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Abstract. We show how to extend the Helios voting system to provide
eligibility verifiability without revealing who voted which we call private
eligibility verifiability. The main idea is that real votes are hidden in a
crowd of null votes that are cast by others but are indistinguishable from
those of the eligible voter. This extended Helios scheme also improves
Helios towards receipt-freeness.

1 Introduction

Electronic voting protocols must allow the public to verify the accuracy of the
election outcome. Much of the research focus has been devoted to universal end-
to-end verifiability, which includes cast-as-intended, stored-as-cast and tallied-
as-stored verifiability. In particular, the Helios voting system [1] was designed
to ensure these requirements. Another crucial property is eligibility verifiability,
meaning that anyone can verify that only the votes of eligible voters have been
accepted and included into the tally, thus preventing ballot stuffing by the vot-
ing system. The original version of Helios requires trust in the voting system
for accepting votes from eligible voters only, thus lacking the option to verify
eligibility by the general public.

In Helios and related systems, votes are cast encrypted and are anonymized
before decryption and tallying. One simple way to ensure eligibility verifiability
would be to make use of an existing public-key infrastructure (PKI), letting
voters sign their encrypted vote and publishing all signed encrypted votes on
the Bulletin Board. In that case, everyone could verify that each vote had been
signed by an eligible voter. However, this approach inevitably reveals who voted
in the election and who abstained.

It is worth noting that different democracies take slightly different attitudes
to vote privacy in practice. In Australia and many other countries, voting is
compulsory and hence a matter of (somewhat) public record. However, in other
countries including Germany and Switzerland, the fact of whether or not a person
has voted is regarded as private; in the United States political organisations
quite openly target likely voters on an individual basis. Hence it is sometimes
important to hide who voted—we call this participation privacy.



This work shows how to extend Helios to ensure both universal eligibility
verifiability and participation privacy for voters, i.e. private eligibility verifiabil-
ity. The proposal could also be used to improve other schemes like the Estonian
voting scheme [23], or could be implemented as an independent system.

The main idea is to pad out the Helios votes with null votes cast by others.
Anyone may add null votes to any voter’s row; and voters can update their votes.
We have decided to identify specific participants called “posting proxies” who do
most of the padding with null votes (according to some, presumably randomised,
algorithm).

These null votes need to have some important properties: They should not
have any effect on the election outcome. The null votes must also be indis-
tinguishable from the voter’s contributions, and numerous and unpredictable
enough to provide proper cover for voters. We achieve it by introducing witness-
indistinguishable disjunctive proofs that ensure that each cast vote is either a
null vote (represented by an encryption of 1), or a vote cast by an eligible voter.
We rely on an anonymous channel that is used by posting proxies as well as
by voters, in order to hide the origin of the cast votes. Our scheme uses an ex-
isting PKI rather than relying on a dedicated credential-based mechanism like
JCJ/Civitas or caveat coercitor [18]. All voters must use their signing key to
vote. The list of assumptions for the overall scheme as well as for the individual
security requirements are listed and discussed in Section 5. Our construction also
prevent voters from proving which valid vote they have cast. Thus, it improves
Helios even fruther as it offers some level of receipt-freeness as protection against
vote selling. The remaining security properties, such as preserving the integrity
and secrecy of the vote, should hold for honest voters under the same assump-
tions as in the original Helios system. Note, we use the same cast-as-intended
verification methods as Helios.

We would not claim that our protocol satisfies all the requirements neces-
sary for government elections. It remains susceptible to coercion for abstaining
and randomizing the vote. Also the strong assumptions about the public key
infrastructure, and the smart card’s good behaviour mean that it is not truly
end-to-end verifiable. The necessity of participation of other contributors in each
person’s row may also be too strong for sufficient privacy for some elections.

The paper is structured as follows. In Section 2 we describe the related work
relevant for our proposal. In Section 3 we give the background information with
the building blocks used in our scheme. In Section 4 we describe the scheme itself,
followed by its security analysis, including the ensured security requirements
and the assumptions needed for this, in Section 5. Section 6 gives an efficiency
analysis of the scheme, and Section 7 provides the conclusion.

2 Related work

Haenni and Spycher [22] provide a scheme with eligibility verifiability and par-
ticipation privacy (which they call anonymity). The scheme, however, does not
provide receipt-freeness. Eligibility verifiability for Helios was considered in [40].



