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ABSTRACT
�e Helios voting scheme is well studied including formal proofs for

veri�ability and ballot privacy. However, depending on its version,

the scheme provides either participation privacy (hiding who par-

ticipated in the election) or veri�ability against malicious bulletin

board (preventing election manipulation by ballot stu�ng), but not

both at the same time. It also does not provide receipt-freeness,

thus enabling vote buying by le�ing the voters construct receipts

proving how they voted. Recently, an extension to Helios, further

referred to as KTV-Helios, has been proposed that claims to provide

these additional security properties. However, the authors of KTV-

Helios did not prove their claims. Our contribution is to provide

formal de�nitions for participation privacy and receipt-freeness

that we applied to KTV-Helios. In order to evaluate the ful�llment

of participation privacy and receipt-freeness, we furthermore ap-

plied the existing de�nition of ballot privacy, which was also used

for evaluating the security of Helios, in order to show that ballot

privacy also holds for KTV-Helios.

1 INTRODUCTION
�e Helios voting scheme has been introduced in [2] and subse-

quently implemented and used in several real-world elections such

as the IACR elections [24]. Moreover, the research conducted on He-

lios led to the development of several extensions for the scheme [13–

15, 21, 23, 42, 48], formal security de�nitions and proofs [8, 9, 15, 30]

and usability evaluations [27, 41]. Due to these numerous scienti�c

extensions and evaluations, the Helios scheme can be considered

one of the most evolved e-voting scheme which provides ballot

privacy and end-to-end veri�ability. However, the current imple-

mentation of Helios does not provide veri�ability against malicious

bulletin board that can add or modify ballots on behalf of the voters

who do not perform the necessary veri�cation procedures. �e

extension proposed in [15] solves this issue by introducing digi-

tal signatures thus providing such veri�ability against malicious

bulletin board. It however, does not ensure participation privacy,

meaning that the public available election data reveals whether a

honest voter participated in the election or abstained. Although
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this information is usually potentially available in traditional paper-

based elections, whereby anyone can observe people going into a

polling station, an Internet voting system without participation pri-

vacy reveals the identities of the voters who cast their ballot in an

election on a much larger scale by publishing them online. Hence,

the lack of participation privacy in Internet voting is a violation of

voter privacy that is more serious in comparison to paper-based

elections. A further issue with voter privacy in Helios is the lack

of receipt-freeness, that enables voters constructing receipts that

prove to a third party which candidate the voter has voted for. �us,

such receipts could be used for vote buying.

Recently an extension to Helios has been proposed [31] (hence-

forth referred to as KTV-Helios) that adds probabilistic participa-

tion privacy and probabilistic receipt-freeness to the Helios voting

scheme while, at the same time, ensuring veri�ability against mali-

cious bulletin board, assuming a reliable public-key infrastructure

is in place. However, despite their conceptual contributions to the

Helios scheme, the authors of [31] did not actually formally prove

the security of their scheme. Furthermore, providing such proofs

for KTV-Helios requires introducing new formal de�nitions for par-

ticipation privacy as well as receipt-freeness: Although the existing

formal de�nitions of ballot privacy can be extended and applied

for evaluating participation privacy in some voting systems, no

de�nition that addresses participation privacy speci�cally has been

proposed, yet. �e available de�nitions of receipt-freeness, on the

other hand, do not fully encompass the available e-voting schemes

and security models that ensure receipt-freeness.

�e main contributions of our paper are new formal de�nitions

for probabilistic participation privacy (see Section 3) and probabilis-

tic receipt-freeness (Section 4), that we use to apply to KTV-Helios

and evaluate its security claims. In order to evaluate the participa-

tion privacy and receipt-freeness of KTV-Helios we �rst prove that

it ensures ballot privacy according to the de�nition in [8] in the

random oracle model (Section 3.3.1).

2 DESCRIPTION OF KTV-HELIOS
We �rst describe the version of the Helios scheme, based upon

the improvements in [9, 14, 15] that KTV-Helios extends upon. In

this version, the eligible voters exchange their public signing keys

with the registration authority, who then publishes these keys. In

the setup phase, the tabulation tellers generate a pair of ElGamal

keys used for encrypting the votes. During the voting, the voters

encrypt and sign their chosen voting option, also computing the

well-formedness proof
1
. �e voters then have an option either to

1
�e proof consists of proving the plaintext knowledge, and in case homomorphic

tallying is used, it also includes proving that the plaintext is one of the valid voting

options.



verify that their vote has been encrypted correctly or to submit it

to the bulletin board. During the tallying, the encrypted votes are

anonymized, either via mix net shu�e or homomorphic tallying.

�e anonymized result is jointly decrypted by the tabulation tellers

and published as the outcome of the election.

�e basic idea of KTV-Helios is the introduction of so-called

dummy ballots that are meant to obfuscate the presence of ballots

cast by the voters
2
. �e dummy ballots are cast on behalf of each

voter by the new type of entity, the posting trustee
3
, during the

whole voting phase and are published next to that voter’s name.

Each dummy ballot consists of an encryption of a null vote accompa-

nied with the well-formedness proof that is constructed in the same

way as the proofs for non-dummy ballots. �e well-formedness

proof ensures that only the voter herself can cast non-dummy bal-

lots. Before the tallying, for each voter the ballots that are published

next to the voter’s name are aggregated into the �nal ballot. Due to

the homomorphic property of the cryptosystem, and due to the fact

that the dummy ballots contain the encryption of a null vote, this

�nal ballot encrypts the sum of all non-dummy votes cast by the

voter. �e �nal ballots of all voters are being anonymized via mix

net shu�e. A�erwards, each anonymized ballot is either assigned

to a valid voting option or discarded without revealing its value.

Similar to the proposal in [15], KTV-Helios achieves veri�ability

against malicious bulletin board and prevents ballot stu�ng by

publishing the identities of the eligible voters and using public-key

infrastructure to authenticate the voters during voting. It, however,

requires trusting the device that holds the private signing key of the

voter. �is assumption, however, might be realistically expected

in some se�ings, e.g. in case of a national eID infrastructure with

tamper-resistant smartcards. While the discussion of veri�ability

in KTV-Helios is out of scope for this paper, we provide the security

model and the formal proofs in the full version of our paper [19].

Futhermore, the dummy ballots in KTV-Helios serve to achieve

participation privacy and receipt-freeness.

In the subsections that follow we provide a formal description

of KTV-Helios with more details.

2.1 Building Blocks of KTV-Helios
In this section, we describe the building blocks (i. e. the crypto-

graphic primitives and the probability distributions) of the KTV-

Helios scheme. �e scheme uses the following cryptographic primi-
tives:
• Signed ElGamal [9], a NM-CPA secure encryption scheme (the

same one is used in Helios). Its algorithms are KeyGen, Enc,Dec.
�e encryption of a messagem ∈ Zq with a public key (д,h) ∈ G2

is

((дr ,дmhr ),πPoK ) where r ←$Zq is randomly sampled and πPoK
is a Schnorr proof of knowledge of r . To decrypt a ciphertext

((c(1), c(2)
),πPoK ) with a secret key sk, �rst check the PoK and if

successful setm = c(2) · (c(1)
)
(−sk )

.

