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Abstract—Proxy voting is a form of voting, where the voters
can either vote on an issue directly, or delegate their voting
right to a proxy. This proxy might for instance be a trusted
expert on the particular issue. In this work, we extend the
widely studied end-to-end verifiable Helios Internet voting system
towards the proxy voting approach. Therefore, we introduce a
new type of credentials, so-called delegation credentials. The main
purpose of these credentials is to ensure that the proxy has
been authorised by an eligible voter to cast a delegated vote.
If voters, after delegating, change their mind and want to vote
directly, cancelling a delegation is possible throughout the entire
voting phase. We show that the proposed extension preserves the
security requirements of the original Helios system for the votes
that are cast directly, as well as security requirements tailored
toward proxy voting.
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I. INTRODUCTION

Two well-established forms of democracy are direct democ-
racy, whereby the decisions on each issue are voted on by
the voters directly, and representative democracy, where the
voters select their representative for a fixed period of time.
Both of these forms have their advantages and disadvantages:
while direct democracy gives an opportunity to be involved in
the decision making process more intensively, frequent voting
on every issue might overwhelm the voters, especially if they
do not consider themselves to be informed enough. On the
other hand, in representative democracy there is a risk that
the voters might feel that they are not represented adequately
and too disconnected from the government [1]. A hybrid of
those two forms, that relies on the proxy voting principle,
has been proposed. In an election following the proxy voting
principle, the voter has the right to either vote herself or
delegate her voting right to someone else, such as a trusted
expert. Thereby, voters individually have the possibility to
decide to which extent they want to directly participate in
democratic processes.

Due to the potentially increased voter involvement in demo-
cratic processes, Internet based elections could substantially
lower voters’ burden. For ensuring the security of elections
conducted over the Internet, scientific research has resulted in
a number of Internet voting systems [2]-[4]". Among the most
established systems, Helios [2] provides cryptographic end-
to-end verifiability, enabling voters and external observers to

'In this paper we use the term protocol to refer to the theoretical proposal,
and system to refer to the actual implementation

verify the correctness of the election result, while ensuring
vote secrecy at the same time. The system has been used
in several real-world elections, e.g. the elections of the In-
ternational Association for Cryptologic Research [5] or the
University president election at UC Louvain [6].

In this work we set as our goal to extend the protocol
underlying the Helios voting system with a proxy voting
functionality. To achieve this goal, we face several challenges:
First, due to the potentially increased frequency of elections,
voters should not be required to register for each individual
election. The second challenge refers to a proxy who accumu-
lated a lot of delegation power — that is, received a significant
number of delegations. This constellation is not inherently
problematic, but it might lead to a misuse of power, if the
number of accumulated delegations for each proxy is known
to the public or to a third party. Thus, we require that a proxy
should be restricted in her capability to prove how many votes
have been delegated to her. Finally, in order to ensure that each
voter has full control over her vote, we provide a cancellation
of delegation functionality. This means that at any point in time
before the tallying, the voter should be able to vote directly
even if she already delegated her vote.

In our extension, we introduce a new type of credential, so-
called delegation credentials. These credentials are generated
once for each voter, and can be reused in the subsequent
elections. The delegation credentials are used by the voters to
construct the delegation tokens for delegating their vote in each
individual election. To do this, tokens are being forwarded
to the proxies in an anonymised way and then submitted by
the proxies together with the delegated votes during the vote
casting phase. The validity of the tokens, and thus the validity
of the delegations, is being verified only in the final stage of
the election after further anonymisation. In this way, a proxy
does not know whether the token she received is valid and
is included in the tally. If the voter decides to cancel the
delegation and cast her vote directly, all her delegation tokens
are marked as invalid. In this way, the delegated votes are
discarded from tallying.

The paper is structured as follows: In Section II we list
the requirements, including the ones mentioned above, that
the proposed protocol shall satisfy. In Sections III and IV we
provide the necessary background information by describing
the cryptographic primitives used in our work and the protocol
underlying the Helios voting system. We present our proxy
voting extension in Section V. A security evaluation of our
protocol is given in Section VI. Related work is presented in
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Section VII. The paper is concluded in Section VIII.

II. REQUIREMENTS

We describe the requirements, both functional and security-
related, that we want our protocol to ensure. We base this list
upon the requirements provided in previous work [7].

The following terms will be used in further discussion.
We consider proxies to be persons, most probably recognized
experts, political figures or other opinion leaders, who are
registered in the voting system, so that the voters could
delegate their votes to them. In this work we do not consider
the process of choosing proxies, since it has no influence
on the protocol. One possibility would be that everyone can
register themselves as a proxy prior to the election. We refer
to voters as delegating if they delegate their vote to one
of these proxies, and non-delegating, if they cast their vote
by themselves. The voter or proxy is furthermore referred
as honest if she follows the voting or delegating protocol
without violations®. A proxy is semi-honest if she follows the
delegation protocol without violations, yet might try to gain
additional information from the data she receives during the
protocol execution.

A. Functional Requirements

The goal of our extension is to introduce additional func-
tionality that enables the voters to delegate their vote. While
there is no established set of requirements that are considered
essential for the proxy voting, we chose to focus on the
particular functionality, that we consider to be of use in such
an election setting. Namely, we introduce following functions
that should be ensured by the system:

a) Delegation: The voter should be able to choose a
proxy from a list of available proxies and transfer her voting
right in the election to her. This proxy then has the right
to vote on behalf of this voter. Note, that we do not place
any restrictions on how and whether the proxy should use her
delegated voting right: she can vote for any voting option on
behalf of the voter, or not cast a vote at all.

b) Cancelling the delegation: After delegating her voting
right, the voter should have the option to change her mind and
vote herself. Such cancellation must remain possible at any
moment of the election prior to the tallying. As we assume
that the voter’s own vote always has a higher priority than the
vote cast for her by a proxy, we do not account for a scenario
whereby the voter casts her vote, but changes her mind and
wants to delegate later.

¢) Back-up delegation: The voter should have the right
to delegate her voting right to several proxies, each one of
those receives a different delegation priority. In this case, only
the vote with the highest priority must be included in the final
tally. We consider this functionality to be useful for following
reasons. First, in this way the voter can change her mind,
if after the delegation she decides to delegate to a different
person. Then she delegates her vote again using a higher

2This excludes the voters who deliberately try to sell their vote.

priority this time. In a second use case, the voter wants to
delegate to a particular person, but is not sure whether this
person would actually use the delegated voting right and cast
the vote. In this case the voter delegates twice: once to the
person she would prefer to delegate to, and twice, with a lower
priority to some other proxy whose vote would then count if
the voter’s first choice does not participate.

B. Security Requirements

Security requirements in electronic voting has been an ex-
tensive research topic, whereby formal and informal definition
requirements have been proposed in the literature [8], [9].
Basing our extension on the Helios protocol, our goal is
to preserve the security requirements offered in the original
protocol with the addition to the improvements proposed in
several extensions [10], [11]. As such, we did not focus on
ensuring the coercion resistance requirement, since Helios
was designed for use in low-coercion environments. Hence,
following requirements should be fulfilled for honest non-
delegating voters:

a) Vote secrecy: The voting system should not provide
any information to establish a link between the voter and her
vote, aside from what is available from the election result.

b) Eligibility: Only the votes cast by eligible voters
should be included in the tally.

c) Integrity: Each cast vote of an eligible voter should be
correctly included in the tally. In particular, the protocol should
provide methods to the voters and to the external observers to
verify, that the votes have been cast as intended, stored as cast
and tallied as stored.

d) Availability: After the vote casting is finished, the
election result can be computed even in case where some of
the system components are faulty.

We further outline the security requirements that are spe-
cific for the delegation process in particular. We base these
requirements upon the security assurances for non-delegating
voters.

e) Delegation eligibility: The proxy can only cast their
votes on the behalf of eligible voters.

f) Delegation integrity for voters: No proxy can vote on
the voter’s behalf unless authorised by the voter. Furthermore,
if the voter delegates, the proxy cannot alter the priority
assigned to her.

g) Delegation integrity for proxies: The valid votes cast
by proxies are correctly included in the final tally.

h) Delegation privacy: For honest delegating voters, the
identity of the corresponding semi-honest proxy is not leaked.
Furthermore, for a given delegating honest voter, a semi-honest
proxy should be unable to tell whether this voter delegated to
her or to someone else.

i) Vote secrecy for proxies: The voting system should
not provide any information to establish a link between the
honest proxy and her vote, aside from what is available from
the election result.



Jj) Delegation unprovability: The semi-honest proxy
should be unable to provide any additional information to
establish her delegating power, aside from what is available
from the election result. This means, that the proxy should be
unable to prove both before and after the tallying, how many
votes have been delegated to her.

