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Four-loop wave function renormalization in QCD and QED
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We compute the on-shell wave function renormalization constant to four-loop order in QCD and present
numerical results for all coefficients of the SU(N,.) color factors. We extract the four-loop Heavy Quark
Effective Theory anomalous dimension of the heavy-quark field and also discuss the application of our

result to QED.
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I. INTRODUCTION

Heavy quarks play an important role in modern particle
physics, in particular in the context of QCD. This concerns
both virtual effects, the production of massive quarks at
collider experiments, and the study of bound state effects of
heavy quark—antiquark pairs.

Processes which involve heavy quarks require the
renormalization constants for the heavy-quark mass and,
when they appear as external particles, also for the quark
wave function. The mass renormalization constant in the
on-shell scheme, Z9%, has been computed to four-loop
order in Refs. [1,2]. In this work, we compute the wave
function renormalization constant in the on-shell scheme,
Z95, to the same order in perturbation theory. Z9S is needed
for all processes involving external heavy quarks to obtain
properly normalized Green’s functions as dictated by the
Lehmann-Symanzik-Zimmermann reduction formula.
Currently, there is no immediate application for the four-
loop term of Z95. However, it is an important building
block for future applications. For example, it enters all
processes which involve the massive four-loop form factor.
Z9S is also needed for the five-loop corrections to static
properties like the anomalous magnetic moment of quarks
or, in the case of QED, of leptons.

The calculation of Z9S is for several reasons more
involved than the one of Z9S. First of all, one has to
compute the derivative of the fermion self-energy, which
leads to higher powers of propagators and thus to a more
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involved reduction problem. Furthermore, Z9% contains
both ultraviolet and infrared divergences. Thus, dividing
Z95 by its MS counterpart does not lead to a finite quantity
as in the case of Z9°. Z9% also depends on the QCD gauge
parameter, whereas Z9° does not.

The on-shell renormalization constants Z9S and Z9S can
be extracted from the quark propagator by demanding that
the quark two-point function has a zero at the position of
the on-shell mass and that the residue of the propagator is
—i. In the following, we briefly sketch the derivation of the
relations between the heavy-quark self-energy and Z9%
and Z95.

The renormalized quark propagator is given by

—iZ9®
Cg-m' (g M)

Sr(q)

where the renormalization constants are defined as
m® =Z9SM,
' =\/Zw. (2)

y is the quark field with mass m, M is the on-shell mass,
and bare quantities are denoted by a superscript 0. X
denotes the quark self-energy, which is conveniently
decomposed as

X(q.m) = mZi(g*.m) + (f — m)Zy(q*.m).  (3)
In the limit g> — M?, we require
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The calculation outlined in Ref. [3] for the evaluation of
798 and Z9S reduces all occurring Feynman diagrams to
the evaluation of on-shell integrals at the bare mass scale.
In particular, it avoids the introduction of explicit counter-
term diagrams. We find it more convenient to follow the
|

more direct approach described in Refs. [4,5], which
requires the calculation of diagrams with mass counterterm
insertion.

Following Refs. [3-6], we expand ¥ around ¢*> = M?
and obtain

2(qg. M) = MZ,(M?, M) + (f — M), (M?*, M)

0
+Ma—qzzl(q2’M)|q2:M2(q2 - M?) + -

~ ME, (M2 M) + (f — M) (2M28iqzzl<q2,M>|qZ=Mz + 22<M2,M>) T (5)

Inserting Eq. (5) into Eq. (1) and comparing to Eq. (4) leads
to the following formulas for the renormalization constants:

295 =14+ 3, (M2 M),
~ 0
(Zg’s) =1 +2M23—(]221(512vM)|q2:M2 + I (M? M).

(6)

Thus, Z95 is obtained from ¥, for g> = M. To calculate
Z95, one has to compute the first derivative of the self-
energy diagrams. The mass renormalization is taken into

OD+M
AM?

account iteratively by calculating lower-loop diagrams with
zero-momentum insertions.

It is convenient to introduce ¢ = Q(1 + ¢) with Q> =
M? and rewrite the self-energy as

2(q, M) = MZ,(¢*, M) + (£ - M)Z,(¢*, M)
+ 105, (q* M). (7)

g+m

Let us now consider the quantity Tr{%;

to first order in ¢, which leads to

2} and expand it

e o) b =2 () + 1202

0
=%, (M*, M) + (2M28—q221(q2, M)|ppe + 22(M2,M)> 1+ O(7). (8)

The comparison to Eq. (6) shows that the leading term
provides Z9S and the coefficient of the linear term in ¢ leads
to Z95.

In the next section, we present results for Zg’s up to four
loops, and in Sec. III, we discuss consistency checks which
are obtained from matching full QCD to Heavy Quark
Effective Theory (HQET). Section IV contains a brief
summary and our conclusions.