This work takes a complementary approach to ours, because it assumes that
there is no public key infrastructure and relies instead on tokens generated
specifically for the election. The protocol provides eligibility verifiability and pre-
vention of ballot stuffing under reasonable assumptions, but does not attempt
either to hide who voted or to provide receipt freeness.

The goal of ensuring both eligibility verifiability and the participation privacy
of the voters is addressed, among other security requirements, by the schemes
aiming to provide the property of coercion resistance. The issue of coercion re-
sistance in remote voting was addressed in the work of Juels, Catalano and Ja-
cobson (JCJ) in [25], presenting a scheme that provides coercion resistance – the
definition of which includes receipt freeness as well as protection against forced
abstention, randomization and simulation attacks – against strong attacker. This
scheme, however, is unsuited for practical use, due to the fact, that its perfor-
mance is O(N2) with N as the number of eligible voters. Therefore, a number
of works have presented the improvements to the JCJ system, that preserve the
coercion-resistance properties while achieving linear complexity – among others,
approaches based upon group signatures [2], panic passwords [10], concurrent
ballot authorization [15], anonymity sets [34] or using the voter roll [38]. Fur-
thermore, several improvements focused on improving other shortcomings in JCJ
scheme, such as addressing the issue of board flooding [26], or improving usabil-
ity with using tamper-resistant smartcards [29]. These improvements, however,
still require complex forms of credential management, thus lacking in usability
from the voter’s perspective. A number of other schemes has been suggested that
provide some level of coercion resistance [27, 32], which, however, also require
complex actions from the voter. The Caveat Coercitor scheme [18] aims at de-
tecting whether coercion took place during the election, but not at preventing
it.

3 Background

In this section we provide the background information we base our scheme upon.

3.1 Helios

The Helios voting system incorporates a simple yet powerful collection of meth-
ods for end-to-end verifiable voting. Each person’s encrypted vote is tabulated,
along with some authentication information, on a public bulletin board. Well-
behaved voting clients are supposed to delete the randomness they use when
generating the ciphertext—if they do so, the person cannot subsequently prove
how they voted. If they fail to do so, that randomness can be used to open the
ciphertext and prove its contents to a coercer. It is obvious from the bulletin
board which voters have participated and which have abstained.

The client is trusted for privacy. If more than a threshold of talliers collude
they too can violate privacy. No entities are trusted for integrity though of course
verification procedures for the voting process and the bulletin board must be



followed. Helios uses the “Benaloh challenge” [5] to allow voters to verify that
their vote is cast as they intended.

3.2 Cryptographic Building Blocks

We describe the cryptographic primitives and protocols that underlie our scheme.

ElGamal encryption: Let (g, h) ∈ G2
q be a public ElGamal key, where Gq ⊂ Zp

is a multiplicative group of order q, with both p, q large primes, p = 2q + 1. An
ElGamal encryption of v ∈ Gq using the public key (g, h) is defined as a tuple
Enc(g,h)(v) = (a, b) := (gr, v · hr) for some randomness r ∈ Zq. In case it is
necessary to ensure for a ciphertext (a, b) encrypts a vote in Gq, one checks
whether aq = bq = 1 mod p.

Proof of an encryption of 1: In order to prove that a given ciphertext (a, b)
encrypts 1, one has to present a zero-knowledge proof:

ZKP{∃r : a = gr mod p ∧ b = hr mod p}

The proof, presented in [9], is given in Appendix A.1.

Note, that this as well as further proofs can be made non-interactive accord-
ing to Fiat-Shamir heuristic [16], by providing the challenge c as a hash function
of the “commitment” values sent in the first step of the proof, as well as to other
relevant parameters, as suggested in [7].

Proof of knowledge of DSA signing key: Let (gs, hs = gs) ∈ Gq be the
DSA public key. Proving the possession of valid secret key s could be done with
Schnorr’s proof of knowledge of discrete logarithm [35], restated in Appendix A.2.
The proof is easily extended to a proof of knowledge of an ElGamal plaintext.

Proof of knowledge of RSA signatures: Let (N, e) with e prime be a public
RSA signature key, d secret signature key. For a message m and some encoding
function h(m) that is used for signing4, in order to prove the knowledge of a
valid signature on m, one has to show:

ZKP{∃s : se ≡ h(m) mod N}

The proof, described in [20,21], is given in Appendix A.3.

