Outward diffusion through protective Alumina on NiAl-alloys

Torben Boll¹, Olof Bäcke², Krystyna Stiller²

 Institut f
ür Angewandte Materialien - Werkstoffkunde (IAM-WK), Karlsruher Institut f
ür Technologie (KIT), 76344 Eggenstein-Leopoldshafen, Germany
 Department of Physics, Chalmers University of Technology, SE-412 96 G
öteborg, Sweden

Atom Probe Tomography: Zr at a grain boudary in Al_2O_3 , Each dot represents one atom, Al and O atoms are not displayed

Phoenix, 14.03.2018

TEM of typical oxide on NiAl

- Protective Al₂O₃ coating on NiAl-alloy
- O (and all other elements) in
 α-alumina diffuse mostly via
 grain boundaries (GBs)
- Minor outward diffusion of metal
- Decoration of GBs will influence the diffusion and thus oxidation
- Apparently grows inwards

Material	Ni at.%	Al at.%	Zr ppma	Hf ppma	C ppma	S ppma	Cr ppma
Zr-doped	49.95	49.99	520	0	0	3	0
Hf-doped	49.83	50.07	0	480	36	<3	100
undoped	49.9	50.1		<1	40	<4	<100

Outward diffusion: Exp. idea

3

Hf 10h exposure

before

TEM of mech. pol. Hf sample

No Ga contamination GB enriched with Hf and some Ni

TEM of Zr sample

• Zr enriched at the GB

How to calculate the flux

- Calculate the flux
 - Number of diffused Al-atoms N^{Al}_{GB}
 - Exposure time Δt (10h)
- Calculate number of atoms
 - Volume of ridge $V^{Al} = A^{Al} L_{GB}$
 - Length of GB L_{GB} (not height!)
 - Cross section area of ridge A^{Al}
 - Volume of Al_2O_3 unit cell: V_u =2.54 10⁻²² cm³
 - Number of Al atoms per unit cell: 12

$$J_{Al} = \frac{N_{GB}^{Al}}{L_{GB}\Delta t} \qquad N_{GB}^{Al} = \frac{12 V^{Al}}{V_{u}} \qquad J_{Al} = \frac{12 A^{Al}}{V_{u}}$$

Flux of AI through GBs at 1100°

Should follow Fick's 1. law
(assuming
$$h_{oxide}$$
 is constant) $J_{GB}^{Al} = -\frac{A}{h_{oxide}}$

Flux of AI through GBs at 1100°

Should follow Fick's 1. law (assuming h_{oxide} is constant) $J_{GB}^{Al} = -\frac{A}{h_{oxide}}$

9

[1] T. Boll, K. A. Unocic, B. A. Pint, A. Mårtensson, and K. Stiller, "Grain Boundary Chemistry and Transport Through Alumina Scales on NiAl Alloys," *Oxid. Met.*, pp. 1–11, 2017.

Sample preparation of surface features with FIB

Undoped NiAl

APT of Hf sample

APT of Zr sample

- Protective Ag on top of ridge-GB
- No Ni found
- $\Gamma_{\rm Zr}$: 2.5 nm⁻²

Outward flux of Ni, Hf, Cr

Conclusions

Outward Diffusion of AI along Al₂O₃ GBs is observed by STEM Mechanical polishing introduces defects that promote diffusion

Hf reduces Al-outward diffusion stronger than Zr

- Zr is enriched at GBs \rightarrow Outward diffusion of Zr, Hf
- Hf is enriched at GBs
- Ni at the GB and at the top of the ridge
 → Outward diffusion of Ni
- $J_{O} \sim 10^{6} \text{ nm}^{-1} \text{s}^{-1} >> J_{AI} \sim 1 \text{ nm}^{-1} \text{s}^{-1} >> J_{Hf,Ni,Zr} \sim 10^{-3} \text{ nm}^{-1} \text{s}^{-1}$
- Absence or reactive elements -> J_{Ni} ~10⁻² nm⁻¹s⁻¹

Thank you for your attention

You also want APT results: knmf.kit.edu, or contact me KNMF grants APT time to suitable projects

Acknowledgements

Kinga A. Unocic, Bruce A. Pint (ORNL): NiAl+Hf and NiAl+Zr samples Patrik Alnegren: Help with 2nd exposure and sputter coating: