
Secure and Efficient Key Derivation in Portfolio
Authentication Schemes Using Blakley Secret Sharing

Peter Mayer
SECUSO - Security, Usability and Society

Technische Universität Darmstadt, Germany
peter.mayer@secuso.org

Melanie Volkamer
SECUSO - Security, Usability and Society

Technische Universität Darmstadt, Germany
Privacy and Security Research Group

Karlstad University, Sweden
melanie.volkamer@secuso.org

ABSTRACT
The ubiquitous usage of mobile devices in public spaces in-
creases the risk of falling victim to shoulder surfing attacks,
i.e. being observed by others during authentication. A
promising approach to mitigating such shoulder surfing risks
is portfolio authentication. It requires only an authorized
subset of the password as input during each authentication
attempt. One open challenge regarding portfolio authenti-
cation is how to securely and efficiently verify that a user in-
put is actually an authorized subset of the password. In this
paper we propose the (t, n)-threshold verification scheme, a
novel scheme using Blakley secret sharing to provide secure
verification of all authorized subsets of the password. Due
to the lack of a viable alternative, we evaluate the efficiency
of the (t, n)-threshold verification scheme in comparison to
a naive approach. In terms of storage, the (t, n)-threshold
verification scheme outperforms the naive approach in all
settings and it offers lower computation times in most set-
tings.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication

Keywords
authentication, secret sharing, verification, key derivation

1. INTRODUCTION
In today’s world authentication often occurs in public

places or in the presence of friends or co-workers. In such
situations shoulder surfing attacks can occur easily unless
the required password is stored on the device in question.

One solution to counter shoulder surfing attacks are port-
folio authentication schemes as studied by e.g. Dunphy et
al. [8]. In portfolio authentication schemes the password is
regarded as a set of elements and only a random subset of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818043

it has to be provided in each single authentication attempt.
That way an attacker has a lower probability of authenticat-
ing successfully unless the user is observed multiple times.

The usual implementation of portfolio authentication is
as challenge-response schemes. The verifier (e.g. service
provider or smartphone) chooses at random which elements
of the password need to be provided. The prover (e.g. client
or user) has to respond to these challenges accordingly. Pos-
sibly the simplest example of such a scheme would be to use
traditional text passwords as a basis and to ask the user to
enter specific characters of her/his password in a challenge-
response fashion. Due to usability considerations, it has
been proposed to use portfolio authentication in conjunc-
tion with recognition-based authentication schemes. In such
schemes the user does not have to actually recall the pass-
word, but only has to recognize it among distractor choices.

While the results in usability studies of portfolio authen-
tication schemes are promising [8], one challenge currently
faced in the implementation of such schemes is the lack of
a verification scheme which allows secure and efficient veri-
fication of the input provided by the user. Efficiency in the
scope of this paper has two dimensions: storage and compu-
tation time.

Usually the secure verification of user input is implemented
using secure key derivation functions (KDF), e.g. keyed hash
functions. Consequently, a naive approach could be to gen-
erate all authorized subsets of the password portfolio and
store keyed hashes of all the subsets for later comparison to
the information entered by the user. However, the required
storage of this approach grows factorially in the difference
of the sizes of the portfolio and the authorized subsets.

We propose the (t, n)-threshold verification scheme to
tackle the challenge of secure and efficient verification of
user inputs in portfolio authentication schemes. It repre-
sents a novel verification scheme providing a secure way to
derive a common secret for all authorized subsets of the pass-
word. To achieve this, we use Blakley secret sharing [2] and
key derivation functions. Blakley’s scheme allows the pres-
election of shares easily (unlike other (t, n)-threshold secret
sharing schemes such as Shamir’s scheme [21]).

As a result, the required storage of the (t, n)-threshold
verification scheme grows only polynomially. In the PIN-
level security setting it requires six times less storage than
the naive approach and in the password-level security setting
ten times less storage respectively. Analogously to the stor-
age efficiency, the (t, n)-threshold verification scheme offers a
computational speedup in comparison to the naive approach

http://dx.doi.org/10.1145/2818000.2818043

when the number of authorized subsets grows. For exam-
ple in a password-level security setting the (t, n)-threshold
verification scheme offers a speedup of 13%.

The remainder of this paper is structured as follows. Sec-
tion 2 presents background information on required termi-
nology in authentication, recognition-based authentication,
graphical authentication as well as portfolio authentication
and explains the basic working principles of Blakley secret
sharing. In section 3 we identify general operations and
properties required of verification schemes in the domain of
portfolio authentication. Section 4 describes the proposed
(t, n)-threshold verification scheme along the identified op-
erations and properties. Section 5 provides a security evalu-
ation of our proposed scheme. Section 6 presents a compar-
ison to a naive approach in terms of storage and computa-
tion time requirements. Section 7 summarizes and discusses
the findings. Section 8 describes further applications of the
proposed (t, n)-threshold verification scheme. Section 9 con-
cludes and points out areas of future work.

2. BACKGROUND
In this section we present the necessary background re-

garding authentication terminology. In particular we will
describe the phases involved in a general authentication pro-
cedure, present the basic principles of recognition-based au-
thentication as well as graphical authentication and intro-
duce relevant work in the area of portfolio authentication.
Furthermore, we describe the basic working principles of
Blakley’s secret sharing scheme.

2.1 The Authentication Procedure
What is often referred to as authentication is actually a

procedure with multiple phases, one of which is confusingly
enough also called authentication. Since we refer to some
of the phases throughout the paper, we clarify the scopes of
the relevant phases in this section.

2.1.1 Enrollment
Before a user can authenticate using a certain authentica-

tion scheme, s/he has to be enrolled. The operation of the
verification scheme associated with this phase is the creation
of the verification information. In the traditional text pass-
word setting, this phase refers to the selection of a password
by the user (in case the password is not assigned by the sys-
tem), hashing the password and storing the hash together
with the user name for later verification.

2.1.2 Identification
In the identification phase the user claims to have a certain

identity. Traditionally the action required from the user in
this phase is to supply the system with the user name. Note
that in this phase the password is not entered yet.