II. RESULTS FOR Z9S

The wave function renormalization constant is conven-
iently cast into the form

ag(lu) J eyE —je ﬂz je .
=1 (M) (%) () o
=1

where the bare strong coupling constant a? has been used

for the parametrization. Note that 6Z(2i) for i > 3 depend on

the bare QCD gauge parameter £, which is introduced in the
gluon propagator via

M gV
9" —E5F

Dy (q) = —i q* + ie (10)

With these choices, we can define the coefficients 5Z§’)
such that they do not contain log(?/M?) terms. In fact,
they can be combined with the factors (4?/M?)/¢ where j is
the loop order [cf. Eq. (9)]. The renormalization of «, and
(¢ — 1) is multiplicative so that, if required, a? and & can be
replaced in a straightforward way by their renormalized
counterparts using the relations

ay = (u?)*Zy, 0.

P-1=2-1). (11)

where
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1 /n, 11
Z, _1+—<—f——CA>%—|—---,
s €

6 12 ™

1 l’lf 5 1 a
Zy=1+-|-Z2+(=+= 4.0 (12
3 +€{ 6+(12+8§>CA}”+ (12)

C4 =3 is a SU(3) color factor, and ny is the number
of active quarks. The ellipses denote higher-order terms
in a,. To obtain the ultraviolet-renormalized version
of Z95, we need Z, to three loops and Z; to one-loop
order. Note that in Eq. (9) it is assumed that the heavy-
quark mass is renormalized on shell; i.e., all mass renorm-
alization counterterms from lower-order diagrams are
included.

For the calculation of the four-loop diagrams, we
proceeded in the same way as for the calculation of the
mass renormalization constant [1,2] and the muon anoma-
lous magnetic moment [7] and thus refer to Ref. [2] for
more details. Let us still describe some complications.
After a tensor reduction, we obtain Feynman integrals from
the same hundred families with 14 indices as in Refs. [1,2].
The maximal number of positive indices is 11. One can
describe the complexity of integrals of a given sector
(determined by a decomposition of the set of indices into
subsets of positive and nonpositive indices) by the number
> |a; — n;|, where the index n; = 1 or O characterizes a
given sector. What is most crucial for the feasibility of an
integration-by-parts (IBP) reduction is the complexity of
input integrals in the top sector, i.e., with n; = 1 for i =
1,2,...,11 and n; =0 for i = 12, 13, 14. In the present
calculation, this number was up to 6, while in our previous
calculation it was 5. Therefore, the reduction procedure
performed with FIRE [8—10] coupled with LITERED [11,12]
and CRUSHER [13] was essentially more complicated as
compared to that of Refs. [1,2].

As in Refs. [1,2], we revealed additional relations
between master integrals of different families using sym-
metries and applied the code TSORT, which is part of
the latest FIRE version [10]. In most cases, the master
integrals were computed numerically with the help of
FIESTA [14-16]. For some master integrals, we used

|

analytic results obtained by a straightforward loop-by-loop
integration at general dimension d and also used analytical
results obtained for the 13 nontrivial four-loop on-shell
master integrals computed in Ref. [17]. As is described in
detail in Ref. [2], we also applied Mellin-Barnes repre-
sentations [18-21]. In the case of one-fold Mellin-Barnes
representations, it is possible to obtain a very high precision
(up to 1000 digits) so that analytic results can be recovered
using the PSLQ algorithm [22]. Often the two-, three-, and
higher-fold Mellin-Barnes representations provide a better
precision than FIESTA. Recently, a subset of the master
integrals has been calculated either analytically or with
high numerical precision, in the context of the anomalous
magnetic moment of the electron [23]. However, these
results are not available to us.

The more complicated IBP reduction resulted in higher ¢
poles in the coefficients of some of the master integrals, so
that the corresponding results are needed to higher powers
in €. Depending on the integral, we either straightforwardly
evaluated more terms with FIESTA or obtained more
analytical terms or more numerical terms via Mellin-
Barnes integrals.

Let us mention that we compute the self-energies on the
right-hand side of Eq. (6) including terms of order &2. We
did not evaluate the £, &*, and & contributions. Some
diagrams develop & terms, which we reduced to master
integrals, and we could show that their contributions to Z9%
add up to zero. Thus, our final result for Z95 contains &
terms. We cannot exclude that also higher-order £ terms are
present but we do not expect that there are £" terms present
in Z9S for n > 4.

Let us in a first step turn to the one-, two-, and three-loop
results for Z9S, which are available from Refs. [5,6,24]. We
have added higher-order e terms, which are necessary to
obtain Z9® at four loops. In Appendix B, we present results
which in particular include the O(¢) terms of the three-loop
coefficient.

