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Abstract. We introduce modulation type spaces associated with the generators of polynomially
bounded groups. Besides strongly continuous groups we study in detail the case of bi-continuous
groups, e.g. weak∗-continuous groups in dual spaces. It turns out that this gives new insight
in situations where generators are not densely defined. Classical modulation spaces are covered
as a special case but the abstract formulation gives more flexibility. We illustrate this with an
application to a nonlinear Schrödinger equation.
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1. Introduction and main results

Classical modulation spaces M s
p,q(Rd) (or more general on locally compact abelian groups) have

been introduced by Feichtinger in the 80s (we refer to[4] and the literatue cited there) by means
of the short time Fourier transform (see (19) below for the definition of the latter). There is
an equivalent description of these spaces by so-called “uniform” decompositions of the Fourier
transforms of their elements ([4]), and we shall rely on that one here. Modulation spaces have
been succesfully used in time-frequency analysis and related fields (see, e.g., the survey [5]).
In recent years, modulation spaces M s

p,q(Rd) have been used in the theory of dispersive partial
differential equations such as the (nonlinear) Schrödinger equation (see, e.g., [15, 2]). One of the
appealing features of modulation spaces in this context is that operators eit∆, t ∈ R, are bounded
(polynomially in |t|) on M s

p,q(Rd) for all s ∈ R, 1 ≤ p, q ≤ ∞ (see, e.g., [1]), which is in sharp

contrast to Lebesgue spaces Lq(Rd), where this only holds for q = 2.

In this paper we propose a different and in a sense more abstract point of view on this phenomenon,
within the realm of semigroup theory and with a variant of the Phillips functional calculus as the
main technical tool. We start with a general polynomially bounded group (T (t)) = (e−itB) in a
Banach space X and construct modulation type spaces M s

X,q(B) associated with the “generator”

B. Then we study the groups (e−itB) and (e−itB
2
) in M s

X,q(B) and apply the results to Schrödinger
type equations {

iu̇(t) = B2u(t), t ∈ R,
u(0) = x.

Note that we do not restrict to bounded groups. Moreover, we are particularly interested in the
case where B is not densely defined in X. It turns out that the theory of bi-continuous (semi-
)groups (see [9]) is well suited to the study of this case, and that this also gives new insight
with respect to continuity properties in the case q =∞. In the abstract situation one cannot, in
general, resort to some kind of weak∗-continuity, and it turns out that, even when this is possible,
one might have other possibilities to choose a suitable topology.

The author acknowledges support by the DFG through CRC 1173.
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To be more precise, let T (·) = (T (t))t∈R be a C0-group in a complex Banach space X. We assume
that (T (t))t∈R is polynomially bounded, i.e. there exist M ≥ 1 and α ≥ 0 such that

(1) ‖T (t)x‖X ≤M〈t〉α‖x‖X , t ∈ R, x ∈ X,

where 〈t〉 = (1 + |t|2)1/2. We denote the generator of T (·) by −iB and write T (t) = e−itB, t ∈ R.

We shall use the Phillips functional calculus for the operator B (see, e.g. [7, Sect. 3.3]) and
denote the space of complex Borel measures µ satisfying

∫
R〈t〉

α d|µ|(t) <∞ by Mα(R). Observe
that Mα(R) is a Banach algebra for convolution (letting ‖µ‖Mα :=

∫
R(1 + |t|)α d|µ|(t) we have

‖µ ∗ ν‖Mα ≤ ‖µ‖Mα‖ν‖Mα). If µ ∈Mα(R) and

φ(ξ) = µ̂(ξ) =

∫
R
e−iτξ dµ(τ), ξ ∈ R,

is its Fourier transform then

(2) φ(B)x :=

∫
R
e−iτBx dµ(τ) =

∫
R
T (τ)x dµ(τ), x ∈ X,

defines a bounded operator in X. Moreover, φ 7→ φ(B) is an algebra homomorphism from the
space FMα(R) := {µ̂ : µ ∈Mα(R)} into L(X), the space of bounded linear operators on X.

We denote by S (R) the Schwartz space, by

φ̂(τ) := (Fφ)(τ) :=

∫
R
e−iτrφ(r) dr, τ ∈ R,

the Fourier transform of φ ∈ S (R), and by F−1φ the inverse Fourier transform of φ, given by

F−1φ(r) =
1

2π

∫
R
eiτrφ(τ) dτ, r ∈ R.

We clearly have S (R) ⊆ FMα(R) for any α ≥ 0, and for φ ∈ S (R) the operator φ(B) is given
by

(3) φ(B)x =
1

2π

∫
R
φ̂(τ)eiτBx dτ =

∫
R

(F−1φ)(τ)e−iτBx dτ, φ ∈ S (R).

The map S (R)→ L(X), φ 7→ φ(B), is an algebra homomorphism and we have the estimate

(4) ‖φ(B)‖L(X) ≤
M

2π
‖〈·〉αφ̂‖L1 , φ ∈ S (R),

in particular, φ 7→ φ(B) is continuous for the usual topology on S (R).

Remark 1.1. Letting

L1
α(R) := {f : 〈·〉αf̂ ∈ L1(R)}

equipped with the norm ‖f‖L1
α

:= ‖(1 + | · |)αf̂‖L1 , we have that L1
α(R) is a Banach subalgebra

of FMα(R). By (4) we obtain a bounded functional calculus for B on L1
α(R). Observe that, by

the Riemann-Lebesgue lemma, L1
α(R) ⊆ Ck0 (R) for any k ∈ N0 with k ≤ α.

Nevertheless, we shall mostly work with the functional calculus for Schwartz functions and use
the formulae in (3). The following example has to kept in mind throughout the paper and shall
give the relation to classical modulation spaces.
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Example 1.2. Let X = Lp(R) with p ∈ [1,∞) and let T (t)f := f(· − t), t ∈ R be the right
translation group with generator − d

dx . The group is bounded, even isometric, and M = 1, α = 0

in (1). We have B = −i ddx , e−iτBf = T (τ)f = f(· − τ) and we see from the second formula in (3)
that

φ(B)f = φ(−i d
dx

)f = (F−1φ) ∗ f = F−1
(
ξ 7→ φ(ξ)f̂(ξ)

)
, φ ∈ S (R), f ∈ Lp(R).

Boundedness of the Phillips functional calculus here just means that, for any complex Borel
measure µ on R, its Fourier transform µ̂ is an Lp-Fourier multiplier and that µ̂(B)f = µ ∗ f .

We shall associate with B a scale of “modulation type” spaces. The basic idea is to take φ ∈
S (R) \ {0} and put, for s ∈ R and q ∈ [1,∞],

(5) M s
X,q,φ := {x : ‖x‖Ms

X,q,φ
:=
(∫

R

(
〈t〉s‖φ(B − t)x‖X

)q
dt
)1/q

<∞}

with obvious modification in case q = ∞ (observe that it makes no difference whether we plug
B into φ(· − t) or B − t into φ to obtain φ(B − t)). We shall show below that different φ give
rise to equivalent norms, so that we can denote this space by M s

X,q (or M s
X,q(B) if we want to

specify the operator B in notation). In the context of Example 1.2 this will yield the classical
modulation spaces M s

p,q(R). However, we have to be a bit careful about the x we admit in (5).
In the classical case we have the space S ′(R) of tempered distributions as an ambient space. For
sufficiently large s we can take x ∈ X, but for s small (depending on q) or for negative s we have
to resort to a scale X−k, k ∈ N, of extrapolation spaces, see Section 2.

Just as there is an analogy of classical modulation spaces with classical Besov spaces, our con-
struction can be viewed as a counterpart to the construction of abstract Besov type spaces for
sectorial operators (see, e.g., the “intermediate spaces” in [7, Sect. 6.4.1]).

