsampled pixel.
There is no cyclic or periodic usage of other image pixels.

For a beneficial application of PYRU, less iterations on the original
resolution level should be performed than when only applying plain
unmixing to the full image for saving calculation time. If this is not the
case, the additional iterations on the lower-resolution levels that naturally
have an additional time demand would make PYRU perform slower than
plain unmixing. For selecting the number of iterations on each pyramid
level, the formula

Z = dV ·Bke (4.25)

proved to be adequate. Z can be either P , M or T , i.e., the number of
abundance iterations, the number of endmember iterations or the number
of abundance/endmember sequences. k = 0, . . . ,K denotes the pyramid
level, where k = 0 denotes the original, full image resolution. Adapting
the prefactor V and the base B, (4.25) enables choosing a large range of
iteration numbers: For B < 0, less iterations are performed on the lower
resolution levels than on the original image level. B = 1 leads to the same
number of iterations on each level, while B > 0 performs more iterations
on the lower resolution level than on full resolution. Note that when
choosing B < 0, V should be chosen smaller than the number of iterations
used for plain unmixing of the full resolution image for exploiting the
previously mentioned PYRU time saving. It is reasonable to distinguish
between the supervised and the unsupervised case for determining the
iteration numbers:



56 4 Novel Methods

X

Y

L

Y0

2↓ SM F

C1

X

Y

2↑X/2 R

A1Y/2

UF

UM

A0

I

R

UF

Y0

I

L

Ground level

X/2 L

Y1Y/2

2↓ SM F

CK

X/2K−1

Y/2K−1

2↑
X/2K R
AKY/2K

UF

UM

A1

I/4

R

UF

Y1

I/4

L

First level

X/2K L
YKY/2K

UM

AK

I/22K

R

UF

YK

I/22K

L

K-th level
...

Figure 4.7 Pyramid unmixing procedure for N = 2. Upsampling and downsam-
pling by a factor of 2 are performed by the blocks 2 ↑ and 2 ↓, respectively. The
block SM computes the segmentation map, UM the unmixing, i.e., the abundance
updates. UF (unfold) unfolds a tensor into a matrix, F (fold) vice versa.
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When the initial endmembers are chosen randomly from the image
spectra (unsupervised case), P is constant and M is calculated using
(4.25). T is also constant and chosen larger than one to allow for an
alternating procedure between abundance and endmember updates.

For the unsupervised case, it is also possible to adjust both P and M
according to (4.25); on the low resolution levels, many endmember
iterations can be performed, but the abundance calculation is of less
importance, as the spatial resolution is inaccurate anyway. With
increasing spatial resolution, the spatial accuracy becomes more im-
portant (increasing P ), but the endmembers have been determined
relatively precisely on the low resolution levels (decreasing M ).

A third alternative for the unsupervised case is the one used in the
evaluation (Sec. 5.4). It consists of constant P and M on all levels,
and adapting T according to (4.25).

When the endmembers are determined by an endmember extraction
algorithm (EEA) before unmixing (supervised case), M is set to one
and only abundance iterations are performed while the endmem-
bers remain unchanged. In this case, P is calculated according to
(4.25). Another strategy which is also possible allows for subsequent
endmember refinement during unmixing by setting T > 1, either
fixed on each level or using (4.25).

Figure 4.8 shows the iteration numbers on each pyramid level in the
unsupervised case.

Figure 4.9 depicts scatter plots (i.e., two bands plotted against each
other) of two hyperspectral images. It illustrates how PYRU preserves the
simplex structure (see Sec. 3.2) of the image pixels, i.e., except for the abun-
dance accuracy requiring the full resolution, the spectral characteristics
can already be fully exploited on the lower resolution levels.

4.4 3D Discrete Cosine Transform (DCT)
Unmixing

The unmixing methods described so far have the major drawback that they
are based on the data fidelity objective functionQdata(M,A) = ‖MA−Y‖2F
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Figure 4.8 Exemplary calculation of the iteration numbers P and M according
to (4.25) in the unsupervised case. Top graph: lower endmember iteration number
on low resolution levels; middle graph: higher endmember iteration number on
low resolution levels; bottom graph: high endmember iteration number on low
resolution levels, high abundance iteration number on high resolution levels.

(3.1) which is biconvex, i.e., not convex for both M and A simultaneously,
but convex in M for constant A and vice versa. This means that optimi-
zation based on gradient methods only can find local optima, but not the
global minimum. In order for a function which is the sum of two functions
to be convex, the two summands themselves have to be convex. This fact
has the consequence that the objective function (3.2) with spectral and/or
spatial regularization terms is non-convex, even if the regularizers are
convex.



4.4 3D Discrete Cosine Transform (DCT) Unmixing 59

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

0.5 1 1.5

1

2

3

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

0 0.5 1 1.5

1

2

3

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

0.5 1 1.5

1

2

3

Figure 4.9 Left column: scatter plots of bands 80 (abscissa) and 180 (ordinate)
of the Jasper image. Right column: scatter plots of bands 30 and 90 of the Urban
Detail6 image. See Sec. 5.1.1 for explanations on the images. Each red dot repre-
sents an image pixel; the true endmembers are shown in blue. The top images
are the original images, the second row shows the noisy images (SNR 30 dB) and
the last row are the images on the first level of the pyramid with N = 4 (Jasper)
and N = 2 (Urban Detail6). It can be seen that the averaging eliminates most of
the noise, while the shape of the original simplex is well preserved, i.e., there are
averaged image pixels very close to all true endmembers.
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Another fact not considered in the discussed unmixing methods is that
they do not consider global neighborhood information contained in the
image values of the 3D hyperspectral tensor Y . While TV and HS are
based on local spatial pixel neighborhood information (remember Fig. 4.3),
UNCLI can construct large non-local clusters incorporating many pixels,
but mainly uses the spatial information. Even when spectral information
is included, e.g., when k-means or RHSEG with its parameter sw > 0 are
used, the full 3D correlations between image values of different pixels and
different wavelengths are not used in a holistic way.

In this section, a new unmixing method providing a solution for both the
non-convexity and the non-globality issue will be presented. Additionally,
the method takes into account the fact that real-world signals can be
represented in another transform domain with far less coefficients than
in the original domain, while approximating the original signal with high
fidelity or even losslessly [35]. This means for hyperspectral images that
they can be represented approximately by the largest coefficients in some
other transform domain. Utilizing the terminology from [35], this process
is called sparse approximation. The new method is termed 3D discrete cosine
transform nonnegative inverse matrix factorization (3DDCT-NIMF). The
term "inverse" indicates that inverse matrices are used.

Figure 4.10 shows the transformation of a hyperspectral image tensor
using the 3D discrete cosine transform (3D DCT) which will be used for
the explained method. It is obvious that the coefficients corresponding to
low frequencies fx, fy , fl have a large magnitude in comparison with the
other coefficients. By preserving only the high magnitude-coefficients and
discarding the other ones, i.e., setting them to 0, the image is reconstructed
with high quality after inverse 3D DCT transform. This fact is illustrated
in Figs. 4.11 and 4.12 which demonstrate the approximation quality in case
the lowest-magnitude coefficients are set to 0.
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Figure 4.10 Data cube of the Urban Detail4 image (left, see Sec. 5.1.1) and data
cube of its 3D DCT (right, logarithmic scale; mean of original image has been
set to 0). Note that the main energy is concentrated around fx = fy = fl = 0.
Every element of the DCT cube depends on every element of the original cube.
Interchanging two arbitrary, e.g., adjacent, elements of the image would affect the
whole DCT cube.

4.4.1 Discrete Cosine Transform

The 1D DCT of a signal vector u ∈ RX is defined in the well-known
publication [1] by

uDCT,fx
=



√
2
X

X−1∑
x=0

ux for fx = 0

2
X

X−1∑
x=0

ux cos
(
π
X

(
x+ 1

2

)
fx
)

for fx = 1, 2, . . . , X − 1 .

(4.26)

In this equation, X denotes the total number of elements in the signal, x
the signal index, i.e., the index of the elements of u, and fx the frequency
domain index of the DCT transformed vector uDCT. This notation is
chosen because it can easily be extended to additional signal dimensions.
The transform can be thought of as the signal vector u multiplied by the
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Figure 4.11 Urban Detail4 image analyzed with different transforms. Top plot:
only 10 % of the largest transform coefficients are preserved, the rest is set to zero.
Used transforms: bandwise 2D discrete Fourier transform (DFT) with the largest
10 % considered within each band (2D DFT, bandwise), and the coefficients of all
bands jointly ordered and considering only the largest 10 % of this arrangement
(2D DFT, all bands). Other transforms: 3D DFT and 3D DCT. Bottom plot: the
coefficients are ordered by magnitude; all coefficients are normalized such that
the largest one of each transform equals 1. The 3D DCT has the best compression
properties: the top plot shows that it approximates the given image best; the
bottom plot shows that all 3D DCT coefficients have smaller magnitude than the
ones of the other transforms, meaning that the approximation error is smaller
when they are disregarded, i.e., set to 0.
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Figure 4.12 Same plot as the top one in Fig. 4.11, but this time, the largest 20 %
of the coefficients are preserved. Note the higher PSNR values of each method
compared to Fig. 4.11.

transform matrix WX ,

uDCT = WX · u , (4.27)

where the transform matrix WX ∈ RX×X contains the cosine terms given
in (4.26) in its respective elements. In order for the matrix to be orthogonal,
these cosine terms are normalized a bit differently:

uDCT,fx
=



√
1
X

X−1∑
x=0

ux for fx = 0

√
2
X

X−1∑
x=0

ux cos
(
π
X

(
x+ 1

2

)
fx
)

for fx = 1, 2, . . . , X − 1 .

(4.28)

Doing so has the consequence that the inverse transform matrix equals its
transpose, W−1

X = WT
X , as this is the definition of matrix orthogonality. As

transform matrix orthogonality is a crucial point of the unmixing method
that will be introduced shortly, the transform given in (4.28) will be used
in the following. For brevity, the distinction between the vector element

uDCT,0 and all other elements arising from the different constants
√

1
X and
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2
X will be omitted for the remainder of this thesis. This means that the

1D DCT will be written

uDCT,fx
=

1√
X

X−1∑
x=0

ux cos

(
π

X

(
x+

1

2

)
fx

)
(4.29)

for short, but having in mind that the prefactor value has to be considered
in practice.

Using the matrix notation (4.27) and orthogonality, the inverse transform
is given by

uDCT = WT
X · u . (4.30)

For 2D images U ∈ RX×Y , it is possible to write the 2D DCT as matrix
multiplications as well:

UDCT = WX ·U ·WY , (4.31)

where the first matrix WX performs the 1D DCT along the columns of the
image and the second matrix WY the 1D DCT along its rows.

The 3D DCT can be applied to the 3D hyperspectral image tensor Y ,
resulting in the transformed tensor Y3DDCT ∈ RX×Y×L, i.e., it has the
same dimensions as the original one, see also Fig. 4.10. The elements
of Y will be denoted by yx, where the image index vector is defined to
x = [x, y, l]. Analogously, the 3D DCT tensor Y3DDCT is indexed by the 3D
DCT index vector f =

[
fx, fy, fl

]
, resulting in the tensor elements y3DDCT,f .

Given this notation, the 3D DCT transform formula is defined by

y3DDCT,f =
1√
XY L

X−1∑
x=0

Y−1∑
y=0

L−1∑
l=0

yx cos

(
π
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(
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1

2

)
fx

)
(4.32)

· cos
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π
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2
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)
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π

L

(
l +

1

2

)
fl

)
.

From this equation, it can be seen that each element y3DDCT,f is calculated
by summation over all image elements yx. This makes clear that using the
3D DCT, the full neighborhood information of all 3D image elements is
exploited. In particular, it proves the fact stated in the caption of Fig. 4.10
that even simple interchanging of two adjacent image elements changes
the whole 3D DCT cube.
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4.4.2 3D DCT Applied to Spectral Unmixing

Remembering the fact that the hyperspectral image matrix Y is an un-
folded version of the 3D tensor Y , the 2D image U can be reshaped ana-
logously such that the first line of pixels is positioned into the first Y
elements of the horizontal vector uimage ∈ R1×X·Y , the second line into
the second Y elements of this vector etc. In this case, it is necessary to have
a single transform matrix WXY performing the simultaneous 1D DCTs
along X and Y , resulting in the matrix product

uimage,DCT = uimage ·WXY . (4.33)

The matrix WXY is designed such that the first Y elements of the trans-
formed image vector uimage,DCT contain the frequencies fy for constant
fx = 0, the next Y elements the frequencies fy for constant fx = 1 etc. This
leads to the fact that WXY is calculated by the Kronecker product

WXY = WT
X ⊗WY . (4.34)

For illustration, Fig. 4.13 gives a graphical overview of the steps descri-
bed in the following. Starting point is the linear mixing model Y = MA

(2.2), step 1 in Fig. 4.13, where the noise and model error matrix Ψ is
ignored for the moment. Transferring the principle of (4.33) to this mixing
model and adding the third transform along the spectral dimension results
in

WLYWXY = WLMAWXY , (4.35)

see step 2 in Fig. 4.13. The columns of Y represent the image spectra,
where the spectra of the first horizontal line of pixels of Y form the first
Y columns, the second horizontal line the next Y columns etc. While the
multiplication by WXY performs the DCT in both spatial directions, the
spectral DCT is realized by multiplication by the transform matrix WL.

The matrix orthogonality also holds for the transform matrix WXY ,

WXY ·WT
XY = WXY ·W−1

XY = I , (4.36)

where the matrix I represents an identity matrix of adequate size.
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Figure 4.13 3DDCT-NIMF procedure. Step 1: linear mixing model used in con-
ventional unmixing, Y = M · A. Applying the 3D DCT requires multiplying
the 1D DCT matrix WL from the left for performing the transform along the
wavelength dimension. Multiplication from the right with WXY realizes the two
spatial DCTs (step 2). Step 3a shows the partitioning of the resulting matrices
into blocks: the 3D DCT transformed image is split into submatrices of height
R yiedling the submatrices Y1, . . . ,YJ with J = L/R. In step 3b, the square
matrices N−1

j , j = 1, . . . , J , are inverted. Optimization yields the Nj and A, see
the objective function (4.41). After optimization, the endmember estimate M is
determined from the calculated Nj by inverse 1D DCT as depicted in Fig. 4.14.
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Figure 4.14 After optimization, the matrices Nj are inverted again and stacked
on top of each other. Eventually, column by column IDCT (i.e., multiplication
by W

T
L) is applied to this matrix. This multiplication yields the estimate of the

endmember matrix M (final step 4 of 3DDCT-NIMF).

Due to the fact that both WXY and WL are orthogonal matrices, the
objective function value of (2.2) does not change:

Q = ‖WLYWXY −WLMAWXY ‖2F (4.37)

= tr
(

(WLYWXY −WLMAWXY ) (WLYWXY −WLMAWXY )
T
)

= tr
(
WLYWXY WT

XY YTWT
L − 2WLYWXY WT

XY ATMTWT
L

+WLMAWXY WT
XY ATMTWT

L

)
= tr

(
WLYYTWT

L − 2WLYATMTWT
L + WLMAATMTWT

L

)
= tr

(
WT

LWLYYT − 2WT
LWLYATMT + WT

LWLMAATMT
)

= tr
(
YYT − 2YATMT + MAATMT

)
= ‖Y −MA‖2F .

This means that after applying the 3D DCT, some additional operations
should be performed in the DCT domain for having a difference to the
common model. This can be done by incorporating sparse approximation:
Only the ratio ρ of the largest absolute DCT coefficients will be preserved,
while the other ones are set to 0. Mathematically, this can be expressed by

Q = ‖ (WLYWXY )�V − (WLMAWXY )�V‖2F . (4.38)
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The operation � denotes the Hadamard (elementwise) product, while
V ∈ RL×I is a filter matrix of the same size as Y that consists of zeros and
ones, therefore realizing the sparse approximation. Applying the same
calculation as in (4.37) also to (4.38) makes it obvious that the filter matrix
is located between the transform matrices and its respective transpose.
This means that no simplification can be performed, and (4.38) does not
convert to the original objective function Y = MA.

Instead of using the expression with a filter matrix, there is a more
elegant way of mathematically representing the sparse approximation.
The transform matrix WXY performs the two spatial DCTs of Y and the
abundance matrix A, meaning that it contains in its columns the cosine
terms required for calculating the frequencies fx and fy . The first column
contains the cosine terms of the frequencies fx = 0, fy = 0 and so on.
If a frequency pair (fx0

, fy0) is not contained in all rows of the 3D DCT
transformed image matrix, i.e., all elements of this respective column of the
3D DCT transformed image matrix have been set to zero for performing
sparse approximation, the correspondent column of WXY can be deleted,
so that this frequency pair of A is not calculated at all. As a consequence,
WXY is not an orthogonal matrix anymore, and the simplification (4.37)
is no longer valid. Interestingly, when taking the inverse transform also
into account, the product WXY WT

XY is in fact equivalent to calculating
the 2D DCT, zeroing the respective frequency coefficients and calculating
the inverse DCT. This is based on the fact that it does not matter for the
inverse transform if all frequencies are calculated during the 2D DCT, and
the respective ones zeroed afterwards, or the respective frequencies have
been left out from the beginning.

For calculating the abundance maps, this is a reasonable way: if the
acquired hyperspectral image (after zeroing the smaller coefficients) does
not contain a spatial frequency pair, the calculated abundance matrices
also should not contain this frequency pair. By deleting the correspondent
column of WXY , the implicit constraint that this frequency pair is set to
zero in the abundances is incorporated. Note that the spectral transform
matrix WL remains unchanged; all frequencies fl will be considered.
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4.4.3 Objective Function Convexification

So far, the 3D DCT objective function (4.38), or to be more precise, its
realization with adapted transform matrices WXY , fulfills the require-
ment that all spectral and spatial correlations contained in the full data
cube are incorporated. Additionally, sparse approximation is integrated.
Unfortunately, the resulting objective function (4.38) is still not convex.
For convexifying it, an approach already used in, e.g., [6, 161] is used. In
contrast to these references, where the data matrix is reduced to one single
matrix by PCA, the 3D DCT transformed matrix Y is split into horizontal
blocks of sizeR×I (disregarding superfluous bands if there is a remainder
after dividing L by R), see Fig. 4.13. The main point, however, is that the
references assume the noise-free case, while the presented 3DDCT-NIMF
method is designed explicitly for noisy images by exploiting the resulting
SNR properties that will be explained in Sec. 4.4.4.

The 3DDCT-NIMF method first calculates the 3D DCT transformed
image matrix Y3DDCT := WLYWXY that is subsequently split into J =

L/R horizontal blocks Y1, . . . ,YJ (step 3a in Fig. 4.13). The result of
the matrix product WL ·M is also split into matrices Mj which are of
dimension R × R. As the Mj are assumed to be nonsingular square
matrices, they can be inverted: Nj := M−1

j . This is depicted in step 3b of
Fig. 4.13. In total, (4.35) is split into blocks

Nj (WLYWXY )j = AWXY,j (4.39)

and the objective function converts to

Q3DDCT =

J∑
j=1

‖NjYj −AWXY,j‖2F . (4.40)

In this equation, the matrices WXY were given indices to point out that the
transform matrix is adapted for each block j. The reason is that depending
on the correspondent matrices Yj , j = 1, . . . , J , i.e., on the frequency
content in the respective image block, more or less frequencies are left out.
The first block Y1 contains the lowest frequencies fl, while the next ones
contain higher frequencies. As illustrated in Fig. 4.10, higher frequencies
have smaller coefficients, which means that with increasing block index j,
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more coefficients are likely to be set to zero. This is taken into account by
adapting WXY,j depending on the block number.

The resulting objective function Q3DDCT (4.40) is convex. This is due
to the fact that compositions of an affine mapping and a convex function
are convex [19, Sec. 3.2.2]: for convex Q : Rn → R, C ∈ Rn×m, d ∈ Rn,
Q(Cx + d) is convex as well. All matrix norms are convex, therefore also
the Frobenius norm, and all elements of the matrices Nj and A can be
rearranged to one large vector. This resulting vector is multiplied by a
matrix containing constant elements resulting from, e.g., the transform
matrices WXY,j and the 3D DCT image matrices Yj . This is an affine
mapping. Combining all these facts, (4.40) is convex.

Unfortunately, the optimal solution of (4.40) are the matrices Nj = 0,
A = 0; the Frobenius norm has minimum value 0, which is obtained
for exactly these matrices. For this reason, an additional constraint or a
regularizer has to be added for preventing the matrices from becoming
0. Just like in for instance [6], the term − log(

∣∣det(Nj)
∣∣) is used for this

purpose. It is derived from maximum likelihood considerations [65, Secs.
2.6, 9.1.1]. This regularizer is non-convex. If the Nj would be restricted to
be positive definite, the term − log(det(Nj)) without the absolute would
be convex [19, Sec. 3.1.5]. This, however, would be too restrictive as the
only requirement is that the Nj are regular, i.e., invertible, and not 0.
Adding the regularizer yields the objective function

Q3DDCT =

J∑
j=1

‖NjYj −AWXY,j‖2F −Kj log(
∣∣det(Nj)

∣∣) . (4.41)

The Kj are block-dependent regularization parameters balancing the 3D
DCT data fidelity term and the regularization term ensuring that Nj is
regular. They are calculated by the heuristic formula

Kj = K ·
(
P

∑R
r=1

∑I
i=1

∣∣Yj,ri

∣∣
nnz(Yj)

)E
. (4.42)

This formula proved to be useful for all experiments; it reduces the number
of parameters from J to just two, while providing good unmixing results.
The remaining two parameters are E > 0 for including some non-linearity,
whileK > 0 is constant for all J blocks. In (4.42), Yj,ri denotes the element



4.4 3D Discrete Cosine Transform (DCT) Unmixing 71

of Yj in the r-th row and the i-th column. The operation nnz(·) provides
the number of nonzero matrix elements. As the sparse approximation
already had been applied at this point in time, many matrix elements are
0. The purpose of the constant P � 1 is to ensure that the term within the
brackets of (4.42) is > 1. Altogether, the parameters Kj are obtained by
calculating the average of the nonzero elements of the respective matrix Yj ,
multiplying by the large constant P , exponentiating by E and multiplying
by the constant K. The value of P is constant for all considerations and
evaluations in this thesis.