In the following, we present results for all 23 SU(N,.)
color structures which occur at four-loop order. It is

convenient to decompose 6254) as

575 = CLSZEFFF 4 CLCASZEFFA + CLCEZEFM 4 CpC575AM

dabcddabcd d
F A 5ZZFA +nl F

+ N

abcdd??bcd 5ZdFFL N
e n
2 h

abced jJabed
dF dF

5ZdFFH
N, 2

+ CRTn8ZEFFL 4+ CL.Cy Ty SZEFAL 4 CpCiTn 525"

+ CpT*niSZ5M L + CpCuT?ni6Z5AM: + CpTPn) 5Z5H1E
+ CyTny6Z5FM + CECy Ty, 6Z5T M + CpCiTn, 625441
+ CET*ni SZEFHH  CrCoT?ng 6Z5AHH 4 CpTny 625 HHH

+ CET?nn, 8ZETHH + CpCyT?nyny, 6Z5AM + CpTn2ny, 6Z5HH

+ CpTPnnlsZEHHH,

(13)
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where Cr, Cy4, T, n,;, and n,, are defined after Eq. (B3) in
Appendix B. The new color factors at four loops are the
symmetrized traces of four generators in the fundamental
and adjoint representation denoted by d4°¢ and d4><,
respectively.

In Tables V, VI, VII, and VIII (see Appendix A), we
show the numerical results for the coefficients intro-
duced in Eq. (13). The numerical uncertainties have
been obtained by adding the uncertainties from each
individual master integral in quadrature and multiplying
the result by a security factor 10. This approach is quite
conservative; however, we observed that there are rare
cases where the uncertainty from numerical integration
is underestimated by several standard deviations. A
factor 10 covers all cases which we have experienced
(see also the discussion in Ref. [2]). All coefficients
which have a nonzero numerical uncertainty are trun-
cated in such a way that two digits of the uncertainty are
shown; otherwise, we present (at least) five significant
digits. Note that the n; and n? terms are known
analytically [17]. None of the other coefficients is
known analytically to us, although for some of them,
the uncertainty is very small; see, e.g., CFnz.

Let us start with the discussion of Table V. Most of
the coefficients are known with an uncertainty of a few
percent or below. An exception is the C} and C3Cy
color factors, where the uncertainty is about 30%. In the
case of nj,(d%<?)?, the uncertainty is larger than the
central value, and we are not able to decide whether
the corresponding coefficient is zero or numerically
small. For some color structures, our precision is below
a per mille level, in particular for the most non-Abelian
color factor CpC3, which provides the numerically
largest contribution.

There are some coefficients in the pole parts where
the numerical uncertainty is larger than the central
value. In these cases, no definite conclusion can be
drawn. Within our (conservative) uncertainty estimate,
the results are compatible with zero. Still, in these cases,
we cannot exclude a small nonzero result. Note, how-
ever, that in most cases the uncertainty is much smaller
than the central value. In particular, all color structures
except those involving d%°¢ or d’? have a nonzero
1/€* pole. In fact, we expect that the color structures
involving d%¢ and d4°? only have a 1/e pole, which is
consistent with our result.

The coefficients in Table VI representing the linear &
terms are in general much smaller than for £ = 0, and the
situation is similar as for the pole terms of Table V: we can
conclude that the color structures C2F C3, CrC3, dj’;de dﬁde ,
CFC%n;, C%CAnh, CFC%nh, CFCAnﬁ, and CrCyn;n;, have
nonzero coefficients. Within our precision, the coefficient
of C3C, is zero; the central value is of order 10~ and
furthermore ten times smaller than the uncertainty.

However, a closer look into this contribution shows that
nontrivial master integrals are involved, which combine to
the numerical result given in Table VI. Since the master
integrals are linear independent and since they are beyond
“three-loop complexity” (i.e., they are neither products of
lower-loop integrals nor contain simple one-loop inser-
tions), we would expect a nonzero coefficient unless there
are accidental cancellations. Note that at three-loop order
there are two color structures which have &-dependent
coefficients: CrC% and CpCyny,.

In Table VII, which contains the 52 terms, there are
nonzero coefficients for the color structures CrC3,
dgedqsbed and CpCiny,.

It is interesting to check the cancellations between the
bare four-loop expression and the mass counterterm con-
tributions (which are known analytically and can be found
in the ancillary file for this paper [25]). For this reason, we
show in Table VIII the bare four-loop coefficients. The
comparison with the corresponding entries in Table V
shows that the coefficients of some of the color structures
suffer from large cancellations, which in some cases is even
more than 2 orders of magnitude (see, e.g., the Cyn; term).
Note that the numerically dominant color structure CC3 is
not affected by mass renormalization.

In Ref. [26], the pole of the color structure n;(d4?¢?)? has
been determined from the requirement that a certain
combination of renormalization constants in full QCD
and HQET are finite (see also the discussion in Sec. III
below). Its analytic expression in our notation reads

1/1 = {3 JTZC3 55
_E(§+E_§_—1z )t

0.0294223
~ — +-

szyrt =

- (14)

which has to be compared to our numerical result (0.011 +
0.064)/€¢ + - - - (see Table V). The result in Eq. (14) agrees
with our result within the uncertainty. Note, however, that
the absolute value of this contribution is quite small, which
explains our large relative uncertainty.

