
Cross-Layer Dependability for Runtime
Reconfigurable Architectures

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Hongyan Zhang
aus Shanghai/China

Tag der mündlichen Prüfung: 11. Mai 2017
Erster Referent: Prof. Dr.-Ing. Jörg Henkel

Zweiter Referent: Prof. Dr. rer. nat. habil.
Hans-Joachim Wunderlich

Hongyan Zhang
Steinenbergstr. 40
72764 Reutlingen

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selb-
stständig verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und
Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit — ein-
schließlich Tabellen, Karten und Abbildungen — die anderen Werken oder dem
Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

———————————
Hongyan Zhang

Contents

Acknowledgments . v

List of Own Publications . vii

List of Figures . ix

List of Tables . xi

Acronyms . xv

Kurzfassung . xvii

Abstract . xxi

1 Introduction and Motivation . 1
1.1 Dependability Challenges in the Nano-CMOS Era 2

1.1.1 Challenges from Up-Scaling 3
1.1.2 Challenges from Down-Scaling 4
1.1.3 Addressing the Challenges 6

1.2 Thesis Contributions . 7
1.3 DFG Research Program SPP-1500 and InvasIC 8
1.4 Thesis Outline . 9

2 Backgrounds . 11
2.1 Field-Programmable Gate Arrays 11

2.1.1 The Reconfigurable Fabric 11
2.1.2 Configurable Logic Blocks 12
2.1.3 Transistor-Level LUT Model 14
2.1.4 Programmable Switching Matrices 14
2.1.5 Configuration Memory . 15
2.1.6 Partial Reconfiguration . 16

2.2 Fine-Grained Reconfigurable Architectures 17
2.2.1 Filling the Gap between GPP and ASIC 17
2.2.2 Coupling of a Reconfigurable Fabric to a GPP 18
2.2.3 Hardware Acceleration of Application Kernels 20

2.3 Dependability Issues in CMOS Circuits 21
2.3.1 Basic Operation Principles of MOSFET 23
2.3.2 Biased Temperature Instability 24
2.3.3 Hot Carrier Injection . 25
2.3.4 Single Event Upset . 26
2.3.5 Recent Advancement in Aging 27

i

Contents

2.4 Fault, Stress and Aging Models Used in the Thesis 28
2.4.1 Stress Model for Aging Effects 28
2.4.2 Stress Properties . 30
2.4.3 Aging Models . 30
2.4.4 Fault Model for Soft Errors 31

2.5 Basic Dependability Techniques . 32
2.5.1 FPGA Test and Diagnosis 33
2.5.2 Concurrent Error Detection in FPGAs 36
2.5.3 Scrubbing of Configuration Memory 39

2.6 Related Work . 40
2.6.1 FPGA-Based Reconfigurable Architectures 40
2.6.2 Online Test and Diagnosis of Reconfigurable Systems 41
2.6.3 Fault Tolerance in Reconfigurable Systems 42
2.6.4 Aging Mitigation in Reconfigurable Systems 43
2.6.5 Handling Soft-Errors in the Configuration Memory 44

3 System Overview and Cross-Layer Dependability 47
3.1 Application Model . 47
3.2 Target Architecture . 48

3.2.1 Base Architecture . 48
3.2.2 Architectural Extension . 49

3.3 Architectural Assumptions . 51
3.4 Cross-Layer Dependability . 51

3.4.1 Lifetime Increase . 53
3.4.2 Fault Discovery . 54
3.4.3 Self-Repair . 54
3.4.4 Reliability Guarantee . 55
3.4.5 Runtime Orchestration . 55

3.5 Evaluation Platform . 56

4 Fault Discovery through Strategic Online Testing 59
4.1 Overview of Online Test Strategies 60
4.2 Integration of Online Tests . 61
4.3 Scheduling of Online Tests . 63

4.3.1 PRET Scheduling . 63
4.3.2 PORT Scheduling . 63

4.4 Experimental Evaluation . 65
4.4.1 Fault Models of Tests . 65
4.4.2 Test Configurations for PRET 66
4.4.3 PRET Scheduling . 67
4.4.4 PORT Scheduling . 69
4.4.5 Combined PRET and PORT Scheduling 70

5 Self-Repair by Module Diversification 73
5.1 Overview of the Module Diversification Method 73
5.2 Diversified Configurations . 74

5.2.1 Matrix Representation of Configurations 74
5.2.2 Properties of Diversified Configurations 74

ii

Contents

5.3 Generation Algorithm . 75
5.4 Reliability Analysis . 77
5.5 Diversification for Interconnect Resources 78
5.6 Implementation Flow . 78
5.7 Experimental Evaluation . 79

5.7.1 Timing Overhead . 79
5.7.2 Reliability Improvement . 80

6 Prolonging Lifetime via Stress Balancing 83
6.1 Overview of the Stress-Aware Placement Method 83
6.2 Representation of Stress . 85

6.2.1 Stress Granularity . 85
6.2.2 Stress Accumulation . 86
6.2.3 Stress Estimation Flow . 86

6.3 Runtime Accelerator Placement . 88
6.3.1 Placement Profit . 89
6.3.2 Placement Algorithm . 89
6.3.3 Intermediate Results . 90

6.4 Synthesis Time Logic Placement . 90
6.4.1 Placement Algorithm . 91
6.4.2 Stress Distribution Results 93

6.5 Extended Runtime Accelerator Placement with Module Diversification 93
6.6 Experimental Evaluation . 94

6.6.1 Evaluation Flow . 94
6.6.2 Timing Overhead . 96
6.6.3 Stress Reduction and MTTF Improvement 96

7 Reliability Guarantee with Adaptive Modular Redundancy 99
7.1 Overview of Adaptive Modular Redundancy 100
7.2 Reliability of Accelerated Functions 102
7.3 Reliability Guarantee of Accelerated Functions 103

7.3.1 Maximum Resident Time . 104
7.3.2 Acceleration Variants Selection 105
7.3.3 Non-uniform Accelerator Scrubbing 107

7.4 Reliability Guarantee of Applications 108
7.4.1 Effective Critical Bits of Accelerators 109
7.4.2 Reliability of Accelerated Kernels 109
7.4.3 Effective Critical Bits of Accelerated Kernels and Applications 111
7.4.4 Budgeting of Effective Critical Bits 112

7.5 Experimental Evaluation . 114
7.5.1 Performance Improvement 115
7.5.2 Runtime Overhead . 116

8 Overall Evaluation and Comparison 117
8.1 Structural Integrity . 117

8.1.1 Accelerator Diversification 119
8.1.2 Aging Resilience and Fault Tolerance 119

8.2 Functional Correctness . 124

iii

Contents

9 Conclusion and Future Work . 127
9.1 Thesis Conclusion . 127
9.2 Future Work . 129

A Proof of the Minimal Set Generation in Module Diversification . . . 131

B Terrestrial Soft Error Rates in a Virtex-5 FPGA 137

Bibliography . 139

iv

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my Ph.D. advisor
Prof. Dr.-Ing. Jörg Henkel who not only guided and supported me in the research
work but also has had a significant impact on my personal development. By asking
the right questions, casting insightful doubts and encouraging me to formulate clear
and precise answers, he showed me the proper way of thinking for scientific problems,
which was absolutely essential to the accomplishment of this work and any other
work in my future carrier path.
My sincere thanks also goes to Prof. Dr. rer. nat. habil. Hans-Joachim Wunderlich

from the University of Stuttgart for agreeing to be my second reviewer and for his
support of the OTERA project through discussion of proposals and reviewing our
joint papers.
Next, I would like to thank Dr.-Ing. Lars Bauer who provided precious support

and lead at key times. He helped me in thinking through some of the difficult ideas.
This work was greatly influenced by the intriguing discussions with him and his
suggestions in writing styles. The evaluation platform used in this work is based on
his great achievements during his Ph.D.
My special thanks go to the project partners from the University of Stuttgart:

Dr. rer. nat. Michael Kochte for his fruitful discussions and guiding suggestions
during the writing of OTERA papers, Eric Schneider for his implementation of
stress models for lookup tables, Dr. rer. nat. Claus Braun and Michael Imhof for
their excellent collaboration in our first OTERA papers. Their influence is of great
importance to the success of this work and it has always been a great pleasure to
work with them.
I would also like to thank my colleagues at CES who provided me a comfortable

and trustful work environment: Artjom Grudnitsky for the collaboration on the
demonstrator and help on the the setup of the RotMan simulator; Dr.-Ing. Hussam
Amrouch and Victor van Santen for their support on the aging models; Martin
Buchty for his technical support and help on the lab supervision; Usman Karim and
Anuj Pathania for their fun talks in the office; Semeen Rehman and Florian Kriebel
for their company during the trip to SPP meetings; Marvin Damschen, Thomas
Ebi, Fazal Hameed, Chih-Ming Hsieh, Anton Ivanov, Heba Khdr, Sebastian Kobbe,
Farzad Samie, Sammer Srouji, Manyi Wang and Volker Wenzel for their support,
friendship and advice during my stay at CES.
This work was supported in parts by the German Research Foundation (DFG) as

part of the priority program “Dependable Embedded Systems” (SPP 1500), where
I was given the opportunity to examine my work in a wider scope.
Finally, I would like to express my deepest gratitude to my parents for their

constant support, encouragement and understanding, and to my wife Xin Liu for
sustaining me through challenging times and enriching my life with light and mean-
ing. I could have never have done this work without you.

v

List of Own Publications

Publications Providing Major Contributions to This Thesis

[ZBK+17] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, H. J. Wunderlich, and
J. Henkel, “Aging Resilience and Fault Tolerance in Runtime Reconfigurable
Architectures,” IEEE Transactions on Computers, Special Section on Inno-
vation in Reconfigurable Computing Fabrics: from Devices to Architectures,
2017 (to appear).

[ZBH16] H. Zhang, L. Bauer, and J. Henkel, “Resource budgeting for reliability in re-
configurable architectures,” in Proc. 53rd Annual Design Automation Con-
ference (DAC), 2016, pp. 111:1–111:6.

[ZKS+15] H. Zhang, M. A. Kochte, E. Schneider, L. Bauer, H.-J. Wunderlich, and
J. Henkel, “STRAP: Stress-aware placement for aging mitigation in runtime
reconfigurable architectures,” in Proc. IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2015, pp. 38–45.

[ZKI+14] H. Zhang, M. A. Kochte, M. E. Imhof, L. Bauer, H.-J. Wunderlich, and
J. Henkel, “GUARD: GUAranteed reliability in dynamically reconfigurable
systems,” in Proc. 51st Annual Design Automation Conference (DAC),
2014, pp. 32:1–32:6.

[ZBK+13] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E. Imhof, H.-
J. Wunderlich, and J. Henkel, “Module diversification: Fault tolerance and
aging mitigation for runtime reconfigurable architectures,” in Proc. IEEE
International Test Conference (ITC), 2013, pp. 1–10.

[BBI+13] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider, H. Zhang,
J. Henkel, and H.-J. Wunderlich, “Test Strategies for Reliable Runtime
Reconfigurable Architectures,” IEEE Transactions on Computers, vol. 62,
no. 8, pp. 1494–1507, 2013.

vii

List of Own Publications

Publications Providing Minor Contributions to This Thesis

[BHH+15] L. Bauer, J. Henkel, A. Herkersdorf, M. A. Kochte, J. M. Kühn, W. Rosen-
stiel, T. Schweizer, S. Wallentowitz, V. Wenzel, T. Wild, H.-J. Wunderlich,
and H. Zhang, “Adaptive multi-layer techniques for increased system de-
pendability,” it - Information Technology, vol. 57, no. 3, 2015.

[HBGZ14] J. Henkel, L. Bauer, A. Grudnitsky, and H. Zhang, “Adaptive embedded
computing with i-Core,” ACM SIGBED Review, vol. 11, no. 3, pp. 20–21,
2014.

[HBZ+14] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique, “Multi-layer
dependability: From microarchitecture to application level,” in Proc. 51st
Annual Design Automation Conference (DAC), 2014, pp. 1–6.

[ABB+12] M. S. Abdelfattah, L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte,
H. Zhang, J. Henkel, and H.-J. Wunderlich, “Transparent structural online
test for reconfigurable systems,” in Proc. IEEE 18th International On-Line
Testing Symposium (IOLTS), 2012, pp. 37–42.

[BBI+12] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, H. Zhang, H.-J. Wun-
derlich, and J. Henkel, “OTERA: Online test strategies for reliable recon-
figurable architectures — Invited paper for the AHS-2012 special session
“Dependability by reconfigurable hardware”,” in Proc. NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS), 2012, pp. 38–45.

viii

List of Figures

1.1 Illustrative example of a reconfigurable architecture 1

2.1 Island-style FPGA architecture . 12
2.2 Xilinx-style CLB structure [Xil12d] 13
2.3 Reconfigurable resources in a slice 13
2.4 Internal structure of a 2-input LUT 14
2.5 Internal structure of a PSM and a PIP [HCJ+90] 15
2.6 Configuration frames in a Xilinx Virtex-5 FPGA 16
2.7 Partial reconfiguration with partial bitstreams 17
2.8 Three degrees of coupling between FPGA and GPP: (a) loosely cou-

pled, (b) co-processor and (c) tightly coupled 19
2.9 Basic structure of a NMOS transistor 23
2.10 Physical mechanism of BTI in NMOS 24
2.11 Physical mechanism of HCI in NMOS 25
2.12 Physical mechanism of SEU in MOSFET [Bau05] 26
2.13 Threshold voltage increases over time due to HCI under different

toggling rates. 29
2.14 Threshold voltage increases over time due to BTI under different

stress duty cycles. 29
2.15 A general test structure for digital circuits 33
2.16 Array-based test structure for FPGAs 35
2.17 Array-based test process for FPGAs 36
2.18 Triple modular redundancy . 37
2.19 Duplication with comparison . 38

3.1 The application model used in this thesis 47
3.2 Target reconfigurable architecture 48
3.3 System layers and their interaction with the dependability approaches

proposed in this thesis . 52
3.4 Runtime orchestration of dependability techniques 55

4.1 Test flow with PRET and PORT 60
4.2 Test manager integration with TPG and ORA 61
4.3 Performance loss of the video encoder application under different on-

demand PRET frequencies and number of regions 67
4.4 Average test latency under different PRET frequencies and number

of regions . 68
4.5 Comparison of the number of on-demand and periodic tests for dif-

ferent on-demand PRET frequencies and number of regions 68
4.6 Performance loss when both PRET and PORT are applied for a re-

configurable system with 5 regions 70

ix

List of Figures

5.1 Generation of diversified configurations using the module diversifica-
tion method . 78

5.2 Module reliability of apex4 for different ratios of CLB redundancy
and number of configurations with CLB reliability 0.999 81

5.3 Module reliability with and without module diversification for differ-
ent CLB reliabilities. Reliabilities of des_perf and aes_core are not
shown in the figure for clarity, but discussed in the text. 81

5.4 Reliability improvement factor for the modules when module diversi-
fication is applied . 82

6.1 Transistor stress distribution in a reconfigurable fabric with 8 regions;
each region consists of 4×20 CLBs with 8 LUTs each (same setup as
for evaluation); the color of a CLB corresponds to the highest toggle
rate of any of its transistors; the symbol I on the right scale denotes
the maximum stress over all regions 84

6.2 Overview of the stress-aware placement method 85
6.3 Stress estimation flow . 87
6.4 Toggle propagation (a) and generation (b) in multiplexers 87
6.5 Transistor stress distribution using stress-aware runtime accelerator

placement . 91
6.6 Transistor stress distribution using both stress-aware runtime accel-

erator placement and synthesis time stress diversification 93
6.7 Experimental flow to evaluate the transistor stress and threshold volt-

age shift . 95
6.8 Comparison to related work for dynamic stress in systems with dif-

ferent number of reconfigurable regions 97
6.9 Comparison to related work for static stress in systems with different

number of reconfigurable regions . 97
6.10 Transistor stress for different STRAP optimization goals 98

7.1 Different hardware implementation variants of an Accelerated Func-
tion (AF) . 100

7.2 Overview of proposed adaptive modular redundancy 101
7.3 Variants selection space for an error rate of 10 errors Mb−1month−1. 105
7.4 Execution of kernels with different degrees of redundancy 108
7.5 Illustrative execution series of an accelerated function 110
7.6 Ratios of error probability and performance improvement under dif-

ferent numbers of regions and reliability requirements 115
7.7 Ratios of error probability and performance improvement under dif-

ferent soft-error rates and reliability requirements 116

8.1 Application performance in the presence of faults under different
strategies. Left Y-axis (box plots): performance degradation w.r.t.
a fault-free baseline system. Right Y-axis (line plots): performance
gain w.r.t. to the faulty baseline system 121

x

List of Figures

8.2 Peak stress and utilization in the reconfigurable fabric in the presence
of faults. Left Y-axis (box plots): maximum transistor toggle rate.
Right Y-axis (line plots): utilization of the reconfigurable fabric for
acceleration w.r.t. a fault-free baseline system 123

8.3 Performance under varying soft error rate 125
8.4 Average AF error probability for different fault tolerance methods

under varying soft error rate . 125
8.5 Performance degradation over a wide range of soft error rates and

reliability constraints . 126

B.1 This figure shows how the soft error rate varys depending on the
altitude. The neutron flux is lower at low altitude regions due to
atmospheric shielding. It is almost 30 times higher at mountain peaks
in the US than it is at sea level. 137

B.2 The neutron flux also varys in the geomagnetic field. This figure
shows the resulted variation of soft error rate around the globe at
10 km altitude, where commercial flights typically cruise. In the equa-
tor regions, the soft error rate is roughly 6 times lower than it is in
other regions. 138

xi

List of Tables

3.1 Short description of accelerators implemented for H.264 57

4.1 Test configurations for CLBs and interconnects: Overhead, size, fre-
quency and length . 66

4.2 PORT performance loss and worst case test latency under different
PORT frequencies . 69

5.1 Configurations for different region sizes and maximal frequency of
original (Orig.) and diversified (Div.) modules 80

6.1 Change in maximum frequency of accelerators 96
6.2 Reduction of avg./max. stress and MTTF increase of STRAP and

state-of-the-art [AZGT11, ZBK+13] compared to the baseline; aver-
aged over all numbers of reconfigurable regions 98

8.1 Properties of reconfigurable accelerators and their change in maxi-
mum frequency of diversified configurations 118

8.2 Compared strategies in the experiments 118
8.3 Reduction of maximum transistor toggle rate w.r.t. the baseline sys-

tem [%] . 119
8.4 MTTF improvement w.r.t. the baseline system [×] (e.g. 2× improve-

ment means the MTTF is doubled) 120
8.5 Performance and error probability results 126

xiii

Acronyms

AC Accelerator Configuration.
AF Accelerated Function.
ASIP Application-Specific Instruction set Processor.

BIST Built-In-Self-Test.
BTI Bias Temperature Instability.

CED Concurrent Error Detection.
CGRA Coarse-Grained Reconfigurable Architectures/Arrays.
CLB Configurable Logic Block.
CPU Central Processing Unit.
CUT Circuit Under Test.

DPPM Defective Parts Per Million.
DSP Digital Signal Processor.
DWC Duplication with Comparison.

ECC Error Correcting Code.
EM Electro-Migration.

FPGA Field-Programmable Gate Array.
FSM Finite State Machine.

GPU Graphic Processing Unit.

HCI Hot Carrier Injection.

ICAP Internal Configuration Access Port.
ILA Iterative Logic Array.

LUT Look-Up Table.

MBE Multi-Bit Error.
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor.
MTTF Mean Time to Failure.

NMOS n-type MOSFET.

ORA Output Response Analyzer.
OTERA Online Test Strategies for Reliable Reconfigurable Architectures.

PIP Programmable Interconnection Point.
PMOS p-type MOSFET.

xv

Acronyms

PORT Post-configuration Test.
PRET Pre-configuration Test.
PSM Programmable Switching Matrix.

RAM Random Access Memory.
RDP Random Dopant Fluctuation.
RIF Reliability Improvement Factor.

SBE Single-Bit Error.
SER Soft Error Rate.
SEU Single Event Upset.
SoC System-on-Chip.
STRAP STRess-Aware Placement.

TC Test Configuration.
TDDB Time-Dependent Dielectric Breakdown.
TMR Triple Modular Redundancy.
TPG Test Pattern Generator.

xvi

Kurzfassung

Rekonfigurierbare Rechensysteme kombinieren die Effizienz der Hardware mit der
Flexibilität der Software und werden konkurrenzfähig gegen herkömmliche Rechne-
rarchitekturen wie Allzweckprozessoren (CPUs) und Grafikprozessoren (GPUs). Sie
bieten eine Hardwareorganisation, die noch nach der Herstellung durch Benutzer
für verschiedene Anwendungen dynamisch angepasst werden kann. Rekonfigurier-
bare Architekturen, die auf Feld-Programmierbaren Gatter-Anordnungen (FPGAs)
basieren, treten in den letzten Jahren dank stets wachsender Kapazität der FPGAs
und einem vereinfachten FPGA-Entwurfsprozesses als eine vielversprechende Tech-
nologie für rekonfigurierbare Rechensysteme auf.

Eine typische rekonfigurierbare Architektur besteht aus einem Allzweckprozessor,
einer rekonfigurierbaren Struktur und einer Kommunikationsinfrastruktur, die beide
miteinander verbindet. Die rekonfigurierbare Struktur kann sich auf einem oder meh-
reren FPGAs befinden. Hardware-Beschleuniger, die rechenintensive Funktionen rea-
lisieren, können zur Laufzeit in der rekonfigurierbaren Struktur instanziiert werden.
Die Arbeitslast auf dem Prozessor kann dann auf den FPGA ausgelagert werden,
der das Rechnen in Hardware mit hoher Leistung und Energieeffizienz durchführt.
Die stetige Weiterentwicklung in der Halbleiterindustrie ermöglicht die nachhaltige
Verkleinerung der Transistorgröße in den Nanobereich, was zu höherer Transistor-
dichte, schnellerer Schaltgeschwindigkeit und niedrigerem Energieverbrauch führt.
Um diese Vorteile der Skalierung der Transistorgröße auszunutzen, werden moderne
FPGAs in neusten Technologien hergestellt. Zum Beispiel wird der jüngste MPSoC
von Xilinx mit vier ARM-Kernen und einer rekonfigurierbaren Struktur auf einem
einzigen Chip mit 16 nm FinFET Technologie hergestellt.

Allerdings kommt die Skalierung mit Herausforderungen, die den zuverlässigen Be-
trieb von FPGAs bedrohen. Fehler können beim Herstellungstest unbemerkt bleiben
und in ausgelieferten Geräten latent vorhanden sein, da die wachsende Schaltungs-
komplexität und neue Defektmechanismen die Wirksamkeit der Tests begrenzen.
Während des Betriebs der Schaltungen verschlechtern verschiedene mikroskopische
Phänomene die physikalischen und elektrischen Eigenschaften der Materialien, aus
denen die Transistoren bestehen. Solche Effekte werden durch weitere Skalierung
verschlimmert. Die Transistoren funktionieren nicht für ewig sondern altern. Die
Schwellwertspannung der Transistoren verschiebt sich mit der Zeit, was die Strom-
stärke durch die Transistoren verringert und schließlich zu einem kompletten Ausfall
führen kann. Darüber hinaus wechselwirkt die Hintergrundstrahlung aus der Umge-
bung mit den Materialien des Chips. Die Konfigurationsbits in einem FPGA können
dadurch verändert werden, was im Wesentlichen die Funktionsdefinition der auf dem
FPGA implementierten Schaltungen modifiziert. Die Rechenergebnisse vom FPGA
sind dann fehlerhaft.

xvii

Kurzfassung

In einem zuverlässigen System, insbesondere bei sicherheits- und missionskriti-
schen Anwendungen, sollen Fehler in kürzester Zeit erkannt, lokalisiert und ver-
mieden werden, um ihre Einflüsse auf das Gesamtsystem zu minimieren. Außerdem
sollen Gegenmaßnahmen proaktiv eingeleitet werden, um das Eintreten von Fehler
überhaupt zu vermeiden. Folgende Schlüsseltechniken sind im Rahmen dieser Ar-
beit entwickelt worden, um eine hochzuverlässige rekonfigurierbare Architektur zu
verwirklichen:

• Für das Erkennen von Fehler in der rekonfigurierbaren Struktur werden be-
darfsgesteuerte und periodische Tests während des funktionalen Systembe-
triebs eingesetzt. Vor der Instanziierung von Beschleunigern werden die grund-
legenden rekonfigurierbaren Ressourcen gründlich durch strukturelle Tests ge-
prüft. Nach der Konfiguration der Beschleuniger wird ihre Funktionalität pe-
riodisch durch funktionelle Tests geprüft. Die Kombination von beiden Test-
strategien erzielt eine hohe Fehlerbedeckung und niedrige Testlatenz bei mi-
nimalem Leistungsaufwand. Experimentelle Ergebnisse zeigen, dass die rekon-
figurierbare Struktur alle 4 Sekunde bei weniger als 4,4% Leistungsaufwand
gründlich getestet werden kann.

• Wenn Teile der rekonfigurierbaren Struktur als fehlerhaft erkannt werden, kön-
nen die fehlerhaften Ressourcen für die Berechnung vermieden werden ohne die
Systemleistung zu verändern. Dies wird durch eine neuartige Entwurfsmethode
namens Modul-Diversifikation erreicht. Für jeden Beschleuniger oder Modul
wird eine Menge an Konfigurationen generiert, die bezüglich der Ressourcen-
benutzung diversifiziert sind. Alternative Konfigurationen, die die fehlerhaf-
ten Ressourcen nicht benötigen, können benutzt werden, um den normalen
Systembetrieb sogar in Gegenwart von Fehlern aufrechtzuhalten. Zuverlässig-
keitsverbesserungsfaktoren zwischen 19 und 330 wurden in den Experimenten
erreicht.

• Die Verwendung der rekonfigurierbaren Struktur erzeugt elektrischen Stress
für die einzelnen Transistoren, der zur Alterung der Transistoren führt. In die-
ser Arbeit wurde eine neuartige Technik zur Stressesbalancierung entwickelt.
Sie ist in der Lage, den durch Arbeitslast erzeugten Stress gleichmäßig auf
alle rekonfigurierbaren Ressourcen zu verteilen, so dass der Stress auf einzelne
Transistoren minimiert wird. Die Kombination aus Beschleuniger-Platzierung
zur Laufzeit und Logik-Platzierung zur Synthese-Zeit bringt eine gleichmäßige
Stressverteilung, was die Lebensdauer des Systems bei geringfügigen Laufzeit-
kosten erheblich verlängert. Im Vergleich zum Stand-der-Technik werden die
dynamischen und statischen Stresse jeweils um bis zu 64% und 35% reduziert,
was einer Verländerung der Lebensdauer jeweils um bis zu 177% und 15%
entspricht.

• Maßnahmen wie modulare Redundanz sind unerlässlich, um die korrekte Be-
rechnung von Beschleunigern vor zufälligen Bitfehlern im Konfigurationsspei-
cher (aufgrund der Umgebungsstrahlung) zu schützen. Eine Lösung, die auf
den schlimmsten Fall ausgerichtet ist, hat hohe Flächen- und Energiekosten
durch den übertriebenen Schutzes gegen eine sich verändernde Umgebung.
Diese Arbeit stellt ein neuartiges Laufzeitsystem vor, das dynamisch den effi-

xviii

zientesten Schutzmechanismus für unterschiedliche Beschleuniger bestimmen
kann, abhängig von der Anfälligkeit der Beschleuniger, Zuverlässigkeitsrand-
bedingung der Anwendung und der Strahlungsstärke in der Umgebung. Im
Vergleich zu einer verwandten Arbeit, die die Schutzmechanismen statisch
festlegt, bietet die vorgestellte Methode bis zu 68% Leistungssteigerung bei
derselben Zielzuverlässigkeit an.

Durch die Ausnutzung der inhärenten Flexibilität rekonfigurierbarer Architektu-
ren erarbeitet diese Arbeit eine umfassende Lösung für Fehlerentdeckung, Fehlerto-
leranz und Verlangsamung der Alterung, die die Zuverlässigkeit des Systems gegen
permanente und transiente Fehler verteidigt.

xix

Abstract

Reconfigurable computing combines the efficiency of hardware with the flexibility of
software and is becoming competitive against conventional processor architectures
like Central Processing Units (CPUs) and Graphic Processing Units (GPUs). It
features a hardware organization that can be dynamically customized after manu-
facturing by the user for different application requirements. Reconfigurable archi-
tectures based on Field-Programmable Gate Arrays (FPGAs) are emerging over the
recent years as a promising technology for reconfigurable computing, thanks to the
growing logic capacity of FPGAs and the ease of FPGA design process driven by
FPGA vendors.

A typical reconfigurable architecture consists of a general purpose processor, a re-
configurable fabric and a communication infrastructure interconnecting them. The
reconfigurable fabric can reside on one or multiple FPGAs. Hardware accelerators,
which implement the compute-intensive functions, can be instantiated in the re-
configurable fabric during runtime. The workload on the processor can then be
offloaded to the FPGA which performs high performance and high energy efficient
computation in hardware.