After minimizing (4.41), the inverses of all matrices Nj are stacked on
top of each other. Column by column inverse 1D DCT of the resulting
matrix provides the final matrix M (see also Fig. 4.14).

The gradients of (4.41) are given by

∂Q3DDCT

∂A
=

J∑
j=1

2AWXY,jW
T
XY,j − 2NjYjW

T
XY,j , (4.43)

∂Q3DDCT

∂Nj

= 2NjYjY
T
j − 2AWXY,jY

T
j −

(
NT
j

)−1
. (4.44)

These are required for applying the projected quasi-Newton (PQN) method
which will be explained in Sec. 4.6.1. Because PQN is implemented in
MATLAB and uses function handles, it is possible to circumvent the need
for performing explicit calculations with the transform matrices WXY,j .
This is advantageous as they become very large due to the Kronecker
product (4.34): for X = Y = 100, WXY,j has the size 10000× 10000 if all
frequencies are incorporated. Instead, e.g., for implementing the product
AWxy,jW

T
xy,j from (4.43), it is possible to reshape the rows of A (length

I) back to images of size X × Y and straightforwardly apply the direct
2D transform version instead of the one derived for directly using the
(unfolded) rows of A that is contained in WXY,j .

Although the gradients (4.43) and (4.44) will be used for the remainder
of this thesis, it might be necessary for future adaptions of 3DDCT-NIMF
to include weighting in the frequency domain, e.g., putting more weight
on higher frequency coefficients. This means that the objective function



72 4 Novel Methods

(4.40) contains weighting matrices V similarly to (4.38):

Q =

J∑
j=1

‖(NjYj)�Vj − (AWxy,j)�Vj‖2F . (4.45)

Now, the matrix V does not only contain zeros and ones, but also other
values. For this objective function, the calculation of the gradients is given
in Appendix A.

Technically, it would be possible to directly split the LMM (2.2) into
blocks and apply blockwise matrix inversion. There are, however, two
main problems connected with this approach. First, the calculated end-
members are discontinuous, because each matrix Nj would be inverted
separately, meaning that there is no connection between adjacent blocks.
Second, if noise is present in the image matrix Y, the optimization would
yield matrices Nj that deviate from the true matrices. Matrix inversion is
highly sensitive towards deviations in the original elements, which leads
to the fact that even small misestimations can greatly falsify the inverted
matrices, therefore leading to very inaccurate endmember estimation. Due
to the fact that 3DDCT-NIMF includes the DCT along the spectral direction,
the first problem is circumvented in an elegant way, because each block j
estimates some of the DCT frequencies of the endmember matrix M. The
full matrix M is obtained after inverse DCT, which is equivalent to the
weighted addition of cosine basis functions. Because each of these basis
functions is continuous, the estimated spectra also will be continuous.
How 3DDCT-NIMF is dealing with data corrupted by noise is subject of
the next section.

4.4.4 Characteristics of 3DDCT Nonnegative Inverse Matrix
Factorization (NIMF) in the Presence of Noise

In Sec. 4.4.2, a convexification step has been applied to the linear mix-
ing model (2.2), leading to a convex objective function with non-convex
regularization term. At that time, the noise and model error matrix Ψ

was ignored. Considering this matrix leads to some interesting insights
about the properties of 3DDCT-NIMF regarding the noise contained in
each frequency coefficient.
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Applying the 3D DCT to Ψ yields the matrix

Ψ3DDCT = WLΨWXY . (4.46)

Due to the fact that noise contribution and model error are unknown,
Ψ represents a realization of a matrix of random variables. This means
that in a general model description, applying the 3D DCT multiplies all
random variables by cosine terms and sums them up. It is assumed that
all random variables are independent, which leads to the conclusion that,
according to the central limit theorem, the resulting random variables are
normally distributed regardless of the distribution of the single original
random variables. For this reason, one does not need to use distances
other than the Frobenius norm that would be required for different noise
distributions [31, Ch. 2]. The least-squares distance, i.e., the Frobenius
norm, is optimal in the presence of normally distributed uncorrelated
noise (Sec. 2.2.2). Having determined the distribution type of the noise
corrupting the frequency coefficients, the next question is which variance
the noise normal distributions of each coefficient have.

As explained in Sec. 2.2.5, adding random variables is equivalent to
multiplying their characteristic functions. Considering arbitrary time-
dependent functions g1(t), g2(t) and g3(t) and their respective frequency-
domain correspondences G1(f), G2(f) and G3(f) leads to the Fourier
correspondence

g1(t) = g2(t) ∗ g3(t) c s G1(f) = G2(f) ·G3(f) . (4.47)

In this context, note that the functions G2(f) and G3(f) have the same
argument as the calculated function G1(f).

One notational convention used in the following is that outcomes of
random variables (e.g., z) will be written lowercase. The corresponding
variables in the Fourier domain will be written uppercase. Another con-
vention is that the characteristic functions of random variables are denoted
by capital F (·).

The following Fourier correspondence between density and characteris-
tic function holds for the normally distributed random variable z (2.18):

1

σ
√

2π
e
− z

2

2σ
2 c s e−2π

2
σ
2
Z

2

. (4.48)
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Using the aforementioned convention, Z denotes the frequency domain
variable corresponding to z. Using the scaling of random variables (2.17)
leads to the correspondence

1

|k|
1

σ
√

2π
e
− z

2

2σ
2
k
2 c s e−2π

2
σ
2
k
2
Z

2

. (4.49)

As mentioned before, all image values of the image tensor Y have a noise
random variable whose realizations are collected in the (unfolded) matrix
Ψ. The noise random variable at position x = [x, y, l] of Y is denoted zx.
The variables at all positions are assumed to be normally distributed with
variance σ2. Application of the 3D DCT leads to the random variables Zf

at positions f =
[
fx, fy, fl

]
of the noise tensor in the DCT domain:

Zf =

X−1∑
x=0

Y−1∑
y=0

L−1∑
l=0

zxcx,f . (4.50)

These random variables Zf describe the noise in each frequency coefficient.
Due to the fact that the DCT basis functions can be considered as constants
for the following train of thoughts, they are given a shorter notation:

cx,f :=
1√
XY L

cos

(
π

X

(
x+

1

2

)
fx

)
(4.51)

· cos

(
π

Y

(
y +

1

2

)
fy

)
cos

(
π

L

(
l +

1

2

)
fl

)
.

The densities of the scaled random variables zx,c := zxcx,f in (4.50) are
given by

fzx,c
(zx,c) =

1∣∣cx,f ∣∣ 1

σ
√

2π
e
− z

2
x,c

2σ
2
c
2
x,f . (4.52)

The characteristic functions are obtained by Fourier transform of (4.52):

FZx,c
(Zx,c) = e−2π

2
σ
2
c
2
x,fZ

2
x,c . (4.53)

Following (4.50), the random variables have to be added. This means that
the respective densities fzf

(zf ) are calculated by convolution of all the
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densities fzx,c
(zx,c) for x = 0, . . . , X − 1, y = 0, . . . , Y − 1, l = 0, . . . , L− 1.

This is equivalent to multiplying the characteristic functions in the Fourier
domain:

FZf
(Zf ) =

X−1∏
x=0

Y−1∏
y=0

L−1∏
l=0

FZx,c
(Zf ) =

X−1∏
x=0

Y−1∏
y=0

L−1∏
l=0

e−2π
2
σ
2
c
2
x,fZ

2
f .

(4.54)

The crucial point is that using (4.47), the arguments of all FZx,c
(Zx,c) need

to be changed from Zx,c to Zf because the sought-after function FZf
(Zf )

carries this argument. Further simplification of (4.54) yields

FZf
(Zf ) = exp

(
−2π2σ2Z2

f

X−1∑
x=0

Y−1∑
y=0

L−1∑
l=0

c2x,f

)
, (4.55)

because Z2
f is independent of x, y and l. Taking a closer look at the sum

over the squared constants, one obtains

X−1∑
x=0

Y−1∑
y=0

L−1∑
l=0

c2x,f =
1

X

X−1∑
x=0

cos2
(
π
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)
(4.56)
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.

This is due to the fact that the DCT transform matrices (see Sec. 4.4.1) are
orthogonal. The underbraced part of (4.55) can be thought of as the dot
product of one row vector of the transform matrix WL with itself which
results to 1. Treating the two sums over x and y the same way leads to the
simple equation

X−1∑
x=0

Y−1∑
y=0

L−1∑
l=0

c2x,f = 1 . (4.57)

It is important to remark that this holds for all frequencies fx, fy and fl
which provides a simple version of (4.55):

FZf
(Zf ) = e−2π

2
σ
2
Z

2
f . (4.58)
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Using again the correspondence (4.48) provides the noise densities of all
frequency coefficients

fzf
(zf ) =

1

σ
√

2π
e
− z

2
f

2σ
2 . (4.59)

The meaning of this equation is that the variance of the noise in all fre-
quency coefficients is the same and equals the one of the variance in all
elements of the original image Y . As a consequence, the SNR in the image
and the DCT domain is the same.

The most interesting fact about the derivation above becomes obvious
when considering the signal energy scattered in the 3D DCT transfor-
med data cube. As already discussed and illustrated in Fig. 4.10, the
coefficients of the lowest frequencies have the highest magnitude, while
high-frequency coefficients have a far lower magnitude. This is confirmed
mathematically by the so-called Riemann-Lebesgue lemma [136]. As a
consequence, the SNR is different in different regions of the 3D DCT cube:
the lowest frequencies have the highest SNR, while higher frequencies
have lower SNR. This is shown in Fig. 4.15.

The SNR properties of the DCT cube can be exploited beneficially for
3DDCT-NIMF. The calculation of the unmixing is performed in the first
step using all blocks of the objective function (4.41). For the last minimiza-
tion step of A, only the first block (j = 1) is considered, because this block
contains the highest SNR, and the full abundance matrix A is already
contained in it. The other blocks have far lower SNR and merely contain
redundant information. Having calculated the final matrix A, the final
matrices Nj (j = 1, . . . J) are calculated using this final A, but this time
only incorporating the spatial frequencies fx, fy = 0, . . . , B − 1, where
B ≤ min{X,Y }. These are coefficients with high SNR, see the bright band
in direction of fl at low spatial frequencies in the top graphic of Fig. 4.15.
Technically, the consideration of only the low spatial frequencies can be re-
alized by further adapting the transform matrices WXY,j and deleting the
respective columns of these higher frequencies. From these considerations,
graphically illustrated in Fig. 4.15, it can be seen that considering only
the mentioned frequency coefficients increases the robustness of 3DDCT-
NIMF to noise. The average SNR in the incorporated coefficients is much
higher than the average SNR in the original image.
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Figure 4.15 Jasper image (Sec. 5.1.1): DCT SNR analysis with 30 dB overall SNR
in the original image. Top: DCT coefficient-wise SNR in dB, color encoded. As
the cube is shown from a perspective below it, the bright corner comes out of the
page. Bottom: Same cube from a different angle, this time considering only the
first block (j = 1) and 10 × 10 coefficients in the other blocks. Average SNR of
these coefficients: 45.22 dB, much higher than total average of 30 dB. The color
scaling of both images has been cut off to allow for better visual perception.
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4.4.5 Resolving the Scaling Ambiguity

Determining the elements of an inverse matrix is one major way to com-
pute an independent component analysis (ICA) decomposition [65, Sec.
1.3.1], for instance by minimization of the mutual information [65, Ch.
10]. The ICA decomposition is unique except for permutation and scaling
[65, Sec. 7.2.3]. This is also the case with 3DDCT-NIMF, however, the
sum-to-one constraint (STO constraint) provides a possibility to solve the
scaling ambiguity. Permutation is not of significance, as the order of the
abundance maps and the endmembers is not important. It is only required
for determination of the decomposition quality, and in this case can be
resolved by comparing the ground truth and the calculated abundances
and ordering the calculated ones accordingly.

3DDCT-NIMF uses the regularization parameters Kj , see the objective
function (4.41). Their impact is that they change the scaling of the matrices
Nj and A: for larger Kj , the determinant is increased, leading to larger
absolute values of the elements of Nj . Subsequently, in order to keep the
Frobenius norm (data fidelity) in the objective function small, the values of
the elements of A also have to increase. The matrices Nj can have negative
values due to the fact that they have to account for DCT and inversion,
whereas the elements of A are restricted to be nonnegative. For this reason,
the elements of A can be used together with the STO constraint for solving
the scaling ambiguity: after A has been calculated from the highest SNR
block of the DCT cube (see end of previous section), its columns (i.e., the
abundances of each pixel) are normalized to sum to one. This is performed
by dividing each column by the sum of its elements. In the next step, the
matrices Nj are used to calculate the endmember matrix M. Using the
normalized matrix A, M is scaled such that the product of the normalized
A and M comes as close as possible to the original image Y. This is
achieved by minimizing

Qs = ‖M diag(g)A−Y‖2F = ‖
R∑
r=1

grMrAr −Y‖2F (4.60)

= tr

( R∑
r=1

grMrAr −Y

) R∑
r
′
=1

gr′Mr
′Ar

′ −Y

T




4.4 3D Discrete Cosine Transform (DCT) Unmixing 79

with g ∈ RR,g ≥ 0. The elements of the vector g are the elements of the
main diagonal of diag(g), all other elements are zero. The vectors Mr and
Ar are the r-th row and column of M and A, respectively. The scaling
objective function (4.60) is quadratic, and due to the fact that it also is a
composition of an affine mapping and a convex function, it is convex. For
applying a gradient based minimization procedure (in this case, also PQN
is used), the gradient is required. Its value with respect to one element of
g is calculated by

∂Qs

∂gr
= 2

R∑
r
′
=1

gr′ tr
(
MrArA

T
r
′MT

r
′

)
− 2 tr

(
MrArY

T
)
. (4.61)

The variable B (see Sec. 4.4.4) defines the width of the square column in
the bottom graphic of Fig. 4.15 that is used for calculating the Nj . A small
value of B, for instance 5, will probably result in the consideration of high-
SNR coefficients, whileB = min{X,Y } considers also the coefficients with
low SNR, but can lead to a better signal shape. Each value of B therefore
leads to a slightly different matrix M. The objective function (4.60) is
solved for different values of B, all providing a different objective function
value. The value ofB that results in the lowest value and its corresponding
matrix M is selected. This matrix and the normalized matrix A represent
the final unmixing outcome of 3DDCT-NIMF.

4.4.6 Preprocessing and Full Algorithm

As with all other unmixing methods described in this thesis, it is reasonable
to normalize the image matrix Y before applying 3DDCT-NIMF such that
the spectra of each considered image have roughly the same magnitude, no
matter if they represent relative reflectance or not. This makes it possible
to constrain the range of possible regularization parameter values to the
same for all considered images and enables a quick search for the most
suited one. As 3DDCT-NIMF involves the calculation of the 3D DCT, the
frequency coefficient of fx = fy = fl = 0 is the bias and is very likely
to have by far the highest absolute value of all coefficients. For avoiding
improper scaling and numerical problems during optimization, the mean
of the normalized image matrix Y is subtracted before the calculations
and added to the final M again.
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3DDCT-NIMF requires high accuracy in estimating the Nj for ensuring
that M is an exact estimate after blockwise inversion and inverse DCT.
Estimating a single element of Nj just slightly wrong could greatly falsify
the inverted matrix. For this reason, the optimization is performed for a
large number T of iterations, typically a few thousand. The matrices A

and Nj are optimized alternatingly with 5 PQN steps each, i.e., five PQN
steps for A, and subsequently five steps for each Nj . For increasing the
accuracy of the final outcome, the number of PQN steps is altered to 25 for
A and 100 for Nj during the last 10 alternating abundance/endmember
iterations.

The full 3DDCT-NIMF procedure is given in Algorithm 2.

4.4.7 Further Regularizer Convexification

The regularizer − log(
∣∣det(Nj)

∣∣) in (4.41) is not convex. As stated before,
it is derived from maximum likelihood considerations, and mainly arises
from the inverse transform, i.e., the matrix inversion. Apart from repre-
senting the inverse transform, its goal is to prevent the matrices A and
Nj from turning 0, see Sec. 4.4.3. As this regularizer is not convex, the
objective function (4.41) only has a convex data fidelity part, but is not
convex in total. The following considerations aim at deriving a convex
replacement, which, if it is not possible to take the stochastic properties
of the inverse transform fully into account, at least ensures that the Nj

are invertible. A thorough investigation of this approach, however, goes
beyond the scope of the thesis

It turns out to be a quite difficult task to ensure matrix invertibility in
a convex manner during optimization. Instead of considering the deter-
minant by, e.g., including det(Nj) > 0 as a constraint, it is promising to
consider the singular values and eigenvalues of a matrix. In the following,
the index j will be dropped, and it will be assumed that N is an arbitrary
complex matrix N ∈ CR×R. Its eigenvalues are denoted by λ1, . . . , λR and
sorted in descending order: |λ1| ≥ · · · ≥ |λR|. Correspondingly, its sin-
gular values are denoted by σ1, . . . , σR and sorted: σ1 ≥ · · · ≥ σR. Using
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Algorithm 2 3DDCT-NIMF procedure.
1) Input: Hyperspectral image matrix Y, initial endmember matrix Minit,

initial abundance matrix Ainit = 1/R (same value for all elements)
2) Normalize Y such that its mean equals 1
3) Subtract the bias from Y

4) Calculate Y3DDCT, the 3D DCT of Y

5) Calculate the absolute values of all 3D DCT coefficients and retain the
ratio ρ of the largest coefficients; set all others to zero.

6) Split Y3DDCT into J blocks Yj

7) Given an initial endmember matrix Minit, calculate the Nj by perfor-
ming 1D DCT column by column, splitting the resulting matrix into J
blocks and inverting them

8) For t = 1 to T − 10 do
Minimize (4.41) in an alternating fashion

Perform 5 PQN steps optimizing A

Perform 5 PQN steps optimizing each Nj

end for
9) Decrease stopping criteria for higher accuracy

10) For t = T − 9 to T do
Minimize (4.41) in an alternating fashion

Perform 25 PQN steps minimizing A

Perform 100 PQN steps minimizing each Nj

end for
11) Calculate the final matrix A from the first block, i.e., minimize (4.41)

for j = 1

12) For B = 4, 6, 8, 10, 15, 20, ...min{X,Y } do
Recalculate the Nj using (4.41) with adapted WXY,j

Create a new L×R matrix by stacking the inverted
matrices N−1j on top of each other

Perform columnwise 1D IDCT for calculating M

Subtract the mean of M, as Y also has zero mean
Minimize (4.60), define scaled M := M diag(g)

Add mean of normalized original image to M

end for
13) Select the B that provides the lowest value of (4.60)
14) Output: calculated matrices M, A
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Weyl’s inequalities [139, 149],

I∏
i=1

|λi| ≤
I∏
i=1

σi, I = 1, 2, . . . R− 1 , (4.62)

R∏
i=1

|λi| =
R∏
i=1

σi , (4.63)

a relation between the smallest singular value and the smallest eigenvalue
can be constructed. Let a :=

∏R−1
i=1 |λi|, b :=

∏R−1
i=1 σi. Using (4.62) yields

a ≤ b. From (4.63) follows a |λr| = bσR, and thus

|λR| ≥ σR . (4.64)

By this equation, an inequality between the smallest singular value and
the smallest eigenvalue is established. This means that if the smallest
singular value is forced to be > 0, the smallest eigenvalue will also be
> 0. Considering that the matrix determinant equals the product of its
eigenvalues,

det(N) = λ1λ2 · · ·λR , (4.65)

it becomes clear that ensuring that the smallest singular value σR > 0

ensures that the matrix is invertible.
One option for ensuring σR ≥ 0 is given in [128]. In the following, let
‖N‖2 = σ1 denote the spectral norm, i.e., the largest singular value of N.

Interestingly, it holds ‖N−1‖2 =
1

σR
, i.e., the spectral norm of an inverse

matrix is the reciprocal value of the smallest singular value of the original
matrix. Let us now consider the given matrices R,N ∈ CR×R. According
to [128], supposing

‖I−RN‖2 ≤ α < 1 , (4.66)

the following inequalities hold:

‖R‖2
1 + α

≤ ‖N−1‖2 ≤
‖R‖2
1− α . (4.67)
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Using the spectral norm of the inverse matrix yields

1

σR
≤ ‖R‖2

1− α ⇒ σR ≥
1− α
‖R‖2

. (4.68)

This means that it is ensured that the smallest singular value of N, σR, is
larger than or equal to a positive number, as R can be chosen arbitrarily. As
a consequence, N is regular, i.e., invertible. This requires the incorporation
of the constraint (4.66) into the optimization, which is required for (4.67)
to hold. One option is to choose R to be the identity matrix, yielding
‖R‖2 = 1 and simplifying the constraint to ‖I −N‖2 ≤ α (α < 1). It is
reasonable to choose α to a value close to 1, such as 0.99, to allow for
maximum flexibility of N.

According to [19] (see also Sec. 2.2.4), an optimization problem is con-
vex if the objective function is convex [19, Sec. 4.2.1] and the inequality
constraints are of the form fi(x) ≤ 0, where the fi(x) are convex functions.
The constraint (4.66) can be reformulated to

‖I−N‖2 − α ≤ 0 . (4.69)

As all matrix norms are convex (see Sec. 4.4.3 and [19]), and I−N represents
an affine mapping, the function on the left side of (4.69) is convex. The full
optimization problem then amounts to

minimize
J∑
j=1

‖NjYj −AWXY,j‖2F (4.70)

subject to A ≥ 0 ,

subject to ‖I−Nj‖2 − α ≤ 0, j = 1, . . . , J .

While optimizing this problem results in invertible matrices Nj , the pro-
blem is that the constraint (4.69) allows these matrices to move only a
certain distance away from the identity matrix; most likely, its main di-
agonal will have positive values and the other elements will be quite
small.