The results in this paper can clearly be extended to finitely many commuting groups, and one
can thus recover classical modulation spaces M s

p,q(Rd) on Rd for d > 1. Moreover, iterating
the procedure presented here one can define anisotropic versions of these spaces with different
integrability exponents in different directions. We shall not go into further details here.

The paper is organized as follows: In Section 2 we show basic peoperties of the functional calculus
for Schwartz functions and introduce the extrapolation scale we shall use. In Section 3 we define
the spaces M s

X,q(B) in the case of a strongly continuous group and establish their basic properties.
In Section 4 consider the situation of a bi-continuous group with not necessarily densely defined
B. Even if the original group in X is strongly continuous, the induced group in M s

X,∞(B) is not
strongly continuous, in general. Resorting to the notion bi-continuous groups allows to study this

case in a satisfying setting. Section 5 is devoted to the study of (e−itB
2
) in M s

X,q(B), and this

relies very much on (extensions of) the Phillips calculus. We give an application of our result to
a nonlinear Schrödinger equation in Section 6. In the Appendix we have gathered two auxiliary
results and give their proofs for convenience.

2. Basic definitions and properties

We start with fundamental properties of the functional calculus for Schwartz functions.

Lemma 2.1. Let φ ∈ S (R).

(1) For x ∈ X we have φ(B)x ∈ D(B) and Bφ(B)x = ψ(B)x where ψ(r) := rφ(r).
(2) For any k ∈ N the operator φ(B) maps X into D(Bk).
(3) For λ ∈ C \ R we have R(λ,B)φ(B)x = ψ(B)x where ψ(r) := φ(r)/(λ− r).
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(4) The set
⋃
ρ∈S ρ(B)(X) is dense in X and ρ(B)x = 0 for all ρ ∈ S (R) implies x = 0.

Proof. For the proof of (1) let t > 0. Then

T (t)φ(B)x =
1

2π

∫
R
φ̂(τ)ei(τ−t)Bx dτ =

1

2π

∫
R
φ̂(τ + t)eiτBx dτ

hence T (t)φ(B)x =
(
e−it(·)φ

)
(B)x (in fact, this also follows form the Phillips calculus). We

multiply with e−t, integrate
∫∞

0 . . . dt and use Fubini to get

R(1,−iB)φ(B)x = φ̃(B)x,

where φ̃(r) = (1 + ir)−1φ(r). This implies (1).

(2) follows from (1) by induction, and (3) also follows from (1).

For k ∈ N let gk(t) := e−t
2/(2k). Then gk ∈ S (R) and ĝk(τ) =

√
2πke−kτ

2/2. For x ∈ X and
k →∞ we have

gk(B)x =
1

2π

∫
R
ĝk(τ)eiτBx dτ =

∫
R

√
k

2π
e−kτ

2/2eiτBx dτ → eiτBx
∣∣
τ=0

= x

as k →∞. This proves (4). �

Lemma 2.2. Let φ ∈ S (R).

(1) The map R→ L(X), t 7→ φ(B − t) is uniformly continuous in operator norm.

(2) If x ∈ X is such that
∫
R ‖φ(B − t)x‖X dt <∞ then

∫
R φ(B − t)x dt = φ̂(0)x.

Proof. The estimate (4) implies

‖φ(B − t)− φ(B − s)‖L(X) ≤
M

2π

∫
R
〈ξ〉α

∣∣e−itξ − e−isξ∣∣|φ̂(ξ)| dξ

=
M

2π

∫
R
〈ξ〉α

∣∣e−i(t−s)ξ − 1
∣∣|φ̂(ξ)| dξ,

and we can use dominated convergence to prove (1).

To see (2), let again gk(t) = e−t
2/(2k), k ∈ N. Then we have∫

R
φ(B − t)x dt = lim

k→∞

∫
R
gk(t)φ(B − t)x dt

and ∫
R
gk(t)φ(B − t)x dt =

1

2π

∫
R

∫
R
gk(t)e

−iτtφ̂(τ)eiτBx dτ dt

=
1

2π

∫
R
ĝk(τ)φ̂(τ)eiτBx dτ.

=

∫
R

√
k

2π
e−kτ

2/2φ̂(τ)eiτBx dτ.

As k →∞ this tends to φ̂(τ)eiτBx|τ=0 = φ̂(0)x in ‖ · ‖X . �

The following construction of extrapolation spaces is well established (see, e.g., [7, Sect. 6.3]). As
−iB generates a C0-group satisfying (1), B is densely defined and ±i belong to the resolvent set
of B. For k ∈ N, we denote by Xk the Banach space D(Bk) equipped with the norm ‖x‖Xk :=
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‖(i + B)kx‖X . We let X0 := X, and for k ∈ N we denote by X−k the completion of X for the
norm ‖x‖X−k := ‖(i+B)−kx‖. Then

. . . ⊆ Xk+1 ⊆ Xk ⊆ . . . ⊆ X1 ⊆ X0 = X ⊆ X−1 ⊆ . . . ⊆ X−k ⊆ X−(k+1) ⊆ . . .
with continuous and dense embeddings. For each k ∈ Z there is an operator Bk in Xk with
D(Bk) = Xk+1 such that i + Bk : Xk+1 → Xk is an isometry, Bk is an extension of Bk+1 and
Bk+1 is the part of Bk in Xk+1 (we recall that, for an operator A in a Banach space X and
another Banach space Y ⊆ X, the part AY of A in Y is the operator given by the restriction of
A to D(AY ) = {y ∈ Y ∩D(A) : Ay ∈ Y }).
Moreover, we set X∞ :=

⋂
k∈NXk and X−∞ :=

⋃
k∈NX−k (as we do not need topologies on these

spaces, we simply consider them as sets). By similarity, each operator −iBk generates a C0-group
(e−itBk)t∈R in Xk, and this group satisfies again (4) in Xk. So everything we have done so far can
be carried over from X to any of the spaces Xk, k ∈ Z. Moreover, we have consistency of spaces
and operators in the sense of (Xk)l = Xk+l and (Bk)l = Bk+l for all k, l ∈ Z. For simplicity, we
omit in notation the subscript for the different versions of B.

Remark 2.3. (a) By Lemma 2.1 we have φ(B) : X−∞ → X∞ for any φ ∈ S (R).

(b) In the case of the translation group on X = Lp(R), 1 < p <∞, we obtain the scale of Sobolev
spaces Xk = W k,p(R), k ∈ Z, and X∞ =

⋂
k≥0W

k,p(R), which is sometimes denoted by DLp and

can be equipped with the natural Fréchet space topology. In this notation X−∞ = (DLp′ )
′ would be

the dual space of DLp′ .

Lemma 2.4. Let x ∈ X−∞ and φ, ψ ∈ S (R). Then
∫
R ‖φ(B− t)ψ(B)x‖X dt <∞ and

∫
R φ(B−

t)ψ(B)x dt = φ̂(0)ψ(B)x.

Proof. By Lemma 2.2 the integrand is continuous in ‖ · ‖X . For any k ∈ N we have

‖φ(B − t)ψ(B)‖L(X−k,X) = ‖φ(B − t)(i+B)kψ(B)‖L(X).

Thus it suffices to estimate ‖φ(B − t)ψ̃(B)‖L(X) where ψ̃ := (i+ (·))kψ ∈ S (R). We simply use
the estimate (4) (for the definition of Vgf we refer to the appendix):

‖φ(B − t)ψ̃(B)‖L(X) ≤
M

2π

∫
R
〈ξ〉α|F{φ(· − t)ψ̃}(ξ)| dξ

=
M

2π

∫
R
〈ξ〉α|(Vφ ψ̃)(t, ξ)| dξ.

