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Abstract. In order to ensure the security of remote Internet voting, the
systems that are currently proposed make use of complex cryptographic
techniques. Since these techniques are often computationally extensive,
efficiency becomes an issue. Identifying the most efficient Internet vot-
ing system is a non-trivial task – in particular for someone who does
not have a sufficient knowledge on the systems that currently exist, and
on the cryptographic components that constitute those systems. Aside
from these components, the efficiency of Internet voting also depends
on various parameters, such as expected number of participating voters
and ballot complexity. In this paper we propose a tool for evaluating the
efficiency of different approaches for an input scenario, that could be of
use to election organizers deciding how to implement the voting system.

1 Introduction

Both vote secrecy and verifiability of the result are the crucial requirements in
Internet voting. For ensuring them, various cryptographic techniques have been
proposed. The two common approaches to anonymise the votes are verifiable mix
net and homomorphic tallying. Both these approaches, being versatile in use have
been widely employed in the literature, and also implemented in systems used in
practice [2, 7, 8]. Moreover, these approaches are interchangeable in some of the
voting schemes: the Helios system, which used both mix net and homomorphic
tallying approaches in its versions, is an example of such interchangeability. Thus,
the choice of either mix net or homomorphic tallying approach does not have an
impact on the security of the scheme. In such cases, the decision to use either
one of them for ensuring vote secrecy has to be made by the election organizers.
One of the important criteria is the efficiency of the resulting scheme.

In this paper we implement a prototype tool, that enables comparing the
efficiency of both these approaches by estimating the theoretic performance of
corresponding calculations. This tool is then supposed to support the election
organizers to appropriately implement the voting system, by choosing the most
efficient anonymisation approach.

We evaluate the efficiency of the anonymisation using different types of bal-
lots: namely, different kinds of approval voting, divisive (weighted) voting and



ranked voting. Each one of this type can be used either with the mix net ap-
proach, or homomorphic tallying with different kinds of validity proofs. We count
the operations that require most performance and implement a prototype tool3

that, using the formulas we provide, enables estimating the efficiency of different
approaches given a specific election setting, thus helping to decide which of these
approaches would be the most effective in this setting.

The paper is structured as follows. We outline the methodology that we
use for estimating the efficiency in Section 2. We provide details on individual
anonymisation approaches in Section 3. Finally, we describe the prototype tool
we developed for evaluation in Section 4, and present the evaluation results of
various election settings in Section 5.

2 Methodology

In this section we describe the methodology we used in order to estimate the
time needed for the computations. First, we identify the appropriate election
phases, which efficiency can differ depending on the anonymisation approach
that is used. Then we describe the way to estimate the time for the computations
during those phases.

2.1 Election phases

The following election stages necessarily differ, depending on the anonymisation
approach that is used:

Voting The voter uses her private device in order to prepare and cast a vote
over the internet. Depending on the anonymisation method, different proofs
of well-formedness need to be computed, in order to prevent casting invalid
ballots.

Validation The voting system verifies the validity of each cast vote, by verifying
the vote validity proofs that are appended to votes during the vote casting.
The system can start validating the votes directly after they are being cast,
and it needs to be fully completed before the tallying can start.

Tallying After all the votes have been cast and verified, the result is being
tallied. This includes performing the mixing in the case of mix net based ap-
proach, and finding the discrete logarithm in the case of homomorphic tally-
ing. After the anonymisation, the results are being decrypted. The number of
ciphertexts to be decrypted also depends on the type of the anonymisation.
We assume, that both the tasks of mixing and of decrypting are performed
by the same set of trustees.

3 The tool will be made open-source following the publication.



2.2 Time estimations

Let Gq be a cyclic group with order q, that is used for all the calculations
in the election. In order to estimate the efficiency of different anonymisation
approaches, we rely on the efficiency of performing one exponentiation in Gq on
a computer that runs the election. This value depends on several factors: not
just on the processor used, but also on the security parameters of the election,
such as the bit size of underlying group elements and exponent order q, or on
whether Gq is a subgroup of Zp for a prime p, or an elliptical curve. Therefore,
ideally it should be an input from the election organizers for each individual
case.

