Introducing Verifiability in the POLYAS Remote
Electronic Voting System

Maina M. Olembo, Patrick Schmidt and Melanie Volkamer
CASED, TU Darmstadt,
Mornewegstralle 32
64293 Darmstadt, Germany
{maina.olembo, patrick.schmidt, melanie.volkamer} @cased.de

Abstract—Remote electronic voting continues to attract atten-
tion. A greater number of election officials are opting to enable
a remote electronic voting channel. More and more scientific
papers have been published introducing or improving existing
remote electronic voting protocols. However, while the scientific
papers focus on different aspects of verifiability, most of the
systems in use do not provide verifiability. This gap is closed
in this paper by extending a widely used remote electronic
voting system, the POLYAS system, to provide verifiability. This
approach has been tested in the 2010 election of the German
Society for Computer Scientists and will be applied in future
elections.

Index Terms—Security, Communication System Security, Data
Security, Information Security, Cryptography

I. INTRODUCTION

POLYAS is a remote electronic voting system that has
been in use since 1996 in various national and international
elections including those for the DFG - Deutsche Forschungs-
gesellschaft (German Science Foundation) -, the Initiative D21
Association, the Swiss Life Group, which is an insurance
company in Switzerland, and both Finnish and German youth
elections. Recently, it was used to enable remote electronic
voting for the first legally binding university election at the
Friedrich Schiller University in Jena. The most popular
example has been the annual elections of the GI - Gesellschaft
fiir Informatik (German Society for Computer Scientists) -,
where it has been used parallel to postal voting since 2004
(in 2010 for example, 3193 members cast an electronic vote
and 51 a mail vote). POLYAS has so far successfully handled
all these elections. It is estimated that as of 2010, about one
million legally binding votes have been cast using this voting
system [1].

In 2008, the BSI - Bundesamt fiir Sicherheit in der Informa-
tionstechnik (German Federal Office for Information Security)
-, certified and released the Common Criteria Protection
Profile defining a ‘Basic set of requirements for Online Voting
Products’ [2]. Based on this protection profile, POLYAS
is currently the first remote electronic voting system that is
evaluated according to this international Common Criteria

This work was supported by CASED (www.cased.de) and Micromata
(www.micromata.de).

(ISO/IEC 15408) evaluation standard [3]. This evaluation
covers only basic requirements for remote electronic voting
systems and does not consider verifiability as one of the
requirements to be fulfilled. Consequently, verifiability is not
evaluated by the Common Criteria evaluators. For the type
of elections executed with POLYAS so far, that is with a
low public profile and low security risk, this is acceptable.
First, because the application note of [2] states that ‘this
Protection Profile is sufficient to securely implement some
kinds of elections in associations, for boards and bodies such
as at universities, within the scope of education and research,
and in particular other non-political elections with low attack
potential’. Second, a paper by Buchmann and Rofnagel
[4] states that the German Federal Court decision [5] from
2009 does not hold for all elections, but mainly for German
parliamentary elections.

However, if POLYAS as one of the widely used remote
electronic voting systems should be used for elections bearing
a higher public profile and therefore a higher security risk,
in particular for parliamentary elections in Germany (e.g. as
an additional channel to mail voting), it has to incorporate
verifiability as required by the court decision [5]!. The goal of
this paper therefore is to present an extension to the POLYAS
system in order to provide verifiability. We also discuss
the application of this extension in light of the GI 2010
election, share our experiences and lessons learnt including
modifications of the voting procedure for the 2011 election.

The remaining part of this paper is structured as follows:
In Section II we present a description of the POLYAS system;
in Section III we execute a security analysis of the system.
Section IV proposes verifiability approaches and afterwards, in
Section V, the application of these approaches in the GI 2010
elections and the plans for future GI elections are discussed.
Section VI concludes the paper.

II. SYSTEM DESCRIPTION

The electronic voting system POLYAS can be classified in
several ways. According to the classification presented in [6]
POLYAS is described as a remote electronic voting system
that uses:

'We do not state that POLYAS is ready for parliamentary elections once it
implements verifiability. This is a necessary but not a sufficient condition.

This work has been published in the Proceedings of the Sixth International Conference on Availability, Reliability and Security 2011. IEEE 2011 ISBN
978-1-4577-0979-1. DOIL: http://doi.ieeecomputersociety.org/10.1109/ARES.2011.26

(©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

o A secret-based technique for voter authentication. The
voter ID is known a priori to the voter, such as a
membership number or ID number. The authentication
token is a voting TAN which is sent to the voter by
postal mail and is used for one election only. Note,
the integration of smart cards for voter authentication is
possible, but as it is irrelevant for verifiability purposes,
we do not discuss it in this paper.

o The “separation of duty” principle to ensure electoral
secrecy in the voting phase.

o« A web browser without JavaScript (thin client) as the
voter interface.

