Enabling the Application of Open Systems like
PCs for Online Voting

Melanie Volkamer', Ammar Alkassar?, Ahmad-Reza Sadeghi®, Stefan Schulz?

! German Research Center for Artificial Intelligence volkamer@dfki .de
2 Sirrix AG alkassar@sirrix.de
3 Ruhr-Universitdt Bochum {sadeghi, schulz}@crypto.ruhr-uni-bochum.de

Abstract. An increasing number of elections have been performed using
Online Voting. Due to these experiences, the technical research topics
have changed: While voting protocols have been well analysed in the past,
now, the security and trustworthiness of the client platforms come to the
fore. Malware could cause arbitrary damages regardless how secure the
underlying voting scheme is. Moreover, corrupt voters can overcome the
receipt-freeness of many protocols by manipulating their voting client
(PC). Currently, the client side is mainly protected by organizational
measures imposed on the voters, largely ignoring the issue of corrupt
voters. However, since elections are the very basis of democracy, verifiable
technical solutions are essential. Therefore, we examine the necessary
properties of a trustworthy client which both protect the voters from
malware and the voting system from corrupt voters. Our approach is
based on Trusted Computing in combination with a secure operating
system. We show that other existing voting protocols can be implemented
on the top of our approach as well as a significantly simplified voting
scheme by still retaining the required properties.

1 Introduction

Recent remote online elections show that Online Voting is not only theoreti-
cally discussed, but also applied in practise. Examples are the Estonian Local
Government Council Election, the elections of the Gesellschaft fiir Informatik in
Germany (GI), the online referendum in Switzerland, and the 2006 ACM SIG
election. Additionally, countries like the Netherlands and Austria plan to intro-
duce Online Voting for people living abroad for the next national elections®*.
Nevertheless, people are still cautious about the introduction of Online Voting
and we are far away from an employment in large.

Online Voting System can be attacked in various ways: The attacker can
either attack the end-user device, the communication or the voting servers. Let
us assume that well established security functionalities are in place to prevent
attacks to the communication and to the voting servers, because attacks to
the communication are prevented by well known and analyzed voting protocols

4 Information about all these elections can be found in [8].



2 Melanie Volkamer, Ammar Alkassar, Ahmad-Reza Sadeghi, Stefan Schulz

and the voting servers are protected from intruders over the network by using
state-of-the-art security mechanisms installed and configured by administrators
(firewalls, virus scanners, etc.). Moreover, physical access for intruders to the
voting servers can be prevented using, e.g., access control and secret sharing
mechanisms.

Our concern in this paper is the voter’s PC or in general end-user devices.
What kind of manipulation is possible by malware which is not detected by the
voter or even malware which is installed on purpose by a corrupt voter? Do
assumptions made by voting protocols about the client computing environment
hold in practise? Obviously they do not, because the voter’s devices in Online
Voting scenarios are open systems like a PC or PDA. In general, voters are
not able to protect themselves efficiently against malware. Likewise, we cannot
assume that a malicous voter do not manipulate his device on purpose, since a
platform owner has complete control over it.

In this paper we examine the security and trustworthiness of the end user
device and discuss the application of Trusted Computing in combination with a
secure operating system to support the required security and trustworthiness of
the client. We argue that, in contrast to current situations Online Voting can be
done much more secure and also effeciently using this technologies.

Our focus in rimarily are security issues whereas usability aspects, while cer-
tainly important, play a lesser role. A welcome side effect of applying Trusted
Platforms for Online Voting is the possibility to simplify the voting protocol
enormously to make it easier to understand and to verify. However, it is also
possible to use existing protocols on the top of our approach, thus existing sys-
tems can still be used with minor changes.

The paper is organized as follows: In Section 2, we discuss common vulnera-
bilities, and define security requirements. Existing and related work is proposed
and discussed in Section 3. We discuss the application of Trusted Computing in
combination with a secure operating system to produce a secure and trustwor-
thy voting client in Section 4. The implementation issues for a simplified voting
protocol as well as TC as an extension to existing Online Voting System can be
found in Section 5 and we conclude in Section 6.

