

Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology Fusion Neutronics Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen http://www.inr.kit.edu

Measurement of neutron fluence in the High-Flux Test Module of the Early Neutron Source by neutron activation

Axel Klix^{1*}, Frederik Arbeiter¹, Mitja Majerle², Yuefeng Qiu¹, Milan Štefánik²

²National Physics Institute, Řež, Czech Republic ¹Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

Neutron fluence measurement

- Neutron fluence figure required for analysis of specimen irradiation (dpa)
- Neutron flux changes with location: $10^{13} - 10^{15} \text{ cm}^{-2} \text{s}^{-1}$
- Change of an order of magnitude over cm • Neutron activation method suitable (low cost, simple, robust, no radiation damage issues) Activation probes optimized for expected neutron fluence, operation regime,

Neutron Activation Method

- Neutron fluence calculated from measured induced activity in activation probes after irradiation
- High fluence \rightarrow small activation probes (\approx mg)
- Possible locations:
 - Outer surface of HFTM
 - Pocket on outer surface of capsule
 - Inside capsule (in hermetic container)
- Each location with restrictions on selection of activation foil materials due to unloading schedules:

temperature in HFTM, access after irradiation

Neutron flux density (cm⁻²s⁻¹) distribution in the HFTM calculated with McDeLicious.

Dosimetry reactions									
	Malting	Half Life	Energy range ^{*)} MeV	Reaction channels (contributions in %)					
Dosimetry reaction	Point °C			Path 1	Path 2	Path 3	Path 4		
⁹³ Nb(n,x) ⁸⁸ Y	2477	106.7 d	27 – 55	⁹³ Nb(n,x) ⁸⁸ Y, 98.3 99.0 (n,2na) 1.0 (n,3nh)	⁹³ Nb(n,x) ⁸⁸ Zr (b) → ⁸⁸ Y, 1.7 24.0 (n,5np) 7.0 (n,4nd) 68.9 (n,3nt)				
⁵⁵ Mn(n,2n) ⁵⁴ Mn	1246	312.3 d	12 – 40	⁵⁵ Mn(n,x)⁵⁴Mn, 100 99.8 (n,2n)					
^{nat} Ni(n,x) ⁵⁷ Co	1455	271.8 d	11 – 55	⁵⁸ Ni(n,x) ⁵⁷ Co, 79.7 91.3 (n,np) 8.7 (n,d)	⁵⁸ Ni(n,x) ⁵⁷ Ni (b)→ ⁵⁷ Co, 10.8 100 (n,2n)	⁶⁰ Ni(n,x) ⁵⁷ Co, 9.1 11.0 (n,2nd) 4.9 (n,nt) 84.1 (n,3np)			
^{nat} Ni(n,x) ⁶⁰ Co	1455	5.27 y	12 – 55	⁶⁰ Ni(n,x) ⁶⁰ Co, 54.0 100.0 (n,p)	⁶¹ Ni(n,x) ⁶⁰ Co, 10.4 87.1 (n,np) 12.9 (n,d)	⁶² Ni(n,x) ⁶⁰ Co, 34.5 14.6 (n,nd) 83.3 (n,2np) 2.1 (n,t)	⁶⁴ Ni(n,x) ⁶⁰ Co, 0.6 24.3 (n,2nt) 50.31 (n,4np) 25.3 (n,3nd)		
^{nat} Ni(n,x) ⁵⁴ Mn	1455	312.3 d	17 – 55	⁵⁸ Ni(n,x) ⁵⁴ Mn, 93.2 96.2 (n,n,pa) 3.7 (n,nph)	⁶⁰ Ni(n,x) ⁵⁴ Mn, 6.6 2.0 (n,ta) 7.5 (n,nda) 90.4 (n,2npa)				
⁸⁹ Y(n,2n) ⁸⁸ Y	1552	106.7 d	14 – 45	⁸⁹ Y(n,x)⁸⁸Y, 99.7 100.0 (n,2n)					
^{nat} Fe(n,x) ⁵⁴ Mn	1538	312.3 d	3 – 55	⁵⁴ Fe(n,x) ⁵⁴ Mn, 35.2 100.0 (n,p)	⁵⁶ Fe(n,x) ⁵⁴ Mn, 64.0 9.9 (n,nd) 87.8 (n,2np) 2.2 (n,t)	⁵⁷ Fe(n,x) ⁵⁴ Mn, 0.7 14.5 (n,2nd) 6.5 (n,nt) 79.0 (n,3np)			
⁵⁹ Co(n,2na) ⁵⁴ Mn	1495	312.3 d	27 – 55	⁵⁹ Co(n,x) ⁵⁴ Mn, 100 99.5 (n,2na) 0.5 (n,3nh)					
⁵⁹ Co(n,3n) ⁵⁷ Co	1495	271.8 d	22 – 55	⁵⁴ Fe(n,x) ⁵⁴ Mn, 100 100.0 (n,3n)					
¹⁹⁷ Au(n,3n) ¹⁹⁵ Au	1064	186.1 d	16 – 40	¹⁹⁷ Au(n,x) ¹⁹⁵ Au, 100 100.0 (n,3n)					
²⁰⁹ Bi(n,3n) ²⁰⁷ Bi	271	31.2 y	17 – 50	²⁰⁹ Bi(n,x) ²⁰⁷ Bi, 100 100.0 (n,3n)					