4 Usually a hash value of m and/or padding, according to common RSA signature
standards.



Reencryption mix nets: Re-encryption mix nets shuffle a set of ciphertexts
without needing to know the private key, and provide a proof of correct shuf-
fling. Modern re-encryption mixnets run efficiently, and many are appropriate
for ElGamal encryption, including [17,19,28,41].

It is important to defend against Pfitzmann’s attack on mixnet privacy [31],
in which a malicious participant copies someone else’s vote as a way of exposing
it. Our scheme hence requires a proof of the validity and knowledge of the vote
when it is posted, as in [6].

Plaintext equality tests: There are two approaches to prove the validity
of encrypted vote (i.e. that the plaintext belongs to the set of allowed voting
options) while preserving voter privacy. The first is to make the voter attach
the proofs of validity during vote casting. This approach is inapplicable to our
scheme because the product of several valid votes may be invalid. The second
approach is to discard non-valid votes after vote casting and anonymization. A
simple way would be to decrypt and publish all the votes. This approach destroys
receipt freeness, however. For example, a coercer could demand a particular vote
v and then, with 50% probability, either let a voter keep their vote or demand
that they add some large number x, and then see whether the x + v appeared
in the list of decrypted votes.

To prevent this, instead of decrypting, we use plaintext equality tests (PET ) [24].
For a pair of ElGamal ciphertexts e, e′ ∈ G2

q, e = Enc(g,h)(v) = (a, b), e′ =
Enc(g,h)(v

′) = (a′, b′), these tests are performed in a distributed way by a group
of trustees that own the shared corresponding decryption key. The trustees com-
pute and jointly decrypt

((
a

a′
)z, (

b

b′
)z)

for a jointly generated random secret z.
The result is the value of ( v

v′ )
z which is 1 if v = v′, or a random value in Gq

that reveals no information about v, v′ or their relation to each other otherwise.

Other cryptographic tools: We use the disjunctive witness-hiding proofs of
Cramer et al. [13]. The trustees share the decryption key using Shamir thresh-
old secret sharing [36], jointly generated using Pedersen’s scheme [30], as recom-
mended for Helios by Cortier et al. [11].

4 Proposed scheme

In this section we describe the proposed voting scheme. The key generation,
decryption trustees, mix nodes, bulletin board, and basic voter behaviour are
the same or similar as for Helios. The main difference to Helios is the tallying
stage, because we now allow multiple votes against one voter’s name. Each row
(corresponding to one voter) will be homomorphically totalled, then all the totals
will be mixed and interpreted by PET .



If board flooding is considered a possible problem, we could incorporate the
token-based mechanisms of [26], which restricts the total number of postings by
any individual5. Even more simply, we could impose a restriction on the number
of ciphertexts that could be posted by each person against each voter’s row.
Even a small number (such as one or two) might be entirely sufficient, as long
as Assumption 2 remained true.

4.1 Preparations

The list of all eligible voters V1, ..., VN is posted on the bulletin board, as the
list of their public keys and voter IDs. We think of the bulletin board as having
a row for each of those eligible voters—in other words, each posted ciphertext
is explicitly allocated to one of the voter IDs. The available voting options are
represented as C = {c1, ..., cL}, with 1 6∈ C representing the null/abstaining vote.
Using distributed threshold secret sharing [30], the trustees generate a pair of
ElGamal keys (g, h) for encrypting the votes. Furthermore, the trustees publish
the list of ciphertexts resulting from the deterministic encryption (i.e. using fixed

and public randomness value) of voting options: Ê = {ê1 = Enc(g,h)(c1), ..., êL =
Enc(g,h)(cL)}.

4.2 Vote casting

In order to post a vote v ∈ C for the voter Vi, one sends an ElGamal ciphertext
e = Enc(g,h)(v), and a disjunctive witness-hiding proof given in Algorithm 1.

Algorithm 1 Witness hiding proof of valid vote posting

Public Input: The election ID, the ElGamal ciphertext e to be posted, the public
key PKV of the row to be posted on, the election ElGamal encryption parameters
(p, q, g, h).
Poster’s private input: Either the randomness used to produce e, or the private
key corresponding to PKV .
Proof: the poster proves
poster knows plaintext of e, using proof from Sec 3.2
AND
{e encrypts 1, that is, is a null vote, using proof from Sec 3.2
OR poster knows the private key corresponding to PKV , using proof from Sec 3.26}

The proof is made noninteractive using the Fiat-Shamir heuristic applied to the
entire public input.