2 Requirements and Vulnerabilities

The main technical requirements to an Online Voting System are the following
two (see [10] and [13] for a more detailed list):

1. Votes must not be added, removed, or altered 'undetected’.

2. Only the voter is aware of his voting decision. Nobody else is able to link
the voter to his vote and the voter has no possibility to prove his decision to
a third party (receipt freeness).

Theses properties must hold for the communication, the voting client and
the voting server. We will analyze only the voting clients: Currently, electronic
voting devices are already used in polling stations because it can be verified that



Enabling the Application of Open Systems like PCs for Online Voting 3

these machines ensure both requirements. These devices are closed box systems
which are only used for clections and which have no additional functionality.
The security and trustworthiness of these devices is justified by their compar-
atively small complexity, which enables an evaluation of the whole device and
not only the voting software, and the tamper-resistant design of these devices.
Unfortunately, closed-box voting devices are out of the question for remote on-
line elections because of enormous per-item costs. Thus, remote Online Voting
has to work on deployed hardware and software on open systems like PCs and
PDAs. In order to use these devices for voting we have to achieve closed-box
level security on these open systems to fullfill the requirements.

Vulnerabilities. Currently, devices like PCs and PDAs are threatened mainly by
three categories of attacks:

1. The voting software is prone to manipulation by malicious code on the voting
device; e.g., viruses and Trojan horses.

2. The voting software is manipulated by a corrupted voter. This is possible
because the devices is usually completely under the control of the user/voter.

3. In addition, the attacker could disseminate manipulated voting software.

While the third group of attacks can be prevented by conventional means, e.g., by
the application of software certificates, the first two attacks cannot be prevented
by traditional means, yet. We will now have a closer look to these two types of
attacks.

2.1 Malicious Code on Voting Devices

Malicious code, running on the voter’s client lowers the security of any voting
system to absurdity: Plenty of attacks are imaginable: (i) altering the voter’s
decision without the voter noticing it, (ii) preventing voters from the election,
by throwing away the vote and making the voter believe that everything works
correctly, e.g., by displaying faked messages, (iii) extracting the voter’s decision
and transmitting the plaintext vote to the attacker.

Common cryptographic means do not overcome any of these attacks, since
malicious code interacts before the cryptographic operations are applied. The
adversary may, for instance, eavesdrop on mouse or keyboard inputs and deduces
the voter’s decision. Thus, both requirements can be violated by malicious code
on the voting device.

This is a strong problem because malicious code can be distributed easily
and automatically, e.g., by exploiting security flaws of the end-user device or
by sending infected emails to the voter. This can be done massively via viruses.
Malicious code could also be put on the voter’s device by developers of products
running on many end user devices (e.g., Solitair). Compared to postal voting,
these attacks can be done automatically and in a scalable way with significant
impact on the election result.



4 Melanie Volkamer, Ammar Alkassar, Ahmad-Reza Sadeghi, Stefan Schulz

2.2 Corrupt Voter

Corrupt voters may alter the voting software on their device and/or their device
in arbitrary ways: They can, e.g., log their mouse and keyboard events, any
other T/O interfaces like the one to connect to the network. Moreover, they are
able to store each intermediate computation step. Thus, having a probabilistic
encryption function encp and a plaintext m as well as the corresponding cipher
text ¢ after computing ¢ = encp(m), the voter has logged all random parameters
to be able to prove that ¢ belongs to m. The most serious problem by doing so, is
the generation of a proof for the voting decision which would violate the receipt
freeness and thus, allow vote selling.

Receipt-freeness is a well known problem. While many receipt-free voting
protocols already exist (see, e.g., [6] and [9]), most of them are based on assump-
tions® with respect to some parameters (e.g., random numbers for probabilistic
encryption) which have to be kept secret on the client side. This assumption
does not hold in practise since platform owners have complete control over the
voting device - the PC.