As this is potentially limiting, another approach would be to constrain
the Nj to be diagonally dominant. Diagonally dominant matrices have the
property that the absolute value of each diagonal entry is larger than or
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equals the sum of the absolute values of all other elements in the respective
row. Such matrices are invertible [57, Ex. 36 (c)], but the difficulty with this
approach is that the constraint of having dominant diagonals has to be
incorporated in a convex way, meaning that the diagonal elements have to
be constrained to be either positive or negative (the sum of the absolute
values of the other elements is convex). This requires to try all combina-
tions of positive/negative diagonal elements for minimizing/maximizing
them and decide for the best combination.

The final, proposed approach is quite similar to diagonally dominant
matrices, but does not impose any constraints on the non-diagonal ele-
ments. However, it also requires the trial and error of all positive/negative
diagonal combinations.

According to [119], the function

fκ(N) =

κ∑
i=1

σi (4.71)

is the sum of the κ largest singular values and

fR(N) =

R∑
i=1

σi (4.72)

the sum of all singular values. Using these two equations, the smallest
singular value is given by

σR = fR(N)− fR−1(N) =

R∑
i=1

σi −
R−1∑
i=1

σi . (4.73)

The sum fκ(N) is convex for all κ = 1 . . . R, see the proof in [119]. For
this reason, (4.73) is a convex function (

∑R
i=1 σi) plus a concave one

(−∑R−1
i=1 σi). As the smallest singular value (4.73) is to be maximized,

or, more precisely, should be larger than 0, it should be a concave function.
Also given in [119] is the relation atr(N) ≤ fR(N), where atr(N) denotes

the absolute trace, i.e., the sum of the absolute diagonal elements: atr(N) =∑R
r=1 |Nrr|. Therefore, it is possible to replace the convex part by a linear

part, namely, the matrix trace tr(N) =
∑R
r=1Nrr. The common matrix

trace represents a lower bound of the absolute trace, because the absolute



4.4 3D Discrete Cosine Transform (DCT) Unmixing 85

trace will always be larger than or equal to the value of the common trace.
As the trace is a linear function of the (diagonal) elements of N, it is both
convex and concave at the same time. The function that is to be minimized
(i.e., its negative is maximized) in total amounts to

Qreg = −
(

tr(N� S)−
R−1∑
i=1

σi

)
. (4.74)

Matrix S is a diagonal matrix with diagonal elements ±1. By changing
the signs of these diagonal elements (++++, +++-, ++-+ etc.), it is possi-
ble to either minimize or maximize the diagonal elements without any
requirements on the non-diagonal elements. In turn, this maximizes the ab-
solute trace and therefore the minimum singular value. The full objective
function is given by

Q3DDCT =

J∑
j=1

‖NjYj−AWXY,j‖2F−Kj

(
tr(Nj � S)−

R−1∑
i=1

σi

)
. (4.75)

In contrast to 3DDCT-NIMF as presented in Sections 4.4.3–4.4.6, the se-
quence of abundance and endmember estimation is slightly changed. The
abundance matrix A and the matrices Nj are calculated using (4.75). For
each matrix Nj , the optimal signs of each diagonal element are determined
by trying all combinations of positive/negative sign for a few optimization
iterations, maybe 10, and the combination providing the lowest value of
the data fidelity term ‖NjYj −AWXY,j‖2F in (4.75) is selected. For each
combination run, all diagonal elements of the Nj are initially set to zero
for fairness between positive and negative values. Afterwards, the best
sign combinations of each block j are used to calculate the regular 3DDCT-
NIMF procedure as described in the previous section for determining A

and M, but this time using the objective function (4.75).
Alternatively, the abundance matrix A and the first matrix N1 can be

calculated from the first block, searching for the optimal sign combination
of N1 with a few iterations first and performing full optimization for A

and N1 afterwards. The resulting matrix A can be fixed, and the best sign
combinations for the matrices N2, N3 etc. determined with this fixed A.
The advantage is that the blocks are decoupled, meaning that a fair search
for the best signs that is not influenced by the other blocks is performed.
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Maybe this is also a disadvantage of this approach, as the matrix A is
calculated without the full information contained in all J blocks.

For completeness, the gradient of the regularizer of (4.75), i.e., (4.74) is
given by

∂Qreg

∂Nj

= −(I� S) + Uj,(:,1:R−1) · (Vj,(:,1:R−1))
T. (4.76)

The matrices Uj and Vj result from the singular value decomposition
Nj = UjΣjV

T
j [108]; only the first R− 1 columns are used.

The goal of this section was to present some thoughts and a method
how the first 3DDCT-NIMF procedure described in Sections 4.4.3–4.4.6 can
be converted to a fully convex optimization problem. It goes beyond the
scope of this thesis to fully analyze the discussed approach. The original
3DDCT-NIMF and its results will be analyzed in Sec. 5.6. Section 6.2 will
discuss how the new approach could be incorporated for future methods.

4.5 3D Singular Value Decomposition (SVD)
Unmixing

In Sec. 4.4.4, the characteristics of the noise of the 3D DCT transformed
image have been analyzed. In case the noise added to all image elements
is uncorrelated and normally distributed with the same variance, it was
deduced that the noise of the transformed image elements follows the
same distribution. Interestingly, this consideration does not only hold
for the DCT, but also for all other transforms that can be expressed by
multiplication of the data matrix with an orthogonal transformation ma-
trix, see equations (4.56) to (4.59). Out of the many possible orthogonal
transforms, the singular value decomposition (SVD) is also analyzed in
this thesis. Other possible transforms include, e.g., the wavelet transform
and principal component analysis (PCA). Note, however, that PCA cannot
easily be applied to all three image dimensions, because it is necessary to
subtract the mean first. While this is not an issue for the spectral dimension
(the subtracted mean can be added to the estimated endmembers after the
unmixing), it is not straightforward how to incorporate a spatial mean that
has been calculated from a spectrally transformed image tensor. For using
the SVD, the mean does not need to be considered separately.
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By SVD, every matrix Y ∈ RL×I can be decomposed into the product

Y = UΣVT . (4.77)

The matrices U ∈ RL×L and V ∈ RI×I are orthogonal matrices. The
diagonal of matrix Σ ∈ RL×I are the singular values of Y in decreasing
order, while all other elements equal zero. It is straightforward to multiply
the image matrix Y with the matrix UT, and from the fact that U is
orthogonal it follows

UTY = UTUΣVT = ΣVT , (4.78)

so the matrix U obtained by singular value decomposition of Y is used as
orthogonal transformation matrix.

By analogy with the 3D discrete cosine transform, a 3D SVD transform
can be applied to the hyperspectral image tensor Y first; the subsequent
unmixing procedure is the same as described in the previous section. In
case of the 3D SVD, the first SVD is calculated along the spectral axis, i.e.,
from the unfolded matrix Y. This is due to the fact that all pixel spectra are
superpositions of the pure endmember spectra and therefore exhibit a large
degree of redundancy. The spectral redundancy enables significant data
reduction; by contrast to the 3D DCT, it is not necessary to consider the
full 3D dimensionality. While 3D discrete cosine transform nonnegative
inverse matrix factorization (3DDCT-NIMF) requires the consideration of
the full column in Fig. 4.15 for accurately calculating the endmembers,
the SVD compresses all spectral details into the first few blocks. For this
reason, it is now sufficient to set the number J of blocks considered in
the objective function (4.41) to a low value of 1–5. All other blocks are
likely to consist of very small values that contain a large ratio of noise
energy and can therefore be disregarded. After applying the first SVD
along the spectral axis, the two spatial SVDs are calculated subsequently
along both spatial axes of the resulting image tensor. The only difference
between this procedure and 3DDCT-NIMF is the different choice of the
transformation matrices; all other steps, for instance the scaling ambiguity
resolution (Sec. 4.4.5), remain the same. The new SVD unmixing method
is termed 3DSVD-NIMF.
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4.6 Objective Function Minimization

This section gives a short overview on some minimization algorithms that
have already been used in spectral unmixing. In addition, it proposes the
use of one that, to the best of the author’s knowledge, has not been used
for unmixing before.

4.6.1 Minimization Techniques

After having introduced various unmixing objective functions in the previ-
ous sections, it will now be analyzed how they can be minimized efficiently.
For the following, MVC-NMF [95] described in Sec. 3.2.2 will be considered
as spectral regularizer and combined with the HS spatial regularization
from Sec. 4.1. This leads to the objective function

Q = ‖MA−Y‖2F + µspec

1

2(R− 1)!
det2

([
1T
R

M̃

])
(4.79)

+ µspat

R∑
r=1

X∑
x=1

Y∑
y=1

‖H(Ar)(x, y)‖2F .

The most widely used approach to minimizing the general objective
function (3.2) consists of first fixing M and minimizing for A and vice
versa. Such a sequence of alternating steps is continued until convergence
is achieved. Due to the fact that (3.2) is not convex for both M and A

simultaneously, there might be more than one minimum and depending
on the chosen minimization method and the chosen optimization scheme
(e.g., there can be multiple minimization steps for M before A is updated
again), the used algorithms can come to different solutions.

Many NMF algorithms [53, 61, 83] are based on gradient methods, i.e.,
the minimization is performed iteratively by taking steps into the direction
of the negative gradient. The update of A is calculated by

A(p+1) = A(p) − δ ∂Q
∂A

, (4.80)

where δ is the step size and p denotes the iteration number. The update of
M is calculated analogously.
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Possible choices for the step size δ are a constant step size or a dimin-
ishing step size δ = k/p, where k is a constant. The HS implementation in
[176] (see also Section 4.1) uses a diminishing step size. On the one hand,
such rules have the advantage that they perform fast as no step size calcu-
lation is required. On the other hand, they have the disadvantage that the
constant k should be chosen feasibly; otherwise, many steps are required
for the precise calculation of the minimum that is demanded by NMF, see
Fig. 4.16. An adaptive step size rule with guaranteed objective reduction
is the Armijo rule [10, 11]. In their respective original publications, the
spectrally regularized methods MVC-NMF [95], MiniDisCo-NMF [63] and
MDC-NMF [154] minimize using this rule.
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Figure 4.16 One-dimensional objective function minimization with diminishing
step size. Too large initial step size (left), too small initial step size (right). Although
the left graph looks more or less acceptable, the minimum is not found very
accurately, as the method jumps between both arms of the function and does not
converge quickly. This problem becomes more evident when the initial step size is
chosen even larger.

Due to the fact that minimization methods are most often described
with the sought-after parameters arranged to a vector, this notation will be
used for the explanation of the Armijo rule. Note that the matrix elements
of M and A can be rearranged to vectors; the minimization principle is
the same.

Before taking the minimization step, the Armijo rule checks if the initial
step size leads to a sufficient decrease of the objective function. If this is the
case, the step size is increased. If this is not the case, the step size is reduced
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by the factor βm, where 0 < β < 1 and m is the number of attempts in the
search for a feasible step size. For an arbitrary continuously differentiable
objective function Q(a), the condition for the sufficient decrease is

Q
(
a(p))−Q(a(p) (sβm)

)
≥ σ∇Q(a(p))T

(
a(p) − a(p)(sβm)

)
(4.81)

with the point a(p) ∈ Rn at iteration p. Besides, (4.81) contains the initial
step size s, the sufficient decrease parameter σ > 0 and the objective
function gradient ∇Q(a) at position a. For m = 1, 2, . . ., it is tested if
condition (4.81) is fulfilled; if not, m is increased by one etc. Setting
δ(p) = sβm, the update a(p+1) is calculated by

a(p+1) = a(p)(δ(p)) =
(
a(p) − δ(p)∇Q(a)

)
P
, (4.82)

where (·)P denotes the projection onto a closed convex subset of Rn. This
projection is required for enforcing the NN and STO constraints on M and
A from Section 4. In this specific case, the subset is the probability simplex.

In general, it is also possible to choose the step size δ such that the
update (4.80) is no longer an additive update, but becomes a multiplicative
one. In this case, the matrix A(p) from the last step and the term −δ ∂Q∂A

can be merged and simplified to a product of matrix elements. This kind
of update was proposed by Lee and Seung [77] and is also often used for
unmixing methods employing NMF. One drawback of the multiplicative
update is that when regularizers Rspec or Rspat are present, it is not al-
ways straightforward to incorporate them, as A(p) and −δ ∂Q∂A cannot be
merged that easily because the derivative may have additional terms not
straightforwardly expressable in dependence of the matrix elements. One
example is the matrix determinant. Due to the fact that this thesis mainly
deals with new regularizers, this kind of update will not be used.

A minimization method allowing for easy implementation and provi-
ding efficient calculation is the limited-memory projected quasi-Newton
method (PQN) [129]. Apart from the comparison in the following section,
it is employed for both endmember and abundance updates throughout
this work. It uses a quadratic model of the objective function that is mi-
nimized using a positive definite approximation of the Hessian of the
objective function. There are two drawbacks of approximating the original
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objective function by a quadratic model and minimizing the quadratic
model. First, the minimization of the model can be almost as difficult
to solve as the original objective, and second, the size of the Hessian
and therefore the size of its approximation grows quadratically with the
number of considered parameters. For dealing with the second aspect,
the approximation of the Hessian is calculated by the limited-memory
variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)-method [105].
Concerning the first aspect, a spectral projected gradient (SPG) method is
used for the optimization of the quadratic model. The sufficient descent is
determined based on several past iterations and not only on the last one,
which allows for the objective function to increase in some steps, while
general convergence is still guaranteed.

4.6.2 Comparison

Both the Armijo rule and the PQN method are applied to the minimization
of the objective function (4.79); the method denoted by Armijo in the
following minimizes both M and A using the Armijo rule, while the
method called PQN employs PQN for both endmember and abundance
updates. The MATLAB PQN implementation provided by [118] is used.

Both procedures share the same sequence: First, A is updated until the
relative change of the objective function from one iteration to the next is
below the threshold Jrelchange. After this, M is updated until the aforemen-
tioned condition is met. This procedure goes on until the objective value
at the end of one series of optimization steps for either M or A changed
less than Jrelchange in comparison with the final objective function value of
the previous M or A series. Note that there has been an estimation series
of the respective other matrix in between that probably has increased the
objective function value during the jump from M update to A update or
vice versa, so the final value of the M update has to be compared with the
final value of the last M update and not of the last A update. When this
condition on two subsequent M or A series is met, the whole optimization
finishes. The maximum number of iterations for M or A is 100, while
the maximum number of M/A sequences is 200 for Armijo and 600 for
PQN. In many cases, however, the maximum iteration numbers are not
reached, because the stopping criterion based on the relative objective
value is fulfilled before. The value of Jrelchange is set to 10−8.
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Both the Armijo and the PQN methods are applied to the Jasper and
the Urban hyperspectral images described in Sec. 5.1.1. The abundance
root-mean-square error (ABU RMSE) and endmember spectral angle (SA)
(see Section 5.2) will be used as unmixing quality measures.

Figure 4.17 shows the comparison between both methods applied to
the Jasper image degraded by bandwise noise of 30 dB SNR. It can be
seen that the obtained endmember SA and ABU RMSE values are quite
similar. PQN achieves for almost all considered combinations of µspec and
µspat lower final objective function values than Armijo. Note that when
the ground truth is not known, the objective function is the only measure
that lets one compare the outcome of different methods. PQN needs
significantly less calculation time than Armijo; for all considered parameter
configurations, the average time saving of PQN is about 20 %. Close to
the optimal values of µspec and µspat, the saving is more than 50 %. From
the figure, it can be seen that the spectral regularization of MVC-NMF
has a larger impact than the spatial regularization using HS. The optimal
values for ABU RMSE and endmember SA are obtained for µspat = 0.002

and µspec = 0.5 for PQN (RMSE = 0.0277) and µspec = 1 in case the Armijo
rule is applied (RMSE = 0.0346). The objective function values during
minimization (µspat = 0.002, µspec = 0.5) are displayed in Fig. 4.18. It can
be seen that the PQN minimization works faster and obtains a lower final
objective function value. Note that the stopping criteria for series of pure
M or A minimizations are the same for both methods to allow for a fair
comparison; only the number of M/A sequences differs.

The Urban image has more pixels than the Jasper image (307×307 versus
100 × 100). Jrelchange of PQN was lowered to 10−9 because of the flatter
objective function shape close to the minimum. The unmixing results in
dependence of µspec and µspat (SNR 10 dB) show a similar shape as for the
Jasper image. Due to the high noise level, the HS regularization becomes
more important; the best RMSE value is at µspat = 0.01 (the optimal µspec

changed to 2000). The best SA value, however, is obtained for µspat = 0.
For this image, the time saving of PQN in comparison with Armijo close to
the optimal values of µspec and µspat is only about 10 %. Figure 4.19 shows
the time difference between the two methods. Close to the minimum, the
convergence speed and accuracy of PQN decreases. This could be due
to the objective function approximation of PQN that becomes inaccurate
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Figure 4.17 Jasper image at 30 dB noise level: Comparison between Armijo and
PQN. First row: Armijo ABU RMSE (left), PQN ABU RMSE (right). Second row:
Armijo endmember spectral angle (left), PQN endmember spectral angle (right).
Third row: relative final objective function value ((Armijo-PQN)/PQN) (left), time
difference in seconds (calculation time Armijo-calculation time PQN) (right). The
tick labels of µspat between 0 and 1 are omitted for better readability. They are
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5.
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Figure 4.18 Jasper image at 30 dB noise level: Objective function over iteration
number and time. Note the faster convergence and lower final value of the PQN
minimization in both cases.
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Figure 4.19 Urban image at 10 dB noise level: Time difference between Armijo
and PQN in seconds. The omitted tick labels of µspat = 0.002 are 0.001, 0.002 and
0.005.

at high noise levels. From these short analyses, it can be concluded that
PQN leads to a significant reduction of the calculation time, while mostly
obtaining final objective function values very similar to the minimization
based on the Armijo rule and even lower ones in the case of low noise
levels. This justifies the use of PQN for the unmixing purposes described
in this thesis.
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4.7 Multidimensional Image Denoising by
Weighted Addition of Images (MIDWAI)

This section describes a multidimensional image denoising algorithm de-
veloped during a master’s thesis [194]. It is based on the weighted addition
of 2D subimages, therefore termed multidimensional image denoising by
weighted addition of images (MIDWAI). In [194], only a version designed
for removing Poisson noise is given whose results have been published
in [164]. Here, an unpublished extension dealing with the presence of
Gaussian noise is given. Additionally, denoising results considering not
only 3D hyperspectral images, but also four-dimensional hyperspectral flu-
orescence images are presented. The fourth dimension of the fluorescence
images is the used illumination wavelength. The proposed method can be
applied to multidimensional images other than conventional hyperspectral
or hyperspectral fluorescence images.

Similar to the method described in [76], the core contribution of MID-
WAI is to not extend powerful 2D denoising techniques to 3D, but to
adequately project the additional dimensions on 2D images. In case of
hyperspectral images, this is based on the observation that the spectral
dimension exhibits less variability than the spatial [76, 106, 148]. If the
denoising strength of the projection should not be sufficient, additional
2D techniques can be applied afterwards. Another possibility is to use
the 3D methods described in [30, 106] that require images with low noise.
With the presented method, these low-noise images can be calculated very
efficiently.

Depending on the chosen parameter values, MIDWAI does not neces-
sarily take all the information that is present in a multidimensional image
into account. In many cases, however, this is not required, as the already
used redundancy is sufficient and further information cannot be exploited
easily or leads to no further improvement.

The major random noise sources in digital image acquisition are [71, 89]

the stochastic nature of the photon arrivals at each pixel and

thermal and electronic fluctuations within the acquisition devices.

The photon arrivals at each pixel can be modelled by a Poisson random
process whose rate µ is determined by the light intensity [152], while the

4.7 Multidimensional Image Denoising by Weighted Addition of Images



96 4 Novel Methods

noise added during acquisition is assumed to be additive white Gaussian
noise (AWGN) [89]. In contrast to conventional image sensors, the images
obtained with EMCCD sensors show Poisson characteristics for both high
and low signal intensity, see Sec. 2.3.

As the image noise can follow either a Gaussian or a Poisson charac-
teristic, two versions of the MIDWAI procedure are introduced, one that
can deal with Poisson noise, and another, more general one that is well
suited for Gaussian noise and other noise types that are sufficiently well
characterized by their mean and variance.

4.7.1 MIDWAI for Poisson Noise

Without loss of generality, three-dimensional hyperspectral images ha-
ving two spatial and one spectral dimensions are considered exemplarily.
Extensions to images of higher dimensionality are straightforward.

The hyperspectral image that is to be denoised is denoted by Y ∈
RX×Y×L. It consists of L two-dimensional subimages Yl ∈ RX×Y (1 ≤ l ≤
L), where L denotes the number of wavelengths and X and Y denote the
total number of pixels in the spatial directions. In the following, matrices
of random variables and constants will be calculated and manipulated.
This means that all operations such as addition, subtraction, multiplication,
division, squaring, calculating the expected value and the variance, etc.,
are performed elementwise. For clarity of notation, standard notation of
these operations will be used. It will be clear from the context whenever
elementwise operations are to be used.

The subimage that is to be denoised presently is Yl. The other ones can
be treated the same way afterwards. Let us now assume that the denoising
of Yl is performed by adding the image Yl+1. The elements of Yl and
Yl+1 depict realizations of the Poisson distributed random variables Yl
and Yl+1 having the means Λl and Λl+1. All matrices Λl, Λl+1, Yl and
Yl+1, etc., are of the same size as Yl.