5 As the complexity of the computations in the tallying stage depends on the amount
of eligible voters rather than total cast votes, and the complexity of the computations
in the voting stage is linear in the number of cast votes, we presume board flooding
is less likely to significantly hinder the election than it is in [25].



An alternative method, applicable in case the RSA-based PKI is used, would
be that instead of proving knowledge of the signing key, the prover proves knowl-
edge of a digital signature on (election ID, e). Either way it is important to
incorporate all of the public parameters of the proof into the Fiat-Shamir hash,
to prevent reuse of the proof of knowledge.

As in the Helios system, the voter has the option to either audit the encrypted
ballot via the Benaloh challenge, or to send the vote and the proof. Once the
vote is sent, the voter can check the bulletin board in order to verify that it
has been recorded. It follows that only the legitimate voter Vi can post non-null
votes near her name, since she is the one possessing the secret signature key. If
the voter wants to update her vote from vA to vB , she encrypts and casts the
value of v−1A vB .

All the cast votes are validated at the moment of posting: exact duplicated
postings are removed7, also discarded are the ciphertexts with invalid zero-
knowledge proofs, or those that encrypt a value v ∈ Zp\Gq

8.

4.3 Tallying

At the end of vote casting stage, the bulletin board looks as shown on Table 1.
It is assumed that for all i = 1, ..., N , it holds that mi > 0. Furthermore, only
the voter Vi knows how many of the votes vi,1, . . . vi,mi are null votes, and how
many are real ones.9

Table 1. Bulletin board prior to tallying stage

Voter ID Cast votes

V1 e1,1, . . . e1,m1

...
...

VN eN,1, . . . eN,mN

The final ciphertext for each Vi is computed by elementwise multiplication

ei =

mi∏
j=1

ei,j

Since the null votes are all encryptions of 1, only the non-null votes influence
the final vote included in tallying. If for some i, the voter Vi has abstained, the
resulting ciphertext ei is an encryption of a null vote.

6 This step assumes, that the DSA-based PKI is used.
7 This prevents manipulating someone’s vote by re-posting something they have gen-

uinely contributed.
8 This can be done by checking whether bq = 1 for a ciphertext (a, b) with a valid

proof of plaintext knowledge, and is needed to prevent information leakage about
plaintext from PET s during tallying.

9 This and other assumptions are further discussed in Section 5.



The resulting ciphertexts e1, ..., eN are then processed through the mix net
for the sake of removing the link between the voter and the decrypted vote, with
the anonymized list e′1, ..., e

′
N as output.

For each ciphertext e′i = Enc(g,h)(vi) that results from shuffling and each
voting option cj encrypted as êj , the trustees perform PET s for e′i and êj . If
the test is positive for some j, the trustees conclude that vi = cj ; otherwise,
they conclude that vi is either a null vote, or an invalid vote, and thus should
be discarded from tallying. The result can then be directly computed from the
non-discarded votes.

5 Security analysis

In this section we conduct the security analysis of our scheme, by listing the se-
curity requirements we want to ensure, and identifying the security assumptions
that are needed for them. Further we discuss the ways to ensure the assumptions
that we make.

5.1 Security requirements

In general, we need to rely on the following assumptions regarding the cryprog-
raphy used in the scheme:

– Cryptography Assumption: the cryptography used in witness-indistinguishable
proofs and in the ElGamal encryption scheme is reliable:
• the DDH assumption holds,
• the random oracle model is instantiated by a hash function,
• if RSA is used for PKI, the RSA assumption holds.

In the following we explain for each security requirement why it is ensured
and under which further security assumptions:

Eligibility verifiability: This requirement suggests, that everyone should be
able to verify that only the votes from the eligible voters have been included
in the tallying result.
This requirement is ensured due to the application of the proof in Algo-
rithm 1 in Section 4.2 and its soundness (i.e. it that non voters can only
cast null votes, which have no effect on the final tallying), if the following
assumptions hold:

– Secret Key Leakage Assumption: The voter’s secret key is not leaked to
the adversary without voter’s knowledge.

– Secret Key Re-Usage Assumption: The voting device cannot use the
secret key to cast any additional votes without voter’s knowledge.

– Authentic List of Keys Assumption: Only eligible voters have their public
keys published in the voting register.