It is interesting to insert the numerical values of the
color factors and evaluate 5Z(24) for N, = 3. To obtain
the corresponding expression, we choose N. =3 after
inserting the master integrals but before combining the
uncertainties from the various e expansion coefficients of
the color factors. The results for the various powers of n;
are given in Table I. Note that for £ =0 (top) all
uncertainties are of order 10~*. Furthermore, for all powers
of n;, we observe nonzero coefficients in the poles up to
fourth order. For completeness, we present in Table I also
results for the £! and & terms. For the linear & coefficients,
we observe nonzero entries only for the n! and the linear-n,
term. The coefficients of & are only nonzero for the n)
contribution.
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4)

TABLE 1. Results for the coefficients of 5Z§

after choosing N. = 3. The £ =0, &', and &% contributions are shown in the top, middle,

and bottom tables. A security factor 10 has been applied to the uncertainties.

£E=0 1/¢* 1/e 1/e 1/e e®
nY —1.77242 + 0.000 40 —27.6674 £ 0.0041 —317.093 £ 0.029 -3142.15+£0.33 -28709.9+3.2
n} 0.460936 £ 0.000016 6.69143 £ 0.00023 74.6540 £ 0.0013 696.6612 £+ 0.0076 6174.290 £ 0.084
n? —0.039931 -0.51572 —5.5055 —48.777 —-418.93
n 0.001 15741 0.0125386 0.126 757 1.071 05 8.9160
&l 1/e* 1/€ 1/€* 1/e 0
n? —0.018 555 £0.000011 0.034 239 £ 0.000 089 —0.056 78 + 0.000 52 5.2230 £ 0.0028 36.820 £ 0.017
n 0.001 736 11 —0.005208 3 0.0224269 —0.348 63 -1.61105
& 1/e* 1/€ 1/€? 1/e 0
n?  0.0000002 =+ 0.0000038  0.001952+0.000026  —0.0302240.00012  —0.18686 & 0.00061  —2.9266 + 0.0028
TABLE II. Results for Z9 specified to QED.
1/€* 1/€ 1/€* 1/e €’

n) 0.205 00 £ 0.000 37 0.5980 + 0.0027 —0.895 £+ 0.021 —6.18 £ 0.17 —174+1.6
n 0.17058 £0.000 11 0.9556 £ 0.0014 2.9397 +0.0079 10.480 +£ 0.064 25.92 £0.80
n? 0.056 424 0.46123 3.03509 18.7456 105.069
n? 0.006 944 4 0.075231 0.760 54 6.4263 53.496

Finally, we discuss the wave function renormalization for ~ to the wave function renormalization constant
QED. It is obtained from the QCD result by adopting the  in HQET. L
following values for the QCD color factors: We start with the discussion of the MS wave function

CF—)I,

bed
dye“ — 0,

CA—)O,
N.— 1.

T -1, d}h"d—> 1,

(15)

We furthermore set n;, = 1 but keep the dependence on n;.
Note that n; = 0 corresponds to the case of a massive
electron and n; = 1 describes the case of a massive muon
and a massless electron. Our results are shown in Table II.
For the n;-independent part, we have an uncertainty of
about 10%, and the n} term is determined with a 3%
accuracy.

The on-shell wave function renormalization constant
in QED has to be independent of & [5,27], which is
fulfilled in our result as can be seen from the absence of
all Abelian coefficients in Tables VI and VII; they are
analytically zero. Note that the gauge parameter depend-
ence only cancels after adding the mass counterterm
contributions.

III. CHECKS AND HQET WAVE
FUNCTION RENORMALIZATION

In this
our results.

checks of
we discuss the relation

section, we describe several
In particular,

renormalization constant Z}'S, which has been obtained
to five-loop accuracy in Refs. [28,29]. In these papers,
also the full &-dependence at four loops has been
computed, which is crucial for our application. By
definition, it only contains ultraviolet poles. On the
other hand, as discussed in the Introduction, Z9°
contains both ultraviolet and infrared poles since it
has to take care of both types of divergences in
processes containing external heavy quarks. The ultra-
violet divergences of Z9S have to agree with the ones of
ZMS, and thus Z)S/Z95 only contains infrared poles.
Note that the latter have to agree with the ultraviolet
poles of the wave function renormalization constant in
HQET, ZI;QET, which can be seen as follows (see also
the discussion in Ref. [5]): the off-shell heavy-quark
propagator is infrared finite and contains only ultraviolet
divergences, which can be renormalized in the MS

scheme; i.e., they are taken care of by ZIZVIS. If one
applies an asymptotic expansion [30,31] around the on-
shell limit, one obtains two contributions. The first one
corresponds to a naive Taylor expansion of on-shell
integrals which have to be evaluated in full QCD. It
develops both ultraviolet and infrared divergences, as

054032-5
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discussed above for the case of Z95. The second contribu-
tion corresponds to HQET integrals and only has ultraviolet
poles which have to cancel the infrared poles of the QCD
contribution. Note that the wave functions Z9$ and Z5 %"
considered in this paper correspond to the leading term in

the expansion and thus Z5 %" /Z9S has to be infrared finite.
As a consequence, the following combination of renorm-

alization constants,

Z%TS HQET
Zos 42 (16)
2

has to be finite (see also the discussion in Ref. [32]). We will
use this fact to determine the poles of Z;IQET.