The objective is to find an estimator Λ̂l for the matrix of true means
Λl. As both ideal (i.e., the images that are sought after by the denoising
process) two-dimensional images at bands k and k + 1 in general do not
have the same image values at the same pixel position, the idea is to
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weightedly add both images. The ansatz is

Λ̂l =
Yl + Bl+1Cl+1Yl+1

1 + Bl+1

(4.83)

with the spatially varying positive constants Bl+1 and Cl+1. One require-
ment is that the estimator has to provide an estimation of the true value,
i.e., it is unbiased. From this requirement follows

E{Λ̂l} =
Λl + Bl+1Cl+1Λl+1

1 + Bl+1

!
= Λl (4.84)

and therefore

Cl+1 =
Λl

Λl+1

. (4.85)

Due to the unbiasedness of the estimator E{Λ̂l}, its mean squared er-
ror (MSE) equals its variance [126]. For this reason, the variance of the
estimator is minimized for minimizing the MSE:

min
Bl+1

Var{Λ̂l} = min
Bl+1

Λl + B2
l+1

(
Λl

Λl+1

)2
Λl+1

(1 + Bl+1)
2 . (4.86)

Deriving the variance in (4.86) with respect to Bl+1 leads to

∂Var{Λ̂l}
∂Bl+1

=
2Λl

(
Bl+1

Λl
Λl+1

− 1
)

(1 + Bl+1)
3

!
= 0 ⇒ Bl+1 =

Λl+1

Λl

. (4.87)

Checking the second partial derivative

∂2Var{Λ̂l}
∂B2

l+1

∣∣∣∣
Bl+1=

Λl+1
Λl

=
2Λl

(
1 + Λl

Λl+1

)
(

1 +
Λl+1

Λl

)4 > 0 (4.88)

yields that choosing Bl+1 =
Λl+1

Λl
indeed provides the minimum of the

mean squared error.
Equations (4.83), (4.85) and (4.87) provide the final estimator

Λ̂l =
Yl + Yl+1

1 +
Λl+1

Λl

. (4.89)
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It has the MSE

MSE{Λ̂l} = Var{Λ̂l} =
Λl + Λl+1(
1 +

Λl+1

Λl

)2 =
1

1 +
Λl+1

Λl

Λl . (4.90)

Due to the fact that 1

1+
Λl+1
Λl

< 1, the variance of the estimator is smaller

than the variance Λl of the image random variables Yl. This result is
the core of MIDWAI for Poisson noise. It means that it is likely that the
estimation is closer to the true mean than the observed realization of the
image random variables, therefore reducing the noise.

The ratio of the true values Λl+1

Λl
is not known and actually is to be

determined by the estimator. As this is a circular argument, the ratio has
to be obtained in a different way. This can be done by taking the spatial
information into account. A very easy and efficient way is the convolution
of both images Yl and Yl+1 with a two-dimensional discrete Gaussian
kernel. In all experiments, the width N of the quadratic kernel is defined
as

N = 1 + 8σGK , (4.91)

where σGK is the standard deviation of the Gaussian kernel. σGK is one
scalar parameter of the MIDWAI method. After convolving Yl and Yl+1

with the Gaussian kernel, the ratio Λl+1

Λl
is defined to be the pixelwise

division of the two filtered images.
From the estimator Λ̂l (4.89), the denoised image

Ŷl =
Yl + Yl+1

1 +
Λl+1

Λl

(4.92)

is deduced. It is obtained by an easy and straightforward procedure: The
two neighboring two-dimensional images are filtered with the Gaussian
kernel and divided pixelwise. Adding one gives the denominator in (4.89).
The images Yl and Yl+1 are added pixelwise and divided again pixelwise
by this denominator.

This procedure can be easily extended to adding more than one image.
In case that Z images are to be added, the denoised image is calculated as
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follows:

Ŷl =
Yl + Yl+1 + · · ·+ Yl+Z

1 +
Λl+1

Λl
+ · · ·+ Λl+Z

Λl

. (4.93)

The number Z of images that are added is the second scalar parameter
of MIDWAI. Figure 4.20 graphically shows the procedure of MIDWAI
denoising.

4.7.2 MIDWAI for Gaussian Noise

When the major noise component is Gaussian, the assumption that the
mean of the random variable equals its variance is no longer valid. Starting
from (4.84), however,

Cl+1 =
Λl

Λl+1

(4.94)

still holds. The variance of the estimator in the case of Gaussian noise is
calculated by

Var{Λ̂l} =
Var{Yl}+ Var{Yl+1}B2

l+1

(
(Λl)
Λl+1

)2
(1 + Bl+1)

2 . (4.95)

The next calculation steps are performed analogously to the ones described
in the previous subsection. The MIDWAI estimator for Gaussian noise
finally results to

Λ̂l =
Yl + Var{Yl}

Var{Yl+1}
Λl+1

Λl
Yl+1

1 + Var{Yl}
Var{Yl+1}

(
Λl+1

Λl

)2 . (4.96)

The MSE is calculated by

MSE{Λ̂l} = Var{Λ̂l} =
1

1 + Var{Yl}
Var{Yl+1}

(
Λl+1

Λl

)2 Var{Yl} (4.97)

from which we again see that the variance of the estimator is lower than
the one of the original image Yl. Just like for the Poisson version, the
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Figure 4.20 MIDWAI Poisson denoising procedure using bands 110 and 111 of
the Washington DC Mall image. The SNR increased from 21.56 dB to 24.66 dB. Only
two images have been taken into account; the denoising performance increases
with an increasing number of images being added weightedly.
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mean values are also calculated by convolving the images with Gaussian
kernels. The variances Var{Yl} and Var{Yl+1} are estimated from the
spatial neighborhood N (x, y) around the respective pixel at position (x, y)

using the sample variance

Var{Yl,xy} =
1

N2 − 1

∑
m,n∈N (x,y)

(Yl,mn −Yl,xy)2 (4.98)

=
1

N2 − 1

∑
m,n∈N (x,y)

Y2
l,mn −

N2

N2 − 1
·Y2

l,xy . (4.99)

In this equation, it is necessary to not use the random variables, but the
acquired image values, i.e., their realizations. Yl,xy denotes the image
value at position (x, y) of band l. The neighborhood is defined to the
square window of size N ×N around (x, y), which has the same size as
the Gaussian filter kernel (4.91). It is very important to note that (4.98)
is purely calculated from the pixels inside this square window. It is not
feasible to use the mean estimation already obtained by filtering with
the Gaussian kernel. The estimations of the mean within the square win-
dow and obtained by Gaussian filtering are likely to be different, which,
according to (4.99), can lead to negative variance estimations when the
mean estimation calculated by Gaussian filtering is too large. Finally, after
estimating the variance of all pixels, it is also convolved with the Gaussian
kernel (4.91).

According to (4.96), in analogy with (4.92), the denoised image is finally
calculated by

Ŷl =
Yl + Var{Yl}

Var{Yl+1}
Λl+1

Λl
Yl+1

1 + Var{Yl}
Var{Yl+1}

(
Λl+1

Λl

)2 . (4.100)

Analogously to (4.93), it is possible to take Z neighboring images into
account instead of just the single band l + 1.

The MIDWAI denoising results will be presented and compared with
state-of-the-art methods in Sec. 5.3.
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5.1 Images Used for Evaluation

5.1.1 Images Used for Unmixing Experiments

For analyzing the presented methods, several images will be used; some
remotely sensed ones and some acquired in a laboratory environment.
Table 5.1 provides the parameters of all used images.

Table 5.1 Data of the used hyperspectral images.

Name Size/pixels bands L endmembers R Type

Urban Detail4 100× 100 162 4 remote
Urban Detail6 100× 100 162 6 remote

Jasper 100× 100 198 4 remote
White Powders 380× 320 204 5 lab

Spatial Mixing 10 295× 200 206 7 lab
Spatial Mixing 20 147× 200 206 7 lab
Spatial Mixing 30 98× 200 206 7 lab

The Urban image [64, 160] is a remotely sensed hyperspectral image
which captures an urban scene mainly consisting of houses, roads, grass
and trees. There are three versions decomposing the image into 4, 5
and 6 pure substances and their abundances, respectively. The first four
endmembers are asphalt, grass, tree and roof. The fifth one is soil and
the sixth metal. For not having to process the full image every time, two
details of size 100× 100 are cut out. The first one, Urban Detail4, starts at
pixel vertical index 50, horizontal index 100 and only contains the first four
endmembers. The second one is located beginning from vertical index 51
and the first horizontal index and consists of all six endmembers.
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The Jasper image [64, 160] also was acquired remotely. It has a large part
of water in the middle; apart from that, it contains a road, trees and soil.

The datasets acquired in a laboratory environment demonstrate possible
applications of spectral unmixing for laboratory and industrial purposes.
The White Powders dataset shows how material mixtures can be decompo-
sed into the pure spectra and their abundances. It is a hyperspectral image
of the five visually white powders lactose, corn starch, sugar powder,
magnesium carbonate and calcium sulfate. These are mixed in different
ratios and filled into compartments of an organizer box. This dataset has
also been used in [176]. The powders can hardly be distinguished by the
human eye, let alone can the mixture ratios be determined. They, however,
exhibit characteristic spectral differences in another wavelength range: the
original image consisted of 256 bands in the range from 1051 nm–2457 nm
in the near-infrared (NIR) and short-wavelength infrared (SWIR) wave-
length regions. Out of these 256 bands, the first 20 and last 30 are discarded
due to low signal-to-noise ratio. The image was acquired with a Specim
SP-SWIR-LVDS-100-N25E SWIR linescan camera. In addition to the image
of the scene, black balance and white balance images also have been acqui-
red. For calibration, white balance is performed. The black balance image
is recorded with shutter closed and gives an estimate of the dark cur-
rent in each pixel. The white balance image uses a reflectance standard
with known constant reflectance of almost 100 %. After performing the
pixelwise calculation [69]

y∗i =
yi − yi,black

yi,white − yi,black
, (5.1)

the image spectra represent relative reflectance at each wavelength, and
spatial and spectral illumination variations have been eliminated. The
White Powders dataset is calculated with 6 endmembers (five powders
plus box plastic), but for evaluation and error calculation, only the five
powder spectra are considered. Only the center parts of each compartment
are considered for calculating the abundance error (Fig. 5.1). The box
plastic and the edge of the compartments where mixing between powder
and plastic spectra occurs is left out.

The goal of the images Spatial Mixing 10, Spatial Mixing 20 and Spatial
Mixing 30 is to demonstrate another physical effect in hyperspectral image
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Figure 5.1 White Powders image: regions considered for abundance error calcu-
lation.

acquisition and analysis that can be reversed at least partially by applica-
tion of spectral unmixing. Many industrial sorting machines consist of a
moving conveyor belt on which the objects that are to be sorted are placed,
see Fig. 1.4. The moving conveyor belt is recorded by line scan cameras
which, in combination with the belt motion, produce a full image of the
belt surface. Current hyperspectral cameras have rather low line scan
rates of 50 to a few hundred lines per second. Although there are other
types of cameras with higher rate, they have to sacrifice either spatial or
spectral resolution for achieving such high rates. Assuming a scan rate
of 100 lines per second and taking typical belt speeds of 3 to 6 meters per
second, one spatial pixel covers a distance of 3 to 6 cm along the direction
of the belt movement. This means that smaller objects present within these
pixels cannot be detected, and subpixel methods such as spectral unmixing
have to be used. Applying spectral unmixing provides an answer which
percentage of the surface is covered with which kind of object. Although
it is not possible to determine the exact position of a foreign object on
the belt, at least it can be determined if it is present within the pixel area.
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Table 5.2 Numbers of objects placed in the Spatial Mixing base image.

Material # cropped obj. # placed obj. # placed rotated obj.

Grapes 20 30 10
Nuts 16 30 10

Grass pellets 12 7 21
Pepper 9 75 25
Stones 9 1000 1000

Tobacco 6 50 50

This scenario is exactly the same as hyperspectral remote sensing with low
spatial resolution.

The three Spatial Mixing images are all based on the same hyperspectral
image. This basis image was created by cropping objects from several
real hyperspectral images 1 and placing them randomly in a new image.
The objects were grapes, nuts, grass pellets, dried pepper rags, pieces of
tobacco leaves and small stones. Table 5.2 gives the number of objects for
each of the six classes. Note that the background represents the seventh
endmember. The objects were selected such that they are relatively small.
The pellets are long and narrow, so these and the other objects occur not
only in always the same orientation, but also randomly rotated. The whole
image can be regarded as a sorting problem where the small stones have
to be detected and removed in a subsequent processing step. If one pixel
contains a small abundance of stone, its complete area could be sorted out
for making sure that no such stones are present in the target products.

The resulting image is of size 2952 × 200. Figure 5.2 shows how the
Spatial Mixing datasets are created from this basis image. Regarding
the spatial ground truth, each pixel of the basis image is considered to
exclusively belong to one class, i.e., having 100 % abundance of this class.
When performing the spatial mixing (Fig. 5.2), mixed pixels result. The
object spectra exhibit considerable variability (Sec. 2.1.2). For this reason,
the mean spectrum of all spectra belonging to one object class is considered
as the ground truth spectrum of this class.

1 Courtesy of the department Visual Inspection Systems of the Fraunhofer Institute of
Optronics, System Technologies and Image Exploitation (IOSB)
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Figure 5.2 Creation of the Spatial Mixing datasets. The belt motion is in the
vertical direction. All images show the 100th band of the considered hyperspectral
image. The basis image is the leftmost image (only the upper fourth is shown),
while the next three images have pixels calculated from the average of 10, 20 and
30 pixels along the vertical direction. The number of averaged pixels is repeated in
the respective dataset name.

All images described in this section are normalized to have the global
mean one, i.e., the mean of all elements of the image matrix Y is one.
The reason is that different scaling of the spectra leads to a more time-
consuming search for the optimal parameter µspec, because the balance
between data fidelity and regularizer shifts and a larger range of parameter
values has to be investigated. Normalization scales down the range for all
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images, as it can be expected that the regularizer then has similar values
for all images. For this reason, whenever spectra are plotted, no ordinate
label is assigned; the spectra magnitude is not encoding relative reflectance
anymore.

5.1.2 Images Used for Denoising Experiments

For the MIDWAI Poisson version, hyperspectral fluorescence images of
two scenes containing mineral samples have been acquired with the setup
described in Sec. 2.3. This setup acquires images with an electron mul-
tiplying charge-coupled device (EMCCD) camera (Andor iXon3 897). As
described in Sec. 2.3, the statistics of the EMCCD signal can be approxi-
mated very well with the Poisson distribution. Due to the fact that the
emitted fluorescence spectra depend on the used ultra-violet (UV) illumi-
nation wavelength, the recorded hyperspectral fluorescence images also
depend on the illumination. Therefore, there is a fourth image dimension
in case a complete three-dimensional image is acquired at various diffe-
rent illumination wavelengths. For this reason, we can use not only the
two-dimensional images of the hyperspectral image acquired at a certain
wavelength, but use additional images coming from hyperspectral images
at different excitation (i.e., illumination) wavelengths.

The excitation wavelength was varied in steps of 20 nm. For evaluating
the denoising results, images of six bands with the parameters given in
Table 5.3 have been acquired 500 times each. The respective mean of the
500 images is regarded as ground truth due to the unbiasedness of the
noise. The excitation wavelength is denoted by λexc and the emission
wavelength by λem. Table 5.3 additionally gives the configuration of the
neighboring images that have also been acquired and can be used for
denoising. Only one acquisition of each of the neighboring images was
performed instead of 500 as for the ground truth images. The dataset
numbers 1 and 2 are images of the first scene and numbers 3–6 are images
of the second scene. The number Z of images that are added weightedly
is split into two; the first half of the images is taken from the neighboring
shorter emission wavelengths, the second half from longer ones, see also
Fig. 5.5.

For the Gaussian MIDWAI version, a remotely-sensed hyperspectral
image will be used: The HYDICE (HYperspectral Digital Imagery Col-
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lection Experiment) image of the Washington DC Mall provided in [101].
The whole image consists of 1280× 307 pixels and 191 wavelengths. An
image detail of size 251× 201 pixels that approximately incorporates the
area studied in [155] is considered. It comprises the area from the vertical
pixels 550–800 and the horizontal pixels 70–270. All 191 wavelengths are
taken into account. The image is degraded artificially by Gaussian noise.

Table 5.3 Parameters of the ground truth images.

Dataset number 1 2 3 4 5 6

λexc/nm 360 380 380 380 400 400
λem/nm 550 558 558 602 558 602

Adjacent images: 340, 360, 340, 360, 340, 360, 380, 380,
λexc/nm 380 400 400, 420 400, 420 420 420

Adjacent images: 450 – 458 – 458 – 502 – 458 – 502 –
λem/nm 650 658 658 702 658 702

5.2 Comparison Criteria

For evaluating the unmixing performance of different methods, error
measures will be used. In these measures, the matrices M̂ and Â are the
matrices calculated by the unmixing method, while M and A denote the
ground truth.

The abundance root-mean-square error (ABU RMSE) is calculated by

ABU RMSE(A, Â) =
1

R

R∑
r=1

(
1

I

I∑
i=1

(ari − âri)2
) 1

2

(5.2)

and the endmember RMSE (EM RMSE) by

EM RMSE(M, M̂) =
1

R

R∑
r=1

(
1

L

L∑
l=1

(mlr − m̂lr)
2

) 1
2

. (5.3)
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Another error measure for the endmember matrix is the spectral angle (SA,
see also Sec. 2.2.3) defined by

SA(M, M̂) =

R∑
r=1

arccos


L∑
l=1

mlrm̂lr√√√√ L∑
l=1

m2
lr

√√√√ L∑
l=1

m̂2
lr

 . (5.4)

The spectral angle neglects constant factors the spectra might be multiplied
with, while the RMSE takes them into account. According to [36], end-
member SA and RMSE are highly correlated. For this reason, depending
on the analysis that is to be assessed, the most appropriate endmember
measure will be used.

In case the abundance and/or endmember matrix ground truth is not
known, the IMAGE RMSE can be used for assessing how well the measu-
red image is approximated by the estimated abundances and endmembers.
The IMAGE RMSE is calculated by

IMAGE RMSE(Y, Ŷ) =

(
1

IL

I∑
i=1

L∑
l=1

(yli − ŷli)2
) 1

2

. (5.5)

For the denoising experiments, the bandwise peak signal-to-noise ratio
(PSNR) will be used. For band l of the denoised hyperspectral image, it is
calculated by

PSNRl = 10 log10

(
max(Ygt,l,xy)2

1
XY

∑X
x=1

∑Y
y=1(Ygt,l,xy − Ŷl,xy)2

)
, (5.6)

where Ygt,l denotes the ground truth band l. The mean PSNR (MPSNR) is
the mean PSNR of all bands. For denoising, but also for the 3DDCT-NIMF
discussion, the SNR is calculated by

SNRl = 10 log10

( ∑X
x=1

∑Y
y=1(Ygt,l,xy)2∑X

x=1

∑Y
y=1(Ygt,l,xy − Ŷl,xy)2

)
. (5.7)

For the 3DDCT-NIMF consideration, this formula is adapted to the re-
spective area of the 3D data structure.
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5.3 MIDWAI Denoising

The evaluation of both the Gaussian and the Poisson version of the MID-
WAI (multidimensional image denoising by weighted addition of images)
denoising procedure will be presented in this section. The MIDWAI re-
sults will be compared with the results of the spectral–spatial adaptive
hyperspectral total variation (SSAHTV) denoising algorithm given in [155]
and the block-matching and 4D filtering (BM4D) algorithm [91]. BM4D
is an extension of the powerful block-matching and 3D filtering (BM3D)
algorithm [34] to three-dimensional images. The source code of SSAHTV
has kindly been provided by the authors, while the BM4D implementation
is provided online [66].

Table 5.4 gives the denoising results with the MIDWAI procedure ap-
plied to the fluorescence emission images in three different configurations:

The mean estimation is calculated according to Section 4.7.1 (convo-
lution with Gaussian kernel).

Alternatively, the mean estimation is obtained by applying other
filters such as BM3D to each of the original 2D images (so-called
prefiltering).

After calculating the MIDWAI denoised images, it is possible to
remove the remaining noise by applying generic 2D filters band by
band, in this case the BM3D filter.

The BM4D and SSAHTV results are also given. For these algorithms, the
Anscombe transform [92] was applied first to convert the Poisson noise to
Gaussian noise, as both algorithms are not explicitly designed for Poisson
noise. From Table 5.4, it can be seen that MIDWAI denoising with the
standard Gaussian convolution provides slightly better results than BM3D
prefiltering. In spite of its simplicity, the Gaussian convolution provides
PSNR results in the same range as BM4D, while SSAHTV performs slightly
worse. MIDWAI with Gaussian convolution and weak BM3D postpro-
cessing provides the best denoising results. Figures 5.3 and 5.4 show the
denoised images. It can be seen that the denoising with MIDWAI removes
the noise almost completely (only little noise is left), while there are no
artifacts such as overly smoothed areas. Note that the images filtered by
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Gaussian convolution are only used for weighting the images, but then,
the original noised images are added. This means that no blurring of edges
results from applying MIDWAI. Another detail image from dataset 1 is
shown in Fig. 5.6. It has a stronger signal component than the excerpt from
dataset 4.

0 250 500

Figure 5.3 Dataset 4: Detail of one of the mineral samples in the image (108×123

pixels). On average, only 6–7 photons per pixel are registered. First row: Noisy
image, MIDWAI with Gauss prefiltering, MIDWAI with BM3D prefiltering, MID-
WAI with Gauss prefiltering and BM3D postprocessing. Second row: BM4D,
SSAHTV, ground truth. Dark blue corresponds to the lowest pixel values, while
yellow corresponds to the largest. Note that the MIDWAI images without postpro-
cessing preserve edges really well and are less blurry. Details such as the two dark
spots and the light spot at the very top of the image can still be recognized. These
details are almost completely lost in the BM4D and SSAHTV images.

As mentioned before, hyperspectral fluorescence images are acquired,
which means that for each excitation wavelength, there is a complete
hyperspectral image. Due to the fact that MIDWAI adds 2D images,
regardless of the dimension they are located in, all the 4D data can be
incorporated. Figure 5.5 shows how the 2D subimages from hyperspectral
images at neighboring images can be taken into account. This time, the
central excitation wavelength and the two neighboring ones are used. Z
defines the number of all images from one excitation that is used. As
three excitations are used, the total number of images taken into account
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Table 5.4 Top table: Optimal PSNR values of the denoised hyperspectral fluo-
rescence images (DS: dataset) in dB. Only the emission images of one excitation
wavelength (see Fig. 5.5) have been taken into account. The prefiltering method
(pre for short) indicates how the mean estimation was obtained: convolution with
Gaussian kernel (MIDWAI as explained in Sec. 4.7.1) or BM3D filtering of the two-
dimensional images. As the MIDWAI filtered image is not completely noise-free, it
can be filtered with 2D filters with low filtering strength afterwards (BM3D column:
MIDWAI with Gaussian prefiltering and BM3D after MIDWAI denoising). This
leads to the best results among all methods. The bottom table shows the parameter
values which provided the optimal results given in the top table. For BM4D, γ = 0

indicates that the internal noise estimation of the algorithm is active.