Continued advancement in the semiconductor industry enables sustained down-
scaling of transistor size into the nano-scale regime, which translates to higher tran-
sistor density, faster switching speed and lower energy consumption. To take these
advantages of technology scaling, modern FPGA devices are manufactured in latest
technology nodes. For instance, the newest MPSoC from Xilinx with four ARM
cores and a reconfigurable fabric on a single die is built on 16 nm FinFET process
technology.

However, the technology scaling is accompanied by challenges that threaten the
dependable operation of FPGAs. Faults may escape the manufacturing test and
remain latent in the shipped devices, as the growing complexity of circuits and new
defect mechanisms limit the test effectiveness. During circuit operation, various mi-
croscopic phenomena degrade the physical and electrical properties of the materials
that compose the transistors, which are further aggravated with down-scaling. The
transistors do not operate forever, but they ages. The threshold voltage of transistors
drifts over time, which weakens their current drive capability and may eventually
cause them to fail entirely. In addition, the environmental background radiation
interacts with the silicon and may induce bit-flip in the configuration memory of
FPGAs. The resulted erroneous configuration bits essentially alter the functional
definition of the circuits implemented on the FPGA, which renders the computation
results from the FPGA corrupted.

In a dependable system, particularly for safety- and mission-critical applications,
faults shall be discovered with small detection latency, be located and avoided to

xxi

Abstract

block them from affecting the whole system. Furthermore, proactive countermea-
sures shall be taken to prevent the emerging of faults in the first place. To realize a
dependable reconfigurable architecture, the following key dependability techniques
are developed in this thesis:

• To detect faults in the reconfigurable fabric, on-demand and periodic testing
are scheduled along with the functional workload. Before the instantiation of
accelerators, the underlying reconfigurable resources in the fabric are exercised
by exhaustive structural test. After the accelerators are configured into the
fabric, their correct functionality is periodically checked by functional test.
The combination of both test schemes achieves a high fault coverage and low
test latency at minimal performance overhead. Experimental results show
that the reconfigurable fabric can be exhaustively tested every 4 seconds at a
performance cost of less than 4.4%.

• When part of the reconfigurable fabric is detected to be faulty, it can be
avoided, i.e. do not participate in computation, while the system performance
is not adversely affected. This is achieved by a novel design method Module
Diversification. For each accelerator/module, it generates a set of configura-
tions that are diversified in terms of resource usage. Alternative configurations
that do not require the faulty resources can be used to maintain the system
operation, even in the presence of faults. Reliability improvement factors be-
tween 19 and 330 were achieved in the experiments.

• Computation using the reconfigurable fabric induces electrical stress on in-
dividual transistors, which leads to the aging of transistors. A novel stress
balance technique is developed that is able to distribute the stress induced by
workload uniformly over all resources in the fabric, such that the stress on
individual transistors is minimized. A combined approach with runtime ac-
celerator placement and synthesis-time logic placement delivers uniform stress
distribution that significantly prolongs the system lifetime at negligible run-
time cost. Compared to state-of-the-art methods, this work reduces dynamic
and static stress by up to 64% and 35%, which translates to a lifetime im-
provement up to 177% and 14%, respectively.

• In order to guard the correct functionality of accelerators against random bit-
flip in the configuration memory due to environmental radiation, countermea-
sures such as modular redundancy are indispensable. A worst-case solution
incurs high area and energy overhead due to over-protection under a varying
environment. This work proposes a novel runtime system that dynamically
chooses the most efficient protection mechanisms for different accelerators, de-
pending on the vulnerability of individual accelerators, reliability constraints
of the application and environmental radiation level. Compared to related
work with statically optimized redundancy techniques, the proposed method
provides up to 68% higher performance at the same target reliability.

As a result, by exploiting the flexibility that is inherent in reconfigurable architec-
tures, this work presents a comprehensive solution for fault discovery, fault tolerance
and aging mitigation, defending against both permanent and transient faults.

xxii

1 Introduction and Motivation

Runtime reconfigurable architectures based on Field-Programmable Gate Arrays
(FPGAs) are emerging over the recent years as a promising augment to conven-
tional processor architectures such as Central Processing Units (CPUs) and Graphic
Processing Units (GPUs). Their essential feature, runtime reconfiguration, enables
dynamic customization of the hardware organization for changing application re-
quirements. A typical structure of reconfigurable architectures is shown in Fig. 1.1.
It consists of a general purpose processor and a reconfigurable fabric, which are in-
terconnected over a communication infrastructure. The reconfigurable fabric is par-
titioned into multiple reconfigurable regions, which can reside on multiple FPGAs
or in one FPGA. During runtime, these reconfigurable regions can be reconfigured
to implement accelerators that perform compute-intensive functions to speedup the
execution of applications using hardware. Such an approach takes the advantages of
high performance and low energy consumption only achievable in hardware, while
providing the flexibility of software to customize the hardware function at runtime.

With the aggressive advancement of semiconductor industry, feature size of mod-
ern microelectronic devices continues shrinking in the nano-scale regime. While
higher transistor density, higher performance and lower energy consumption are the
major benefits and the driving force of ever shrinking nano-CMOS devices, depend-
ability poses as a serious challenge lying ahead of continued scaling. A paradigm
shift is happening that a dependable system has to build upon components of un-
dependable natures. Manufactured in latest technology nodes, modern FPGAs are
increasingly prone to various dependability issues, which threaten the dependable
acceleration in the reconfigurable fabric.

Latent defects not discovered during manufacturing, soft errors in the sequential
elements caused by single event upsets and transistor degradation caused by vari-
ous aging effects are the major dependability concerns in safety and mission critical

General purpose
processor

Reconf
Region

...

Reconfigurable fabric

Reconf.
Region

Reconf.
Region

Interconnect

Figure 1.1: Illustrative example of a reconfigurable architecture

1

1 Introduction and Motivation

applications. A dependable system shall be able to discover a fault with small detec-
tion latency, to tolerate the discovered fault with minimal performance degradation
and even to prevent the fault in the first place.

This thesis addresses these requirements by answering the following questions:
How can we test the system when its hardware organization changes during run-
time? If part of the FPGA is tested to be faulty, how can we exploit runtime
reconfiguration to isolate those faulty resources such that the system continues op-
eration with minimal performance degradation? How can we further prolong the
system lifetime by delaying the failure time of the FPGA? When high reliability of
correct computation is required, how can we tailor the accelerator organization to
defend the soft errors caused by single-event-upset, even when the environmental
condition is changing? And how all of these can be accomplished with minimal
hardware and runtime overhead?

First of all, let’s discuss which dependability challenges we are facing and where
they come from.

1.1 Dependability Challenges in the Nano-CMOS Era

The continued down-scaling of feature sizes of digital integrated circuits still follows
the trends envisioned more than 40 years ago by Gordon Moore [Moo75]. The initial
motivation of scaling was to reduce the cost per electronic function, or rather the
cost per transistor. As more transistors can be integrated in one chip and more
chips can be fabricated with one wafer, the cost of manufacturing a wafer is now
shared among hundreds of billions of transistors1. Although the cost per wafer rose
exponentially with technology node scaling due to the ever more sophisticated manu-
facturing process towards the physical limit, in fact, the decreasing trend of cost per
transistor has been sustained thanks to the accelerated trend in the increase of tran-
sistor density [Hol16]. In addition to the economical benefits, transistor scaling also
helps the circuit to operate at higher frequencies and with lower energy consumption
as transistor switching activities require less charge transport at smaller geometric
scales. The soaring transistor density allows the high integration of rich function-
alities at affordable price, which leads to the deep penetration of nanoelectronic
devices in every corner of our daily life. High demand from traditional markets such
as data-centers and mobile devices and from emerging innovations such as internet
of things and autonomous vehicles are further driving the down-scaling in favor of
lower cost, higher performance and lower energy consumption.

On the other hand, the down-scaling of the geometry of transistors is accompanied
by a two-fold up-scaling of the products composed of nanoelectronic devices: 1) the
complexity of the products grows exponentially with deep functional integration;
and 2) the volume of shipped products grows with increasing demand and new
markets enabled by nano-device innovations. For instance, around 100 electronic
control units with 7000 semiconductor components are concurrently operating in a

1More than 400 billion transistors on a 300 mm wafer for the Intel Xeon E5-2600 v3 18-core
processor [BSN+15].

2

1.1 Dependability Challenges in the Nano-CMOS Era

modern passenger car [ALHS12] for the powertrain, safety, comfort and infotainment
functions under a wide range of environmental conditions. And the global passenger
car sale number has reached 70 million in 2015 [Sta16]. However, the up-scaling of
complexity and volume poses a great challenge to the dependability and quality
of the products, particularly for safety-critical systems like vehicles where a single
functional failure may be life-threatening.

1.1.1 Challenges from Up-Scaling

As the number of components or integrated functions (that could be implemented
with multiple components) of a system increases, the requirements to the depend-
ability of individual components or functions is becoming increasingly stringent as
well. The dependable operation of a system relies on the correct collaborative func-
tioning of all sub-components and the failure of any one of them may manifest as
a critical malfunction of the whole system. The more functions reside in a system
and the complexer their interactions are, the more sources of failure exist and the
higher the probability that the system fails. Because it is commonly assumed that
technology advances would always benefit all aspects of a system including depend-
ability, the dependability specification (e.g. mean time to failure) of a system desired
by customers would at least remain the same or become even higher, regardless of
the increased internal complexities due to functional integration. Therefore, the
dependability of individual functions needs to be accordingly improved to meet the
system-level dependability specification.

Extensive test during production and thorough verification during design are in-
dispensable to guarantee the dependability of complex systems and devices. The
up-scaling of functional complexity also has made a dramatic impact on the test
of nanoelectronic devices containing billions of transistors. Given limited mon-
etary and time budget for test, new defect mechanisms emerged from advanced
nano-manufacturing technologies and ever sophisticated circuit designs, e.g. System-
on-Chip (SoC), may render certain defects escaping from manufacturing tests and
remaining in the shipped products [Zor13].

The new defect mechanisms are mainly resulted from the process variation at
nano-scale (e.g. random dopant fluctuation) and from the introduction of new ma-
terials (e.g. cobalt for copper encapsulation), new structures (e.g. 3D, FinFET) and
new power management techniques (e.g. voltage scaling). These defects could yet
be captured by the fault models in current automatic test equipments.

An SoC is composed of a set of distinct Intellectual Property (IP) cores, e.g.
multi-core processors, graphic processing unit, embedded memories, radio frequency
circuits for wireless connectivity, etc. Each type of IP cores needs to be tested in
individual sessions with dedicated test methods, which leads to extended test time.
Moreover, on account of the intellectual protection, IP vendors provide only limited
IP structural information and impose additional test constraints, e.g. specific rules
for applying test patterns [WST08]. These complications lower the test efficiency
and increase the test time further, which translates to the climbing cost of test.

3

1 Introduction and Motivation

As the volume of shipped products scales up, if the dependability of one product,
typically measured in Defective Parts Per Million (DPPM), would linger on the
same level as the time of the small-scale production, the cost of rejection, repair
and the loss of customer satisfaction would ultimately damage the profitability and
the reputation of a company. A zero DPPM target shall be met if the product is
to be deployed in high-volume and safety-critical systems, such as in automotive
systems [Con15].

To summarize, the up-scaling of the internal complexity and the shipping volume
urges the semiconductor industry to address the aforementioned dependability chal-
lenges before continuing the down-scaling of the transistor size. Unfortunately, these
challenges are being further aggravated as the manufacturing process approaches the
physical limits.

1.1.2 Challenges from Down-Scaling

Nowadays, the smallest feature size (e.g. 10 nm) manufactured on a chip is well
below the wavelength of the light source (193 nm) used in the most advanced avail-
able photolithography technique, i.e. immersion lithography [GBF+04]. The pattern
transfering process from the mask2 to the wafer experiences significant fidelity degra-
dation due to the limited resolution in the optical systems which have received no
resolution improvement since 2007 [STY+15]. The desired precise geometries on the
wafer can thus only be approximated by auxiliary methods such as multiple pat-
terning, optical proximity correction and phase-shift masks. These approximations
rely on the interference and diffraction of light to create sub-wavelength features,
which exhibit wide shape variations both locally in the feature itself and globally
across the wafer [DLW09]. For example, a square shape definition on the mask will
be transferred into an irregular rounded rectangle with curvy edges. The round-
ness and curviness will variate depending on the surrounding shapes and the surface
properties of the photoresist and wafer in the shape definition region. This geometry
variability caused by the inaccurate shape definition is one of the major sources of
variability that impact the deterministic nature of transistor characteristics; e.g. the
threshold voltage of transistors at different locations on a wafer may vary randomly
in a wide range [ALWA+14].

Another major source of variability stems from the atomistic level fluctuation of
dopants in the channel region of transistors, so-called Random Dopant Fluctuation
(RDP). During the fabrication of transistors, impurity atoms (dopants) from group
III/V elements are intentionally introduced (doped) into the intrinsic silicon sub-
strate to modulate it into the p/n-type semiconductor. In addition, doping into the
channel region of transistors can also be employed to adjust the threshold voltage
or control short-channel effects [Shi16]. As the dimension of transistors scales down,
the total number of dopants in the channel region decreases to an extent that a
change of just only a few atoms would have significant impact on the transistor
characteristics. In 45 nm CMOS technology, the average number of dopant atoms

2Masks are fabricated using electron beam lithography, which offers very high resolution (below
5 nm) but very low throughput and thus is not suitable for mass chip production.

4

1.1 Dependability Challenges in the Nano-CMOS Era

in the channel region decreases below 100, where RDP contributes to around 60%
of the total variation in the PMOS threashold voltage [KKK+08]. Moreover, not
only the number but the spatial variation in the position of dopants also affects the
transistor performance [Shi16]. State-of-the-art FinFET technologies exhibit around
20 mV standard deviation in the threshold voltage [BDB+13, ALWA+14].

To cope with the variability inherent in the manufacturing process, a large timing
margin is applied during design time such that the circuit could work at a specified
frequency under the most unfavorable variability conditions. Unfortunately, another
variability mechanism that requires a comparable amount of margin is becoming
crucial for the transistors to survive through time. It is aging, a kind of temporal
variability that changes the transistor characteristics over time.

Aging effects originate from the degradation in the electrical or physical proper-
ties in the material resulting from continued operation of the device. For instance,
traps which restrict the free movement of electrons or holes may form at the in-
terface between the gate oxide and the channel of a transistor as a result of the
undesired tunneling of carriers from the channel into the gate oxide when the tran-
sistor is operating. These traps are positively or negatively charged in PMOS or
NMOS, respectively and shift the threshold voltage of transistors in a harmful way,
i.e. increase in NMOS and decrease in PMOS. This lowers the current drive capa-
bility of the transistor under a fixed supply voltage and may eventually lead to the
timing violation in sequential circuits. Major aging effects in nano-CMOS transis-
tors include Bias Temperature Instability (BTI), Hot Carrier Injection (HCI) and
Time-Dependent Dielectric Breakdown (TDDB) [RBC+13, CVS+14], while Electro-
Migration (EM) is considered as a major aging issue affecting the interconnects with
high current densities, e.g. power delivery networks [Lie13].

With the technology down-scaling, these aging effects are expected to persist as
a major dependability challenge. 10 nm FinFETs shall continue to suffer from ag-
ing and the device susceptibility to different aging mechanisms shall also change
with the introduction of new device structures and materials [SWS+14]. There is
also evidence that nano-FinFETs experience degradation more severely than planer
devices [LKC+13, LWL+14]. A continuous decreasing trend in transistor lifetime
across advancing technology nodes [HCF+15] calls for efficient countermeasures
against aging. Typical guardband techniques lower the target frequency at design
time such that the system can still operate at the end of lifetime, although at the
beginning of lifetime the system is capable of operating at a higher frequency. For
the current technology nodes, aging, in particular NBTI, leads to an even higher
shift (50 mV in average) in the threshold voltage [CKR+15] in the worst case than
the variation caused by the manufacturing process. Therefore, a larger timing mar-
gin would be required on top of the margin tailored for the process variation. This
pessimistic over-design may eventually offset the performance benefit enabled by the
technology scaling.

5

1 Introduction and Motivation

1.1.3 Addressing the Challenges

The challenges from up-scaling lie in the conflict between the growing demand of
high dependability product and the increasing difficulty in manufacturing a defect-
free chip. Down-scaling enables higher performance which is however diminished by
the introduction of large guardbands against the spatial and temporal variability in
the transistor characteristics.

Besides Moore’s Law in the visionary paper [Moo75], it was also recognized that
system reliability was improved dramatically along with the increasing functional
integration. In the 90’s, Texas Instruments and Intel are striving to reach the relia-
bility goal of 0.1 FIT3 [Gha91] and 10 FIT [STW98] by the year 2000, respectively.
However, the efforts to improve the product reliability still fall behind the imminent
challenges in the nano-CMOS technology. Following the current down-scaling trend,
the complications in the manufacturing process are envisioned to become more chal-
lenging in the future [Kuh12, SAB+13]. Merely relying on the improvement in the
manufacturing process is therefore determined not to be able to meet the depend-
ability goals desired by the upper tier vendors such as automotive suppliers [vT08]
which expect zero defect in product and zero failure in time. New solutions in ad-
dition to the extensive testing during production and verification during design are
necessary to address these challenges.

Runtime dependability management opens a new level of freedom to address the
above nano-era dependability issues. A runtime strategy has the following advan-
tages: 1) Latent faults not detected during manufacturing and permanent faults
caused by aging can be detected using online tests; 2) The system is able to adapt
itself to changing environment conditions in a way that optimized decisions, trading-
off performance and dependability, can be made during runtime, instead of a static
pessimistic design decision that targets the worst environment condition; and 3) A
further optimization potential can be exploited that takes into account the differ-
ent dependability requirements of workloads and the impact of them on the system
states.

In this thesis, runtime self-defense mechanisms including online monitoring, run-
time dependability modeling and the orchestration of dependability countermeasures
are developed to increase the system reliability and availability. Escaped faults from
manufacturing tests are detected and localized by online testing. Concurrent error
detection captures random hardware failure and prevent them from propagating
into other functional units in the system. Fault-tolerance techniques are developed
to isolate permanent or transient faults such that the system continues delivering
service even in an impaired state. Transistor aging effects are mitigated to allow for
an extended system lifetime or a tighter guardband at the beginning of the system
lifetime.

3Failure-In-Time: 1 FIT = 1 failure in 1 billion hours

6

1.2 Thesis Contributions

1.2 Thesis Contributions

The contributions of this work are summarized as follows:

Pre- and Post-configuration Test: The correct operation of runtime recon-
figurable architectures essentially relies on the dependability of the reconfigurable
fabric on the FPGA. This requires that the underlying hardware structures are
fault-free and the accelerator reconfiguration process completes without errors. In
this work, these are ensured by on-demand and periodic testing: Pre-configuration
test (PRET) checks the structural integrity of the underlying hardware before the
instantiation of accelerators and Post-configuration test (PORT) periodically checks
the correct functionality of configured accelerators after they are instantiated. The
strategic scheduling of PRET and PORT delivers high fault coverage and low test
latency at marginal performance cost.

Module Diversification: If part of the reconfigurable fabric is detected to be
faulty, system breakdown is avoided by employing the novel design method called
module diversification. Alternative configurations of accelerators that have diver-
sified resource usage are generated during design time. Self-repairing is achieved
by circumventing the faulty resources with accelerator configurations that do not
require the faulty resources. The module diversification process is able to generate
minimal number of diversified configurations of each accelerator in order to minimize
the storage overhead of configuration bitstreams.

Stress-aware Placement: System degradation threatened by aging effects is ad-
dressed by stress-aware runtime accelerator placement and design time logic place-
ment. During runtime, the stress induced by accelerators is uniformly distributed
over all available reconfigurable resources. At design time, the overlapping of high
stress regions among individual accelerators is minimized to further improve the
runtime stress distribution. Both together balance the intra- and inter-region stress
induced by the application workload at negligible performance cost, which leads to
significant maximum stress reduction and prolonged system lifetime.

Adaptive Modular Redundancy: For applications with strict reliability con-
straints, highly reliable operation of accelerators is required, which is however threat-
ened by soft-errors in the configuration memory. A single bit-flip in the configura-
tion memory may impair the functionality of the accelerators. Concurrent error
detection techniques such as modular redundancy are obligatory, which may incur
high resource usage and performance loss due to over-protection. To guarantee the
required reliability at minimal performance cost, the runtime system dynamically se-
lects appropriate redundancy degree of accelerators, depending on the vulnerability
of individual accelerators, reliability constraints of the application and environmen-
tal radiation level.

By exploiting the inherent flexibility provided by runtime reconfigurable archi-
tectures, this thesis addresses the nano-era dependability challenges in a cross-layer
fashion, from transistor layer over circuit layer till accelerator layer, from design time
to runtime. With strategic online testing, self-repairing, stress balancing and adap-
tive modular redundancy, a resilient and highly dependable runtime reconfigurable

7

1 Introduction and Motivation

architecture is accomplished at minimal hardware and runtime overhead.

1.3 DFG Research Program SPP-1500 and InvasIC

This thesis is accomplished in the scope of the the DFG Priority Program SPP 1500
“Dependable Embedded Systems”4 [HHH+11]. This program focuses on the various
reliability concerns in the nano-era, including manufacturing variability, aging, the
impact of temperature and soft errors and addresses these from a wide range of
perspectives including operating systems, compilers, micro-architectures and appli-
cations themselves [HBD+13].

Research groups from ten German universities proposed twelve research projects
to approach these reliability issues by their own competences and expertise. These
projects emphasize on solutions that leverage cross-layer methodologies, employ
runtime adaptation and exploit application resilience. Cross-layer methodologies
are able to capture the propagation of faults from lower to upper layers and allow
the combined optimization on multiple layers. Runtime adaptation utilizes various
online monitoring facilities to observe the system behavior and environmental pa-
rameters, e.g. error counters, radiation sensors, online self-test, etc. They provide
the opportunities to dynamically optimize the system performance and power in
a changing environment under changing system states and thus to avoid the pes-
simistic margining techniques at design time. Similarly, by considering the inherent
reliability characteristics of applications, cost-efficient reliability methods can be
developed, which prevent high performance/energy cost due to over-protection.

This thesis is funded by one of the twelve projects, called OTERA (Online Test
Strategies for Reliable Reconfigurable Architectures), which targets the reliability
improvement in runtime reconfigurable architectures and closely follows the preced-
ing strategies for cost-efficient runtime reliability management.

Another related research program, Invasive computing5 (InvasIC) [HHB+12], pro-
poses a new programming paradigm for heterogeneous many-core architectures,
where applications are delegated the ability to request (invade) and free (retreat
from) compute tiles, so-called resource-aware programming. A tile-based many-core
platform is developed to demonstrate the value of invasive computing. The compute
tiles provide a set of rich heterogeneous computational resources, e.g. RISC cores, re-
configurable processors and special purpose hardware accelerators. An agent-based
distributed system manages the efficient resource distribution depending on the ap-
plication requirements. The target architecture of this thesis is based on one type
of the compute tiles, i-Core [HBGZ14], that extends the instruction set of a general
purpose processor with special instructions to allow the hardware acceleration in
the reconfigurable fabric.

4http://spp1500.itec.kit.edu
5http://invasic.de

8

1.4 Thesis Outline

1.4 Thesis Outline

The rest of this thesis is structured as follows:

Chapter 2 provides the background knowledge of FPGA-based reconfigurable ar-
chitectures and dependability issues in CMOS circuits. After introducing the struc-
tures of an FPGA and the principles of reconfiguration, the reconfigurable archi-
tectures that employ FPGAs as the reconfigurable fabric and the acceleration of
applications on them is discussed. Next, the dependability issues that cause per-
manent and transient faults in CMOS circuits, i.e. aging and single event upset,
are presented in details, along with the mathematical models used in this thesis for
these degradation mechanisms. Afterwards, an overview of classical techniques for
increasing the dependability of FPGAs including test, concurrent error detection
and scrubbing are provided. Finally, related work on dependability improvement in
FPGA-based reconfigurable systems is presented.

Chapter 3 provides a high-level overview of the contributions of this thesis and
the target architecture. It shows how the dependability issues are addressed from
two perspectives: structural integrity and functional correctness, along with the
cause-effect analysis of the proposed methods across multiple abstraction layers.
The architectural assumptions and the evaluation platform used in this thesis are
introduced as well.

Chapter 4 presents the online test strategies for reconfigurable architectures, con-
sisting of pre-configuration structural test and post-configuration functional test.
The hardware integration of the proposed test schemes into the reconfigurable fab-
ric and their runtime scheduling are discussed. The performance overhead and test
effectiveness are evaluated in the experiments.

Once permanent faults are detected and localized, they need to be avoided during
the computation. Chapter 5 presents a design method called Module Diversification
that is able to isolate the faulty resources from the computation, without affecting
the system performance. The conditions for successful fault isolation is discussed
and an algorithm for generating the minimum set of diversified configurations is
developed. The reliability improvement and timing cost are evaluated.

To avoid the emerging of faults due to aging effects, Chapter 6 provides a solution
by distributing the stress induced by workload uniformly over all reconfigurable
resources. An algorithm for runtime accelerator placement and an algorithm for
synthesis-time logic placement are developed. The resulting stress reduction and
lifetime improvement, together with performance overhead, are evaluated.

Targeting soft errors, Chapter 7 presents a method which allows for autonomous
runtime reliability management in reconfigurable architectures. The concept of im-
plementation variants trading-off performance and reliability is introduced. A math-
ematical framework is provided to determine the error probability of the computa-
tions in the reconfigurable fabric. A runtime system is developed that dynamically
chooses the appropriate implementation variants to guarantees a target reliability
while optimizing performance. Experimental evaluation shows the performance im-

9

1 Introduction and Motivation

provement compared to a static approach.

Chapter 8 evaluates the resulting system from the perspectives of structural in-
tegrity and functional correctness. It investigates the system behavior including
performance and stress state in the presence of permanent faults. It shows the
dynamic adaptation of the system to guarantee the computation correctness in a
varying environment. The results are compared with state-of-the-art methods.

Chapter 9 concludes this thesis with a guide to future research directions.

10

2 Backgrounds

In this chapter, the fundamental structure of field-programmable gate arrays and the
basic concepts of reconfiguration are presented in Section 2.1. An introduction to the
emerging architectures based on general purpose processors and reconfigurable fabrics
is given in Section 2.2. Two major dependability issues in the reconfigurable fabric,
aging effects and single event upset, are discussed in Section 2.3. The employed fault
models for soft-errors, stress models for aging effects and aging models for calculating
threshold voltage shift are presented in Section 2.4. Section 2.5 provides an overview
of the classical techniques for improving system dependability. Related work and
state-of-the-art dependability techniques for reconfigurable systems are discussed in
Section 2.6.

2.1 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are semiconductor devices whose func-
tionalities are defined by users after manufacturing. In contrary to a General Pur-
pose Processor (GPP) that delivers the desired functionalities by the execution of
sequential instructions stored in a memory, an FPGA implements the functionalities
directly using its hardware structure. Complex functions such as a video encoder or
even a processor can be mapped to the abundant logic gates in an FPGA, while in
a GPP they can only be performed using few Arithmetic Logic Units (ALUs) which
provide a very limited set of primitive arithmetic and logic functions. In compari-
son to an Application-Specific Integrated Circuit (ASIC) that are a full-customized
hardware structure for a dedicated application, an FPGA offers the flexibility that
its hardware organization can be freely reconfigured to implement user-defined ap-
plications.

In this thesis, the target FPGA used for experiments and prototyping is a Xilinx
Virtex-5 XC5VLX110T FPGA [Xil12d].

2.1.1 The Reconfigurable Fabric

The fundamental idea behind the hardware reconfigurability in an FPGA is to pro-
vide a large amount of reconfigurable primitive logic elements and routing struc-
tures such that arbitrary logic functions can be mapped to these primitives. After
30 years of exploration and evolution, modern commercial FPGAs have converged
to the island-style architecture [Tri15] shown in Fig. 2.1. Configurable Logic Blocks
(CLBs) and Programmable Switching Matrices (PSMs) are the two essential com-
ponents of an FPGA. They are arranged in a two-dimensional array and repeat

11

2 Backgrounds

PSM

CLB

PSM

CLB

PSM

CLB

PSM

CLB

PSM

CLB

PSM

CLB

...

...

...

...

...

...

...

...

...

...

Routing
channels

Figure 2.1: Island-style FPGA architecture

themselves across the whole FPGA. Special purpose components such as on-chip
memories and Digital Signal Processors (DSPs) can be embedded in the array or in
place of CLBs to provide efficient implementation of storage and arithmetic circuits.
CLBs are the basic reconfigurable logic elements in an FPGA.