Due to the concept of proxy voting, some information about
the individual proxy or voter’s intention would be leaked
from the election result. For example, a group of f colluding
voters might attempt to break vote secrecy for proxies and to
find out the vote of a given proxy by delegating to her and
checking, which voting options have at least f votes for them.
Furthermore, even in absence of any attacks, the election result
might reveal more information than in the case of non-proxy
voting, since the same amount of votes are now being cast by
less voters. Such information leakage, however is independent
of a particular proxy voting protocol that is being used. Hence,
we do not consider this evaluation leakage in evaluating the
security of our protocol.

III. BACKGROUND

In this section we describe the cryptographic primitives used
in our protocol.

A. ElGamal

Our extension, as well as the original Helios protocol,
builds upon the public-key ElGamal cryptosystem [12] for
encrypting the cast votes and auxilirary data. Given G, as
a cyclic group with prime multiplicative order ¢ where the
Decisional Diffie-Hellman is assumed to hold, the public key
is defined as (g,h) with s = log;, g € Z, as a secret key.
The encryption of the message m € G, is calculated as
{m}pr = (a,b) = (¢",m-h") for a randomly chosen r € Z,.
The decryption of (a,b) is calculated as m = b - a~*. The
ElGamal encryption has homomorphic properties, being either
multiplicatively homomorphic, or additively homomorphic if
the value g™ is encrypted instead of m. We denote with
c1 - ca = (a1,b1) - (a2,ba) = (a1 - az, by - ba) as a pairwise
multiplication of ciphertexts ci, ca.

B. Zero-Knowledge Proofs

Zero-knowledge proofs are being commonly used for prov-
ing the validity of a statement or the knowledge of a witness
without revealing any information about the statement or the
witness. Examples of such proofs, commonly used in e-voting
protocols, are proof of discrete logarithm knowledge [13],
proof of discrete logarithm equality [14] or knowledge of
representation [15]. We use following notation in this paper.
For example, for proving the knowledge of discrete logarithm
x = log, h for public parameters g, h and secret z, we denote
the proof of knowledge 7 as:

7w =PoK{z:g¢"=h}

A related concept, signatures of knowledge [15], describes
utilising proofs of knowledge for computing a digital signature
on a given message m. Similar to the notation above, we

denote such a signature of knowledge on m, for example,
using the secret x, public values (g, h) and proof of discrete
logarithm knowledge:

7w = PoK{x: ¢° = h}(m)

Cramer et al. [16] describe constructing disjunctive witness-
hiding proofs that, among other usage variants, allow proving
that a given ciphertext encrypts a message from a given
set without revealing which message it is. General methods
for constructing proofs of knowledge for binary formulas
of statements about discrete logarithms were suggested by
Camenish et al. [17], which we also use for constructing proofs
in our protocol.

For making the proofs/signatures of knowledge non-
interactive, a strong version of the Fiat-Shamir heuristic [18]
is applied.

C. Threshold Verifiable Decryption

In order to avoid a single point of failure by trusting a
single entity concerning the secret key for the cryptosystem,
protocols that enable sharing the key among several entities
have been developed. In particular, the protocol by Pedersen
[19] enables distributive key generation and sharing between
multiple entities in a verifiable manner.

A method for using a key shared in this manner for dis-
tributively decrypting the ciphertext is proposed, whereby the
decryption succeeds if at least a threshold ¢ of total N entities
(t > N/2) participate in the protocol. The zero-knowledge
proofs used for the decryption ensure that the ciphertexts have
been decrypted correctly without manipulation.

D. Mix Net

The mix net shuffle is used for anonymising the ciphertexts
c1,...,cn by permutating and reencrypting the input list. In
that way, a new list of ciphertexts ¢, ..., ¢y is produced, with
¢; = Cr(iy - (9", W), ™ denoting a permutation on {1,..., N},
(g, h) a public encryption key for ¢, ..., ¢y, r; a random value.
In this way, as long as 7 and 7y, ..., 7y remain secret, the link
between the ciphertexts in the input and output lists cannot be
established.

In order to ensure, that no manipulation occured during
the shuffle, and the ciphertexts in the input and output list
encrypt the same plaintexts, a number of proof of shuffle
techniques have been proposed in the literature. In particular,
the most efficient proofs with a high soundness have been
proposed in [20], [21]. Note, that these proofs can also be
adjusted for shuffling tuples of ciphertexts ¢y, ...,cny with
¢ = (¢i1,.-,Ci k), so that the ordering within the tuples is
preserved in the output list.