Individual verifiability: Each voter should be able to verify, that her vote has
been cast and stored by the voting system according to her intention.
This requirement is ensured due to the following mechanisms:
– the application of the Benaloh challenges for cast-as-intended verifiabil-

ity;
– the possibility for voters to check that the encrypted votes that she

submitted herself appear on the bulletin board for stored-as-cast verifi-
ability;

– the functionality to re-send a vote if voters detect that a posting proxy
withholds a vote (just like the single bulletin board in Helios); and

– the application of the proof in Algorithm 1 in Section 4.2 and its sound-
ness

if the following assumptions hold:
– Secret Key Leakage Assumption: The voter’s secret key is not leaked to

the adversary without voter’s knowledge.
– Secret Key Re-Usage Assumption: The voting device cannot use the

secret key to cast any additional votes without voter’s knowledge.

Universal verifiability: Everyone should be able to verify, that the tallying
result is computed from the valid votes stored by the voting system only.
This requirement is ensured due to the following mechanisms:
– all the ciphertexts posted on the bulletin board include a valid proof, thus

being either encryptions of null votes or of votes from eligible voters,
– these ciphertexts are included in the product defining the final votes,
– the final votes are correctly processed through mix net, and
– each one of the plaintext equality tests outputs the correct result, either

assigning a correct valid voting option to each vote, or determining that
the vote is invalid

if the following assumption holds:
– Bulletin Board Assumption: The bulletin board is a reliable broadcast

channel with memory.

Participation privacy: The system should not disclose the fact, whether an
individual voter has participated in the election, to the passive adversary,
who only has access to the public output.
This requirement is ensured due to the the application of the proof in Algo-
rithm 1 in Section 4.2 and its soundness if the following assumption hold:

– Hidden Origin Vote Assumption (Passive): There is at least one cipher-
text which the adversary is unable to distinguish between a null vote
and an effective vote from an eligible voter.

Note, the tallying process does not reveal information about individual votes,
or even the presence of particular invalid votes.

Vote secrecy The adversary should not be able to learn for which candidate
each individual voter has voted from the public output.
The secrecy of the vote relies on



– the vote anonymization performed in a proper way, and
– the individual ciphertexts not being decrypted prior to being anonymized.

if the following assumption holds:
– Trustee Assumption: Less than a threshold number of trustees disclose

their private key shares to the adversary.

Receipt-freeness The voter should not be able to provide a receipt to the
adversary, proving that she has voted for a particular candidate c.
The receipt-freeness relies on the fact, that even if the voter proves that she
cast a ciphertext encrypting c10, there are some additional ciphertexts in
the voter’s row, for which she would not be able to prove that it does not
encrypt some value c′ · c−1 thus replacing c with c′11. This is ensured as long
as the following assumption holds:

– Hidden Origin Vote Assumption (Active): There is at least one ciphertext
in the voter’s row, that the voter cannot prove whether she cast it.

An active coercer can force abstention or randomization, and a voter can
prove that they have abstained by casting an invalid vote.

5.2 Discussion on the assumptions

We summarize the assumptions identified in Section 5.1 in the list below:

1. Hidden Origin Vote Assumption (Passive): There is at least one ciphertext
which the adversary is unable to distinguish between a null vote and an
effective vote from an eligible voter.

2. Hidden Origin Vote Assumption (Active): There is at least one ciphertext
in the voter’s row, that the voter cannot prove whether she cast it.

3. Secret Key Re-Usage Assumption: The voting device cannot use the secret
key to cast any additional votes without voter’s knowledge.

4. Secret Key Leakage Assumption: The voter’s secret key is not leaked to the
adversary without voter’s knowledge.

5. Trustee Assumption: Less than a threshold number of trustees disclose their
private key shares to the adversary.

6. Bulletin Board Assumption: The bulletin board is a reliable broadcast chan-
nel with memory.

7. Cryptography Assumption: the cryptography used in witness-indistinguishable
proofs and in the ElGamal encryption scheme is reliable:
– the DDH assumption holds,
– the random oracle model is instantiated by a hash function,
– if RSA is used for PKI, the RSA assumption holds.

10 She can do this for the ciphertext (gr, c · hr) by disclosing the randomness r to the
adversary.

11 Note, that v′ can be the legitimate vote for another candidate (i.e. the one the voter
actually intends to vote for), but also some random or even unknown to the voter
value that results in an invalid vote.