CLBs are surrounded by routing channels that are segmented by PSMs, like CLB
islands in a sea of wires. So comes the name “island-style”. The communication
of electric signals among CLBs are configured using the PSMs. Each CLB has an
attached PSM that manages the signals coming out of and going into the CLB.
The PSMs are also responsible for the establishment of the connections between the
horizontal and vertical wires in the routing channels such that any two CLBs in the
fabric can communicate with each other.

2.1.2 Configurable Logic Blocks

The CLBs are the basic reconfigurable resources for implementing combinatorial
and sequential logic functions. In this thesis, a Xilinx-style CLB structure [Xil12d]
is targeted. Figure 2.2 shows a 2×2 arrangement of four CLBs, where PSMs and
routing channels are omitted for illustrative purposes. Each CLBs consists of two
slices that are aligned in columns. Neighboring slices in one column are directly
connected by carry signals for the compact implementation of carry chains of adders
so that the timing critical carry signals need not to be routed through the global
routing matrix.

Every slice contains four identical set of reconfigurable resources including Look-
Up Tables (LUTs), configurable registers and configurable internal routing. Fig-
ure 2.3 shows a simplified view of one set of the reconfigurable resources. Detailed
structural view of a slice can be found in [Xil12d]. The main components in a slice
are

• a 6-input LUT that is used to implement an arbitrary boolean function with
maximum 6 variables,

12

2.1 Field-Programmable Gate Arrays

CLB

Slice
X0Y1

Slice
X1Y1

Carry
Out

Carry
In

CLB

Slice
X2Y1

Slice
X3Y1

CLB

Slice
X0Y0

Slice
X1Y0

Carry
Out

Carry
Out

Carry
In

Carry
Out

Carry
In

CLB

Slice
X2Y0

Slice
X3Y0

Carry
Out

Carry
Out

Carry
In

Carry
Out

Carry
Out

Figure 2.2: Xilinx-style CLB structure [Xil12d]

6-input
look-up

table Carry
logic

Config.
internal
routing

Config.
register

...
...

...
...

...
...

...
...

Figure 2.3: Reconfigurable resources in a slice

• a multiplexer that can be cascaded with other multiplexers within the same
slice to provide a wide multiplexing,

• a carry logic that enables carry propagation through slices in one column,
• a multiplexer-based configurable internal routing to select which signal in the

slice should be a registered output, and
• a configurable register that can be configured into an edge-sensitive flip-flop

or a level-senstive latch and holds a user-defined initial state.

The LUTs are the core components in an FPGA for the implementation of com-
binatorial logic functions. The 6-input LUT is basically a truth table based on a
read-only memory with 64 (26) 1-bit cells. The inputs of the boolean function act as
the address bits of the memory and the stored single bit at that address as the result
of the boolean function. Multiple LUTs in one slice can be combined to operate as
a Distributed RAM to store up to 256 bits of data [Xil12d].

13

2 Backgrounds

M0

M1

M2

M3

In0 In1

Out

M0

M1

M2

M3

In0 In1

Out

(a) (b)

Figure 2.4: Internal structure of a 2-input LUT

2.1.3 Transistor-Level LUT Model

In this thesis, a transistor-level LUT model based on pass transistors [PC03, SSC09,
KAT11] is employed, as shown in Fig. 2.4(a) for a 2-input LUT. M0–M3 are four 1-
bit memory cells which store the four possible outputs of the LUT. The two inputs of
the LUT, In0 and In1, determine the on/off states of the pass transistors and create
a path from one of the memory cells (M0–M3) to the LUT output, i.e. forcing the
value of the LUT output to be set to the value of the selected memory cell. The
inverters behind the memory cells and at the output act as signal buffers for driving
long paths in the LUT and large fan-outs outside the LUT, respectively. A 6-input
LUT can be constructed in a similar way, where 64 memory cells are being selected
by 6 stages of totally 126 (26 + 25 + · · ·+ 2) pass transistors.

Alternatively, the LUT structure can be modeled using 2:1-multiplexers, as shown
in Fig. 2.4(b). A pair of pass transistors that take opposite control signals and share
one output signal line can be wrapped as a 2:1-multiplexer. The select signals of
the multiplexers are connected to the LUT inputs. From this point of view, a LUT
is a wide multiplexer consists of multiple stages of cascaded 2:1-multiplexers.

2.1.4 Programmable Switching Matrices

The PSMs are the core components of the reconfigurable routing resources, which
establish the interconnections among CLBs in the routing channels. The routing
channels are arranged in a grid fashion, i.e. wires going either vertically or horizon-
tally, as shown in Fig. 2.1. At the intersection of these channels, the PSMs offer the
possibilities to connect the wires in orthogonal directions.

As shown in Fig. 2.5, at the cross points of wires in a PSM, Programmable Inter-
connection Points (PIP) provide the configurability for routing. Each PIP contains
six pass transistors whose control terminals are connected with 1-bit memory cells.
These pass transistors enable six routing options for the two crossing wires: 1) top
to bottom, 2) left to right, 3) top to right, 4) bottom to right, 5) top to left and 6)
bottom to left, the connectability of which is controlled by the bit stored in the cor-
responding memory cells. Depending on the physical implementation of the FPGA,

14

2.1 Field-Programmable Gate Arrays

..
.

PSM

...

..
.

...

..
.

...
..
.

...

PIP

M

M

Figure 2.5: Internal structure of a PSM and a PIP [HCJ+90]

these connections may be bidirectional or unidirectional. Some constraints may
apply to which routing options can be enabled simultaneously in order to prevent
illegal routing scenarios or race conditions, such as turning on all pass transistors at
the same time in a extreme case.

2.1.5 Configuration Memory

As presented in previous sections, the logic functions within CLBs and the inter-
connections among CLBs are controlled by configuration bits stored in a memory,
which is called configuration memory. To configure an FPGA to implement the
desired functionality, the configuration bits of all used reconfigurable resources need
to be set to appropriate values so that CLBs are configured to perform the de-
sired logic functions and the PIPs in PSMs are configured to establish the necessary
interconnections among used CLBs.

The exact values of configuration bits are prepared by tools from the FPGA
vendors. The circuit description, usually written in hardware description languages
(VHDL or Verilog) are first synthesized to a gate-level netlist which describes which
logic gates to use and how they are connected to implement the circuit. The logic
gates and connection wires are then mapped to the logic resources (e.g. LUTs and
registers) in the CLBs and wires in the routing channels, respectively. In the last
step, the mapping is translated to the values of the configuration bits of CLBs and
PIPs. The prepared configuration bits during design time are stored in a binary file,
so-called bitstream file, which can then be written into the configuration memory
inside the FPGA by means of different configuration modes, e.g. by using boundary
scan or the Internal Configuration Access Port (ICAP) [Xil12c].

In Xilinx FPGAs, the configuration bits are arranged in frames in the configura-
tion memory [Xil12c]. A frame is the smallest addressable unit in the configuration
memory and contains the configuration bits of reconfigurable resources spanning
the height of one clock region1. As shown in Fig. 2.6 for a Xilinx Virtex-5 FPGA,
the FPGA is partitioned into 4 clock regions, each of which spans across the whole

1A clock region is a branch of the clock tree which allows zero-skew clock distribution in an
FPGA. In Virtex-5 FPGAs a clock region is 20 CLBs in height [Xil12d].

15

2 Backgrounds

Clock region 1

Clock region 2

Clock region 3

Clock region 4

FPGA with 4
clock regions

... ...

CLBs in one
clock regions

...

2
0

 C
LB

s

36 frames for
1 CLB column

1 frame
1312 bits

W
o

rd
 1

...
..

.
W

o
rd

 2
1

W
o

rd
 4

1

640 bits for
10 CLBs

640 bits for
10 CLBs

Misc. &
ECC bits

Figure 2.6: Configuration frames in a Xilinx Virtex-5 FPGA

FPGA in width and is of 20-CLB height. The configuration bits for one column of
CLBs (including the attached PSMs) in one clock region are grouped in 36 frames,
each of which contains 1312 bits (41 32-bit words). The bits in one frame are orga-
nized in such a way that the word 1..20 are for the 10 lower CLBs and word 22..41
are for the upper 10 CLBs. Word 21 in the middle of the frame is a special word
that contains miscellaneous configuration bits and a 12-bit Error Correction Code
(ECC) for the whole frame. These ECC bits allow any single-bit errors in a frame
to be corrected and any double-bit errors to be detected, where the errors may be
caused by single event upset (see Section 2.3.4).

In modern FPGAs, the configuration memory is typically implemented using
SRAM or flash technologies [KTR08]. SRAM-based FPGAs are the dominating
technology mostly because of 1) unlimited reconfigurability and 2) compatible with
standard CMOS manufacturing technology. Unlike flash cells, SRAM cells do not
suffer from wear-out during the write process and therefore has indefinite number of
reconfiguration (write) cycles. Being manufactured using standard CMOS transis-
tors, SRAM-based FPGAs also immediately benefit from the latest advances in the
semiconductor technology and thus provide higher logic density, faster switching
speed and lower energy consumption. Thanks to these advantages, SRAM-based
FPGAs are considered to be the most appropriate technology for runtime reconfig-
urable architectures.

2.1.6 Partial Reconfiguration

Modern FPGAs allow the runtime reconfiguration of a part of the FPGA without
interrupting the operation in the rest part [Xil12b]. This flexible feature is called
partial reconfiguration. In Xilinx FPGAs, the basic unit of partial reconfiguration
is a rectangular partition in the FPGA. In this thesis, this is called a reconfigurable
region or in short a region.

Figure 2.7 illustrates the concept of partial reconfiguration of regions. A region
consists of a rectangular array of CLBs and corresponding PSMs. The dimensions

16

2.2 Fine-Grained Reconfigurable Architectures

... ...

...
...

Reconfigurable
regions

Reconfigurable fabric

Partial bitstreams

Partial bitstreams

Reconfigure

Reconfigure

Figure 2.7: Partial reconfiguration with partial bitstreams

of the region can be arbitrarily chosen with minimum allowed height or width of one
CLB. The reconfigurable resources outside the regions are defined as the static part
in the FPGA. Every region can be reconfigured independently of each other and
without compromising the operation states in other regions or in the static part.
One region can be reconfigured to implement different functional modules by recon-
figuration using different partial bitstreams, which contains only the configuration
bits for the reconfigurable resources in that region. Xilinx recommends that the
region boundary in height be aligned with one or multiple clock regions whenever
possible [Xil12b], because one configuration frame spans a height of exactly one clock
region. Otherwise, the partial bitstreams would contain unused configuration bits
for resources lying outside the reconfigurable region, which leads to the unnecessary
storage overhead for the partial bitstreams.

The flexibility provided by partial reconfiguration enables efficient FPGA area uti-
lization by multiplexing the hardware in time and space. This is of great importance
for runtime reconfigurable architectures, where different accelerators are prepared
as partial bitstreams so that they can be configured into the FPGA on-demand
depending on the application needs.

2.2 Fine-Grained Reconfigurable Architectures

The persistent demands for computing power fueled by complex applications such
as big data analytics and artificial intelligence are encouraging the innovations on
high performance and energy-efficient processor architectures.

2.2.1 Filling the Gap between GPP and ASIC

Multi-core general purpose architectures, including CPUs and modern GPUs, are en-
ergy inefficient compared to ASICs, since the majority of the energy consumption is
for supporting the general purpose instruction-based execution model, e.g. instruc-

17

2 Backgrounds

tion fetching/decoding, while not for performing actual computations [CGG+14].
To increase the performance for ever more complex applications, a straightfor-
ward approach of simply piling more cores will inevitably face the wall of dark
silicon [EBS+11]. The power consumption and heat dissipation will eventually limit
the maximum number of concurrently operating cores, which defeats the purpose of
core scaling, i.e. using more cores to handle more work.

ASICs and Application-Specific Instruction set Processors (ASIPs) are much more
superior than multi-core architectures in terms of performance and energy efficiency.
ASICs, e.g. video processors, are fully customized and highly optimized circuits for
a particular application, while ASIPs, e.g. Digital Signal Processors (DSPs), extend
the instruction set of GPPs with dedicated computation units for a selected set
of operations. However, both approaches are optimized or even only usable for a
very narrow set of applications. For instance, running a music player on a video
processor ASIC or a web server on a DSP would be very inefficient or not possible
at all. In order to support a wide range of different applications while preserving
the advantages, the application-specific architectures would need to integrate a large
set of dedicated hardware modules for each type of applications, which would incur
expensive area cost and long design time. On the other hand, not all applications
would run simultaneously and therefore not all dedicated hardware modules are
required at the same time. This inefficient area usage gives rise to the ideas of
reconfigurable architectures: changing the hardware organization on-demand based
on the application requirements.

Reconfigurable architectures strike a balance between the utmost flexibility pro-
vided by general purpose architectures and the high efficiency of application-specific
hardwares. They support the execution of arbitrary applications while also provid-
ing the acceleration capabilities using reconfigurable hardwares. Meanwhile, they
avoid the inefficient area utilization by time or space multiplexing the hardware area
for different applications.

Two types of reconfigurable architectures exist: fine-grained reconfigurable archi-
tectures or FPGA-based reconfigurable architectures, and Coarse-Grained Recon-
figurable Architectures/Arrays (CGRAs). This thesis focuses on the fine-grained
reconfigurable architectures, since they are based on off-the-shelf FPGAs that are
easily accessible. In contrast, CGRAs require customized hardware implementation
and compiler support, and thus are not chosen as the target platform.

Figure 1.1 shows a typical structure of FPGA-based reconfigurable architectures,
where an FPGA-based reconfigurable fabric partitioned into multiple regions is cou-
pled to a GPP. At runtime, depending on the application requirements, accelerators
can be configured into the regions to speedup the application execution.

2.2.2 Coupling of a Reconfigurable Fabric to a GPP

Three GPP-FPGA communication channels are involved in the FPGA-based accel-
eration: 1) control signals from GPP to FPGA and status information from FPGA
to GPP, 2) input data from GPP to FPGA and processing results from FPGA to

18

2.2 Fine-Grained Reconfigurable Architectures

GPP

Cache

I/
O

 In
te

rf
a

ce

Reconf.
fabric

Memory

Memory

GPP

Cache

Reconf.
fabric

Memory

Cache

Reconf.
fabric

Memory

GPP

(a) (b) (c)

Figure 2.8: Three degrees of coupling between FPGA and GPP: (a) loosely coupled, (b)
co-processor and (c) tightly coupled

GPP and 3) read and write memory access directly from FPGA. The underlying
communication mechanisms depend on the degree of coupling between FPGA and
GPP [TCW+05], as shown in Fig. 2.8.

In loosely coupled reconfigurable architectures (Fig. 2.8(a)), the sole communi-
cation path between GPP and FPGA is through the I/O interface of the GPP,
e.g. PCI Express and the memory spaces of them are strictly separated. This sort
of coupling supports relatively slow data transfer between these two devices and
is only suitable for applications where minimum processor-fabric interaction is re-
quired. Before the execution of the accelerator in the fabric, the input data are
transferred from the processor memory to the memory dedicated to the fabric. The
accelerator then operates on the data in its local memory and transfers the results
back to the processor after the accelerated computation is done. The computation
in the fabric only brings speed-up when the time spent in the fabric is significantly
greater than the time spent in the inter-device data transfer. A major advantage
of the loose coupling is that no modification to the processor design is necessary.
The fabric is just another peripheral device from the processor’s point of view. The
Catapult data-center accelerator from Microsoft [PCC+14] and Zynq UltraScale+
MPSoC from Xilinx [Han16] employ this sort of coupling.

The fabric can be moved more closer to the processor as a co-processor (Fig. 2.8(b)).
This enables the memory sharing between the two devices and even cache coherency,
as in the IBM’s Coherent Accelerator Processor Interface (CAPI) [IBM15]. There-
fore, no inter-device data transfer is required, which dramatically reduces the mem-
ory access overhead. The control/status channel can be established over traditional
I/O or co-processor interfaces of the GPP. The shared memory model however
requires modification in the processor design, particularly in the memory man-
agement unit and in the extra silicon area for implementing the cache coherency
protocol [IBM15].

In the tightly coupled architectures (Fig. 2.8(c)), the fabric is embedded into the
processor and becomes part of it. Essentially, the fabric plays the role as a special
functional unit like floating point units and additional custom instructions together
with support circuitry are created such that they can be decoded and executed in
the fabric. Once the accelerator is configured into the fabric, the initiation of an
accelerated execution takes very few time (in the order of cycles) and the compu-

19

2 Backgrounds

tation results can be directly written to the processor register files. In comparison
to other coupling mechanisms, the tight coupling offers the lowest performance and
communication overhead for an accelerated execution in the fabric, while requiring
the most design effort for integrating the fabric into the processor pipeline.

In this thesis, the proposed methods are applicable to any of the above coupling
schemes, although the target platform (see Section 3.2) is a tightly coupled recon-
figurable architecture.

2.2.3 Hardware Acceleration of Application Kernels

To accelerate the execution of an application in the reconfigurable fabric, various
design steps are necessary during the application lifetime, from compile time to
runtime.

Kernel Identification and Accelerator Development

First, the segments of codes in the application that need to be accelerated, i.e. the
compute-intensive parts (so-called kernels), are identified. These codes are typically
arithmetic operations on large arrays of data and are composed of loops iterating
over the arrays. Each iteration in the loops is rather independent of another and
thus the loops can be unrolled to achieve high data parallelism in hardware. In
addition, the arithmetic operations might have more efficient hardware implementa-
tions than those in the ALUs of GPPs, e.g. Multiply-Accumulate (MAC) or bit-level
manipulations. Next, these operations are mapped to one or more accelerators. The
mapping process can be performed automatically or manually [GB11]. Depending
on the I/O constraints imposed by the fabric-processor and fabric-memory commu-
nication channels, a combination of the operations or a kernel as a whole will be
identified as an accelerator to be implemented in the fabric [GMP15].

After the functionalities of the mapped accelerators are determined, these hard-
ware accelerators are synthesized by using C-to-RTL tools such as Xilinx Vivado
HLS [Xil16c] that directly transforms C codes to hardware descriptions, or by man-
ually designing the hardware according to the functions specified in the original
codes such that a more optimized design can be produced. Auxiliary logic re-
quired for managing the communication with the GPP or memory such as in IBM
CAPI [IBM15] may need to be inserted into the accelerator. The bitstream files
for every accelerators are then generated. Meanwhile, a runtime system, usually
running on the host GPP, is notified about the availability of the implemented ac-
celerators and the storage location of the bitstreams. If multiple accelerators are
cooperating with each other to perform the kernel functionality, their operation re-
lations are described by a control-data-flow graph. It specifies in which control step
an accelerator shall operate and from which of the other accelerators it receives the
input data. This graph will also be made available to the runtime system for steering
the cooperated accelerator execution.

20

2.3 Dependability Issues in CMOS Circuits

In this thesis, a generic model of applications consisting of multiple accelerated
kernels is employed, as present in Section 3.1. It is independent of the processor-
fabric coupling and inter-accelerator communication mechanisms.

Runtime Accelerator Management

Before the execution of an application kernel, the required accelerators need to be
configured into the fabric. The following problems are solved by the runtime system
before starting the actual configuration.

Selection determines which accelerators shall be configured into the fabric, given
the limited number of reconfigurable regions. In this work, a selection algorithm is
proposed in Chapter 7 to trade-off accelerator parallelism with redundancy.

Scheduling arranges the sequence of configuring multiple accelerators, which ben-
efits those kernels that can start computing immediately when only a subset of
accelerators is available [BSKH08].

Placement decides which accelerator shall be placed into which region. It optimizes
the communication overhead among accelerators [GBH12] or the stress distribution
to increase lifetime as presented in Chapter 6.

The configuration of the accelerator bitstreams takes a certain amount of time. For
instance, the maximum configuration bandwidth through ICAP in a Xilinx Virtex-5
FPGA is 400Mbps and the number of configuration bits of one CLB column of one
clock region is 47,232 bits (see Section 2.1.5). Configuring a small accelerator of four
CLB columns would take at least 0.48 ms, which amounts to almost 5× 104 cycles
in a system running at 100 MHz. To avoid the kernel waiting for the completion of
accelerator configurations, it is a better practice to perform the accelerator configu-
ration before encountering the kernel, a technique called prefetching [CH11]. With
prefetching, the configuration of the accelerators of the next kernel occurs while the
system is still busy computing the current kernel or non-accelerated instructions
on the GPP. For this purpose, runtime prediction techniques are required to guess
which kernel and accelerators will be most probably executed next such that when
the kernel is about to execute, the required accelerators are already configured in
the fabric. In this thesis, a prediction technique based on the combination of offline
profiling and online monitoring [BSKH07] is employed in the base architecture.

2.3 Dependability Issues in CMOS Circuits

Over time, microscopic phenomena change the material properties of a chip, in a
negative fashion. Depending on the usage conditions, e.g. circuit activities, temper-
ature and voltage, the behavior of the transistors and wires varies since the start of
their operation, which degrades their electrical characteristics. This time-dependent
degradation is called aging. In nano-CMOS circuits, the major aging effects are the
following.

21

2 Backgrounds

Bias Temperature Instability (BTI) is mainly caused by the breaking of the Si–H
bonds at the interface between the gate dielectric and the silicon substrate under
elevated temperature and electric field across the gate dielectric [JMGM12]. The
dangling bonds of the interface silicon atoms constitute the interface defects or traps
that restrict the movement of charges. These charged traps in the gate dielectric
shield the electric field applied at the gate terminal of the transistor. They also
reduce the amount of carriers induced in the conducting channel, which leads to the
degradation of the current drive capability of transistors.

Hot Carrier Injection (HCI) also leads to the build-up of traps within the gate di-
electric. After the transistor channel is formed, the carriers are flowing through it
driven by the electric field exerted between source and drain. Part of the carriers
may obtain enough energy (become “hot”) to overcome the energy barrier at the in-
terface, penetrate into the gate dielectric and eventually generate new defects/traps
by kinetic energy transfer at the interface and in the gate dielectric [CVS+14].

Time-Dependent Dielectric Breakdown (TDDB) creates a undesired conducting
path through the gate dielectric from the gate to the substrate and thus disables
the ability of the gate to control the current between source and drain. Multiple
microscopic mechanisms collectively induce the breakdown [WSV09]. Holes injected
from gate electrode [HL99] and silicon substrate [TUKT97] may get trapped in the
gate dielectric and when the hole density exceeds a critical value, the dielectric be-
comes conducting through the path formed by the holes. Thermochemical processes
break the molecular bonds in the dielectric and create traps which may also form
conductive paths [MKSM03]. The hot-carriers injected into the dielectric due to
HCI effect generate traps in the dielectric and thus contribute to the breakdown
process [CKGdK03] as well.

Electro-Migration (EM) is a well-known aging effect affecting metal wires [Bla69].
At high current density, metal ions are transported away from their original loca-
tions due to the momentum transfer from the conducting electrons. The transport
of metal materials leads to void or thinning in the wires, which translates to a dra-
matically increased resistance or ultimately an open circuit. The metal ions that are
carried away can also pile up at another location on the wire and eventually form a
hillock that touches a neighboring wire, causing a short circuit. In digital circuits,
power supply lines are most susceptible to EM because they have to sustain the
current in a single direction for a long period [Lie13]. In contrast, signal or clock
networks bear current in alternating directions and thus undergo self-healing effect
where materials are transported back when current changes direction.

This thesis focuses on the mitigation of BTI and HCI effects since they are the
dominating aging mechanisms in nano-CMOS technologies [CVS+14].

In addition to aging, Single Event Upsets (SEUs) further threatens the depend-
ability of reconfigurable architectures with SRAM-based FPGAs. SEU originates
from the ionizing particles in the nano-electronic devices, which induces transient
current pulse in the circuit that may alter the values of logic signals, leading to soft
errors. The errors are “soft” because they can be corrected by recomputation. SEU
affects both combinational and sequential logic. At low operation frequency, the ma-

22

2.3 Dependability Issues in CMOS Circuits

jority of the soft errors are from sequential logic, whereas at high frequency errors
from combinatorial logic become dominant [FCMG13]. Because the functionality of
a circuit implemented on an FPGA is defined by the configuration bits stored in
the configuration memory, a soft error altering a configuration bit essentially modi-
fies the circuit implementation and this malfunction will persist until the corrupted
configuration bit is corrected. A “soft” error in the configuration bits can thus be
considered as a “hard” fault in the circuit.

The following subsections provide the necessary physics background for BTI, HCI
and SEU effects.

2.3.1 Basic Operation Principles of MOSFET

p-type silicon substrate

n+
Source

n+
Drain

p+

B S D
G

Depletion region

Metal gate

Channel

Gate dielectric

Figure 2.9: Basic structure of a NMOS transistor

The metal-oxide-semiconductor field-effect transistor (MOSFET) is a type of tran-
sistor whose conductivity is controlled by the electric field exerted across a insulating
oxide between a metal and a semiconductor. Figure 2.9 shows the basic structure
of a planar n-type MOSFET (NMOS) in which the current during conduction are
carried by electrons, while in p-type MOSFETs positively charged holes are the car-
riers. A MOSFET has four terminals which are called body (B), source (S), gate (G)
and drain (D). The source and drain are highly doped n-type regions embedded in
the p-type substrate. The depletion region are formed at the junction of the n- and
p-type semiconductors. An ultrathin stack of dielectric materials [And12] together
with a metal layer is deposited above the channel region between source and drain,
forming the controlling gate of the transistor. When the voltage drop between the
gate and the source (VGS) exceeds a positive threshold value (Vth), a conducting
channel is induced in the substrate between source and drain. With another voltage
between source and drain (VDS), current flows between them through the chan-
nel. The body terminal controls the voltage potential of the silicon substrate. For
NMOS, it is generally connected to the ground.

The amount of current IDS flowing through the channel during conduction (VGS ≥
Vth), depending on the voltages at transistor terminals, can be captured as fol-
lows [RCN03]:

IDS = µnεox
tox

W

L

(
VGTVmin−V 2

min/2
)

(1 +λVDS)

with VGT = VGS−Vth and Vmin = min(VGT ,VDS ,VDSAT)
(2.1)

23

2 Backgrounds

where µn denotes the electron mobility, εox the permittivity of the gate dielectric,
tox the thickness of the gate dielectric, W/L the width/height of the channel and
λ the parameter for the channel-length modulation which is proportional to the
inverse of the channel length. VDSAT represents the drain-source voltage at which
the channel electrons reach their maximum velocity, i.e. further increasing VDS will
not proportionally increase IDS .

As shown in Eq. (2.1), the amount of current that a transistor is able to drive
greatly depends on the difference of VGS and Vth. An increase of Vth will reduce IDS
for the given terminal voltages and slow down the charging/discharging of the node
capacitance (i.e. the signal transition rate) in the circuits. The threshold voltage
Vth is determined by the material properties of the gate dielectric and the silicon
substrate and the body bias voltage VSB. As the aging effects slowly deteriorate the
constitution of the gate dielectric during the normal operation, Vth shifts over time,
which results in the weakened current drive capability of transistors and degraded
circuit performance.

In p-type MOSFETs (PMOS), the type of semiconductor materials is exactly the
opposite to that in NMOS, i.e. replacing n-type with p-type and vice versa. The
body terminal of PMOS is generally connected to the supply voltage. The threshold
voltage of PMOS is negative and it requires VGS ≤ Vth to become conducting.

2.3.2 Biased Temperature Instability

BTI effect can be attributed to charge trapping at the dielectric/substrate interface
and in the gate dielectric. Figure 2.10(a) shows a Transmission Electron Microscopy
(TEM) image of the material stack at the gate [AFC+09]. Above the silicon sub-
strate, a two-layer dielectric consisting of HfO2 and SiO2 is deposited and TiN
constitutes the gate electrode at the top. During manufacturing, the surface of the
Si substrate is oxidized to create a thin layer of SiO2. However, not all surface
silicon atoms will establish bonds to oxygen atoms. Some silicon atoms at Si/SiO2
interface still have one dangling bond, which is a kind of surface defects that will
impair the performance of transistors. To reduce the interface defects, the Si/SiO2
interface is further processed by annealing with forming gas [RP88], a mixture of

SiO2

Si

HfO2

TiN

Metal electrode

Silicon substrate

Gate dielectric

Si Si Si Si Si Si

Si Si Si Si Si Si

HO O O OH

O

+ + + + + +

- - - -

-

-

-

G

-

(a) Gate dielectric
stack

(b) Traps in gate dielectric (c) Weakened charge induction in channel

Gate electrode

Gate dielectric

Channel

Depeltion layer

Silicon substrate

Figure 2.10: Physical mechanism of BTI in NMOS

24

2.3 Dependability Issues in CMOS Circuits

hydrogen and nitrogen. The dangling silicon bonds are then passivated by forming
Si–H bonds [Ent07].