In the following subsections we first introduce the components
involved and their responsibilities, describe the voting proce-
dures and protocols, and then provide some details about the
implementation relevant for verifiability considerations.

A. Components and Responsibilities

POLYAS comprises a Vote Casting Interface (VCI) and
three servers, namely, the Electoral Registry Server (ERS), the
Validation Server (VS) and the Ballot Box Server (BBS). An
off-line Tallying Component (TC) is used to tally votes. An-
other component, the Committee Tool (CT), enables election
officials to, for example, start and stop the election. Note, the
CT is not discussed further as it is irrelevant for verifiability
purposes. The components and their interaction are illustrated
in Fig. 1.

The VClI is a web interface displayed to the voter (developed
using HTML code) that can be accessed by different web
browsers, including Lynx, a text-based browser. It facilitates
voter authentication and casting of votes. The ERS authen-
ticates voters and checks their eligibility to participate in an
election; the VS controls the ERS by additional authentication
of voting material from voters; and the BBS stores the cast
votes in an encrypted form. The TC loads the encrypted votes,
decrypts them, and computes the election result.

B. Voting Procedures and Protocols

This subsection describes the voting procedures and proto-
cols of the three phases of interest, namely pre-voting, voting

A
-
VALIDATION SERVER
’/:'
-

TALLYING COMPONENT

BALLOT BOX SERVER

Figure 1. Interaction of POLYAS components

and post-voting. Note that we abstract details of the protocol
and present those of interest for verifiability.

Pre-Voting Phase: In this phase, a series of six steps is
carried out by election officials.

First, voting TANs are generated. Two lists are then
produced: a hashed list and an encrypted list of voting TANSs.
The former list contains, in addition, voter ID information and
is placed in the electoral register. The latter list is sent with the
voters’ names and postal addresses to a service provider which
prints the election material. This service provider decrypts the
TANSs using its private key and allocates a decrypted version
to each piece of election material. These are then dispatched
to the voters using the postal address information provided.
Each TAN is hidden in the form of a scratch field such that
the voter has to reveal it.

In the second step, key pairs are generated for the three
servers and the TC, namely:

o HTTPS key pairs for all three servers,

« a signature key pair for the BBS, and

« a database key pair for the TC.

The HTTPS public keys for the ERS and BBS are published
on the election web page and the corresponding fingerprints
are printed on the election material. In addition, public keys
are distributed to the different components. The components
contain the following keys (see also Fig. 2):

o The ERS has an HTTPS key pair for communication with
voters and other components. It also stores the public
HTTPS keys for the other two servers and the public
signature key of BBS.

o The VS contains an HTTPS key pair for communication
with other components. In addition, it stores the public
HTTPS keys for the other two servers.

o The BBS has an HTTPS key pair for communication with
voters and other components and the public HTTPS keys
for both ERS and VS. It also stores the private signature
key of the BBS and the public database key from the TC,
which is used for vote encryption.

o The TC contains the private key of its database key pair,
which it uses to decrypt votes at the end of an election.
This private key is stored encrypted and the decryption
is protected by two passphrases, each known to only one
(independent) election official.

In the third step, the electoral register is installed in the ERS.
In addition, the list of eligible TANs (not hashed) is loaded
in the database of the VS and it is verified that the ballot box
database at the BBS is empty. Next, the ballots for a particular

ERS Vs BBS TC
HTTPS key pair HTTPS key pair HTTPS key pair Private database key {TC}
Public signature key {BBS} Private signature key {BBS} (Encrypted, access requires
Public database key {TC}
\ [J
\
Election Officials
2 Access tokens {ERS}
2 Access tokens {VS}
2 Access tokens {BBS}
2 Passphrases {TC}

Figure 2. Components, election officials, and assigned keys

election (including name of candidates and title of election)
and voting rules (including for invalid votes) are set up on
the BBS. In the fifth step, two access tokens are generated
for each server. Both must be entered to remotely access
the corresponding server. These six tokens are distributed to
six independent election officials. In the final step, the three
servers are configured and security software, such as anti-virus
software, is installed. POLYAS software is then installed and
the election is started by the election officials.

Voting Phase: In Fig. 3 the steps involved in the voting
phase are illustrated. Communication between the different
components is secured using Secure Socket Layer (SSL). The
secured SSL communication is illustrated as: between the
voter and ERS, SSL;; between ERS and VS, SSL5; between
VS and BBS, SSLs; between the voter and BBS, SSL4; and
between ERS and BBS, SSLs.

Assuming the communication between the components is
ensured by SSL, the voting protocol can be described in the
following way:

The voter visits the election web page and, ideally, verifies
the SSL certificate of the ERS. He then presents his voter ID
and voting TAN (1). The ERS verifies the voter’s eligibility
in the electoral register. If the voter is eligible, the ERS sends
the TAN to the VS (2). The VS verifies the voter’s eligibility
by checking if its database contains this TAN. If it does, the
VS generates a random voting token 7. This voting token is
generated only if both ERS and VS decide that the voter is
eligible. Note also that if the VS has been presented with the
same TAN previously, it will not generate a new token; rather
it will send the same token back to the ERS (but not to the
BBS).