2
A similar concept of dummy ballots has also been used in [45] which extends the

JCJ/Civitas voting scheme [12]

3
Note that the description in [31] assumes that each voter can take over the role of a

posting trustee. In this paper, however, we consider it as a separate entity for the sake

of formal proofs, and assume that such an entity would be appointed by the election

organizers.

• An existentially unforgeable digital signature scheme consist-

ing of algorithms SigKeyGen, Sign and Verify, for example Schnorr

signatures.

•�e Chaum-Pedersen NIZK proof EqProof(д1,д2,h1,h2) that

proves the equality of discrete logarithms logд1

h1 = logд2

h2 as

described in [11]. �is proof can be simulated in the random oracle

model, for which we write SimEqProof(д1,д2,h
′
1
,h′

2
) (see e. g. [8]).

• A NIZK disjunctive proof DisjProof(pkid , skid ′ ∈ {skid , 0},д1,

д2,h1,h2, t ) that given (pkid , skid )←$ SigKeyGen andд1,д2,h1,h2 ∈

Gq and timestamp t proves either the knowledge of s = Sign(sks ,д1

| |д2 | |h1 | |h2 | |t )
4
, or the equality of discrete logarithms logд1

h1 =

logд2

h2.

•A re-encryption mix-net for ElGamal ciphertextsMix(c1, ..., cN ),

for example the one of Wikström and Terelius [47].

• A plaintext equivalence test (PET) to decrypt ElGamal cipher-

texts. On input a ciphertext c , a secret key sk and a message m it

creates a decryption factor d that is 1 if c is an encryption of m
under sk and random in Zq if not. It also creates a proof πPET that

it operated correctly (this is another Chaum-Pedersen EqProof).
�e next building blocks are the probability distributions. �ey

are used by the posting trustees in order to cast a random number of

dummy ballots at random times next to each voter’s id . In order to

specify the dummy ballot casting algorithm for the posting trustee,

we use two probability distributions Pd and Pt . �e �rst probability

distribution Pd is used to sample a number of dummy ballots for

each voter. �is distribution therefore has a support [x ,y] with

x ,y as the minimal and maximal number of dummy ballots that

the posting trustee is going to cast for each voter (i. e., x ∈ N0,

y ∈ N0 ∪ {∞}). �e parameters x and y, as well as the exact

Pd needs to be de�ned by the election authorities when se�ing

up a corresponding system, i. e. their optimal trade-o� between

security and e�ciency
5
. �e second probability distribution Pt is

used to determine the time to cast each dummy ballot. �us, this

distribution has a support [Ts ,Te ] with Ts denoting the timestamp

at the start of the voting phase and Te the timestamp at the end of

the voting phase. In order to obfuscate the ballots cast by voters,

Pt should resemble the distribution of times at which the voters

cast their ballots. For this, e. g. the information from the previous

elections could be used.

2.2 Formal Description of KTV-Helios
We are now ready to provide the formal description of the KTV-

Helios scheme. �is description is based upon the syntax proposed

in [8], adjusted to the context of the KTV-Helios scheme. For the

sake of simplicity, we assume a single tabulation teller and a single

posting trustee
6
. We �rst specify the various functions in place, i.e.:

• RegisterVoter(1λ , id) is run by the voter id . �e voter id gen-

erates a pair of keys (pkid , skid )←$ SigKeyGen(1
λ

) and sends the

public key pkid to the registration authority.

4
Methods for proving the knowledge of a digital signatures via Σ-proof are described by

Asokan et al. [4] for common signature schemes; the general method of constructing

NIZK disjunctive proofs is described by Cramer et al. in [18].

5
We provide further information on how the choice of Pd a�ects the security of the

scheme in Sections 3 and 4.

6
We discuss extending the proofs towards several of those entities in the full version

of our paper [19].
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• RegisterRA(1
λ , id, pkid ) is run by the registration authority.

�e registration authority adds (id, pkid ) to the list of registered

voters’ public keys Ipk if id ∈ I , and returns ⊥ otherwise.

• Setup(1
λ

) is run by the tabulation teller. It runs (pk, sk) =

KeyGen to create the election keys and returns the public key pk.

• Vote((id ′, skid ′ ), id,v, t ) creates a ballot b = (id, c,πPoK ,π , t )
for voter id ∈ I and voting optionv that is cast at a timestamp

7 t . If

id = id ′ (a voter casting her own ballot) then it computes (c,πPoK ) =

Enc(pk,v) where c = (c(1), c(2)
) and π = DisjProof(pkid , skid ′ ,д,h,

c(1), c(2), t ) using a signature Sign(skid ′ ,д | |h | |c | |t ). If id ′ =
ˆid (the

posting trustee is casting a ballot on behalf of voter id) then skid ′
is not required but v must be 0. Note that the challenges used in

πPoK and π should include the statements and commitments from

both πPoK and π in order to prevent that the voter signs and casts

the ballot she did not compute herself.

• Validate(b) parses the ballot b as (id, c = (c(1), c(2)
),πPoK ,π , t )

and returns 1 if π and πPoK are valid proofs, id ∈ I and t ∈ [Ts ,Te ],

and ⊥ otherwise.

• VerifyVote(BB,b) is used by the voter to ensure that her ballot

b is properly stored on the bulletin board. It outputs 1 if b ∈ BB
and ValidateBB(BB) holds, otherwise ⊥.

• VoteDummy(id) is used by the posting trustee to cast dummy

ballots for a given voter id . �e posting trustee samples a ran-

dom numberm←$Pd and random timestamps t1, ..., tm ←$Pt , and

returns a set of ballots

(Vote((
ˆid, 0), id, 0, t1), ...,Vote((

ˆid, 0), id, 0, tm ))

• Valid(BB,b) is run by the board before appending a new ballot.

It checks that Validate(b) = 1 and that the ciphertext c in b does not

appear in any ballot already on the board. If this holds it returns 1,

otherwise ⊥.

• ValidateBB(BB) checks that a board is valid. It is run by the

tabulation teller as part of the tallying process and by voters veri-

fying the board. It creates an empty board B′ and for each ballot

b ∈ BB runs “if Valid(B′,b) then append b to B′”. If any ballot gets

rejected it returns ⊥, otherwise 1.

• Tally(BB, sk) is used by the tabulation teller to calculate the

election result. It returns a tuple (R,Π) where R is the election result

and Π is auxiliary data (proofs of correct tallying). In more detail:

(1) Run ValidateBB(BB) and return ⊥ if this fails.

(2) Parse each ballot b ∈ BB as (id, c,πPoK ,π , t ).
(3) For each id appearing in the ballots, set cid =

∏
c ∈C (id )

c
where C(id) is the set of ciphertexts c in ballots belonging

to voter id .

(4) Mix the ballots (c1, . . . , cN ) (where N is the number of

distinct identities who cast a ballot) to get a new list of

ballots (c̄1, . . . , c̄N ) and a proof πmix of correct mixing.