By Lemma A.1, the integral is finite for each t ∈ R and can be integrated with respect to t. �

3. Modulation type spaces associated with B

With the scale of extrapolation spaces from the previous section at hand we can now give the
precise definition of the modulation type spaces associated with B.

Definition 3.1. For s ∈ R, q ∈ [1,∞) and φ ∈ S (R) \ {0} we define

(6) M s
X,q,φ := {x ∈ X−∞ : ‖x‖Ms

X,q,φ
:=
(∫

R

(
〈t〉s‖φ(B − t)x‖X

)q
dt
)1/q

<∞}

and

(7) M s
X,∞,φ := {x ∈ X−∞ : ‖x‖Ms

X,∞,φ
:= sup

t∈R
〈t〉s‖φ(B − t)x‖X <∞}.

We start with a lemma on simple inclusions.
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Lemma 3.2. We have X ↪→ M s
X,q,φ for s < −1

q (and for s ≤ 0 if q = ∞). If ρ̂(0) = 1 then

M s
X,q,ρ ↪→ X for s > 1

q′ (and s ≥ 0 if q = 1).

Proof. By (4) we have for x ∈ X the estimate

(8) ‖x‖Ms
X,q,φ

≤ M

2π
‖〈·〉αφ̂‖L1 ‖〈·〉s‖Lq‖x‖X

where ‖〈·〉s‖Lq <∞ for s < −1
q (and for s ≤ 0 if q =∞). This proves the first assertion.

Take now ρ ∈ S (R) with ρ̂(0) = 1 and s > 1
q′ (s ≥ 0 if q = 1). For x ∈ M s

X,q,ρ we then have by

Hölder ∫
R
‖ρ(B − t)x‖X dt ≤ ‖〈·〉−s‖Lq′‖〈·〉

sρ(B − ·)x‖Lq(X) = ‖〈·〉−s‖Lq′‖x‖Ms
X,q,ρ

.

Now we use Lemma 2.2 to obtain
∫
ρ(B − t)x dt = x and consequently ‖x‖X . ‖x‖Ms

X,q,ρ
. �

We now prove that different φ ∈ S (R) \ {0} induce equivalent norms. We also show that the
continuous type norms involving integrals can be replaced by semi-discrete norms involving sums.
We shall study fully discrete norms below.

Theorem 3.3. Let s ∈ R and q ∈ [1,∞]. Then all norms ‖ · ‖Ms
X,q,φ

, φ ∈ S (R) \ {0}, are

equivalent. Moreover, they are equivalent to the norms given for φ ∈ S (R) \ {0} by

‖x‖∼Ms
X,q,φ

:= sup
t∈[0,1]

(∑
k∈Z

(
〈k〉s‖φ(B − k + t)x‖X

)q)1/q
,

again with obvious modification for q =∞.

Proof. It is clear that ‖x‖Ms
X,q,φ

. ‖x‖∼Ms
X,q,φ

for all q ∈ [1,∞] and that the reverse inequality

holds for q = ∞. So it rests to show ‖x‖∼Ms
X,q,ψ

. ‖x‖Ms
X,q,φ

for fixed φ, ψ ∈ S (R) \ {0} and

q ∈ [1,∞]. We give the proof for q ∈ [1,∞), the modifications for q =∞ being obvious.

Let φ ∈ S (R) \ {0}, c := ‖φ‖2L2 , and set φ̃ := c−1φ. Then
∫
R φ(r)φ̃(r) dr = 1. We let

ρ(t) :=

∫ 1

0
φ(r + t)φ̃(r + t) dr, t ∈ R.

Then ρ ∈ S (R), 0 ≤ ρ ≤ 1, and
∫
R ρ(r− t) dt = 1 for all r ∈ R. For ψ ∈ S (R) \ {0} and t ∈ [0, 1]

we have, using Lemma 2.4,(∑
k

〈k〉sq‖ψ(B − k + t)x‖qX
)1/q

=
(∑

k

〈k〉sq‖ψ(B − k + t)

∫
R
ρ(B − k + σ)x dσ‖qX

)1/q

≤
∑
j

(∑
k

〈k〉sq‖ψ(B − k + t)

∫ 1

0

∫ 1

0
(φ̃φ)(B − k + j + σ + r)x dr dσ‖qX

)1/q

We write k + j for j:

=
∑
j

(∑
k

〈k + j〉sq‖
∫ 1

0

∫ 1

0
ψ(B − (k + j) + t)(φ̃φ)(B − k + σ + r)x dr dσ‖qX

)1/q
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Now we use 〈k + j〉sq . 〈k〉sq〈j〉|s|q and Jensen:

.
∑
j

〈j〉|s|
(∑

k

〈k〉sq
∫ 1

0

∫ 1

0
‖ψ(B − (k + j) + t)(φ̃φ)(B − k + σ + r)x dr dσ‖qX

)1/q

≤
(∑

j

〈j〉|s| sup
σ,r∈[0,1],k∈Z

‖ψ(B − (k + j) + t)φ̃(B − k + σ + r)‖X
)

× sup
r∈[0,1]

(∑
k

〈k〉sq
∫ 1

0
‖φ(B − k + σ + r)x‖qX dσ

)1/q

= I1 × I2.

For I1 we use (4) and let s := σ + r ∈ [0, 2]. As in the proof of Lemma 2.4 we then obtain

‖ψ(B − (k + j) + t)φ̃(B − k + σ + r)‖X
. ‖〈·〉αF{ψ(· − j + t)φ̃(·+ s)}‖L1 = ‖〈·〉αF{ψ(· − j + t− s)φ̃}‖L1

≤
∫
R
〈ξ〉α|(Vψφ̃)(j + s− t, ξ)| dξ,

where the integrand is . 〈ξ〉−β〈j〉−γ for all β, γ > 0 by Lemma A.1. Hence I1 is finite. For the
estimate of I2 we fix r ∈ [0, 1] and estimate the term in brackets by

.
(∫

R
〈σ〉sq‖φ(B − σ + r)x‖qX dσ

)1/q
,

which is independent of r and equals ‖x‖Ms
X,q,φ

. �

Definition 3.4. According to Theorem 3.3 we can define M s
X,q := M s

X,q,φ for s ∈ R, q ∈ [1,∞]

where φ ∈ S (R) \ {0} is arbitrary.

As announced above we now give fully discrete norms for special ρ ∈ S (R) \ {0}.

Proposition 3.5. Let ρ ∈ S (R)\{0} satisfy supp ρ ⊆ [−1, 1] and
∑

k∈Z ρ(·−k) = 1 on R. Then

‖x‖dMs
X,q,ρ

:=
(∑
k∈Z
〈k〉sq‖ρ(B − k)x‖qX

)1/q

(obvious modification in case q = ∞) defines an equivalent norm on M s
X,q for any s ∈ R and

q ∈ [1,∞].

Proof. It is clear that ‖x‖dMs
X,q,ρ

≤ ‖x‖∼Ms
X,q,ρ

. To see the reverse estimate we observe that, for

t ∈ [0, 1], ρ(·+ t) =
∑2

j=−1 ρ(·+ t)ρ(·+ j). Hence we have, for k ∈ Z and t ∈ [0, 1],

‖ρ(B − k + t)x‖X =
∥∥∥ 2∑
j=−1

(ρ(B − k + t)ρ(B − k + j))x
∥∥∥
X

≤
2∑

j=−1

‖ρ(B − k + t)ρ(B − k + j)x‖X

.
2∑

j=−1

‖ρ(B − k + j)x‖X ,

since supk∈Z,t∈[0,1] ‖ρ(B − k + t)‖L(X) <∞ by (4). Now ‖x‖∼Ms
X,q,ρ

. ‖x‖dMs
X,q,ρ

follows. �
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Proposition 3.6 (Lifting property). The operator i + B is an isomorphism M s+1
X,q → M s

X,q for

any s ∈ R, q ∈ [1,∞]. Moreover, M s
X,q(B) = M s+1

X−1,q
(B−1) with equivalent norms.

Proof. For φ ∈ S (R)\{0}, φ1(r) := rφ(r), and x with t 7→ φ1(B−t)x ∈ Lqs, the basic observation
is that t 7→ Bφ(B − t)x ∈ Lqs is equivalent to t 7→ tφ(B − t)x ∈ Lqs. Hence we have x ∈ M s+1

X,q if

and only if x ∈M s
X,q(R) and Bx ∈M s

X,q(R). The assertions now follow easily. �

As a corollary, we can replace X−∞ in Definition 3.1 by any X−k, k >
1
q′ − s if q ∈ (1,∞] and

k ≥ −s if q = 1.

Proposition 3.7 (Completeness). For s ∈ R and q ∈ [1,∞] the space M s
X,q,ρ is a Banach space.

Proof. We give the proof here for s > 1
q′ (and s ≥ 0 if q = 1) and can exploit M s

X,q,ρ ↪→ X. For

the general case we then use the lifting property.

Let (xn) be Cauchy for ‖ · ‖Ms
X,q,ρ

. Then (〈·〉sρ(B − ·)xn) is Cauchy in Lq(R, X) and there exists

〈·〉sf ∈ Lq(R, X) such that 〈·〉sρ(B− ·)xn → 〈·〉sf in the norm of Lq(R, X). The assumption on s
implies that (xn) is Cauchy in ‖·‖ so that xn → x ∈ X in ‖·‖X . But then ρ(B− t)xn → ρ(B− t)x
in ‖ · ‖X for any t ∈ R. Thus f(t) = ρ(B − t)x for a.e. t ∈ R, and dominated convergence yields
x ∈M s

X,q,ρ and xn → x in ‖ · ‖Ms
X,q,ρ

. �

We close this section by the following result on denseness and the group induced by (e−itB) in
modulation type spaces associated with B.

Proposition 3.8. For q ∈ [1,∞) and any s ∈ R, X∞ is dense in M s
X,q. The part of −iB in

M s
X,q which has domain M s+1

X,q generates a C0-group in M s
X,q that is consistent with the group

(e−itB)t∈R we started with and satisfies again (1).

Proof. By lifting we resort to s > 1/q′ (s ≥ 0 if q = 1). Choose ρ ∈ S (R) \ {0} as in Proposi-
tion 3.5. Take x ∈M s

X,q and, for n ∈ N, set xn :=
∑
|l|≤n ρ(B − l)x. Then

ρ(B − k)xn =
∑
|l|≤n

ρ(B − l)ρ(B − k)x =

 ρ(B − k)x , |k| ≤ n− 1

0 , |k| ≥ n+ 2
,

so clearly xn ∈ X∞ and xn ∈
⋂
s∈RM

s
X,q. Moreover

‖x− xn‖qMs
x,q
≤ C

∑
|k|≥n

〈k〉sq‖ρ(B − k)x‖qX → 0 (n→∞).

Clearly, the spaces M s
X,q are invariant under the group operators e−itB and the induced group

still satisfies (1). Similarly, M s
X,q is invariant under resolvents of B and norm estimates in X carry

over to M s
X,q. The resolvent operators induce an operator B in M s

X,q with domain M s+1
X,q .

By X∞ ⊆ M s+1
X,q , the domains M s+1

X,q of B is dense in M s
X,q. Now Hille-Yosida implies that the

induced group (e−itB) is strongly continuous in M s
X,q. �

We shall study the case q =∞ in the next section.
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4. The case of bi-continuous groups

In our considerations, we also want to include the translation group in spaces such as L∞ where
it is not strongly continuous and the supposed “generator” is not densely defined. However, the
translation semigroup is weak∗-continuous on L∞. Also, in our spaces M s

X,∞ the induced group

is not densely defined, but it is strongly continuous for a weaker norm (namely in X−k if k
is sufficiently large). So we resort to the theory of bi-continuous (semi-)groups and recall basic
definitions and properties (cf. [9]).

Assumption 4.1. Let X be Banach space with norm ‖·‖X and let τX be a locally convex topology
on X such that

(i) Any normbounded τX-Cauchy sequence converges in (X, τX).
(ii) The embedding (X, ‖ · ‖X) ↪→ (X, τX) is continuous.

(iii) The space (X, τX)′ is norming for X, i.e. for any x ∈ X we have

‖x‖X = sup{|〈x, ψ〉| : ψ ∈ (X, τX)′, ‖φ‖X′ ≤ 1},

where ‖ψ‖X′ := sup‖z‖X≤1 |〈z, ψ〉| is the usual norm on the dual space (X, ‖ · ‖X)′ of

(X, ‖ · ‖X).

By (iii), τX is necessarily Hausdorff. In the following we use the notation

ΦX(τX) := Φ(τX) := {ψ ∈ (X, τX)′ : ‖ψ‖X′ ≤ 1},

then we can rewrite (iii) as ‖x‖X = supψ∈Φ(τX) |〈x, ψ〉| for any x ∈ X. Observe that (iii) is

invariant if we multiply ‖ · ‖X by a positive constant.

We rephrase [9, Def. 3] for our purposes. Observe that here we are only interested in the polyno-
mially bounded case.

Definition 4.2. Suppose that τX is as above and that (T (t))t∈R is a group satisfying (1). Then
(T (t)) is called bi-continuous (with respect to τX) if

(i) R→ X, t 7→ T (t)x is τX -continuous for any x ∈ X,
(ii) for any a > 0 the set {T (t) : |t| ≤ a} is bi-equicontinuous, i.e. for every ‖ · ‖-bounded

sequence (xn) in X that is τX -convergent to 0 we have

τX − lim
n→∞

T (t)(xn) = 0

uniformly in |t| ≤ a.

Following [9, Def. 9], the generator of (T (t)) is the unique operator A on X such that

(9) R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt, x ∈ X,Reλ > 0.

The integral here is the limit lima→∞ in operator norm of the integrals
∫ a

0 e
−λtT (t)x dt which

in turn have to be understood as τX -Riemann integrals (we refer also to Proposition A.2 in the
appendix and to the arguments in the proof of Proposition 4.4). Then (see [9, Cor. 13]) A is
bi-closed, i.e. if (xn) is a norm-bounded sequence, τX -convergent to x and such that (Axn) is
norm-bounded and τX -convergent to y, then x ∈ D(A) and Ax = y. Moreover, the domain D(A)
of A is bi-dense in X, i.e. for any x ∈ X there is a norm-bounded sequence (xn) in D(A) that is
τX -convergent to x (see [9, Cor. 13]).

The following are our main motivations to include the present section.
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Examples: 1. The translation group given by T (t)f = f(· − t) is isometric in X = L∞(R) =(
L1(R)

)′
. It is not strongly continuous, but it is bi-continuous for the weak∗ topology.

2. More general, if X is not reflexive and (T (t)) = (e−itB) is a C0-group in X satisfying (1) then
the dual group (T (t)′) in X ′ satisfies (1) and is bi-continuous for the weak∗ topology on X ′. Its
generator is the dual operator (−iB)′ of −iB whose domain is bi-dense in X ′.

3. The translation group is also not strongly continuous on the space Cb(R) of bounded and
continuous functions equipped with the sup-norm. But it is bi-continuous for the topology τc of
uniform convergence on compact subsets of R (see [9]).

4. In the situation of Section 3, the induced group (e−itB) is not strongly continuous in M s
X,∞

(unless B is bounded). We shall see below that it is bi-continuous for the norm of Xk where
k < s− 1 and its generator is the operator −iB with domain M s+1

X,∞.