It is not enough to sell m, ¢ and proof(m,c). Someone bying ballots, the
customer, might also want to know whether the shown c is the one that is cast
and counted or one created it in order to cheat. Therefore this proving-attack
works quite well for any voting protocol working with a bulletin board where the
encrypted vote can be somehow assigned to the voter. Therefore, a corrupt voter
can sell his logged data (e.g., vote, parameters, and keys) and the customer of
the vote verifies whether the corresponding vote is on the bulletin board or not.
This attack can be supported by the application of voter verifiability. If the voter
has the possibility to verify that his vote is stored and counted. This proof can
also be used by the customer to check whether the voter behaved as promised.

Notice, it is quite a lot of effort for single voters to get the necessary data
out of the voting software just to sell a single vote. However, most customers
will wish to buy a large number of votes anyway, and thus provide the corrupt
voters with ready-made tools (which conduct the necessary logging and reporting
automatically), which they only have to install and use.

Summery. We can conclude, that any voting scheme has to consider the client
part as an untrusted part of the voting system, which limits the usage of many
simpler voting schemes.

3 Related Work

Online Voting projects like in Switzerland [1] or the one of the GI [5] have also
noticed the client weakness. Thus, they give handouts to the voters which explain
voters how to improve the trustworthiness of their PCs. While this approach can

5 Receipt free protocols which are not based on these assumptions are, e.g., [7] and
[16]



Enabling the Application of Open Systems like PCs for Online Voting 5

reduce the risks created by malware, many users will likely not be able to follow
these instructions, and the technique is useless against corrupt voters.

Otten has also addressed the client problems and thus, proposed in [3] a
special voting operating system based on Knoppix. Here, voters have to boot
their PC from CD in order to vote. This approach does not solve the corrupt
voter problem but it addresses the threats caused by malware.

Other work like [7] and [16] proposed the application of an observer, e.g.,
a smartcard. By doing so they overcome the attacks of a corrupt voter mostly
but a smartcard does not interact directly with the voting server but over the
end-user device and thus the open system. Malware on the end-user device can
mount a man-in-the-middle attack and misuse the card, e.g., by sending a wrong
vote to the card in order to encrypt and sign it or the PC displays the wrong
ballot.

Already in 2002, Avin Rubin discussed the security considerations for remote
electronic voting in public elections [14] and find several flaws caused by malware
within the application of PCs as end-user devices for Online Voting. He already
pointed out that hardware support to enable a trusted path between the user
and the election server is necessary to overcome the threats.

4 Application of Trusted Platforms in Online Voting

In this section we shortly discuss a security architecture that can be used for
secure online voting using open systems like PCs. This is in contrast to today’s
used methods.

The current research is looking for a Trusted Platform which includes the
desirable properties of open platforms (e.g., PC’s and PDA’s) and of closed
platforms (voting device, smartcards). Thus, it is not limited in its functionality
like closed platforms but it is able to prove to a third party, that it is well
behaved, like closed platforms. A trusted platform is based on Trusted Computing
hardware and on a secure operating system.

Trusted Computing (TC). TC refers to a technology advocated, developed and
promoted by the Trusted Computing Group (TCG). The core component of TC
is the Trusted Platform Module (TPM), a secure and tamper-evident module
(often a single chip) integrated into the platform. TPMs are thought of as not
being costly, to the point of easily becoming a standard part of off-the-shelf
PC platforms. About 50 million PCs with TPM chips have been shipped, and
predictions for 2010 range around the 250 million mark®. They provide several
essential functionalities:

— Useful Cryptographic Primitives like a secure random number generator in
hardware.

— Restricted Usage Keys which can only be accessed in certain limited ways,
such as being accessible only in one particular platform state, and not being
migratable out of the TPM.