(5) For each i ∈ {1, . . . ,N } and each valid voting option v ∈
Vvalid , use the PET to create a decryption factor di,v and

proof πPET ,i,v .

(6) �e result R is the number of votes for each voting option,

i. e. R(v) = |{i : di,v = 1}| for all v ∈ Vvalid . �e auxiliary

7
As the timestamp t denotes the time at which b is submi�ed to the bulletin board,

we assume that it is chosen in [Ts , Te ].

data Π contains the mixing proofs πmix , the mixed cipher-

texts (c̄1, . . . , c̄N ), the decryption factors di,v and the PET

proofs πPET ,i,v for i ∈ {1, . . . ,N } and v ∈ Vvalid .

• ValidateTally(BB, (R,Π)) takes a bulletin board BB and the out-

put (R,Π) of Tally and returns 1 if ValidateBB(BB) = 1 and all the

proofs πmix and πPET are valid, otherwise ⊥. It is used to verify

an election.

�ese functions are combined in order to build the KTV Helios

scheme. �e corresponding description of the KTV Helios scheme

is given in the following paragraphs along the line of the three

phases of an election.

Setup phase: �e election organizers set up an empty bul-

letin board BB and publish a set of valid non-null voting options

Vvalid = (v1, ...,vL) with 0 6∈ Vvalid . If there is no existing PKI

encompassing the eligible voters, the eligible voters from the vot-

ing register I register themselves by running RegisterVoter(1λ , id).

A�er the voters have registered, or if there is an existing PKI al-

ready established among the voters, the registration authority

prepares the list of the eligible voters’ public keys by running

RegisterRA(id, pkid ) for each voter id and publishing the list Ipk =

{(id1, pkid1

), ..., (idN , pkidN )}. �e tabulation teller runs Setup(1
λ

).

Voting phase: �e posting trustee runs VoteDummy(id) for

each registered eligible voter id ∈ I . �e posting trustee then sub-

mits each resulting dummy ballot b = (id, c,πPoK ,π , t ) to the bul-

letin board at a time corresponding to the timestamp t . �e bulletin

board appends b to BB. �e voter id runs Vote((id, skid ), id,v, t ) in

order to cast her ballot for a voting option v at a time denoted by

timestamp t . �e bulletin board appends b to BB. �e voter can run

VerifyVote(BB,b) to check whether her ballot is properly stored.

Tallying phase: �e tabulation teller runs Tally(BB, sk) on the

contents of the bulletin board, and publishes the resulting output

(R,Π). Everyone who wants to verify the correctness of the tally

runs ValidateTally(BB, (R,Π)).

3 PARTICIPATION PRIVACY
In this section we provide a general de�nition of participation

privacy and apply to KTV-Helios.

3.1 De�ning (δ ,k)-Participation Privacy
We �rst describe the idea and the intuition behind our de�nition,

followed by the de�nition itself.

3.1.1 Definition Idea. Since one may consider participation pri-

vacy an extension of vote privacy, seeing abstention as one of the

possible voting options, we decided to consider modifying an ex-

isting de�nition of vote privacy for de�ning participation privacy.

As such, our de�nition of participation privacy is inspired by the

idea of vote swapping that has been used, in particular, in [6] to

provide a game-based de�nition of vote privacy. �e vote swapping

approach considers two voters, id0 and id1 and two di�erent votes

v0 andv1, so that the adversary has to distinguish between the elec-

tion where id0 votes forv0 and id1 votes forv1, or vice versa. While

more advanced de�nitions for vote privacy have been developed

(see [8] for an overview), the concepts that they use would not be

suitable for de�ning participation privacy, since the techniques that

obfuscate the content of the ballot (i.e. encryption) are generally

3



di�erent from the techniques that obfuscate the identities of the

voters who cast their ballots. Hence, based on the vote swapping

idea, we consider voter swapping in our de�nition: given two voters

id0, id1, the adversary should be unable to distinguish whether id0

has abstained and id1 participated in the election, or vice versa.

According to our de�nition, a voting system that reveals nothing

but the number of voters who participated in the election and

the election result ensures participation privacy. Note that such

a scenario is o�en the case in practice, in both Internet voting

and traditional elections. While other voting systems might either

refuse to publish anything but the name of the winner, or encode

the votes in such a way, that the presentation of the �nal result

does not reveal the number of the voters who cast their ballot, these

systems are out of scope of this work.

In order to enable the evaluation of participation privacy in

KTV-Helios, we propose a quantitative de�nition, inspired by the

coercion resistance de�nition in [34] and the veri�ability de�nition

in [16]. Similar to the notion of (γk ,δ )-veri�ability with quantitative

goal γk in [16], we speak of (δ ,k)-participation privacy, where δ
denotes the advantage of the adversary who tries to tell whether a

given voter has abstained from casting her ballot in the election, or

cast her ballot at most k times.

3.1.2 Definition of (δ ,k)-Participation Privacy. We consider the

following experiment Expppriv,β
A,S,k given the adversary A ∈ CS , so

thatCS is a set of PPT adversaries, de�ned according the adversarial

model for a particular scheme. �ere are two bulletin boards BB0,

BB1 that are set up by the challenger. �e adversary only sees the

public output for one of these bulletin boards BBβ , β ←$ {0, 1}. Let

QS be a set of oracle queries which the adversary has access to.

Using these queries, the adversary �lls both of the bulletin boards

with additional content modeling the voting, so that BB0 and BB1

contain the same cast ballots except for the ballots for the voters

id0, id1: given a number of voting options v1, ...,vk ′ chosen by the

adversary, k ′ ≤ k , for each i = 0, 1, the bulletin board BBi contains

the votes for v1, ...,vk ′ on behalf of idi and an abstention from the

election is modeled for the voter id1−i .

�e oracle computes the tally result R on BB0. In case a vot-

ing scheme provides auxiliary output Π for the tally, the oracle

returns (R,Π) in case β = 0, and simulates the auxiliary output

Π
′

= SimProof(BB1,R), returning the tuple (R,Π′) in case β = 1
8
.

�e oracle further outputs the public content of BBβ to the adver-

sary. �e goal of the adversary is to guess whether the provided

output corresponds to BB0 or to BB1, i.e. to guess β .

�e de�nition of (δ ,k)-participation privacy is then as follows:

De�nition 3.1. �e voting scheme S achieves (δ ,k)-participation

privacy given a subset of PPT adversaries CS , if for any adversary

A ∈ CS , k ∈ N and two honest voter id0, id1 holds

|Pr

[
Expppriv,0

A,S,k = 0

]
− Pr

[
Expppriv,1

A,S,k = 0

]
− δ |

is negligible in the security parameter.

8
�e tally result should be the same, if the vote of each voter is equally included in the

result. However, in order to be able to model the voting schemes where the weight

of the vote might depend on the voter’s identity, we chose to simulate the auxiliary

output in our de�nition.

3.2 Instantiating (δ ,k)-Participation Privacy in
the KTV-Helios Scheme:

In order to evaluate (δ ,k)-participation privacy in the KTV-Helios

scheme according to the aforementioned de�nition, we �rst need

to specify the adversary A ∈ CS we aim to protect against.

We make following assumptions regarding adversarial capabili-

ties: the tabulation teller is trustworthy, both the voting and the

veri�cation device are trustworthy, the adversary does not observe

the communication channel between the voter, the posting trustee

and the voting system, the posting trustee is trustworthy, the bul-

letin board with which the voter communicates is trustworthy, the

honest voters (aside from id0 and id1 in Expppriv,β
A,S,k ) decide to par-

ticipate or to abstain in the election independently from each other,

the adversary is computationally restricted and the voters are not

actively trying to prove that they abstained due to coercion.

We de�ne CS as a set of adversaries that are given access to

the queries QS = {OCast, OVoteAbstain, OVoteLR, OTally} in the

experiment Expppriv,β
A,S,k . �ese queries are de�ned as follows:

OVoteAbstain(v1, ..., vk′ ):
if k ′ > k then

return ⊥

endif

b0,1, ..., b0,m
0
←$VoteDummy(id0)

b1,1, ..., b1,m
1
←$VoteDummy(id1)

for j = 1, ..., k ′ do

t ′j ←$Pt
b′

0, j = Vote((idβ , skid
0
), id0, vj , t ′j )

b′
1, j = Vote((idβ , skid

1
), id1, vj , t ′j )

endfor

Append b0,1, ..., b0,m
0

to BB0

Append b1,1, ..., b1,m
1

to BB1

Append b′
0,1, ..., b

′

0,k′ to BB0

Append b′
1,1, ..., b

′

1,k′ to BB1

OVoteLR(id, v0, v1, t ):

b0 = Vote((id, skid ), id, v0, t )

b1 = Vote((id, skid ), id, v1, t )

if Valid(BBβ , bβ ) = 0 then

return ⊥

endif

Append b0 to BB0

Append b1 to BB1

OTally():

if β = 0 then

return Tally(sk, BB0)

else

(R, Π) = Tally(sk, BB0)

Π
′

= SimTally(BB1, R)

endif

return (R, Π
′
)

OCast(b):

if Valid(BBβ , b) then

Append b to BB0

Append b to BB1

endif

�e adversary may query OTally and OVoteAbstain only once.

3.3 Proving (δ ,k)-participation privacy for
KTV-Helios

We further use the de�nition of (δ ,k)-participation privacy and

its instantiation for KTV-Helios for the evaluation of participation

privacy. Namely, given k ballots, our goal is to �nd δ , so that KTV-

Helios satis�es (δ ,k)-participation privacy against an adversary

with access to the queries in QS . In this we proceed as follows.

First, we consider the fact that the participation privacy in KTV-

Helios relies on the inability of the adversary to distinguish between

dummy ballots and non-dummy ballots cast by the voters. Hence, as

the dummy ballots encrypt a null-vote, as opposed to non-dummy

ballots, the participation privacy is strongly connected to the ballot

privacy in KTV-Helios. �erefore, we �rst de�ne and prove the

ful�llment of ballot privacy in KTV-Helios in Section 3.3.1. A�er-

wards, we consider further sources of information that can be used

4



by the adversary to win Expppriv,β
A,S,k , namely, the number of ballots

near the voters name. Finally, we determine the value of δ so that

KTV-Helios ensures (δ ,k)-participation privacy for a given k and

provide a corresponding proof.

3.3.1 Ballot Privacy. We show that KTV-Helios has ballot pri-

vacy and two auxiliary properties called strong correctness and

strong consistency in the sense of [8]. Ballot privacy is the prop-

erty that an adversary cannot learn more from the election data

than from the election result alone. Here the adversary may be an

observer or a coalition of a subset of voters and the election data

is the bulletin board with voters’ ballots and any auxiliary data

published by the election o�cials such as proofs of correct tallying.

We assume as in [8] that both the tabulation teller and the bulletin

board that the voter communicates with are trustworthy, the vot-

ing device does not leak private information and the adversary is

computationally restricted.

�e ballot pricacy (BPRIV) notion in [8] is a security experi-

ment with two bulletin boards, one of which (chosen at random

by sampling a bit β) is shown to the adversary. For each voter, the

adversary may either cast a ballot themselves or ask the voter to

cast one of two votes v0,v1 of the adversary’s choice. In this case

a ballot for v0 is sent to the �rst board and a ballot for v1 is sent

to the second board. �e adversary thus sees either a ballot for v0

or a ballot for v1; in a scheme with privacy a PPT adversary must

be unable to distinguish the two cases with more than a negligible

advantage
9
.

Further, the adversary can close the election and ask for the

result. Here we cannot simply tally the visible board as the results

on the two boards may di�er which would trivially let the adversary

distinguish. Instead, [8] says that the adversary shall always see

the result for the �rst board. If the �rst board is the visible one, the

experiment tallies it normally; if the second board is visible then

the experiment tallies the �rst board to get the election result and

provides simulated election data (e. g. proofs of correct tallying) to

make it seem that the second board (which the adversary can see)

tallies to the result of the �rst board. A scheme is BPRIV secure if

there is an algorithm SimTally that can provide simulated election

data such that no PPT (probabilistic polynomial time) adversary

can guess be�er than at random whether they saw the �rst or the

second board in this experiment. We give the BPRIV experiment

with minor syntax adjustments, e. g. our Vote algorithm takes a

voter private signing key and a timestamp too.

De�nition 3.2. A voting scheme S has ballot privacy (BPRIV) if

there is a PPT algorithm SimProof such that for every PPT adver-

saryA the following quantity is negligible in the security parameter

Advbpriv
A,S

:=

����Pr

[
Expbpriv,0

A,S
= 1

]
− Pr

[
Expbpriv,1

A,S
= 1

] ����

Where the BPRIV experiment is de�ned as follows and BBβ is

visible to A

9
To be precise, the adversary outputs a guess д for β and the probability that д = β

must not be more than 1/2 + ε for some negligible ε .

Expbpriv,β
A,S

:

(pk, sk) = Setup()

I = register of voters

initialize BB0, BB1

д = AO (pk, I )

OCast(b):

if Valid(BBβ , b) then

Append b to BB0

Append b to BB1

endif

OVoteLR(id, v0, v1, t ):

b0 = Vote((id, skid ), id, v0, t )

b1 = Vote((id, skid ), id, v1, t )

if Valid(BBβ , bβ ) = 0 then

return ⊥

endif

Append b0 to BB0

Append b1 to BB1

Otally():

if β = 0 then

return Tally(sk, BB0)

else

(R, Π) = Tally(sk, BB0)

Π
′

= SimTally(BB1, R)

endif

return (R, Π
′
)

KTV-Helios has ballot privacy. Since KTV decrypts ballots

with PETs, the ballot privacy proof is actually easier than for ex-

isting Helios. �e SimTally algorithm checks the board, sums the

ballots for each voter and mixes them just like Tally. �e result

R that SimTally takes as input shows how many votes it needs to

simulate for each valid choice v ∈ V so it makes a list L containing

a random permutation of these votes. It then produces simulated

decryption factors di, j which are 1 if L[i] = j and random in Zq
otherwise. Here i ranges over the ballots output by the mix and j
ranges over votes v ∈ V . Since the encryption scheme is NM-CPA,

a PPT adversary cannot tell real from simulated decryption factors.

�e EqProof proofs for the PET are Chaum-Pedersen proofs which

SimTally can simulate (in the random oracle model) for any inputs.

�e full proof is provided in the full version of our paper [19].

Strong correctness and strong consistency. �ese two prop-

erties from [8] prevent an adversary from breaking privacy by

encoding instructions in its own ballots on the board. Strong cor-

rectness requires that an adversary cannot manipulate the board

such that the board would reject honest ballots and strong consis-

tency ensures that ballots are independent in the sense that one

ballot (cast by the adversary) cannot in�uence how another ballot

(from a honest voter) is counted.

For both security games we need to make minor syntactical

changes to include e.g. timestamps in ballots. �e proofs of both

properties are then routine and reduce to observing that (1) ballot-

weeding with Validate and Valid do not use the private election

key, so they cannot depend on the votes encrypted in the ballots

and (2) the tallying algorithm works correctly. �e full proofs are

again in the full version of our paper [19].

3.3.2 Number of Ballots. One source of information that can be

used by the adversary to win in Expppriv,β
A,S,k are the k ′ ≤ k additional

ballots on BB1 as the output of OVoteAbstain. In order to account

for the adversarial advantage gained from this number, we de�ne

the following experiment Expnum,β
A,Pd ,Pt ,k ′

: the challenger chooses a

random β ∈ 0, 1. She then outputs two numbers m0, m1, so that

mβ = m + k ′, withm←$Pd , andm
1−β ←$Pd . �e oracle addition-

ally returns the set of timestamps t1, ..., tm0+m1
that are indepen-

dently sampled from Pt to the adversary. Hence, the experiment

models the number of ballots next to id0, id1 in the election in which

the voter id
1−β abstains and the voter idβ casts k ′ ballots. �e ad-

versary has to guess β . Let δnumk,Pd ,Pt
denote an advantage in this ex-

periment, so that |Pr

[
Expnum,0

A,Pd ,Pt ,k
= 0

]
−Pr

[
Expnum,1

A,Pd ,Pt ,k
= 0

]
−

δnumk,Pd ,Pt
| is negligible.
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3.3.3 Determining the Optimal Value for δ . We are now ready

to determine an optimal value δ , so that the KTV-scheme achieves

(δ ,k)-participation privacy, but does not achieve (δ ′,k)-participation

privacy for any lower values of δ ′.

Theorem 3.3. KTV-Helios, instantiated with the probability distri-
butions Pd ,Pt achieves (δ ,k)-participation privacy for a given k > 0

given the subset of adversaries CS , with δ = maxk ′≤k δ
num
k ′,Pd ,Pt

. It
further does not achieve (δ ′,k)-participation privacy for any δ ′ < δ .

We base our proof on the idea that the the number of ballots

next to id0 and id1 is the only thing that give advantage to the

adversary. �e rest of the public election data does not provide any

advantage to the adversary. Our proof strategy is as follows. We

consider a sequence of games that starts from Expppriv,0
A,Sk and ends

with Expppriv,1
A,S,k and show that the adversary A with the access to

the queries in QS distinguishes the transition through all those

games with the advantage of at most δ := maxk ′≤k δ
num
k ′,Pd ,Pt

. We

de�ne BB0,i as the content of the bulletin board and (Ri ,Πi ) as

the tally output at the end of the game Gi , i = 1, ..., 4. �e game

sequence is as follows:

• G1. �e �rst game G1 is equivalent to the experiment

Expppriv,β
A,S,k with β = 0, and v1, ...,vk ′ 6= 0 (hence, it is equivalent to

the election where the voter id0 abstains, and the voter id1 casts

k ′ ≤ k ballots with the votes v1, ...,vk ′ ). �us, the content of BB0,1

and the tally output (R1,Π1) correspond to the content of BB0 and

the output of OTally at the end of Expppriv,0
A,S,k .

• G2. �e second game G2 is equivalent to the election, where

the voter id0 abstains, and the voter id1 casts k ′ ≤ k ballots with

null-votes. �e contents of the bulletin board BB0,2 is equivalent

to the content of the bulletin board BB1 at the end of Expppriv,1
A,S,k

for the adversary using the query OVoteAbstain(v1, ...,vk ′ ) with

vl = 0 ∀l = 1, ...,k ′. �e tally result R, however, is calculated on

the contents of the bulletin board BB0,1 in the game G1, and the

auxiliary output Π2 is simulated as Π2 = SimProof(R1,BB0,2).

We prove, that the adversarial advantage in distinguishing be-

tween the output ofG1 andG2 is at most the adversarial advantage

in the ballot privacy experiment (Section 3.3.1). Consider an adver-

sary B in the ballot privacy experiment Expbpriv,β
A,S

, who simulates

the gamesG1 andG2 for the adversaryA. �e adversary B returns

the output of Expbpriv,β
A,S

for the queries OCast and OTally. For

simulating the output of OVoteAbstain(v1, ...,vk ′ ), B proceeds as

follows: First, she simulates the dummy ballots for each voter idi ,
i ∈ {0, 1} by choosing a random valuesmi ←$Pd , and a set of ran-

dom timestamps t1, ..., tmi ←$Pt . �e dummy ballots bi,1, ...,bi,mi

are computed as bi, j = Vote((
ˆid, 0), idi , 0, tj ), j = 1, ...,mi . A�we-

wards, she simulates casting the votes v1, ...,vk ′ : For each of the

votes vl , l = 1, ...,k ′, she uses the query OVoteLR(id1, id1, 0,vl , t )

for a random tl ∈ Pt in Expbpriv,β
A,S

. �e output of the queries

OVoteLR and the dummy ballots bi,1, ...,bi,mi is returned to A.

At the end, B returns the value β output by A as the guess in

Expbpriv,β
A,S

. �us, it follows that the adversarial advantage in distin-

guishing G1 from G2 is at most equal to the adversarial advantage

in Expbpriv,β
A,S

, denoted as δBPRIV .

• G3. �e third game G3 is equivalent to the election, where

the voter id0 casts k ′ ≤ k ballots with null-vote, and the voter

id1 abstains from the election. Namely, the content of the bul-

letin board BB0,3 is equivalent to the content of the bulletin board

BB1 at the end of Expppriv,1
A,S,k for the adversary using the query

OVoteAbstain(v1, ...,vk ′ ) with vl = 0 ∀l = 1, ...,k ′, k ′ ≤ k . �e

tally outputs the result R1 computed on BB0,1 and simulated auxi-

lary data Π3 = SimProof(R2,BB0,3).