After the VS has generated a new token 7, it sends it to
the BBS (3). The BBS temporarily stores this voting token
and sends back an acknowledgement (4). After receiving
this acknowledgement, the VS sends the same voting token
T to the ERS (5) which temporarily stores it and sends an
acknowledgement to the VS (6). In order to prevent double
voting, after receiving this acknowledgement, the VS marks

VOTER

1. Voter ID/Voting TAN
SSLy

] -

Verify Eligibility

8T SSLz
SsL,; 9.7+ Request for Ballot

|
- 10.7 + Ballot
SSL;
;
(comtmenore e TS
onfirm Choice "

Record T

SSLy

Pt ¥(soreselesion)
- tore ection

I

1

Delete T

SSLs

T
(set voter Ip invalid

|
16. Confirmation Message

Figure 3. The POLYAS voting protocol

the hashed TAN as invalid, and sends a confirmation to ERS
™).

The ERS sends T to the voter (8) who is then automatically
forwarded to the BBS to make a request (containing 7') for a
ballot (9). Ideally, the voter verifies the SSL certificate of the
HTTPS connection with the BBS.

The BBS verifies whether T is a valid voting token. The
BBS considers T to be valid if it has been received from the
VS and has not yet been deleted (as this would mean a vote
has already been cast). If this is the case, it sends the ballot
to the voter (10). The ballot is displayed to the voter in his
browser and he makes a selection from the options available.
The token T and voter’s selection are sent to the BBS (11).
If the voting token T is valid the BBS encrypts and stores the
selection in the ballot box database together with the voting
token 7. This entry is marked as ‘selection’. It then sends
back the voting token and the stored selection (in plain text
using only HTTPS encryption) plus information whether it is
a valid or invalid vote (12). The selection is then displayed
again to the voter. The steps herein can be repeated if the
voter wants to change his selection, prior to casting his final
vote. Finally, the voter casts his vote by confirming this in
the browser. A corresponding confirmation message including
the voting token 7 is sent to the BBS (13). The BBS verifies
whether T is still valid. If this is the case the BBS changes the
status of the entry in the database belonging to voting token
T from ‘selection’ to ‘cast vote’.

After this, the BBS sends the voting token 7 to the ERS (14)
which deletes the token it temporarily recorded. In addition,
it sets the corresponding voter ID as invalid. Next it sends
an acknowledgement message to the BBS (15) which then
deletes the corresponding voting token from the database and
any other temporarily stored copies. By deleting voting tokens
voter privacy is maintained as any link between the voter
and his cast vote are then removed. The voter will receive
a confirmation message of a successfully cast vote (16) and
this marks the end of the voting phase?.

Cast votes are stored in a randomized order in the ballot
box database, in blocks of thirty. These blocks are introduced
to implement a mechanism that would allow verification if
problems during the post-voting phase are detected. This
mechanism works in the following way: A hash chain is
created by applying a hash function to a block of thirty
encrypted votes. Thus, as soon as the BBS has received the
first thirty votes, it concatenates these encrypted votes, attaches
an initial hash value, computes the hash, and signs the output
using the private signature key. The output and the signed
version are sent to the ERS. The signature is verified and, if
valid, the message is stored in a separate database at the ERS.
An acknowledgement message is sent back to the BBS. The
next block of thirty votes is attached to this hashed output and
the hash function applied again. This process is repeated for
all available votes. At the end of the election the last block of
votes may contain less than thirty votes. In such a case, the

2VCI screenshots are available at https://www.gi.de/wahlen2010/.

votes are not included in a hash chain. The steps to create a
hash chain are illustrated in Fig. 4.

Post-Voting Phase: At the end of the election period,
the election officials close the election by using the different
access tokens to get access to the three different components.
Election officials download the ballot box database from the
BBS, the electoral register (including the status who has cast
a vote) from the ERS, and the database from the VS. The
ballot box database is loaded in TC. The two passphrases are
entered and tallying is carried out. The results are displayed
and printed out. Note that only those votes where the status is
set to ‘cast’ are taken into account, and not where the status
is set to ‘selection’. The cast (decrypted) votes are printed out
and stored to enable manual verification, should disputes arise.
The number of cast votes according to the VS and the ERS are
deduced from the corresponding databases and compared with
the number of votes in the ballot box database. In addition,
the database content of the three servers is archived on a CD.