This value, further denoted as RExp is then used as a basis for estimating
the efficiency of individual operations. For further optimising the estimations,
we also consider the special kinds of exponentiations that might speed up the
calculations, as well as the possibilities to precompute some of the values in
advance.

Calculation optimizations Aside from calculating the exponentiations in a
straight-forward way, one can apply other algorithms developed for calculating
special kinds of exponentiations. These algorithms, outlined in [16], can perform
computations in a more efficient way than computing each exponentiation sep-
arately. The special kinds of exponentiations that are relevant for this work are
as follows:

Fixed-base exponentiations (FBExp): Computing multiple exponentiations
ge1 , ..., gem for a single base g.

Multi-exponentiations (MExp(m)): Computing the product of exponenti-
ations

∏m
i=1 g

ei
i .

In our calculations we assume, that the voting system can rely on precompu-
tations, while the voting client does not. We further assume the exponent size of
256 bits, which is the recommended size for both integers and elliptical curves
according to keylength.org. We then use following heuristics to determine the
type of exponentiations used in calculations for optimal efficiency:

– the voting client uses multiexponentiations where available,
– the voting system uses fixed-base exponentiations where available,
– for multiexponentiations with large values of m, the product

∏m
i=1 g

ei
i is

calculated in smaller batches4 as p1 · ... · pdm/7e with pi =
∏7i

j=7(i−1)+1 g
ej
j .

– for fixed-base exponentiations, the representation of an exponent e =
∑t−1

i=0 ei·
bi is used, with b = 16, t = 64, ei < b∀i = 0, ..., t− 1.

The time needed for both multiexponentiation and fixed-base exponentia-
tion is then determined relatively to RExp, with MExp(2) = 1.16 · RExp,
MExp(7) = 1.64 ·RExp, FBExp = 0.19 ·RExp.

4 We consider splitting the product in batches of size seven, due to its optimal perfor-
mance.

keylength.org


Considerations about pre-computations A decision can be made by the
election organizers, to perform some of the needed computations in advance,
thus speeding up the computations during the election. As we assume, that no
pre-computations can be done by the voter, the operations that can be pre-
computed are as follows.

Special-kind of exponentiations As already mentioned, special algorithms
can be employed for performing some parts of calculations more efficiently.
In particular, they can be of use when having to calculate a large number of
exponentiations with common base, thus speeding up each new exponentia-
tion with this base significantly.

Discrete logarithm As in the homomorphic tallying approach, the calculation
of a discrete logarithm is necessary given a set of values gx1

1 , ..., gxC

C with C
as a total amount of resulting ciphertexts. Thus, for each gi one could use a
precomputed table of values (x, gxi ) for all possible values of x.

Mix net matrix commitments Given the mix net scheme in [20], a substan-
tial part of the computations can be performed without the knowledge of
ciphertexts that are about to be shuffled. We therefore assume, that the vot-
ing system performs precomputations that would allow to shuffle the votes
from all eligible voters.

Parallelisation The operations performed by a single entity that we consider
can be parallelised, by distributing the calculations into different parts and com-
bining the result. This is especially trivial for homomorphic tallying approaches,
where the tasks of verifying the individual validity proofs or finding the discrete
logarithm results can be easily distributed. For the mix net approach, the oper-
ations that are needed for either calculating a proof of shuffle or for verifying it
can be parallelised as well with an appropriate implementation. For the sake of
simplicity, we consider that either all of the operations are parallelised using the
same number of processors, or none is.

3 Individual calculations

In this section we provide the formulas that determine the estimated time needed
for calculation of decryption of the final result, as well of specific anonymisation
approaches.

3.1 Mix net

One of the anonymization methods considered is a mix net scheme, whereby
the input list is being shuffled by each one of the trustees in turn, so that the
correspondences between the ciphertexts in the input and output lists are hidden.
Each of the ciphertexts in the output list is being decrypted and added to the
final tally according to the ballot rules.



As long as at least two nodes keep the correspondences between the shuffled
lists secret, it is unfeasible to connect any ciphertext in the original list to its
correspondence in the final resulting list. In order to provide robustness against
faulty mix nodes, a reencryption mix net scheme is used, and for ensuring that
the ciphertexts are shuffled correctly and not replaced by manipulated votes, the
proof of shuffle is attached by each mix node. We chose to include the proof of
shuffle suggested by [20, 22] due to it being to our knowledge the most efficient
algorithm, the implementation and detailed specification of which is available for
open usage [23]. For the mix net scheme, the efficiency of calculating the proof
of shuffle for C ciphertexts in terms of exponentiations is (C + 2)RExp + 2C ·
MExp(2) + MExp(C + 1) for the offline phase (i.e. that can be precomputed),
and 3MExp(C+1)+2C ·FBExp for the online phase. The efficiency of verifying
such proof is MExp(C)+RExp+MExp(C +2)+C ·MExp(3) exponentiations
for the offline phase, and MExp(C) + 3MExp(C + 2) for the online phase.

Note, that using the mix net based approach for anonymizing the votes does
not place any restriction on the ballot type that is used; further, as long as
individual vote can be encrypted in a single ElGamal ciphertext5, the efficiency
of the anonymization does not depend on ballot complexity.

3.2 Homomorphic tallying

The second approach is to avoid decrypting individual votes, while aggregat-
ing them instead, and decrypting only the aggregated result. This is possible if
homomorphic cryptosystem is used to encrypt the votes, which is usually expo-
nential ElGamal. It follows, that the homomorphic tallying approach is suitable,
whenever the final tallying result can be represented as the sum of individual
votes. Furthermore, additional zero-knowledge proofs have to be implemented,
that allow to check for vote validity upon vote casting prior to aggregating the
votes, in order to exclude the possibility of overvoting or negative voting. There-
fore, in this section we consider ways to prove the validity of votes cast according
to different ballot types.

Let N be a number of voters, C1, ..., CL available candidates. For each ballot
type, we consider the valid representation of a single vote, and possible values
of the election result. The first value is crucial in proving the validity of a single
vote. The second is useful in calculating the final result: that is, more possible
combinations of votes would mean that more calculations have to be made for
calculating the discrete logarithm.

Given v1, ..., vL as the number of votes given for each candidate by a single
voter, there are various approaches to encode and encrypt this choice. As such,
the proofs of validity suggested in [9], encode the votes such that a single cipher-
text results for each voter. Proofs by Joachim [13] and the proofs used in Helios
voting system [1,11], namely the v4 version, result in L ciphertext, whereby votes
for each candidate are encoded separately; while the ciphertexts in Helios are
encoded as gvi for the same generator g, proofs in [13] encode the votes as gvii for

5 We consider it to be realistic in most cases



different generators. The number of ciphertexts is important for the efficiency of
decryption and computations of the discrete logarithm at tallying.

Also note, that some of the methods proposed make use of a verifiable mix
net scheme. Thus, we denote the time needed to prove the validity of shuffling
C ciphertexts as MixProve(C), and the time needed to verify such proof as
MixV erify(C). In our calculations we assume, due to considerations outlined
earlier, that the scheme in [22] is used. However, the calculations are slightly
different: first, there is no offline phase; second, due to the fact that the voting
system has to verify a large amount of shuffles of the same ciphertexts. The
resulting functions are MixProve(C) = 4 · MExp(C + 1) + 2N · FBExp +
(C + 2) ·RExp + 2C ·MExp(2), MixV erify(C) = 2 ·MExp(C) + 3 ·RExp +
MExp(C + 1) + C ·MExp(2) + (4C + 6) · FBExp + RExp + 2 ·MExp(C + 2).

Approval voting kmin...kmax of L The most commonly used type of ballots
can be grouped together as Approval Voting, whereby the voter is allowed to
select at least kmin, at most kmax candidates. Thus, the single vote is conforming
to the election rules, if it is of the form {v1, ..., vL : vi ∈ {0, 1},

∑L
i=1 vi ∈

[kmin, kmax]}; and the set of all possible election results is {v1, ..., vL : vi ∈
[0, N ],

∑L
i=1 vi ∈ [N · kmin, N · kmax]}. Common elections that fall under this

type are ”Yes/No” elections (with L = 1, kmin = 0, kmax = 1, or 1 of L elections
with kmin = kmax = 1. In Tables 1 to 3 we summarize the proofs of validity of
such ballots that exist in the literature, together with the number of resulting
ciphertexts. Note, that together with proofs for the general case kmin...kmax of
L, a number of proofs tailored to special cases, such as kmin = kmax = k, or
kmin = 0, kmax = L, has been developed.

Table 1. Homomorphic tallying approaches, Approval Voting: Proof efficiency

Schema Parameters Proof

[11] kmin...kmax of L (2L + 2) ·RExp + 2(kmax − kmin + 1 + L) ·MExp(2)

[11] 0...L of L 2L ·MExp(2) + 2L ·RExp

[13] kmin...kmax of L
L · RExp + MixProve(L + kmax) + L · MExp(2) +
MExp(L + 1)

[13] k of L L·RExp+MixProve(L+k)+L·MExp(2)+MExp(L+1)

[13] 0...kmax of L L ·RExp + MixProve(L + kmax) + L ·MExp(2)

[9] k of L 2 ·MExp(3k + 2) + 2RExp + 1 + MExp(2)

[9] 0...L of L 3RExp + MExp(L + 2) + MExp(2)

Divisive voting (t, T ) of L The voter is allowed to distribute a total of T
votes to L candidates, whereby each candidate can get up to t votes. This kind
of elections is particularly relevant for shareholders elections, whereby each voter
i = 1, ..., N has a total of Ti votes to distribute, with Ti representing the amount
of possessed shares. Without loss of generality, assume that Ti = T ∀i = 1, ..., N



Table 2. Homomorphic tallying approaches, Approval Voting: Verification efficiency

Schema Parameters Verification

[11] kmin...kmax of L (4L + 2 + 2kmax − 2kmin) · (FBExp + RExp)

[11] 0...L of L 4L(FBExp + RExp)

[13] kmin...kmax of L
MixV erify(L + kmax) + (4L + 4 + 2kmax − 2kmin) ·
FBExp + (2L + 4 + 2kmax − 2kmin) ·RExp

[13] k of L MixV erify(L + k) + (4L + 2) · FBExp + (2L + 2) ·RExp

[13] 0...kmax of L MixV erify(L + kmax) + 3L · FBExp + 2L ·RExp

[9] k of L (3k + 5) · FBExp + 3 ·RExp

[9] 0...L of L (L + 5) · FBExp + 3 ·RExp

Table 3. Homomorphic tallying approaches, Approval Voting: Ciphertexts for decryp-
tion and fixed-base precomputations

Schema Parameters Number of ciphertexts Fixed-base precomputations

[11] kmin...kmax of L L 128

[13] kmin...kmax of L L 64 · (2L + kmax + 2)

[9] k of L 1 128 + 64 · (3k + 3)

[9] 0...L of L 1 128 + 64 · (3 + L)

is the same for all voters. A variant of this type of ballot (t, 0...T ) of L allows
not to distribute all the T votes.

As such, according to the election rules, a single vote must lie in the set of
{v1, ..., vL : vi ∈ [0, t],

∑L
i=1 vi = T}. The set of all the possible election results

can be defined as {v1, ..., vL : vi ∈ [0, Nt],
∑L

i=1 vi = TN}.
The proof by Groth et al. supports only the variant of t = T . For t ≤ T , a

proof of validity was developed by Joachim et al. In the Helios implementation,
it is only possible to conduct elections with T = L · t, although supporting
elections with T < L · t is possible with additional modifications6. The efficiency
of individual proofs is summarized in Tables 4 to 6.

Table 4. Homomorphic tallying approaches, Divisive Voting: Proof efficiency

Schema Parameters Proof

[11] (t, T ) of L 2Lt ·MExp(2) + (2L + 2) ·RExp

[11] (t, 0...T ) of L (2Lt + 2T ) ·MExp(2) + (2L + 2) ·RExp

[11] (t, 0...Lt) of L 2Lt ·MExp(2) + 2L ·RExp

[13] (t, 0...T ) of L L ·RExp + MixProve(Lt + T ) + L ·MExp(2)

[9] (T, T ) of L MExp(L + 1) + MExp(5L + 1) + RExp + MExp(2)

6 Such modifications would require computing and verifying additional zero-knowledge
proofs for all questions of the election, in order to verify, that the sum of all votes
of the election does not exceed T



Table 5. Homomorphic tallying approaches, Divisive Voting: Verification efficiency

Schema Parameters Verification

[11] (t, T ) of L 2 · (FBExp + RExp) · (Lt + L + 1)

[11] (t, 0...T ) of L 2 · (FBExp + RExp) · (Lt + L + T + 1)

[11] (t, 0...Lt) of L 2L(t + 1)(FBExp + RExp)

[13] (t, 0...T ) of L MixV erify(Lt + T ) + 3L · FBExp + 2L ·RExp

[9] (T, T ) of L (4 + 5L) · FBExp + 3 ·RExp

Table 6. Homomorphic tallying approaches, Divisive Voting: Ciphertexts for decryp-
tion and fixed-base precomputations

Schema Parameters Number of ciphertexts Fixed-base precomputations

[11] (t, T ) of L L 128

[13] (t, 0...T ) of L L 64(Lt + 2L + T + 3)

[9] (T, T ) of L 1 64(2 + 5L)

Ranking k of L (Borda) In this ballot type, the voter is to assign the ranks
1 to k to k out of L candidates. The ranks from voters are summed up for each
candidate to determine the election result.

Groths method offers only a solution for k = L. The proofs used in Helios
system cannot guarantee the validity of the ballot: while one is able to proof that
each individual vote lies in R, and the sum of all given votes equals

∑
i∈R i, in

current implementation there is no way to guarantee that each candidates gets
a unique rank.

A set of valid single votes therefore is defined as {(v1, ..., vL) : vi ∈ 0∪R; {vi :
vi 6= 0} = R}. The set of all possible election results is then {(v1, ..., vL) : vi =∑N

j=1 xij , xij ∈ 0∪R ∀x ∈ R : |(i, j) : xij = x| = N}. The efficiency of individual
proofs is summarized in Tables 7 to 9

Table 7. Homomorphic tallying approaches, Ranking Voting: Proof efficiency

Schema Parameters Proof

[13] k of L
k ·MixProve(L+1)+MixProve(L)+(2L+1) ·RExp+
MExp(L + 1)

[9] L of L 2 ·RExp + MExp(L + 1) + MExp(2)

3.3 Distributed decryption

Regardless of the anonymisation approach that is used, the vote secrecy also
heavily relies on the decryption process, that ensures that only the anonymised
ciphertexts are being decrypted. For this purpose, verifiable distributed threshold
secret sharing is employed, that enables decryption only if a threshold amount
of trustees collaborate, while ensuring that no single entity is in posession of



Table 8. Homomorphic tallying approaches, Ranking Voting: Verification efficency

Schema Parameters Verification

[13] k of L
k · MixV erify(L + 1) + MixV erify(L) + (3L + 2) ·
FBExp + (2L + 2) ·RExp

[9] L of L (4 + L) · FBExp + 3 ·RExp

Table 9. Homomorphic tallying approaches, Divisive Voting: Ciphertexts for decryp-
tion and fixed-base precomputations

Schema Parameters
Number of
ciphertexts

Fixed-base precomputations

[13] k of L L(k + 1) 64(2k + L + 4)

[9] L of L 1 64(2 + L)

a secret key. A commonly used method is the threshold distributed ElGamal
key generation followed by distributed verifiable decryption, as described in [18].
Depending on the anonymisation method in use, the number of ciphertexts to
be decrypted varies, together with the efficiency of the decryption. For small
number of ciphertexts (C < 50), the efficiency of the decryption phase can be
estimated as (C(tr − 1) + 1) · FBModExp + C(tr − 1) ·MExp(2) + (2Ctr +
1) · RModExp, requiring the precomputation of 64 exponentiations; for larger
amounts of ciphertext, however, the optimal estimation would be (2C(tr − 1) +
1) · FBModExp + C(tr − 1) ·MExp(2) + (Ctr + C + 1) · RModExp with the
precomputation of 64 · (1 + tr) exponentiations.

4 Prototype evaluation tool

In this section we describe the tool implemented for the efficiency evaluation,
based upon the input of previous sections, and provide the efficiency evaluation
of various election settings.

4.1 Relevant parameters

We take a look at different parameters that influence the efficiency of the elec-
tronic voting, based upon the formulas we derived in Section 3. Depending on
the anonymisation approach that is used, different kinds of parameters may or
may not play a role in how long do the different stages of the election take.

Number of voters As one could expect, the main parameter that determines
the efficiency of the election scheme, both for the mix net and homomorphic
tallying approaches, is the number of voters that participate in the election. For
the evaluation of precomputations that need to be done before the elections, the
upper bound of participating voters is needed. For this, a total amount of eligible
voters can be taken. For the efficiency estimation of the validation and tallying



phases, the actual amount of participated voters is required, an expected value
of which can be based i.e. on previous voter turnout.

In presence of multiple voting districts participating in a single election,
several alternatives exist on how to implement the system. The first alternative
would be to run the election in a centralized way, whereby all the votes are
being stored, processed and tallied by a single central server, while the second
way would be for the each voting district to run a separate instance of the voting
system themselves. Depending on the chosen approach, one could estimate either
the performance of centralized system or of a single district, by inputting the
parameters for the corresponding voting system instance.

Number of trustees This parameter is most important for evaluating the
efficiency of a mix net based approach, since the trustees have to act as mix
nodes. Furthermore, number of trustees also has an effect on the efficiency of
distributed decryption of the result. Given the assumption that more than half
of T trustees have to be honest, we set the threshold value as tr = bT/2c + 1.
In case of mix net based approach, given the fact that at least one honest mix
node has to participate, we set the number of mix nodes as tm = T − tr + 1

Number of candidates and other ballot-specific parameters The number
of candidates or options is relevant for evaluating the efficiency of homomorphic
tallying approach. It has an effect on the efficiency of proof of ballot validity, as
well as on the total amount of possible election result - that is, on the complexity
of calculating the discrete logarithm of the final result. Furthermore, number of
candidates also influences the number of ciphertexts to be decrypted in some of
the homomorphic tallying approaches. The same considerations hold for other
ballot-specific parameters, as outlined in Section 3.2.

4.2 Software

A tool for comparing the schemes described above depending on input of the
election parameters was implemented, using Java language. For the calculations
we used the formulas for homomorphic tallying approaches mentioned in Sec-
tion 3.2, mix net scheme from [20,22], as mentioned in Section 3.1, and verifiable
decryption scheme mentioned in Section 3.3. Upon entering the input (see Fig-
ure 1), the tool computes the execution time needed for each one of the available
schemes, as explained in Section 2. In our example calculations we consider the
duration of 3ms for a single exponentiation, which roughly corresponds to the
performance of a Macbook Pro Laptop using multiplicative group Gq ⊂ Zp of
order q with p, q primes with bit lengths of 2048 and 256 respectively.

5 Evaluation of example settings

In this section we demonstrate the workings on the tool by selecting appropriate
examples of the election settings, and showing how the efficiency of various
approaches for this settings is estimated.