5 See https://www.trustedcomputinggroup.org/news/newsletter /2005/2005_July



6 Melanie Volkamer, Ammar Alkassar, Ahmad-Reza Sadeghi, Stefan Schulz

— (Remote) Attestation to remotely authenticate (the configuration of) a plat-
form. For this purpose, a trusted boot creating a chain of trust is essential.
The trusted boot logs the boot sequence starting with the Core Root of Trust
Measurement (CRTM) in protected registers of the TPM (called Platform
Configuration Register - PCR). These PCR values are signed by a key called
Attestation Identity Keys (AIK). The AIK is generated by the TPM and
the public key is either certified by a Trusted Third Party or without by
using the protocol developed by Brickell, Camenisch and Chen in [2]. In the
second case no information about the TPM or its owner is given away.

— Sealing to cryptocraphically bind data to a specific platform, a specific plat-
form configuration and the identifier of the invoking application. Sealing may
be facilitated using restricted keys. Therefore, a key pair is generated and the
corresponding secret key is bound to the current platform, platform config-
uration and application. Now, a remote instance can enrypt data including
a demanded configuration using the corresponding public key. The TPM
can decrypt the cipher but releases the data only if the current platform
configuration matches the demanded one.

While the TPM itself is a passive component, the primitives it provides can,
with secure operating systems support, be used to significantly improve security
on end-user devices.

Secure Operating System. The operating system controls the information flow
above the hardware layer and thus has access to all kind of data - including
security critical data. Thus, a secure operating system is essential to protect
security-critical applications from each other and from malicious code using se-
curity properties like process isolation and a trusted path.

Trusted Platform. A trusted platform is based on a secure operating system and
the TPM. A security platform consists of a minimalized security kernel - the
secure operating system. Any conventional operating system as well as security
critical applications like the voting application can be executed on the base of the
secure operating system. An example for such an architecture is the PERSEUS
security architecture [11] (compare Figure 1 for a simplified application).

4.1 Secure and Trustworthy Voting Clients

In this section, we show which parts of a trusted platform can be used to protect
against the identified attacks from Section 2.

Malicious Code on the Clients. The process isolation of the secure operating
system is essential to prevent malicious code from accessing security-critical ap-
plications on the end-user devices in general. While malicious software might
be on the device, it cannot influence or interact with the voting software. In
addition, data displayed on the screen and data from the mouse and the key-
board can be neither read nor altered because of the trusted path between user



Enabling the Application of Open Systems like PCs for Online Voting 7

2

Conventional B
Operating i
System =

f=

©

‘ Secure Operating System |

Ountrusted
mirusted

‘ Existing Hardware ‘TPM‘

Fig. 1. Example for a trusted platform

and application. Thus it is not possible that a faked message is displayed on the
screen to fool the voter into accepting a faked vote casting process. Moreover, it
is not possible to eavesdrop the communication between the user and his system
in order to deduce the voter’s decision.

To ensure that incoming messages from the voting server are not read by
malware or in general other applications, the voting server can seal the message
and thereby bind it to the correct voting application on the proper platform.

To prevent malicious code to read or alter data from a previous voting phase,
this data can also be encrypted based on sealing. Thus, only the authentic voting
software running on the proper system can read the data.

Corrupt Voter. To prevent voters from manipulating the voting device or the
voting software remote attestation is essential. Thereby, the whole system con-
figuration, including the operating system and the voting software, is measured
and proven to the voting server. The server only accepts a message and com-
municates with the voter if the voter’s voting software is authentic and runs
on a trusted platform. The voter can still install malicious software on any vir-
tual machine but here he cannot vote because the voting server will not accept
his ballot because of the wrong values in the PCRs (remote attestation can be
achieved by sealing the messages to the configuration of the voting application
and unterlying TCB). Those malware cannot influence or eavesdrop the voting
software running in the voting virtual machine because of the process isolation.