C. Implementation Details

POLYAS is implemented in Java and integrates the Bouncy
Castle Cryptographic APIs. In this subsection, we present
only those implementation details required for verifiability (see
Section IV).

o Keystore: The private database key from the TC
is stored in a Java keystore. According to the Java
implementation one needs one passphrase to access the
keystore and another passphrase to access the private key.
Therefore both passphrases need to be entered in order to
access the private key, decrypt the votes in the database
and tally them.

o Encryption of votes: A hybrid encryption scheme is
used to encrypt votes based on RSA-1024 and AES-
256. For each received selection, the BBS generates
a temporary (symmetric) key kags which is used to
encrypt the vote. kagg is then encrypted with RSA using
the public database key from the TC.

o Hash function: SHA-256 is used to generate the hash
chain. An initial hash value (for the first block of thirty
votes) is hard coded in the source code.

« Ballot Box Database: A database entry in the BBS
contains the encrypted vote, the block identifier, the order
of the vote in the block (1 to 30), and the status (refer to
Table I).

Apply Hash Send to ERS
Function for storage

N~ Endof

lection?.
v;

(e

Figure 4. Flowchart illustrating creation of hash chain

Table 1
BBS DATABASE CONTENTS

[Encrypted vote | Block Number | Order in Block | Status |
enc(voteayq) 1 1

cast

cast

enc(vote13) 1 30

III. SECURITY ANALYSIS

A variety of security requirements for remote electronic
voting schemes has been proposed such as in [6], [7], [8],
[9], and [10]. In this analysis, however, we only address
integrity of the election results which is relevant to verifiability.
According to [6] integrity of election results can be violated
in four different situations: at the voter’s PC, on the network,
at the voting servers, and/or at the tallying component.

A. Integrity Requirements

We will analyse if POLYAS is susceptible to the following
threats according to those listed in [2]:

T1 Malicious software on the voter’s PC is able to mod-
ify single votes undetected and thereby manipulate
the election result.

T2 A manipulated VCI is able to get knowledge of the
voting login credentials (here: voting TAN and voter
ID) and cast a vote on behalf of the voter.

T3 A manipulated VCI is able to modify the cast vote
undetected before sending it to the voting server.

T4 A single manipulated voting system component is
able to add or delete voters in the electoral register
undetected.

TS5 A single manipulated voting system component is
able to add, delete or modify stored votes in the
ballot box.

T6 An arbitrary attacker is able to modify votes on the
network undetected.

T7 The TC is able to output a result that does not
correspond to the votes in the ballot box without
being detected.

While it is accepted that the election result can be manipulated
undetected if several components collaborate, we only address
single manipulated voting system components. This is in
general the case even for the JCJ/Civitas remote electronic
voting scheme [11] which is one of the remote electronic
voting schemes with the highest security guarantees. “Sep-
aration of duty” is implemented in voting schemes such that
the responsible people behind these components (programmer,
administrator and election officials) do not collaborate.

B. Results of the Analysis

In this subsection, we analyse whether POLYAS is affected
by the threats identified above or whether it needs to be
assumed that the corresponding threat does not exist, for
example, by virtue of the election in question bearing a low
public profile and therefore a low security risk. We present a
summary of the results in Table II.

Table II
RESULTS OF THE ANALYSIS
[Threat | Result of Analysis [Ok? |
Tl Not met, treated as assumption according to [2] (Ok)
T2 Detectable if applied in large scale (voters complain) | Ok
T3 Not met, but trust in VCI from BBS No
T4 Detectable as ERS and VS control each other Ok
TS5 Not met, but trust in BBS No
T6 Detectable if voter verifies certificates Ok
T7 Not met, but trust in TC No

Result concerning threat T1: POLYAS does not address
the so-called trusted platform problem and correspondingly,
there are no mechanisms implemented to meet viruses or
malware on the voter’s PC. Therefore, for elections using the
current POLYAS software, it needs to be assumed that the
PC is trustworthy. This assumption is acceptable given that
POLYAS has been so far been used in elections facing a low
security risk.

Result concerning threat T2: The attack that the VCI
can be manipulated to send voting tokens to an attacker
is detected by voters, assuming that they verify the SSL
certificates carefully. When voters wish to cast votes and are
falsely informed that they have already done so, they can file a
complaint bringing this to the attention of the election officials.
Note, it can be detected as vote-updating is not enabled in the
POLYAS voting system.

Result concerning threat T3: In the current POLYAS
implementation this attack is not addressed. Correspondingly,
it is possible for a manipulated VCI to be modified in a way
that a voter’s selection for candidate A, for example, is sent
as a vote for candidate B to the BBS. Therefore it needs
to be assumed that the VCI received from the BBS is not
manipulated.