Fig. 1. Evaluation tool prototype interface

5.1 Description of example settings

We provide an example for the evaluation of an election setting, using the ballot
types described in Section 3. Some of these settings are based on the public
data from past elections7, that were conducted using Internet voting. Others are
are examples constructed by us for this evaluation specifically, which, however,
might also be relevant for the elections, conducted in practice.

Approval voting: Estonian elections During the 2011 parliamentary elec-
tions, a total of 140, 846 out of the registered 913, 346 voters chose to vote via
electronic means. A total of 789 candidates registered, out of which the voters
were supposed to make their choice [4, 5]. The decryption key was distributed
between 7 trustees. Thus, we evaluate an approval vote with ”1 of 789” ballot.

Approval voting: Norway elections We consider the local elections in Nor-
way in 2011 [14]. As the actual election rules are rather complex, in our analysis
we consider the distribution of seats between the parties, without paying at-
tention to personalised votes. In 2011, a total of 167, 506 out of 27, 738 eligible
voters have cast their vote electronically, and 21 parties participated. There were
a total of 10 trustees.

Approval voting: IACR elections The International Association for Cryp-
tologic Research uses electronic voting for their internal elections. We consider
the election of 2012 [12], where the voters had to cast their vote for any number
of candidates out of registered 5. A total of 518 voters participated (out of 1530
eligible), and there were 3 trustees.

Approval voting: Boardroom voting A special kind of election setting in-
volving small groups of voters, often referred to as boardroom voting, is the one

7 Note, that the parameters in our examples may not correspond precisely to the real
data.



where the roles of trustees are taken over by the voters themselves [10, 15]. For
the evaluation of this setting, we chose the parameters of 30 participating voters,
and, correspondingly, 30 trustee, voting on a 1 out of 5 ballot.

Approval voting: Swiss elections Switzerland has been conducting e-voting
elections and referendums in some of its cantons for many years. As an example,
we consider the data from one of the referendums, given votes cast using the
Geneva voting system. In 2015, a total of 14052 votes were cast electronically
using this system, out of eligible 119252 voters [19]. We assume 4 as the number
of trustees, given the 2011 report [17].

Divisive voting As we are not aware of any real-world e-voting election that
uses the divisive voting method, we had to construct an example by ourselves,
partially using the data from traditional voting elections. Namely, we base our
example election setting on the local Hesse elections [21], whereby the voters had
to distribute 71 vote to 502 candidates, giving at most 3 votes to each candidate,
and a total of 44385 out of 101666 eligible voters participated. We assume the
participation of 3 trustees.

Ranking voting Similarly to the divisive voting ballot, we were unable to find
data from a real-world election with this type of ballot. The closest example
would be the elections in Australia, that also use the ranking voting ballot for
their election, albeit using a different tallying method as opposed to Borda vot-
ing. We therefore use the parameters similar to the Victorian state elections [3,6]
for our example: a total of 1121 participating voters, 7 trustees, and 40 candi-
dates to be ranked.

5.2 Results and discussion

The evaluation results for all the settings, showing the estimated performance for
expected number of voters, are given in Table 10. For setting and each election
stage, the approach most efficient during this stage is marked in bold.

As one can see from it, in many of the cases, with the exception of simple
ballots like ”yes/no” elections, or approval voting elections with relatively small
number of available options, the mixnet approach outperforms all the approaches
based on homomorphic tallying. This can be explained by the fact, that the ef-
ficiency of this approach does not depend on the ballot complexity. The large
number of trustees, however, like in case of boardroom voting, has significantly
larger effect on the mix net approach than on homomorphic tallying approaches.
Furthermore, the precomputations have a significant effect on the overall effi-
ciency of mix net approach, which tends to be higher, especially with a high
total number of eligible voters.