MIDWAI

DS
Noisy image Gauss pre BM3D pre BM3D BM4D SSAHTV

SNR PSNR PSNR PSNR PSNR PSNR PSNR

1 14.71 31.83 45.19 44.96 47.81 46.93 43.00
2 15.60 32.58 45.43 45.23 47.53 45.08 43.50
3 12.53 33.48 47.92 46.77 50.62 47.15 44.10
4 9.25 30.72 45.80 44.94 48.95 47.52 43.01
5 13.27 34.48 48.79 47.71 51.44 47.58 44.69
6 10.08 31.76 46.94 46.04 50.22 48.12 43.64

DS
Gauss pre BM3D pre BM3D BM4D SSAHTV

Z/2 σGK Z/2 Z/2 σGK γ γ

1 21 6 27 16 10 0.005 40
2 24 4 25 17 6 0 40
3 30 7 30 21 8 0.005 40
4 23 11 30 11 20 0.005 30
5 30 7 30 30 7 0.005 40
6 24 7 30 13 16 0.005 30

amounts to 3Z. Table 5.5 gives the denoising results. It can be seen that
incorporating the neighboring excitation wavelengths leads to a PSNR
improvement of 2–3 dB, cf. Tab. 5.4.
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Figure 5.4 Surface plots of the images in Fig. 5.3. The vertical axis shows the
image values and is scaled from 0 to 500. First row: Noisy image, MIDWAI
with Gauss prefiltering, MIDWAI with BM3D prefiltering, MIDWAI with Gauss
prefiltering and BM3D postprocessing. Second row: BM4D, SSAHTV, ground
truth.

It should be emphasized that the good quality of the denoised images
is not due to random selections of the parameters Z and σGK that lead to
such good results. In fact, the outcome of MIDWAI is pretty robust against
changes in the parameters and the PSNR values change continuously with
varying Z and σGK. Figure 5.7 gives the PSNR values for all datasets
denoised by MIDWAI with Gaussian convolution (no postprocessing)
when only one excitation wavelength is considered.

5.3.1 Gaussian Noise

For evaluating MIDWAI in the presence of Gaussian noise, the Washington
DC Mall image is degraded by additive white Gaussian noise (AWGN)
with an SNR of 10, 20 and 30 dB. The applied SNR value is the same for the
2D images at all bands. Furthermore, in a fourth variation, the bandwise
SNR is selected randomly from the range 15–25 dB to evaluate the behavior



5.3 MIDWAI Denoising 115

Table 5.5 PSNR values (in dB) of the denoised hyperspectral fluorescence images
when the images of neighboring excitation wavelengths (see Fig. 5.5) are also
taken into account. The used prefiltering method is the convolution with Gaussian
kernel. Note the improvement of 2–3 dB in comparison with Table 5.4.

Dataset
MIDWAI Gauss MIDWAI BM3D

PSNR Z/2 σGK PSNR Z/2 σGK

1 47.40 15 11 49.11 10 20
2 47.44 16 7 49.06 12 10
3 50.33 30 8 51.77 14 15
4 48.06 19 17 49.77 9 20
5 51.07 30 8 52.28 16 12
6 49.24 19 11 51.02 9 20
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Figure 5.5 Dataset 1: Addition scheme of the neighboring images that are taken
into account when only images of the same excitation wavelength (top, denoising
results in Tab. 5.4) and of additional neighboring excitation wavelengths are used
(bottom, results in Tab. 5.5). The image that is to be denoised is shown in black,
the images that are additionally taken into account are marked gray.

of MIDWAI when the bandwise SNR is not constant. Table 5.6 shows the
MPSNR denoising results as well as the calculation time of all algorithms.
For the Gaussian MIDWAI method, the parameters Z and σGK which lead
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0 250 500

Figure 5.6 Dataset 1: Detail of one of the mineral samples in the image (124×152

pixels). On average, only about 15 photons per pixel are registered. First row:
Noisy image, MIDWAI with Gauss prefiltering, MIDWAI with BM3D prefiltering,
MIDWAI with Gauss prefiltering and BM3D postprocessing. Second row: BM4D,
SSAHTV, ground truth. Dark blue corresponds to the lowest pixel values, while
yellow corresponds to the largest. Again, the MIDWAI images without postproces-
sing preserve details really well and are less blurry. Only a small amount of noise
is left. Note also the denoising quality of the darker right side of the sample.

to the highest MPSNR are chosen. These are not the optimal ones for
each individual band, but interestingly, the mean of the optimal PSNR
values for all bands at all tested parameter configurations at 10 dB SNR
amounts to 34.54. This is only about 1 dB more (cf. Tab. 5.6) and shows
that it is feasible to select the same parameters for all bands. MIDWAI
Gauss provides not only very good denoising results, but performs about
25 times faster than BM4D.

Figure 5.8 shows the bandwise PSNR for all considered algorithms.
In general, the MIDWAI and BM4D curves have a similar shape. For
assessing the visual quality of the denoised images, Figs. 5.9 and 5.10
exemplarily show the denoised band 20 of the Washington DC Mall image.
In general, when both the BM4D and MIDWAI images result in a rather
poor approximation of the original image, the BM4D results are overly
smoothed, while the MIDWAI images still contain noise of low amplitude
or have a small offset compared to the ground truth. For visualizing this
effect, Fig. 5.11 shows the denoising results along one image line.
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Figure 5.7 PSNR values in dB of all datasets (1–6 from top left to bottom right) in
dependence of σGK (x-axis) and Z (y-axis). When σGK = 6 and Z = 25, the mean
PSNR of all datasets amounts to 46.56 dB.

5.3.2 Discussion

Although MIDWAI is a denoising method based on a straightforward
principle, it shows very good denoising results that can compete with
sophisticated state-of-the-art denoising methods. The main characteristic
of its denoising results is extraordinary preservation of details without
introducing artifacts such as the staircase effect known from conventional
TV, merging regions with very similar pixel values or oversmoothing.
When it provides images of less quality than other algorithms, this is
mainly due to the fact that the noise level has not been reduced sufficiently,
but in general, no artifacts are introduced into the image. The only effect
that appears when the parameters are not chosen suitably is that there is
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Table 5.6 MPSNR values in dB and calculation time of all algorithms applied to
the Washington DC Mall image. For all noise configurations, MIDWAI with Gauss
prefiltering provides similar results as BM4D, in most cases even slightly better
ones. The MIDWAI calculation, though, runs about 25 times faster than BM4D. For
BM4D, σ was set to 0, i.e., the noise estimation of the algorithm is active. The used
software was MATLAB running on a 3.5 GHz i7 processor with 16 GB RAM.

Noise
Noisy im. MIDWAI Gauss pre BM4D SSAHTV

MPSNR MPSNR Z/2 σGK t/s MPSNR t/s MPSNR γ t/s

10 dB 21.58 33.22 14 18 25.7 32.31 494.9 27.45 2 93.6
20 dB 31.58 39.60 6 20 18.7 39.50 498.8 34.48 10 21.6
30 dB 41.58 45.69 2 21 15.0 46.77 500.4 42.50 50 11.2
var. 32.07 39.46 6 21 19.7 39.35 498.0 34.62 10 20.8

an offset between noisy and denoised image. Such an effect also occurs
when the spectral values from one image to the others differ greatly (i.e.,
neighboring images do not exhibit sufficient similarity), but this effect
was very small in all experiments that were conducted. If it occurred, the
details were still well preserved and the discrimination between details is
easy; only a small intensity difference occurred, see Fig 5.11.

One question is how to deal with 2D images that are close to one end
of the image, i.e., the first or last bands. For the very first and very last
band, it is only possible to weightedly add images of longer or shorter
wavelengths, respectively, and not of both wavelengths. One possibility to
deal with this problem is to take the respective number of images from the
other end of the wavelength range, i.e., for the first band, bands from the
long-wavelength end of the image are also used. It turns out that this is
not a feasible method if the intensity values at both ends of the wavelength
range vary greatly. This is the case with the Washington DC Mall image. If
such a cyclic continuation is used, the PSNR values in Fig. 5.8 will decrease
much more towards the spectral ends of the image. Therefore, at the
shortest and longest wavelengths, only a reduced number of images is
used, see Fig. 5.12. This holds for all conducted experiments.

For determining the parameter values, it can be roughly said that for
images with high noise amplitudes, more neighboring bands have to be
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Figure 5.8 Bandwise PSNR of the denoised Washington DC Mall image. Top:
noise level 10 dB, middle: noise level 20 dB, bottom: noise level 30 dB.

incorporated than in the case of low noise level (see Table 5.6). One very
good indicator is the mean of the noisy and the denoised images. As
mentioned above, it might be possible that there is an offset between the
noisy and denoised image. For this reason, when the mean of the noisy
and the mean of the denoised image differ too much, the parameter values
should be adapted.

The computational complexity of the MIDWAI procedure can be dedu-
ced from the complexity of the convolution of an image of size X ×Y with
a kernel of size N × N . Such a convolution is of complexity O(XYN2)

(depending on the calculation scheme and hardware, there are faster al-
gorithms for performing the convolution of images with kernels, e.g.,
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Figure 5.9 Band 20 of the Washington
DC Mall image at 10 dB SNR. Top left:
noisy image, top right: MIDWAI Gauss,
middle left: BM4D, middle right: SSA-
HTV, bottom: Ground truth.

Figure 5.10 Detailed region of band
20 of the Washington DC Mall image
at 10 dB SNR. Top left: noisy image,
top right: MIDWAI Gauss, middle left:
BM4D, middle right: SSAHTV, bottom
left: Ground truth, bottom right: image
region (red rectangle) and line of inte-
rest (green, see Fig. 5.11).

algorithms making use of the fast Fourier transform). For MIDWAI Pois-
son, the convolution has to be applied to all L bands: O(XYN2L). The
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Figure 5.11 Image line that is marked green in Fig. 5.10. Top: band 20, middle:
band 178, bottom: band 191. Note how well the edges are preserved. Band 191 has
the lowest SNR; the shape of the line is well approximated; however, a small offset
is introduced by MIDWAI in some areas, e.g., between pixels 115 and 135.

subsequent divisions and additions according to (4.93) do not increase the
complexity.

For MIDWAI Gauss, the only difference is that the pixelwise variances
have to be calculated first. For calculating the variance at each pixel’s
position according to (4.98), the complexity amounts to O(XYN2), as for
the sum

∑
m,n∈N (x,y) Y2

l,mn,N2 multiplications andN2−1 additions have
to be calculated. Therefore, the complexity of the variance calculation is the
same as the one of calculating the convolution, and the overall complexity
of MIDWAI Gauss is the same as the one of MIDWAI Poisson.
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Figure 5.12 Used addition pattern in case of a central band (top) and an edge
band (middle). The image that is to be denoised is shown in black and the in-
corporated neighbor images in gray. When the middle scheme is used, there is
probably a loss in denoising quality at the edge bands, as bands with quite different
intensities might be mixed. Therefore, these bands are left out (bottom).

In general, the MIDWAI denoising quality is in the range of the top
state-of-the-art denoising algorithms. MIDWAI performs slightly better
than BM4D, while BM4D has a time demand that is multiple times the one
of MIDWAI. The images denoised by MIDWAI can be postprocessed by
2D denoising algorithms with low denoising strength. MIDWAI rapidly
provides images with little noise content, therefore it is a suitable workflow
to apply methods that specialize in removing small amounts of noise from
the whole image such as the ones given in [30] and [106] after MIDWAI.
Further improvements of the MIDWAI algorithm could comprise the
analysis of the noise that is left in the image for developing adapted
postprocessing algorithms. Methods for estimating the bandwise noise
level that are, e.g., contained in the maximum noise fraction calculation
[52] can be used for estimating the bandwise noise level and adapting the
parameters Z and σGK for each band separately. However, the results we
obtained show that this would only lead to a slight improvement.

Apart from the good denoising quality and fast calculation time, MID-
WAI can be applied to images of more than three dimensions. In this case,
the multidimensional redundancies can be exploited. This has been shown
exemplarily with four-dimensional hyperspectral fluorescence images.
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5.4 UNCLI

The UNCLI (unmixing of clustered image) unmixing method from Sec.
4.2 has been applied to all datasets described in Sec. 5.1.1. The remotely
sensed images are analyzed in three configurations: no noise and AWGN
with 20 dB and 30 dB SNR, respectively. UNCLI’s main goal is to provide
unmixing errors of roughly the same quality as full image unmixing, but
in shorter calculation time. The following unmixing scenarios will be
analyzed:

SISAL: this scenario is supervised, i.e., it is based on endmember
extraction from the clustered image using the SISAL algorithm (see
Sec. 3.2.1). The result of this first step is an endmember estimate;
the abundance estimate is obtained by subsequent least-squares
calculation (MATLAB’s lsqlin() function with the active-set option)
from the objective function (3.1) with fixed endmember matrix. It
must be remarked that unless otherwise stated, SISAL’s parameter
τ for the clustered images is chosen to the one that provides the op-
timal endmember estimate when applied to the unclustered image.
The fact that the clustered image has a much smaller image matrix
means that there might be better parameter choices for the clustered
images. This will also be investigated.

N-FINDR: similarly to the SISAL scenario, the endmembers are
estimated from the respective clustered image using N-FINDR (see
Sec. 3.2.1), followed by least-squares abundance estimation. The
N-FINDR algorithm does not have any relevant parameters that
should be adapted depending on the image size.

MVC: unsupervised scenario, i.e., both endmembers and abundan-
ces are calculated in one procedure. The calculation is performed
by alternating between abundances and endmembers using the
respective clustered image. MVC spectral regularization (see Sec.
3.2.2) is applied. The regularization parameter µspec is chosen op-
timally for the unclustered image; in many cases, this value is also
used for the clustered images. A value of µspec more feasible for the
clustered images is also investigated.
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To allow for a fair comparison, MVC’s initial endmember matrix is
chosen randomly, i.e., by randomly selecting R pixel spectra from
the unclustered image. This holds for both the clustered and the
unclustered images.

MiniDisCo: same clustering procedure as in the MVC scenario, but
using MiniDisCo (see Sec. 3.2.2) as unmixing method instead of
MVC. In accordance with the original publication [63], the endmem-
ber matrix is set to a matrix containing only zeros.

5.4.1 Supervised Unmixing – UNCLI Clustering Results

The evaluation of the clustering will be analyzed by means of the supervi-
sed SISAL and N-FINDR scenarios. This provides the opportunity to not
only analyze the segmentation maps, i.e., the spatial maps showing how
the image pixels have been merged by the clustering, but also to assess
how clustering affects the unmixing quality. This can be done by analyzing
the abundance and endmember errors resulting from the unmixing using
SISAL or N-FINDR, respectively.

At first, the Urban Detail6 dataset with 30 dB SNR is considered. Each
of the clustering methods described in Sec. 4.2.2 is applied to the image
and unmixing according to the SISAL scenario is performed. Figure 5.13
shows the segmentation maps that lead to the lowest ABU RMSE among
all used parameter combinations of each method. Note that in spite of the
noise, the spatial structure is sufficiently preserved and can be observed in
the segmentation maps. The number of clusters in the best segmentation
maps is 1350 for SP, 2500 for LA, 256 for k-means, 1000 for RHSEG and 66
for ISODATA. The optimal RHSEG result is obtained for sw = 1. Note that
the number of pixels in the original image, 10000, is greatly reduced with
all clustering methods. From the figure, it can be seen that the optimal SP
clustering merges relatively large image regions into one cluster, while the
optimal RHSEG and k-means segmentation maps put more emphasis on
the spectral similarity, i.e., they merge pixels that are not necessarily spa-
tially adjacent. For the considered image, ISODATA’s optimal clustering
represents a compromise between spatial and spectral predominance.
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Figure 5.13 SISAL scenario: segmentation maps of the Urban Detail6 dataset
that provide the optimal unmixing results within each clustering method. Every
cluster represents a cluster. Top row: band 1 of the original image with 30 dB SNR
(left), SP segmentation (right). Middle row: LA (left), k-means (right), bottom row:
RHSEG (left), ISODATA (right).
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5.4.2 Supervised Unmixing – UNCLI Unmixing Results

Figure 5.14 depicts the unmixing results (abundance and endmember er-
rors, see Sec. 5.2) of the noiseless Urban Detail6 image in the N-FINDR
scenario for both clustered and unclustered images. Note that the image is
decomposed almost perfectly when using the original, unclustered image
(the error values are close to zero). For this reason, it is hard for the clus-
tered images to outperform this result; however, the error difference is
decreasing with increasing number of clusters, and RHSEG with a high
cluster number provides similar results as the unclustered image. When
noise is added to the image, see Fig. 5.15 for the analysis of the same image
with 30 dB SNR, unmixing the clustered images indeed provides better
results than the unclustered image for quite a large number of clusters.
Note that especially the endmember estimation greatly benefits from the
clustering. The positive effect of spatial information on endmember ex-
traction has already been studied and described in, e.g., [113], where the
automated morphological endmember extraction (AMEE) algorithm is
presented. Also, a spatial preprocessing algorithm (SPP) [93] has been
presented that exploits the spatial information in a first step; in the second
step, any spectral EEA can be applied to the preprocessed data.

Comparing the results of UNCLI applied to the Urban Detail6 image
without noise (Fig. 5.14) and with 30 dB SNR (Fig. 5.15), it becomes obvious
that this method is beneficial when dealing with noisy images. This is
most likely due to the averaging effect: each cluster spectrum is calculated
by averaging all the pixel spectra belonging to this respective cluster. This
means that zero-mean noise such as AWGN is reduced. At a very low
number of clusters, the error measures are quite high, and decrease with
increasing number of clusters. At a specific number of clusters, the error
measures increase again. This effect is especially obvious when RHSEG
clustering is used and can be explained as follows: when too few clusters
are considered, the spatial resolution of the clustered image is too low, so
no acceptable unmixing results can be obtained. At a certain number of
clusters, the original image can be represented very well by the clusters,
and the noise is mostly eliminated. Further increasing the number of
clusters means that only few pixels are merged, so the clustered image
does not significantly differ from the original noisy one, meaning that
the unmixing results also will be similar. Note that a cluster number of
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Figure 5.14 Noiseless Urban Detail6 unmixing with N-FINDR endmember initia-
lization. The thick black line represents the results obtained with the unclustered
image. All other data points are calculated by UNCLI with different clustering
methods. The results of the clustered images become better with increasing cluster
number, however, the low error values of the unclustered image are hard to beat.
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Figure 5.15 Urban Detail6 (30 dB SNR) unmixing with N-FINDR endmember
initialization. The thick black line represents the results obtained with the unclus-
tered image. In the presence of noise, UNCLI yields for many clustered images
better unmixing results than full image unmixing.
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5000 means for the Urban Detail6 image that each cluster on average only
consists of two pixels.

For the Urban Detail6 image with larger noise component, 20 dB SNR,
the effect already seen at 30 dB noise level becomes even larger; the clus-
tered images provide an even larger improvement in abundance and
endmember estimation. The plot for this noise level is omitted.

From the analysis of the Urban Detail6 image, it can be seen that UNCLI
leads to an unmixing quality improvement (i.e, lower error values) in the
presence of noise; the more noise, the larger the improvement. For each
noise level, the best results are obtained for a feasible number of clusters.
If it is too low, spatial details are lost; if it is too high, the clustered image
is almost the unclustered one, therefore the clustering does not have any
impact. Table 5.7 shows the results for the other considered images.

5.4.3 Supervised Unmixing – Algorithm Dependence

Having seen that UNCLI improves the unmixing results in the presence
of noise, it is interesting to take a closer look at the respective clustering
methods and their parameter selection.

For the RHSEG clustering method, the parameters sw and the chosen
distance measure are the most important ones. Again using Urban Detail6
without noise, their effect is shown in Fig. 5.16. The outcome hardly de-
pends on the used distance measure Euclidean distance (ED) or spectral
angle (SA), however, the spectral weight parameter sw significantly influ-
ences the unmixing quality. For this image, there is a favorable regularity
in dependence of sw: For the same number of clusters, increasing sw

provides both lower ABU RMSE and EM RMSE. This means that the more
emphasis is put on spectral similarity instead of spatial adjacency, the
better the unmixing results.

Figure 5.17 shows the effect of the chosen distance measure and sw for
UNCLI applied on the same image with 30 dB SNR. It can be stated from
this and the other observed images (results not shown) that when noise is
present, the ABU and EM RMSE curves are not shaped as regularly as in
the noise-free case; however, a higher value of sw tends to provide better
error values.

Regarding k-means clustering, the most important parameter apart
from the number of clusters is the chosen distance measure. As mentioned
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Figure 5.16 Urban Detail6, no noise, RHSEG clustering: dependence of the N-
FINDR unmixing results on sw and the chosen distance measure. The data points
of both distance measures ED and SA are very close and most often overlap.
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Figure 5.17 Urban Detail6 at 30 dB SNR, RHSEG clustering: dependence of the
N-FINDR unmixing results on sw and the chosen distance measure.



5.4 UNCLI 131

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

Number of clusters

A
BU

R
M

SE
Correlation Squared Euclidean

0 50 100 150 200 250
0

0.1

0.2

Number of clusters

EM
R

M
SE

Correlation Squared Euclidean

Figure 5.18 Urban Detail6 at 30 dB SNR, k-means clustering: dependence of
the N-FINDR unmixing results on the chosen distance measure. The squared
Euclidean distance provides lower error values.

before, Euclidean distance and correlation were used for the presented
experiments. Figure 5.18 exemplary shows the results obtained with the
Urban Detail6 image, SNR 30 dB. As can be seen, the Euclidean distance
provides the lower abundance and endmember errors. This holds not only
for this image, but also for the other considered images with only a few
exceptions at isolated cluster numbers. Although the unmixing of k-means
clusters exhibits a continuous decay for increasing cluster number (see Fig.
5.14 and Fig. 5.15), the drawback of this clustering method is its calculation
time which grows quadratically with the number of clusters. This would
mean that calculating twice as many clusters takes four times as long, see
Fig. 5.19. For large cluster numbers, the application of UNCLI therefore
does not provide a time saving, as the time required for clustering exceeds
the saving in unmixing time.