Result concerning threat T4: This attack is addressed as
the “separation of duty”-principle is implemented: ERS and
VS control each other. In the protocol, the ERS receives
a TAN from the voter. After verifying eligibility, it passes
on these credentials to the VS for verification. Both servers
must authenticate a voter positively before a voting token is
generated. There are four different attack scenarios. First, the
ERS only knows the hashed TAN values, therefore it cannot
add new voters as corresponding TANs will not be known by
the VS. Similarly, the ERS cannot vote on behalf of eligible
voters as its database does not contain the corresponding
TANSs. In addition, prohibiting access to eligible voters by
the ERS will be detected by voters (refer to result concerning
threat 72). Prohibiting access to eligible voters by the VS will
be detected by the ERS. In the fourth scenario, the VS could
generate voting tokens and send them to the BBS to cast a
vote, even if there was no voter request. However this would
be detected by the ERS as it does not know the corresponding
voting token but will be asked in step (13) (compare to Fig.
3) to delete it. Thus, all the different aspects of this threat
are detected by the ERS (in case the VS is corrupt) and vice
versa.

Result concerning threat T5: This attack is not addressed
in the current POLYAS implementation. First, a manipulated
BBS can encrypt and store a vote that differs from the content
of the vote it received from a voter. Second, a manipulated
BBS can change the content of the ballot box database by
replacing encrypted votes with others. Note that the hash
chains are available for verification but this is only applied
if problems are detected. However, as a corresponding attack
cannot be detected, the hash values would not be used for
verification purposes. Correspondingly, it needs to be assumed
that the BBS is trustworthy and stores what it receives without
later modifying the database entries. Note that simply adding
or removing votes in the database would be detected by
comparing the number of voters in the electoral register.

Result concerning threat T6: POLYAS uses SSL to secure
communication between entities. Under the assumption that
voters verify the SSL certificate presented prior to proceeding
with voter authentication and again before proceeding with
vote casting, an attack violating the integrity of messages on
the network is detected by the receiving component.

Result concerning threat T7: In the current POLYAS
implementation this attack is not addressed. A manipulated
TC can output an arbitrary election result as it is only verified
that the number of votes in the ballot box is equal to the
number of voters in the electoral register. Correspondingly, it
needs to be assumed that the TC works correctly and is not
manipulated. Note that the printout generated by the TC does
not help reduce this assumption as it is produced by the TC
itself.

Summary and Discussion of Result: This analysis shows
that there is a need to place trust in single entities in the
POLYAS remote electronic voting system, namely to trust the
BBS and the TC. The corresponding risk of manipulated BBS
and TC can be reduced by the Common Ceriteria evaluation and
an accompanying compliance certificate according to the Pro-
tection Profile [2]. Should POLYAS, as one of the widely used
remote electronic voting systems, be used for other types of
elections and in particular for any parliamentary elections (e.g.
as an additional channel to mail voting), this required trust in
single entities would no longer be acceptable. However, this
can be addressed by incorporating verifiability in such a way
that voters and/or the public can verify that the corresponding
threats (73, T5, T7) were not executed. This verifiability
would also be required by the court decision [5]. Besides
the court decision, verifiability is an important requirement to
enhance voter trust in election results, discussed in the research
community since 1985 beginning with [12].

IV. VERIFIABILITY

In this section, we propose mechanisms to enable
verifiability in the POLYAS remote electronic voting system.
To do so, we first present the verifiability definitions used,
according to [13]. We make a distinction between individual
verifiability and universal verifiability.

Individual verifiability addresses the voter.
to enable the voter to verify that

The goal is

1) his vote is properly prepared and sent to the voting
server, i.e. if the voter selects candidate A then candidate
A is also sent and not candidate B [cast/sent as intended];

2) his vote is stored unaltered in the ballot box, i.e. if
candidate A has been sent from the VCI then candidate
A must be stored in the ballot box (in an encrypted
manner) and not candidate B [stored as cast/sent]. Note,
this covers two aspects, namely storing what has been
received and no modification of the ballot box entries
should be allowed later on.

Universal verifiability enables everyone to verify that all the
votes stored in the ballot box are properly tallied. This
includes verifying that decryption is done properly [tallied
as stored]. Note that a remote electronic voting system
that incorporates both types of verifiability provides end-to-
end (E2E) voter verifiability. Kremer et al. [14] introduced
eligibility verifiability, i.e. the public can verify that only
eligible voters cast a vote and that they do so only once. This
is not addressed in this paper as the corresponding threat 74 is
already secured in the current version by “separation of duty”.
The following mapping shows that the above definitions
cover exactly the issues identified in the security analysis. The
first part of the individual verifiability definition allows the
voter to verify whether an attack according to threat 73 was
executed. The threat 75 is met if voters are able to verify
that the vote has been stored as cast which is defined in the
second part of the individual verifiability definition. Universal
verifiability maps to threat 77 as it enables the public to verify
whether the votes in the ballot box are properly tallied.