Dissemination of Manipulated Voting Software. In general, the voter downloads
the voting software (the whole voting virtual machine). Currently, some addi-
tional software computes the voting software’s hash value and the voter verifies
the value or the voter checks whether the voting software is correctly signed.
However, currently, malware running on the platform can manipulate this secu-
rity check and the display, as well. This cannot happen on the trusted platform
because of the trusted path.

In summery, a trusted platform overcomes the identified open problems of
Online Voting and it provides more security for the last attack where partial



8 Melanie Volkamer, Ammar Alkassar, Ahmad-Reza Sadeghi, Stefan Schulz

solutions already exist. Thus, a trusted platform on the voting clients and server
is a solid foundation for a secure and trustworthy Online Voting System.

5 Possible Implementations

5.1 A Simple Voting Scheme

Currently, the voting protocols are quite complex, because the voter has to be
identified and at the same time the election secrecy must be ensured. Protocols
are based on almost all kinds of cryptographic primitives like, e.g., homomorphic
encryption (e.g., [15]) and blind signature (e.g., [12,4]). In general, only few
voters understand most of the proposed voting protocols but for the average
voter it is a mystic black box. This is one reason why research introduced voter
verifiability but this makes protocols even more complicated. The application
of trusted platforms on the client and the server side allows for simplifying the
protocol to encryption and signing because we only need to prevent attacks on
the network because we trust that the client and server voting software is verified
and certified. Moreover, this supersedes voter verifiability.

A protocol (with a simplified notation) would, e.g., be the following one:
There are two phases. In the first one the right to vote is checked by one voting
server (server;) and in the second one the vote is cast and therefore sent to a
second voting server (servers).

Registration Phase. It starts with a client and server side remote attestation

including an exchange of public sealing keys:

(1) Voter — Server; : sign, 9" (PC’RsVOteT,Png";f;;g)
Notation: This message denotes the remote attestation protocol, where at
the end the server knows the platform configuration of the voter (because of
PCRSvyter) and the public sealing key PK Yoter it has to use to commu-

Sealing
nicate with the voter and only with the voter.

. . Server Server
(2) Server; — Voter : sign’,5<"" (PCRSServeTUPKSealingl)

Now, the main voting protocol starts:
(3) Voter — Server; : sign 2" (encgzgﬁg (ID,PIN ))

The voting server checks by verifying the signature, whether the voter works
with the authentic voting software on the trusted platform. The server itself can
only encrypt the message if the authentic server side voting software runs on the
trusted platform. Now the voting server checks whether the voter is an eligible
voter (using ID and PIN code) and replays with

(4) Server; — Voter : sign’ee" (encgSiin., (1D, 0k ) )



Enabling the Application of Open Systems like PCs for Online Voting 9

The voter’s voting software checks by verifying the signature, whether the answer
was send from the authentic voting software running on a trusted platform. In
addition, only the authentic client side voting software running on a trusted
platform is able to decrypt this incomming message. Only if there is an “ok”
sent in step (4), the voting software displays the ballot. Thus, the Registration
Phase is finished.

Vote Casting Phase. Knowing the voter has voting-rights the voting software
displays the ballot. Now the voter can choose candidates and acknowledge his
decision. Then, the voting software first informs Server; that the voter has cast
a ballot.

(5) Voter — Server; : sign’ 9t (671/(5322}%’; (ID,”voted” ) )

The voting server checks whether the authentic voting software is still running
on the trusted platform. Now the voting server ticks off the corresponding voter
in the electoral register and replays with

(6) Server; — Voter : sign55Le" (enc‘bfg;fi’;w (ID,” flagged” ) )

Now, it starts again with a client and server side remote attestation including
an exchange of public sealing keys (diffrent keys as above). In this phase the
remote attestation is based on the [2] protocol. Thus, neither the servers nor any
network sniffer” does know which voter or even which TPM sends the encrypted
vote because no voter or even TPM information are available.
(7) Voter — Servers : sign4 94 (PCRsvy oter, PKYOUT o)
Notation: This message denotes the remote attestation protocol, where at
the end the server knows the platform configuration of the voter (because of
PCRSvyoter) and the public sealing key PK Voter it has to use to commu-

Sealing
nicate with the voter and only with the voter.