In the following we assume

Assumption 4.3. Let (X, ‖ · ‖X) be a Banach space and τX a topology on X satisfying As-
sumption 4.1. We assume that (T (t))t∈R is a group in X that satisfies (1) and is bi-continuous
with respect to the topology τX . As before we denote the generator of (T (t)) by −iB and write
T (t) = e−itB.

Before we continue we establish the Phillips calculus for the group (T (t)) in X. We shall use that,
for a τX -continuous and norm-bounded function f : [a, b] → X and a complex Borel measure
µ ∈Mα(R), the integral

∫
[a,b] f(t) dµ(t) exists in a Riemann sense. For convenience, we prove this

in the appendix (cf. Proposition A.2).

Proposition 4.4 (Phillips calculus). For µ ∈Mα(R) and x ∈ X the limit

µ̂(B)x := lim
a→−∞,b→∞

∫
[a,b]

T (t)x dµ(t)

exists in operator norm and x 7→ µ̂(B) defines a linear operator µ̂(B) ∈ L(X) satisfying the
estimate

(10) ‖µ̂(B)‖L(X) ≤M
∫
R
〈t〉α d|µ|(t).

The map FMα(R) → L(X), µ̂ 7→ µ̂(B) is an algebra homomorphism. Moreover, if F ⊆Mα(R)
is a ‖ · ‖Mα-bounded subset satisfying

(11) lim
a→∞

sup
µ∈F

∫
|t|>a
〈t〉α d|µ|(t) = 0

then {µ̂(B) : µ ∈ F} is bi-equicontinuous.

Proof. Let µ ∈ Mα(R) and x ∈ X. By Proposition A.2 the integral
∫

[a,b] T (t)x dµ(t) exists in a

τX -Riemann sense. By Assumption 4.1 (iii) we have∥∥∥∥∥
∫

[a,b]
T (t)x dµ(t)

∥∥∥∥∥
X

= sup
ψ∈Φ(τX)

∣∣∣∣∣
∫

[a,b]
〈T (t)x, ψ〉 dµ(t)

∣∣∣∣∣ ≤M
∫

[a,b]
〈t〉α d|µ|(t) ‖x‖X .

Denoting the operator x 7→
∫

[a,b] T (t)x dµ(t) by
∫

[a,b] T (t) dµ(t) this estimate implies∫
[a,b] T (t) dµ(t) ∈ L(X). Moreover, it implies that

lim
a→−∞,b→∞

∫
[a,b]

T (t) dµ(t)

10



exists in operator norm. Denoting this limit by µ̂(B) as in the assertion, the estimate finally
shows (10). For the following we observe that, for ψ ∈ Φ(τX), we have

〈µ̂(B)x, ψ〉 = lim
a→−∞
b→∞

〈
∫

[a,b]
T (t)x dµ(t), ψ〉 = lim

a→−∞
b→∞

∫
[a,b]
〈T (t)x, ψ〉 dµ(t) =

∫
R
〈T (t)x, ψ〉 dµ(t),

where the last integral is a Lebesgue integral.

For the algebra property we only have to show multiplicativity, i.e. for µ, ν ∈Mα(R) we have to
show µ̂(B)ν̂(B) = µ̂ ∗ ν(B). We do this by applying functionals ψ ∈ Φ(τX):

〈µ̂ ∗ ν(B)x, ψ〉 =

∫
R
〈T (t)x, ψ〉 d(µ ∗ ν)(t)

=

∫
R

∫
R
〈T (t+ s)x, ψ〉 dµ(t) dν(s)

=

∫
R
〈T (s)

∫
R
T (t)x dµ(t), ψ〉 dν(s)

= 〈ν̂(B)µ̂(B)x, ψ〉.

Now suppose that F ⊆Mα(R) is ‖ · ‖Mα-bounded and satisfies (11). Let (xn) be a norm-bounded
sequence that is τX -convergent to 0. Let p be continuous seminorm and ε > 0. We may assume
p ≤ ‖ · ‖X . By assumption we find a > 0 such that

sup
µ∈F

∫
|t|>a
〈t〉α d|µ|(t) ≤ ε.

For µ ∈ F we write

p(µ̂(B)xn) ≤ p

(∫
[−a,a]

T (t)xn dµ(t)

)
+

∥∥∥∥∥
∫
|t|>a

T (t)xn dµ(t)

∥∥∥∥∥
X

.

Using τX -continuity of p and (10) we obtain

p(µ̂(B)xn) ≤
∫

[−a,a]
p(T (t)xn) d|µ|(t) +M

∫
|t|>a
〈t〉α d|µ|(t)

≤ sup
|t|≤a

p(T (t)xn) sup
µ∈F
‖µ‖Mα +Mε.

By Assumption 4.3 we have sup|t|≤a p(T (t)xn)→ 0 as n→∞, and this implies the assertion. �

The result on bi-equicontinuity can used to show that {〈t〉−α̃T (t) : t ∈ R} is bi-equicontinuous
for any α̃ > α. It can also be used to reprove bi-equicontinuity assertions on (powers of) resolvent
operators in [9].

Remark 4.5 (Extrapolation scale). Also under Assumption 4.3, it is possible to construct the
scale of Banach spaces (Xk, ‖ · ‖Xk)k∈Z such that i + B : Xk → Xk−1 is an isometry for every
k ∈ Z, since the construction essentially only uses that ±i ∈ ρ(B) (we refer to, e.g., to [7,
Sect. 6.3]). Similarly, we can use the operator i + B and its powers to transfer the topology
τX to the spaces Xk, k ∈ Z, and we shall denote the induced topologies by τXk . In this way
i+B : (Xk, τXk)→ (Xk−1, τXk−1

) is an isomorphism for each k ∈ Z. Moreover, in each space Xk

we have an induced group (e−itB) which satisfies (1) and is bi-continuous with respect to τXk . Its
generator is the operator −iB with domain Xk+1.
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We now comment on the construction of the spaces M s
X,q under the given assumptions. on the

other hand it shows that we still have the estimate (4). In particular, the argument which shows
continuity of t 7→ φ(B − t) in operator norm of X is still valid. We also note that, if we apply
ψ ∈ Φ(τX), we have

(12) 〈φ(B)x, ψ〉 =
1

2π

∫
R
φ̂(τ)〈eiτBx, ψ〉 dτ

where the integral is a Lebesgue integral. Using this observation we can apply functionals ψ ∈
Φ(τX) in the argument of the proof of Lemma 2.1 (1). Thus we obtain that the assertions of
Lemma 2.1 (1)-(3) still hold. Concerning the assertion of Lemma 2.1 (4) we take a continuous
seminorm p for τX and have (with notations as in the proof of Lemma 2.1)

p(gk(B)x− x) ≤
∫
R

√
k

2π
e−kτ

2/2p(eiτBx− x) dτ → 0 (k →∞).

Hence the set
⋃
ρ∈S ρ(B)(X) is bi-dense in X and ρ(B)x = 0 for all ρ ∈ S (R) still implies x = 0.

Now it is obvious that the spaces M s
X,q(B) can be defined as before. We summarize all this in

Proposition 4.6. Under Assumption 4.3 the assertions of Lemma 2.1 (1)-(3) still hold. In the
assertion of Lemma 2.1 (4) “dense” has to be replaced by “bi-dense”. The assertions of Lemma 2.2
and Lemma 2.4 still hold. We can define the spaces M s

X,q,φ(B) as in Definition 3.1. The assertions
of Lemma 3.2, Theorem 3.3, and of the Propositions 3.5, 3.6, and 3.7 are still valid.

We now study the induced group (e−itB) and its properties in the spaces M s
X,q and give the analog

of Proposition 3.8.