HQET describes the limit of QCD where the mass of
the heavy quark goes to infinity. The heavy-quark field
is integrated out from the Lagrange density. Thus, it is
not a dynamical degree of freedom anymore. As a
consequence, HQET contains as parameters the strong
coupling constant and gauge parameter defined in the

|

n;-flavor theory, aﬁ"” and 5("’).1 Furthermore, there are

no closed heavy-quark loops; i.e., color factors involv-
ing n,, are absent. Thus, when constructing (16), we can

check that in the ratio Z)S/Z9S all color structures
containing n, are finite after using the decoupling
relations for a, and & [33]. At two- and three-loop
order, this check can be performed analytically. At four

loops, we observe that Z)S/Z95 is finite within our
numerical precision. Note that this concerns the 11 color
structures in Eq. (13) which are proportional to ny, n2,
or n3. Let us mention that all coefficients are zero within
three standard deviations of the original FIESTA uncer-
tainty, which means that in this case a security factor 3
would be sufficient.

The remaining 12 four-loop color structures are

present in ZI;QET, and the corresponding pole term

can be extracted from Eq. (16). Before presenting the

results, we remark that Z?QET

to [5,34]

exponentiates according

A Ay 2
Z?QET = eXp {Xl CF (;) + CF[XZCA + x3Tn1} <;> + CF[)C4C124 + x5CATn1

3

+)C6T21’l12 + x7CFTn,} (%)k + [Cp(ngf‘ + .X'gCiTn[ + xl()CATzl’llz

+x11T3n? + x12C12¢Tnl —+ x13CFCATn1 + x14CFT2n12)

4
s N, + st N (%) 4L (1)

and thus there are only nine genuinely new color
coefficients at four loops (xg, ..., x;¢) and the remaining
three contributions proportional to C%, C3C,, and
C2C% can be predicted from lower loop orders. The
comparison with the explicit calculation provides a
strong check on our calculation. Note that the pre-
dictions of the C%, C3C,, and C2C% contributions are
available in analytic form.

In our practical calculations, we proceed as follows.
In a first step, we use Eq. (16) to obtain a result for
ZI;QET from the requirement that the combination of
the three quantities is finite. Afterward, we use this
result and compare to the expanded version of
Eq. (17) to determine the coefficients x;. Finally, we
use Eq. (17) to predict the C}, CiCy, and C%C3
of ZHQET

'Note that all quantities discussed in Sec. II depend on
ng = n; + n, flavors.

We refrain from providing explicit results for Z];QET

but provide our results for x; in the ancillary file to this
paper [25]. Furthermore, we present the expressions
for the corresponding anomalous dimension, which is
given by

~ dlog Z?QET
YHQET — dlog /42
w (o))"
= ZY%Q)ET( ) : (18)
n>1 4

. . HQET .
Since our four-loop expression for 22Q is only known

numerically, we have spurious e poles in yyggr-
However, all of them are zero within two standard
deviations of the wuncertainty provided by FIESTA,
which constitutes another useful cross-check for our
calculation.

Let us in the following present our results for yyoer. Up
to three-loop order, we have
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4)

TABLE III.  Results for the different color factors of yl(-lQET' In columns 2 to 4, the coefficients of different powers
of &) are given. In the uncertainties, a security factor 10 has been introduced.
(&m))0 (glm))1 (glm))2
FAAA -2.03£0.35 —0.29037 £ 0.000 52 0.070 83 4 0.000 10
dpa 1.53+0.84 0.5083 4 0.0098 —0.1031 £ 0.0024
dppL 0.54£0.26
FFFL 0.1894 + 0.0030
FFAL —0.4566 £ 0.0055 —0.007 663 0
FAAL 2.576 £ 0.010 0.251 47 —-0.010334 8
FFLL 0.25725
FALL —-0.53745 —-0.0077460
FLLL —0.048 262
1 Cr g

7§I()QET = _7 1+ ) )

2 19 5¢t) - (&lm))? CrTny

riiger = CrCa (_24_ n e )T

3) [ 19495 3¢ &t 379 156 at oz (69 36\ 5(E™)
=C.C |- 1 — — 1 R _77 ) =

Yhoer = “F-4 [ 27648 16 360 ¢ 2048~ 256 | 1440 e 2048 T512 1024

1105 3¢, 17&0) 51 3¢5\ 5CpT?n?
CpCpTn)| ——= +—+ CiTn | ——-== —_— 19
+FAnZ<6912+4+256 TeM\ Ty ) T 0s (19)

which agree with Refs. [5,34].