A. Individual Verifiability Approach (cast as intended)

To achieve the cast as intended aspect of individual verifia-
bility, the voter assesses the HTML source code of the election
web page when the ballot is displayed. In doing so, he sees
the data items passed to the system when clicking on each
candidate (compare to Fig. 5, here ‘1’ is sent for candidate 1).
While this is generally possible it presents usability challenges.
Not many voters know how to get access to the HTML code to
check this information on web pages. In addition, if the ballot
is very complex this process will be time consuming even if a
voter has expert knowledge. Therefore, this verifiability should
be done automatically and not manually. A corresponding tool
is required and should be provided in future by independent
trustworthy institutions such as universities. Note, even by
providing this verifiability to the voter, POLYAS still remains
receipt-free.

B. Universal and Individual Verifiability Approach (stored as
cast)

We developed a verifiability tool to provide partial indi-
vidual verifiability in terms of ‘stored as cast’ as well as
universal verifiability in the POLYAS electronic voting system.
This subsection first describes the tool and then provides an

1 <div class="candidate">

2 <div class="cand_img">
:

4
5 </div>

6 <div class="cand_vote">
7 select this candidate
8

9

1

<input name="votum" class="inp_check" type:"checkbox</td>

</div>
0 </div>

Figure 5. HTML code relevant for verifiability

explanation which verifiability properties are now ensured and
which corresponding threats are met.

Description: The tool was developed using Java and inte-
grates the Bouncy Castle Cryptographic APIs as well as some
methods of the Apache Commons Codec API. The required
inputs from the corresponding components or entities (for a
screenshot of the test election see Fig. 6) are:

« Ballot box file from the BBS: This file contains names
of the candidates and encrypted votes, block identifiers,
block order, and status (refer to Table I).

o Hash value file from the ERS: These are the stored hash
values.

o Keystore file from the TC: The keystore file contains the
private RSA-key with which asymmetric encryption is
realized. The keystore file itself and the private key are
protected by passphrases.

o Passphrase of keystore file from election officials: The
passphrase is required to access the keystore.

o Password of private key from election officials: The
password has to be entered to get access to the private
key.

e Maximal number of candidates from election officials:
This number specifies the maximum number of candi-
dates to cast a valid vote. This is necessary for the tool
to distinguish a valid vote from an invalid one.

o Number of voters from electoral register: Number of
online voters according to the electoral register.

Based on this data three different verifications are processed.
First, the number of encrypted votes with status ‘cast’ in the
ballot box is compared to the number of voters. Next, all hash
values of the hash chain are generated by the tool based on
the information in the ballot box file. Each value is compared
with the corresponding one in the hash value file. In the third
verification step the encrypted votes are decrypted vote by
vote. To do so, the private key from the keystore is extracted
and for each vote the AES key is first decrypted and then
the encrypted vote is decrypted with this key. Based on the
maximum number of candidates to cast a valid vote and the
decrypted votes, the result is tallied and displayed. Now, this
result needs to be manually compared with the result output
by the TC. It is necessary to successfully verify all three steps.

Analysis: This tool provides universal verifiability as it
decrypts and tallies the encrypted votes from the BBS. Thus,
threat 77 is met and trust in the TC to properly tally the result
is no longer required. Regarding the second aspect ‘stored as

Ballot box file: Choose ok! Password of keystore: ~ [eeeesese
Hash value file: Choose ok! Password of secretkey: |seeesece
Keystore file Choose okl Maximal nr of candidates: |6
Nr of online voters 71
Reset GO Exit

—Resuits — -

1. Hash computation: The computed and the public hash match. a
Hashvalue: 042e90ba14b69f2a1bcfec3679d29461697115a54cdeed38479cf66c81a4c71a. 1
|
Il
I
Il
{
Il
Il
I

2. Election results:
Candidate Votes

27
17
27
32
27
24
23
23

INumber of voters correct? Yes
Number of voters: 7
Number of invalid votes 1

Number of not finally-casted votes: 0.

JAll results written to logfile ‘GIEVaET2010_results.log’

+ The resultis computed ONLY of the online delivered votes. i
+ The votes arriving by post are NOT considered in this result. +
+ Those have to be added by hand to compare with total results! +

Figure 6. Verifiability tool interface (test election)

cast/sent’ of individual verifiability only one aspect is covered
by the tool. Under the assumption that ERS and BBS do not
cooperate (‘“separation of duty”), stored encrypted votes cannot
be manipulated undetected after having sent the corresponding
hash value to the ERS. However, the other aspect is not
covered, i.e. that it can be verified that what is stored is what
is received. Correspondingly, only one aspect of threat 75 is
met. Thus, trust in the BBS is still partially required.

One might argue that the ‘missing’ verifiability aspect is
already integrated in POLYAS as the BBS sends the stored
selection in step (11) (refer to Fig. 3) back to the voter, and
thus the voter can verify that the proper vote is stored in the
ballot box. Unfortunately, in case of a malicious BBS this
received vote does not allow any statements at the voter’s side
about which vote is stored in the database.