IV. HEL10S SYSTEM

The Helios system and its underlying protocol have been
extensively studied in literature [18], [22], [23]. To base
our protocol we chose Helios-C [10], which introduces voter
credentials using a public-key infrastructure, with further mod-
ification of the original system that uses a threshold verifiable



decryption [11]. For the sake of simplicity, we describe the
single choice (“yes/no”) election, where the voters cast either
1 or 0 (represented as ¢ or g') as their vote, although
a generalisation to more complex ballots is possible. The
following entities are involved in the protocol:

e Registration authority, responsible for generating and
distributing the credentials to eligible voters,

e Bulletin board acting as a public append-only broadcast
channel that is used for publishing all necessary election
information and cast votes,

o Tabulation tellers, responsible for generating the election
keys, anonymising the cast votes and decrypting the
result.

The election process can be briefly outlined as follows.

a) Setup: The registration authority distributes the voting
credentials to eligible voters and publishes the corresponding
signing public keys on the bulletin board. In further descrip-
tions we imply that everything published on the bulletin board
by the voters is signed using the corresponding signing key.
Using the method for threshold key generation, the tabulation
tellers generate a pair of ElGamal keys pk = (g,h = ¢°) €
Gg,sk = s € Zq for the election, that are later used for
encrypting and decrypting the cast votes. The public election
key pk = (g,h) is published together with the list of valid
voting options {o1,...or.} C G,.

b) Voting: In order to cast a vote for a voting option
o € {op = ¢g°,01 = g'}, the voter V; authenticates herself
to the bulletin board. Then she prepares and signs her ballot
(v = {o}pk, my) with:

e v = (a,b) = (¢g",0h") as the encryption of a voting

option o using a public key pk,

o My =PoK{reZy:a=g" Nb=o0ph"Vb=01h")} the

zero-knowledge proof of well-formedness, used to prove

the plaintext knowledge of o® and that o € {0g, 01} is a

valid voting option.

After preparing a ballot, the voter has an option either to
cast it as her vote by submitting it to the bulletin board, or to
audit the ballot using the Benaloh challenge [24]. The purpose
of the audit is to ensure, that the ballot was prepared correctly
by the voting device, ensuring cast-as-intended verifiability.
The voter can audit as many ballots as she wants, until she is
ready to cast her vote. After casting the vote, the voter checks
whether it has been correctly posted on the bulletin board,
ensuring stored-as-cast verifiability.

c) Tallying: After the vote casting phase has finished,
the bulletin board removes all duplicate ballots and ballots
with invalid signatures or zero-knowledge proofs. In case vote
updating is allowed, among the votes cast with the same voter
credential, only the last ballot is kept. Prior to the decryption,
the votes have to be anonymised, in order to remove the link
between the chosen voting options and the voters’ identities.
There are two ways to perform this anonymisation, both
are used in various versions of the Helios system. The first

3This is required to ensure the non-malleability of ballots and prevent ballot
copying attacks [18].

way is to use a verifiable mix net shuffle with the each
tabulation teller acting as a mix node. The second way is
to make use of the homomorphic properties of the ElGamal
cryptosystem and aggregate the votes to a homomorphic sum,
which represents the final result. Note, that the latter option
requires additional considerations regarding the encoding of
voting options depending on the ballot type.

After the votes have been anonymised, the result of the
anonymisation is verifiably decrypted by the tabulation tellers
and published. The zero-knowledge proofs of tally correctness,
calculated during the mix net and the encryption, as well
as signatures and zero-knowledge proofs submitted with the
ballots during vote casting, are published to enable the tallied-
as-stored verifiability of the election result.

V. PROXY VOTING EXTENSION

In this section we show how to extend the Helios system
towards proxy voting.

A. Setup

The initial setup is performed analogously to the original
protocol. We assume following additional infrastructure in our
extension. For each voter V; we assume the existence of T
public delegation credentials, represented as an ordered tuple
hi1, ..., hs 7. These credentials are posted by the registration
authority on the bulletin board, whereby the voter knows the
secret keys x;; = logg h; ;. The credential can either be
generated and sent to the voters by trusted parties, or uploaded
by the voters themselves, whereby they choose the values of
Z;; €R Zq at random and submit h7%i to the bulletin board
prior to the election. Furthermore, the list of available proxies
Dy, ...,D,, and their public signing keys is made available
as well, and communication channels that enable voters to
securely communicate with proxies are established. As in the
description of the original protocol, we imply that everything
that the voters or proxies publish on the bulletin board is
signed by their corresponding signing key.