During the operation of the transistor, the Si–H bonds at the Si/SiO2 inter-
face and the bonds of oxygen atoms within the gate dielectric may get broken,
which generates new traps at the original locations of hydrogen and oxygen (see
Fig. 2.10(b)). These are thought to occur under the combined act of the electric field
across the dielectric, temperature and the interaction with electron/holes tunneled
from the channel [Mah15]. These newly generated traps together with the traps pre-
existing [JMGM12] in the oxides immobilize the electrons/holes in NMOS/PMOS
in the gate dielectric, as illustrated in Fig. 2.10(c) for an NMOS. Intuitively, for a
given gate voltage, these trapped charges shield part of the electric field applied at
the gate (the field lines ending at the trapped charges instead of in the substrate),
which reduces the amount of charges can be induced in the transistor channel and
thus lowers the channel current during conduction. This weakening of current drive
capability can be captured by the increase/decrease of threshold voltage (∆Vth) for
NMOS/PMOS.

Although the underlying mechanisms of BTI are still under active research [Mah15],
state-of-the-art physics-based model of BTI is used in this thesis and is presented
in Section 2.4.3.

2.3.3 Hot Carrier Injection

Very similar to BTI, HCI is also ascribed to the trap generation at the Si/SiO2
interface, but due to different root causes and occurring only near the drain region.
When a transistor is dynamic switching, current is flowing through the channel, as
shown in Fig. 2.11 for an NMOS, where the source is connected to ground (GND) and
the gate and the drain are connected to the power supply (VDD). The lateral electric
field between source and drain accelerates the electrons along the channel, which can
gain sufficiently high energy near the drain to leave the substrate and tunnel into the
gate dielectric. These high energetic (“hot”) electrons can interact with the interface
Si–H bonds and disassociate them, generating new interface traps [CVS+14]. In
PMOS, hot holes are responsible for the trap generation. The HCI aging model
used in the thesis is provided in Section 2.4.3.

p-type silicon substrate

n+
Source

n+
Drain

VDD

GND

VDD

Si

H
e- e- e-

e-e-

Figure 2.11: Physical mechanism of HCI in NMOS

25

2 Backgrounds

2.3.4 Single Event Upset

Radiation emitted from the environment in which nano-electronic devices is operat-
ing may disturb the electrical states of transistors and generate a transient current in
the circuit. In terrestrial environment, three types of radiation sources are responsi-
ble for this disturbance [Bau05]: 1) alpha particles emitted by trace-level radioactive
impurities, e.g. uranium and thorium, in the packaging materials of chips, 2) sec-
ondary neutron flux resulted from the impact of high-energy cosmic rays with earth’s
atmosphere and 3) low-energy neutrons from the cosmic background.

These three types of radiation create similar ionizing events in a transistor, as
shown in Fig. 2.12 (a). When a ionizing particle passes through a transistor, a high
concentration of electron-hole pairs is formed along the path of the particle. The
ionizing particle can be 1) an alpha particle, 2) a reaction product from the inter-
action of the neutron flux and the chip materials, or 3) the secondary radiation due
to the reaction between low-energy neutrons and doped boron, for the three above
radiation sources, respectively. When the ionizing path is close to a reverse-biased
junction (Fig. 2.12(b)), e.g. the depletion region at the drain with VDB = VDD,
the carriers are promptly collected by the electric field at the junction, creating a
large current pulse at the circuit node that corresponds to the drain. The deple-
tion region is distorted in the charge collection process and forms a funnel shape
which penetrates deep into the substrate and dramatically enhances the collection
efficiency [HMO81]. After this phase, the charges are slowly collected by carrier
diffusion (Fig. 2.12(c)), until all remaining excess charges have been collected or
recombined. Figure 2.12(d) shows the resulting current pulse of these three phases.

The amount of radiation, in particular of the neutrons provoked by cosmic rays, is
a strong function of altitude, geomagnetic location and solar activity [JED06]. The
thickness of the atmosphere decreases the intensity of cosmic rays reaching the sea
level. For example, going from sea level to the cruising altitude of commercial flights
(around 10 km), the neutron flux increases 500× (Figure B.1 shows the soft error
rate at different terrestrial altitudes). The geomagnetic field of the earth deflects
charged cosmic particles back into space, reducing the impact chance of the cosmic
rays with the atmosphere. The neutron flux is about 6× lower near the geomagnetic
equator than locations near the geomagnetic pole (see Fig. B.2). The solar activity

n+ + - + -
-+ -+
+- + -

-+ -+
+ - +-

-+ -+
+ - + -

-+ -+
+ - + -

-+ -+
+ - + -

-+ -+
+ - + -

-+ -+
+ - + -

-
-

-
-

-
-

-
-

-

-
-

- -
-

--
-

-
-

-
-

-
-

- --
-

-
-

-
-

-
--

-
-

+

+
+

+
+

+ +

+
+
++

+ +
++

+

+
++

+
+
+

+

+

+

+
++

+

+
+
+

+

+
++

-

-

-

-
- -

-
-

- +

-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+

-
+

+
-

+
-

+

+
-

+
-

-

-

--

(a) Onset of event (b) Prompt charge
collection

(c) Diffusion charge
collection

(a)

(b)

(c)

10-13 10-12 10-11 10-10

Time [s]

Current

(d) Current pulse

Figure 2.12: Physical mechanism of SEU in MOSFET [Bau05]

26

2.3 Dependability Issues in CMOS Circuits

modulates the magnetic field in the near-earth space. The neutron flux is lowest
when the sun is most active, e.g. with sunspots and strong solar wind plasma.

Depending on the affected site of particle striking in the circuit, the current pulse
has different impact on the circuit operation [FCMG13]. If the current pulse is
generated at a node in combinational logic, it will cause a transient voltage change,
i.e. a change of logic value, which may propagate along the gate chain, depending on
whether this logic change is masked by the logic values at other nodes in the circuit.
For instance, if a transient change of logic value occurs at one input of a AND-gate
while the other input of the gate holds the value 0, this transient event will have
no influence in the fan-out cone of this AND-gate because its output produces a 0
regardless of the change at the affected input. On the other hand, if a register is
affected, its stored logic value may flip, leading to a transient erroneous logic state,
so-called soft error. This soft error in the register will not persist since its value
will be set correctly during the computation in the next clock cycle. However, the
error may propagate through the rest of the circuit, producing wrong data in the
datapath and wrong states in the Finite State Machines (FSMs).

Similarly, the value stored in a SRAM cell may also be altered upon particle strik-
ing, which is particularly critical for SRAM-based FPGAs. If the affected SRAM cell
stores a configuration bit for a functional module implemented on the FPGA, the soft
error essentially modifies the circuit structure of the module (see Section 2.1.5). This
error will persist until the module is reconfigured, i.e. rewriting the corresponding
configuration memory with correct data. Therefore, a soft error in the configuration
memory can be considered as a permanent fault in the mapped circuit.

2.3.5 Recent Advancement in Aging

In contrast to the common sense that aging is a long-term process that takes place
over a timespan of years, BTI effects could also degrade the transistors in sub-
microsecond timescale, so-called instantaneous aging effects, as studied by van San-
ten et al. [vAMM+16]. As a result, the guardband introduced to protect against
the long-term aging effects may be violated frequently due to instantaneous aging
effects in short-term. In contrast to long-term effect, short-term aging component is
dependent on the transistor switching frequency. A lower switching frequency causes
a higher instantaneous increase in the threshold voltage. A novel aging model in-
corporating instantaneous and long-term BTI effects is proposed in [vAMM+16] as
well, which enables circuit designs with reduced guardband. The proposed model
also allows the computation of maximum degradation solely based on duty cycle
and switching frequency instead of input waveforms, the efficiency of which enables
the physics-based stress estimation of large circuits.

Cross-layer approaches for circuit design have shown promising results, further re-
ducing the pessimistic guardband. Amrouch et al. [AKGH16] proposes a reliability-
aware design method, where circuit-level signal characteristics and physical-level
degradation effects are combined. The standard cell library is extensively expanded
to include stress-aware cells, i.e. cells with different delay and aging characteristics
under different stress conditions. Given the input signal properties like signal prob-

27

2 Backgrounds

abilities and slew rates, the circuit synthesis tool is able to optimize the delay of
circuits under consideration of aging effects.

Under near-threshold and super-threshold computing conditions, random tele-
graph noise (RTN), process variation (PV) and BTI play major roles in the reliabil-
ity of transistors. By capturing the underlying physical origin of threshold voltage
degradation, i.e. charging/discharging defects, the authors of [vMMA+17] propose
a unified aging model for combined RTN and BTI effects. In addition, the combina-
tion of probabilistic shift of transistor geometries due to PV allows a probabilistic
reliability estimation for near-threshold and super-threshold circuits.

Besides the degradation of threshold voltage, BTI also impact other physical and
electrical characteristics in a transistor such as charge mobility, gate-drain capaci-
tance and sub-threshold slope, as shown in [AMv+17]. It reveals that solely con-
sidering the threshold voltage degradation alone leads to an exaggerated power es-
timation of an aged circuit. A joint analysis of other degradation components is
necessary for more accurate power estimation.

2.4 Fault, Stress and Aging Models Used in the Thesis

To be able to algorithmically evaluate the dependability states in the system, e.g.
degree of aging, correctness of circuit operation and lifetime, numerical models for
the dependability issues discussed in Section 2.3 are required. This section provides
such models used in this thesis to evaluate when a circuit is considered to be faulty;
how the degree of aging is measured and how the lifetime of a circuit is determined.

2.4.1 Stress Model for Aging Effects

Aside from material constants, aging mainly depends on three non-material factors:
supply voltage, temperature, and transistor activities. For the algorithms in our
proposed method we use a simplification that focuses on the aging effects induced
by transistor activities. That is a reasonable approximation as reconfigurable accel-
erators are typically operated in a static voltage domain (i.e. no dynamic voltage
scaling) and do not show high temperature variation (they are often optimized for
data-level parallelism and thus run at rather low frequency [KR07] with correspond-
ingly low power density [NR11, VHL+05]).

The term stress is defined as the condition under which a transistor is experiencing
electrical and physical degradations. An example for such a degradation is the
threshold voltage shift ∆Vth, which may eventually cause a failure of the circuit.
Different aging mechanisms exist that lead to threshold voltage shift. For instance,
Fig. 2.13 shows the increase of threshold voltage due to HCI that depends on the
transistor toggling rate. In this work, the Mean Time to Failure (MTTF) of a
transistor is defined as the time until its threshold voltage exceeds a certain critical
value. Reducing the threshold voltage shift by reducing the stress increases the
MTTF.

28

2.4 Fault, Stress and Aging Models Used in the Thesis

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3 4 5 6 7 8 9 10

Δ
V

th
 [

a.
u

.]

Years

1 million 3 million 5 million

Critical ΔVth

MTTF improvement

Toggling rate [s-1]

Figure 2.13: Threshold voltage increases over time due to HCI under different toggling
rates.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3 4 5 6 7 8 9 10

Δ
V

th
 [

a.
u

.]

Years

0.1 0.5 0.9Stress duty cycle

Critical ΔVth

MTTF improvement

Figure 2.14: Threshold voltage increases over time due to BTI under different stress duty
cycles.

In the following, two types of stress in nano-scale CMOS circuits are distinguished:
static stress and dynamic stress. A transistor is under static stress when an electric
field is exerted across its gate oxide to induce a conducting channel. Static stress
is characterized by the stress duty cycle, i.e. the fraction of operation time that
a transistor is conducting. Reducing the stress time stressstat also reduces the
stress duty cycle, which leads to an increase of the transistor’s MTTF, as shown in
Fig. 2.14. Instead, a transistor is under dynamic stress when current flows between
its source and drain. Dynamic stress is characterized by the toggling rate, i.e. the
ratio of number of toggles and total operating time. Reducing the number of toggles
stressdyn also reduces the toggling rate, which leads to an increase of the transistor’s
MTTF, as shown in Fig. 2.13. Static stress leads to aging effects like BTI, while
dynamic stress leads to aging effects like HCI.

29

2 Backgrounds

2.4.2 Stress Properties

There are different models for these aging effects, e.g. [SKM+08, LQB08, SWSC10,
CVS+14, AvE+14], and they all indicate that in the long term the transistor degrada-
tion monotonically increases with stressstat or stressdyn for static or dynamic stress,
respectively. For instance, ∆Vth(stressstat1)>∆Vth(stressstat2) when stressstat1 >
stressstat2 under the same supply voltage and temperature [CVS+14, AvE+14]. In
other words, the aging effects are reduced when stressstat or stressdyn is reduced.

In addition, stressdyn is generally considered as additive. For instance, the dy-
namic stress of two different workloads corresponds to the number of toggles that
these workloads impose on a transistor. Intuitively, the combined dynamic stress
is the sum of these toggles, which is proportional to the amount of charge trans-
ported between drain and source [MMM+13, AvE+14]. In general, the total stress
experienced by a transistor under different workloads (stressdyn(work1 +work2)) is
the sum of stress experienced under the individual workloads (stressdyn(work1) +
stressdyn(work2)). In the long term, this argument also holds for stressstat. Ac-
tually, BTI aging may experience a recovery effect, but that requires complex con-
ditions or long relaxation periods [GBS14] and will thus hardly affect the additive
property. The monotonic and additive properties of stressstat and stressdyn allow a
simplified consideration of CLB stress during decision making (see Chapter 6) rather
than evaluating complex aging models at runtime. In the rest of the thesis, simply
“stress” is referred to when there is no need to explicitly differentiate between static
and dynamic stress.

2.4.3 Aging Models

In this thesis, state-of-the-art physics-based aging models for BTI and HCI effects are
employed to evaluate the threshold voltage shift of transistors depending on stress,
temperature and time. The BTI aging model is adopted from [JMGM12, AvE+14]:

∆Vth = q

Cox
(∆NIT + ∆NET + ∆NOT) (2.2)

where ∆NIT = A(VGS−Vth0−∆Vth)ΓIT e−
EAIT
kT d

1
6 t

1
6 (2.3)

with d= Λ
1 +

√
1−Λ

2

, (2.4)

∆NET =B(VGS−Vth0−∆Vth)ΓET e−
EAET
kT Λ (2.5)

and ∆NOT = C(1− e−(tn)βOT)Λ (2.6)

with n= η(VGS−Vth0−∆Vth)
ΓOT
βOT e

EAOT
kTβOT , (2.7)

where T denotes temperature, t operating time and Λ stress duty cycle. A, B, C
are fitting parameters depending on the manufacturing process [JMGM12]. ∆NIT ,
∆NET and ∆NOT represents the number of interface traps, pre-existing oxide traps
and generated oxide traps, respectively (see Section 2.3.2). Device dependent pa-

30

2.4 Fault, Stress and Aging Models Used in the Thesis

rameters such as Cox and Vth0 are extracted from the PTM 22-nm HKMG model
[PTM]. The supply voltage is 1.0V. All other model parameters are as in [JMGM12].

The HCI aging model is adopted from [MMM+13, AvE+14] and [HTH+85]:

∆Vth = q

Cox
D
(
t
rQDS
W

e−
φit

qµEm

) 1
2
, (2.8)

where t denotes operating time, r the toggling rate, and QDS the amount of charges
flowing through the channel during one toggle calculated using PTM 22-nm HKMG
model [PTM]. φit and Em are extracted from [HTH+85]. µ denotes the mean
free path for optical-phonon–electron collision. It is temperature dependent and
is calculated based on [NOY77]. W is assumed to be the same as the transistor
channel length. D is a fitting parameter depending on the transistor geometry and
manufacturing process [AvE+14].

2.4.4 Fault Model for Soft Errors

Soft errors in the configuration memory caused by SEUs are stochastic processes.
The location (i.e. which bits), and the occurrence time of a soft error are non-
deterministic. Two types of soft errors are distinguished: Single-Bit Error (SBE)
and Multi-Bit Error (MBE). An SBE occurs when a single event upset corrupts
the data of only one configuration bit. A single event upset may also affect mul-
tiple neighbouring memory cells and cause multiple erroneous configuration bits,
which corresponds to an MBE. Experiments in the flight tests [QGM+13] and in the
radiation chambers [WTH14] showed that the dominating soft errors were SBEs.

The susceptibility of the configuration memory of an FPGA to single event up-
sets is typically reported by the device vendor as Soft Error Rate (SER) [Xil16b].
It is measured in FIT/Mb (Failure In Time per Megabit) and provides the ex-
pected number of erroneous configuration bits, including both SBE and MBE, in an
FPGA operating for 109 hours. Under the assumption that the error probabilities
of individual configuration bits are equal and constant in time, the SER λ of one
configuration bit can be derived. For instance,

λ in number of errors per second = SER in FIT/Mb
3600 ·109 ·106 . (2.9)

A continuous-time Markov model can be used to describe the stochastic behaviour
of the soft error of a configuration bit [SKM78]. A configuration bit is defined to
have two distinct states: error-free and erroneous. Without recovery mechanisms
(e.g. scrubbing, see Section 2.5.3), once a configuration bit is erroneous, it stays
erroneous. The transition rate from error-free state to erroneous state is the SER of
one configuration bit λ. The probability that an error-free configuration bit at time
t0 remains error-free till time t0 + t then follows the exponential distribution:

P (error-free at t+ t0|error-free at t0) = e−λt. (2.10)

31

2 Backgrounds

The critical bits of an accelerator are those configuration bits that define its func-
tionality [Le12]. A functional failure of the accelerator may occur if those bits are
altered due to SEU. In this thesis, it is conservatively assumed that an accelerator
operates correctly only when all of its critical bits are error-free. When any critical
bits of an accelerator are erroneous, the outputs of the accelerator are not trusted
anymore and the accelerator is determined to be faulty. If an accelerator A is re-
configured at t0, or scrubbed at t0 without errors, all of its critical bits are verified
to be correct at t0. Then the reliability R(A,t) of the accelerator at t > t0, i.e. the
probability that it produces correct outputs throughout the time period from t0 to
t0 + t, is equal to the probability that none of its critical bits is affected by soft errors
from t0 to t0 + t:

R(A,t) =
n∏
e−λt = e−λnt, (2.11)

where n the number of critical bits of the accelerator and t is called the resident
time of the accelerator. It is assumed here that the soft errors of individual config-
uration bits are independent of each other, regardless of whether they are SBEs or
MBEs. Therefore, Eq. (7.1) overestimates the errors due to MBEs, since one MBE is
counted as multiple independent SBEs in multiple configuration bits. However, this
overestimation is marginal because SBE is the dominating error type over MBE.

Functionally used memory elements in FPGAs, i.e. block RAMs and flip-flops,
are not protected by scrubbing, but are implicitly protected if modular or temporal
redundancy is employed (see Section 2.5.2). Furthermore, block RAMs are readily
protected by ECC [Xil16a] combined with physical interleaving in the recent FPGA
generations, which essentially reduces their soft error rate well below their permanent
failure rate [HS15].

Compared to the number of flip-flops contained in an FPGA, the amount of
configuration bits is higher by two to three orders of magnitude. For instance, a
configurable logic block in a Xilinx UltraScale FPGA has 8 flip-flops [Xil15a] and
multiple 3936-bit configuration frames [Xil15b]. Also, flip-flops are not susceptible
to upsets throughout the entire clock cycle, and not every upset leads to an error
observed by the system or user. The time during which data in memory are vulner-
able is bound by the duration of the accelerator execution (in the order of cycles),
which is much smaller than the resident time of configuration bits of accelerators
(in the order of million cycles). Therefore, soft errors in block RAM and flipflops
are not considered in this thesis.

2.5 Basic Dependability Techniques

The dependability of FPGA-based reconfigurable architectures are threatened by
latent faults not detected during manufacturing, emergent faults during system op-
eration due to aging effects and transient faults due to single event upsets. This
section provides an overview of basic dependability techniques for the detection,
isolation and recovery from these faults.

32

2.5 Basic Dependability Techniques

2.5.1 FPGA Test and Diagnosis

To test a digital circuit whether it operates as expected or rather if any faults reside
in the circuit, a set of input data (test vectors or test patterns) is fed to the input
port of the circuit, while the operation results (output response) at the output port
are observed and checked against the expected or specified values. Figure 2.15 shows
a general test structure, where a Test Pattern Generator (TPG) generates the test
vectors to exercise the Circuit Under Test (CUT) and an Output Response Analyzer
(ORA) collects the output data from the CUT to find any anomalous behaviors in
the CUT. The test control and configuration logic manages the whole test sessions,
i.e. start/stop/reset of the test sessions, test pattern selection for TPG, configuration
of operation modes for CUT and the selection of appropriate analyze method for
ORA.

Built-in-Self-Test

In conventional manufacturing test, the test facilities (TPG, ORA and test control)
are provided by external test equipments. During test, probes of the test equipment
are attached to the pins of the CUT to exercise the circuit and collect the responses.
This method has several drawbacks:

• The test speed is slow. Since the clock of the circuit is externally driven by
the test equipment, it has to drive the large capacitance of the pin and thus
cannot achieve high frequency. In addition, the circuit may be designed to run
at a higher frequency than that achievable during the test, which reduces to
the chance to detect delay faults.

• The test equipment can only access the circuit by its pins. Information of
internal nodes can only be derived from the observation at external pins. This
limits the controllability and observability of the circuit and compromises the
test quality.

• Test after deployment of the circuit is very difficult, as the circuit needs to be
dismounted from the system and sent back to the manufacturer, which causes
high monetary and temporal costs.

Test pattern
generator

Circuit under
test

Output
response
analyzer

Test control and
configuration

Figure 2.15: A general test structure for digital circuits

33

2 Backgrounds

Thanks to the technology scaling, more logic functions, even including the test
facilities, can be integrated into one chip, while incurring only a negligible area
cost [Ste00]. Built-In-Self-Test (BIST) is a design-for-testability technique in which
testing, including test generation, test application, test results analysis and test con-
trol, is accomplished through built-in hardware features [AKS93]. BIST addresses
all the above drawbacks of manufacturing test and has since long become a standard
feature in digital circuits [McC85], i.e. self-test is one of the functions of a chip.

With BIST, the circuit can be tested at-speed, i.e. at the same frequency as the
nominal operation frequency of the circuit, which shortens the test time and improve
the test coverage of delay faults. Additional control and observation points can be
added to the internal node of the CUT during the design of the BIST circuitry, which
significantly improves the testability of a design [Ste00]. As no external equipment
is required for testing, the circuit can be easily put into test mode in the field to
detect the faults that may occur during the system operation.

The reconfigurability of an FPGA allows to implement BIST in an FPGA even
with zero area overhead [SKCA96]. To cover all reconfigurable resources in an
FPGA, part of the FPGA is used to implement the BIST circuitry as the rest part
of the FPGA is being tested. In a second test session, the resources that was used
for BIST is tested. In this way, the whole FPGA is tested without additional BIST
circuitry.

Array-Based FPGA Test

In FPGA-based reconfigurable architectures, the functionality implemented on the
FPGA changes during runtime and may be unknown during the design of test fa-
cilities. Therefore, structural test of the reconfigurable fabric is typically employed
for testing FPGAs [AS01], where the underlying reconfigurable resources, i.e. CLBs
and PIPs, are tested independent of the functionalities that will be implemented on
them. However, each CLB contains distinct types of primitive logic elements, e.g.
LUTs, multiplexers and registers, each of which requires a different test approach.

Meanwhile, the reconfigurable resources are arranged regularly in a two-dimensional
array, where each entry in the array is identical across the whole FPGA (see Sec-
tion 2.1). Exploiting this regularity, an array-based test approach can greatly sim-
plify the test procedure, as proposed in [Ren98]. The test procedure to test an array
of CLBs is divided into multiple test sessions, where in one session only a single type
of logic primitives in CLBs is tested. The logic primitives are chained into the form
of an Iterative Logic Array (ILA) [Fri73, HMCL98], where each primitive receives
the output from the previous primitive as one of its inputs and delivers its output
to the next primitive in the chain. Besides, primitive also receives a set of common
global inputs for additional controllability. Figure 2.16 shows three such ILAs for
the testing of a 3×5 CLB array.

By deliberately configuring the logic function of the primitives, a single fault in
any of the primitives in the array can be detected, i.e. the resulted erroneous output
of any single faulty primitive in the array is guaranteed to be propagated to the ORA.

34

2.5 Basic Dependability Techniques

TPG
ORA

Single type of logic primitives

One ILA

Figure 2.16: Array-based test structure for FPGAs

This kind of configuration of the FPGA that enables fault detection is called a Test
Configuration (TC). And such an ILA is called C-testable [Fri73, HMCL98], where
the number of required test vectors to perform an exhaustive test is independent
of the number of primitives in the array. For instance, to exhaustively test the
LUTs with n inputs, 2n test vectors are to be applied during each of the two test
configurations, in which the LUTs are configured to implement XOR and XNOR
logic functions [ABB+12].

In general, the array-based structural test approach is performed as illustrated in
Fig. 2.17. Each type of the reconfigurable resources in the CLBs is tested separately.
After selecting the type of resource to be tested, a set of test configuration is applied,
which configures the logic primitives to be tested into a C-testable ILA. For each
test configuration, exhaustive test patterns are applied. After the logic primitives
are tested in all test configurations, the test process for the next type of resource
starts till all resource types are tested.

While the configurable interconnect structures are to some extent already ex-
ercised during the test of other logic resources, dedicated interconnect test based
on multiple test configurations can be applied in order to achieve a high test cov-
erage [SWHA98, SXCT00, TM05]. To tackle the complexity of the reconfigurable
interconnect circuitry, a large number of test configurations is required, which can be
reduced by testing only the interconnect resources used by the configured functional
module [Tah03, AKL12].

Fault Diagnosis in FPGAs

To localize the faults upon detection during test, i.e. to determine in which CLB the
faults are present, test data analysis and dedicated test configurations are necessary.
Typical fault diagnosis techniques perform multiple overlapping column- and row-
based tests to find the coordinates (column and row indices) of faulty CLBs [AS01,
MDS06, ESA07]. For example, in the first test session the CLBs are tested column-
wisely, e.g. by configuring CLB columns into ILAs, so that it can be found in which
column the faults exist. In the second test session, the CLBs are tested row-wisely

35

2 Backgrounds

Apply one test configuration

Pick one resource type

Apply exhaustive test patterns

All test configurations done?

All resource types tested?
No

No

Yes

Yes

Figure 2.17: Array-based test process for FPGAs

and the faulty CLB rows are determined. Combining the results from the two test
sessions, the coordinates of the faulty CLBs can then be obtained.

A recent approach [AD16] generates a set of alternative configurations for the
functional module to be implemented on the FPGA. Different configurations use
logic resources at different locations but all deliver the same functionality. By ap-
plying functional test to these configurations, the locations of faulty resources can
be derived by conjugating the set of used resources of the configurations that do not
pass the test.

2.5.2 Concurrent Error Detection in FPGAs

In safety- and mission-critical system, one computation error may lead to life-
threatening accident or heavy financial loss, in particular in the case of soft errors
caused by SEUs. Such errors should be immediately detected, isolated or corrected
on-site to prevent it from propagating to other parts in the system. In other words,
the error detection takes place concurrently with the functional operation, which is
called Concurrent Error Detection (CED) [Muk08].

Typical CED techniques introduce certain degree of redundancy for the compar-
ison of the output from the main circuit with the expected output from a predictor
which can be identical as the main circuit. A mismatch in the comparison results
indicates that computation process was compromised and the produced output is in-

36

2.5 Basic Dependability Techniques

correct. The redundancy for CED can be contributed in space (spatial redundancy)
where the outputs from replicated circuits performing the identical computation are
compared, or in time (temporal redundancy) where the results from the same com-
putation performed consecutively by the same circuit are compared. Information
redundancy embeds additional bits describing data characteristics (e.g. parity bits)
into the data being processed to identify any anomalies during computation.

Since SEUs mainly affect the configuration memory of FPGAs and the corrupted
configuration bits persist before a reconfiguration, as discussed in Section 2.3.4, a
recomputation (temporal redundancy) will not detect the output mismatch except in
the rare case when SEU occurs exactly between these two computations. Therefore,
to concurrently detect soft errors in FPGAs, spatial and information redundancy
are typically adopted [SSC08].

Spatial Redundancy

The most widely used redundancy technique for error detection and correction in
FPGAs is Triple Modular Redundancy (TMR) [Car06]. As shown in Fig. 2.18, three
replicas of the same circuit are fed with a common input and their outputs are
compared by a majority voter. If any two or all of the three outputs are equal, the
majority output is forwarded as the final result. For example, when OutputA =
OutputB 6= OutputC, OutputA or OutputB is taken as the output of the voter.
The replica producing the minority output which disagrees with the other two is
identified as corrupted.

In the presence of a single corrupted replica, the TMR can continue producing
correct outputs, and thus error detection and correction are simultaneously achieved.
The corrupted replica can be repaired by partial reconfiguration with correct bit-
stream, without interrupting the operation of the other two replicas and the voter.
Only when all of the three outputs disagree (i.e. two of the replicas malfunction),
error correction is not possible as no correct output can be derived by the voter.
In this case, all three replica need to be reconfigured to recover from error and the
system operation has to be stalled. Such as case can occur when a corrupted replica
is not promptly repaired after error detection and more soft errors accumulate in the
configuration memory until another replica become broken as well. To prevent the

Replica A

Replica B
Majority

voter
Input

Output A

Output C

Error
Output

Replica C

Output B

Figure 2.18: Triple modular redundancy

37

2 Backgrounds

Replica A

Replica B

Discrepancy
checker

Input

Output A

Output B

Error
Output

Figure 2.19: Duplication with comparison

error accumulation, a complementary technique called scubbing (see Section 2.5.3),
which periodically checks the correctness of the configuration data, is often employed
in addition to TMR.