8. Authentic List of Keys Assumption: Only eligible voters have their public
keys published in the voting register.

We discuss possible ways the assumptions that our scheme requires could be
implemented in the following paragraphs:

Hidden Origin Vote Assumption (Passive) and Hidden Origin Vote
Assumption (Active) can be summarized in following: each voter, against
every adversary, must have at least one opportunity to communicate with the
bulletin board (perhaps via a third party) and which

– the adversary cannot detect whether the voter has communicated, and
– if the voter doesn’t communicate to the BB, some other participant posts a

null vote

In other words, it should not be possible for a voter to prove that they have cast
all of the ciphertexts in their row that the adversary thinks they might possibly
have cast.

It could be implemented by a few ways, for example:

– some posting proxy not colluding with the coercer, with whom the voter can
communicate via an untappable channel,

– an anonymous channel to the bulletin board,
– a receipt-free attendance voting scheme (such as Prêt à Voter [33], Wom-

bat [4], StarVote [3] or Scantegrity II [8]) that the voter can attend physically
and not tell the coercer about.

This also implies, that at least one posting proxy faithfully adds null cipher-
texts in a way that is sufficiently numerous and unpredictable for the adversary,
in order to provide adequate cover for voters.

This is enough for participation privacy against a passive coercer. In order
to achieve receipt freeness we need to assume that the cryptographic protocol
does not allow an actively participating voter to cause Assumption 2 to fail by
deviating from the protocol. This will be shown below.

The Secret Key Re-Usage Assumption is a particularly strong one for
voting, though standard enough for electronic commerce and banking. The issue
here is that in standard Helios each voter casts only one vote, and hence can
see whether an extra one has been added on their behalf. In our scheme, the
whole mechanism relies on the possibility of multiple additive vote casting. The
assumption that the smartcard reader doesn’t add extras implies a strong trust
assumption on the hardware (with, for example, a display/PIN setup). This is
also necessary for banking and other contracts, and is what a PIN-based smart-
card reader is supposed to achieve. However, this is a stronger assumption than
truly end-to-end verifiable protocols, such as basic Helios. We consider it an im-
portant aspect of future work to remove this assumption, which was identified
as one source of vulnerability in the Estonian Internet voting protocol [37]. Simi-
larly, Secret Key Leakage Assumption could also be facilitated by assuming
the tamper-resistant and trusted smartcard that stores the key.



An alternative way of realising Secret Key Re-Usage Assumption without
trusted hardware is to insist that all votes but one be cast in a physical polling
place at which eligibility was carefully established. It would be important to do
this in a way that preserved the Hidden Origin Vote Assumption. Again anyone
who was not concerned about coercion could simply cast their ordinary vote
online, and check that exactly that vote appeared on the bulletin board. There
would be no need to trust their hardware not to cast subsequent votes, because
there would be no option to cast a second vote remotely.

The Trustee Assumption is common in voting protocols that employ dis-
tributed decryption, and might be facilitated by selecting e.g. representatives
of groups with conflicting interests, such as of different parties as the trustees.
The Bulletin Board Assumption can be facilitated either by establishing a
central server, supervised by trusted third-party observers, or implemented in a
distributed way (e.g. [14]). The Cryptography Assumption is common to the
voting systems based on cryptographic mechanisms, and the Authentic List
of Keys Assumption is based upon the public list of all eligible voters, the
integrity of which is something that should be ensured in traditional elections
as well.

6 Efficiency analysis

Assuming T as the number of tallying trustees, that are responsible for both
the mixing of the votes and performing the PET s with t as threshold parameter
(usually suggested as t = bT/2c + 1), N ′ =

∑N
i=1mi as all the votes posted

during vote casting (including null votes posted by posting proxies), L as number
of candidates (for example, L = 2 for referendum), following estimations can be
made regarding the performance of the scheme. We count the required number of
modular exponentiations during each phase, summarizing the findings in Table 2.
We assume, that the verifiable mix net scheme proposed in [41] is used during
the tallying stage, requiring 8N + 5 modular exponentiations for the proof of
validity, and 9N + 11 modular exponentiations for its verification. Furthermore,
we assume that the DSA-based PKI is used in the election.

Table 2. Efficiency of individual phases

Preparations 3T + t− 2 + 2L

Vote casting (cast) 5

Vote casting (verify) 9N ′

Tallying (4T + 5t− 1)NL + (19N + 16)T

7 Conclusion

We have presented a novel method of achieving private eligibility verifiability
and participation privacy by padding the real votes with null votes that are



indistinguishable from the non-null ones. With this, the presence of null votes
obscures who has actually voted.