We prove, that the adversary has an advantage of maxk ′≤k δ
num
k ′,Pd ,Pt

of distinguishing between the output of G2 and G3. �e tally result

does not change, hence the tally output (R1,Π2) is equivalent to

the tally output (R1,Π3). �e only di�erence between the contents

of BB0,1 and BB0,2 is the presence of k ′ additional ballots with the

encryption of 0 on BB0,3. �erefore, we conclude that the challenge

in distinguishing between the outputs ofG2 andG3 is equivalent to

the challenge in distinguishing between the output of Expnum,0
A,Pd ,Pt ,k ′

and Expnum,1
A,Pd ,Pt ,k ′

for every k ′ ≤ k chosen by the adversary, and

therefore the adversarial advantage of distinguishing between the

output of G1 and G2 is at most maxk ′≤k δ
num
k ′,Pd ,Pt

.

• G4. �e fourth game G4 is equivalent to the election where

the voter id0 casts k ′ ballots with the votesv1, ...,vk ′ , and the voter

id1 abstains. �e tally is computed on BB0,1, and the auxiliary

output is simulated as Π4 = SimProof(R1,BB0,4). Following the

argument for the indistinguishability of G1 and G2, it holds that

adversary distinghuishes between the outputs of G3 and G3 with

the same advantage δBPRIV as in the ballot privacy experiment.

It follows, that the in transition through the game sequence

G1 → G2 → G3 → G4, the outputs of each game are distinguished

from the outputs of a previous game with the advantage either

δBPRIV (for the games G1 and G2, and for the games G3 and G4)

or δnumk ′,Pd ,Pt
for k ′ ≤ k (for the games G1 and G2). Since δBPRIV is

negligible, as proven in Section 3.3.1, it holds that the adversary

distinguishes between the output in Expppriv,β
A,k with the advantage

only negligibly larger than δnumk,Pd ,Pt
for eachk ′ < k that she chooses

in the experiment. �us, given that an adversary chooses k ′ so that

δnumk,Pd ,Pt
≥ δnum,k ′′ ∀k

′′ 6= k ′,k ′′ ≤ k , the adversarial advantage

in Expppriv,β
A,S,k is negligibly larger than δk := maxk ′≤k δ

num
k ′,Pd ,Pt

. �

We provide an example of how to quantify (δ ,k)-participation

privacy given a particular distribution for the number of dummy

ballots Pd . Let Pd be a geometric distribution with the parameter

p ∈ (0, 1], so that the probability Pr[X = m ] = (1 − p)
mp form ≥ 0

and Pr[X = m ] = 0 form < 0. Since the probability distribution for

times of casting the dummy ballots corresponds to the distribution

of times at which the voters cast their ballots, the timestamps on the

ballots do not provide any additional information to the adversary.

Hence, we only consider the adversary seeing the total number of

cast ballots next to the voter.

Let k > 0, Mc ⊂ N
2

0
be a set of all pairs (m0,m1) output in

Expnum,β
A,k , for which an adversary guesses β = 0 (i.e. that m0 =

m + k with m←$Pd , m1 ←$Pd . It holds for δnumk,Pd ,Pt
as de�ned in

Section 3.1.2:
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δnumk,Pd ,Pt
:= Pr

[
Expnum,0

A,k = 0

]
− Pr

[
Expnum,1

A,k = 0

]

=

∑
(m0,m1)∈Mc

Pr[X = m0 − k ] · Pr[X = m1 ]

− Pr[X = m0 ] · Pr[X = m1 − k ]

Let M+ := {(m0,m1) ∈ N2

0
: Pr[X = m0 − k ] · Pr[X = m1 ] −

Pr[X = m0 ] · Pr[X = m1 − k ] > 0}. It further holds,

δnumk,Pd ,Pt
≥

∑
(m0,m1) ∈M+

Pr[X = m0 − k ] · Pr[X = m1 ]

−Pr[X =m0 ] · Pr[X =m1 −k ] =

k−1∑
m1=0

(1−p)
m1p

∞∑
m0=0

(1−p)
m0p

= 1 − (1 − p)
k

It further follows, that an adversary who is instructed to al-

ways output β = 0 if for the output pair (m0,m1) if it holds that

Pr[X = m0 − k ] · Pr[X = m1 ] − Pr[X = m0 ] · Pr[X = m1 − k ] > 0,

guesses β correctly with an advantage of 1−(1−p)
k

. Hence, it holds

that δnumk,Pd ,Pt
= 1−(1−p)

k
. It further holds, that maxk ′≤k δ

num
k,Pd ,Pt

=

δnumk,Pd ,Pt
. �us, the KTV-Helios scheme with Pd as a geometric dis-

tribution with parameter p achieves (δ ,k)-participation privacy

with δ = 1 − (1 − p)
k

.

4 RECEIPT-FREENESS
In this section we provide the de�nition for δ -receipt-freeness for

deniable vote updating and apply it to evaluate KTV-Helios.

4.1 De�ning δ-Receipt-Freeness
As in Section 3, we start with describing the idea and the intuition

behind our de�nition, and then provide the de�nition itself.

4.1.1 Definition Idea. �e KTV-Helios scheme ensures proba-

bilistic receipt-freeness via deniable vote updating. �e principle

of deniable vote updating has also been proposed in other e-voting

schemes [1, 36, 37] in order to prevent a voter from constructing

receipts that show how the voter has voted. As such, the voter can

cast her ballot for the voting option the adversary instructs to vote

for, but due to deniable vote updating the voter can change her

vote without the adversary knowing it. �e variant of deniable vote

updating used in KTV-Helios is also characterized by enabling the

so-called preliminary deniable vote updating. Given two ballots bA ,

bv , with bA as the ballot with the vote for a candidate demanded

by the adversary, and bv the ballot that ”updates” bA to a vote for a

candidate chosen by the voter, the voter can cast bA and bv in any

order. �is approach prevents an a�ack, where the voter succeeds

to cast bA as the last ballot in the election, ensuring that her vote

has not been updated. However, in KTV-Helios, constructing bv
requires the knowledge of a vote that was cast with bA .

We propose a formal de�nition for probabilistic receipt-freeness

for e-voting schemes with deniable vote updating. Our de�nition

is inspired by the de�nition of coercion resistance by Kuesters

et al. in [34] and the de�nition of receipt-freeness by Cortier et

al. [10, 13]. As such, we introduce a game-based de�nition based

on [13] and modi�ed for the support of deniable vote updating.

Similar to [34], we employ the δ -notation in order to denote an

adversarial advantage δ in �nding out whether the voter indeed

voted as instructed by the adversary, or whether she faked the

receipt and voted for another voting option. Furthermore, similar to

[34], we consider vote buying from a single voter, while considering

an extension towards multiple voters in future work.

Note that the de�nition in [10, 13] argues that the receipt-freeness

should not rely on the actions of the voter, the so-called “counter-

strategy”, that the voter should apply in order to fake her receipt

while still voting how she wants to. However, previous research on

receipt-freeness (see e.g. [32]) also considers a di�erent approach

on whether receipt-freeness should include counter-strategies or

not. Hence, we agree that our de�nition describes a weaker ver-

sion of receipt-freeness, which is ensured in KTV-Helios and other

schemes that rely on deniable vote updating.