The ISODATA clustering algorithm is very similar to k-means. Both start
by defining randomly chosen pixel spectra to cluster centers. Iteratively,
the remaining pixels are assigned to one of the clusters by deciding for the
cluster the considered pixel has the least distance to and recalculating the
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Figure 5.19 Urban Detail6 at 30 dB SNR, k-means clustering, squared Euclidean
distance: clustering calculation time.

cluster means. The main difference compared to k-means is that ISODATA
splits and merges clusters depending on various algorithm parameters
such as, e.g., the distance between cluster centers or the cluster standard
deviation. This results in ISODATA finding the number of output clusters
on its own. Although the large number of parameters (maximum number
of clusters, minimum number of elements in one cluster before it is elimi-
nated, number of clusters that are mixed within an iteration, threshold
for cluster splitting, threshold for cluster fusion, maximum number of
iterations) allows for a sensitive tuning of the number of clusters and their
size, this is also a main drawback of this method, as it can be very hard
to find the best parameters. For the presented analyses, several different
combinations of parameter values were considered, but no further parame-
ter optimization was performed. With the chosen combinations, only low
cluster numbers were realized (see Fig. 5.14 and Fig. 5.15). Larger cluster
numbers would result in significantly higher time demand, similarly to
k-means. Due to the complexity of the parameter selection, which results
in more complicated dependence of the result on the chosen parameter
values than in the case of, e.g., RHSEG (cf. Fig. 5.16), the ISODATA results
will only be given in the following. No detailed discussion of the influence
of the parameters will be conducted.

The main parameters influencing the SP clustering results are the mini-
mum number of pixels in each cluster and the parameter c controlling the
likelihood that clusters merge; the larger c, the higher the likelihood. For
constant c, the influence of the parameters is shown in Fig. 5.20. Due to
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Figure 5.20 Urban Detail6 at 30 dB SNR, SP clustering: dependence of the N-
FINDR unmixing results on the chosen distance measure and the algorithm para-
meter c. The data points for constant c belong to the minimum number of pixels
in each cluster; this parameter was chosen to 2, 20, 40, 60, 80, 100, 120, where 2
belongs to the rightmost data point and 120 to the leftmost.

the fact that no clear influence of these parameters on the unmixing results
can be identified, all parameter combinations will be incorporated in the
following analyses.

After having analyzed the influence of the clustering method on the
unmixing results, only selected parameters of the other clustering methods
will be presented for clarity in the following: the RHSEG results will be
shown for sw = 0 and sw = 1, considering only the ED as distance
measure. ED is also for k-means the only distance measure that will be
displayed. For ISODATA and SP, both ED and SA as well as all used
parameter combinations will be presented.

5.4.4 Supervised Unmixing – UNCLI Run Time

After having discussed the influence of the various clustering methods and
their parameters on the clustering results, it is interesting to turn to another
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Figure 5.21 Urban Detail6, SNR 30 dB: unmixing with N-FINDR endmember
initialization. The thick black lines represent the time and the error values obtained
with the unclustered image. All results (left), enlarged section (right). Ideally, the
clustering provides data points to the left of the vertical black line and below the
horizontal one: better results are obtained in less time. For this image, only some
RHSEG and some SP clusterings fulfill this condition for both abundances and
endmembers.
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interesting characteristic of the UNCLI method: its influence on the calcu-
lation time. All calculations have been performed on a desktop computer
having an Intel i7-3770K processor and 16 GB RAM. The processor has
4 cores that can run 8 threads in parallel. No adaption of the respective
method’s implementation to the hardware architecture was performed,
which means that these implementations as well as the actual unmixing
(i.e., calculation of endmembers and abundances) may run on a different
number of threads. The used RHSEG implementation, for instance, uses
only one thread. However, the resulting computing times give a good idea
of what qualitative time saving can be obtained by using UNCLI instead
of unmixing the unclustered image.

In Fig. 5.21, the unmixing results of the Urban Detail6 image with 30 dB
SNR and N-FINDR endmember initialization are shown. In contrast with
Figs. 5.14 and 5.15, the abscissa this time does not show the number of
clusters, but the calculation time. An additional vertical black line indicates
the time required for unmixing the unclustered image. The ultimate goal of
UNCLI is to provide better unmixing results in shorter time than unmixing
of the clustered image does. This means that the UNCLI data points should
be located in the lower left rectangle pictured by the horizontal and vertical
lines of the unclustered images. If it is not possible to reach both goals,
UNCLI should achieve smaller error values in more time (lower right
rectangle) or suboptimal error values in shorter time (upper left rectangle).
For the considered image, this is the case for almost all UNCLI results. The
resulting best abundance maps of each method are displayed in Fig. 5.22.

After having analyzed the remotely sensed Urban Detail6 image with
30 dB SNR in detail, it is interesting to see how UNCLI performs on images
acquired in the lab. By analogy with Fig. 5.21, Fig. 5.23 shows the unmixing
results for the White Powders dataset. It can be seen that the clustering
methods that are focusing on the spatial relation between the image pixels,
such as LA, SP and RHSEG with sw=0, perform especially well. This is
due to the spatial structure of the images, as the mixing ratio within each
box compartment is constant, meaning that methods promoting spatial
smoothness have the potential of considerably improving the unmixing
results. Even LA, i.e., pure averaging of pixels within rectangular patches,
performs better than straightforward unmixing of the original, unclustered
image.
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Figure 5.22 Urban Detail6, SNR 30 dB, N-FINDR endmember initialization: best
abundance results of each clustering method. Row by row from top to bottom:
ground truth; original, unclustered image; SP; LA; k-means; RHSEG; ISODATA.
The unclustered image leads to a bad abundance estimation of the first and fifth
endmember; SP, k-means and especially RHSEG lead to a considerable impro-
vement.
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Figure 5.23 White Powders image: unmixing with N-FINDR endmember initiali-
zation. The thick black lines represent the time and the error values obtained with
the unclustered image. All results (left), enlarged section (right). The clustering
methods focusing on spatial neighborhood provide lower error values in much
shorter time than full image unmixing.
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Figure 5.24 White Powders image: supervised unmixing with SISAL initializa-
tion with the same parameter τ for both the original and the clustered images. Two
RHSEG (sw=1) and one k-means result requiring more than 1600 s are cut off for
zooming and better visibility. For not adapted τ , UNCLI yields worse results than
full image unmixing.

So far, only the results of the N-FINDR endmember initialization for
supervised unmixing have been discussed. SISAL endmember initializa-
tion also has been investigated, but it requires the tuning of the parameter
τ , which depends on the size of the input image. Due to the fact that
the clustered images are smaller, τ should be adapted to the size of each
clustered image. While Fig. 5.24 shows the unmixing results with τ of each
clustered image chosen to the one of the original image, Fig. 5.25 presents
the results when τ is adapted for each clustered image individually. This
individual adaption leads to a better endmember estimation, which in the
second step provides a better abundance estimation.

Let us now consider all used images described in Sec. 5.1.1, i.e., both the
remotely sensed and the laboratory ones. Table 5.7 shows the unmixing
results for original and clustered images. The initialization was calculated
by N-FINDR. For each clustering method, the parameter combination that
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Figure 5.25 White Powders image: supervised unmixing with SISAL initializa-
tion with τ adapted to each clustered image. This provides better results than fixed
τ , cf. Fig. 5.24

provides the lowest ABU RMSE is selected. The ABU RMSE values are gi-
ven in the first horizontal block, the corresponding EM RSME values in the
second block, its calculation time in the third block and the cluster number
in the last one. The results of the clustered images are marked green if
they are better than the results of the unclustered image and red if not. If
they are marked red, they are in many cases only slightly worse. Shorter
calculation times than full image unmixing are highlighted in green, lon-
ger in red. For most images and clustering methods, UNCLI yields better
endmember estimations. Considering the abundance estimation, UNCLI
provides lower error values in the presence of noise.

Comparing all methods, RHSEG with sw=1 in most cases provides better
unmixing results in terms of both ABU and EM RMSE than unmixing of
the full image. If it provides higher error values, the difference is small.
The calculation time for RHSEG with sw=1, however, is much longer
because of the time-consuming clustering. SP and LA run faster on all
images; although the abundance quality is not as good as the one of full
image unmixing, it is in most cases only some percent worse.
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Table 5.7 N-FINDR initialization: best UNCLI results, rated by ABU RMSE.
RHSEG with sw=0 is abbreviated R0, with sw=1 correspondingly. k-means is k
for short and I denotes ISODATA. Many UNCLI results marked in red have just
slightly higher error values than the unclustered image. Blocks from top to bottom:
ABU RMSE, EM RMSE, calculation time/s, number of clusters.
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no 0.000 0.124 0.120 0.012 0.327 0.043 0.006 0.271 0.099 0.226 0.694 0.722 0.375
SP 0.002 0.055 0.015 0.019 0.093 0.028 0.018 0.072 0.026 0.085 0.199 0.363 0.320
LA 0.004 0.062 0.024 0.021 0.049 0.035 0.011 0.069 0.040 0.087 0.289 0.337 0.700
k 0.004 0.036 0.008 0.018 0.044 0.026 0.023 0.036 0.024 0.111 0.614 0.449 0.293
R0 0.000 0.100 0.040 0.012 0.087 0.049 0.008 0.146 0.046 0.173 0.515 0.361 0.224
R1 0.000 0.060 0.038 0.012 0.041 0.038 0.005 0.035 0.015 0.141 0.581 0.352 0.425
I 0.014 0.024 0.009 0.026 0.034 0.026 0.072 0.055 0.057 0.284 0.382 0.451 0.334

no 6.8 3.6 4.1 4.1 3.7 3.7 7.1 4.6 4.9 46.3 33.1 15.3 11.3
SP 3.8 3.5 3.7 3.7 3.7 3.5 3.7 3.8 3.7 10.5 6.3 5 4.9
LA 1.6 1 1 1.1 0.5 0.9 1.2 1.2 0.6 0.8 3.4 4.6 2.8
k 123.3 347 245.3 105.8 249.5 168.6 111.9 127.1 140.3 417.4 550.1 460.8 296.4
R0 47.3 3.7 47.3 29.8 3.4 27.8 29.9 3.6 3.7 14.4 119.3 5.3 3.7
R1 217.5 137.9 469.7 198 105 349.9 242.7 95.4 79.8 861.4 763.3 187 86
I 67.9 69.7 72.3 65.1 52.7 103.7 115.8 58 57.5 1295.4 428.6 220.1 150.7

SP 1132 121 775 1421 1531 1061 1360 1531 1350 719 946 900 1531
LA 2500 2500 2500 2500 1089 2500 2500 2500 1089 1512 6566 7400 4900
k 256 256 256 256 256 256 256 128 256 64 256 256 256
R0 5000 2000 5000 5000 2000 5000 5000 2000 2000 1000 5000 1000 1000
R1 5000 1000 5000 5000 500 5000 5000 500 2000 100 250 250 1000
I 62 61 72 76 61 71 76 67 66 54 71 69 72
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5.4.5 Unsupervised Unmixing Results

The results discussed in the previous sections have been obtained by su-
pervised unmixing, i.e., determining the endmembers with an EEA first
and using the resulting endmembers for calculating the abundances af-
terwards. For the unsupervised unmixing discussed in this section, the
used methods calculate both endmembers M and abundances A alterna-
tingly and at the end provide a joint estimation of both matrices. MVC
and MiniDisCo (see Sec. 3.2.2) are used as unmixing methods. The MVC
endmember matrices are initialized with randomly selected pixels of the
full image, not from the clustered images, to allow for a fair comparison.
The initial endmember matrix for MiniDisCo is all zero, as directed by the
method description in [63]. The abundance matrix is initialized with the
constant value 1/R. The respective regularization parameter µspec was
adapted to the size of the (clustered) images: µspec,clust = C/I ·µspec, where
µspec is the optimal value for the full image and µspec,clust the one for the
respective clustered image. For both unmixing methods, the number of
iterations was set to T = 500. Each iteration consists of 5 PQN abundance
updates and 5 PQN endmember updates. Using the same pattern as Tab.
5.7, Tab. 5.8 shows the MVC results. While UNCLI in most cases performs
considerably faster than full image unmixing (depending on image and
clustering method up to 30 times), it provides error values that are a bit
worse for most images and clustering methods. However, MVC provi-
des for many images very good unmixing results which are hard to beat;
still, UNCLI provides especially for k-means and RHSEG high quality
unmixing results for both endmember and abundances.

For the MiniDisCo results shown in Tab. 5.9, the conclusion is the same:
abundance and endmember error values are in many cases only slightly
worse than the ones of full image unmixing, but there is considerable time
saving.

5.4.6 Summary

In this section, the application of UNCLI has been investigated. Several
clustering algorithms have been applied to some remotely sensed hy-
perspectral images as well as to some images acquired under laboratory
conditions. UNCLI yields in the case of both supervised and unsupervised
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Table 5.8 UNCLI results obtained using MVC, ordered by best ABU RMSE.
Blocks from top to bottom: ABU RMSE, EM RMSE, calculation time/s, number of
clusters.
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no 0.007 0.021 0.009 0.011 0.022 0.013 0.039 0.083 0.053 0.169 0.173 0.195 0.162
SP 0.045 0.117 0.056 0.061 0.146 0.070 0.088 0.152 0.100 0.142 0.180 0.190 0.174
LA 0.082 0.083 0.082 0.107 0.108 0.107 0.121 0.134 0.127 0.156 0.191 0.224 0.179
k 0.016 0.026 0.019 0.026 0.033 0.027 0.063 0.087 0.076 0.172 0.173 0.185 0.154
R0 0.011 0.022 0.012 0.018 0.026 0.018 0.042 0.083 0.059 0.137 0.185 0.184 0.165
R1 0.008 0.020 0.009 0.016 0.025 0.014 0.038 0.083 0.056 0.170 0.179 0.187 0.161
I 0.038 0.037 0.031 0.054 0.049 0.044 0.097 0.104 0.094 0.154 0.148 0.179 0.155

no 0.011 0.020 0.012 0.013 0.015 0.013 0.057 0.192 0.152 0.485 1.023 1.006 1.128
SP 0.017 0.045 0.023 0.025 0.034 0.028 0.054 0.194 0.199 0.435 0.862 1.251 1.098
LA 0.021 0.025 0.021 0.019 0.019 0.019 0.071 0.201 0.179 0.463 0.931 1.116 1.131
k 0.016 0.019 0.014 0.028 0.017 0.021 0.091 0.223 0.210 0.505 0.982 1.337 1.101
R0 0.017 0.023 0.015 0.023 0.017 0.022 0.071 0.217 0.189 0.484 0.951 1.093 1.124
R1 0.015 0.018 0.011 0.027 0.015 0.015 0.088 0.196 0.176 0.434 0.903 1.331 1.081
I 0.030 0.022 0.016 0.021 0.023 0.024 0.096 0.222 0.134 0.510 0.875 1.370 1.125

no 185.7 187.1 117.2 154.3 92.8 95.1 269.9 269.5 270.9 3997.8 2041.4 1000.3 687.8
SP 28.5 15.4 18.9 32.8 24.7 18.3 55.0 58.8 54.7 79.9 70.2 31.8 69.0
LA 57.8 51.5 39.4 47.9 27.9 31.0 80.8 83.5 82.3 992.6 463.5 266.6 167.2
k 132.5 354.9 251.2 116.0 255.0 174.0 128.5 222.9 157.6 656.5 571.7 163.8 32.8
R0 132.0 127.8 110.3 108.2 86.5 78.8 175.6 169.5 174.9 42.8 40.4 93.4 231.8
R1 294.0 617.8 529.2 286.0 467.4 405.7 389.4 167.5 461.6 876.8 787.3 207.0 101.1
I 78.2 69.5 77.0 71.3 57.4 59.8 121.6 67.9 106.6 1535.5 441.0 238.3 149.3

SP 1132 121 775 1421 1531 1061 1360 1531 1350 1471 1531 444 1531
LA 2500 2500 2500 2500 2500 2500 2500 2500 2500 30400 14800 7400 4900
k 256 256 256 256 256 256 256 256 256 128 256 128 32
R0 5000 5000 5000 5000 5000 5000 5000 5000 5000 500 250 2000 5000
R1 5000 5000 5000 5000 5000 5000 5000 2000 5000 50 250 50 50
I 62 61 72 77 61 68 77 67 56 65 73 69 53
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Table 5.9 UNCLI results obtained using MiniDisCo, ordered by best ABU RMSE.
Blocks from top to bottom: ABU RMSE, EM RMSE, calculation time/s, number of
clusters. Note that many UNCLI abundance errors which are higher than the ones
of full image unmixing are less than one percent worse.
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no 0.046 0.055 0.049 0.062 0.066 0.062 0.095 0.103 0.102 0.207 0.193 0.158 0.141
SP 0.070 0.129 0.077 0.094 0.161 0.099 0.126 0.171 0.129 0.113 0.180 0.164 0.148
LA 0.097 0.099 0.099 0.130 0.130 0.129 0.157 0.157 0.154 0.171 0.198 0.189 0.168
k 0.054 0.056 0.054 0.072 0.071 0.067 0.110 0.116 0.122 0.135 0.157 0.146 0.126
R0 0.047 0.053 0.051 0.059 0.067 0.066 0.100 0.110 0.103 0.104 0.171 0.140 0.133
R1 0.048 0.052 0.050 0.064 0.067 0.064 0.108 0.109 0.097 0.160 0.171 0.141 0.126
I 0.062 0.061 0.060 0.079 0.068 0.067 0.126 0.120 0.120 0.133 0.145 0.139 0.129

no 0.069 0.085 0.074 0.066 0.066 0.066 0.171 0.144 0.184 0.809 1.187 1.197 1.082
SP 0.081 0.092 0.082 0.081 0.092 0.083 0.141 0.181 0.175 0.371 0.823 0.867 0.760
LA 0.071 0.079 0.077 0.079 0.078 0.076 0.212 0.201 0.159 0.528 1.189 1.095 0.992
k 0.084 0.075 0.077 0.079 0.069 0.071 0.146 0.181 0.230 0.320 1.121 0.642 0.944
R0 0.073 0.081 0.080 0.066 0.067 0.072 0.173 0.173 0.183 0.214 1.212 0.955 0.928
R1 0.076 0.078 0.075 0.069 0.064 0.068 0.143 0.162 0.155 0.532 1.264 0.533 0.739
I 0.077 0.075 0.075 0.073 0.055 0.062 0.183 0.126 0.129 0.327 1.082 0.764 0.669

no 220.0 244.4 169.9 166.2 140.8 157.0 269.2 266.5 270.2 4114.6 2079.2 1069.6 700.4
SP 50.4 17.8 23.6 35.6 29.1 20.2 54.5 58.1 47.0 28.4 45.5 33.9 27.6
LA 79.0 65.3 50.3 47.6 37.7 35.0 82.6 78.2 80.6 123.0 467.6 133.7 177.2
k 141.4 360.1 255.2 118.9 261.8 177.0 59.0 142.1 156.7 437.1 129.3 42.5 138.3
R0 143.7 157.7 153.3 91.7 99.8 98.8 177.8 172.5 157.1 28.0 69.5 87.0 241.4
R1 293.7 624.7 570.4 63.9 113.0 427.8 82.0 120.7 461.5 3889.3 818.6 202.7 109.5
I 84.9 74.3 84.9 120.1 61.9 63.2 131.0 71.7 71.0 913.4 448.5 239.9 162.6

SP 1132 121 775 1421 1531 1061 1531 1531 1350 44 644 443 306
LA 2500 2500 2500 2500 2500 2500 2500 2500 2500 3339 14800 3283 4900
k 256 256 256 256 256 256 128 128 256 64 64 32 128
R0 5000 5000 5000 5000 5000 5000 5000 5000 5000 50 1000 2000 5000
R1 5000 5000 5000 250 250 5000 250 500 5000 5000 1000 25 250
I 62 61 72 76 61 70 76 67 66 73 73 69 68
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unmixing for most images and noise levels lower endmember estimation
errors than full image unmixing. Regarding the abundance estimation
quality, especially supervised unmixing (endmember estimation provi-
ded by N-FINDR) can be greatly improved by UNCLI. The unsupervised
unmixing algorithms MiniDisCo and especially MVC provide very good
abundance results on the full images. For this reason, it is hard for UNCLI
to yield lower error values. In many cases, though, the difference is a few
per cent, and UNCLI provides the results faster than full image unmixing.

From the presented analyses, RHSEG can be recommended as the
method of choice for UNCLI. The main reason for this is the easy parame-
ter selection. Unlike ISODATA, for instance, which has lots of parameters
whose impact on the unmixing results is not obvious, RHSEG has only
two major parameters. The number of clusters can be chosen beforehand;
it seems to be a good choice to allow for roughly 5 to 10 pixels per cluster.
Apart from the number of clusters, the parameter sw allows for a tradeoff
between unmixing quality and calculation time: the larger sw, the more
accurate the results, but the longer the calculation time.

UNCLI with SP and LA calculates particularly fast; the unmixing can
be accelerated several times compared to full image unmixing. For the
investigated images, the relative time saving becomes even greater with
increasing spatial image size. One natural extension of UNCLI is therefore
the application of a final step (FS). After the UNCLI calculations, the
endmembers provided by UNCLI are kept fixed, and the full resolution
abundances are refined using these fixed endmembers. This can be done
quickly in one least-squares step. This approach makes use of the benefit
of fast endmember and relatively coarse abundance calculation. Due to
UNCLI’s more accurate endmember estimation in the presence of noise,
it is likely that the final step provides even better abundance values than
full image unmixing. The time saving is particularly large for LA and
SP, see Tables 5.8 and 5.9. Figure 5.26 exemplarily shows the results of
the application of the final step after unsupervised MVC. Note that the
abundance errors of LA and RHSEG with sw = 0 are greatly improved;
this makes it possible to combine the fast calculation in Tab. 5.8 with
satisfying abundance accuracy.