. . Serverg Servers
(8) Servery — Voter : sign’, 75 (PCRssem,e,«Q,PKSwlmg)

Now, the main voting protocol starts again:
AT . ad iy YV OtET Servers
(9) Voter — Servers : signy 757 (encgepy, o (vote ) )

The server accepts a vote-message if it is generated and signed by the authentic
voting software. Consider, the server does not need any other mechanism to verify
authentic votes, because it trusts that an authentic voting software running
on a trusted platform only sends a vote-message if the voter has the right to
vote. Thus, the essential property that only authorized voters can cast a ballot
is enforced mainly by the client voting software. Therefore it is important to
evaluate and certify the software. In addition, the server voting software has to

" For the network sniffer this does only holds if the voter has different IP addresses
in both phases. Otherwise he can use the IP to link all protocol messages to one
specific voter.



10 Melanie Volkamer, Ammar Alkassar, Ahmad-Reza Sadeghi, Stefan Schulz

ensure that the ballot message is sent from a proper system running the authentic
client voting software (thus, the steps before took place). In addition it has to
be ensured that replay ballot messages are detected.

Finaly, the server sends a confirmation:

(10) Servery — Voter : sz’gni‘?}g”z (encggcff,;lg, (ok))

The voter’s voting software verifies the message and displays the voter that his
vote is stored successful.

At the end of the Election Day the votes stored on the voting server are
decrypted and counted. The encrypted and decrypted votes can be made public.
Thus, everybody can compute the result on his own.

5.2 Analysis

We will now see, whether the proposed protocol fulfils the requirements defined
in chapter 2 for the client, the server and the communication. Assuming the
applied client and server side software is verified, it is enough to show, that the
requirements hold for the communication and that a voter cannot cast more than
one vote. Obviously, each voter can only cast one vote, because after choosing
candidates and acknowledging his choice, the voter lose his right to vote and
Servery; does not accept a request from this voter anymore. The election secrecy
requirement is ensured on the network because all messages are encrypted and
corresponding decryption keys are kept secret by the voting client and server
respectively. Moreover, it is not possible to create new protocol messages because
it is not possible to either fake a signature or manipulate a voting client in order
to fake signatures. It is also not possible to replay an old message, because the
voting servers and client servers check the freshness of the messages and the
applied keys respectively.

Future work is to have a closer look to such simplified protocols especialy
with respect to system break downs and a verification of such a protocol.

5.3 Application to Existing Systems

In this section, we examine systems based on SSL and a web-browser, such as
Polyas (used for the GI elections) and the system used in the Swiss elections.
These protocols first establish an SSL connection to the voting server (or to two
successive servers, a voter registry and a ballot server). We assume each party
has an active TPM chip.

Wrt. the current point in research we could distribut a CD to boot a secure
platform.

This CD contains a GUI capable of providing a trusted path, a web browser
and a secure VPN module. All communication is tunneled via IPSec, with all
non-IPSec traffic rejected by the voting server without consideration. Before the
actual voting protocol (and in fact, SSL key exchange) is executed, both sides
attest one another.



Enabling the Application of Open Systems like PCs for Online Voting 11

Of course, limiting voters to the use of one CD-based solution and using
attestation has the side effect of locking out voters using platforms without a
TPM. Also, some voters might feel their system to be “secure enough”, and
be uncomfortable with having to reboot from the CD. Neither should be easily
dismissed, but would merit further consideration.