B. Vote Casting

a) Voting: Casting a vote is the same as in the original
Helios. The voter authenticates herself to the bulletin board,
and submits the ballot of the form (v,m,), which is then
published on the bulletin board. For ensuring cast-as-intended
verifiability, she can also choose to audit her ballot instead of
casting it.

b) Delegating: For delegating with priority j =1, ..., T,
the voter V; computes an encryption of her credential ¢ =
(ag,bq) = (g™, h;; k™), a commitment ¢ = g™ of a
randomly chosen value m € Z, and a non-interactive signature
of secret key knowledge on o, g = PoK{(rq,x: ;) : aqg =
g™ Nbg = g"ih™}(o) (see Algorithm 1). The delegation
token, which are the values (o, m,c,m4) are then sent to a
proxy of the voter’s choice over a private anonymous channel®.

4The public-key infrastructure encompassing the proxies can be used to
ensure the privacy of the communication, and an anonymous communication
network such as TOR [25] can be used for anonymity.



Algorithm 1 Signature of knowledge of valid delegation token
for priority j
Private input: m,r <—r Zq, h; € Gq, z; =log, h; € Z,
Public Input: (g,h),c = (aq,bs) = (g7, hjh"?) € G2, o =
g™ € Gq
Proof:
w1, W2 <R Zq, t1 gwl, to < nghwl
e < H(ol|gl[hllaal[bal |1[[t2). 1+ w1 — era, 55+ ws — ea;
ma < (t1,t2, 1, 52)
Verification:
e < H(ollg||hl|aal |ba[t1][t2)
if agg®t = t1 A b5g°2h°t = t2 then
Verify(mq) = 1
else
Verify(ng) = 0
end if

c) Casting a delegated vote: The proxy encrypts her
chosen voting option as a ciphertext v = (ay,,b,) =
(g™ ,0h™). She further calculates the zero-knowledge proof
Ty = PoK{r,,m € Zg : 0 = g™ Na, = g™ A (b, =
ooh™ V b, = 01h™)}, which serves both as a proof of well-
formedness for v and as a proof of knowledge of a decom-
mitment value m. The proof is described in Algorithm 2. She
can then choose to either cast or audit the ballot. The auditing
is the same as in the original protocol; if the proxy decides to
cast, she submits (o, v, m,, ¢, m4) as her signed ballot.

Algorithm 2 Proof of valid delegated vote for an option o;
with delegation token (o, m, ¢, mq)

Private input: m € Zg, ry < g Zq, 1 € 20, 1}, =1
Public Input: (g,h),c,v = (av,b,) € G, mq € Gg X Zg, o=
gm
Proof:
€j <R Zq
wo, W1, Wo, W1 <R Zq
t1,4 < gwi, toq < h*i
t1,5 g“’j af,j, to,; < hvi (bvogl)ej
ti g™ 15 < " A .
e < H(ol|g||h||av||bv|[t1,0[[t2,0l[tol[t1,1][t2,1][t1)
€ <= € — €5, Sj < W; — €Ty, S; < W; — €;Mm
Sj < wy, <§]‘ «— u:)j R
Ty < (t1,0,t2,0,%0,t1,1,t2,1, %1, S0, S0, €0, 51, 51, €1)
Verification:
if Verify(mq) # 1 then
Verify(my) =0
else . .
e < H(ollgl[hl|av|[bu][t1.0llt2.0lltol[t1a|[t21]|[tr)
ifeot+er=e A 0%g°° =ty A 0°¢g° =t1 A ar g =
tly]' A\ (byoal)eogso = tz,() A\ (bv0;1)61g81 = t2’1 then
Verify(my,) =1
else
Verify(m,) =0
end if
end if

q»

d) Cancelling a delegation: 1f the voter decides to cancel
the delegation and vote herself, she just casts her own vote as
in the original protocol.

C. Tallying

After the vote casting stage has finished, all duplicate ballots
and ballots with invalid proofs or signatures are removed.
The updated votes by the non-delegating voters are processed
according to the vote updating policy analogously to in the
original system, as well as the votes cast by proxies which
contain duplicate delegation tokens. These votes are further
used to initialize different sets which are required for the
tallying process.

Let Vown = {(vi,id;)} be the set of valid votes which
were cast by voters directly with corresponding voter IDs.
Va = {(vi,c;)} denotes the set of valid votes which were
cast by proxies, H = {hi1,...,h1.7,...An1,..., AN T} @ set
of all valid delegation credentials. Before the beginning of the
tallying, two sets are initialised: a set V = {v : I(v,id) €
Vown } Tepresenting the votes that will be included in tallying,
and Hoyp = {hi; : 3(v,id;) € Voun} as the list of all
delegation credentials of voters who cast their vote themselves.