HFTM duty period $\approx 1 \text{ y} \rightarrow \text{Only radio isotopes with long}$ half lives (>100 d)

Location	Expected access time
Outer surface of HFTM	1 week
Pocket on specimen capsule surface	3 weeks
Inside specimen capsule	2-3 months

Experimental test at NPI Rez

- Irradiation of a set of foils (Ni, Y, Co, Fe, Au) with a cyclotron at NPI Řež
- Position P14, irradiation time 9.5 hrs, proton beam current 11 µA, Be target
- Sample size 2.5×2.5 cm², up to 0.5 mm thick
- Neutron fluence 1.71×10⁹ s⁻¹cm⁻², 5.85×10¹³ cm⁻²
- This fluence about factor of 10⁶ to 10⁸ lower than in the specimen capsules of DONES.

Selection from S. Simakov et.al., Development of activation foils method for the IFMIF neutron flux characterization, Fus.Eng.Des. 82 (2007), p.2510; additional reactions from present experimental test. Pathways calculated with FISPACT-II and EAF-2010 activation data assuming a neutron flux of $4.01 \cdot 10^{14} \text{ cm}^{-2} \text{s}^{-1}$ for 330 days.

*) Range defined by energies where the mainly contributing cross section approaches 10% of maximum

Test results

	Mass	Residual isotope	Half-life	Δ Half-life	Gamma line	Intensity	Δ Intensity	Net Peak	∆ Net Peak	Activity	Saturation Acivity	
	g		S	S	keV	%	%	Area	Area	Bq	σΝΦ	ΔσΝΦ/σΝΦ
Ni	2.8186	Co-57	2.348E+07	4.3E+03	122.1	85.51	0.06	7.81E+06	2935.78	9.43E+03	1.09E+07	0.030
	2.8186	Co-57	2.348E+07	4.3E+03	136.5	10.71	0.15	9.41E+05	1077.42	9.50E+03	1.10E+07	0.033
	2.8186	Co-58	6.121E+06	2.6E+03	810.8	99.44	0.02	5.03E+06	2257.35	1.97E+04	9.11E+06	0.030
	2.8186	Co-60	1.663E+08	2.5E+04	1173.2	99.85	0.03	2.52E+04	215.12	1.31E+02	9.38E+05	0.031
	2.8186	Co-60	1.663E+08	2.5E+04	1332.5	99.98	0.00	1.76E+04	174.41	1.02E+02	7.29E+05	0.032
	2.8186	Mn-54	2.697E+07	2.6E+03	834.8	99.98	0.00	1.04E+05	382.74	4.14E+02	5.38E+05	0.030
Υ	0.7	Y-88	9.213E+06	4.3E+03	898.0	93.70	0.30	8.13E3	91.89	6.29E+03	3.60E+06	0.032
	0.7	Y-88	9.213E+06	4.3E+03	1836.1	99.35	0.03	4.97E3	71.15	6.67E+03	3.82E+06	0.033
Со	2.7911	Co-57	2.348E+07	4.3E+03	122.1	85.51	0.06	3.24e4	217.75	3.16E+01	3.65E+04	0.031
	2.7911	Co-57	2.348E+07	4.3E+03	136.5	10.71	0.15	3.65e3	136.45	2.98E+01	3.44E+04	0.050
	2.7911	Co-58	6.121E+06	2.6E+03	810.8	99.44	0.02	1.35e5	369,00	4.27E+02	1.99E+05	0.030
	2.7911	Fe-59	3.844E+06	1.0E+03	1099.3	56.51	0.31	4.7e3	73.33	3.30E+01	1.37E+04	0.034
	2.7911	Fe-59	3.844E+06	1.0E+03	1291.6	43.23	0.33	3.22e3	58.08	3.38E+01	1.41E+04	0.036
	2.7911	Co-60	1.663E+08	2.5E+04	1173.2	99.85	0.03	1,37E+03	41.77	5.75E+00	4.12E+04	0.043
	2.7911	Co-60	1.663E+08	2.5E+04	1332.5	99.98	0.00	1,20E+03	36.82	5.60E+00	4.02E+04	0.043
	2.7911	Mn-54	2.697E+07	2.6E+03	834.8	99.98	0.00	6,32E+02	38.17	2.03E+00	2.65E+03	0.067
Fe	0.6402	Mn-54	2.697E+07	2.6E+03	834.8	99.98	0.00	6.0e3	31.03	3.45E+02	4.48E+05	0.030
Au	0.3047	Au-195	1.608E+07	2.7E+03	98.9	11.20	0.90	6.34e3	136.85	7.49E+02	6.34E+05	0.088

Neutron flux spectrum in a center-front specimen box of the HFTM compared wih the neutron flux spectrum at the experimental position at NPI.

Half-lives, line intensities and corresponding uncertainties from JEFF-3.3; Net peak area and uncertainty obtained with Canberra Genie-2000 peak analysis. Saturation activity for further processing (see poster P1.069 P. Raj in this session).

KIT – The Research University in the Helmholtz Association

Symposium on Fusion Technology Giardini Naxos, Italy 16-21 September 2018

ng programme 2014-2018 under grant reflect those of the European Commission