C. Discussion

Both proposed approaches provide an improvement for the
POLYAS system as trust in the BBS is reduced and trust in the
TC is no longer required (refer to Table III). Note, some of the
previously defined threats are met, as not a single component
can violate the integrity of the election result undetected, but
as “separation of duty” is applied it needs to be assumed
that corresponding two components do not cooperate, either
ERS and VS or ERS and BBS. Therefore, it is important
that the “separation of duty” is properly implemented, for
example: different servers, different administrators, ideally
different software companies. With the proposed approaches
POLYAS does not become an E2E verifiable voting system
since one step (stored as received) is not ensured. Further

Table IIT
RESULTS OF ANALYSIS OF EXTENDED VERSION
[Threat | Result of Analysis [Ok? |
Tl Not met, treated as assumption according to [2] (Ok)
T2 Detectable if applied in large scale (voters complain) | Ok
T3 Detectable by HTML code verification Ok
T4 Detectable as ERS and VS control each other Ok
T5a Not met, but trust in the BBS No
T5b Detectable by verifiability tool Ok
T6 Detectable if voter verifies certificates Ok
T7 Detectable by verifiability tool Ok

research is required to identify whether the system can be
modified or extended in order to become end-to-end verifiable.
However, as trust in components can be dramatically reduced
with the proposed approaches, these should be applied in
future. Moreover, partial verifiability seems to be a trend.
Norway for instance also provides only partial verifiability due
to privacy constraints [15]. Their system provides individual
verifiability and universal verifiability is only accessible to
observers and not the public.

V. USE IN GI ELECTIONS

In this section we describe the application of this verifia-
bility tool in the GI 2010 election and the plans for future
elections.

A. Election in 2010

Before the election in November and December 2010, we
received the specification of the interfaces we required. During
the development we made the following finding: For the en-
cryption of votes, Micromata uses the Bouncy Castle Provider
implementation of RSA and AES. Since the default mode
and padding of this implementation is not compatible with
the (standard) Sun provider or the FlexiProvider®, up to now
one can only use the Bouncy Castle Provider implementation
for decryption of votes. If Micromata changes its use of
the Bouncy Castle Provider to the mode and padding styles
‘RSA/ECB/PKCS1Padding’ and ‘AES/CBC/NoPadding’, then
the Sun or FlexiProvider implementations could be used
instead. This is desirable because of the independence of the
implementation and the independence of the Bouncy Castle
Provider. Further, we were allowed to observe the electronic
tallying in Kassel and after the official procedure we received
the necessary files and information to run the verifiability tool.
During the tallying phase in Kassel and the discussion of the
tool, the following findings were made: First, in the past the
GI only published the number of votes per candidate for the
elected candidates but not for the others in order to be polite
to those candidates who only got few votes. This information
cannot be kept secret if verifiability should be possible for
everyone. Second, in the past only the result of the combined
election results from both the electronic votes and the mail
votes have been published but not in a distinguished manner.
Again, this needs to be changed in order to enable verifiability
of the electronic election result.

3Download is available at http://www.flexiprovider.de/.

B. Future GI Elections

For future GI elections, the verifiability tool needs to be
extended and made available to anyone in order for them to
also verify the election result. Furthermore, the interface for
a verifiability tool will be made public so that any interested
parties can implement their own tool and apply it. In order to
enable everyone to run the election, the number of votes per
candidate will be published by the GI for all voters as well as
the result for the postal votes. Thus, the result of the electronic
votes can be deduced. Furthermore, we plan to develop a tool
for the first part of the individual verifiability to assist voters
check the content of the html source code.

In addition, the GI agreed that the hash values are not only
sent to the ERS but also published on the GI election web
page. Thus, trust in the ERS is no longer required since
the signed hashed values can continually be accessed from
the GI web page by everyone. This was not realized for
the 2010 election. Besides this, it has not yet been decided
whether Micromata will change the encryption format in a
way that other Java cryptography providers can be applied for
the verifiability tool.

VI. CONCLUSION AND SUMMARY

Currently, there is a gap between remote electronic voting
systems in use and those proposed in scientific papers. While
the latter focus on different aspects of verifiability, most of
the systems in use do not provide verifiability. By providing
verifiability in the POLYAS remote electronic voting system
we close this gap. To do so, we first described the POLYAS
remote electronic voting system including applied procedures
and protocols. We then analysed the system according to
the integrity of election result requirements and identified
those threats where one single entity needs to be trusted as
this single component could manipulate the election result
undetected. We have shown that these identified threats match
the verifiability requirements ‘cast as intended’, ‘stored as
cast/sent’ and ‘tallied as stored’.

We proposed two different approaches to introduce ver-
ifiability in the POLYAS remote electronic voting system.
The first enables the voter to verify that his vote is ‘cast as
intended’. As the manual verifiability is not very user-friendly,
future work will be to implement a corresponding tool that
does this automatically for the voter. The second approach
partially covers the aspect ‘stored as cast’ since modifications
after the computation of the hash values can be detected. It
also covers the ‘tallied as stored’ aspect of universal veri-
fiability. With the proposed verifiability approaches almost
all threats are met and almost all aspects of verifiability are
enabled. As future work, we will research a mechanism to
enable voters to verify that their votes are properly stored in
the hash value published at the ERS. In addition, we will
address the eligibility verifiability requirement.