The four-loop terms to yyqer can be found in Table III,
where for each color factor the coefficients of the (£"))
terms are shown together with their uncertainty. As for Z9%
in Sec. II, we have introduced a security factor 10. Note that
the coefficients of (&) with k>3 have not been
computed.
|

|

We have the worst precision of about 50% for the color
factors dcddibed and n;ddbeddab<d followed by CpC3,
which is 17%. The relative uncertainty of the remaining n,
terms is much smaller. Note that the n7 and nj terms are
known analytically. They are obtained in a straightforward

way for the corresponding analytic results for Z9S from
Ref. [17]. Our results read

@.rri _ 36 7t 103
THQET T4 T 240 432
(4),FALL _ _354’3 7[_4 _ 4157 (n) _é 269
7HQeT 28 7240 62208 18 " 15552)°
@ reee 1 3
YHQET g - ﬁ : (20)
|
The expression for ygggf " agrees with Refs. [35,36], and There are no contributions from the color structures Cf,
yg())gTL " can be found in Ref. [37]. yg()ig?u is new. C3Cy, and C%C3 to yﬁ%m as is obvious by inspecting

Recently, also for the n,d%<¢dé<d color structure,
analytic results have been obtained [26]. The results read

4).drpL 5 1 1 1
ﬁ&# = —gés +§7r2€3 +56 —grﬁ ~ 0.617689...

(21)

and agrees well with our findings y](_%gr " ~0.54+£0.26.
Note that here a security factor 2 would have been sufficient.

Eq. (17): the four-loop C%, C3C,, and C%C3 terms are
generated by products of lower-order contributions. Since
all coefficients x; only contain poles in ¢, the 1/€ pole of
7N does not involve C4, C3.C4, and C2C3.

Let us finally compare the predicted C%, C3C,, and
C2C2 contributions to Zy?" to the ones we obtain by an
explicit calculation. Table IV contains coefficients of
(Zj(”'))ke” for k=0, 1, and 2 and for values of n=—4,
—3,... up to one unit higher than the order up to which
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TABLE IV. Contributions of the color structures C%, C3C,, and C2C2 to ZH¥T. The coefficients of (£())°,
(&Y and ()2 are given in rows 2 to 4. For each power of e, the first row corresponds to the numerical
evaluation of the analytic result, and the second row corresponds to the numerical result of our explicit calculation of
Z95. Relative uncertainties below 107 are set to zero. Note that the uncertainties in this paper are not multiplied by a

security factor 10.

(5("1))0 (5("1))1 (g("z))z
Cr
1/64 0.002 604 2 0.005208 3 0.003906 3
0.002 5932 + 0.000 025 0.005208 3 0.003 906 3
1/63 0.000 00 0.000 00 0.000 00
0.000 13049 4 0.000 19 0.000 00 0.000 00
C%CA
1/64 0.035 156 0.044 922 0.016 602
0.035 190 £ 0.000 05 0.044 922 0.016 602
1/63 —-0.049479 —0.059 245 -0.021 159
—0.049 878 4+ 0.000 44 —0.059 245 4+ 0.000 000 06 —-0.021 159
1/62 0.000 00 0.000 00 0.000 00
0.0029893 £+ 0.0041 —0.0000002 + 0.0000020 0.000 00
cc
1/64 0.130914 0.085 558 0.002 7262
0.130 887 £ 0.000 04 0.085558 £ 0.000 000 02 0.002 7262
1/(—:3 -0.31170 —-0.191497 —0.008 1380
—0.31133 £ 0.000 35 —0.191 497 £ 0.000 000 2 —-0.008 1380
1/62 0.278 52 0.162 322 0.008 824 1
0.276 69 £ 0.0033 0.162 323 £+ 0.000 002 0.008 824 1
1/61 0.000 00 0.000 00 0.000 00
0.046 £+ 0.031 —0.000014 4 0.000 022 0.000 00

the corresponding color structure has a nonzero contribu-
tion. The last € order is shown as a check and demonstrates
how well we can reproduce the 0. Note that in this table the
displayed uncertainties are not multiplied by a security
factor but correspond to the quadratically combined FIESTA
uncertainties. In some cases, the relative uncertainty is very
small and thus not shown at all. In all cases shown in
Table IV, the numerical results agree within 1.5 sigma with
the analytic predictions from Eq. (17). Note the color
factors C}, C3.C,4, and C%C3 get contributions from the
most complicated master integrals, and thus the above
comparison provides a strong check on the numerical setup
of our calculation.

IV. CONCLUSIONS

We have computed four-loop QCD corrections to the
wave function renormalization constant of heavy quarks,
Z9S. Besides the on-shell quark mass renormalization
constant and the leptonic anomalous magnetic moment,
which have been considered in Refs. [1,2,7], respectively,
this constitutes a third “classical” application of four-loop
on-shell integrals. In the present calculation, we could have
largely profited from the previous calculations. However,
we had to deal with a more involved reduction to master
integrals. Furthermore, we observed higher € poles in the
prefactors of some of the master integrals, which forced us

to either change the basis or to expand the corresponding
master integrals to higher order in e.

Z95 is neither gauge parameter independent nor infrared
finite, which excludes two important checks used for Z9S
and the anomalous magnetic moment. However, a number
of cross-checks are provided by the relation to the wave
function renormalization constant of HQET.