2.1.3 Authentication
This phase is the most prominent one and therefore epony-

mous for the whole procedure: the authentication phase. In
this phase the user enters the password using the authen-
tication scheme. Note that here the term password is used
in a very abstract sense and refers to anything from text or
graphical passwords to biometrics or smart cards. In the
traditional text password setting the respective user action
is entering the password in a text field and submitting it

to the system. This is the phase in which authentication
schemes operate.

2.1.4 Verification
In the verification phase the password entered by the user

during the authentication phase is verified against the in-
formation stored in the enrollment phase. This operation is
called verification. In the traditional text password setting
this refers to hashing the password supplied by the user dur-
ing the authentication phase and comparing the calculated
hash to the hash stored during the enrollment phase. Our
proposed (t, n)-threshold verification scheme operates in this
phase.

2.2 Recognition-based Authentication
Recognition-based authentication relies on different mech-

anisms than traditional recall-based authentication: instead
of freely recalling the password, users have to decide whether
presented information is familiar or not (i.e. is the informa-
tion part of the password). Usually the familiar information
is randomly assigned by the system during the enrollment
phase and presented alongside distractor information in a
challenge-response fashion during the authentication phase.
The primary motivation behind recognition-based schemes
is their increased memorability. It is a widely accepted fact
that recognition is a cognitively much easier task than free
recall (as necessary for traditional text passwords) [14, 24].

A simple example of a recognition-based scheme would be
to assign a random string as traditional text password to
the user during the enrollment phase. During the authen-
tication phase this password could be displayed alongside
other random textual strings. The task for the user would
then be to point out her/his password among the choices.
This scheme is obviously insecure beyond practicality and
serves only for illustration purposes. However, multiple dif-
ferent recognition-based schemes have been proposed and
studied with promising results using both, graphical pass-
words (e.g. [11, 7]) and (with slightly worse results in terms
of memorability) text passwords (e.g. [26]).

2.3 Graphical Authentication
The motivation behind graphical authentication is the

possibility to exploit the vast human capacity to store and
process visual information, the so-called pictorial superior-
ity effect [15]. Paivio’s dual-coding theory [16] explains that
visual information is stored differently in the human brain
compared to abstract information such as text. This differ-
ence in encoding leads to a higher probability of memory im-
printing and thus to a higher memorability. Many schemes
aiming to exploit this potential exist, displaying different
usability and security properties (see e.g. [23, 19, 25]).

Combining the memorability advantages of recognition-
based authentication and graphical authentication schemes
results in highly memorable passwords. There are numer-
ous studies which found that graphical recognition-based
schemes offer higher success rates and lower reset rates when
compared to other knowledge-based authentication schemes
(e.g. [13, 7, 5]).

One example of graphical recognition-based authentica-
tion is the Passfaces scheme presented in [17] and its deriva-
tives found in the literature. Hlywa et al. evaluated three
different Passfaces-style schemes in [11]. The password in
these schemes is a set of images (the familiar information)

Figure 1: The interface of a recognition-based
graphical authentication scheme resembling the in-
terface2 as used in [11]. The scheme shows multiple
such grids one after the other. The task for the user
is to point out the one image that is part of her/his
password.

and usually randomly assigned to the user during enroll-
ment. Each of the images in the password is part of a larger
group. During authentication, multiple grids of images are
presented to the user, one after another. Each grid corre-
sponds to one such group. The user has to point out the one
image that is part of her/his password (the familiar infor-
mation) among the other images (the distractors). Figure 1
shows a grid resembling one of their schemes.

2.4 Portfolio Authentication
The primary motivation behind portfolio authentication

is decreasing the probability of a successful shoulder-surfing
attack. To achieve this, portfolio authentication schemes
regard the password as a set of elements. These elements
can have any form (e.g. textual characters, textual strings,
images, electronic certificates, etc.). A password P of length
n is thus represented as

P = {e1, e2, . . . , en}.

During each authentication attempt only a random subset
P ′ ⊆ P of these elements has to be entered by the user. We
borrow from the nomenclature of secret sharing and denote
such a subset P ′ as authorized if it has at least t elements,
where the parameter t is set by each authentication scheme
depending on the desired security properties. In the remain-
der of this paper we refer to the magnitude by which the
password is larger than the authorized subsets as portfolio
overhead (denoted as o). It is represented as a fraction of
the form

o =
|P |
|P ′| =

n

t
.

Note that usually |P ′| serves as starting point when deter-

2The interface was recreated using images from the same
source (www.freeimages.com). All images c© Getty Images.

mining o and the full password is then chosen accordingly
(either by the system or by the user while respective policies
guide the user’s choice), since the strength of the authenti-
cation scheme against guessing attacks is dependent on |P ′|
rather than |P |.

Portfolio authentication is most useful to prevent shoulder-
surfing in public spaces or while in the presence of friends or
co-workers. It thwarts naive shoulder-surfers that do not ob-
serve the user for a longer period of time. An attacker who
can capture multiple (possibly any arbitrary number of) au-
thentication attempts or who uses a recording device might
still be able to break the portfolio authentication scheme,
depending on the actual authentication scheme’s design.

The most common application of portfolio authentica-
tion are challenge-response schemes. Thus the elements ei
are usually challenge-response pairs. In particular graphical
recognition-based authentication schemes have been used.
Dhamija and Perrig first introduced the portfolio term for
graphical recognition-based authentication schemes [7].
DeAngeli et al. proposed the portfolio approach for graphi-
cal recognition-based passwords as high security setting [6].
In their scheme P ′ is a random subset of the password im-
ages and is chosen as challenge set for each authentication
attempt.

Dunphy et al. first proposed portfolio authentication as a
measure to mitigate shoulder-surfing risks on mobile phones
in public places [8]. For their shoulder-surfing study they
report a temporary resistance against shoulder-surfing, es-
pecially in the context of lunchtime attacks.

2.5 Blakley Secret Sharing
Cryptographic (t, n)-threshold secret sharing denotes cryp-

tographic protocols to distribute sensitive information (the
secret) among n parties such that only by collaboration of t
such parties the secret can be reconstructed. These proto-
cols usually consist of two phases: (1) the dealing phase in
which each party is assigned a secret share and (2) the com-
bination phase in which t or more parties can collaborate to
reconstruct the secret using their shares.

Blakley proposed to use hyperplane geometry to solve this
problem [2]. The shared secret is defined as the first co-
ordinate of a randomly chosen point x in a t-dimensional
vector space over a Galois field GF (p), where p is a prime.
Throughout the remainder of this paper i ∈ {1, . . . , n} de-
notes the index of the party and j ∈ {1, . . . , t} denotes the
coordinate in the t-dimensional vector space.

2.5.1 Dealing Phase
To distribute the shares, the dealer chooses a sufficiently

large prime p and a t-dimensional point

x =

 x1

...
xt


at random. Its first coordinate x1 serves as the secret. Then
the shares for each of the n parties are generated. The dealer
chooses t values mij at random for each party and calculates
the shares yi using the equation:

mi1x1 + mi2x2 + · · ·+ mitxt = yi (1)

The resulting n × t matrix (the entirety of all coefficients
mij) is denoted by M . M is public information and does

not need to be kept secret [4]. It can be stored in the clear.
The dealer distributes only the values yi to the n parties.

2.5.2 Combination Phase
To reconstruct the secret, t parties need to combine their

shares and the respective coefficients from M to form the
system of equations

M ′x = y′, (2)

where y′ is the vector of shares provided by the parties and
M ′ is the t × t matrix of the respective coefficients. This
linear system of equations is then solved for x. The recon-
structed secret is x1.

3. REQUIREMENTS
In this section we identify required operations and prop-

erties that any verification scheme (i.e. any scheme that
operates in the verification phase) used for portfolio authen-
tication should provide. The requirements presented here
are mainly derived from findings and properties described
by Pieprzyk et al. [18].

3.1 Necessary Operations
There are two primary operations every password veri-

fication scheme has to offer, independently of its use in a
portfolio setting. Firstly, the scheme must be able to cre-
ate the verification information by translating the password
into verifiable information during enrollment. Secondly, the
scheme must offer an operation for the actual verification.

3.2 Optional Operations
While not strictly necessary, additional operations might

be desirable when a verification scheme is used with portfolio
authentication to allow for a higher usability in some re-
enrollment scenarios.

Adjusting the Portfolio Overhead: A change in the
security policy of the authentication scheme might require
the user to enter a smaller or larger subset of her/his pass-
word for each authentication attempt. This corresponds to
adjusting the portfolio overhead. The operation especially
offers benefits when used in conjunction with recognition-
based authentication schemes. If the portfolio overhead can
be adjusted without changing the password, this can prevent
the user from having to learn completely new passwords in
such cases. Instead, only additional challenge-response pairs
need to be learned.

Adding and Removing Challenges: In case a challenge-
response pair is known to be compromised, it is desirable to
allow removal of the respective pair and addition of a re-
placement pair. Ideally this operation involves only chang-
ing the respective pairs, while leaving the remaining portfo-
lio untouched. That way, the user does not have to learn a
completely new password but only the respective challenges.

3.3 Security Requirements
The primary goal of any authentication scheme is to pro-

tect access-restricted resources. Therefore it is imperative
that a verification scheme never impairs an authentication
scheme’s security properties. In terms of security the fo-
cus of verification schemes lies on two aspects, namely the
guessing resistance and secure storage.

Guessing Resistance: When considering possible at-
tacks, the resistance against guessing attacks seems to be

the most relevant in terms of verification [18]. The strength
of every authentication scheme against guessing attacks de-
pends on its password space. Therefore, a verification scheme
should not decrease the space of possible passwords. It needs
to be adaptable to the desired strength of the authentication
scheme.

Secure Storage: It has long been best practice to not
store passwords in the clear [3]. Consequently no verification
scheme should rely on the availability of the password in the
clear i.e. prevent its storage in a cryptographically hashed
form.

3.4 Efficiency Requirements
Any proposed verification scheme should ideally be more

efficient than naive approaches such as the one outlined in
section 1. Efficiency in the scope of this paper has two di-
mensions: storage and computation time.

Storage: In terms of storage, the influence of the portfo-
lio overhead should be minimized in order to keep the cost
of the shoulder-surfing resistance as low as possible.

Computation Time: In terms of computation time, the
necessary operations as stated above are of concern (i.e. cre-
ation of the verification information and verification). How-
ever, it is widely considered best practice to artificially pro-
long verification of passwords by repeated application of key
derivation functions (often several thousand times) in order
to increase the cost of guessing attacks. Therefore, slower
operations can simply be compensated by decreasing the it-
erations of the KDF. This of course only applies as long
as the verification operation does not take longer than the
repeated application in the non-portfolio setting.

4. (T,N)-THRESHOLD VERIFICATION
The verification scheme we propose in the following uses

Blakley secret sharing and key derivation functions. It de-
rives the same secret from all authorized subsets of the pass-
word. We refer to our approach as (t, n)-threshold verifica-
tion scheme, where n is the number of elements in the pass-
word and t the threshold (analogously to the definition of
(t, n)-threshold secret sharing). Before we describe each of
the operations identified in section 3 along the phases de-
scribed in section 2.1, we present preconsiderations to moti-
vate the choice of Blakley’s secret sharing scheme over other
alternatives. An implementation of the enrollment and ver-
ification operations is freely available at our GitHub reposi-
tory3.

4.1 Preconsiderations
In usual secret sharing scenarios the shares are chosen at

random. This is not possible in our verification scenario.
The password is created by the authentication scheme and
does not necessarily comply with the creation procedure of
any secret sharing scheme. For example in Shamir’s scheme
[21] our scenario would require to derive a polynomial of
degree t−1 which fits all n preselected points. This is usually
not possible since the Lagrange interpolation polynomials
are unique for each set of t < n points.

We chose Blakley’s scheme instead of other secret sharing
schemes, because it offers the required property: it allows
to predetermine the individual shares with only slight mod-
ifications. As outlined in section 2.5, the hyperplanes are

3https://github.com/SecUSo/t-n-threshold-verification

https://github.com/SecUSo/t-n-threshold-verification

normally chosen at random during the dealing phase. How-
ever, by using cryptographic hash functions it is possible to
derive pseudo-random values from the password and choose
the remaining coefficients of M accordingly (see the follow-
ing sections for details).

4.2 Enrollment
The basic working principles of Blakley’s secret sharing

scheme are unchanged for the (t, n)-threshold verification
scheme. Each challenge-response pair in the authentica-
tion scheme corresponds to one party in the secret sharing
scheme. The first step remains choosing a suitable p and a
t-dimensional point

x =

 x1

...
xt

 .

Its first coordinate (i.e. x1) is the common secret and corre-
sponds to the actual password in a traditional text password
scheme. Consequently, it should only be stored after the ap-
plication of an appropriate KDF. In the following, the value
derived from x1 is denoted s = KDF (x1). Care should be
taken when choosing the value p for GF (p). The larger p
is, the more resilient the scheme is to guessing attacks (see
section 5.1 for details).

The rest of the creation procedure deviates slightly from
Blakley’s secret sharing scheme. Only t− 1 coefficients mij

are chosen at random. Additionally, the shares yi are de-
rived from the user-chosen or assigned password elements
ei using a cryptographic hash function. This operation can
also be delegated to the authentication scheme, depending
on the actual implementation. The remaining coefficient
mit is calculated using equation (1) and the values mij and
yi chosen before. This is a notable deviation from Blak-
ley’s original procedure insofar as the distributed share is
predetermined by the system and not chosen at random.
However, the use of cryptographic hash functions ensures
that all values are indistinguishable from randomly chosen
values. Thus the security properties of Blakley’s scheme re-
main unchanged (assuming the usage of a cryptographically
strong hash function; see section 5 for details).

All coefficients of M and the value s are retained and
stored for the verification procedure. Together they rep-
resent the verification information and correspond to the
password hash in a traditional text password setting.

Note that when using Blakley secret sharing in affine ge-
ometry as we do here, it is important to ensure during the
creation of the verification information that none of the hy-
perplanes are parallel (i.e. the determinants of all t× t sub-
matrices M ′ of M are unequal to zero). Otherwise, there
exist M ′ which are not uniquely solvable, i.e. the secret
point x is not unique.

4.3 Verification
Whenever a user wants to authenticate to the system, first

the user’s inputs to the authentication scheme e′i need to
be collected during the authentication phase. The collected
e′i are used in the verification phase to derive the values
y′i in the same fashion as during the creation procedure.
Then, the y′i and the stored coefficients mij are used to
form the linear system of equations (2) which is solved for
x. The value s′ obtained by application of the respective

KDF to x1 is then compared to the stored common secret
s. During verification there is no deviation from Blakley’s
original procedure. Thus all authorized subsets can recover
the common secret.

4.4 Re-Enrollment
The (t, n)-threshold verification scheme provides the op-

tional operations identified in section 3, namely adjusting the
portfolio overhead and adding and removing challenges. The
procedures involved in these two operations are described in
the following.

Adjusting the Portfolio Overhead: Adjusting the
portfolio overhead corresponds in our scheme to changing
the threshold t. In order to adjust the threshold (i.e. trans-
forming the (t, n)-threshold verification scheme into a (t ±
k, n)-threshold verification scheme), the matrix M needs to
be recreated. This requires the point x or all shares yi.
While an authorized subset is not sufficient for the actual
adjustment, any authorized subset of the password can re-
cover x. Using the recovered x, the procedure is then similar
to the original creation procedure outlined in 4.2. Only the
number of columns in M needs to be adjusted according
to the desired change (i.e. the index in each row of M is
adjusted to j ∈ {1, . . . , t± k}).

Adding and Removing Challenges: To add further
challenge-response pairs (i.e. transforming the (t, n)-threshold
verification scheme into a (t, n + 1)-threshold verification
scheme) another row has to be added to M . To perform
the necessary calculations x has to be reconstructed (which
is possible, given any authorized subset of the password).
With x the creation procedure using equation (1) as out-
lined in section 4.2 can be used to add another row to M .

Removing a challenge from the scheme (i.e. transforming
the (t, n)-threshold scheme into a (t, n−1)-threshold scheme)
is trivial. The respective share and coefficients are simply
removed. Of course this is only viable if n− 1 ≥ t.

5. SECURITY EVALUATION
In this section we evaluate the proposed (t, n)-threshold

verification scheme regarding the security aspects identified
in section 3.3.

5.1 Guessing Resistance
Blakley secret sharing is a perfect secret sharing scheme

[18]. The guessing resistance of the (t, n)-threshold verifi-
cation scheme is directly related to the size of GF (p). As
there are only p distinct values any variable in the system
can assume, any attacker needs on average p

2
attempts to

guess the correct value. This holds obviously if the attacker
tries to guess x1 directly. Additionally, guessing the secret
x1 does not get easier if a share is known to the attacker.
If the attacker tries to guess the correct shares yi and was
(in the worst case) able to obtain all but one share s/he has
again to try on average p

2
values for the remaining share: By

definition the linear system of equations (2) has one solution,
since the determinant of the t × t matrix M is unequal to
zero for all possible vectors of shares y. Consequently, all
shares yi ∈ {1, 2, . . . , p} are equiprobable. Even when the
number of available shares is constrained by the authentica-
tion scheme, guessing the share is not easier than a standard
brute force attack.

To ensure the security properties outlined before, it is im-
portant to choose p as explained below, so that the space

of actually chosen passwords is not shrunk. Note that in
the following we assume that the passwords (i.e. the sets
P = {e1, . . . , en}) are randomly chosen (i.e. user choice is
not modelled). Following the classical information theoretic
argumentation in [12] it is of the essence to ensure that

H(s) ≤ −
p∑

i=1

1

p
log2

(
1

p

)
.

As stated before, the attacker has to test on average p
2

values
to to find x1. Consequently, p should ideally be chosen such
that

p ≥ 2H+1, (3)

where H is the expected strength of the authentication scheme
in bit. Otherwise, guessing one share is easier than guessing
an authorized subset of the password.

5.2 Secure Storage
Our (t, n)-threshold verification scheme provides secure

storage of the verification information. Analogously to the
procedure common in traditional text password settings, the
common secret x1 is only stored for later verification of the
user input after the application of an appropriate KDF. As
long as the KDF is secure, the secret is secure.

6. EFFICIENCY EVALUATION
In this section we present an efficiency evaluation of the

(t, n)-threshold verification scheme in comparison to the naive
approach outlined in section 1 along the two efficiency di-
mensions outlined in section 3.4: storage and computation
time. First however, we describe the naive approach and the
comparison setup in greater detail.

6.1 Naive Approach
To our knowledge there is no other proposal for key deriva-

tion and verification of authentication information in portfo-
lio authentication schemes described in published literature.
Therefore, in the absence of viable alternatives, we use the
following naive verification scheme as a baseline for our effi-
ciency comparison.

The naive scheme creates hashes for all authorized sub-
sets during the enrollment phase and stores all these hashes.
During the verification phase the user’s input is hashed and
compared to all possible hashes. The verification is success-
ful if the hashed user input is equal to one of the stored
hashes.

The required storage in bytes of this naive approach grows
factorially in the portfolio overhead and can be determined
using the equation

bnaive =

(
n
t

)
· bhash, (4)

where n denotes the total number of elements in the pass-
word, t denotes the size of the authorized subsets (i.e. the
number of elements required during authentication) and bhash
denotes the size of one hash in bytes.

6.2 Comparison Setup
From a guessing-resistance point of view, knowledge-based

authentication exists mostly at two security levels: the PIN-
level and the password-level. Therefore, the main part of the

evaluation focuses on these two levels. The portfolio over-
head of o = 3

2
as used in [8] is applied in all configurations.

The PIN-level spans a password space of 104 entries. It is
used widely, from unlocking smartphones to banking appli-
cations. To achieve this security level in a portfolio setting,
we consider random PINs of length 6, where 4 elements of
the PIN have to be entered during the authentication phase
over the usual 10 digit alphabet. For the (t, n)-threshold ver-
ification scheme we choose p = 215 − 12757, so that guessing
x1 is harder than guessing the actual user secret (i.e. an au-
thorized subset of the PIN).

The password-level is more ambiguously defined, but can
generally be regarded as the level achieved by passwords
that occur in the wild. Florêncio and Herley found that
password policies used by large Internet companies result in
minimum strengths of about 20 to 27 bits [10]. To approxi-
mate realistic values, but still provide a clear contrast to the
PIN-level, we choose the value of 27 bits. We decided to in-
crease the password length as well as the size of the alphabet
to clearly contrast the configuration of the PIN-level and the
password-level. Therefore, we assume random passwords of
length 9, where 6 elements of the password have to be en-
tered during each authentication attempt and an alphabet
of of size 23 (236 > 227). For the (t, n)-threshold verification
scheme we choose p = 232 − 5, so that guessing x1 is harder
than guessing any authorized subset of the password.

To explore the properties of the (t, n)-threshold verifica-
tion scheme beyond these two security levels, we provide
results for six additional configurations. These additional
configurations are based on random strings over the broadly
considered alphabet of the 95 characters on a standard US
keyboard (see e.g. [11]). The recommended key lengths for
high security cryptographic keys given by Eastlake et al. [9]
serve as upper bound in terms of password strength. At the
time of this writing appropriate key lengths are in the 89-
to 104-bit range. The parameter p for these configurations
is chosen as the largest prime representable with the same
number of bytes as the minimum value for p as determined
by equation (3).

Barker et al. provide recommendations in terms of key
length and respective hash functions [1]. At the time of writ-
ing SHA-256 is an adequate choice. Thus SHA-256 (hash
size 32 bytes) is considered as hashing algorithm through-
out the whole evaluation. We decided to use salted SHA-256
hashing as KDF for both, the naive and the (t, n)-threshold
verification scheme.

6.3 Storage
The first aspect of this comparison is the required storage.

The proposed (t, n)-threshold verification scheme needs to
store the common secret s and the coefficients mij . Both
are in GF (p). As outlined above in section 5.1, using a
sufficiently large prime number p is essential in order to not
decrease the security of the used scheme against guessing
attacks. The number of coefficients needed depends on the
overall password size (number of elements) and the size t
of the authorized subsets. The storage requirement b in
bytes is given by: (a) the n · t coefficients of M , whose size
is determined by the number of bytes necessary to store
one integer smaller or equal to p (rounded up), plus (b) the
stored secret s, whose size is determined by the number of
bytes necessary to store the value (rounded up). Formally

480

2688

80
248

0

500

1000

1500

2000

2500

3000

PIN,level Password,level

St
or
ag
e9
9re

qu
ire

m
en
t9(
by
te
s)

Naive9approach (t,n),threshold9verification

Figure 2: The storage requirements in bytes. Lower
values are better.

this can be expressed using the equation

b(t,n)−threshold = n · t ·
⌈

log2(p)

8

⌉
+ bhash, (5)

where bhash denotes the size of the hash s of x1 in bytes
(rounded up). From this equation it becomes apparent that
the required storage grows polynomially in n and t. Figure
2 shows the storage requirement for both schemes on the
PIN-level and on the password-level. Calculations for the
values of both levels and the additional configurations is
given below, a summary of the results can be found at the
end of this section.

6.3.1 PIN-level
Using equation (4) with settings for the PIN-level, the

overall storage requirement for the naive approach is(
6
4

)
· 32 bytes = 480 bytes.

For the proposed (t, n)-threshold verification scheme, the
storage requirement in the PIN-level setting is

6 · 4 · 2 bytes + 32 bytes = 80 bytes.

6.3.2 Password-level
Using the naive approach on the password-level, the over-

all storage needed is(
9
6

)
· 32 bytes = 2688 bytes.

The storage requirement of the (t, n)-threshold verifica-
tion scheme in this setting is

9 · 6 · 4 bytes + 32 bytes = 248 bytes.

6.3.3 Properties beyond password-level security
Table 1 shows the storage requirements of the six addi-

tional configurations based on the settings outlined in sec-
tion 6.2. From the data it becomes apparent that the more
authorized subsets there exist for one password, the more
storage is required by both, the naive approach and the
(t, n)-threshold verification scheme. However, due to the

Table 1: The storage requirements in bytes b of the
proposed (t, n)-threshold verification scheme for the
additional configurations. The values for the naive
approach are also given for reference. H is the de-
sired strength of the authentication scheme. n and
t are the portfolio parameters.