The combination of LA UNCLI with the final step is very similar to
PYRU (see Sec. 4.3). LA divides the image in patches and estimates abun-
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Figure 5.26 Urban Detail6, no noise, UNCLI with MVC: improvement after
recalculating the full resolution abundances in a final step (FS).

dances for these patches. This is the same principle as using the image
pyramid, for which patches of the full resolution image are used for cal-
culating pixels of the higher pyramid level. The only difference is that
in the final UNCLI step, only the abundances are recalculated on the full
resolution level and the endmembers not. PYRU refines both endmember
and abundances. This similarity leads over to the PYRU results presented
and discussed in the next section. Due to the fact that the endmembers are
recalculated on the ground pyramid level, it is likely that PYRU provides
similar results as full image unmixing. Its goal is therefore to obtain the
same unmixing quality as full image unmixing, but in less time.

5.5 PYRU

This section presents the results of the PYRU (pyramid unmixing) method
from Sec. 4.3 combined with MVC and MiniDisCo spectral regularization
(Sec. 3.2.2). As for all experiments presented in this thesis, PQN is used
for the optimization of the unmixing objective functions, it will also be
used for PYRU. Note that this is in contrast to [171], where the Armijo rule
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explained in Sec. 4.6 was used as optimization technique because of its
advantages over fixed step sizes discussed in Sec. 4.6.

The number T of iterations on each pyramid level is determined by
the formula (4.25), which means that the basis B and the prefactor V are
the parameters defining T . For each iteration, P = 5 PQN abundance
estimation steps and M = 5 endmember iteration steps are conducted.
This is due to the fact that PQN selects the step size based on several past
iterations and not the very last one, see Sec. 4.6.1, so it is reasonable to
perform more than one step for each matrix. For all experiments, only
the first image pyramid stage has been used, but with different reduction
factors N ∈ {2, 4, 8, 16}. Choosing for example N = 4 is equivalent to
using the original resolution level plus two reduced pyramid levels and
skipping the calculation on the two levels in between.

5.5.1 PYRU with Minimum Volume Constraint (MVC)

PYRU is combined with the MVC method described in Sec. 3.2.2 and
applied to all images introduced in Sec. 5.1.1. PYRU’s main goal is to
accelerate the unmixing process, i.e., the same objective function values
should be obtained in shorter time than from the application of the re-
spective plain unmixing method on the full resolution image. However,
the acceleration should not come at the cost of abundance or endmember
degradation. The values of objective function as well as ABU and EM
RMSE over time for the Urban Detail4 image (no noise) are depicted in
Fig. 5.27. Depending on the parameter choice, the time saving is about
50 %, meaning that the same value of the respective measure is reached
about twice as fast as in the case of full image unmixing. In general, it can
be said that the greater the prefactor V , the better the unmixing quality.
The parameter V determines the number of iterations performed on the
full resolution image; for the full image, B does not influence the number
of iterations, as k = 0 in (4.25). From Fig. 5.27, it can be deduced that
N ∈ {2, 4, 8} are able to come to the same error values as full image un-
mixing, while N = 16 leads to slightly worse values. It is less suitable for
this image; probably because important spatial information is lost on the
first pyramid level, causing the optimization on the ground level to get
stuck in a local minimum.



5.5 PYRU 147

0 20 40 60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

·103
O

bj
ec

ti
ve

Fu
nc

ti
on

N=2, V =2 N=2, V =5 N=2, V =10
N=2, V =20 N=2, V =50 N=2, V =100
N=2, V =200 N=4, V =2 N=4, V =5
N=4, V =10 N=4, V =20 N=4, V =50
N=4, V =100 N=4, V =200 N=8, V =2
N=8, V =5 N=8, V =10 N=8, V =20
N=8, V =50 N=8, V =100 N=8, V =200
N=16, V =2 N=16, V =5 N=16, V =10
N=16, V =20 N=16, V =50 N=16, V =100
N=16, V =200 No pyramid

0 20 40 60 80 100 120 140 160 180 200 220
0

0.05

0.1

A
BU

R
M

SE
j

0 20 40 60 80 100 120 140 160 180 200 220
0

0.05

0.1

0.15

Time/s

EM
R

M
SE

j

Figure 5.27 Urban Detail4 image without noise, PYRU with MVC: error values
over time. Each connected line of data points is composed from data points having
the same value of the prefactor V , but different bases B. The higher B, the more
calculation time is required, because more iterations are performed on the first
pyramid level Y1 in this case. The number of iterations on the full resolution is V ,
regardless of B (see Eq. (4.25)).
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Figure 5.28 Urban Detail4 image, 20 dB SNR, PYRU with MVC: detailed view of
the error values over time. Each connected line of data points is composed from
data points having the same value of the prefactor V , but different bases B. The
legend is the same as in Fig. 5.27.
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The results for the same image with 20 dB SNR are illustrated in Fig.
5.28. This time, only a detail is shown. While the application of PYRU
for sufficient high B and V leads to a slightly lower objective function
value than unmixing of the full image, the ABU and EM RMSE values
are slightly worse. However, note that the difference is well below one
percent. Selecting N = 2 leads to a calculation time reduction of about
50 %, similar to the noise-free image. The parameter combination N = 16,
V = 50 shows a strange behavior; N = 16 was already causing problems
with the noise-free image.

A noise level of 30 dB leads to structurally very similar results as the
ones for 20 dB shown in Fig. 5.28 regarding time requirement for PYRU
and full image unmixing. For this reason, no plots are given. Only the
ABU and EM RMSE values are a bit lower.

Analyzing the Urban Detail6 image leads to an even larger time saving
with PYRU. The results for a noise level of 30 dB are shown in Fig. 5.29;
the plots of different noise levels exhibit a similar structure. For the given
noise level, the time saving is about a factor of six for N = 4 and a factor
of four for N = 2. N = 8 and N = 16 do not provide acceptable results.

Applying PYRU with MVC to the Jasper image leads to time savings
of about 10 to 50 %, depending on the parameter selection and the noise
level.

The White Powders image is an image acquired in a laboratory environ-
ment, not remotely sensed, and compared to the images analyzed so far
of very large size. For large images, PYRU can lead to great time savings;
for the considered image, it performs about five times faster. The results
are illustrated in Fig. 5.30. The endmember estimation quality does not
improve steadily with time in the case of full image unmixing. This effect
is also mirrored in the PYRU results.

The Spatial Mixing images are hard to unmix without taking endmember
variability (Sec. 2.1.2) into account. This effect can also be observed in the
results provided by the application of PYRU. The error plots given in Fig.
5.31 do not follow a continuous decay such as the ones of the other images.

It can be stated that PYRU with MVC performs very well and can, es-
pecially for larger images, lead to great time savings. This only holds
for images for which the original MVC method applied to the full reso-
lution image also performs well. If this is not the case, PYRU naturally
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Figure 5.29 Urban Detail6 image, 30 dB SNR, PYRU with MVC: error values over
time. Each connected line of data points is composed from data points having the
same value of V , but different bases B. While N = 2, 4 lead to very good results,
higher values are not feasible. See Fig. 5.27 for the legend; the legend of the present
figure only shows the legend entries of additional curves for higher V .
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Figure 5.30 White Powders, PYRU with MVC: error values over time. Each
connected line of data points is composed from data points having the same value
of the prefactor V , but different bases B. PYRU with N = 2 runs about five times
faster than full image unmixing. Especially for such large images, PYRU leads to
an enormous absolute time saving. Apart for the data points with V = 300, the
legend is the same as in Fig. 5.27.
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Figure 5.31 Spatial Mixing 10, PYRU with MVC: error values over time. Each
connected line of data points is composed from data points having the same value
of the prefactor V , but different bases B. Even the curves of full image unmixing
do not decay steadily; the same holds for the error values of PYRU. The legend is
the same as in Fig. 5.27.
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cannot provide better results, as it is not an unmixing improvement, but
acceleration method.

5.5.2 PYRU with Minimum Dispersion
Constraint (MiniDisCo)

The combination of MiniDisCo with PYRU also has been implemented
and its effect analyzed. By contrast to MVC, the endmember initialization
does not consist of randomly selected image pixels, but the endmember
matrix M is set to all zeros. PYRU in general passes the results calculated
on one pyramid stage on to the following stage, i.e., the matrices A and M

calculated on the first unmixing level are used as initial matrices for the
subsequent level. This way, calculation effort is saved, especially because
of the large reduction of the size of A. For MiniDisCo, the question is if
the endmember matrix should also be passed, or if the subsequent initia-
lization should be a matrix of zeros again. From the analyses performed
for this thesis, it is known that random initialization of the MiniDisCo
endmember matrix can very easily lead to the algorithm getting stuck in
local minima. For this reason, both ways of initializing M on the next level
are considered: initialization with the result of the previous stage, or a
matrix of zeros.

Figure 5.32 shows the error values for the Jasper image with 30 dB SNR.
The estimated endmembers are assigned from one pyramid level to the
next. For N = 2, the results are more or less comparable with the PYRU
MVC results, but for all other values of N , especially the endmember
estimation fails. When reinitializing the matrix M to zeros on each level
(plots omitted), the endmember results become even worse; the ABU
RMSE and objective function plots are similar to the ones in Fig. 5.32.

Unfortunately, PYRU with MiniDisCo does not provide the same re-
sults as pure MiniDisCo in shorter time; the unmixing quality becomes
even worse. One possible explanation for this behavior is the promotion
of flat endmembers by the MiniDisCo regularizer which minimizes the
endmember variance. The higher pyramid level naturally contains flatter
pixel spectra due to the averaging of neighboring pixels. It is not unli-
kely that this causes the optimization algorithm to get caught in a local
minimum. Additionally, the original MiniDisCo procedure initializes the
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Figure 5.32 Jasper image, 30 dB SNR, PYRU with MiniDisCo: error values over
time. Each connected line of data points is composed from data points having the
same value of the prefactor V , but different bases B. The legend is the same as in
Fig. 5.27.

abundance matrix with random values. This could be more advantageous
for the method than reasonably estimated abundance initializations on the
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ground level that are provided by the unmixing of the first pyramid level
already including MiniDisCo.

From this section, the conclusion can be drawn that not every NMF-
based unmixing method is equally well suited for the application of PYRU.
While the calculation of MVC can be greatly accelerated, PYRU with
MiniDisCo fails in providing high-quality unmixing results in faster time.

5.6 3DDCT

After having analyzed the newly developed unmixing methods descri-
bed in Sec. 4 that are based on local spatial adjacency, it is interesting
how 3DDCT-NIMF (3D discrete cosine transform nonnegative inverse
matrix factorization) performs. By contrast to UNCLI (unmixing of clus-
tered image) and PYRU (pyramid unmixing), it incorporates the global
adjacency of all 3D image elements. All results shown in this section are
obtained with the 3DDCT-NIMF procedure described in Sections 4.4.3–
4.4.6. As a reminder, the used objective function is (4.41)

Q3DDCT =

J∑
j=1

‖NjYj −AWXY,j‖2F −Kj log(
∣∣det(Nj)

∣∣) . (5.8)

This means that the non-convex regularizer − log(
∣∣det(Nj)

∣∣) is used, ha-
ving the consequence that the outcome of 3DDCT-NIMF depends on the
initialization. For this reason, different endmember initializations will
be applied, each consisting of R randomly selected pixel spectra. The
regularization parameters Kj were given by (4.42):

Kj = K ·
(
P

∑R
r=1

∑I
i=1

∣∣Yj,ri

∣∣
nnz(Yj)

)E
. (5.9)

As these parameters depend on the block index j, the parameters K and E
are used as a general substitute. They are the same for each block, which
reduces the number of parameters from J to 2. Incorporating each block’s
given image data, K and E are used to adapt the regularization parameter
Kj to each block. For all experiments presented in the following, the
constant P is chosen to 106.
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The regularization parameters Kj have a significant impact on the es-
timated matrices A and Nj . The larger Kj , the more emphasis is put
on a large determinant, which in turn leads to large absolute elements
of the matrices Nj . Afterwards, all these matrices are inverted and the
inverse DCT is calculated to get the estimated endmembers M. As the Nj

have very large elements, M will have quite small elements. In order to
minimize the Frobenius norm in (5.8), the abundances will also take high
values of similar magnitude as the Nj .

Due to the fact that the image mean was subtracted before the applica-
tion of 3DDCT-NIMF, the estimated endmembers will be located around 0.
In case they are not fully mean-free, the remaining mean of the estimated
matrix M will be subtracted, to have zero mean for both the estimated
endmembers and the given image matrix Y before applying the scaling
procedure from Sec. 4.4.5. The result of the scaling is that the endmembers
are scaled to the same level as the image pixel spectra. As this procedure
provides quite feasible results in the conducted experiments, it will be
used in the following. However, it is subject to future work to investi-
gate if it is reasonable to subtract the combined mean of all endmember
spectra from the estimated M or some other value or nothing: an image
having mean value 0 (whole image matrix; all pixels) does not require
the endmember matrix to also have the mean 0. The image mean value
results from the endmembers weighted with the abundances at each pixel,
and therefore does not only depend on the endmember spectra and their
combined mean.

Figure 5.33 depicts the influence of K on the estimated endmembers.
The graphics show the endmembers estimated in the first decomposition
step using the full cube, i.e., all J blocks in the top plot of Fig. 4.15, before
only the highlighted region in the bottom plot of the same figure is used
for the final estimation. This explains why there is some noise present in
the estimated endmembers. This noise will be removed when considering
only the high-SNR region in the last step. Note that K mainly influences
the magnitude of the estimated spectra, but not primarily their shape,
whereas the parameter E in conjunction with the initialization changes
the endmember shape.
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Figure 5.33 Urban Detail4 at 30 dB SNR, ρ = 0.2: influence ofK on the estimated
endmember spectra, shown here before the scaling. The value of K mainly influ-
ences the spectra magnitude; the larger K, the smaller the magnitude. Particularly
for K = 100, . . . , 100000, the shape of the spectra is nearly the same and does not
change with K.

5.6.1 3DDCT-NIMF Unmixing Results of the
Remotely Sensed Images

The 3DDCT-NIMF unmixing results of the images described in Sec. 5.1.1
will be illustrated in detail in the following. For all images, 28 different
random endmember initializations will be investigated, meaning that for



158 5 Results and Comparison

Table 5.10 Used 3DDCT-NIMF parameter values for each image.

Image name K E T

Urban Detail4 10000 0.1, 0.2,. . . , 1.2 3000
Urban Detail6 10000 0.1, 0.2,. . . , 1.2 3000

Jasper 1000 0.1, 0.2,. . . , 1.2 3000
White Powders 30000 0.05, 0.1, 0.2,. . . , 1.0 3000

Spatial Mixing 10 30000 0.2, 0,4. . . , 1.0 3000
Spatial Mixing 20 30000 0.2, 0,4. . . , 1.0 3000
Spatial Mixing 30 30000 0.2, 0,4. . . , 1.0 3000

each initialization, R randomly selected pixel spectra compose the initial
endmember matrix M. Table 5.10 shows the used parameter values for
each image. In addition, the ratio of retained coefficients was altered:
ρ ∈ {0.1, 0.2, 0.5}. The value ρ = 0.1 means that only the largest 10 % of
all coefficients are kept and the others are set to zero.

Table 5.11 depicts the 3DDCT-NIMF unmixing results of the Urban
Detail4 image. Due to the fact that the ground truth is normally not
known, the only way to choose the supposedly best unmixing result is the
image reconstruction error, IMAGE RMSE. Apart from the noiseless image,
the results show that this error measure provides a feasible criterion for
selecting the optimal result; the best ABU RMSE and the best EM RMSE
do not differ significantly from the ones of the run that provides the
lowest IMAGE RMSE. For the presented analyses, the ground truth is
known. For this reason, the column "RMSE type" indicates which error
measure (ABU RMSE, EM RMSE, IMAGE RMSE) is the one for which
the respective row shows the lowest error values. In the first row, for
instance, the result having the lowest IMAGE RMSE is given, along with
its ABU RMSE and EM RMSE values. For the image with 30 dB SNR and
ρ = 0.2, 0.5, the presented run provides the best error values for all the
errors at the same time. The column "Init. #" shows which initialization
was the one providing the lowest error, so it can be compared if the best
ABU RMSE and the best EM RMSE come from the same initialization or
not. This makes it possible to distinguish if the result only provides a good
abundance estimation and a bad endmember estimation and vice versa, or
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Table 5.11 Urban Detail4 image: Error values depending on initialization. The
best values of each noise level are highlighted.

ρ RMSE type Init. # K E B IMAGE ABU EM

N
o

no
is

e

0.1
IMAGE 25 10000 0.8 4 0.096 0.214 0.352

ABU 24 10000 0.9 100 0.170 0.135 0.198
EM 21 10000 0.8 10 0.146 0.145 0.158

0.2
IMAGE 27 10000 0.9 6 0.103 0.220 0.309

ABU 6 10000 0.8 10 0.138 0.151 0.191
EM 2 10000 0.6 6 0.144 0.154 0.169

0.5
IMAGE 25 10000 0.8 4 0.117 0.179 0.279

ABU 6 10000 0.8 10 0.144 0.149 0.165
EM 6 10000 0.8 10 0.144 0.149 0.165

SN
R

20
dB

0.1
IMAGE 24 10000 0.1 30 0.142 0.112 0.141

ABU 21 10000 0.9 30 0.150 0.099 0.150
EM 11 10000 0.1 30 0.143 0.112 0.140

0.2
IMAGE 18 10000 0.1 30 0.142 0.110 0.138

ABU 2 10000 0.9 20 0.152 0.100 0.148
EM 19 10000 0.2 30 0.142 0.109 0.130

0.5
IMAGE 17 10000 0.1 30 0.138 0.090 0.107

ABU 20 10000 0.7 30 0.163 0.087 0.158
EM 26 10000 0.1 20 0.138 0.092 0.106

SN
R

30
dB

0.1
IMAGE 22 10000 0.9 20 0.086 0.121 0.169

ABU 26 10000 0.9 100 0.093 0.093 0.126
EM 26 10000 0.7 50 0.094 0.099 0.122

0.2
IMAGE 14 10000 0.9 50 0.077 0.077 0.103

ABU 14 10000 0.9 50 0.077 0.077 0.103
EM 14 10000 0.9 50 0.077 0.077 0.103

0.5
IMAGE 21 10000 0.9 30 0.078 0.068 0.086

ABU 21 10000 0.9 30 0.078 0.068 0.086
EM 21 10000 0.9 30 0.078 0.068 0.086
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if both are of high quality at the same time. The columns K and E show
the parameter values of the run that resulted in the best respective error
measure.

In the following, a brief discussion of the results given in Tab. 5.11
is conducted. The larger the ratio of retained coefficients ρ, the more
coefficients are retained. Its influence is of minor importance; for higher
ρ, the error values improve only little. Interestingly, the noisy image with
30 dB SNR provides the lowest error values and not the noiseless one. The
20 dB SNR image leads to worse unmixing results than the 30 dB one.

Figure 5.34 illustrates the best estimated abundance maps of each noise
level, while Fig. 5.35 shows the best endmember estimations. A detailed
view of some endmembers is provided in Fig. 5.37. The accuracy of
both abundance and endmember estimation is quite impressive when
considering that the data have been manipulated in a rather rude way: the
full image was transformed by 3D DCT; furthermore, the endmembers
have been split into blocks and estimated in the inverted domain.

The influence of the parameter B was explained in Sec. 4.4.4. It adapts
the width of the column describing which 3D DCT coefficients are used
for calculating the matrices Nj . In theory, the smaller B, the less noise
corrupted the estimated endmembers should be, as mostly only high-SNR
coefficients are considered. The final value of B is selected by analyzing
the IMAGE RMSE: for each value of B and the previously calculated abun-
dances, the error between the full image and the reconstruction by the
calculated endmembers and abundances is determined. The algorithm
decides for the B that provides the lowest reconstruction error. Alternati-
vely, the estimated endmembers of each B can be analyzed manually and
a different endmember result can be selected as the final one. Figure 5.36
exemplarily shows the influence of B in case of the optimal endmember
estimation resulting from the Urban Detail4 image with 30 dB SNR.

By analogy with Tab. 5.11, Tab. 5.12 shows the error values of the Urban
Detail6 image. The unmixing of this image is much more prone to noise
than the unmixing of the Urban Detail4 image. The reason is that the
number of endmembers R = 6 is higher, which means that the horizontal
tile in the bottom graphic of Fig. 4.15 is not four layers, but six layers
thick. Therefore, more low-SNR coefficients are taken into account which
tamper the abundance estimation. For this image, the influence of ρ is
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Table 5.12 Urban Detail6 image: Error values depending on initialization. The
best values of each noise level are highlighted.

ρ RMSE type Init. # K E B IMAGE ABU EM

N
o

no
is

e

0.1
IMAGE 24 10000 0.9 100 0.117 0.120 0.249

ABU 24 10000 0.9 100 0.117 0.120 0.249
EM 26 10000 0.9 100 0.125 0.139 0.231

0.2
IMAGE 13 10000 0.9 15 0.096 0.141 0.263

ABU 1 10000 0.9 100 0.127 0.114 0.251
EM 27 10000 0.9 100 0.110 0.151 0.202

0.5
IMAGE 8 10000 0.8 10 0.101 0.156 0.362

ABU 3 10000 0.8 30 0.143 0.132 0.300
EM 21 10000 0.8 30 0.135 0.162 0.216

SN
R

20
dB

0.1
IMAGE 3 10000 0.1 50 0.162 0.151 0.234

ABU 8 10000 0.8 10 0.173 0.141 0.221
EM 22 10000 0.8 10 0.172 0.143 0.220

0.2
IMAGE 13 10000 0.1 30 0.165 0.149 0.246

ABU 23 10000 0.9 30 0.172 0.138 0.241
EM 3 10000 0.1 50 0.169 0.140 0.196

0.5
IMAGE 19 10000 0.1 30 0.163 0.143 0.234

ABU 15 10000 0.9 30 0.180 0.133 0.221
EM 3 10000 0.2 30 0.171 0.160 0.217

SN
R

30
dB

0.1
IMAGE 28 10000 0.9 100 0.119 0.119 0.210

ABU 5 10000 0.7 100 0.125 0.116 0.168
EM 25 10000 0.7 100 0.128 0.117 0.163

0.2
IMAGE 10 10000 0.3 50 0.110 0.123 0.200

ABU 25 10000 0.5 50 0.114 0.098 0.161
EM 14 10000 0.1 50 0.120 0.118 0.129

0.5
IMAGE 5 10000 0.3 50 0.109 0.119 0.138

ABU 25 10000 0.8 10 0.119 0.089 0.177
EM 14 10000 0.1 50 0.111 0.121 0.125
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Figure 5.34 Urban Detail4 image: resulting best abundance maps. Top row:
ground truth, second row: no noise, third row: 20 dB SNR, last row: 30 dB SNR.
For all noise levels, the spatial structure is preserved really well, however, in the
noiseless case, three abundance maps are estimated with the wrong scale. For
20 dB SNR, there is some noise in the estimation visible.

even lower than for the Urban Detail4 image. Figures 5.38 and 5.39 depict
the abundance and endmember estimation in the 30 dB SNR scenario.
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Table 5.13 Jasper image: Error values depending on initialization. The best
values of each noise level are highlighted.