6 Conclusion

We illustrated that the voter’s device is still a weak point of any Online Voting
System based on open platforms. Attacking the client enables the breaking of
the election secrecy as well as the manipulation of the election outcome by
altering votes on the voter’s device. Moreover, we showed that receipt-free voting
protocols and voter verifiability does not really help to solve these problems.
Nevertheless, we believe that Online Voting will increasingly applied in future
because of the increasing mobility of the voters. To increase the security and to
turn a multi-purpose open system, like the voter’s PC is one, into a secure and
trustworthy system, we propose to use an appropriate security architecture based
on a security kernal and Trusted Computing. Even if we know that currently
there are still open problems with Trusted Computing and a lot of work to
do with secure operating systems, we believe that Online Voting should not be
applied at least in large for any parliamentary elections without a trustworthy
computing platform.

Moreover, by using the functionality of trustworthy platforms, we can sim-
plify the voting protocols while also being able to use any other security critical
application (like homebanking).

References

1. Nadja Braun and Daniel Bréandli. Swiss e-voting pilot projects: Evaluation, situa-
tion analysis and how to proceed. In Krimmer [8].

2. Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In
CCS ’04: Proceedings of the 11th ACM conference on Computer and communica-
tions security, pages 132-145, New York, NY, USA, 2004. ACM Press.

3. Dieter Otten. Mehr Demokratie durch Internetwahlen? Vortrag gehalten im Nix-
dorf Forum in Paderborn 15-2-2006, 2005.

4. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In ASIACRYPT ’92: Proceedings of the Work-
shop on the Theory and Application of Cryptographic Techniques, pages 244-251,
London, UK, 1993. Springer-Verlag.

5. Ridiger Grimm, Robert Krimmer, Nils Meifiner, Kai Reinhard, Melanie Volkamer,
and Marcel Weinand. Security requirements for non-political internet voting. In
Krimmer [8].

6. Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic
encryption. In Advances in Cryptology - EUROCRYPT 00, volume 1807 of Lecture
Notes in Computer Science, pages 539-556. Springer-Verlag, 2000.



12

10.

11.

12.

13.

14.

15.

16.

Melanie Volkamer, Ammar Alkassar, Ahmad-Reza Sadeghi, Stefan Schulz

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In WPES ’05: Proceedings of the 2005 ACM workshop on Privacy in the
electronic sociely, pages 61-70, New York, NY, USA, 2005. ACM Press.

Robert Krimmer, editor. Electronic Voting 2006, Austria, Proceedings, volume 86
of LNI. GI, 2006.

Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Se-
ungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In ICISC;
volume 2971 of Lecture Notes in Computer Science, pages 245-258. Springer-
Verlag, 2003.

Council of Europe. Legal, operational and technical standards for e-voting. recom-
mundation rec(2004)11 adopted by the committee of ministers of the council of
europe and explanatory memorandum. Council of Furope, Strafburg, 2004.
Birgit Pfitzmann, James Riordan, Christian St”uble, Michael Waidner, and Arnd
Weber. The PERSEUS system architecture. In Dirk Fox, Marit Kéhntopp, and
Andreas Pfitzmann, editors, VIS 2001, Sicherheit in komplexen I'T-Infrastrukturen,
pages 1-18. Vieweg Verlag, 2001.

Alexander Prosser and Robert Miiller-T6rok. E-Democracy: Eine neue Qualitat
im demokratischen Entscheidungsprozess. Wirtschaftinformatik,, 6:545-556, 2002.
Physikalisch-Technische Bundesanstalt Braunscheig/Berlin PTB. Online Vot-
ing Systems for Nonparliamentary Elections - Catalogue of Requirements.
http://www.berlin.ptb.de/8/85/LB8E_5_2004_1AnfKat.pdf retrieved on 15-2-2000,
8.5.2004.

Aviel D. Rubin. Security considerations for remote electronic voting. Commun.
ACM, 45(12):39-44, 2002.

Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic voting. Lecture Notes in Computer Science, 1666:148—
164, 1999.

Joern Schweisgut. Coercion-resistant electronic elections with observer. In Krim-
mer [8], pages 171-177.