H n t b(t,n)−threshold bnaive

39,42 9 6 302 2688
52,56 12 8 704 15840
65,70 15 10 1382 96096
78,84 18 12 2192 594048
91,98 21 14 3560 3720960

105,12 24 16 5408 23535072

different growths of the required storage in both approaches
(polynomial vs. factorial) the difference between the naive
approach and the (t, n)-threshold verification scheme steadily
increases. The (t, n)-threshold verification scheme is signifi-
cantly more efficient in terms of storage than the naive ap-
proach for large numbers of authorized subsets.

6.3.4 Results
The storage requirement of the (t, n)-threshold verifica-

tion scheme is six times smaller in the PIN-level security
setting and ten times smaller in the password-level security
setting than for the naive approach. The additional config-
urations let this difference become even more apparent: the
longer the password is (assuming the same portfolio over-
head), the larger the difference becomes. Yet, it is impor-
tant to acknowledge that using portfolio authentication with
either approach comes at a price. The storage requirement
is much larger than in the non-portfolio scenario, where only
one hash has to be stored for each password.

6.4 Computation Time
The second part of our efficiency evaluation is a compar-

ison of the computation timings. We employ an empirical
Monte Carlo evaluation. The two necessary operations in
this regard are creation of the verification information and
verification. Since the naive approach does not support the
additional operations identified in section 3, they are left
out of the comparison. The reported values are means of
10000 operation runs for the PIN-level and password-level
and means of 1000 operation runs for each of the additional
configurations. All calculations were run using an implemen-
tation in Mathematica 9 on a Core 2 Duo 2.4 GHz machine.
Note that due to the test setting, the focus is on the mag-
nitude of the difference, not the actual measured timings.
A summary of the results can be found at the end of this
section.

We chose to apply the KDF only once to the derived se-
crets for both, the naive and the (t, n)-threshold verification
scheme. Consequently, in a real world setting the timings
would increase according to the number of iterations I cho-
sen for the KDF. In the naive scheme the hash of every
authorized subset has to be calculated by applying I itera-
tions (i.e.

(
a
b

)
· I iterations in total). In the (t, n)-threshold

verification scheme the KDF has to be applied only to the
value s (i.e. I iterations in total). Therefore, the values
provided here can also be regarded as a lower bound for sce-
narios where the KDF is applied only a few times (e.g. due
to computation timing constraints).

27,16

32,31

22,05

44,11

0

5

10

15

20

25

30

35

40

45

50

Creation of verification
information

Verification

M
ea

n
 t

im
e

fo
r

o
p

er
at

io
n

 (
m

s)

Naive approach (t,n)-threshold verification

Figure 3: The computation time requirements for
the PIN-level setting. The depicted values are
the means and standard deviations calculated from
10000 timings captured in a Monte Carlo evaluation.
Lower values are better.

173,28
178,12

82,30

154,41

0

20

40

60

80

100

120

140

160

180

200

Creation of Verification
information

Verification

M
ea

n
 t

im
e

fo
r

o
p

er
at

io
n

 (
m

s)

Naive approach (t,n)-threshold verification

Figure 4: The computation time requirements for
the password-level setting. The depicted values are
the means and standard deviations calculated from
10000 timings captured in a Monte Carlo evaluation.
Lower values are better.

6.4.1 PIN-level
Figure 3 shows the mean times obtained for both oper-

ations in the PIN-level setting. The timings for the cre-
ation of the verification information show an advantage of
our (t, n)-threshold approach. The mean time is about 23%
higher for the naive approach. Regarding the verification
timings the naive approach is faster. The simple compari-
son of hashes is less complex than solving the linear system
of equations in our approach. The advantage of the naive
approach is about 36%.

6.4.2 Password-level
Figure 4 shows the mean times obtained for both opera-

tions in the password-level setting. The values for the cre-

39,42 52,56 65,7 78,84 91,98 105,12

Creation 0,113 0,310 2,142 4,419 9,843 25,300

Verification 0,101 0,283 1,954 3,828 7,360 13,666

0

3

6

9

12

15

18

21

24

27

M
ea

n
 t

im
e

fo
r

o
p

er
at

io
n

 (s
)

Strength of authentication mechanism H

Figure 5: The results of the computation timing
evaluation of the additional configurations.

ation of the verification information draw a clearer picture
than those of the PIN-level. The time needed using the
(t, n)-threshold verification scheme is about 53% lower. In
contrast to the PIN-level, on the password-level verification
is faster when using the (t, n)-threshold verification scheme.
With about 13% the difference is, however, rather small.

6.4.3 Properties beyond password-level security
Figure 5 shows the timings of the additional configurations

as function of the respective password strength H. For de-
tails of the configurations refer to Table 1. Analogously to
the storage evaluation, the computation time increases with
longer passwords and the number of authorized subsets that
exist for the password. In contrast to the results for the
PIN-level and password-level, the creation of the verifica-
tion information takes longer than the verification for all
additional configurations. A thorough evaluation is needed
to further investigate this issue.

6.4.4 Results
The (t, n)-threshold verification scheme offers faster cre-

ation of the verification information on both security lev-
els under consideration (PIN-level and password-level). The
verification has more mixed results. However, it becomes
clear that in all cases, the repeated application of the key
derivation function would dominate the computation tim-
ings. 10000 rounds (a value used by large Internet compa-
nies and also recommended by the OWASP [22]) of simple
keyed SHA-256 hashing take about 17.5 seconds in the same
computation setup, which is more than one hundred times
the value for the verification operation at the password-level.
Even the value for the verification operation at the highest
security level we evaluated is lower. Some of the results
require further investigation. A thorough evaluation inves-
tigating the effects of all parameters of the (t, n)-threshold
verification scheme is required.

7. DISCUSSION
This paper proposes the (t, n)-threshold verification

scheme, a novel verification scheme using Blakley secret shar-
ing to facilitate secure and efficient verification in portfolio
authentication schemes.