The homomorphic tallying approaches tend to be less efficient as ballot com-
plexity increases. If the vote is encoded in a single ciphertext, the length of the



exponent representing the election result strongly depends on both number of
voters and candidates, while the proofs themselves remain relatively efficient,
which is why this approach outperforms others in case of simple ”yes/no” elec-
tions. In the homomorphic tallying approaches that require encoding the vote in
multiple ciphertexts, while the exponent size remains relatively small even with
the larger number of candidates and voters, the amount and the complexity
of validity proofs to be constructed and verified per vote, becomes larger, thus
making the election less efficient.

Table 10. Evaluation results of different settings

Election Election stage Mixnet HT: Helios HT: Groth HT: Joachim

Approval voting: Precomputations 20.09 h. 2.061 s. > 30 days 190.4 h.
Estonia Voting 0.009 s. 14.97 s. 0.024 s. 21.4 s.

Validation 14.08 m. 441.1 h. 31.83 m. > 30 days
Tallying 2.316 h. 22.78 s. 0.039 s. 22.78 s.

Approval voting: Precomputations 4.422 h. 0.6 s. > 30 days 1.81 m.
Norway Voting 0.009 s. 0.411 s. 0.024 s. 0.603 s.

Validation 2.774 m. 2.366 h. 6.269 m. 5.323 h.
Tallying 37.22 m. 1.185 s. 0.06 s. 1.185 s.

Approval voting: Precomputations 1.574 h. 0.495 s. 8.976 s. 1.647 s.
Switzerland Voting 0.009 s. 0.018 s. 0.021 s. 0.057 s.

Validation 1.405 m. 3.344 m. 2.775 m. 18.96 m.
Tallying 9.239 m. 0.03 s. 0.03 s. 0.03 s.

Approval voting: Precomputations 1.225 m. 0.387 s. > 30 days 4.71 s.
IACR Voting 0.009 s. 0.096 s. 0.024 s. 0.216 s.

Validation 3.108 s. 36.98 s. 7.32 s. 2.449 m.
Tallying 16.55 s. 0.084 s. 0.021 s. 0.084 s.

Approval voting: Precomputations 8.433 s. 0.384 s. 3.097 m. 3.846 s.
Boardroom Voting 0.009 s. 0.108 s. 0.021 s. 0.156 s.

Validation 0.174 s. 2.484 s. 0.345 s. 5.508 s.
Tallying 7.887 s. 0.786 s. 0.159 s. 0.786 s.

Divisive voting Precomputations 1.342 h. 1.617 s. - 16.98 m.
Voting 0.009 s. 17.01 s. - 28.23 s.

Validation 4.438 m. 183.1 h. - 474.9 h.
Tallying 23.54 m. 6.84 s. - 6.84 s.

Ranking voting Precomputations 1.5 m. - > 30 days 38.59 s.
Voting 0.009 s. - 0.045 s. 33.86 s.

Validation 6.726 s. - 38.2 s. 11.83 h.
Tallying 1.108 m. - 0.039 s. 47.34 s.

6 Conclusion

We have evaluated different approaches to anonymize the votes in different set-
tings with regards to their efficiency. Namely, we focused on two anonymisation



approaches common in use: mix net and homomorphic tallying with different
ballot types. Furthermore, we have built a prototype of a tool that enables elec-
tion organizers to perform such a comparison themselves with regards to their
chosen setting, in order to choose the most efficient approach. As we found out,
there is no single approach that is the most efficient in all the possible election
settings. Therefore, an individual evaluation has to be done for each setting,
which is what our tool is designed to assist in.

While efficiency is an important consideration in implementing e-votin sys-
tems, there are other criteria that can suggest using one approach over another.
In particular, revealing individual votes, which is inavoidable in mixnet-based
approach, can lead to privacy issues in certain settings, for example, in very
small-scale elections, or if coercion and vote buying is an issue. Thus, in case
both homomorphic tallying and mixnet-based approach is available for certain
kind of elections, the organizers have to evaluate themselves the trade-off be-
tween efficiency and possible privacy concerns, while deciding for one or another
approach. Identifying the scenarios, in which such privacy issues can arise, is the
question of future work.
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