Proposition 4.7. For q ∈ [1,∞), the part of −iB in M s
X,q which has domain M s+1

X,q generates a

C0-group in M s
X,q that is consistent with the group (e−itB)t∈R we started with and satisfies again

(1). For q = ∞, the part of −iB in M s
X,∞ which has domain M s+1

X,∞ generates a bi-continuous
group in M s

X,q w.r.t. the topology τXk restricted to M s
X,∞ where k < s− 1. the group is consistent

with the group (e−itB)t∈R we started with and satisfies again (1).

Observe that the range of k in the assertion is such that M s
X,∞ ↪→ Xk.

Proof. As before, the spaces M s
X,q are invariant under the group operators e−itB and the induced

group still satisfies (1). Similarly, M s
X,q is invariant under resolvents of B and norm estimates in

X carry over to M s
X,q. The resolvent operators induce an operator B in M s

X,q with domain M s+1
X,q .

For q ∈ [1,∞) the space M s+1
X,q is dense in M s

X,q (by the same arguments as in the proof of

Proposition 3.8). Again, Hille-Yosida implies that the induced group (e−itB) is strongly continuous
in M s

X,q if q ∈ [1,∞).

We turn to the case q = ∞. For s ∈ R, the induced group (e−itB) in the space M s
X,∞ is bi-

continuous with respect to the topology τXk |Ms
X,∞

whenever k ∈ Z satisfies s > k + 1. By the

lifting property it suffices to prove the case k = 0, s > 1. We denote by τM the restriction of τX
to M s

X,∞. First we show that τM satisfies Assumption 4.1 in M s
X,∞ in place of X. The inclusion

M s
X,∞ ↪→ (X, ‖ · ‖X) implies (ii). For the proof of (i) let (xn) be ‖ · ‖Ms

X,∞
-bounded in M s

X,∞ and

τM -Cauchy. Then (xn) is also ‖ · ‖X -bounded in X and τX -Cauchy and thus converges in (X, τX)
by (i) for τX in X. We denote the limit by x and have to show x ∈ M s

X,∞. Let ρ ∈ S (R) \ {0}.
12



Taking ψ ∈ ΦX(τX) we have, for any t ∈ R,

|〈ρ(B − t)x, ψ〉| = lim
n
|〈ρ(B − t)xn, ψ〉| ≤ sup

n
‖ρ(B − t)xn‖X .

Hence using (iii) for τX in X we get ‖ρ(B − t)x‖X ≤ supn ‖ρ(B − t)xn‖X for every t ∈ R which
implies in turn

‖x‖Ms
X,∞,ρ

= sup
t
〈t〉s‖ρ(B − t)x‖X ≤ sup

t,n
〈t〉s‖ρ(B − t)xn‖X = sup

n
‖xn‖Ms

X,∞,ρ
<∞.

So x ∈M s
X,∞,ρ, and (i) is proved.

For the proof of (iii) we take x ∈M s
X,∞,ρ. For t ∈ R we then have, by (iii) for τX in X,

‖ρ(B − t)x‖X = sup
ψ∈ΦX(τX)

|〈ρ(B − t)x, ψ〉|,

and for every ψ ∈ ΦX(τX) we have

〈t〉s〈ρ(B − t)x, ψ〉 = lim
δ→0+

1

2δ

∫
R
〈ρ(B − r)x, 〈r〉s1[t−δ,t+δ](r)ψ〉 dr.

Defining ψδ : R→ X ′ by ψδ(r) = 1
2δ 〈r〉

s1[t−δ,t+δ](r)ψ we have ‖ψδ‖L1(X′) ≤ 1. Then we see easily
that the functional

Ψδ : x 7→
∫
R
〈ρ(B − r)x, ψδ(r)〉 dr = 〈 1

2δ

∫ t+δ

t−δ
〈r〉sρ(B − r)x dr, ψ〉

is τM -continuous on M s
X,∞,ρ and

|〈x,Ψδ〉| ≤ ‖x‖Ms
X,∞,ρ

‖〈·〉−sψδ‖L1(X′) ≤ ‖x‖Ms
X,∞,ρ

.

So we have Ψδ ∈ ΦMs
X,∞,ρ

(τM ). Using the above we thus have

〈t〉s‖ρ(B − t)x‖X ≤ sup
δ
|〈x,Ψδ〉| ≤ sup{|〈x,Ψ〉| : Ψ ∈ ΦMs

X,∞,ρ
(τM )}.

Taking the sup over t ∈ R we obtain (iii) for τM in M s
X,∞,ρ. The same arguments can be used for

the norms ‖ · ‖dMs
X,∞,ρ

where ρ satisfies the additional assumptions that are needed.

Now we show that the induced group (e−itB) in M s
X,∞ is bi-continuous with respect to τM by

checking the conditions in Definition 4.2. Property (i) is obvious from (i) for τX in X. Property
(ii) also follows from (ii) for τX in X and Assumption 4.1 (ii). �

Still under the Assumptions 4.1 and 4.3 we comment on another choice of a topology that makes
the induced group on M s

X,∞(B) bi-continuous.

Remark 4.8. We denote by X[ the ‖ · ‖X -closure of D(B) in X and by ‖ · ‖X[ the restriction of

‖·‖X to X[. Then the restriction (T (t)[) of (T (t)) to X[ is strongly continuous, and T (t)[ = e−itB
[

where B[ is the part of B in X[. Denoting by (X[
k)k∈Z the extrapolation scale w.r.t. X[ and B[

we clearly have Xk+1 ⊆ X[
k ⊆ Xk for any k ∈ Z which implies X[

−∞ = X−∞ and X[
∞ = X∞. By

the results of Section 2 we conclude

M s
X,∞(B) = M s

X[,∞(B[), s > 1.

Now, Proposition 4.7 tells us that, for s > 1, the group (e−itB
2
) in M s

X,∞(B) is bi-continuous

w.r.t. to the topology induced by ‖ · ‖X , restricted to M s
X,∞(B).
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We also want to remark that a similar argument applies to, e.g., MX,1(B) in place of X[: we have
X2 ↪→ MX,1 ↪→ X, so MMX,1,∞(B) ↪→ MX,∞(B). On the other hand, we have, for a suitable ρ
and any k ∈ Z, by an argument as in the proof of Proposition 3.8

〈k〉s‖ρ(B − k)x‖MX,1
= 〈k〉s

∑
l

‖ρ(B − l)ρ(B − k)x‖X ≤ C〈k〉s
1∑

l=−1

‖ρ(B − l)x‖,

so that ‖x‖Ms
MX,1,∞

. ‖x‖Ms
X,∞

. We conclude that

M s
X,∞(B) = M s

MX,1,∞(B), s > 1,

as Banach spaces. Again, Proposition 4.7 tells us that, for s > 1, the group (e−itB
2
) in M s

X,∞(B)

is bi-continuous w.r.t. to the topology induced by ‖ · ‖MX,1
, restricted to M s

X,∞(B). We remark
that, in the same way, it can be shown that we have

M s
Mσ
X,r(B),q(B) = M s+σ

X,q (B)

for all s, σ ∈ R and r, q ∈ [1,∞] which yields more choices for an appropriate topology on
M s
X,∞(B).

5. The group e−itB
2
in the spaces M s

X,q(B)

In this section we briefly consider a functional calculus of unbounded operators for B in X before

we concentrate on the operators e−itB
2
, t ∈ R, and their properties in the modulation type spaces

M s
X,q(R). If F : R→ C is C∞, then Fφ ∈ C∞c (R) ⊆ S (R) for any φ ∈ C∞c (R) and we define the

operator F (B) in X by

x ∈ D(F (B)) and F (B)x = y :⇐⇒ ∀φ ∈ C∞c (R) : (Fφ)(B)x = φ(B)y.