In terms of efficiency, two aspects were evaluated in com-
parison to a naive approach, namely the required storage and
computation timings. The comparison of the required stor-
age revealed that the proposed scheme requires significantly
less storage space for the verification information. The re-
quired storage of the (t, n)-threshold verification scheme
grows only polynomially, while the storage of the naive ap-
proach grows factorially in the length of the password and
the size of the authorized subsets. The efficiency in terms of
storage space can be regarded as the most important trait
of the (t, n)-threshold verification scheme. In relevant usage
scenarios it requires six to ten times less storage than a naive
approach. This advantage increases further, the larger the
number of authorized subsets for each password is.

The evaluation of the computation timings draws a simi-
lar, but slightly more diverse picture. On the one hand, the
(t, n)-threshold verification scheme is faster than the naive
approach in both operations for the password-level security
setting. On the other hand, the verification operation of
the naive approach is faster than the (t, n)-threshold verifi-
cation scheme for the PIN-level security setting. However,
this holds only when the key derivation function is applied
few times to the secret as it was done in our evaluation.
The longest computation time found in the evaluation of the
PIN-level and password-level configurations (verification for
the naive approach in the password-level security setting)
is equivalent to about 102 SHA-256 iterations in the same
computation setting. This number fades in comparison to
the multiple thousand iterations usually applied in order to
render guessing attacks more costly. Thus we argue that the
increase in computation time of the (t, n)-threshold verifica-
tion scheme (in comparison to non-portfolio authentication
schemes) can easily be compensated by slight adjustments
of the iterations of the key derivation function used for the
common secret.

Consequently, the (t, n)-threshold verification scheme is
most suitable for scenarios in which the number of autho-
rized subsets is large. When storage is of no concern, but
computation time is important (and the KDF is applied only
few times) the naive approach might be more suited for sce-
narios with smaller numbers of authorized subsets. However,
it must be acknowledged that in all cases the required stor-
age and computation timings are significantly higher than
in non-portfolio scenarios. Thus the increased resilience to
shoulder-surfing attacks comes at the price of additional
storage and computation time.

However, with respect to the verification operation, the in-
creased computation time can also be seen as an advantage.
The scheme’s verification timings scale with the complexity
of the password: the higher the security in terms of resis-
tance to shoulder-surfing, the longer an attacker needs to
calculate one guess. Further investigations are required to
explore the effects of this trait on the security and computa-
tion requirements of the (t, n)-threshold verification scheme.

In terms of security, the properties regarding secure stor-
age and the guessing resistance of the (t, n)-threshold ver-
ification scheme were investigated. Regarding the secure
storage of the authentication information it could be shown
that the choice of a secure KDF allows secure storage for the
(t, n)-threshold verification scheme. Regarding the guessing
resistance, the verification scheme can be adapted to the
desired strength of the authentication scheme by choosing
p large enough according to equation (3). However, it be-

comes apparent from equation (5) that balancing the storage
requirements and the resistance to guessing attacks by care-
fully choosing the parameter p can be of the essence. For
PIN-level or password-level secrets and in scenarios where
storage efficiency is not of utmost importance, this is not
critical. However, when longer secrets are stored and stor-
age efficiency is of the essence, the advantage in terms of
storage can decrease.

In the course of our investigations, required operations
and properties for verification schemes in the context of
portfolio authentication were identified. The (t, n)-threshold
verification scheme offers operations which can render re-
enrollment more user-friendly. Both, adjusting the portfolio
overhead as well as adding or removing challenges, require
reissuing a new password to the user in the naive approach.
In contrast, the (t, n)-threshold verification scheme allows
these operations without the need to issue new passwords.

8. FURTHER AREAS OF APPLICATION
While portfolio authentication was originally designed

with graphical recognition-based schemes in mind, it can be
applied to a more general context. It is a natural extension
of the (t, n)-threshold verification scheme to support pass-
words that comprise elements of different types (i.e. origi-
nate from different authentication schemes). Such an exten-
sion requires only an adequate hash function to derive the
respective share from the user input. Therefore, it is con-
ceivable to allow multi-factor passwords in systems in which
not all factors have to be provided for each authentication
attempt (e.g. one element of the password could be a text
password, a second element a certificate on a smart card,
a third element a biometric such as a fingerprint, another
element a USB-token and so on, but only two of these are
required at login). This can be beneficial in scenarios where
not all factors are available at all times or where factors are
prone to error.

All devices and authentication schemes come with design
spaces that are specific to the respective device and au-
thentication scheme (e.g. [20]). Using the proposed (t, n)-
threshold verification scheme, each device can offer multi-
factor authentication tailored to its specific requirements
and features (screen size, presence of keyboard or touch-
screen, biometric sensors etc.) while still being able to ver-
ify all the information securely and efficiently. As such, our
scheme facilitates novel authentication procedures spanning
multiple devices with improved security and usability due
to device-specific considerations regarding available authen-
tication methods. The authentication scheme can then meet
each device’s requirements while respecting user preferences
instead of providing a one size fits (not) all solution for all
users on all devices.

9. CONCLUSION
In this paper we propose the (t, n)-threshold verification

scheme. It serves as an important enabler for other tech-
nologies and allows the implementation of portfolio authen-
tication schemes including secure and efficient verification
for the first time. Especially in terms of storage efficiency
the (t, n)-threshold verification scheme shows its strengths.

Recognition-based authentication schemes that are more
resilient to shoulder-surfing attacks than their non-portfolio
variants are one important use case that benefits greatly

from the proposed verification scheme. However, we also dis-
cussed how the possible applications of the proposed
(t, n)-threshold verification scheme go far beyond this one
scenario. It enables multi-factor setups that stretch multiple
devices to deliver the most user friendly experience possible.

Future work is required in three areas. Firstly, a thor-
ough evaluation in terms of computation timings in a more
realistic computation setting is required. Such an evaluation
allows (1) to investigate the influence of all parameters in-
volved in the (t, n)-threshold verification scheme and (2) to
obtain representative timings additionally to the overview of
differences in magnitude provided in this paper. Secondly
a prototype application in the graphical recognition-based
authentication domain should be implemented and evalu-
ated. Thirdly, a suitable multi-device/multi-factor scenario
should be explored. Such a scenario would also enable a
comparison of the impact of different factors (e.g. biomet-
rics, smart cards or knowledge based authentication) on the
performance of the scheme.