Another common design of spatial redundancy for error detection is Duplication
With Comparison (DWC), as shwon in Fig. 2.19. It consists of two replicates of
the same circuit, which are fed with the same input. The outputs of both replicas
are compared by the discrepancy checker that assert the error signal upon output
mismatching. If no error is detected, one of the two identical outputs is forwarded
as the final result. If error is affirmed by the discrepancy checker, it implies that one
of the two replicas or both malfunction. It is not possible to derive which replica
is corrupted solely based on the comparison of the two outputs. To recover from
the error, both replicas need to be reconfigured to correct their configuration bits
and the failed computation has to be re-executed. [IPD10] proposes to use a SEU-
resistive hardcore processor executing a software version of the replicas to diagnose
which replica needs to be repaired.

An important consideration when applying spatial redundancy is the high area
overhead and power consumption resulted from the replicated functionality. TMR
and DWC require at least 3× and 2× more area and power than an unprotected
circuit, respectively. An over-protected system provides high reliability beyond the
application requirements, whereas the contributed area and power cost could have
been saved or diverted to increasing performance. The trade-off between spatial re-
dundancy and performance in high-reliable reconfigurable architectures is addressed
in Chapter 7.

Information Redundancy

While spatial redundancy protects the system during computation against circuit
malfunction due to soft errors in the configuration memory, information redundancy
efficiently protects the user data during transmission or storage in the memory which
is susceptible to SEUs. For each block of user data, a small number of bits called
Error Correcting Code (ECC) is calculated based on the individual bits in the user
data. The ECC is then attached to the corresponding data block and transmitted
or stored jointly with the user data. On data retrieval, the ECC bits are obtained
together with the user data bits and they are verified against each other to check if
any bits are modified during the transmission or storage.

38

2.5 Basic Dependability Techniques

A parity bit is the simplest from of ECC [Muk08]. It indicates whether the number
of 1’s in a data block (typically 1-byte long) is even or odd. If one of the bits in the
data block including the parity bit is flipped, e.g. due to SEU, the parity bit will
not match the parity of the data block, which indicate an error in the transmitted
or stored data. However, with parity bits alone, errors can only be detected but not
corrected.

To enable error correction, more complex coding techniques are required [Muk08],
such as widely used Reed-Solomon codes for the error correction in Bluray discs and
Hamming codes in server-grade memories. In Virtex-5 FPGAs, each configuration
frame is protected by a Hamming code [Xil12c] which allows the detection of any
two-bit errors and the correction any single-bit errors in one frame. In addition,
interleaving of memory cells makes physically neighboring configuration memory
cells belong to logically separate configuration frames [HS15]. This prevents more
than two bits that may be upset by a single particle strike from residing in one
frame, as more than two erroneous bit may not be detected by the Hamming codes.

2.5.3 Scrubbing of Configuration Memory

Scrubbing is another technique for SEU mitigation in FPGAs [BPP+08]. It peri-
odically scrutinizes the configuration memory to ensure that any erroneous config-
uration bits will be corrected as soon as possible. It can be categorized into two
types: blind scrubbing and readback scrubbing. Blind scrubbing uses a “golden”
bitstream that are secured in an SEU-protected (e.g. with ECC) external memory
to constantly overwrite the configuration memory of the FPGA via an external con-
figuration port. Readback scrubbing utilizes the internal configuration port to read
the configuration data frame by frame and checks for error with the help of the
contained ECC bits (see Section 2.1.5). If it is a single-bit error, the frame will be
immediately repaired with ECC and written back to the configuration memory. If
multiple bits are corrupted in one frame, the ECC may not be able to repair the
errors or detect them at all in the first place. The ability to detect error allows
to record statistical data about soft errors, which can be used to estimate the soft
error rate, e.g. number of flipped bits per month, experienced by the FPGA (see
Section 3.2.2).

Scrubbing poses as a periodical non-functional workload to the configuration port
of the FPGA besides the partial configuration of accelerators in reconfigurable ar-
chitectures. Both share the access to the configuration port. Conflicts may occur
when scrubbing and accelerator configuration are to be executed at the same time
or when blind scrubbing overwrites the frames that are just being reconfigured to
implement a different accelerator. Therefore, the write-access to the configuration
data should be carefully scheduled to prevent the conflict between scrubbing and
partial reconfiguration [HSWK09].

For each frame, there is a finite period of time between two consecutive scrubbing
cycles. Configuration bits corrupted during this time period may lead to circuit
malfunction. Concurrent error detection mechanisms such as TMR are thus typically
coupled with scrubbing to achieve seamless protection for highest reliability.

39

2 Backgrounds

2.6 Related Work

After an overview of state-of-the-art reconfigurable architectures is given, this sec-
tion discusses related work for dependability improvement in FPGA-based runtime
reconfigurable architectures. If excessive stress is imposed on the resources in the
reconfigurable fabric, permanent faults may emerge. Such faults can be detected
and localized by online test for FPGAs. Once located, fault tolerance and recovery
methods can be applied to avoid using faulty resources. These methods are typically
based on remapping to spare resources by partial reconfiguration. Soft errors in the
configurable memory are typically defended by modular redundancy and scrubbing.
The induced overhead for error detection and correction is reduced by identifying
different vulnerability in different parts in the circuit and then selectively applying
fault tolerance techniques.

2.6.1 FPGA-Based Reconfigurable Architectures

Reconfigurable computing [VS07, CH11] aims to deliver the hardware-level efficiency
for computation with the software-level flexibility for programming. Customized re-
configurable structures, such as [WA10, LSV06], provide optimized organization of
reconfigurable resources for the deep coupling with processors and for supporting
different computation/communication patterns for the hardware acceleration. How-
ever, off-the-shelf FPGAs have attracted large interest for building the reconfigurable
fabric, because they as commercialized/verified products are easily accessible from
the market and are available in different product models targeting different user
groups. Besides, technical and tools support from FPGA vendors also eases the
development effort.

Dennl et al. [DZT12] propose an FPGA-based acceleration method for SQL
queries. An SQL query is mapped to a processing pipeline consisting of hardware
modules that corresponds to the basic operators in the SQL statement. By partial
reconfiguration, the operator modules can be reconfigured to implement different
SQL operators during runtime.

Oetken et al. [OWTK10] propose an FPGA-based SoC with a tightly coupled re-
configurable fabric which is partitioned into multiple slots. Accelerators of different
sizes can be composed using different numbers of neighboring slots. In this way,
the area utilization rate of the reconfigurable fabric is increased. The communica-
tion channels among accelerators and with the processor are established with the
ReCoBus [KHT08] that uses interleaved multiplexer chains to reduce resource over-
head for the interconnection of multiple reconfigurable accelerators. In [YWW+14],
a similar approach is proposed to merge physically neighboring regions to accom-
modate large accelerators that cannot be fit into one region. A limitation of these
architectures is that they rely on low-level manipulation of FPGA routing structures,
which is only effective for one specific FPGA model.

A reconfigurable architecture for accelerating signal processing algorithms is pro-
posed in [DKS+10]. Its FPGA-based configurable fabric is in the form of a systolic

40

2.6 Related Work

array that is suitable for accelerating linear algebra operations. The processing ele-
ments in the systolic array reside in reconfigurable regions and can be dynamically
reconfigured into two types of accelerators, one for the computation of Kalman fil-
ter and the other for discrete wavelet transform. The signal processing algorithm
represented in two-dimensional dataflow is mapped to the systolic array where the
input data (matrices or arrays of floating numbers) are consumed in parallel by the
processing elements.

The RISPP architecture [BSH11] extends the instruction set of a general pur-
pose processor by special instructions which indicate that they can be accelerated
in hardware. When corresponding accelerators are available in the reconfigurable
fabric, the special instructions will be executed using the accelerators otherwise they
will be emulated in software on the processor. The FPGA-based reconfigurable fab-
ric is partitioned into multiple regions and they are interconnected via a segmented
bus [BSH08]. A runtime system predicts which accelerators will be needed soon
and configures them into the regions before the actual execution of special instruc-
tions so that accelerators are available when required. Each special instruction has
different implementation variants that differ in the used accelerators. The runtime
system chooses the implementation variants that deliver most speedup per region
to optimize the performance of the whole application.

Recently, authors of [BSB+14, CSZ+14] explore the possibility of providing FPGA-
based reconfigurable fabric as a new type of computing resources in the cloud. The
FPGA is partitioned into multiple partially reconfigurable regions which are man-
aged by a hypervisor. Users can request to configure accelerators that are uploaded
by themselves or prepared by the cloud vendor. Multiple users can share the usage
of one FPGA by accessing separate regions.

Current reconfigurable architectures from major FPGA vendors are Zynq Ul-
traScale+ MPSoC from Xilinx [BAG+15] and Xeon+FPGA platform from In-
tel [Gup15]. Zynq UltraScale+ MPSoC, targeting embedded systems, features two
dual-core ARM processors and a Xilinx reconfigurable fabric. They are intercon-
nected through ARM Advanced Microprocessor Bus Architecture (AMBA). Intel
integrates a Xeon E5 server processor and an FPGA from Altera into a single pack-
age, and interconnects them using own proprietary QuickPath Interconnect (QPI)
to maintain cache coherency.

2.6.2 Online Test and Diagnosis of Reconfigurable Systems

Online test and diagnosis methods are a prerequisite for handling faults in recon-
figurable architectures. It can be distinguished between application-dependent and
-independent test approaches for the reconfigurable fabric. Application-independent
testing targets the whole fault universe of the fabric and is not limited to a spe-
cific use of the fabric. It typically employs multiple special test configurations and
corresponding test stimuli [RPFZ97]. In contrast, application-dependent testing
targets only a subset of the reconfigurable resources in the fabric relevant for a par-
ticular target application [Tah06]. These test approaches rely on built-in-self-test
(BIST) principles where the test pattern generation and output response analysis

41

2 Backgrounds

are implemented with the reconfigurable resources in the FPGA under test, i.e.
no external test equipment or circuitry is required. In FPGAs with partial dy-
namic reconfiguration, the reconfigurations of the circuit under test using dedicated
test configurations can be performed by an external or embedded processor at run-
time [ASH+99, MDS06, ESA07]. The Roving STARs (Self Testing AReas) method
[ESA07] for online test partitions the FPGA into rows and columns. While a region
consisting of one row and one column (STARs) is tested by an online BIST approach,
the rest resources on the FPGA is used for functional operation. The STARs sweep
through the whole FPGA so that all reconfigurable resources are completely tested.

In addition to testing, the homogeneous structure of an FPGA allows the efficient
diagnosis of faulty components. High resolution is achieved by failure data analysis
and additional dedicated configurations to distinguish and localize faults [ASH+99,
IMF98, ASE04]. In [AD16], multiple faults are diagnosed and can be tolerated
using multiple diversified configurations with disjunct resource usage. The number
of required configurations quickly rises with the number of faults to be detected and
localized.

However, these approaches do not consider reconfigurable architectures that use
runtime reconfiguration as part of their normal operation. Instead, they limit their
use of runtime reconfiguration to generate test facilities on the FPGA. Targeting
inherent runtime reconfigurable architectures (like the base system of this work)
requires complex runtime decisions to minimize the interference between test appli-
cations and functional workloads.

2.6.3 Fault Tolerance in Reconfigurable Systems

Once a fault is detected and localized, different methods can be applied to ensure
continued system operation despite of the fault. Tile-based fault tolerance tech-
niques partition the reconfigurable fabric into a two-dimensional array of rectan-
gular regions (tiles) [LMSP98, KKYY09]. In [LMSP98], a tile consists of multiple
CLBs with one spare CLB. If a CLB in a tile is detected to be faulty, an alterna-
tive configuration for that tile is loaded to implement the same logic function but
using the spare rather than the faulty CLB. In [KKYY09], the circuit in the faulty
tile is entirely remapped to a spare tile. Column-based approaches apply similar
concepts to CLB columns [HM01, MHS+04], where the fabric is partitioned into a
one-dimensional array of CLB columns. Each column can implement an accelera-
tor. In order to provide fault tolerance, intentionally unused columns are introduced
as spares. In response to a fault, a precompiled configuration is loaded where the
accelerator that resides in the faulty column has been remapped by shifting the ac-
celerators starting from the faulty column towards the next unused spare. Both tile-
and column-based approaches need complex customized routing techniques. Tile-
based approaches require fixed interfaces between adjacent tiles so that each tile can
be reconfigured independently of others. Column-based approaches require online
routing after module remapping as the location of the accelerators change and the
communication inbetween has to be re-established. They also do not maximize the
inherent diversity in alternative configurations or exploit it to balance the stress in

42

2.6 Related Work

the reconfigurable fabric.

The Roving STARs method [ESA07] combines distributed CLB spares and online
compilation of configurations to replace faulty CLBs with spares. For complex de-
signs, this online compilation or synthesis may cause unpredictable timing behavior.
Instead, the fault tolerance methods proposed in this thesis work on CLB-granularity
and does not need explicit tile/column-wise partitioning or online synthesis. The
CLB placement and routing of the alternative configurations are prepared offline by
vendor place-and-route tools.

Psarakis et al. [PA12] propose to use alternative configurations for accelerators,
each of which uses different CLBs such that any single faulty CLB can be tolerated.
However, they do not provide a method to automatically generate these configura-
tions. They neither investigate the possibility of tolerating multiple CLB faults in
general nor do they consider mitigation of aging effects within the reconfigurable
fabric. The approach in [AD16] generates diversified configurations that are mainly
used for diagnosing faulty CLBs. They also allow to tolerate all multi-CLB faults
where up to k CLBs in a region can be faulty. For k ≥ 2, the number of configura-
tions quickly increases. None of these approaches use their diversified configurations
to distribute the stress in the reconfigurable fabric, as proposed in this work. Pereira
et al. [PBH+11] employ online place-and-route to generate alternative configurations
that map functional modules to non-faulty resources at runtime.

2.6.4 Aging Mitigation in Reconfigurable Systems

Aging mitigation by wear-leveling in runtime reconfigurable architectures can be
achieved by using alternative logic mappings in CLBs, using spare resources in
the fabric, or changing placements of accelerators. The coarse-grained approach in
[SKM+08] uses only two different configurations, which are swapped only once after
a half-life period of the first failing component. A similar idea is used in [SC11],
where three strategies are discussed for FPGA wear-leveling based on signal state
inversion, use of spare resources for timing critical functions, and alternative place-
ment. Since only two different configurations are used, the effectiveness is limited.
Besides, high temperature accelerates the aging process and shall be avoided. Ther-
mal aware placement algorithms such as [BB07, SS07] optimize the placement of
CLBs at synthesis time to reduce the temperature difference between resources by
estimating the thermal distribution among utilized CLBs based on usage and heat
dissipation. They utilize simulated annealing as well as other optimization methods
to determine an optimal placement. However, they do not consider runtime recon-
figuration for their optimization, i.e. they assume that the placement never changes.
[BMS10] considers the combination of process variation and NBTI aging and pro-
poses a placement algorithm to reduce the delay degradation due to NBTI. While
the authors suggest that the logic placement and configuration bitstream generation
could be recomputed during runtime, for most embedded systems such a computa-
tion would cause too much overhead. In [RAKT13], aging in LUTs is mitigated by
manipulating the configuration bits of LUTs. This method targets static systems in
which the logic function of LUTs does not change during runtime.

43

2 Backgrounds

Since typically not all CLBs in a region are actively used by an accelerator configu-
ration [SKM+08], it is possible to prepare alternative placements and to reconfigure
between them to distribute stress. This is achieved by periodically swapping of
configurations that alter between used and unused resources, thus increasing the
lifetime of the FPGA. The CLBs that are unused in a particular configuration can
be utilized by another configuration to minimize stress [SC11]. This reduces the
maximum stress in the resources and increases the system’s Mean Time to Failure
(MTTF), as demonstrated in [SKM+08, SWC10]. However, these techniques tar-
get the stress distribution of only one accelerator over the whole FPGA, whereas in
runtime reconfigurable architectures the regions are typically used by different accel-
erators. They create alternative configurations for the entire FPGA, i.e. placing one
complete design anywhere on the FPGA, targeting systems without runtime recon-
figuration. In [ZBK+13, GB16], runtime reconfiguration with multiple regions and
accelerators is considered. However, they only distribute the stress within one re-
gion, i.e. intra-region stress distribution. Ignoring the inter-region stress distribution
may lead to the accumulation of high stress in individual regions, whereas this work
proposes a stress distribution method that performs both intra- and inter-region
stress distribution. The target system in [GB16] implements the entire application
in one region and the region is exclusively used by a single application. In con-
trast, this thesis targets a more general architecture where any region can be used
by any accelerator. The online placement of accelerators in [AZGT11] extends the
KAMER placement algorithm [BKS00] by considering the maximum stress in the
regions at runtime. The accumulated stress values of the resources in the candi-
date region are stored in a degradation table and their algorithm performs a local
optimization that considers one accelerator after the other. With regard to aging
mitigation, the method in [AZGT11] represents a current state-of-the-art approach
and a comparison partner in the evaluation sections (Section 6.6 and 8.1).

2.6.5 Handling Soft-Errors in the Configuration Memory

Modular redundancy as a conventional approach for detecting and correcting tran-
sient errors incurs high area and power overhead. By exploiting the different vul-
nerability in different parts of a circuit, cost-effective protection mechanisms are
selectively applied.

Prat et al. [PCG+06] identify the most vulnerable configuration bits by fault in-
jection into the configuration memory. Some configuration bits may cause persistent
errors in the circuit even if the corrupted bits are repaired by scrubbing. These bits
are typically related to feedback structures in the control circuitry. Once corrupted,
they remain malfunctioning until its state is reinitialized with a global reset. Given
area constraints, these most vulnerable structures are protected by triplicating with
high priority. A similar approach is proposed in [LBW12], targeting the protection
of data paths. By fault injection, the vulnerability of each components on the data
path is analyzed. The corrupted components that lead to larger deviation in the
output numerical values are considered to be more vulnerable. Implementing these
components in TMR is then given higher priority under the limited hardware bud-
get. In [SRK04], the vulnerability of a gate to SEU is obtained from the probability

44

2.6 Related Work

that a corrupted gate produces an erroneous result at the primary output of the
circuit. It is analytically determined by the signal probabilities in the circuit. These
selective modular redundancy techniques all target non-reconfigurable systems.

Selective scrubbing schemes adapt the location and period of scrubbing to the
application needs. Nazar et al. [NSC13] propose to shift the start location of scrub-
bing for different designs implemented on an FPGA. The location of critical bits
in the configuration memory is profiled to obtain the distribution of the number of
critical bits in the linear address space of frames. As different frames carry differ-
ent concentration of critical bits, it is possible to find the optimum starting frame
for scrubbing that statistically minimizes the required time duration to locate and
repair the corrupted frame. Santos et al. [SVDK14] propose a scheduling method
for scrubbing depending on the criticality of hardware tasks. For a set of periodic
tasks running on the FPGA, it schedules the scrubbing as close as possible to the
start time of tasks to reduce the probability that the execution of a task is affected
by SEUs. The scrubbing is also tasks-specific and it only checks the configuration
bits used by the task following the scrubbing.

Runtime reconfiguration allows to change the redundancy mode at runtime to
provide different reliability and performance levels under different environmental
radiation levels and reliability requirements. The reconfigurable systems presented
in [YJGR11, JCG+12] can adapt to a predefined set of modes (low, medium and high
reliability, etc.) that trade off reliability and performance. Each mode corresponds to
a certain degree of redundancy of partially reconfigured modules, i.e. no redundancy,
DWC or TMR. For example, three identical functional modules can be instantiated
in reconfigurable regions to process data in parallel for maximizing throughput or
in TMR for highest reliability. An adaptive fault tolerant controller selects the
appropriate mode based on the comparison between measured soft error rate and a
set of predefined threshold values. The system in [AHOAD11] dynamically switch
between redundancy modes to save power from replicated computation, where only
one functional module is in operation when TMR is not required. Instead of making
decisions directly based on the measured soft error rate, [GSR+14] first determines
the error probability of a functional module due to soft error and then compares the
error probability with a set of Safety Integrity Levels (SILs) [IEC10]. It chooses the
lowest redundancy level that satisfies the reliability requirement.

These adaptive redundancy techniques target applications that only use a single
hardware accelerator for which the reliability-performance trade-off has to be deter-
mined. It has not been shown that their approach could be extended to support
complex applications consisting of multiple hardware accelerators.

45

3 System Overview and Cross-Layer Dependability

This chapter provides an overview of the proposed cross-layer dependability tech-
niques for runtime reconfigurable architectures. Section 3.1 presents a generic model
for applications running on reconfigurable architectures. The base architecture and
its architectural extension to support dependable operation are given in Section 3.2.
In Section 3.3, the fundamental assumptions for the target architecture are explained.
Section 3.4 discusses the abstraction layers considered in this work and their rela-
tionship to the proposed dependability techniques. The basic platform and architec-
tural simulator used for the experimental evaluation in this thesis are introduced in
Section 3.5.

3.1 Application Model

In this thesis, a general application model that is not restricted to specific application
domains is considered, as shown in Fig. 3.1. An application (Fig. 3.1(a)) consists of
a mixture of normal operations, e.g. memory allocation and data preparation, and
one or multiple computationally intensive parts, so-called kernels. Kernels are ex-
pected to be accelerated using dedicated hardware accelerators in the reconfigurable
fabric, where runtime reconfiguration allows the optimal adaptation to different per-
formance requirements of different applications. A kernel (Fig. 3.1(b)) corresponds
to an outer loop that iterates through the whole dataset and that contains one or

Accelerated functionApplication

Accelerator reconfig.

Accelerated kernel 1

Accelerator reconfig.

Accelerated kernel 2

Normal operations

Normal operations

Accerlated function 1

Normal operations

Accerlated function 2

Normal operations

Normal operations Normal operations

Accelerated kernel

Control
step 1

Control
step 2

Control
step 3

Accelerators:

(a) (b) (c)

Figure 3.1: The application model used in this thesis

47

3 System Overview and Cross-Layer Dependability

multiple inner loops that work on small data parts, specified by the current itera-
tion of the outer loop. For example, in a stencil operation of an image, the outer
loop iterates over each output pixel and the inner loop computes the output value
based on multiple neighboring input pixel values. Such an inner loop is a good
candidate to be implemented as an accelerated function (AF) that is composed of
one or multiple accelerators of different types [CGG+14]. An AF is represented by
a data-flow graph where each node corresponds to an accelerator and the edges cor-
respond to data-flow between the accelerators. Figure 3.1(c) shows an example AF
that consists of three accelerators of different types, represented by square, circle
and triangle respectively. This DFG is scheduled in three control steps, where the
“circle” accelerator is reused in the 1st and 2nd control steps. Before the execution
of a kernel, all required accelerators need to be configured into the reconfigurable
fabric, or otherwise the accelerated functions have to be emulated in software on the
GPP.

3.2 Target Architecture

3.2.1 Base Architecture

IF

ID

EXE

MEM

WB

Interconnect

Load/
store
unit

Reconf.
region

Voter

Reconf.
region

Reconf.
region

Reconf.
region

...

...

Test
manager

TPG ORA

Memory
controller

Bitstream
loader

Execution/idle monitor

System bus

Soft-error
monitor

Configuration
memory scrubber

C
or

e
p

ip
el

in
e R

eco
n

f.
fabric

Base architecture Extended architectureLegend:

Voter Voter Voter

Figure 3.2: Target reconfigurable architecture

The target reconfigurable architecture is shown in Fig. 3.2, which is extended
based on [BSH11]. The base architecture is composed of

48

3.2 Target Architecture

a general purpose core pipeline that executes the instructions that are not ac-
celerated in the reconfigurable fabric and a runtime system that performs
acceleration and dependability management,

a reconfigurable fabric consisting of multiple reconfigurable regions which could be
different FPGAs or different partitions within one FPGA, into which different
accelerators can be reconfigured,

a memory controller handling memory accesses from the core pipeline and the re-
configurable fabric, and

a bitstream loader that processes the reconfiguration request from the runtime sys-
tem and transfers the bitstreams of accelerators from the system memory to
the FPGA configuration memory to reconfigure the fabric.

The core pipeline is extended to support AFs which are identified as special assembler
instructions that perform application-specific computations such as transformations,
filters, and encryptions. If accelerators required by an AF are available in the re-
configurable fabric, the AF is executed using the hardware accelerators. If required
accelerators are not available in the reconfigurable fabric, e.g. because its reconfigu-
ration did not finish yet or available regions are insufficient, the AF can alternatively
be emulated in software on the core pipeline by issuing an “unimplemented instruc-
tion” trap [BSH08]. This ensures that the application can be executed as long as
the core pipeline is functional.

One or multiple accelerators are required to be reconfigured into regions to imple-
ment an AF in hardware. A runtime system decides, into which regions accelerators
shall be reconfigured as well as the reconfiguration sequence.

A state-of-the-art FPGA architecture is employed as reconfigurable fabric to pro-
vide high performance for the compute-intensive parts of the application that are
offloaded to it. SRAM-based FPGAs are compatible with the standard CMOS
manufacturing technology [KTR08] and therefore are able to share the benefits
of performance, power and area improvement brought by aggressive technology
scaling. Furthermore, SRAM-based FPGAs provide faster runtime reconfiguration
than flash-based FPGAs, which is essential to reconfigurable architectures. Hence,
SRAM-based FPGAs are used in the base architecture for the reconfigurable fabric.

3.2.2 Architectural Extension

In this thesis, this base architecture is extended to support dependable operation of
the reconfigurable architecture. The additional components are

a test manager equipped with test pattern generator (TPG) and output response
analyzer (ORA) that performs structural tests on the reconfigurable fabric and
functional tests on the reconfigured accelerators,

an execution/idle monitor tracking when a region is recently reconfigured and how
often the currently-configured accelerator is executed,

49

3 System Overview and Cross-Layer Dependability

a soft-error monitor that estimates the soft error rate currently experienced by
the reconfigurable fabric which changes with the environment and the system
operation conditions,

a configuration memory scrubber periodically reading back the configuration data
of currently configured accelerators to detect and correct errors in the config-
uration memory, and

voters supporting disparity checking or majority voting of the accelerator outputs
when neighbouring accelerators are paired to compose DWC or TMR, respec-
tively.

The extended architecture enables online testing, resource usage monitor, accelerator
redundancy and configuration memory scrubbing, which are indispensable for the
dependable reconfigurable architecture threatened by aging and SEU.

Online testing is triggered by special AFs from the core pipeline. The AF execution
infrastructure in the base architecture is reused to transfer the test request and
parameters to the test manager. Deterministic test stimuli generated by the TPG are
fed to the inputs of the reconfigurable regions to exercise the configured accelerator
or test configurations. The responses from the outputs of the regions are collected
and evaluated by the ORA. Test results are transfered back to processor core as the
outcome of the AF execution.

The execution/idle monitor keeps track of the accelerator usage profile in each
region. It stores the timestamp (in cycles) when an accelerator is reconfigured into
a region and counts the number of cycles while the accelerator is being executed.
Whenever the region is reconfigured again, the execution counter and reconfiguration
timestamp are read and reset. The idle cycles of an accelerator are calculated by
subtracting the execution cycles from the total cycles during which the accelerator
is configured in the region.

Since SER experienced by the reconfigurable fabric changes with its environment
and depends for instance on the radiation level, temperature or voltage [FCMG13],
the soft-error monitor estimates the current SER per bit λ by computing the maxi-
mum of two indicators available in the system:

1. The SER per bit λscrub in the configuration bits obtained from periodic scrub-
bing,

2. The SER per bit λbram in the block RAM arrays in the FPGA. This error rate
can be obtained since block RAMs are protected by ECC (see Section 2.4.4).

The current SER per bit in the reconfigurable fabric is then computed conservatively
and concurrently to the system operation as their maximum: λ=max(λscrub,λbram).
In the terrestrial environment, if the neutron flux per second at the operation loca-
tion of the device is known [JED06], the SER per bit can be alternatively estimated
by using the neutron cross-section per bit [Xil16b]:

λ= neutron flux per second×bit area×neutron cross-section per bit (3.1)

50

3.3 Architectural Assumptions

Soft-errors in the configuration memory are defended by the combination of mod-
ular redundancy and periodic scrubbing. Modular redundancy, i.e. DWC or TMR,
is achieved by configuring neighboring regions with identical accelerators and using
voters to detect (DWC) or correct (TMR) errors in the accelerator outputs. When
no redundancy is required, the voter simply passes the input coming from its belong-
ing region to the output. The configuration memory scrubber periodically readbacks
the configuration frames of each configured accelerator and calculates the syndrome
bits for every frame [Xil12c]. All-zero syndrome bits indicate an error-free frame.
Non-zero syndrome bits indicate the error type (SBE or MBE) and the location of
the erroneous bit in the case of SBE. An SBE will trigger the correction of the bit in
error using the syndrome information and the corrected frame will be written back
to the configuration memory. An MBE cannot be corrected using the syndrome
information and will trigger the reconfiguration of the affected accelerator using the
bitstream stored in the system memory.