Following procedure is being executed: The votes cast
by proxies (vg,cr) € Vy are being processed through the
verifiable mix net shuffle, resulting in an anonymised list
of tuples (v}, c}). After the anonymization, the values of ¢,
are decrypted to reveal the delegation credentials k) used in
constructing the delegating tokens. The votes with h), ¢ H are
discarded as cast with non-valid delegation tokens. The rest of
v}, is assigned to the corresponding delegation credential h; ;
with ¢ denoting the voter, and j the registration priority.

After this procedure, V; should consist of delegated votes
with valid delegation credentials (v}, h; ;). The delegated
votes, that were overwritten either by the voter herself, or by
a delegated vote with the higher priority, should be discarded.
For this, each vote v}, from the tuple (v}, h; ;) is added to V
if and only if following conditions hold:

1) hij € Hown meaning that the delegated vote is not
revoked by the voter via voting directly;

2) Y(v", hiy) € V4 : 1 < j, meaning that the delegated vote
is not overwritten with a delegation of higher priority.
Note, that this implies that the votes cast for the same
voter with the same delegation priority but different
delegation token are not included into the final tally.

The votes in V' are being tallied as in the original system:
anonymized using either mix net or homomorphic sum, and
decrypted to reveal the final election result.

VI. SECURITY OF THE EXTENSION

In order to evaluate the security of our protocol, we first
provide the list of necessary assumptions. The security re-
quirements given in Section II-B are then evaluated given these
assumptions.

A. Assumptions

We list the security assumptions required for the security
of our protocol. Note, that here we do not consider the
assumptions used for ensuring the security of the original
protocol, that are not relevant to the delegation process.



(A1) The channels between the honest voters and the proxies
are private.

(A2) The channels between the honest voters and the proxies
are anonymous.

(A3) At most t of tabulation tellers are corrupted by an
adversary.

(A4) The voting devices of both proxies and voters do not
leak information to an adversary.

(AS5) No coercion or vote selling takes place.

(A6) The adversary is computationally restricted, the DDH
assumption holds and the random oracle is instantiated
by a hash function.

(A7) The registration authority is trustworthy.

B. Evaluation

We discuss the requirements defined in Section II-B, as
fulfilled in this extension.

a) Vote secrecy: As vote casting remains the same as
in the original protocol, no information about the individual
votes is leaked at this stage, under the condition that the
original protocol is secure. The resulting votes are anonymised
together with the votes from proxies, which ensures vote
secrecy as long as this anonymisation is performed correctly.
Since the procedure of the anonymisation does not differ from
the original protocol, vote secrecy for non-delegating voters is
preserved under the same assumption.

b) Eligibility: Since the voter registration process is not
changed, the eligibility is preserved under the same assump-
tions as in the original protocol.

c) Integrity: As the process of casting a vote is not
changed, the voter has cast-as-intended and stored-as-cast
verifiability. The tallied-as-stored verifiability depends on the
integrity of the anonymisation process, hence it is guaranteed
as long as the original protocol is secure.

d) Availability: Due to the threshold decryption ap-
proach, as long as at least ¢ out of N tabulation tellers
participate in the tallying process, which is given due to
the assumption (A3) for ¢ > N/2, the final result can be
computed.

e) Delegation eligibility: Given the assumption (A7), all
the published delegation credentials belong to eligible voters.
As long as the decryption of the credentials in delegation
tokens is performed correctly, which is ensured by the corre-
sponding zero-knowledge proofs together with the assumption
(A6), everyone can verify that only the delegated votes with
valid delegation credentials are included in the tally.

f) Delegation integrity for voters: Let us consider the
case where the proxy is willing to cast a vote using the
credential h; ; on behalf of some voter V;. For this she needs
to calculate the signature of knowledge mq = SoK{(r,z; ;) :
a=g"ANb= g**h"}(o), which according to the assumption
(A6) she cannot do without the knowledge of x; ;. The same
argument holds for a proxy who wants to cast her vote with a
different priority than the one delegated to her. That is, upon
getting the delegation token for the credential h; ;, she wants
to cast a vote using the credential h; j, for k # j. Again, given

the assumption (A6), she cannot do this without the knowledge
of z; 1.