10. ACKNOWLEDGMENTS
We would like to thank Stephan Neumann, Johannes

Braun and Matthias Schempp for their valuable input.
This work has been developed within the project ‘KMU

AWARE’ which is funded by the German Federal Ministry
for Economic Affairs and Energy under grant no. BMWi-
VIA5-090168623-01-1/2015. The authors assume responsi-
bility for the content.

11. REFERENCES
[1] E. Barker, W. Barker, W. Burr, W. Polk, and

M. Smid. NIST Special Publication 800-57 -
Recommendation for Key Management Part 1:
General (Revision 3). U.S. Department of Commerce -
National Institute of Standards and Technology, 2012.

[2] G. R. Blakley. Safeguarding cryptographic keys. In
Proceedings of the national computer conference. Vol.
48, 1979.

[3] J. Bonneau and S. Preibusch. The password thicket:
technical and market failures in human authentication
on the web. WEIS ’10: The 9th Workshop on the
Economics of Information Security, 2010.

[4] l. N. Bozkurt, K. Kaya, A. A. Selçuk, and A. M.
Güloglu. Threshold Cryptography Based on Blakley
Secret Sharing. Information Sciences, 2008.

[5] S. Brostoff and M. A. Sasse. Are Passfaces more
usable than passwords? A field trial investigation. In
People and Computers XIV - Usability or Else!, pages
405–424. Springer, 2000.

[6] A. De Angeli, L. Coventry, G. Johnson, and
K. Renaud. Is a picture really worth a thousand
words? Exploring the feasibility of graphical
authentication systems. International Journal of
Human-Computer Studies, 63(1):128–152, 2005.

[7] R. Dhamija and A. Perrig. Deja vu: A user study
using images for authentication. In USENIX Security
Symposium, pages 45–58, 2000.

[8] P. Dunphy, A. P. Heiner, and N. Asokan. A closer look
at recognition-based graphical passwords on mobile
devices. In SOUPS ’10: Proceedings of the Sixth
Symposium on Usable Privacy and Security. ACM,
2010.

[9] D. Eastlake, J. Schiller, and S. Crocker. Request for
Comments: 4086 - Randomness Requirements for
Security. The Internet Society, 2005.

[10] D. Florêncio and C. Herley. Where do security policies
come from? In SOUPS ’10: Proceedings of the Sixth
Symposium on Usable Privacy and Security. ACM,
2010.

[11] M. Hlywa, R. Biddle, and A. S. Patrick. Facing the
facts about image type in recognition-based graphical
passwords. In ACSAC ’11: Proceedings of the 27th
Annual Computer Security Applications Conference,
pages 149–158. ACM, 2011.

[12] E. Karnin, J. Greene, and M. Hellman. On secret
sharing systems. IEEE Transactions on Information
Theory, 29(1):35–41, 1983.

[13] P. Mayer, M. Volkamer, and M. Kauer.
Authentication Schemes - Comparison and Effective
Password Spaces. In 10th International Conference on
Information Systems Security, pages 204–225, 2012.

[14] E. F. Mulhall. Experimental Studies in Recall and
Recognition. The American Journal of Psychology,
26(2):217–228, 1915.

[15] D. L. Nelson, V. S. Reed, and W. John R. Pictorial
Superiority Effect. Journal of Experimental
Psychology: Human Learning and Memory, 2:523–528,
1976.

[16] A. Paivio, T. B. Rogers, and P. C. Smythe. Why are
pictures easier to recall than words? Psychonomic
Science, 11:137–138, 1968.

[17] Passfaces Corporation. The Science Behind Passfaces.
Passfaces Corporation, 2006.

[18] J. Pieprzyk, T. Hardjono, and J. Seberry.
Fundamentals of Computer Security. Springer, 2003.

[19] A. Salehi-Abari, J. Thorpe, and P. C. van Oorschot.
On purely automated attacks and click-based
graphical passwords. In Computer Security
Applications Conference, 2008. ACSAC 2008. Annual,
pages 111–120. IEEE, 2008.

[20] F. Schaub, M. Walch, B. Könings, and M. Weber.
Exploring The Design Space of Graphical Passwords
on Smartphones. In SOUPS ’13: Proceedings of the
Ninth Symposium on Usable Privacy and Security.
ACM, 2013.

[21] A. Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[22] J. Steven and J. Manico. Password Storage Cheat
Sheet (visited May 2015). https://www.owasp.org/
index.php/Password Storage Cheat Sheet.

[23] X. Suo, Y. Zhu, and G. S. Owen. Graphical
passwords: A survey. In ACSAC ’05: Proceedings of
the 21st Annual Computer security applications
conference, pages 10–pp. IEEE, 2005.

[24] B. Tversky. Encoding processes in recognition and
recall. Cognitive Psychology, 5(3):275–287, 1973.

[25] P. C. van Oorschot, S. Chiasson, and R. Biddle.
Graphical passwords: Learning from the first twelve
years. ACM Computing Surveys (CSUR), 44(4), 2012.

[26] N. Wright, A. S. Patrick, and R. Biddle. Do You See
Your Password? Applying Recognition to Textual
Passwords. In SOUPS ’12: Proceedings of the Eighth
Symposium on Usable Privacy and Security. ACM,
2012.

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

	Introduction
	Background
	The Authentication Procedure
	Enrollment
	Identification
	Authentication
	Verification

	Recognition-based Authentication
	Graphical Authentication
	Portfolio Authentication
	Blakley Secret Sharing
	Dealing Phase
	Combination Phase

	Requirements
	Necessary Operations
	Optional Operations
	Security Requirements
	Efficiency Requirements

	(t,n)-threshold Verification
	Preconsiderations
	Enrollment
	Verification
	Re-Enrollment

	Security Evaluation
	Guessing Resistance
	Secure Storage

	Efficiency evaluation
	Naive Approach
	Comparison Setup
	Storage
	PIN-level
	Password-level
	Properties beyond password-level security
	Results

	Computation Time
	PIN-level
	Password-level
	Properties beyond password-level security
	Results

	Discussion
	Further areas of application
	Conclusion
	Acknowledgments
	References