3.3 Architectural Assumptions

In this thesis, the following basic assumptions about the hardening of the non-
reconfigurable components and the partitioning of the reconfigurable fabric are ap-
plied.

Statically hardening the reconfigurable fabric (i.e. FPGA) would further worsen
its silicon area efficiency, which is known to be significantly lower than an ASIC
implementation for a given circuit [KR07, WBR11], due to the provided capability
of customization of the hardware organization. The core pipeline and voters are
instead assumed to be hardened by manufacturing processes [HB03, DSSF10]. And
the communication infrastructure is assumed to be protected by ECC. Therefore,
they are much less susceptible to soft-errors than the reconfigurable fabric and thus
this thesis focuses on the dependability of the reconfigurable fabric. The runtime
system is assumed to be running on the hardened processor.

All reconfigurable regions are assumed to be of identical size, shape and composi-
tion of reconfigurable resources, which allows any accelerator to be configured into
any region. Accelerator relocation techniques allow to use only one implementation
(i.e. partial bitstream) per accelerator, regardless of the region into which the ac-
celerator shall be reconfigured at runtime [BKT14, BHW+14]. While it would be
possible to use the reconfigurable fabric in a more flexible manner (e.g. variable-
sized regions), it would come with significant drawbacks such as the demand to cre-
ate different implementations per accelerator (optimized for different region types),
complex management of available resources [Ahm07] and the difficult aspect of es-
tablishing communication between variable-sized regions [PAS+09].

3.4 Cross-Layer Dependability

In reconfigurable architectures, most of the computations are offloaded to the re-
configurable fabric for hardware acceleration. The importance of the core pipeline

51

3 System Overview and Cross-Layer Dependability

Functional correctness

Application

Accelerator

Configuration
bit

Structural integrity

Accelerator

Circuit

Transistor

Lifetime increase
Effect

State

Reliability guarantee
Constraint

Effect

Fault discoveryTest Test

Self-repair

Runtime orchestration

Reconf.

Figure 3.3: System layers and their interaction with the dependability approaches pro-
posed in this thesis

is diminished as it does not perform the actual computation but plays the role as
a logistics manager that take care of the tasks around the computation, e.g. config-
uration of accelerators and initiating acceleration. The “management" core merely
need to execute light-weight tasks and thus do not require the performance benefit
of cutting-edge process technologies. Therefore, the core pipeline can be built with
less complexity using dependable technologies from previous generations while this
thesis focuses on the dependability of the reconfigurable fabric on FPGAs that are
manufactured in newest technology nodes. The dependable operation of a hardware
accelerator implemented on FPGAs relies on the following two aspects.

• Structural integrity: the underlying reconfigurable hardware which is em-
ployed to implement the accelerator shall be fault-free.

• Functional correctness: the configuration data for the accelerator, which
is stored in the configuration memory of the FPGA and tailor the underlying
hardware to perform the desired functionality, shall be error-free. Functional
memory elements such as block RAMs and flip-flops are dominated by config-
uration bits in terms of error susceptibility and thus are not considered in this
work (see Section 2.4.4).

Latent defects not detected during manufacturing and electrical and physical
degradation induced by aging processes threaten the structural integrity of the re-
configurable fabric. Structural integrity is the prerequisite of functional correctness,
while structural integrity alone is not sufficient for functional correctness. The rea-
son behind it is twofold. Firstly, the delay on the critical path of an accelerator
is determined by the delay of all logic and routing components on the path, which
experiences the manufacture variation and aging process. A structural fault-free
fabric may still cause delay faults of configured accelerators. Secondly, the config-
uration data for an accelerator define the logic function of the configurable logic
blocks and signal routings among logic blocks through the configurable switching
matrices. The configuration data precisely define the functionality of an accelerator
in terms of how reconfigurable resources shall be customized and how they shall be
interconnected. Corrupted configuration data, e.g. due to SEU, lead to incorrect
functionality definition and operation of the accelerator.

In this thesis, the dependability of the reconfigurable fabric is viewed from two

52

3.4 Cross-Layer Dependability

perspectives (structural integrity and functional correctness) and each of which com-
prises three abstraction layers, as shown in Fig. 3.3. The layers from the perspective
of structural integrity are as follows.

• Transistor layer : The basic operation unit at this layer is a transistor, i.e.
NMOS or PMOS. The computation is carried out by the transport of charges
among transistors.

• Circuit layer : The basic operation unit at this layer is a reconfigurable prim-
itive in an FPGA, e.g. LUTs, flipflops and multiplexers, which are composed
of transistors. The computation is performed in the form of basic logic oper-
ations.

• Accelerator layer : An accelerator is the basic operation unit at this layer.
It is a composite of multiple reconfigurable primitives. It performs complex
functions such as mathematical transformations.

From the perspective of functional correctness, the layers are:

• Application layer : At this layer, an application is viewed as the sole operation
unit. An application operates correctly when it produces error-free results
which rely on the correct outputs from used accelerators.

• Accelerator layer : An accelerator is the basic operation unit at this layer. It
delivers correct outputs when its configuration bits are not corrupted. It can
be replicated to implement modular redundancy.

• Configuration bit layer : At this layer, individual configuration bits are the
basic information fragment that defines the functionality of reconfigurable re-
sources. Scrubbing detects and repairs individual erroneous configuration bits.

The propagation and transformation of parameters across multiple layers allow a
precise cause-effect analysis, e.g. how the usage of accelerators affects the lifetime of
transistors, which leads to the delivery of runtime decisions directly on the concerned
dependability objectives. The dependability techniques proposed in this thesis and
their relationship to the abstraction layers are introduced in the following sections.

3.4.1 Lifetime Increase

Electrical and physical stress induced in transistors by acceleration workload is bal-
anced among all available transistors in the reconfigurable fabric such that the stress
is not accumulated in individual transistors and causes them to fail much earlier than
others. In this way, the lifetime of the reconfigurable fabric can be prolonged as the
failure time of the transistors is delayed. The stress balance is achieved by smartly
arranging the placement of accelerators, i.e. into which region an accelerator shall
be placed.

The stress states at the transistor layer is propagated through circuit layer to the
decision making at the accelerator layer. The decision making at accelerator layer
aims at a uniform distribution of stress over all configurable logic blocks at circuit

53

3 System Overview and Cross-Layer Dependability

layer, which is automatically translated to the stress balancing at transistor layer.
The stress states of individual transistors (transistor layer) is aggregated and rep-
resented as the stress states of individual configurable logic blocks (circuit layer),
which form the basis of the decision making of accelerator placement (accelerator
layer). The goal of the stress-aware accelerator placement is to distribute the stress
uniformly among all available reconfigurable resources depending on the their cur-
rent stress states and the stress patterns of the accelerators to be placed. Thorough
discussions of the stress balancing technique are presented in Chapter 6.

3.4.2 Fault Discovery

To detect structural faults and configuration errors in the reconfigurable fabric, on-
line test must be an integral part of the system operation. Two different types of test
procedures are integrated: pre-configuration test (PRET) and post-configuration
test (PORT). PRET exercises the underlying reconfigurable hardware structures in
a region, e.g. LUTs, flipflops, multiplexers, etc. before the actual configuration of an
accelerator. Permanent or intermittent structural faults that may impair the oper-
ation of configured accelerators can be detected at this phase. After the accelerator
configuration, PORT is performed to examine whether the configured accelerator
delivers the desired functionality. During PORT, accelerator-dependent test stimuli
are fed to the inputs of the accelerator at the operation frequency of the accelerator.
The outputs of the accelerator are aggregated and verified against a pre-computed
signature. A mismatch signalizes that an erroneous operation of the accelerator is
detected. It may originate from incorrect configuration data or delay faults. The
integration of PRET and PORT into the target reconfigurable architecture is dis-
cussed in Chapter 4.

3.4.3 Self-Repair

If a certain resource in a region is detected to contain structural faults, any acceler-
ator that requires the resource cannot be placed into that region, as otherwise the
accelerator may produce incorrect outputs. This limits the placement freedom of ac-
celerators and may eventually lead to unplaceable accelerators and thus performance
degradation.

Due to the regular and homogeneous resource structure in FPGAs, an accelerator
can have multiple physical implementations in a region that are diversified in terms
of resource usage. An accelerator diversification design method is developed at the
circuit layer. A minimal set of accelerator configurations is generated for tolerating
any single-CLB fault in one region. Additional configurations enable tolerance of
multi-CLB faults (i.e. multiple faulty CLBs). After the faults in a region are detected
and localized, any accelerator can be configured into that region, as long as one of
its diversified configurations does not require the faulty resources. And therefore the
placement freedom and performance can be maintained at the level of a faulty-free
system. The accelerator diversification design method is presented in Chapter 5.

54

3.4 Cross-Layer Dependability

Online monitoring

Online test

Soft-error
monitor

Execution/
idle monitor

Data
aggregation

and
evaluation

Runtime orchestration

Stress-aware accelerator
placement

Scheduling of PRET, PORT,
and scrubbing

Adaptive accelerator
redundancy

Dependability
modeling

Aging/stress
model

Reliability model

Figure 3.4: Runtime orchestration of dependability techniques

3.4.4 Reliability Guarantee

In mission-critical applications, demanding reliability requirements such as IEC61508
[IEC10] and ISO 26262 [ISO11] and need to be satisfied under changing operation
and environmental conditions. Such reliability requirements are typically given at
the application layer since it is the closest layer to the products or end-user experi-
ence. As most of the computations in reconfigurable architectures are offloaded to
the reconfigurable fabric, the reliable computation of accelerators is essential to the
reliable operation of the whole system. Since the functionality of accelerators is de-
fined by their configuration bits, the reliable operation of accelerators is determined
by whether their configuration bits are error-free.

Outputs of accelerators can be protected by modular redundancy and the configu-
ration bits of accelerators can be protected by periodic scrubbing. Blindly applying
modular redundancy to all accelerators regardless of the application requirements
and environmental conditions (e.g. radiation level) incurs high cost in error detection
and correction. The system may be overprotected under the excessive usage of re-
configurable resources for redundancy, which could have been used for acceleration.
Optimized adaptation of redundancy to different application reliability constraints
and environmental conditions requires the propagation of reliability constraints from
application layer through accelerator layer down to configuration bit layer. The re-
liability constraint of the application determines which accelerators shall be imple-
mented with redundancy for a given soft error rate and scrubbing frequency of the
configuration bits. In the other direction, the scrubbing of the configuration bits and
redundant accelerators determine the perceived reliability of the application by the
user. Chapter 7 proposes a runtime adaptation method for optimizing the system
performance under a given reliability constraints of the application.

3.4.5 Runtime Orchestration

All the above dependability techniques are managed by the runtime system during
system operation, as shown in Fig. 3.4.

Online monitoring uses different techniques to obtain important physical and log-

55

3 System Overview and Cross-Layer Dependability

ical information that characterizes the current system states. They range from
monitors of the environment (e.g. soft error rate) to performance monitors (e.g. re-
source utilization). The monitored data are collected and aggregated to provide
the input metrics for the dependability models or for the decision making during
the application of dependability techniques. The aging and stress models derive the
stress states of the reconfigurable resources based on the monitored resource usage
information. Based on the stress states, the runtime system optimizes the stress dis-
tribution to increase the system lifetime. The reliability model evaluates the error
probability of the execution of accelerators based on the monitored soft error rate
and resident time of accelerators. Appropriate redundancy modes for different accel-
erators are then selected by the runtime system to satisfy the application reliability
requirements. These models are evaluated at runtime on the target architecture
where the available computational and memory resources for model evaluation are
limited. Thus, model abstraction and simplification is exploited such that evalua-
tion at runtime imposes only negligible performance overhead while still offering an
effective assessment of the dependability states.

The dependability techniques (non-functional workload), particularly PRET,
PORT and scrubbing, have to operate concurrently together with the application
execution (functional workload) in the reconfigurable fabric. These two function-
alities compete with each other for shared resources, e.g. the reconfiguration port
of the FPGA for PRET and scrubbing, and thus the application execution may be
affected by performing dependability techniques. At runtime, the functional and
non-functional workload are orchestrated in such a way that the dependability tech-
niques introduce minimum disturbance to the application execution and are fully
transparent to the user.

3.5 Evaluation Platform

The target reconfigurable architecture forms the platform for the experimental eval-
uation in this thesis. A LEON processor [Aer] is used as the core pipeline with a
reconfigurable fabric with configurable number of regions (see Fig. 3.2). The ac-
tual hardware prototyping is performed on an XUPV5 FPGA board with a Xilinx
Virtex-5 LX110T. A SystemC-based cycle-accurate architectural simulator (param-
eterized by the hardware prototype) [BSH09] is used for evaluating different system
parameters like the number of regions and different runtime strategies. It accurately
models the hardware implementation of the reconfigurable architecture including the
bus arbitration in the reconfigurable fabric, the duration of reconfiguration, and the
application behavior including request arbitration for accelerator configuration and
software-emulation of unavailable accelerators. The system operates at a clock fre-
quency of 100MHz and a reconfiguration bandwidth of 50MB/s (limited by off-chip
system memory that is also used to store partial bitstreams).

A sophisticated H.264 video encoder is the main application used in evaluation
since video and image processing are typical applications for reconfigurable archi-
tectures [GCS+06]. The encoder is also a challenging application since it frequently
reconfigures accelerators in the regions. The H.264 encoder consists of three differ-

56

3.5 Evaluation Platform

Table 3.1: Short description of accelerators implemented for H.264

Accelerator Description
Clip3 clipping to a configurable min/max interval
CollapseAdd summing up the 4 bytes inside a 32-bit word
LF_BS4 4-pixel edge filter for in-loop deblocking
LF_Cond filtering condition for in-loop deblocking
PointFilter six-tap filter for sub-pixel motion estimation

and compensation
QuadSub 4 parallel byte subtractions
SADrow_4 sum of absolute differences of two 4-pixel rows
SAV sum of absolutes of four 16-bit values
Transform (inverse) discrete cosine transform or

(inverse) Hadamard transform

ent kernels that are executed in sequence for each video frame: Motion Estimation
(ME), Encoding Engine (EE), and in-loop deblocking filter. Each kernel requires
different accelerated function as well as different accelerators that are reconfigured
before the execution of the kernel. For instance, when EE processes a frame then
the accelerators for EE are reconfigured which replaces the accelerators for ME that
finished processing this frame before EE starts. The accelerator requirements for
a particular kernel may vary over time. For instance, EE uses different encoding
techniques (accelerated by different accelerated functions) depending on the input
data, e.g. slow moving objects vs. hectically changing structures. In total, nine ac-
celerated functions are implemented for the H.264 encoder by using combinations
of 9 different types of accelerators, as listed in Table 3.1).

57

4 Fault Discovery through Strategic Online Testing

As latent faults and aging effects threaten the structural integrity of nano-CMOS
devices, conventional manufacturing and burn-in tests are no longer sufficient to
guarantee dependable reconfigurable architectures throughout the whole product
lifecycle. The reconfigurable fabric on the FPGA needs to be constantly monitored
by thorough online testing to check its correct operation over time. In contrast to
offline testing, online test can be performed concurrently to the system operation
and has the potential to minimize the interference to the functional workload and
thus the performance overhead. This task is particularly challenging for runtime re-
configurable architectures where the hardware organization changes during runtime
as an integral part of the normal operation.

This work proposes the integration of two types of online test that complement
with each other: pre-configuration online Tests (PRET) and post-configuration on-
line tests (PORT). PRET is an application-independent structural test while PORT
performs application-dependent functional test. PRET and PORT differ in their
target fault models, test intervals, and test application time. PRET is designed to
exhaustively test the underlying hardware structure, e.g. logic resources in CLBs,
in the reconfigurable fabric periodically or on-demand. However, PRET alone does
not guarantee the correct functionality of a configured accelerator. Errors may oc-
cur during the loading of bitstreams, e.g. due to faults in the configuration logic or
transient events like SEU or crosstalk. As a consequence, the configured function
of the targeted region may be wrong or the configuration in other parts of the re-
configurable fabric may be adversely altered. PORT aims to perform at-speed func-
tional tests on accelerators after they are instantiated in the reconfigurable regions.
PORT checks whether they have been configured correctly and deliver the desired
functionality. At mission time, PORT also periodically checks the accelerators for
malfunction due to emergent permanent faults or soft errors in the configuration
memory. The test application interrupts the system operation only for a minimal
amount of time in the order of a few microseconds.

The development of the test infrastructures for PRET and PORT, including test
configurations, test pattern generators and output response analyzers, is accom-
plished by the project partners at the University of Stuttgart and is not part of
the contributions in this thesis. This work seamlessly integrates the infrastructures
for PRET and PORT into the target reconfigurable architecture such that they are
transparent to applications and users, i.e. they don’t have to be modified. Both test
scheme are scheduled concurrently to functional workload by the runtime system
with minimum impact on application and system performance.

59

4 Fault Discovery through Strategic Online Testing

Test manager

PORT PRET

Test manager

PORT PRET

Runtime
System

Recon-
fig port

Bit-
streams

Runtime
System

Bit-
streams

b) Basic pre-configuration online test (PRET)

Runtime
System

Bit-
streams

Test manager

PRET

c) Reconfiguring the accelerator into the
region

Runtime
System

Recon-
fig port

Bit-
streams

a) Initial binding of accelerators to regions

d) Initial post-configuration online test (PORT)
and subsequent PORTs (from time to time)

Recon-
fig port

Recon-
fig port

PORT

Test manager

PORT PRET

Reconfigurable Fabric Reconfigurable Fabric

Reconfigurable Fabric Reconfigurable Fabric

Figure 4.1: Test flow with PRET and PORT

4.1 Overview of Online Test Strategies

For PRET, the array-based structural test approach as proposed in [ABB+12,
BBI+12] is used to generate the test configurations for the exhaustive test of all
logic resources in a reconfigurable region. Additional PRET test configurations for
the application-dependent interconnect test are generated as proposed in [BBI+13],
where all logic functions in the CLBs used by an accelerator are replaced by the
XOR function. This allows a high controllability and observability of the used in-
terconnects. For PORT, commercial Automatic Test Pattern Generation (ATPG)
tools such as Synopsys TetraMAX are used to generate the test patterns and the
corresponding response signatures for different accelerators.

Figure 4.1 shows the proposed online test flow for a reconfigurable fabric with three
regions. In the first step (Fig. 4.1a), the runtime system decides that an accelerator
shall be reconfigured into a particular region, which triggers the demand to test the
hardware structures in that region first before the actual configuration of accelerators
(so-called on-demand PRET). To exhaustively test all reconfigurable resources in
the region, multiple test configurations (TCs) are required (see Section 2.5.1) and
they would delay the accelerator reconfiguration significantly. The runtime system
can choose to execute PRET incrementally to reduce the delay. This means that
not all TCs are applied to the region at once, but only some of them. The runtime
system decides how many and which TCs should be applied (potentially none) before
reconfiguring the accelerator, based on the test history of the region. The runtime

60

4.2 Integration of Online Tests

R
eg

io
n

 5

Inter-
con-
nect

R
eg

io
n

 1

Inter-
con-
nect

...

...

R
eg

io
n

 4

Inter-
con-
nect

Load/Store
Units

Intercon-
nect

Inter-
con-
nect

Intercon-
nect

Test
manager

ORATPG

...

...

Communication
Legend:

with CPU:
with TPG:
with ORA:

Figure 4.2: Test manager integration with TPG and ORA

system keeps track of which TCs were applied to a region in the past and how
much time passed since the last exhaustive PRET. Depending on this test history,
it activates PRET, reconfigures the selected TCs into the region, and uses TPG
and ORA of the Test Manager to exercise the reconfigurable fabric (Fig. 4.1b).
In addition to the on-demand PRETs, the runtime system also schedules periodic
PRETs to ensure that also seldomly reconfigured regions are tested.

If no structural fault is found by PRET, the runtime system reconfigures the
desired accelerator into the region (Fig. 4.1c). Before the accelerator is used by
the application, the runtime system triggers an on-demand PORT (Fig. 4.1d) to
test whether the reconfiguration process has completed without error, i.e. whether
the accelerator delivers the desired functionality at the specified clock frequency.
Additionally, accelerators instantiated in other regions are tested as well to check
that they were not affected by the reconfiguration. As PORT does not require any
reconfiguration of TCs, it operates significantly faster than PRET and can also
be applied during normal operation, which is scheduled by the runtime system as
subsequent periodic PORTs.

4.2 Integration of Online Tests

The test manager including TPG and ORA for the online testing is integrated into
the base reconfigurable architecture (see Section 3.2.1) and coupled to the inter-
connect for the reconfigurable fabric such that communication channels between
reconfigurable regions and the test manager can be established. The test man-
ager reuses the same interconnect infrastructure that is already available for the
inter-region communication of accelerators. Figure 4.2 shows a detailed view of the
interconnection between the test manger and the regions.

In order to utilize this infrastructure, both PRET and PORT are implemented as
special accelerated functions (test-AFs). In the base architecture, all AFs contain
an implicit control word which is stored in an on-chip memory for each executable
AF. This control word configures the interconnect infrastructure according to the
dataflow graph of the AF to control the data flow among accelerators and between
the reconfigurable fabric and the CPU. For the special test-AFs, the same mechanism
is used to establish the connection between the test manager and the region under
test.

61

4 Fault Discovery through Strategic Online Testing

For PRET, the test configuration needs to be reconfigured into the region under
test before the test-AF can be executed. For PRET and PORT, the procedures
of sending the test patterns to the region under test and analyzing the responses
are similar and are both performed by test-AFs. When the processor executes a
test-AF, the test parameters for the AF are sent as the AF input data from the
register file of the processor to the test manager, as shown in Fig. 4.2 step 1 . These
parameters determine which region shall be tested and which test patterns are to
be applied. The test manager then sends the test patterns to all regions (Fig. 4.2
step 2). The test patterns can be directly generated online by the TPG in the
test manager, or can be prepared offline and stored along with the expected output
signatures in an on-chip memory. The memory is attached as a slave to the system
bus and initialized when the system starts.

For PRET targeting the logic primitives within CLBs, a test pattern and its
corresponding response can be packed into one 32-bit word each. For each test
pattern, the responses from 4 regions are sent back to the test manager (Fig. 4.2
step 3). The limitation to 4 responses per cycle is due to the availability of 4
buses for the interconnect infrastructure. The example in Fig. 4.2 step 3 shows
how the responses of regions 1–4 are sent back via the buses. The test manager
then selects the response of the region under test with an internal multiplexer. To
perform PRET on regions 5–8, another test-AF needs to be triggered such that the
interconnect infrastructure is reconfigured for sending the responses of these regions
back.

During PORT, the responses of the accelerators are compacted in space and time
using a 32-bit multiple input signature register [WWW06]. After the application
of the test patterns, a single 32-bit signature per region has been computed and
is stored locally. The hardware that computes the signature is integrated into the
interconnect infrastructure such that the outputs and the bus interface of a region
are tested simultaneously as well. PORT only needs one test-AF that tests all con-
figured accelerators consecutively. After applying all test patterns, the locally stored
signatures are transferred to the test manager in multiple cycles (four signatures per
cycle). The ORA of the test manager then compares the response signatures with
the expected signatures that are specific for each accelerator. The information which
accelerator is reconfigured to which region is available in the hardware architecture
and is updated before and after each reconfiguration.

For PRET targeting interconnects, an interconnect test configuration is recon-
figured into the region under test similar to PRET for the logic primitives. Then,
stored test patterns are applied similar to PORT, and a test signature is computed
and transferred back to the test manager.

At the end of the tests (PRET or PORT), the final test result (passed or failed)
is written back to the register file of the processor (Fig. 4.2 step 4). As the PORT
test-AF tests all configured accelerators consecutively, the result contains a 1-bit
information (passed or failed) for each region.

62

4.3 Scheduling of Online Tests

4.3 Scheduling of Online Tests

Both PRET and PORT are scheduled by the runtime system periodically and on-
demand to detect faults as early as possible.

4.3.1 PRET Scheduling

During PRET, multiple test configurations need to be configured into the region un-
der test, which blocks the configuration port of FPGA and delays the configuration
of accelerators. Thus, in order to reduce the impact on the application performance
due to the unavailability of accelerators, PRET is only executed at times when the
system needs to be reconfigured anyway. An on-demand PRET Test Configuration
(TC) is scheduled after a certain number of Accelerator Configurations (ACs). For
instance, one TC is scheduled before every AC or before every 2nd AC, 3rd AC,
etc. This allows to distribute the tests over space (in different regions) and time
(in one region). The tests are initiated by the runtime system that is responsi-
ble for scheduling the accelerator configurations. After a reconfiguration completes,
the runtime system is informed by an interrupt. If that reconfiguration was a test
configuration, the runtime system executes a PRET test-AF for the corresponding
region and evaluates the test result before triggering the next reconfiguration.

In addition to on-demand PRETs before accelerator configurations, a timer-based
periodic PRET is integrated as well. This limits the time period during which a
region remain untested, i.e. test latency, when that region is only rarely reconfigured
by the application. In extreme cases, an application could reconfigure a particular
region a single time at start and then use the accelerator in that region without ever
reconfiguring the region again. In such a case, no PRET would be performed on
this region except at the start, which can be prevented by the periodic PRET.

The periodic PRET is implemented by a handler (see Alg. 1) consisting of two
phases: i) triggering the reconfiguration of a TC for a particular region (lines 3–14)
and ii) executing the PRET test-AF after the TC is reconfigured (lines 15–29).

The first phase of the handler scans all regions for their last test time (maintained
by a data structure of the runtime system) and identifies the least recently tested
region (lines 4–6 in 1). If the time since the last test is larger than a configurable
threshold (500 ms is used for the evaluation in Section 4.4.3), a periodic PRET is
triggered for this region. The second phase of the handler is activated when the
reconfiguration of the TC triggered by the first phase is completed. It then executes
the PRET test-AF, informs the runtime system about the health state of the region
under test and updates the data structures for the next PRET.

4.3.2 PORT Scheduling

The on-demand PORT is conducted directly after accelerator configuration to assure
that the reconfiguration process has correctly completed without error and that

63

4 Fault Discovery through Strategic Online Testing

Algorithm 1 Interrupt Handler for periodic PRET using the ‘Least Recently Tested
Strategy’.
Input: Trigger by timer_event and reconf_complete_event
Input: reg[i]: runtime system information about regions
1: static pret_reg := NULL // which region
2: static pret_tc := NULL // which test configuration
3: if (triggered by timer_event) then
4: // determine least recently tested region
5: lrt_reg := min∀Region i {reg[i].last_test_time}
6: lrt_time := cont[lrt_cont].last_test_time
7: if (current_time - lrt_time > Threshold) then
8: pret_reg = lrt_reg
9: pret_tc = reg[lrt_reg].next_tc
10: // Trigger the reconfiguration of the test config
11: reconfiguration_queue.push(pret_reg, pret_tc)
12: return
13: end if
14: end if
15: if (triggered by reconf_complete_event and pret_reg 6= NULL

and reg[pret_reg].accelerator = pret_tc) then
16: switch (pret_reg)
17: case 0–3:
18: result = pret_si_reg0_3(pret_reg)

// this calls the test-FA for regions 0–3
// parameter: which of these 4 regions to test

19: break
20: case 4–7:
21: result = pret_si_reg4_7(pret_reg-4);
22: break
23: end switch
24: reg[pret_reg].health_state := result
25: reg[pret_reg].last_test_time := current_time
26: reg[pret_reg].next_tc := (reg[pret_reg].next_tc+1) mod number_of_tcs
27: pret_reg := NULL
28: pret_tc := NULL
29: end if

64

4.4 Experimental Evaluation

the configured accelerator delivers the expected functionality. As PORT tests all
configured accelerators consecutively in one test session (see Section 4.2), errors in
the other accelerators, e.g. due to address decoder faults in the configuration logic
or errors in the configuration address, are detected as well.

In addition, periodic PORTs are also scheduled at runtime to check the accelera-
tors for malfunctions, caused e.g. by emergent faults in CLBs due to aging effects or
soft errors in the configuration memory. Periodic PORT is realized by an interrupt
handler similar to the periodic PRET handler (Alg. 1), but without the need to
trigger reconfigurations.

4.4 Experimental Evaluation

The evaluation platform introduced in Section 3.5 is used to investigate the overhead
and test effectiveness of PRET and PORT, integrated as described in Section 4.2
into the target architecture.