An adversary might also attempt to reuse the delegation
token once posted on the bulletin board by the proxy and
thus update the legitimate proxy’s vote. Due to the assumption
(A6) and fact that o is integrated into 74, she would need to
know the value of m in order to calculate the zero-knowledge
proof m,. This, however, is prevented given that m is sent
to the legitimate proxy over a private channel according to
assumption (Al).

g) Delegation integrity for proxies: Similarly to the
votes of non-delegating voters, the votes of proxies would be
correctly included in the election result, as long as the proxies
perform the audits and check that their votes are published
on the bulletin board at the end of the election, and the mix
net shuffling and decryption is performed correctly. This is
ensured by corresponding proofs together with the assumption
(A6).

h) Delegation privacy: Obviously, some information
leakage is unavoidable if a given proxy does not get any votes
delegated to her, or if a given voter does not appear in the
list of delegating voters, either by casting the vote herself or
abstaining from the election. This should not be considered
to be a violation of privacy. Hence, we consider the follow-
ing expression for delegation secrecy: Given two delegating
voters Vi, V5, and two semi-honest proxies D;, D, each
receiving a delegation token from one of them, D; and Do
should be unable to distinguish between ((V1, D1); (Va, D2))
and ((Vi, D2); (Va, D1)), with (V;, D;) denoting the voter V;
delegating to the proxy D;.

Given the assumption (A4), only information that is either
public or sent privately to the proxies could be potentially used
for breaking vote secrecy. Furthermore, given the assumption
(AS), the voters do not provide any additional information that
is not part of the protocol, that might assist in revealing their
identity. The assumptions (A1) and (A2) prevent the proxies
from using the communication channels for finding out either
the identity of the voters who delegated to each of them, or
whether V; or V5 communicated with the other proxy.

Consider the proxies D;, D, casting a vote
(04,0i, Ciy Ty i, Ta,;) With (0, mi, ¢, mq,;) as the delegation
token, i+ = 1,2. As they are semi-honest, they only have
the data available during the protocol run. They have access
to encrypted credentials ¢y, co, the published delegating
credentials from both voters hi1,...~h1 71, h21,...,ho 7, and
the reencrypted ciphertexts resulting from the mix net shuffle
of delegating credentials (v}, c}), (v5, ch).

In order to distinguish between a delegation from V; or V5,
the proxies D, D, need to be able to tell,

o whether ¢; and cp encrypt hy j respectively hs; or vice
versa for some 1 <[,k < T, OR

o whether (v1,c¢;) and (v, c}) (respectively, (vs,cs) and
(v}, ch) encrypt the same plaintexts, OR

o whether (v1,¢;) and (vh,ch) (respectively, (ve,ce) and
(v7,c}) encrypt the same plaintexts.



Unless they have access to the decryption key or the ran-
domness used for reencrypting (v}, c;), (v, ), the IND-CPA
security of the encryption protocol and the zero-knowledge
property of the proof my restricts them from making the
distinction. Thus, given the assumptions (A1-AS), secrecy
against semi-honest proxies is preserved.

Same argument can be made for secrecy protection against
external adversaries.

i) Vote secrecy for proxies: The votes cast by proxies
are encrypted until the final anonymisation, either by a mix
net or homomorphic tallying, and subsequent decryption.
Thus, similar to vote secrecy in the original protocol, unless
the adversary is capable of manipulating the voting device,
corrupting at least ¢ out of IV tabulation tellers, or breaking
the encryption (assumptions (A3), (A4), (A6)), the adversary
gets no information about the individual proxy’s selection.

J) Delegation unprovability: The proxy knows how many
delegation tokens she has gotten in the election — however,
without being able to distinguish, whether a given delegation
token contains an encryption of a valid delegation credential
(assumption A6), she does not know exactly how many of
these tokens are actually valid delegations. Furthermore, a
third party, unless it has control over the communication
channels between the proxy and the voters (which contradicts
the assumptions (A1) and (A2)), does not know which ones of
the delegation tokens were sent to the proxy, and which she
created herself in order to cheat about her delegating power.

After the tallying, however, the total number of invalid
delegation tokens N cast within the election is revealed. In
this way, if the proxy received or presented to a third party
N delegation tokens, it can be concluded that at least N — N
of them are valid. Furthermore, if the rest of the proxies are
dishonest and do not use their valid delegation tokens to cast
a vote, the number of valid delegation tokens corresponds
to a delegating power of a proxy. Thus, the requirement
of delegation unprovability is only probabilistically ensured,
which can be corrected if a sufficient number of “chaft” fake
delegations are added to the tally similar to the suggestion in
the Civitas system [3].

VII. RELATED WORK

In this section we describe related work done both regarding
extension to the Helios system, as well as in cryptographic
protocols and implementations for proxy voting elections.