In physical applications, Z95 enters, among other quan-
tities, as a building block. Most likely, in the evaluation of the
other pieces, numerical methods play an important role as
well, and thus various numerical pieces have to be combined
to arrive at physical cross sections or decay rates. It might be
that numerical cancellations take place, and thus, to date, it is
not clear whether the numerical precision reached for Z9%
(which is of the order of 107* for N, = 3) is sufficient for
phenomenological applications. However, the results
obtained in this paper serve for sure as important cross-checks
for future more precise or even analytic calculations.

In the future, it would, of course, be desirable to obtain
analytic results for fundamental quantities like on-shell
QCD renormalization constants such as Z9S, which is
considered in this paper, and Z95 from Refs. [1,2]. First
steps in this direction have been undertaken in Ref. [23]
where a semianalytic approach has been used to obtain a
high-precision result for the anomalous magnetic moment
of the electron. One could imagine extending this analysis
to the QCD-like master integrals.
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APPENDIX A: NUMERICAL RESULTS FOR Z9S

Tables V, VI, VII, and VIII contain the numerical results
for the coefficients of the individual color factors contrib-

uting to Z$5.

TABLE V. Results for the coefficients of 5Z§4> as defined in Eq. (13) for £ = 0. A security factor 10 has been applied to the

uncertainties.

1/e* 1/€3 1/ 1/e €e®
FFFF 0.0131740.00025 0.083640.0019 —0.084+0.017 —-1.964+0.16 —4.1+£1.5
FFFA —0.09665+0.00053 —0.761140.0044 —1.275+£0.041 1.104+0.38 —-9.8+3.6
FFAA 0.2166140.00040 2.1150£0.0035 9.698+0.033 57.52+0.31 3245429
FAAA —0.14442+40.00011 —1.76642 4+0.00096 —14.4491+0.0092 —123.354+0.086 —1007.40+0.82
dpa —0.0000240.00029 0.000640.0033 —0.002+£0.024 0.404+0.21 9.4+2.1
dppL 0.000014-0.00011 —0.000140.0014 0.000040.0079 0.011+£0.064 —2.184+0.80
drpH —0.0000140.00023 0.000140.0015 —0.001£0.011 —0.120+£0.076 0.10+0.50
FFFL 0.0351561+0.0000013 0.2499987+£0.0000092  0.496651+£0.000077  0.39174+0.00074 1.39204+0.0067
FFAL -0.157551940.0000033 —1.457029+0.000022 —7.601814+0.00016 —46.0162+0.0014 —236.417+0.012
FAAL  0.1575515+£0.0000052 1.889980+0.000070 17.1051540.00039 145.3220+£0.0026 1190.195+0.031
FFLL 0.028 645 8 0.244 792 1.378 40 8.3824 40.329
FALL —0.057292 —0.66059 —6.3943 —54.229 —447.65
FLLL 0.006 944 4 0.075231 0.760 54 6.4263 53.496
FFFH  0.070313+0.000023 0.255860+0.000093 —0.6549740.00055 —3.800240.0036 -5.953+0.019
FFAH —0.261734+0.00010 —1.5810240.00044 —3.2136+0.0021 —11.7294+0.013 —26.8604+0.083
FAAH  0.215336+0.000061 1.95402+0.00027 11.5396+0.0014 70.3186+£0.0091 424.301+0.056
FFHH 0.0937498+0.0000014 0.2109378+0.0000059 —0.32909540.000035 —0.57438+0.00013 —7.99681+0.00079
FAHH —0.117186+0.000011 —0.681863£0.000054 —2.527354+0.00029 —10.3208+£0.0012  —40.2646+0.0062
FHHH 0.027777 8 0.047 454 0.173 582 0.276 902 0.612 12
FFLH 0.093 750 0.507 81 1.3923245+0.0000012 5.83423140.000010 8.990228 +0.000074
FALH -0.1545138+0.0000011 —1.3179979+0.0000063 —9.088033+0.000034 —56.32679+0.00020 —344.7315+0.0015
FLLH 0.027777 8 0.216 435 1.656 69 10.3632 64.740
FLHH 0.041 667 0.197917 1.050 74 4.2433 17.7160
TABLE VI. Same as in Table V but the coefficients of the linear £ terms.

1/€* 1/€ 1/€? 1/e el
FFFA 0 0 —0.000000+0.000020  0.00001£0.00020  —0.0001+£0.0011
FFAA 0 —0.0000001+£0.0000016 —0.0053694+0.000022 —0.036794+0.00022 —0.3166+-0.0012
FAAA 0 —0.0000001+£0.0000039  0.013200£0.000023 0.119764+0.00013  1.42164+£0.00076
dra —0.0000003£0.0000100  0.000005£0.000088 —0.0000040.00051 0.11354+0.0025 0.147+0.013
FAAL 0 0 —0.0035799 —0.033281 —0.40121
FFAH 0.003 906 2 —0.0094401 0.0069760+0.0000032 0.037345+0.000035 —0.76089+0.00024
FAAH —0.0052626 0.011203 4 —0.0854353+£0.0000018 0.216644+0.000018 —1.40360+0.00013
FAHH 0.002 604 17 —0.0078125 0.047919 —0.182917 0.789 80
FALH 0.001 73611 —0.0052083 0.043 906 —0.148948 0.796 19
TABLE VII. Same as in Table V but the coefficients of &2.