4.4.1 Fault Models of Tests

The stuck-at fault model is widely adopted in the literature for FPGA testing [Ren98].
For complex FPGA components such as lookup tables (LUTs) and flip-flops, typi-
cally only a functional description is available from the vendor and structural im-
plementation details are missing. This results in a weak modeling of defects. Here,
the stuck-at fault model is used for components in which the structural information
is sufficient for fault derivation and for the interconnects. For the remaining com-
ponents, structural and cell faults are targeted during test generation resulting in a
hybrid fault model. The tests are generated under the single fault assumption.

• LUT as truth table: The LUT is treated as a combinational function of n
inputs and m outputs, and the cell fault model [Kau67, PGP98] is applied.
Cell faults describe any mismatch at the outputs of a unit under test for the
possible inputs. The number of cell faults equals the number of possible inputs
multiplied by the number of faulty outputs 2m(2n−1).

• LUT as RAM: If the LUT is operated in RAM mode, the following memory
faults [van93] are targeted: stuck-at faults, address decoder faults, transition
faults, coupling faults, and data retention faults.

• Sequential elements: CLBs contain sequential elements such as flip-flops,
latches, or LUTs in shift register mode. For these elements, the commonly
used fault models in hardware testing are considered [WWW06], i.e. stuck-at
and transition faults.

• Interconnects: The stuck-at faults assigned to all input and output ports of
the logic primitives are targeted such that all faults at signal fanout stems and
their branches are tested.

65

4 Fault Discovery through Strategic Online Testing

4.4.2 Test Configurations for PRET

A full test session consists of multiple test configurations (TCs), each of which tests
a subset of the logic primitives in the CLBs of a region or a set of interconnects
used by the accelerator to be configured. Altogether nine TCs are required to test
all logic primitives in the CLBs [ABB+12], and another nine TCs are required to
test the interconnects of the nine accelerators of the H.264 application [BBI+13] (see
Table 3.1). Partial bitstreams for these TCs are stored in the system memory.

Table 4.1 provides an overview of the 18 TCs for PRET. 9 TCs for testing CLBs
are labeled TC 1-9 and the 9 TCs for the interconnects are labeled 10-18. Column
one shows the configuration number. Column two shortly describes the parts of
fabric under tested. Columns three and four list the area overhead of PRET in
CLBs used for the TPG and ORA and the size of the generated partial bitstreams.
The total area overhead introduced by PRET for all TCs is 17 CLBs. The total
test time for a region consists of two parts: the configuration time of the TC and
the test pattern application time (see ‘Test length’ in Table 4.1). Typically, the
latter ranges from a few cycles up to a few hundred cycles. For instance, applying
all test patterns for TC 9 (the TC with the largest number of patterns) lasts 3.2 µs
at 100MHz system frequency. The configuration time of TCs dominates the test

Table 4.1: Test configurations for CLBs and interconnects: Overhead, size, frequency and
length

PRET Bitstr. Freq. Test
overh. size length

TC Tested primitives [CLBs] [KB] [MHz] [Patterns]

1 LUT conf. as XOR, 2 24.0 207 64connected to FF

2 LUT conf. as XNOR, 2 24.0 207 64connected to FF

3 Carry MUX, interleaved 1 28.6 168 6with MUX and latch

4 Carry MUX, interleaved 1 26.1 154 6with MUX and latch

5 Carry XOR, interleaved 1 28.0 168 6with MUX and FF

6 Carry XOR, interleaved 1 28.2 154 6with MUX and FF

7 Carry-in/-out with 1 27.1 183 6multiplexed scan chain

8 LUT conf. as SR 1 22.9 157 6with slice MUX

9 LUT conf. as RAM 7 22.3 225 320with slice output

10-18 Interconnect and PIPs n.a. 29.6 78.8- 13-
of the nine accelerators 191.9 123

66

4.4 Experimental Evaluation

time with tens of thousands of cycles and is directly proportional to the size of
the configuration data (partial bitstreams) and the reconfiguration bandwidth. As
shown in Table 4.1, the bitstream size of each TC varies from 22.3KB to 29.6KB,
which corresponds to a configuration time between 0.45ms and 0.59ms at 50MB/s
configuration bandwidth, i.e. between 45 and 59 thousand cycles at 100 MHz system
frequency.

The PRET overhead for the interconnect TCs is not applicable as the deterministic
patterns are not generated by a TPG but stored similar to PORT patterns. For
response compaction, the same compaction unit for PORT is reused. In total 3780
bytes are required to store the test patterns of all interconnect TCs together with
their signatures. One of the nine accelerators (and its corresponding TC) requires
two clock cycles for execution (78.8MHz). All others require only a single clock
cycle and have a frequency higher than 100MHz. All interconnect TCs reach a fault
coverage of 100%, except for SADrow_4 with a fault coverage of 98.28%.

4.4.3 PRET Scheduling

Figure 4.3 shows the simulation results for the performance loss under different test
frequencies, depending on the number of reconfigurable regions. The test frequencies
vary from one test configuration before every accelerator configuration (1 TC/AC)
to one test configuration before every 4th accelerator configuration (1 TC/4 ACs).
Using a lower test frequency (e.g. 1 TC/4 ACs) reduces the overhead. The PRET
handler is triggered every 1ms and performs PRET if a region has not been tested
for 500ms. For reference, in a system with 10 regions and without PRET/PORT,
the time between two consecutive accelerator configurations in a region ranges from
13.2ms to 1240ms (average: 200ms).

Systems with more regions have a lower runtime overhead as more regions are still
operational during the test application. For instance, in a system with 5 regions,
only 4 regions can be used for acceleration during the PRET reconfiguration and
pattern application period, whereas in a system with 14 regions, still 13 regions can
be used for acceleration.

0.0%

0.5%

1.0%

1.5%

2.0%

5 6 7 8 9 10 11 12 13 14

Pe
rf

o
rm

an
ce

 lo
ss

 [
%

]

Number of regions

1 TC/AC
1 TC/2 ACs
1 TC/3 ACs
1 TC/4 ACs

Figure 4.3: Performance loss of the video encoder application under different on-demand
PRET frequencies and number of regions

67

4 Fault Discovery through Strategic Online Testing

2

4

6

8

10

12

5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 t
es

t
la

te
n

cy
 [

s]

Number of Regions

1 TC/AC 1 TC/2 ACs

1 TC/3 ACs 1 TC/4 ACs

Figure 4.4: Average test latency under different PRET frequencies and number of regions

Figure 4.4 shows the average test latency. For example, for a system with 10
regions and a test frequency of 1 TC/3 ACs, each region is completely tested (by
all TCs) every 7.1 seconds while the performance loss introduced by PRET is only
0.5%. The observed test latencies (3.8 s to 8.1 s) show that emergent faults do not
remain undetected in the system for longer than 1.9 s to 4.05 s in average.

As shown in Fig. 4.5, with decreasing on-demand PRET frequencies, the number
of on-demand tests (solid lines) decreases while the number of periodic tests (dashed
lines) increases. A low on-demand PRET frequency increases the chance that a
periodic test will be triggered because the possibility that a region remains untested
for a time that exceeds the threshold (in our experiment 500ms) is higher. For
systems with a large number of regions, all accelerators can be fit into the regions
and available for the application at the same time. Hence, less reconfigurations are
required leading to fewer on-demand tests and a higher number of periodic tests.

0

50

100

150

200

250

300

350

400

1 2 3 4

1 TC / AC 1 TC / 2 ACs 1 TC / 3 ACs 1 TC / 4 ACsN
u

m
b

er
 o

f
re

co
n

fi
gu

ra
ti

o
n

s
fo

r
P

R
ET

Frequencies for on-demand PRET

5 regions; on-
demand PRET

5 regions;
periodic PRET

9 regions; on-
demand PRET

9 regions;
periodic PRET

14 regions;
on-demand PRET

14 regions;
periodic PRET

Figure 4.5: Comparison of the number of on-demand and periodic tests for different on-
demand PRET frequencies and number of regions

68

4.4 Experimental Evaluation

4.4.4 PORT Scheduling

one PORT is scheduled right after each accelerator configuration and periodically
over runtime to test all configured accelerators in the fabric for functional integrity.
Since PORT is implemented as a dedicated test-AF (see Section 4.2), the application
execution time is affected by PORT. When the total execution time without PORT
is tbase, then the total execution time with activated PORT tPORT can be expressed
as

tPORT = tbase+ tPORT ·fP ·d+nC ·d, (4.1)

where fP is the frequency of periodic PORT executions, d is the duration in cycles of
one PORT execution, and nC is the number of accelerator configurations. Therefore,
the performance loss due to PORT is

tPORT − tbase
tbase

= 1 +nC ·d/tbase
1−fP ·d

−1. (4.2)

Since for the H.264 video encoder the term nC ·d/tbase is significantly smaller than
1, the performance loss is dominated by the periodic PORT. The upper part of Ta-
ble 4.2 shows the performance loss due to PORT for different PORT frequencies from
143Hz to 1,000Hz, i.e. test periods from 1ms to 7ms. For each PORT frequency,
the table shows the minimum and maximum performance loss of 10 reconfigurable
systems with different number of regions (5 to 14). The small difference between
the minimum and the maximum values shows that PORT is basically unaffected by
an increasing number of regions. This is because one execution of a PORT test-AF
tests all configured accelerators at the same time (see Section 4.2). Altogether, the
performance overhead due to PORT is very low (between 0.51% and 3.73%) and
scales well with higher PORT frequencies.

Table 4.2: PORT performance loss and worst case test latency under different PORT fre-
quencies

PORT frequency [Hz]
Performance loss 143 167 200 250 333 500 1000
min.∗ [%] 0.51 0.59 0.72 0.89 1.20 1.81 3.68
max.∗ [%] 0.56 0.63 0.75 0.92 1.23 1.85 3.73

PORT frequency [Hz]
Worst case∗∗ test latency 143 167 200 250 333 500 1000
min.∗ [ms] 7.0 6.0 5.0 4.1 3.3 2.3 1.7
max.∗ [ms] 7.8 6.8 5.8 4.8 3.8 2.8 1.8
* Summarizing 10 reconfigurable systems with 5 to 14 regions.
** Corresponds to the longest time period in the whole runtime in
which a configured accelerator remains untested.

69

4 Fault Discovery through Strategic Online Testing

In addition to the configured test frequency, the following further situations affect
the actual test latency of a region:

(1) If PORT is scheduled while an AF is being executed in the reconfigurable fabric,
then PORT must be delayed until the AF execution finishes.

(2) If PORT is scheduled right before or after an accelerator configuration, then all
configured accelerators (in all regions) are tested twice in a very short period.

(3) During the reconfiguration of a region, no PORT can be executed for that
region, as no accelerator is available in that region during reconfiguration.

In situations (1) and (3), the test latency of a region is prolonged while in (2) it is
shortened. The observed worst case test latency, which corresponds to the longest
untested time period of a region is shown in the lower part of Table 4.2.

4.4.5 Combined PRET and PORT Scheduling

With PRET and PORT both enabled, the system is able to defend the configured
accelerators against structural faults induced by aging effects or latent faults and
transient events such as crosstalk or radiation. Since both test schemes differ in
their test intervals and test methods, they do not interfere with each other. Fig. 4.6
shows the simulation results for the performance loss of a system with 5 regions
when both PRET and PORT are enabled. All combinations of PRET and PORT
frequencies used in previous sections are applied.

 1

 10

 100

 1000

 20
 25

 30
 35

 40

0

-1

-2

-3

-4

-5

 0

 1

 2

 3

 4

 5

Performance [%]

PORT frequency fP [Hz]Configuration frequency fC [Hz]

Performance [%]

Figure 4.6: Performance loss when both PRET and PORT are applied for a reconfigurable
system with 5 regions

70

4.4 Experimental Evaluation

The average configuration frequency fC is determined by considering all recon-
figurations, i.e. accelerator configurations (AC) and test configurations (TC). The
lowest configuration frequency of 17Hz corresponds to the case where on-demand
and periodic PRET is disabled, i.e. only accelerator configurations are performed.
When enabling PRET, the configuration frequency doubles to 34–41Hz, but due
to the PRET scheduling that distributes the TCs over time, the performance loss
remains limited.

The highest configuration frequency of 41Hz in Fig. 4.6 is obtained for the highest
on-demand PRET frequency of 1 TC/AC. For lower PRET frequencies (1 TC/2 ACs
and 1 TC/3 ACs), the configuration frequencies reduce correspondingly (35Hz and
34Hz). For an on-demand PRET frequency of 1 TC/4 ACs, the configuration
frequency increases again (37Hz), because more periodic PRETs are executed due
to the reduced number of on-demand PRETs. That explains the bend that is visible
in Fig. 4.6 for fC = 37Hz.

For a PORT frequency fP of less than 100Hz the performance loss is dominated by
the configuration frequency fC . After that point, the PORT frequency dominates
the performance loss. The highest performance loss of 4.4% occurs for a PORT
frequency of 1,000Hz and a configuration frequency of 41Hz.

71

5 Self-Repair by Module Diversification

If a CLB in the reconfigurable fabric is detected to be faulty, the faulty CLBs shall be
isolated from the system, i.e. not usable anymore for accelerators, as they may lead
to erroneous computations. This isolation can be performed in two granularities,
either disabling the usage of the regions that contains the faulty CLBs or forbidding
configuring any accelerators that require the faulty CLB. Both isolation strategies
limits the number of usable regions for accelerators. Certain accelerators required
by the application may failed to be configured due to the fault isolation and thus
the application performance is degraded due to unavailable accelerators.

5.1 Overview of the Module Diversification Method

This thesis proposes a novel design method called module diversification to tolerate
permanent or intermittent faults in the reconfigurable regions. For each module/ac-
celerator, a set of configurations is generated that is diversified in terms of their
CLB usages, such that for every CLB in a region, at least one configuration of a
module does not require that CLB.

A CLB is considered as faulty if it is affected by one or multiple permanent or
intermittent faults. The type of faults within a CLB is not distinguished. The
proposed module diversification method enables the system to tolerate at least any
single-CLB faults and part of multi-CLB faults. If a fault is localized in a region, a
diversified configuration of a module can be reconfigured into the region at runtime
that does not use the faulty CLB. Self-repairing is achieved from the application
perspective since in the present of faults the application experiences no performance
degradation.

A generic algorithm is developed to generate the minimal set of configurations
to tolerate arbitrary single-CLB faults and to generate additional configurations
to tolerate multi-CLB faults in a reconfigurable region. The relationship between
the required number of configurations, amount of spare resources, and reliability is
investigated. In addition, since the number of these configurations shall be as small
as possible to reduce storage overhead, these alternative configurations are inherently
highly diversified, i.e. the number of common CLBs of two different configurations
is as small as possible.

73

5 Self-Repair by Module Diversification

5.2 Diversified Configurations

An module defines the logic functions to be implemented in a region which con-
sists of CLBs that are arranged regularly in a 2-dimensional array in the FPGA.
The configuration of the module determines which CLBs in the region are used to
implement the functionality.

5.2.1 Matrix Representation of Configurations

A natural way to describe the CLB usage of a configuration is to use a Boolean
matrix. The size of the matrix matches the size of the region: A rectangular region
with X CLBs in width and Y CLBs in height requires an X×Y matrix. If a CLB
is used, the corresponding matrix element is 1, otherwise 0. This Boolean matrix
is called a configuration matrix. For example, a module configuration using 5 CLBs
implemented in a 3×3 region can be represented in a configuration matrix A:

A =

1 1 1
1 1 0
0 0 0

 (5.1)

This module uses 5 out of 9 CLB resources. This matrix represents one possible
configuration of the module.

5.2.2 Properties of Diversified Configurations

The module diversification method generates a set of configurations, each of which
implements the same module, but uses different CLB resources, such that any single-
CLB fault in a region can be tolerated by one of the diversified configurations.
Formally, we search a set of configurations C for a module implemented in an X×Y
region.

C = {A1, · · · ,Aw}, Ai :X×Y Boolean matrix (5.2)

Assume that all of these configurations utilize the same amount of CLBs U and
there is at least one free CLB, i.e.

∀Ai ∈ C :
∑
x,y

[Ai]x,y = U <XY (5.3)

To be able to tolerate any single-CLB fault, this set of configurations must satisfy
the completeness condition:

∀x,y,1≤ x≤X,1≤ y ≤ Y :
∃Ai ∈ C such that [Ai]x,y = 0

(5.4)

The completeness condition guarantees that if any CLB is detected to contain faults,
there always exists a diversified configuration Ai that does not require the faulty

74

5.3 Generation Algorithm

CLB. For a module requiring U CLBs to be implemented in an X ×Y region, at
least wmin configurations are required for the completeness condition:

wmin = d XY
XY−U e (5.5)

In each configuration, exactly XY −U CLBs are spare. For a configuration Ai, at
most XY −U CLBs that were not spare in any of the configurations Aj, j < i can
be spare in Ai, which directly results in this lower bound.

In order to minimize the number of diversified configurations for satisfying the
completeness condition and to improve the effect of aging mitigation, it is required
that the generated set of configurations also satisfies the max diversification condi-
tion:

∀i,1≤ i≤ w : ∃Aj ∈ C,j 6= i such that∑
x,y

(
[Ai]xy · [Aj]xy

)
=
{

2U −XY if U > 1
2XY

0 else
(5.6)

Two configurations are maximally diversified if the difference between them is
maximized. The minimum number of common CLBs between two configurations
is either 0, if the module requires at most half of the available CLB resources,
or 2U −XY , whenever all XY −U unused CLBs in one configuration are used
in the other configuration. In the latter case, the number of common CLBs is
U−(XY −U). The max diversification condition states that for every configuration
Ai ∈ C there is at least one other configuration Aj which differs from Ai as much
as possible w.r.t. the used CLB resources.

For example, consider a module requiring 5 CLBs to be implemented in a 3×3
region. The following set of configurations satisfies the completeness condition but
does not satisfy the max diversification condition:

A1 =

1 1 1
1 0 0
1 0 0

, A2 =

0 0 1
1 1 1
0 1 0

, A3 =

1 1 0
0 1 1
0 1 0

 (5.7)

When 5 out of 3×3 CLBs are used, the minimal possible number of common
CLBs between two configurations is 1 CLB (see Eq. (5.6)). Yet, in the above 3
configurations, all pairs of configurations have at least 2 CLBs in common. One
possible set of configurations that satisfies both conditions is as follows:

A1 =

1 1 1
1 0 0
1 0 0

, A2 =

0 0 0
0 1 1
1 1 1

, A3 =

1 1 1
1 0 1
0 0 0

 (5.8)

5.3 Generation Algorithm

Enumerating all possible configurations to find a maximally diversified set of config-
urations is computationally intractable. For instance, if a module requires 50 CLBs

75

5 Self-Repair by Module Diversification

in a region with 80 CLBs, then there are (80
50) ≈ 9× 1021 possible configurations.

Alg. 2 presents the generation of a given number of configurations that satisfy the
completeness condition and maximizes their diversity. It incrementally generates
diversified configurations from an initial configuration A1.

Algorithm 2 Generation of diversified configurations C
1. C := {A1} // A1 is the initial configuration
2. G := A1 // Score matrix G stores swapping priority of CLBs
3. Anew := A1
4. loop
5. zero_elem_list := {(x,y) | [Anew]xy = 0} // unused CLBs
6. candidate_list := {(x,y) | [Anew]xy = 1}
7. sort candidate_list according to the value of Gxy in descending order

// first element has the highest score
8. for all (x,y) in zero_elem_list do
9. swap_candidates := {(p,q) | (p,q) ∈ candidate_list and Gpq =

Gcandidate_list[0]} // all CLBs with the highest score
10. farthest_swap_candidate := (p,q) ∈ swap_candidates with max. Manhattan

distance between (x,y) and (p,q) // farthest elements are swapped first so
that CLBs are located near each other and better timing is achieved

11. swap([Anew]xy, [Anew]farthest_swap_candidate)
12. candidate_list.pop(farthest_swap_candidate)
13. if candidate_list = ∅ then
14. break
15. end if
16. end for
17. while Anew ∈ C do
18. swap a random zero- with random one-element in Anew
19. end while
20. G := G+Anew // update CLB score
21. C := C ∪{Anew}
22. if |C|= desirednumberofconfig.∨|C|=

(
XY
U

)
then

23. break
24. end if
25. end loop

In Line 30, the set of diversified configurations C is initialized with the initial
configuration. The score matrix G, which has the same dimension as the configu-
ration matrix, stores for each CLB the number of diversified configurations which
use that CLB. The score matrix is simply the sum of all configuration matrices in
C. In Line 31, G is initialized to A1, the only element in C at the moment. In
Line 32, the next new configuration matrix Anew is initialized to the initial configu-
ration matrix. In the inner loop (Lines 37 to 45), it is further modified by swapping
zero- and one-elements. The inner loop iterates through all zero-elements in Anew
and swaps zero-elements with one-elements in Anew in an order determined by the
score matrix (Line 36). If a CLB has a higher score (i.e. it is used more often in
the diversified configurations), its corresponding one-element in Anew will be first
swapped. If there are several CLBs with the same score, the farthest one from the
current zero-element is swapped first (Lines 38 to 40) so that in the resulting con-

76

5.4 Reliability Analysis

figuration, the used CLBs are located near each other. The first generated d XY
XY−U e

configurations correspond to the minimal set of configurations that satisfies both
the completeness and max diversification condition (see proof in Appendix A). It
is guaranteed that the random swapping (Line 47) does not occur while generating
the minimal set.

If the user requires more configurations for higher reliability (i.e. tolerate more
multi-CLB faults) or to have more alternatives for aging mitigation by stress bal-
ancing, further possible configurations can be generated (this might use the random
swapping in Line 47 at some time). The algorithm terminates when either the de-
sired number of configurations or all possible configurations have been generated.
In both cases, the generated set of configurations always satisfies the completeness
condition but may violate the max diversification condition due to the while loop
from Lines 46 to 48, where random changes are made to Anew to generate a new
unique configuration matrix.

5.4 Reliability Analysis

The reliability of an entity is the probability that it operates without failure for at
least the specified time period t. Let RCLB(t) be the reliability of a CLB at time t.
Without any fault-tolerance techniques applied, the reliability of a module using U
out of X×Y CLBs is

RNo FT(t) =RCLB(t)U , (5.9)

i.e. all U CLBs are required to be operational to allow the module to operate without
failure. Using the module diversification method, the reliability of the module can be
increased: In case of CLB failures, the module can be reconfigured with a diversified
configuration such that only operational CLBs are used by the configured module.
In this case, the reliability of the module becomes:

RDiv(t) = RCLB(t)XY +
XY∑
f=1

Cfαf

(
XY
f

)
(1−RCLB(t))fRCLB(t)(XY−f)

︸ ︷︷ ︸
Probability that f -fold CLB failures can be tolerated

(5.10)

The first term states the probability that all CLBs are fault free. The second term
aggregates all the scenarios where only a single CLB is faulty, two CLBs are faulty,
three CLBs are faulty, . . ., all CLBs are faulty.

Fault coverage Cf , 0 ≤ Cf ≤ 1, is the fraction of f -CLB faults which are de-
tected by an online test or concurrent error detection scheme (see Section 2.5) such
that reconfiguration with a diversified configuration allows to continue the module
operation.

The number αf , 0≤ αf ≤ 1 denotes the fraction of f -CLB faults which can be tol-
erated with the set of configurations generated by the module diversification method.
For example, α2 = 0.5 means 50% of 2-CLB faults can be tolerated by loading a di-
versified configuration. The completeness condition of Eq. (5.4) guarantees that

77

5 Self-Repair by Module Diversification

any single-CLB fault can be tolerated. Therefore, for every generated set of con-
figurations we have α1 = 1. The values of αf for f ≥ 2 depend on the placement
details of each configuration and need to be calculated from the generated set of
configurations.

5.5 Diversification for Interconnect Resources

The proposed module diversification design method is in principle applicable for all
regularly distributed resources of the fabric. In Xilinx FPGAs, the routing resources
are regularly distributed: One programmable switching matrix is attached to each
CLB. Thus, the resource usage patterns for target configurations computed by the
proposed method can also diversify the use of programmable routing resources.

5.6 Implementation Flow

This section explains the overall flow of the generation of diversified configurations
and tool integration using the Xilinx tool flow. The Xilinx place-and-route tools sup-
port the PROHIBIT placement constraint [Xil12a], which prevents the place-and-route
tool to use specific resources such as CLBs or Block RAMs at specified locations1.
In the following, this constraint is employed to implement diversified configurations
in term of CLB usages.

As shown in Fig. 5.1, an initial configuration is generated for the module by
synthesis and place-and-route of the original design files. From this configuration,
the used CLBs are extracted and stored in the matrix A1.

Using Alg. 2, the diversified configuration matrices Ai which specify the diversified
CLB usage is computed. They are exported as PROHIBIT placement constraints
and then provided to the Xilinx place-and-route tools which produce the final set of

Accelerator diversification

PROHIBIT constraints

Place & route

Design files

Place & route for each
diversified configuration

Configuration 1

Diversified configurations

CLB usage extraction

, ,...2 3 wA A A

1A

Figure 5.1: Generation of diversified configurations using the module diversification
method

1Currently the PROHIBIT constraint is not effective/supported for routing resources.

78

5.7 Experimental Evaluation

diversified configurations. An example constraint file for a diversified configuration
of module alu4 implemented in a 4×20 region is as follows:
INST " alu4_inst " AREA_GROUP = " pblock_alu4_inst ";
AREA_GROUP " pblock_alu4_inst " RANGE = SLICE_X48Y80 : SLICE_X57Y99 ;
PIN " alu4_inst .i_0" LOC = SLICE_X56Y80 ;
PIN " alu4_inst .i_1" LOC = SLICE_X56Y80 ;
...

...
...

PIN " alu4_inst .o_0" LOC = SLICE_X57Y80 ;
PIN " alu4_inst .o_1" LOC = SLICE_X57Y80 ;
...

...
...

CONFIG PROHIBIT = SLICE_X56Y84 ;
CONFIG PROHIBIT = SLICE_X56Y85 ;
...

...
...

CONFIG PROHIBIT = SLICE_X53Y80 ;
CONFIG PROHIBIT = SLICE_X54Y80 ;

5.7 Experimental Evaluation

The module diversification method was applied to a set of functional modules from
MCNC benchmark suite [Yan91] and OpenCores2. The reliability improvement
and timing cost were evaluated under different parameters such as the amount of
redundant CLBs, reliability of CLB and number of configurations.

The target platform was a Xilinx Virtex-5 FPGA with reconfigurable regions
that are 20 CLBs in height, or 80 CLBs for large modules from OpenCores, as
recommended by Xilinx to align to the clock region boundary. The region width is
varied from 3 up to 13 CLB columns to investigate different degrees of redundancy.

5.7.1 Timing Overhead

For each module/region-size combination, the minimal set of configurations is gen-
erated using the proposed module diversification method (tool-flow overview in Sec-
tion 5.6). Table 5.1 summarizes the region setup and reports the minimal number
of configurations and the timing costs of diversified configurations for every module.

Column 1 lists the implemented modules and column 2 shows the minimal (Wmin)
and maximal (Wmax) used region width. The 3rd column shows the degree of CLB
redundancy for different region sizes. For example, apex4 uses 98 CLBs in the 20×6
region (i.e. Wmin), which corresponds to (20×6−98)/98≈ 22.4% redundancy. Col-
umn 4 lists the minimum number of configurations tolerating all single-CLB faults
in Wmin and Wmax. For larger regions with higher redundancy, fewer configurations
are required.

Since the module diversification design method applies additional constraints to
prohibit certain CLB placements, the maximally achievable frequency of a module
may be affected. The last column in Table 5.1 reports the maximal frequency (over
all region widths) of the original unconstrained module (Orig.) in comparison to

2http://www.opencores.org

79

5 Self-Repair by Module Diversification

Table 5.1: Configurations for different region sizes and maximal frequency of original
(Orig.) and diversified (Div.) modules

Module
Region CLB Re- Minimal Frequency

Width*[CLB] dundancy [%] #Config. Orig. Div.
Wmin Wmax Wmin Wmax Wmin Wmax [MHz] [MHz] ∆[%]

pdc 3 5 9.1 64.0 12 3 150.8 145.2 3.7
misex3 4 7 11.1 81.8 10 3 136.5 123.3 9.7
alu4 4 7 3.9 81.8 27 3 130.4 127.5 2.3
apex4 6 9 22.4 111.8 6 2 126.2 114.5 9.3
apex2 6 11 14.3 117.8 8 2 122.4 115.3 6.2
des_perf 7 13 4.9 117.1 22 2 135.3 127.3 6.3
aes_core 3 5 27.7 127.3 5 3 124.7 124.7 0.04
* Region height for large OpenCore modules des_perf and aes_core
is 80 CLBs. Region height for other modules is 20 CLBs.

the diversified modules (Div.). For the diversified modules, the reported maximal
frequency always corresponds to the slowest configuration of the module. The tim-
ing cost is under 9.7%, which is a promising result for an approach that obtains
fault tolerance at no additional area overhead. Note that the original module im-
plementation is one of the diversified configurations and thus can be used when
full performance is required. If the system frequency is lower than the maximal
frequency of the diversified modules, there are no timing costs at all.