An application of Lemma 2.2 (2) yields that F (B) is a well-defined single-valued linear operator.
Moreover, F (B) is a closed operator in X and the map F 7→ F (B) has the properties of an
unbounded functional calculus: C∞(R) is an algebra and for F,G ∈ C∞(R) it is not hard to see
that we have

(13) F (B) +G(B) ⊆ (F +G)(B) and F (B)G(B) ⊆ (FG)(B)

where D(F (B) +G(B)) := D(F (B))∩D(G(B)) and D(F (B)G(B)) := {x ∈ D(G(B)) : G(B)x ∈
D(F (B))} equals D((FG)(B)) ∩D(G(B)). Examples of such F are:

(a) If F (r) = (λ− r)−1 where λ ∈ C \ R, then F (B) = R(λ,B).
(b) If F (r) = e−itr where t ∈ R, then F (B) = T (t) = e−itB.
(c) If F (r) = rk, then F (B) = Bk.

(d) We are especially interested in the case F (r) = e−itr
2

for t ∈ R.

In case (a) and (b), F (B) is already in the Phillips calculus: in (a) by the usual representation of
the resolvent operators as Laplace transform of the semigroup, and in (b) we have µ = δt in (2).
We shall study (d) in the following.

Proposition 5.1. Suppose that Assumptions 4.1 and 4.3 hold. There is a constant Cα only
depending on α such that, for all s ∈ R and all q ∈ [1,∞], we have

(14) ‖e−itB2
x‖Ms

X,q
≤ Cα〈t〉α+1/2‖x‖Ms+α

X,q
, t ∈ R, x ∈M s+α

X,q .
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In case α = 0, (e−itB
2
) is a group of bounded operators in M s

X,q(B) for each s ∈ R. If q ∈ [1,∞)
then this group is strongly continuous, for q =∞ this group is bi-continuous w.r.t. the restriction
of τXk to M s

X,∞(B) where k < s− 1.

Proof. We first prove the estimate (14). We take φ ∈ S (R) \ {0} and show

(15) ‖e−itB2
φ(B − k)‖L(X) ≤ Cα〈t〉α+1/2〈k〉α, k, t ∈ R.

This will prove (14) since we then have

‖e−itB2
φ2(B − k)x‖X ≤ Cα〈t〉α+1/2〈k〉α‖φ(B − k)x‖X ,

which in turn implies

‖e−itB2
x‖Ms

X,q,φ2
≤ Cα〈t〉α+1/2‖x‖Ms+α

X,q,φ
.

For the proof of (15) we write

e−itB
2
φ(B − k) = eitk

2
e−2iktBe−it(B−k)2φ(B − k)

and use (1) and (4) (the latter for B − k in place of B) to obtain

‖e−itB2
φ(B − k)‖L(X) ≤

M2

2π
〈2kt〉α‖〈·〉αψ̂t‖L1 ,

where ψt ∈ S (R) is given by ψt(r) = e−itr
2
φ(r). Then we use

〈2kt〉α ≤ c〈t〉α〈k〉α.

In order to get the right dependence on t and α we calculate ‖〈·〉αψ̂t‖L1 for the special case

φ(r) = e−r
2
. Then

ψt(r) = e−itr
2
e−r

2
= e−(1+it)r2 , ψ̂t(ξ) =

√
π

1 + it
e−ξ

2/(4(1+it))

as can be seen by analytic continuation. Hence

‖〈·〉αψ̂t‖L1 =
√
π 〈t〉−1/2

∫
R
〈ξ〉αe−ξ2/(4〈t〉2) dξ.

For α = 0 we substitute ξ = 〈t〉η and obtain

‖ψ̂t‖L1 =
√
π 〈t〉1/2

∫
R
e−η

2/4 dη.

For α > 0 we use 〈ξ〉α ≤ 2α/2(1 + |ξ|α) and get with the same substitution as before

〈t〉−1/2

∫
R
|ξ|αe−ξ2/(4〈t〉2) dξ = 〈t〉α+1/2

∫
R
|η|αe−η2/4 dη.

This proves (15). We also infer from Proposition 4.4 that, for any a,N > 0 and φ ∈ S (R), the
set

(16) {eitB2
φ(B − k) : |t| ≤ a, |k| ≤ N} ⊆ L(X)

is bi-equicontinuous w.r.t. τX . Now let α = 0. The group property follows from (13). We have to
prove continuity properties and that −iB2 with domain M s+2

X,q is the generator. We shall use
15



Case q < ∞: We show that ‖e−itB2
x − x‖Ms

X,q
→ 0 as t → 0 for any x ∈ M s

X,q(B). So let

x ∈ M s
X,q(B). For the calculation of the norm we take a φ ∈ S (R) \ {0} with compact support.

Then we have, for any k ∈ R, (e−it(·)
2 − 1)φ(· − k)→ 0 in S (R), which implies (again by (4))

‖(e−itB2 − I)φ(B − k)x‖X → 0 (t→ 0).

Since q < ∞ the assertion now follows by dominated convergence. The argument is the same if
the original group (e−itB) is just bi-continuous in the sense of Section 4.

Case q = ∞: We have to show that, for s > 1, the group (e−itB
2
) is bi-continuous in M s

X,∞(B)

w.r.t. the restriction of the topology τX to M s
X,∞(B)), which we again denote by τM . We already

know that τM satisfies Assumption 4.1 in M s
X,∞(B). So we only have to show (i) and (ii) of

Definition 4.2. We start with (ii) and take a sequence (xn) in M s
X,∞(B) such that ‖xn‖Ms

X,∞(B) ≤
C and xn → 0 w.r.t. τX , and we let a, ε > 0. We choose ρ ∈ S (R) as in Proposition 3.5. Since
s < 1, y =

∑
k ρ(B − k)y for each y ∈M s

X,∞ where the series converges in ‖ · ‖X and we can find
N > 0 such that

‖
∑
|k|>N

ρ(B − k)e−itB
2
xn‖X ≤

∑
|k|>N

〈k〉−s〈k〉s‖ρ(B − k)e−itB
2
xn‖X ≤ C ′

∑
|k|>N

〈k〉−s ≤ ε

for any n ∈ N, |t| ≤ a, where C ′ := C sup|t|≤a ‖e−itB
2‖L(Ms

X,∞). For a τX -continuous seminorm

p ≤ ‖ · ‖X and |t| ≤ a we then have

p(e−itB
2
xn) ≤

∑
|k|≤N

p
(
e−itB

2
ρ(B − k)xn

)
+ ε,

where the sum tends to 0 uniformly in t as n → ∞ by bi-equicontinuity of the set in (16). Now

let x ∈M s
X,∞(B). By M s

X,∞ ↪→MX,1 ↪→ X ↪→ (X, τX) we get τX -continuity of t 7→ e−itB
2
x from

continuity in ‖ · ‖MX,1
(the case q = 1 is already proved). The generation property is checked via

resolvents and the Phillips calculus. �

Remark 5.2. Taking into account Remark 4.8 we also obtain that, for s > 1, the group (eitB
2
)

is bi-continuous in M s
X,∞(B) w.r.t. the norm-topology of X restricted to M s

X,∞(B) or w.r.t. the

norm-topology of MX,1(B), restricted to M s
X,∞(B).

Remark 5.3. Concerning only boundedness of operators F (B), the more general result is, of
course, the following (cf. also [6, Thm. 17(1)] for the classical setting): Take ρ ∈ S (R) \ {0} with
compact support and suppose that the set

{F (B)ρ(B − k) : k ∈ R} ⊆ L(X)

is uniformly bounded in operator norm. Then F (B) acts as a bounded operator in every space
M s
X,q, s ∈ R, q ∈ [1,∞].