ρ RMSE type Init. # K E B IMAGE ABU EM

N
o

no
is

e

0.1
IMAGE 23 1000 0.8 10 0.209 0.257 0.814

ABU 4 1000 1.2 100 0.224 0.202 1.308
EM 13 1000 0.7 8 0.240 0.220 0.532

0.2
IMAGE 4 1000 1.2 100 0.196 0.209 1.138

ABU 12 1000 1.2 100 0.237 0.197 0.665
EM 1 1000 0.7 4 0.286 0.238 0.426

0.5
IMAGE 4 1000 1.2 50 0.216 0.212 1.135

ABU 28 1000 1.2 100 0.224 0.204 0.579
EM 1 1000 0.8 4 0.288 0.256 0.447

SN
R

20
dB

0.1
IMAGE 10 1000 1.1 50 0.197 0.182 0.352

ABU 5 1000 0.8 50 0.251 0.156 0.267
EM 15 1000 0.4 30 0.235 0.157 0.206

0.2
IMAGE 10 1000 1.1 50 0.202 0.190 0.328

ABU 6 1000 0.6 30 0.238 0.145 0.266
EM 5 1000 0.3 30 0.220 0.147 0.221

0.5
IMAGE 8 1000 0.1 20 0.207 0.192 0.367

ABU 25 1000 1.2 50 0.260 0.142 0.382
EM 28 1000 0.2 10 0.214 0.148 0.229

SN
R

30
dB

0.1
IMAGE 6 1000 0.9 100 0.140 0.128 0.214

ABU 2 1000 0.9 100 0.159 0.123 0.324
EM 6 1000 0.6 50 0.145 0.128 0.209

0.2
IMAGE 22 1000 1.2 100 0.134 0.127 0.260

ABU 2 1000 0.7 100 0.155 0.108 0.264
EM 25 1000 0.3 50 0.147 0.125 0.230

0.5
IMAGE 27 1000 0.2 20 0.141 0.219 0.578

ABU 2 1000 0.6 50 0.157 0.110 0.221
EM 2 1000 0.6 50 0.157 0.110 0.221
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Figure 5.35 Urban Detail4 image: best estimated endmember spectra. Top row:
ground truth, second row: no noise, third row: 20 dB SNR, last row: 30 dB SNR.
Note the detailedness of the estimation; see also Fig. 5.37 for a more detailed
display.

The unmixing results of the Jasper image are shown in Tab. 5.13. In
comparison with the Urban Detail4 image, it has the same number of
endmembers R and the same spatial size, but a higher number of wave-
lengths L. Its decomposition results in much higher error values than the
Urban Detail4 image. While the main structure of both endmembers and
abundances is preserved, large noise levels are present. The reason for this
is unknown; changing the exponent values, the number of iterations and
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Figure 5.36 Urban Detail4 at 30 dB SNR, ρ = 0.5: dependence of the estimated
spectra on B. The larger B, the more details appear, but the noise variance also
increases. The optimal B leading to the lowest IMAGE RMSE is 30.

running more initializations did not lead to an improvement.

5.6.2 3DDCT-NIMF Unmixing Results of the Lab Images

In the previous section, only remotely sensed images have been analyzed.
They have been processed by the image providers such that they can be
considered as noise-free, and before the analysis, AWGN with known SNR
has been added. As a consequence, the noise present in each 3D image
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Figure 5.37 Urban Detail4 image: details of two of the estimated spectra depicted
in Fig. 5.35. Within each plot, the solid line denotes the ground truth and the
dash-dotted line the estimation. Top row: no noise, second row: 20 dB SNR,
last row: 30 dB SNR. Especially for the noisy images, the level of detailedness is
remarkable. As indicated in Tab. 5.11, the optimal B is smaller than the image’s
spatial dimensions, so low-SNR DCT coefficients have been disregarded. See also
the vertical column in the bottom plot of Fig. 4.15.

element is fully characterized. By contrast, the images White Powders as
well as Spatial Mixing 10, Spatial Mixing 20 and Spatial Mixing 30 have
been acquired directly without further processing. No analysis of the noise
characteristics of the used camera was performed, as this would be out of
the scope of this thesis. On the contrary, apart from performing the white
balance described in Sec. 5.1.1 and correcting defective pixels, the images
are used as acquired. The goal is to find out to which extent 3DDCT-NIMF
can deal with non-Gaussian noise with variable variance in each image
element. This is in contrast to the noise considerations discussed in Sec.
4.4.4, where it was assumed that the noise is Gaussian and its variance is
constant throughout all image elements.

The White Powders image is hard to unmix, especially for the 3DDCT-
NIMF method. It has a comparatively large number of endmembers, all
ground truth endmembers are quite close together, and the image is of
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Figure 5.38 Urban Detail6 image, SNR 30 dB: best estimated abundances. Top
row: ground truth, second row: estimation.
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Figure 5.39 Urban Detail6 image, SNR 30 dB: best estimated endmember spectra.
Left: ground truth, right: estimation.

large spatial size. Apart from this, the noise characteristics of the image
are unknown. Nevertheless, the 3DDCT-NIMF unmixing results are of
remarkable quality, see Figures 5.40, 5.41 and 5.42. Especially the unmixing
errors that are depicted in Tab. 5.14 can compete with MVC (see Sec. 5.5.1
for PYRU and Tab. 5.8 for UNCLI) and MiniDisCo (see Sec. 5.5.2 for PYRU
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Table 5.14 White Powders image: Error values depending on initialization. The
best values are highlighted.

ρ RMSE type Init. # K E B IMAGE ABU EM

0.1
IMAGE 22 30000 0.05 50 0.021 0.132 0.905

ABU 11 30000 0.2 320 0.032 0.130 1.158
EM 25 30000 0.3 320 0.050 0.146 0.232

0.2
IMAGE 22 30000 0.05 320 0.021 0.141 0.784

ABU 9 30000 0.1 30 0.069 0.130 0.338
EM 25 30000 0.05 50 0.049 0.144 0.240

0.5
IMAGE 21 30000 0.05 320 0.021 0.162 0.864

ABU 27 30000 0.05 50 0.073 0.130 1.364
EM 25 30000 0.3 50 0.052 0.152 0.203

0 0.2 0.4 0.6 0.8 1

Figure 5.40 White Powders image: best resulting abundance maps. Top row:
ground truth, second row: estimation. The abundance of the box frame which
would be the sixth substance is not shown. Remember that the error is only
calculated within the areas for which at least one abundance is > 0. Although the
visual impression of the estimation could exhibit a larger degree of correspondence,
the ABU RMSE values are better than the one obtained with other methods, see
Tab. 5.18.



5.6 3DDCT 169

Table 5.15 Spatial Mixing images: Error values depending on initialization. The
best values of each image are highlighted.

ρ RMSE type Init. # K E B IMAGE ABU EM

Sp
at

ia
lM

ix
in

g
10 0.1

IMAGE 4 30000 0.6 200 0.350 0.197 1.024
ABU 1 30000 0.8 200 0.416 0.175 0.691
EM 2 30000 0.4 200 0.391 0.186 0.644

0.2
IMAGE 20 30000 0.2 200 0.346 0.198 0.998

ABU 9 30000 0.8 50 0.398 0.171 0.780
EM 17 30000 0.2 200 0.408 0.193 0.612

0.5
IMAGE 21 30000 0.4 200 0.338 0.229 1.684

ABU 8 30000 0.8 200 0.416 0.155 0.711
EM 15 30000 0.2 200 0.392 0.176 0.568

Sp
at

ia
lM

ix
in

g
20 0.1

IMAGE 26 30000 0.6 147 0.306 0.194 0.744
ABU 18 30000 0.8 50 0.362 0.172 0.645
EM 23 30000 0.4 147 0.336 0.181 0.599

0.2
IMAGE 22 30000 0.4 147 0.290 0.200 0.899

ABU 23 30000 0.8 147 0.380 0.165 0.619
EM 4 30000 0.6 147 0.382 0.182 0.570

0.5
IMAGE 26 30000 0.4 147 0.284 0.213 1.075

ABU 1 30000 0.8 147 0.358 0.171 0.620
EM 10 30000 0.4 147 0.340 0.192 0.601

Sp
at

ia
lM

ix
in

g
30 0.1

IMAGE 3 30000 0.4 98 0.252 0.206 0.775
ABU 28 30000 0.8 98 0.308 0.168 0.666
EM 28 30000 0.4 98 0.286 0.171 0.632

0.2
IMAGE 28 30000 0.4 98 0.248 0.197 0.778

ABU 28 30000 0.8 98 0.305 0.170 0.675
EM 14 30000 0.8 98 0.301 0.178 0.605

0.5
IMAGE 28 30000 0.6 98 0.234 0.206 0.861

ABU 27 30000 0.8 98 0.319 0.174 0.782
EM 27 30000 0.4 98 0.272 0.182 0.633
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Figure 5.41 White Powders image: best estimated endmember spectra. Left:
ground truth, right: estimation. Frame spectrum not shown. The overall shape for
most spectra is estimated quite well; major problem is the correct scaling.
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Figure 5.42 White Powders image: details of two of the estimated spectra de-
picted in Fig. 5.41. Solid line denotes ground truth, dash-dotted line estimation.

and Tab. 5.9 for UNCLI). In comparison with the other images, the ABU
RMSE is even more stable, i.e., for the run providing the best IMAGE
RMSE/EM RMSE, the ABU RMSE is close to its best value. The opposite
holds for the EM RMSE.

The unmixing errors of the Spatial Mixing images are given in Tab. 5.15.
All images provide relatively similar error values, also quite independent
of the ratio ρ. The error values are in the range of the other methods, see
Tables 5.8 and 5.9.
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Table 5.18 in the following section provides a final comparison between
the newly developed 3DDCT-NIMF and 3DSVD-NIMF methods as well
as MVC and MiniDisCo from the literature.

5.7 3DSVD and Final Comparison

The 3D singular value nonnegative inverse matrix factorization (3DSVD-
NIMF) method introduced in Sec. 4.5 is applied to the hyperspectral images
explained in Sec. 5.1.1. For all investigations performed with 3DSVD-
NIMF, the parameter K was chosen to 10000 and the exponents E =

0.1, 0.2, . . . , 1.5 were tried. The number T of iterations is 3000 and 28
initializations were run for each image. By contrast to 3D discrete cosine
transform nonnegative inverse matrix factorization (3DDCT-NIMF), a
higher ratio ρ of kept coefficients is required to adequately represent the
image. Note that the ratio ρ refers to all coefficients of the full cube,
but only the first few blocks are used for calculating abundances and
endmembers according to the objective function (4.41). The value of ρ
is set to 0.9 for all images. The resulting 3DSVD-NIMF error values are
shown in Tab. 5.16. By contrast to the analyses presented for 3DDCT-NIMF
(Sec. 5.6), only the best values are given and not their parameters. On the
one hand, this is for the sake of brevity, on the other hand, this is due to
one remarkable property: the unmixing quality hardly depends on the
endmember initialization, as long as at least 2 blocks are considered. Table
5.17 shows a comparison between 3DDCT-NIMF and 3DSVD-NIMF. For
each method, the same number of blocks was used and the influence of the
initialization is illustrated. For the parameter combination that provides
the best ABU RMSE, the difference between maximum and minimum
ABU RMSE for all 28 initializations is provided.

3DDCT-NIMF and 3DSVD-NIMF are compared with MVC and Mini-
DisCo in Tab. 5.18. For MVC and MiniDisCo, the results of full image un-
mixing are given, PYRU and UNCLI were not used. While MVC provides
for most remotely sensed images the best unmixing quality, 3DDCT-NIMF
and 3DSVD-NIMF provide similar results for the Urban Detail6 image
with 30 dB SNR. For all laboratory images, 3DDCT-NIMF provides the
better endmember estimation and for some of them also the best abun-
dance estimation. This comparison shows that while 3DDCT-NIMF is
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Table 5.16 3DSVD-NIMF results when only the first few blocks are considered.
The columns show the best ABU RMSE and the best EM RMSE for each image.

1 block 2 blocks 3 blocks 5 blocks

Image ABU EM ABU EM ABU EM ABU EM

Jasper
20 dB 0.120 0.309 0.083 0.134 0.084 0.140 0.086 0.148
30 dB 0.108 0.262 0.065 0.109 0.067 0.118 0.070 0.127

Urban Detail4
20 dB 0.112 0.170 0.073 0.053 0.076 0.060 0.077 0.069
30 dB 0.079 0.112 0.066 0.057 0.069 0.062 0.071 0.066

Urban Detail6
20 dB 0.163 0.364 0.093 0.156 0.093 0.165 0.093 0.170
30 dB 0.129 0.261 0.056 0.133 0.058 0.146 0.060 0.155

White Powders – – 0.126 0.226 – – – –

Table 5.17 Dependence of 3DDCT-NIMF and 3DSVD-NIMF on the initialization.
For the parameter combination that provides the lowest ABU RMSE, the difference
between maximum and minimum ABU RMSE among all initializations is given.
Note that for more than one block, all 3DSVD-NIMF initializations lead to almost
the same ABU RMSE, as the difference between maximum and minimum is very
small, see the last column.

1 block 2 blocks

Image 3DDCT 3DSVD 3DDCT 3DSVD

Jasper 20 dB 0.1598 0.0773 0.1464 0.0006
Jasper 30 dB 0.0834 0.1616 0.1400 0.0004

Urban Detail4 20 dB 0.0673 0.0620 0.2077 0.0012
Urban Detail4 30 dB 0.0898 0.1228 0.0833 0.0010

Urban Detail6 20 dB 0.0285 0.0260 0.0431 0.0003
Urban Detail6 30 dB 0.0409 0.0550 0.0443 0.0002
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Table 5.18 Comparison between MVC, MiniDisCo (full image unmixing, no
UNCLI or PYRU), 3DDCT-NIMF and 3DSVD-NIMF unmixing results. The given
numbers are the RMSE values according to the column heading. The MVC values
are taken from Tab. 5.8 and the MiniDisCo ones from Tab. 5.9. For 3DDCT-NIMF,
the results are the best ones of the Tables 5.14, 5.11, 5.12, 5.14 and 5.15; the shown
EM RMSE is the one that belongs to the optimal ABU RMSE and not the optimal
one. The same holds for 3DSVD-NIMF, for which the results are taken from Tab.
5.16.

MVC MiniDisCo 3DDCT 3DSVD

Image ABU EM ABU EM ABU EM ABU EM

Jasper
No noise 0.007 0.011 0.046 0.069 0.197 0.665 – –
20 dB 0.021 0.020 0.055 0.085 0.142 0.382 0.083 0.134
30 dB 0.009 0.012 0.049 0.074 0.108 0.264 0.065 0.110

Urban Detail4
No noise 0.011 0.013 0.062 0.066 0.135 0.198 – –
20 dB 0.022 0.015 0.066 0.066 0.087 0.158 0.073 0.067
30 dB 0.013 0.013 0.062 0.066 0.068 0.086 0.066 0.058

Urban Detail6
No noise 0.039 0.057 0.095 0.171 0.114 0.251 – –
20 dB 0.083 0.192 0.103 0.144 0.133 0.221 0.093 0.158
30 dB 0.053 0.152 0.102 0.184 0.089 0.177 0.056 0.144

White Powders 0.169 0.485 0.207 0.809 0.130 0.338 0.126 0.414
Spatial Mixing 10 0.173 1.023 0.193 1.187 0.155 0.711 – –
Spatial Mixing 20 0.195 1.006 0.158 1.197 0.165 0.619 – –
Spatial Mixing 30 0.162 1.128 0.141 1.082 0.168 0.666 – –

not always able to provide state-of-the-art results, it comes close to them;
3DSVD-NIMF even closer. 3DSVD-NIMF is characterized by extraordi-
nary robustness to initialization. In general, it is remarkable that applying
the 3D DCT or 3D SVD and using inverted endmember matrices provide
such good results at all.





6 Conclusion

6.1 Summary

Several new unmixing methods and a new multidimensional image de-
noising algorithm have been presented in this thesis. The unmixing of
clustered image, UNCLI, is able to calculate less accurate results than
full image unmixing in shorter time or more accurate results in longer
time, in a considerable number of cases even better results in shorter time.
The influence of the clustering method on the results has been investiga-
ted. Among these methods, RHSEG (recursive hierarchical segmentation)
proved to be the most suited one. Especially applying the last step for
abundance improvement leads to fast, accurate unmixing.

By using image pyramids applied to hyperspectral images, PYRU (py-
ramid unmixing) does not aim at better unmixing results, but simply faster
calculation. It can be combined with most unmixing methods; here, the
usage of unmixing methods based on NMF (nonnegative matrix factoriza-
tion) has been shown. As long as the chosen unmixing method is suitable
and the image consists of linearly mixed spectra with little endmember
variability, PYRU can speed up the unmixing by several times. However,
not every method can be combined with PYRU. An example for a not
feasible method is MiniDisCo (minimum dispersion constrained NMF).

The probably most interesting method is 3DDCT-NIMF, 3D discrete
cosine transform nonnegative inverse matrix factorization. It applies
a 3D transform, the 3D DCT, to a hyperspectral image. Although this
seems to be a natural choice, most existing methods focus on the pixel
spectra exploiting their geometrical properties in the L-dimensional space,
but neglecting the spatio-spectral adjacency. By contrast, 3DDCT-NIMF
incorporates full spatial and spectral adjacency. The use of inverse matrices
leads to a convex data fidelity term, this is also by contrast to the vast
majority of existing unmixing methods. A very beneficial effect is how
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the orthogonal transform distributes the signal energy in the transform
domain. It is reasonable to concentrate it only in the part of the domain
that is required for calculating endmembers and abundances. Although
this is not fully exploited yet, 3DDCT-NIMF is able to provide results that
are close to the ones of existing unmixing methods.

Applying the singular value decomposition (SVD) analogously to the
DCT leads to 3D singular value nonnegative matrix factorization (3DSVD-
NIMF). It provides slightly better results than 3DDCT-NIMF. Its most
interesting fact that its outcome is almost not influenced by random initia-
lization.

The unmixing methods have been applied to simulated sorting images
imitating a belt sorting scenario. Although the linear mixing model holds
in this case, endmember variability has a significant impact and should be
considered. Further investigations should focus on implementing spectral
unmixing in real sorters. Difficulties are the data processing hardware and
software, as hyperspectral images have high demand on both disk space
and processing time.

Although it is a relatively simple denoising algorithm, MIDWAI (mul-
tidimensional image denoising by weighted addition of images) is quite
powerful in denoising multidimensional images. This has been shown
with three-dimensional hyperspectral reflectance images as well as four-
dimensional hyperspectral fluorescence images. The results are in the
range of state-of-the-art algorithms, while far less calculation time is requi-
red for good denoising quality. MIDWAI versions for both Poisson and
Gaussian noise have been presented.

6.2 Outlook

From the methods and results presented in this thesis, many further re-
search directions can be proposed. It is definitely interesting to apply
3DDCT-NIMF to other types of data. The objective function is the same
in many different applications such as audio signal processing for source
separation and text analysis and many more. Although these most likely
do not have an inherent 3D structure as hyperspectral images, the data
contained in the 2D data matrix Y can be arranged to a cube and a 3D
transform can be applied for obtaining favorable SNR properties. A 3D
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consideration is likely to lead to a larger sparsity. The chosen orthogo-
nal transform (3D DCT) is also an issue that should be studied in detail:
the useful SNR properties of the presented method are not limited to the
DCT; any orthogonal method is suitable. Possible candidates are, e.g.,
the wavelet transform and maximum noise fraction (MNF) [52]. These
methods can be applied to all three dimensions, not only to the spectral
one; PCA and MNF commonly only are used for spectral dimensionality
reduction. It is also possible to construct or learn orthogonal transforms
that are especially designed for the image under investigation. Although
the theoretical considerations are performed with AWGN with constant
variance in each image element, it is likely and has been shown with the
White Powders dataset that the considerations to a certain extent also hold
for other types of noise with varying variance in each image element. One
natural next step could be the incorporation of the convex regularizer en-
suring matrix invertibility that was presented in Sec. 4.4.7 with minimum
volume regularizers. This may lead to a fully convex objective function.

It is also a natural continuation of the work done so far to exploit the
signal energy properties described in the 3DDCT-NIMF derivation for
image or signal denoising in general.

On a more physical than algorithmic level, it is possible to implement
the unmixing optically by using suitably designed spectral filters. This
possibly circumvents the need for elaborate hardware; especially on the
software side, significant reduction in the computational load is possible,
as the acquired data are directly the sought-after abundance values. A
research project building on the results of this thesis and focusing on
developing signal processing algorithms that can be applied optically
already has been started. First investigations regarding the determination
of the spectral filter curves have already been published [179–182].
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A 3DDCT-NIMF Gradients
with Weighting

Calculating the gradient of the weighted objective function (4.45) requires
this relation:
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One single summand of the objective function (4.45) can be stated diffe-
rently:
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The gradient of one summand from (4.45) with respect to A results to:
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According to [130], the gradient of a scalar function depending on a matrix
trace is given by

DKf(X0) = lim
t→0
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t
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which yields then at the end
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The matrix U in this case denotes the gradient
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evaluated at X0. By calculating the limit in (A.6) and comparing the
result with (A.7), the gradient of a trace of a matrix-valued function can be
calculated. Applying to (A.5) yields
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Analogously, the gradient of a summand of (4.45) with respect to Nj is
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