Retaining the individual verifiability assumption of ordinary Helios depends
on the strong assumption that the voter’s signing key cannot be used to post a
ciphertext without the voter’s knowledge. (This issue does not arise in ordinary
Helios because each voter can cast at most one vote.)

The scheme further provides a level of receipt-freeness, preventing voters
from proving that they have voted for a particular candidate. The protocol is
still susceptible to forced abstention and randomization attacks.

It is important further work to quantify how many and how random padded
votes we need. This depends of course on assumptions about collusion between
the posting proxies. It is therefore important to consider developing an algorithm
which an honest posting proxy should follow when deciding when to cast a null
vote.

Usability and public understanding (both important to increase trust in an
electronic voting system [39]) remain important open problems. In this system,
a voter who doesn’t want to participate in the receipt-freeness or participation
privacy aspects may simply ignore them and cast a single vote (optionally using
the Benaloh challenge for cast-as-intended verification). The possibility that they
might have participated is still enough to offer them privacy.

However, possible issues of understandability or usability might arise: for
example, the voters might get confused seeing several votes cast in their row,
thus leading to distrust in the system; or the need to remember all the previously
cast votes in order to be able to update them might become an issue. Many of
the complexities of the protocol could be hidden behind a helpful user interface,
for example one that remembered what votes had been cast before. Nevertheless
the tradeoffs between security, verifiability, public understanding, and ease of
use remain challenging, and require further exploration (for example, in forms
of user studies).
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coercion-resistant remote e-voting in linear time. Financial Cryptography and Data
Security pp. 182–189 (2012)

39. Spycher, O., Volkamer, M., Koenig, R.: Transparency and technical measures to
establish trust in norwegian internet voting. In: E-Voting and Identity, pp. 19–35.
Springer (2012)

40. Srinivasan, S., Culnane, C., Heather, J., Schneider, S., Xia, Z.: Countering ballot
stuffing and incorporating eligibility verifiability in helios. In: Network and System
Security, pp. 335–348. Springer (2014)

41. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Progress in Cryptology–
AFRICACRYPT 2010, pp. 100–113. Springer (2010)

A Cryptographic Building Blocks

A.1 Proof of an encryption of 1

In order to prove that a given ciphertext (a, b) encrypts 1, one has to present a
zero-knowledge proof:

ZKP{∃r : a = gr mod p ∧ b = hr mod p}

The proof, presented in [9], is as follows:

1. Prover chooses a random w ∈R Zq, computes α = gw mod p, β = hw mod p
and sends α, β to the Verifier.

2. Verifier sends the challenge c ∈R Zq to the prover
3. Prover computes u = w + cr mod q and sends u to Verifier
4. Verifier checks, that gu ≡ αac mod p and hu ≡ βbc mod p hold.

The proof has the soundness error of 1/q.

A.2 Proof of knowledge of discrete log

The following proof can be used to prove knowledge of a DSA or ElGamal signing
key, or knowledge of an ElGamal ciphertext.

Proof of knowledge{s : h = gs}

Public Parameters: ElGamal/DSA parameters (g, h, p, q)
Prover knows: s : h = gs mod p.

1. Prover selects a random value w ∈R Zq and publishes a = gw.
2. Verifier sends the challenge c ∈R Zq

3. Prover calculates and publishes u = w + cs
4. Verifier checks gu = ahc

The soundness error of the proof is 1/q.



A.3 Proof of knowledge of RSA signature

Proof of knowledge{s : se ≡ h(m) mod N}

Public Parameters: Message m, encoding function h(m), RSA public key
(N, e) with e prime

Prover knows: s : se ≡ h(m) mod N , d : d = e−1 mod φ(N).

1. Prover selects a random value r ∈R Z∗N and calculates x = re mod N
2. Verifier sends the challenge c ∈R Ze

3. Prover calculates z = rsc mod N and sends z to Verifier
4. Verifier checks ze ≡ x · h(m)c mod N .

The soundness error of the proof is 1/e. Note, that often the small prime
values of e are used as public key in RSA system: commonly, e = 3 or e = 216+1.
This leads to the proof being insufficiently sound. For this cases, a modification
has been proposed in [12], where in order to prove the knowledge of e-th root s
of h(m), one proves the knowledge of et-th root s′ of h(m) mod N , which can be

calculated as s′ = h(m)d
t

mod N . The modified proof has the soundness error
of 1/et.