As a proof of concept this approach has been tested in the GI
2010 election. We have summarized our experiences in this
paper, including the Java cryptography provider compliance

and the publishing of so far unpublished information concern-
ing the election result, that is, the partial result of mail votes
and the number of votes per candidate who have not been
elected. The GI decided to apply our proposed approach for
future elections to enable verifiability for everyone. Therefore
corresponding interface specifications will be published as
well as the required information about the election result. In
this way, future GI elections will make great advances towards
verifiability and trustworthiness.

REFERENCES

[1] K. Reinhard and W. Jung, “Compliance of polyas with the BSI
Protection Profile - Basic Requirements for Remote Electronic Voting
Systems,” in Proceedings of the 1st international conference on E-voting
and identity, ser. LNCS. Springer, 2007, pp. 62-75.

[2] M. Volkamer and R. Vogt, “Basic set of security requirements for
online voting products,” Common Criteria Protection Profile BSI-PP-
0037, 2008. [Online]. Available: http://www.bsi.de/zertifiz/zert/reporte/
pp0037b.pdf

[3] N. Menke and K. Reinhard, “Compliance of POLYAS with the Common
Criteria Protection Profile - A 2010 outlook on Certified Remote
Electronic Voting,” in Proceedings of the 4th International Conference
on Electronic Voting 2010, ser. LNI. Springer, 2010, pp. 109 — 118.

[4] J. Buchmann and A. RoBnagel, “Das Bundesverfassungsgericht und
Telemedienwahlen,” Kommunikation und Recht (K&R), vol. 9, pp.
543-548, Sep 2009. [Online]. Available: http://pgkeylength.com/
reports/reports/Buchmann_Rossnagel. Artikel.pdf

[5] Bundesverfassungsgricht (BVerfG), “Urteil des Zweiten Senats,”
German Federal Court Decisions, vol. 2 BvC 3/07 (1-163), Mar 2009.
[Online]. Available: http://www.bverfg.de/entscheidungen/cs20090303_
2bvc000307.html/

[6] M. Volkamer, Evaluation of Electronic Voting: Requirements and
Evaluation Procedures to Support Responsible Election Authorities, ser.
LNBP. Springer, 2009.

[7] Network Voting System Standards (NVSS), VoteHere Inc. Public
Draft 2, 2002.

[8] V. Hartmann, N. Meissner, and D. Richter, “Online Voting
Systems for Non-parliamentary Elections - Catalogue of
Requirements,” Physikalisch-Technische Bundesanstalt Braunscheig
und Berlin, Laborbericht PTB-8.5-2004-1, 2004. [Online]. Available:
http://ib.ptb.de/8/85/LB8_5_2004_1AnfKat.pdf

[9] Council of Europe, “Legal, Operational and Technical Standards

for E-Voting. Recommendation Rec (2004)11 adopted by the

Committee of Ministers of the Council of Europe and explanatory

memorandum,” 2004. [Online]. Available: http://www.coe.int/

t/e/integrated_projects/democracy/02_activities/02_e%2Dvoting/01_
recommendation/Rec(2004)11_Eng_Evoting_and_Expl_Memo.pdf

Online-Wahlen Expertengruppe der Gesellschaft fiir Informatik,

“GI-Anforderungen an Internetbasierte Vereinswahlen,” GI, 2005.

[Online]. Available: http://www.gi-ev.de/fileadmin/redaktion/Wahlen/

GI-Anforderungen_Vereinswahlen.pdf

A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant electronic

elections,” in Proceedings of the 2005 ACM Workshop on Privacy in the

Electronic Society - WPES ’05. ACM Press, 2005, pp. 61 — 70.

[12] J. D. Cohen and M. J. Fischer, “A robust and verifiable cryptographically

secure election scheme,” in Proceedings of the 26th Annual Symposium

on Foundations of Computer Science. 1EEE Computer Society, 1985,

pp. 372-382.

R. Gharadaghy and M. Volkamer, “Verifiability in electronic voting

- explanations for non security experts,” in Electronic Voting 2010,

EVOTE 2010, 4th International Conference, ser. LNI, no. 167. Springer,

2010, pp. 151-162.

S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in electronic

voting protocols,” in Proceedings of the 15th European conference on

Research in computer security, ser. LNCS. Springer, 2010, pp. 389—

404.

K. Gjgsteen, “Analysis of an internet voting protocol,” Cryptology ePrint

Archive, Report 2010/380, 2010, http://eprint.iacr.org/2010/380.

[10]

(11]

[13]

[14]

[15]