Intuitively, the de�nition encompasses the scenario of vote sell-

ing, whereby the adversary tells the voter the name of the candidate

the voter has to provide a receipt for, and the voter is able to access

the randomness used in creating an adversarial ballot bA . It, how-

ever, does not cover the scenarios where the adversary wants to

make sure the voter did not cast a valid vote in the election, or to

change the voter’s vote to a random candidate (forced abstention

and randomization as described in [26]). It also does not consider

the information leakage from the election result.

4.1.2 Definition of δ -Receipt-Freeness. We adjust the de�nition

by Cortier et al. by enabling the voter to apply a counter-strategy

against an adversary that demands a receipt, namely, to deniably

update her vote. �e receipt-freeness in our de�nition relies on the

existence of following algorithms:

• DeniablyUpdate(id, skid ,v0,v1, tv ) as the function for casting

a ballot that changes the vote of the voter id from v0 to v1. �e

function further takes as input the voter’s private signing key skid
and the timestamp at which the updating ballot is cast.

• Obfuscate(id) as the function used by the voting system for

hiding the presence of ballots cast by the voter id for the purpose

of deniable vote updating.

• SimProof(BB,R) as the function for simulating the proof of

correct tallying given the ballots published on the bulletin board

BB and the tally result R.

We de�ne an experiment Exprfree,β
A,S

for a voting scheme S as

follows. �e challenger sets up two bulletin boards BB0, BB1 by

running the setup as described Section 2.2 and randomly chooses

β ∈ {0, 1}, so that the adversary only sees BBβ . �e adversary has

access to the following queries:

OReceipt(id, v0, v1, t ):

if v0 6∈ Vvalid or v1 6∈ Vvalid then

return ⊥

endif

bA = Vote(id, skid , v0, t )

Append bA to BB0

Append bA to BB1

tv ←$Pt
bv = DeniablyUpdate(id, skid , v0, v1, tv )

Append bv to BB1

Obfuscate(BB0, id )

Obfuscate(BB1, id )

OVoteLR(id, v0, v1, t ):

b0 = Vote((id, skid ), id, v0, t )

b1 = Vote((id, skid ), id, v1, t )

if Valid(BBβ , bβ ) = 0 then

return ⊥

endif

Append b0 to BB0

Append b1 to BB1

OTally():

if β = 0 then

return Tally(sk, BB0)

else

(R, Π) = Tally(sk, BB0)

Π
′

= SimTally(BB1, R)

endif

return (R, Π
′
)

7



�e oracle also �lls both of the bulletin boards with the content

on behalf of honest voters and honest voting system entities. At

the end of an experiment, the adversary outputs her guess for β .

We now de�ne δ -receipt-freeness for deniable vote updating:

De�nition 4.1. �e voting scheme S achieves δ -receipt-freeness,

if there are algorithms SimProof, DeniablyUpdate, Obfuscate so

that holds

|Pr

[
Exprfree,0

A,S
= 0

]
− Pr

[
Exprfree,1

A,S
= 0

]
− δ |

is negligible in the security parameter.

4.2 Instantiating δ-Receipt-Freeness in
KTV-Helios

We accept following assumptions on adversarial capabilities for

receipt-freeness in KTV-Helios: the tabulation teller is trustworthy,

both the voting and the veri�cation devices are trustworthy, the

adversary does not observe the communication channel between

the voter, the posting trustees and the voting system, the posting

trustee is trustworthy, the bulletin board with which the voter

communicates is trustworthy, the adversary is computationally

restricted, the voter can cast a ballot without being observed by

the adversary and the voters who are required by the adversary to

provide receipts act independent from each other.

In order to evaluateδ -receipt-freeness for the KTV-Helios scheme,

we de�ne the algorithms in Exprfree,β
A,S

as follows:

• DeniablyUpdate(id, skid ,v0,v1, tv ) as casting a ballot for v1 −

v0: that is,

DeniablyUpdate(id, skid ,v0,v1, tv ) = Vote((id, skid ), id,v1−v0, tv )

• Obfuscate(id) as casting a random number of dummy ballots

distributed according to Pd , Pt : that is,

Obfuscate(id) = VoteDummy(id)

• SimProof as simulating a proof as described in Section 3.3.1.

4.3 Proving δ-Receipt-Freeness for KTV-Helios
In order to �nd an appropriate value of δ , so that we can show

that KTV-Helios achieves δ -receipt-freeness, we need to account

for the adversarial advantage gained from the number of ballots

next to voter’s id on the bulletin board. For this purpose, we de�ne

the following experiment Exprfnum,β
A,Pd ,Pt

: �e challenger chooses a

random β {0, 1} and outputs the numberm + β , withm←$Pd , and

the set of timestamps t1, ..., tm+β that are independently sampled

from Pt to the adversary. �e adversary has to guess β . Hence,

the experiment models the voter either obeying the adversary’s

instructions (for β = 0) or casting an additional ballot (for β = 1),

whereby the adversary only has access to the number of ballots

and their timestamps, but not to the ballots themselves. Let δ rfnum
Pd ,Pt

denote an advantage in this experiment, so that

Pr

[
Exprfnum,0

A,Pd ,Pt
= 0

]
− Pr

[
Exprfnum,1

A,Pd ,Pt
= 0

]
− δ rfnumPd ,Pt

is negligible.

Theorem 4.2. KTV-Helios, instantiated with probability distribu-
tionsPd ,Pt , achievesδ -receipt-freeness given the algorithms SimProof,

DeniablyUpdate, Obfuscate, with δ = δ rfnum
Pd ,Pt

. It further does not
achieve δ ′-receipt-freeness for any δ ′ < δ .

We base our proof on the idea, that the number of ballots next

to the voter is the only source of information that gives advantage

to the adversary. We consider a sequence of games, starting from

Exprfree,0
A

and ending with Exprfree,1
A

and show, that the adversary

A distinguishes the transition through all those games with the

advantage of at most δ rfnum
Pd ,Pt

. We de�ne BB0,i as the content of the

bulletin board and (Ri ,Πi ) as the tally output at the end of the game

Gi , i = 1, ..., 4. We de�ne the sequence as follows:

• G1. �e �rst game G1 is equivalent to the experiment

Exprfree,β
A

with β = 0 (hence, it is equivalent to the election where

the voter id does not try to deniably update her vote). �us, the

content of BB0,1 and the tally output (R1,Π1) correspond to the

content of BB0 and the output of OTally at the end of Exprfree,0
A

.

• G2. �e second game G2 is equivalent to the election, where

the voter id casts an additional ballot with a null-vote. �us, the

content of the bulletin board BB0,2 is equivalent to the content of

the bulletin board BB1 at the end of Exprfree,1
A

for the adversary

using the query OReceipt(id,v0,v1, t ) with v0 = v1.