1/e* 1/€ 1/€? 1/e €0
FAAA 0 0.0000000£0.0000011 —0.000671140.0000052 —0.005817+0.000025 —0.07062+0.00012
dpa 0.0000002+0.0000038 —0.000001+0.000026 —0.0000040.00012 —0.0125040.00061 —0.0748 +£0.0028
FAAH 0 0.000 325 52 —0.00100945 0.008 9715 —0.032896
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APPENDIX B: Z% TO THREE LOOPS

In this Appendix, we provide results for the coefficients of Z9S as defined in Eq. (9) up to three loops including higher-
order terms in e; the n-loop expression contains terms up to order ¢*”. Note that in Eq. (9) the quark mass M is
renormalized on shell but a, is bare. Our results read

1 & 3t A S n? 3C
(SZ(Z): <——————8 €3CF+ 2_5—4 €2CF+ —Z—E GCF—4—€F—CF, (Bl)

199¢; 7% 22777 4241+10g4(2)

24 40 384 256 2

23
5Z§2> = e(CACF (12a4 + + m?log?(2) — gﬂ'z log(Z))

+ C% (—24a4 - 29176C3 72—7§ - 3?2;12 + % —log*(2) — 27%10g?(2) + ?7[2 log(Z))
+ Cr (— 4?>6C3 - 4;;:5 + 2;)722785 + 272 log(2)> Tpny, + (% + % + 36%) CFTFm)
) (cA Cy (69a4 4 72as — 11’;2‘:3 + 253 éC3 - 602 & _ 71212592’64
2070658EZ - 32123 - 310%55(2) + 231054(2) —27%0g*(2) + §ﬂ210g2(2) + %IIA log(2) — %”2 log(2)>
el <—138a4 _ l44as + “7553 - 20,?? + 60255 322}5
885122 4889 6log’(2) 23log*(2)

23 13 41
4721083 (2) — 22 2210€2(2) — -2 74 1og(2) + — 22 log(2
768 512 5 g Hamlog(2) = logi(2) - 45 Og(Hz”Og())

2413¢5 N 47z*  8509x° + 450395
72 160 1728 10368

33¢, 10174 29522 2259
T
+( s To60 T 1oz Tias ) CrTem

19
+ CpTrny, <—48a4 - —2log*(2) — 4x*log?(2) + 77[2 10g(2)>

3¢ 497 803 1,
——+————-—-7n"log(2
+CACF<4 o7 “1g 2" g
3C3 497[2 433 1139 771_2
G Tog T 7 log(2 )T
+ F( 2 64 +128+ﬂ Og() + 288 24 F Fnh
(2 eur
32 ' 48 FLFN
9¢2
+_%+icFTFnh+%CFTFn1+3—2F
&2
101C,C sic2
+_$+%CFTF’1II +%CFTFI’[I—|—TF’ (BZ)

€

2 4
(3) _ T 2_:3 _ 739€3 _ 5_65 _ 510g (2)
62y = ( 04+ 757 "8 " 16~ 12

417 38 32172 10 823) c3
F

685
2 2 _ 2 —
+ 37%log?(2) + T log(2) 20~ 916 3072

39a, 457%C, 199817, 145¢5 31900gh(2) 499 ,
+CA< 6 16 384 16 as o eg?)
281 2005374 150532 150871
2281 o 0e2 - 2
+ogg T 1oe) e " o016 oot ) CF
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64a, 16610, Slogh(2) 16 , ., . 58 73324 693122 3773\
+TF”’< 3 9% g Tgrloe(2) —galoa(2) — Sy + 3~ 5304 ) €
5327, Thog'(2) | 5 31 1372* 2522372 78967>C2
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2
3

18237°¢;5 _ 3578815  5855a4

+ CuTrny, (1831; + 77 log(2)¢5 + 192 1152 %

o ) St

_ %"8%4(2) N §ﬂ21og3 2) - %ﬂ4log2(2) - 21232 2 Plog2(2) - %”4 log(2)

* %”2 log(2) = 1155011272)6 " 175357219367[4 a’ - 162 19 :j Tt 03(:348;65-) CF) ’ o

where C = (N2 —1)/(2N.) and C, = N, are the eigenvalues of the quadratic Casimir operators of the fundamental and
adjoint representation for the SU(N,.) color group, respectively; T = 1/2 is the index of the fundamental representation;
and n; and n;, count the number of massless and massive (with mass M) quarks. It is convenient to keep the variable n;, as a

parameter, although in our case, we have n;, = 1. Computer-readable expressions of 6Z,’, 6Z; ", and 6Z,

in Ref. [25].
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