A. Helios Extensions

Several extensions and security improvements have been
proposed for the Helios system. The extension by Cortier
et al. introduces verifiability against malicious bulletin board
by distributing signature credentials to the voters during the
registration and requiring the voters to sign their ballots upon
vote casting [10]. A further modification [11] introduces dis-
tributed tallying via Pedersen secret sharing. The BeleniosRF
protocol [26], as well as the protocol by Kulyk et al. [27],
[28] introduce receipt freeness into Helios, while the latter
protocol also ensures eligibility verifiability with hiding the

information on whether a particular eligible voter participated
in the election or abstained. The extension ensuring long term
privacy in Helios was proposed by Demirel et al. [29].

The Zeus voting system [30], used in University of Athens
election, modifies Helios by introducing an additional way
to ensure cast-as-intended verifiability. The voters have an
option to cast a vote using audit codes distributed to them
at the registration, so that the votes cast with those codes are
not included in the tallying, but decrypted instead, so that
the voters could verify their correctness. Further methods to
improve cast-as-intended verifiability in Helios-like protocols
have been proposed in the Selene protocol [31], which in-
troduced tracking number appended to the cast votes, and
Guasch et al. [32], [33] employing designated-verifier proofs.
For boardroom voting, an Android application extending and
implementing the protocol behind Helios was developed [34].
From the usability perspective, a number of suggestions for
the improvements of the current Helios implementation that
simplify the audit process for the voters, have been proposed
[35], [36].

B. Proxy Voting

There are a few proxy voting implementations which are
published by different organizations. Two widely known sys-
tems are LiquidFeedback® and Adhocracy®. However both ap-
proaches completely relinquish vote secrecy, since all actions
of users are visible to other users of the system at any time.

Furthermore, a number of protocols were made to conduct
cryptographic proxy voting [37], [38]. The first protocol [37]
introduces delegation to different proxies with different pri-
orities by using hash chain elements as credentials. Voting
is based on submitting an anonymous credential over an
anonymous channel. This approach, however, does not offer
verifiability for external observers and does not allow for vote
updating or voter credentials reuse. In the second protocol
[38], the voters either encrypts and casts the vote published
by their chosen proxy at the beginning of the election, or
cast the encrypted name of their chosen proxy as their vote.
Hence, vote secrecy for the votes cast by proxies is not
ensured. Both of these protocols ensure vote secrecy for voters
and verifiability by requiring stronger assumptions than our
protocol, such as reliance on a single trusted entity.

VIII. CONCLUSION

As new forms of voting are being developed, also secure
solutions for these new forms need to be developed. In our
work, we present an extension of the well-known Helios voting
system that introduces functionality for proxy voting.

This new functionality enables voters to delegate their vote
to a trusted proxy while they can change their mind and vote
themselves at any moment of the election before the tally. Our
protocol secures the delegation process by ensuring that the
voter’s choice of a proxy and the proxy’s vote are private,
and that no proxy can cast a vote unless being authorised

Shttp://liquidfeedback.org/
Shttps://adhocracy.de/



by an eligible voter. It furthermore prevents the proxy from
proving how many valid delegated votes she has received, and
ensures that all the delegated votes from eligible voters, that
have not been overwritten by a direct vote or by a delegated
vote with a higher priority, are correctly included in the tally.
The extension also preserves the security requirements of the
original Helios protocol.

As future work, we intend to establish formal definitions of
new requirements for proxy voting and provide formal security
proofs for our protocol. We further plan to consider different
election settings for proxy voting, where a different set of
requirements need to be ensured. For example, in the settings
where the voters can delegate their votes to a proxy not just
for a single election, but also for a number of elections within
a given timespan, a possibility for the voters to verify, how
their chosen proxy has voted, might be of use.

Another possible direction of future work would be to
address the issue of board flooding in our protocol: currently, if
the adversary succeeds in casting a large number of delegations
with fake credentials, she can exploit this opportunity to slow
down the tallying. This issue is also present in a family of other
protocols that rely on anonymous channels for casting the bal-
lot [3], [39], and extensions designed to solve this problem has
been proposed [40], [41]. However, these extensions alter the
adversarial model by requiring additional trust assumptions,
and neither of them is designed for proxy voting. Hence, an
appropriate solution for our protocol needs to be designed.

We furthermore plan to investigate the usability of our
protocol. Since the voting process for non-delegating voters
does not differ from the original Helios, we would focus our
research on the usability of the delegation process.
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