We prove, that the adversary has an advantage of δnum of dis-

tinguishing between the output of G1 and G2. �e tally result does

not change, hence the tally output (R2,Π2) is equivalent to the tally

output (R1,Π1). �e only di�erence between the contents of BB0,1

and BB0,2 are the ballots next to id . Namely, G1 contains only the

ballotbA andm dummy ballotsb1, ...,bm generated by the function

VoteDummy(id) next to id , with m←$Pd and the timestamps for

the ballots b1, ...,bm randomly sampled from Pt . As for the second

game, in addition to the ballots bA , b1, ...,bm , the bulletin board

BB0,2 further contains an additional non-dummy (i.e. cast by the

voter, not by a posting trustee) ballot bv = Vote((id, skid ), id, 0, tv )

cast by the voter at a random timestamp tv ←$Pt . As bv , as well

as b1, ...,bm , contains an encryption of 0, and due to the zero-

knowledge property of the disjunctive proof π a�ached to both

dummy and non-dummy ballots, it holds that bv is indistinguish-

able from the dummy ballotsbi , ...,bm . Furthermore, the timestamp

a�ached to bv is randomly sampled from the same distribution Pt
as the timestamps for the dummy ballotsb1, ...,bm . Hence, the num-

ber of the ballots next to id remains the only source of information

that the adversary can use to gain advantage in distinguishing be-

tween G1 and G2. It therefore follows, that in order to distinguish

between G1 and G2, the adversary has to distinguish, given the

number of ballots m′, whether m′ was sampled from Pd (in which

case the adversary is in G1), orm′ = m + 1 with m←$Pd (in which

case there is an additional non-dummy ballot, and the adversary

is in G2). �is distinction corresponds to the de�nition of the ex-

periment Exprfnum,β
A,Pd ,Pt

. �erefore, we conclude that distinguishing

between the outputs of G1 and G2 is equivalent to distinguishing

between the output of Exprfnum,0
A,Pd ,Pt

and Exprfnum,1
A,Pd ,Pt

, and therefore

the adversarial advantage of distinguishing between the output of

G1 and G2 is δ rfnum
Pd ,Pt

.

• G3. �e third gameG3 is equivalent to the election, where the

voter cast a vote for a non-null voting option v 6= 0, and the tally

8



result R is calculated on the bulletin board BB0,2 with simulated

tally proof Π = SimProof(BB0,3,R).

We now prove, that the adversarial advantage in distinguish-

ing between the output of G2 and G3 is negligible. Consider an

adversary B in the ballot privacy experiment Expbpriv,β
A,S

who simu-

lates the games G2 and G3 for the adversary A. �e adversary B

returns the output of Expbpriv,β
A

for the queries OVoteLR, OTally.

For simulating the output of OReceipt(id,v0,v1, t ), B proceeds as

follows: �rst, she computes a ballot bv = Vote((id, skid ), id,v0, t ).
She then chooses a random value m←$Pd , and a set of and ran-

dom timestamps t1, ..., tm ←$Pt , and computes a set of ballots

b1, ...,bm with bi = Vote((
ˆid, 0), id, 0, ti ). She then uses the query

OVoteLR(id, id, 0,v1/v0, t
′
) for a random t ′ ∈ Pt in Expbpriv,β

A
and

returns its output together with the ballots bv ,b1, ...,bm to A.

At the end, B returns the value β output by A as the guess in

Expbpriv,β
A,S

. �us, it follows that the adversarial advantage in distin-

guishing G2 from G3 is at most equal to the adversarial advantage

in Expbpriv,β
A

, denoted as δBPRIV .

It follows, that in the transition through the game sequence

G1 → G2 → G3 the outputs of each game are distinguished from

the outputs of a previous game with the advantage either δ rfnum
Pd ,Pt

(for games G1 and G2) or δBPRIV (for games G2 and G3). Hence,

the adversary distinguishes between the output in Exprfree,β
A

with

the advantage of at most δ rfnum
Pd ,Pt

+ δBPRIV , with δBPRIV negligible

as proven in Section 3.3.1. �

�e value of δ rfnum
Pd ,Pt

can be calculated similar to δnumk,Pd ,Pt
in Sec-

tion 3. We provide an example for δ rfnum
Pd ,Pt

for some choices of Pd
and Pt in the full version of our paper [19].

5 RELATEDWORK
Several de�nitions of security requirements in electronic voting

and underlying assumptions have been developed. An overview of

game-based ballot privacy de�nitions was proposed in [8], and a

framework that proposes a uniform treatment of the veri�ability def-

initions from [7, 15, 28, 33, 44] is described in [17]. Other approaches

for de�ning and evaluating the security of voting schemes include

applied pi-calculus [5, 20, 29], process algebra [39], k-resilience

terms [43], a taxonomy of di�erent levels of security requirements

[35] or a formal model based on the Common Criteria Protection

Pro�le [22]. �ese approaches have been applied to evaluate vari-

ous voting schemes [3, 20, 30, 43]. In particular, the formal security

analysis of Helios has been the topic of [8, 15, 30, 35].

A number of formal de�nitions for receipt-freeness in electronic

voting have been proposed. A game-based de�nition by Kiayias

et al [28] ensures, that the voters do not not get any information

from the voting system that can serve as a receipt. �eir de�ni-

tion, however, excludes the scenarios where the voters obtain a

receipt by following the instructions of the adversary. Cortier et al.

[10, 13] provide another game-based de�nition, which, however,

does not consider counter-strategies available to the voter. �e

simulation-based de�nition of Moran et al. in [40], as well as the

de�nition in [32] based on epistemic logic, on the contrary, allow

the voter to apply counter-strategies to fake her receipts. Further

symbolic de�nitions of receipt-freeness include [5, 20, 25, 32, 40]

(see also an overview of such de�nitions in [38]), and a framework

for expressing the existing de�nitions of receipt-freeness in the

modal logics of strategic ability method has been proposed in [46].

For now, participation privacy electronic voting has not been in

the focus of research on formal security proofs. Hence, although the

de�nitions of vote privacy (see e.g. an overview of such de�nitions

in [8]) can be adjusted to address participation privacy, no formal

de�nitions of this requirement have been proposed speci�cally.

Various modi�cations of Helios have been proposed, �xing its

vulnerabilities [9], introducing new security properties such as

receipt-freeness [13], long-term privacy [21] or veri�ability against

malicious bulletin board [15] or proposing alternatives to the veri-

�cation mechanism [23]. Other research focused on improving the

usability of Helios [27, 41].

6 CONCLUSION AND FUTUREWORK
We have proposed a probabilistic abstract de�nition of (δ ,k)-par-

ticipation privacy, with δ representing the adversarial advantage

in distinguishing whether a particular honest voter has cast up to

k ballots in the election. We also proposed a probabilistic abstract

de�nition of δ -receipt-freeness for voting schemes based on deni-

able vote updating. We used both of these de�nitions to evaluate

the security of the KTV-Helios extension proposed in [31].

We plan to extend the proofs in this paper for the case where the

tabulation teller is implemented in a distributed way. We further

plan to address the existing security and e�ciency issues of KTV-

Helios, such as the possibility of board �ooding and the necessity of

trusting the device that holds the private signing key for integrity.
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2014. Election Veri�ability for Helios under Weaker Trust Assumptions. In

ESORICS 2014: 19th European Symposium on Research in Computer Security, Part
II. Springer, 327–344.

[16] Veronique Cortier, David Galindo, Ralf K üsters, Johannes Mueller, and Tomasz
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