6. Application to a nonlinear Schrödinger equation

We illustrate our results briefly by a simple application. The cubic nonlinear Schrödinger equation
(NLS) in one space dimension is

(17)

{
iut + uxx ± |u|2u = 0, t ∈ R, x ∈ R

u(0, x) = u0(x), x ∈ R.

We take T (t)f = f(· − t), the right translation group, as in Example 1.2, hence B = −i ddx , and
we consider the function space X = Cb(R) of bounded continuous on R, which is an algebra

16



for pointwise multiplication. Denoting by BUC(R) the space of bounded uniformly continuous
functions on R we have

L∞(R)[ = BUC(R) ⊆ X ⊆ L∞(R).

Thus M s
X,∞(B) equals the classical modulation space M s

L∞,∞(B) = M s
∞,∞(R). Since the trans-

lation group is bi-continuous on X w.r.t. the topology τc of uniform convergence on compact

intervals, Proposition 5.1 tells us that, for s > 1, the Schrödinger group (eitd
2
x) is bi-continuous on

M s
∞,∞(R) w.r.t. the topology τc restricted to M s

∞,∞. On the other hand, M s
∞,∞(R) is an algebra

(see, e.g., [4]), moreover pointwise multiplication is τc-continuous, at least on ‖ ·‖∞-bounded sets.
We rewrite (17) as a fixed point equation in the space

Cbτc([0, T ],M s
∞,∞(R)) := {v : [0, T ]→M s

∞,∞(R) : v is ‖ · ‖Ms
∞,∞-bounded and τc-continuous },

which equipped with the norm ‖v‖∞ := supt∈[0,T ] ‖v(t)‖Ms
∞,∞ is a Banach space. The fixed point

equation is

(18) u(t) = eitd
2
xu0 ± i

∫ t

0
ei(t−s)d

2
x
(
|u(s)|2u(s)

)
ds, t ∈ [0, T ].

We call a solution u ∈ Cbτc([0, T ],M s
∞,∞(R)) a mild solution of (17). The only thing that we now

need to solve this via Banach’s Fixed Point Theorem in the usual way is the following on the
convolution part.

Lemma 6.1. The convolution with the semigroup (eitd
2
x) maps Cbτc([0, T ],M s

∞,∞) into itself and
we have the estimate

‖ei(·)d2x ∗ v‖∞ ≤ CT‖v‖∞, v ∈ Cbτc([0, T ],M s
∞,∞).

We omit the easy proof. By standard means we then have

Proposition 6.2. Let s > 1 and u0 ∈ M s
∞,∞(R). Then there exists T > 0 only depending on

‖u0‖Ms
∞,∞ such that (17) has a unique mild solution u ∈ Cbτc([0, T ],M s

∞,∞(R)).

Remark 6.3. Doing the fixed point argument in the space of ‖ · ‖Ms
∞,∞-bounded and ‖ · ‖∞-

continuous or in the space of ‖ · ‖Ms
∞,∞-bounded and ‖ · ‖M∞,1-continuous functions, which is

possible since pointwise multiplication is also continuous for these norms, yields existence of a
more regular solution. However, using the τc-topology we get uniqueness in a larger space.

Appendix A. Two auxiliary results

Here we provide proofs for a well-known result on the short time Fourier transform and for the
contruction of τX -Riemann type integrals with respect to measures µ ∈M (R).

Fix g ∈ S (R)\{0}. The short-time Fourier transform with window g of f ∈ S ′(R) is the function
Vgf : R× R→ C is defined by

(19) Vgf(x, ξ) :=

∫
R
e−iyξf(y)g(y − x) dy = 〈f, eiξ(·)g(· − x)〉,

where the duality bracket extends the usual scalar product in L2(R). We shall only need that Vg
maps S (R) to rapidly decreasing functions.

Lemma A.1. For g ∈ S (R) \ {0}, f ∈ S ′(R) we have that

(x, ξ) 7→ 〈x〉k〈ξ〉lVgf(x, ξ)

is bounded on R× R for all j, k > 0.
17



This is well-known but we reprove it here for convenience.

Proof. We have

|Vgf(x, ξ)| ≤
∫
R
|f(y)||g(y − x)| dy = |f | ∗ |σg|(x),

where σg(y) = g(−y). By f, g ∈ S (R) we infer that 〈x〉kVgf(x, ξ) is bounded for any k > 0. For
any l ∈ N we use integration by parts to obtain

(−iξ)lVgf(x, ξ) = (−1)l
∫
R
e−iyξ

dl

dyl
(
f(y)g(y − x)

)
dy = (−1)l

l∑
j=0

(
l

j

)
Vg(l−j)

(
f (j)

)
(x, ξ).

Since S (R) is invariant under taking derivatives we can combine both arguments to obtain the
assertion. �

For the following result on τX -Riemann type integrals we suppose that Assumption 4.1 holds.

Proposition A.2. Let f : [a, b] → X be a τX-continuous and norm-bounded function and let
µ ∈ M (R) be a complex Borel measure. For any partition a = t0 < t1 < . . . < tn = b and any
vector (ξ1, . . . , ξn) with ξj ∈ [tj−1, tj) we define the Riemann type sum

S(f, tj , ξj) :=

n∑
j=1

f(ξj)µ
(
[tj−1, tj)

)
+ f(b)µ

(
{b}
)
.

Then the τX-limit of S(f, tj , ξj) exists in X as maxj |tj − tj−1| tends to 0. This limit is denoted∫
[a,b] f(t) dµ(t). We have the estimate∥∥∥∥∥

∫
[a,b]

f(t) dµ(t)

∥∥∥∥∥
X

≤ sup
t∈[a,b]

‖f(t)‖X |µ|([a, b])

and for any τX-continuous seminorm p we have

p

(∫
[a,b]

f(t) dµ(t)

)
≤
∫

[a,b]
p
(
f(t)

)
d|µ|(t) ≤ sup

t∈[a,b]
p
(
f(t)

)
|µ|([a, b]).

Proof. If ‖f(t)‖X ≤ C we easily get

‖S(f, tj , ξj)‖X ≤ C|µ|
(
[a, b]

)
.

By Assumption 4.1 (i) it thus suffices to show the Cauchy property. So we let δ > 0 and take two
partitions (tj) and (sk) such that maxj |tj − tj−1| and maxk |sk − sk−1| are ≤ δ and we take two
corresponding vectors (ξj) and (ηk). Then we rewrite

S(f, tj , ξj)− S(f, sk, ηk) =
∑
l

(
f(ξ̃l)− f(η̃l)

)
µ
(
[ul, ul−1)

)
,

where (ul) is a partition obtained by the union of the tj and the sk and we have {ξ̃l} = {ξj},
{η̃l} = {ηk} as sets, but we have to repeat ξj according to the splitting of the interval [tj−1, tj).

Then not necessarily ξ̃l ∈ [ul−1, ul) but we have at least |ξ̃l − ul| ≤ δ and |ξ̃l − ul−1| ≤ δ. The

same holds for the η̃l so that |ξ̃l − η̃l| ≤ 2δ. Taking a τX -continuous seminorm p we thus have

p
(
S(f, tj , ξj)− S(f, sk, ηk)

)
≤

∑
l

p
(
f(ξ̃l)− f(η̃l)

)
|µ|
(
[ul−1, ul)

)
≤ sup

|ξ−η|≤2δ
p
(
f(ξ)− f(η)

)
|µ|
(
[a, b)

)
.

18



The assertion thus follows from uniform τX -continuity of f on [a, b]. The p-estimates are immedi-
ate, for the norm estimate we use Assumption 4.1 (iii) and the p-estimates for p := |〈·, ψ〉| where
ψ ∈ Φ(τX). �
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169, Birkhäuser, 2006.
[8] M. Haase, Functional calculus for groups and aapplications to evolution equations, J. Evol. Equ. 7 (3), 529-554

(2007).
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