5.7.2 Reliability Improvement

In this section, the reliability improvement of the module diversification method is
evaluated for different degrees of CLB redundancy, CLB reliabilities, and number of
configurations.

Figure 5.2 shows the module reliability according to Eq. (5.10) of Section 5.4 of
module apex4 for a CLB reliability RCLB(t) = 0.999, i.e. the probability of any single
CLB to be operational throughout a given time period t is 0.999. We assume Cf =
1.0. The figure displays the reliability increase for different numbers of diversified
configurations (from the minimum number of configurations up to 20) and for region
sizes from 20×6 to 20×9 CLBs, which corresponds to CLB redundancies from 22.4%
to 111.8%. Without any diversified configurations, the module reliability is very
low at approximately 0.91. Using diversified configurations, the module reliability
increases dramatically due to higher single- and multi-CLB fault tolerance from
extra configurations. For example, three configurations are sufficient to tolerate
all single-CLB faults for apex4 implemented in a 20×8 region. In addition, 47% of
double and 22% of triple-CLB faults can be tolerated with these three configurations
as well. An extra set of 17 diversified configurations increases 2-CLB and 3-CLB
fault tolerability further to 88% and 57%, respectively.

Larger region sizes imply higher CLB redundancy which reduces the probability

80

5.7 Experimental Evaluation

5
10

15
20

0
20

40
60

80
100

0.992

0.994

0.996

0.998

1

Number of config.CLB redundancy [%]

M
o
d
u
le

 r
e
lia

b
ili

ty

0.994

0.995

0.996

0.997

0.998

0.999

Figure 5.2: Module reliability of apex4 for different ratios of CLB redundancy and number
of configurations with CLB reliability 0.999

RCLB(t)XY that all CLBs in the region are fault free (see Eq. (5.10)). This may
reduce the overall module reliability as seen on the left in Figure 5.2. With increasing
number of configurations, the tolerance of f -CLB faults rises and very high module
reliability can be achieved.

Figure 5.3 shows the reliability of modules using module diversification versus a
single configuration without fault tolerance measure for different CLB reliabilities,
computed according to Eq. 5.10. For all modules, the minimal set of diversified
configurations implemented in the smallest regions is evaluated. It is clear that with
diversified configurations the module reliability is substantially higher than without
any fault tolerance approaches. The module reliability of des_perf and aes_core
ranges from 0.59 to 0.95, respectively 0.83 to 0.98, when module diversification is not
applied. With module diversification, the reliability increases from 0.895 to 0.999
and from 0.980 to 0.9998, respectively.

0.90

0.92

0.94

0.96

0.98

1.00

0.9990 0.9992 0.9994 0.9996 0.9998

M
o

d
u

le
 R

el
ia

b
ili

ty

CLB Reliability

pdc (Mod. Div.)

misex3 (Mod. Div.)

alu4 (Mod. Div.)

apex4 (Mod. Div.)

apex2 (Mod. Div.)

pdc (no Mod. Div.)

misex3 (no Mod. Div.)

alu4 (no Mod. Div.)

apex4 (no Mod. Div.)

apex2 (no Mod. Div.)

Figure 5.3: Module reliability with and without module diversification for different CLB
reliabilities. Reliabilities of des_perf and aes_core are not shown in the
figure for clarity, but discussed in the text.

81

5 Self-Repair by Module Diversification

3

6

12

24

48

96

192

384

0.9990 0.9992 0.9994 0.9996 0.9998

R
el

ia
b

ili
ty

 I
m

p
ro

ve
m

en
t

Fa
ct

o
r

 (
lo

g
sc

al
e)

CLB Reliability

pdc

misex3

alu4

apex4

apex2

des_perf

aes_core

Figure 5.4: Reliability improvement factor for the modules when module diversification is
applied

The reliability improvement factor (RIF) is a metric to estimate the effectiveness
of fault tolerance schemes [Lal01]. The RIF is the ratio of the failure probability of
the original system and the failure probability of the fault tolerant system, i.e. the
system using diversified module configurations:

RIF = 1−RNo FT
1−RDiv

(5.11)

Figure 5.4 plots the RIF for the five investigated modules and CLB reliabilities
ranging from 0.9990 to 0.9999. With the proposed module diversification design
method, reliability improvement factors of up to 330 are achieved.

82

6 Prolonging Lifetime via Stress Balancing

The FPGA-based reconfigurable fabric, manufactured in latest technology nodes
(e.g. 20 nm/16 nm for Xilinx’ UltraScale/UltraScale+ family), suffers from degrada-
tion due to aging [SWSC10, GBS14]. The resilience of the reconfigurable fabric is
essential to the dependability of reconfigurable architectures, as most of the appli-
cation’s computations are offloaded to the reconfigurable fabric. The manifestations
of aging can range from increased transistor switching delay up to permanent faults
that cause a transistor or interconnect wire to fail entirely. Different aging mecha-
nisms have been reported for the current generation of CMOS designs, as discussed
in Section 2.3, e.g. Biased Temperature Instability (BTI), Time-Dependent Dielec-
tric Breakdown (TDDB), Hot Carrier Injection (HCI), or Electro-Migration (EM).

The main causes of these effects are environmental and electrical stress. Stress
can be induced in different ways, e.g. through the presence of strong electrical fields
or high current density [SKM+08, SWSC10]. Due to the increasing susceptibil-
ity of ever-shrinking nano-CMOS devices, these effects cannot be ignored anymore
and their consideration has become essential for dependable reconfigurable architec-
tures [HBD+13] .

This work proposes a novel STRess-Aware Placement (STRAP) method to reduce
the maximum stress by aging mitigation. For the first time, it combines complex
offline optimizations at synthesis time with situation-dependent adaptation at run-
time to optimize the intra- and inter-region stress distribution simultaneously. At
the runtime, STRAP proposes an algorithm that places accelerators to different re-
configurable regions (i.e. it decides to which region they shall be reconfigured) while
considering the induced intra- and inter-region stress distribution simultaneously.
At the synthesis time, STRAP proposes an algorithm that diversifies stress during
place-and-route by preventing overlapping of high stress CLBs from different accel-
erators, which further improves the intra-region stress distribution at runtime. For
prototyping purposes, we have integrated STRAP into the Xilinx tool-chain and the
runtime system of the target reconfigurable architecture.

6.1 Overview of the Stress-Aware Placement Method

The MTTF of a system is constrained by the component with the highest stress
[SKM+08]. In order to prolong the MTTF of a reconfigurable fabric, stress accumu-
lation on individual resources need to be avoid to reduce the peak stress. Fig. 6.1
shows a typical reconfigurable fabric with 8 reconfigurable regions and 4×20 CLBs
per region. The figure visualizes the distribution of HCI stress after running an
H.264 video encoder. Higher HCI stress corresponds to more toggles per second of a
transistor (see Section 2.4.1). For each CLB, the highest toggle rate of any transistor

83

6 Prolonging Lifetime via Stress Balancing

min #

max #

Reconfigurable region ID

 Maximal transistor toggle rate of the CLBs

1 2 3 4 5 6 7 8

One reconfig.
region

- 20

- 0

- 10

- 5

- 15

◄

Low stress

18.8 --

High stress

[m
ill

io
n

 t
o

gg
le

s/
s]

Internal struc-
ture of a CLB

One CLB

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

Figure 6.1: Transistor stress distribution in a reconfigurable fabric with 8 regions; each
region consists of 4×20 CLBs with 8 LUTs each (same setup as for evalua-
tion); the color of a CLB corresponds to the highest toggle rate of any of its
transistors; the symbol I on the right scale denotes the maximum stress over
all regions

is identified and plotted in a color-scale from 0 (low stress, bright gray) to 20 million
toggles per second (high stress, dark red). It is noticeable that several CLBs are not
used, e.g. most parts of region 5 and some parts of regions 3 and 4, whereas some
CLBs in region 1 contain transistors that are highly stressed. The latter represent
stress hotspots where high stress accumulates in some of the components in the fab-
ric which have a higher chance to fail much earlier than others, hence reducing the
MTTF of the system.

The basic idea of STRAP is to place accelerators such that the maximal stress
is minimized. The method considers stress at the granularity of CLBs, whereas
the evaluation in Section 6.6 considers stress at transistor granularity. If the stress
from a stress hotspot can be distribute to less stressed CLBs like in regions 3–5 in
Fig. 6.1, then the maximum stress in the reconfigurable regions is reduced, leading
to increased MTTF.

Figure 6.2 provides an overview of the stress-aware placement method STRAP,
showing the synthesis time techniques, the runtime techniques, and how they inter-
act with the hardware architecture of a reconfigurable system. For logic placement
at synthesis time, the challenge is to place-and-route accelerators in a way that sup-
ports stress balancing at runtime, but without having runtime information. STRAP
first performs an offline application profiling of each application kernel to obtain es-
timates on (i) how often accelerators will be executed relative to each other and (ii)
how long each accelerator executes to finish its task. This information is used to
steer runtime accelerator placement (Section 6.3) and synthesis time logic placement
(Section 6.4).

Based on the accelerator configuration after place-and-route, the stress estimation
process in Fig. 6.2 analyzes the signal activities in all CLBs used by the accelerator

84

6.2 Representation of Stress

Application

Accelerator
exec. profiles

Accelerator
stress profiles

Accelerator
configurations

Accelerator
database...

Profiling
Stress

estimation

Accelerator
exec. & stress

profiles
Accelerator

execution & idle cycles

Reconfiguration

Synthesis (offline)

Runtime (online)Hardware Architecture

Online Monitoring

Accelerator
placement

Reconfigurable Regions

Logic
placement

Figure 6.2: Overview of the stress-aware placement method

to obtain the information how much stress it induces to a reconfigurable region.
Accelerator execution and stress profiles are stored together with the accelerator
bitstreams in main memory for runtime decision making.

At runtime, STRAP decides into which reconfigurable region an accelerator shall
be reconfigured, whenever the application demands different accelerators. It per-
forms online monitoring of each region to track when the region was reconfigured
last and how often the currently-reconfigured accelerator was executed. Whenever a
region is reconfigured, the execution counter and reconfiguration timestamp is read
and reset. Together with the accelerator stress profile created at synthesis time,
STRAP then calculates the exact stress state for all CLBs of the region. This in-
formation is used to decide the runtime accelerator placement. Note that with the
feature of partial reconfiguration provided by FPGA vendors, reconfigurable regions
are spatially isolated from each other, i.e. the reconfiguration of one region does not
affect the resource usage (and thus stress) of any other region.

6.2 Representation of Stress

In order to handle the transistor stress in an algorithmic way, it needs to be repre-
sented compactly to allow an efficient runtime computation for the stress states of
regions and the placement decision making.

6.2.1 Stress Granularity

The transistors of a reconfigurable region are stressed by the reconfigured accelera-
tor in a way that is determined by its logic functionality and input signal patterns.
As the number of transistors in a region may be huge, the stress experienced by
individual transistors is lumped to CLB granularity for the stress-aware placement

85

6 Prolonging Lifetime via Stress Balancing

method. CLB stress is defined as the sum of the stress experienced by all transis-
tors in a CLB. With this definition, CLB stress preserves the additive property of
transistor stress, i.e. the total stress a CLB experienced from different accelerators
is the sum of the induced stress from individual accelerators.

Runtime reconfigurable architectures can execute different applications. Each
of them can use different accelerators that use different CLBs to implement their
timing-critical path. As any reconfigurable region can be reconfigured to implement
any of these accelerators, it is not possible to identify upfront which CLBs are more
important than others w.r.t. protection against aging. Therefore, all CLBs in the
reconfigurable fabric are treated equally important.

6.2.2 Stress Accumulation

With the established stress properties (see Section 2.4.2), the stress in the reconfig-
urable fabric can be described in a formal way. The stress state of a reconfigurable
region (as it is visualized in Fig. 6.1) is denoted as matrix S, where each entry rep-
resents the stress experienced by the corresponding CLB in the region. The stress
that a particular accelerator induces per clock cycle is obtained from offline stress
estimation and called unit stress, denoted by a matrix of the same size as S. In gen-
eral, the stress increase due to the work done by an accelerator is shown in Eq. (6.1),
where scalars τexec and τidle denote the number of clock cycles when the accelerator
is in execution or idle, while matrices sunit

exec and sunit
idle denote the unit stress induced

by the accelerator during execution or idle time:

s := τexecsunit
exec + τidlesunit

idle (6.1)

During idle, we assume all inputs to the accelerator are hold at constant values, e.g.
all zeros. In this case, the accelerator exhibits a different stress pattern from when
it is being executed.

During synthesis time, the values for τexec and τidle are obtained from application
profiling to construct the stress matrices (Eq. (6.1)) for every accelerator. They are
used by the stress-diversifying logic placement and the runtime system. The runtime
system uses them to determine how much stress an accelerator would induce to a
region before actually placing it. It also uses online monitoring information (see
Section 6.1) that provides the actual number of accelerator executions and idle
times for each region after a computational kernel finished execution. This allows
to keep track of the actual stress that a region experienced, which is the starting
point for the next placement decision.

6.2.3 Stress Estimation Flow

Figure 6.3 shows the stress estimation flow for an accelerator. To obtain the unit
stress of it, the placed-and-routed configuration and its input signal activities (toggle
rate and average duty cycle) are fed to Xilinx XPower that computes the signal
activity of every wire in the accelerator. The wires are then matched to the CLB

86

6.2 Representation of Stress

Xilinx XPower analysis

Place & routed accel-

erator configuration

CLB Transistor level

model construction
Switching

activity
Signal

probability

Unit stress matrices

,unit unit
exec idles s

Estimation of avg.

transistor stress in CLBs

Accelerator

input activity

Figure 6.3: Stress estimation flow

inputs to obtain the input signal activities of every LUT in the CLBs used by
the accelerator configuration. Based on the signal activity propagation through a
transistor-level LUT model (see Section 2.1.3), the toggle rate and stress duty cycle
of the LUT transistors are calculated.

As discussed in Section 2.1.3, a LUT can also be viewed as a tree of 2:1-multiplexers.
All SRAM configuration cells of a LUT are connected to the data inputs of the
first-level multiplexers and the LUT inputs are connected to the select signals of
multiplexers in their respective level of the tree. The configuration SRAM cells are
not on the critical path of accelerators during logic operations, because logic tran-
sitions in SRAM cells only happen when they are reconfigured. Therefore, stress in
configuration SRAM cells is not explicitly targeted here.

For the calculation of the internal signal probabilities, the signal values at the
multiplexer data inputs are weighted according to the duty time of the corresponding
select input. Hence, for a multiplexer with input values v0,v1 and select signal sel,
the output value is calculated by: vout := v0 ·P [sel] +v1 ·P [sel], where P [sel] is the
probability that sel = 1. Once the output values of all multiplexers (and hence the
inputs of each succeeding multiplexer) are determined, the calculation of the toggle
propagation is performed.

In the toggle analysis, two types of switching sources are distinguished as shown
in Fig. 6.4: (a) propagated toggles that are fed in through the multiplexer data
inputs, and (b) generated toggles that spawn by changing the select signal. In the
LUT model, the data inputs of the first-level multiplexers in the tree are connected
to the configuration bits. Thus, upon a select signal switch, toggles can only be
generated (if the two configuration bits have different values), but not propagated.

0

1

0

0

0 1
0 1

0

10

1
0 1

0 1

(a) (b)

Figure 6.4: Toggle propagation (a) and generation (b) in multiplexers

87

6 Prolonging Lifetime via Stress Balancing

On succeeding stages, the propagation of generated toggles then takes into account
the switching activity at all of the input signals: Again, all sources of the toggles
to be propagated from data inputs are weighted according to the signal probability
at the multiplexer select input: tprop := t0 ·P [sel] + t1 ·P [sel], where t0 and t1 are
the toggle counts of the data inputs. As for the generated toggles, the likelihood
of spawning a toggle after a select input switch is the XOR of the two data inputs
multiplied by the toggle frequency fsel as tgen := fsel · (v0⊕ v1). The total toggle
count at each multiplexer output is the sum of the propagated toggles and the toggles
generated in its instance: ttot := tprop+ tgen.

Each multiplexer is composed of a pair of pass transistors, and thus the calculated
signal probabilities at the data input and select signals of a multiplexer are directly
mapped to the respective transistor terminals to obtain the stress duty cycles for the
static stress. Similarly, for the dynamic stress, the number of toggles experienced
by each transistor is derived from the toggle activities of the data inputs and the
signal probability of the select signal.

6.3 Runtime Accelerator Placement

The reconfigurable fabric consists of N equally sized rectangular regions. During
runtime, the application requests to configure M (M≤N) accelerators to speed up
its computational kernels. The runtime system has to decide to which regions the
M accelerators shall be configured. For M<N application-requested accelerators,
the runtime system first decides which N−M regions shall not be reconfigured, e.g.
by using a least recently used replacement policy. The decision to which of the re-
maining regions an accelerator is placed does not affect the application performance.

Each region contains X×Y CLBs with an (x,y) coordinate relative to the top-
leftmost CLB in the region. The stress experienced so far by the CLBs in region k
is denoted as [Sk]xy (with 1≤k≤N, 1≤x≤X, 1≤y ≤Y). Similarly, the stress that
will be induced by an accelerator j (1≤ j ≤M) is denoted as [sj]xy (see Eq. (6.1)).
It depends on how often the accelerator will be executed, as determined by offline
profiling (see Section 6.1). If an accelerator j is placed into region k, then the
accelerator executions increase the stress state of the region to S′k = Sk + sj.

The problem is to place each accelerator to a region, such that upon completion
of the application kernel the maximum CLB stress over the N regions is minimized,
i.e. maxk,x,y[S′k]xy is minimized. It can be easily seen that the strict lower bound of
the maximum CLB stress is

1
NXY

 N∑
k

∑
x,y

[Sk]xy +
M∑
j

∑
x,y

[sj]xy

 (6.2)

which is reached if and only if the stress is uniformly distributed over all CLBs.
Therefore, to minimize the maximum CLB stress in the reconfigurable fabric, the
CLB stress from the accelerators that are to be placed needs to be distributed
evenly. To achieve this at runtime, this thesis proposes a heuristic that follows

88

6.3 Runtime Accelerator Placement

these two rules: 1) maximal utilization of under-stressed CLBs within one region,
i.e. the stress shall be evenly distributed among different CLBs within the region
(intra-region distribution), and 2) avoid placing high-stress accelerators into highly
stressed regions, i.e. the stress shall be evenly distributed among different regions
(inter-region distribution). Mathematically, the conformance to these two rules is
formulated as a profit function.

6.3.1 Placement Profit

The profit function of placing accelerator j into region k is defined as

Profitjk = Profitintrajk +Profitinterjk , (6.3)

where Profitintrajk and Profitinterjk represent the profit from the stress distribution
within one region and across all regions, respectively:

Profitintrajk =
∑
x,y

∣∣∣∣[Sk]xy−λk
∣∣∣∣−∑

x,y

∣∣∣∣[Sk + sj]xy−λ′k,j
∣∣∣∣

with λk = 1
XY

∑
x,y

[Sk]xy and λ′k,j = 1
XY

∑
x,y

[Sk + sj]xy
(6.4)

Profitinterjk =

∣∣∣∣∣∣
∑
x,y

[Sk]xy−Λ

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
x,y

[Sk + sj]xy−Λ′
∣∣∣∣∣∣

with Λ= 1
N

∑
k,x,y

[Sk]xy and Λ′= 1
N

∑
k,x,y

[Sk]xy+
∑
j,x,y

[sj]xy

 (6.5)

The two summation operations in the intra-region profit function in Eq. (6.4) express
the sum of the CLB stress deviation from the average stress value before and after
placing accelerator j into region k, respectively. A larger sum of deviation implies
that more CLBs are over- or under-stressed. This profit function thus describes the
improvement of stress distribution within region k after placing accelerator j into
it. In a similar manner, the inter-region profit function in Eq. (6.5) describes the
deviation from perfect even stress distribution evaluated at the level of reconfigurable
regions, i.e. the deviation of the total stress in a region from the average total stress
per region.

6.3.2 Placement Algorithm

The stress-aware runtime accelerator placement (Alg. 3) iterates through all re-
quired accelerators (Lines 2 to 17). In each iteration, it calculates the profits of
placing the accelerator into all available regions (Lines 5 to 14) and places the ac-
celerator into the region that provides the highest profit (Line 15). The complexity
of this algorithm is O(M2XY). If the application decides to keep an accelerator
configuration for a longer time (i.e. to not reconfigure it), then the stress may not be
distributed evenly to all regions. The region where this accelerator resides would be

89

6 Prolonging Lifetime via Stress Balancing

Algorithm 3 Stress-aware runtime accelerator placement
Input: List of accelerators Acc and list of regions Reg that shall be reconfigured
1. occupied := array of length len(Reg) initialized to zeros
2. for j := 1 to len(Acc) do
3. max_profit := −∞
4. selected_reg := null
5. for k := 1 to len(Reg) do
6. if occupied[k] == 1 then
7. continue
8. end if
9. profit := CalcProfit(Acc[j], Reg[k]) // Eq. (6.3)
10. if profit > max_profit then
11. max_profit := profit
12. selected_reg := k
13. end if
14. end for
15. Place accelerator j into region selected_reg
16. occupied[selected_reg] := 1
17. end for

constantly stressed by one accelerator without stress redistribution. This happens
if an accelerator delivers high speedup and is frequently required by the application.
As a solution, the runtime accelerator placement forces that region to be reconfig-
ured after a user-defined time period. This time period should not be too short to
prevent increased reconfiguration overhead, while also not too long to avoid stress
accumulation. For instance, a time period of 100 million cycles (1 s at 100MHz) is
short enough to avoid aging accumulation and the induced application performance
degradation is only 0.21%.

6.3.3 Intermediate Results

Figure 6.5 shows that dynamic stress is uniformly distributed over all reconfigurable
regions after employing the runtime accelerator placement, compared to the stress-
unaware placement in Fig. 6.1. The maximal transistor toggle rate is reduced by
more than 73% from 18.8 to 5.0 million toggles/s. However, when high stress CLBs
of different accelerators overlap at the same relative (x,y) location, the runtime
accelerator placement cannot achieve intra-region stress distribution, as noticeable
in the upper-middle part of all reconfigurable regions in Fig. 6.5.

6.4 Synthesis Time Logic Placement

STRAP addresses this problem by applying placement constraints at synthesis time
to diversify the CLB usage among different accelerators, which reduces the over-
lapping of high stress CLBs. To minimize the timing impact on accelerators, the
mapping of logic functions to CLBs is left to the vendor place-and-route algorithm.

90

6.4 Synthesis Time Logic Placement

min #

max #

Reconfigurable region ID
8

Maximal transistor toggle rate of the CLBs

1 2 3 4 5 6 7

◄

--

- 20

- 0

- 10

- 5.0

- 15

Low stress

High stress

[m
ill

io
n

 t
o

gg
le

s/
s]

Intra-region stress
imbalance

Figure 6.5: Transistor stress distribution using stress-aware runtime accelerator placement

Instead, it is only constrained which CLBs shall be used to place-and-route an ac-
celerator, without additional constraints on logic mapping or routing.

6.4.1 Placement Algorithm

The logic placement algorithm (Alg. 4) diversifies the high stress CLBs of different
accelerators to different (x,y) CLB locations in the reconfigurable regions. First,
unconstrained configurations of all accelerators are generated (Lines 1 to 5). For
each accelerator configuration the CLB stress is estimated (see Section 6.2), and the
maximal achievable frequency is extracted from the place-and-route log files (Lines 3
and 4). The generated initial configurations are then sorted in ascending order of
their maximal achievable frequencies (Line 6). The reconfigurable fabric typically
runs at the frequency of the slowest accelerator fmin. In order to minimize the
impact on system performance, it is placed and routed without stress-diversifying
placement constraints. Its CLB stress distribution is taken as the initial reference
distribution (Line 7). As long as the proposed logic placement does not reduce
the frequency of an accelerator below fmin, there is no performance impact/penalty
for the whole system. During the generation of other accelerator configurations, R
keeps track of the sum of the stress distribution of all j−1 previously generated
accelerators, i.e. R =∑j−1

i=1 si.

The remaining accelerators will be placed-and-routed again in ascending order of
their maximal frequencies (Lines 8 to 23). To avoid that high stress CLBs of the
currently placed accelerator Acc[j] overlap with those in previously placed accel-
erators Acc[1],. . .,Acc[j-1], we prohibit the placement to specific CLB locations
for Acc[j] (Lines 9 to 17), identified by their (x,y) coordinates, if the following

91

6 Prolonging Lifetime via Stress Balancing

Algorithm 4 Stress-diversifying logic placement
Input: List of accelerators Acc.
1. for j := 1 to len(Acc) do
2. Place-and-route Acc[j] without any placement constraints
3. sj := get_stress(Acc[j])
4. Acc[j].max_freq := get_max_freq(Acc[j])
5. end for
6. Acc := sort_ascending(Acc, key=max_freq)
7. R := s1
8. for j := 2 to len(Acc) do
9. prohibit_xy := ∅
10. for x := 1 to Acc[j].n_cols do
11. for y := 1 to Acc[j].n_rows do
12. if Condition Equation (6.6) is satisfied for (x,y) then
13. prohibit_xy.add((x,y))
14. end if
15. end for
16. end for
17. Place-and-route Acc[j] with prohibited CLB locations

listed in prohibit_xy
18. if Place-and-route failed then
19. prohibit_xy.remove(argminxy∈prohibit_xy[R̂ + ŝj]xy)
20. goto Line 17
21. end if
22. R := R + get_stress(Acc[j])
23. end for

condition is satisfied: [
R̂
]
xy
>

1
Lj

∑
uv

[̂sj]uv

with R̂ = R
maxuv [R]uv

and ŝj = sj
maxuv[sj]uv

(6.6)

where Lj is the number of used CLBs by the currently place-and-routed accelerator
Acc[j]. R̂ and ŝj are normalized stress matrices of R and sj. In earlier iterations,
the reference distribution is less even, which implies that few CLB locations in the
reference distribution have much higher values than the others, and therefore it is
less likely that the condition (Equation (6.6)) is satisfied. In turn, fewer locations
are prohibited for placement in earlier iterations, which implies less timing impact
on slower accelerators. If place-and-route fails due to too many prohibited CLB
locations, the locations xy where the stress overlapping [R̂ + ŝj]xy is lowest are
removed from prohibit_xy (Line 19), and place-and-route is re-executed with the
relaxed constraints.

92

6.5 Extended Runtime Accelerator Placement with Module Diversification

min #

max #

Reconfigurable region ID

Maximal transistor toggle rate of the CLBs

1 2 3 4 5 6 7 8

◄

-- 2.8

- 20

- 0

- 10

- 5

- 15

Low stress

[m
ill

io
n

 t
o

gg
le

s/
s]

High stress

Figure 6.6: Transistor stress distribution using both stress-aware runtime accelerator
placement and synthesis time stress diversification

6.4.2 Stress Distribution Results

With synthesis time stress diversification, high stress CLBs from different accel-
erators are placed to different CLB locations, and thus better intra-region stress
distribution can be achieved during runtime placement. As shown in Fig. 6.6, after
applying both stress-aware runtime placement and synthesis time stress diversifi-
cation for dynamic stress, the maximal transistor toggle rate is further reduced by
additional 44% from 5.0 to 2.8 million toggles/s.

6.5 Extended Runtime Accelerator Placement with Module Diversification

The module diversification method (see Chapter 5) generates a set of configurations
for each accelerator that are diversified in terms of CLB usage. This not only
allows to tolerate any single-CLB fault in a region but can also improves the stress
distribution with the extra CLB diversity.

When faults are detected in the reconfigurable fabric, the placement freedom of
accelerators is reduced. The placement freedom of an accelerator corresponds to the
number of regions for which the accelerator has at least one diversified configuration
that can be placed into that region (i.e. that tolerates the permanent faults in
that region). Such a region is called a compatible region. If the available regions
(i.e. those into which no accelerators are placed by the placement algorithm so far)
have rather many permanent faults, it can happen that no configuration of the
accelerator can be placed into any of them. If an accelerator cannot be placed, then
its hardware functionality has to be emulated in software on the processor pipeline.
This actually reduces the stress for the regions, as they are not used to execute the

93

6 Prolonging Lifetime via Stress Balancing

accelerator, however, it comes at the cost of significantly degraded performance (i.e.
less acceleration for that kernel).

To avoid such situations, the runtime placement algorithm (Alg. 3) tries to place
the accelerators one after the other in ascending order of their number of compatible
regions. If it still comes to the situation that some accelerator cannot be placed into
the available regions, then the algorithm re-evaluates some of its previous placement
decisions (note that the actual reconfigurations are just started after all placements
are finally decided). It tries whether it can swap one of the already placed acceler-
ators into one of the still available regions such that accelerator can be placed into
the region that became free due to swapping.

When calculating the placement profits (Line 9 in Alg. 3), the algorithm also
iterates through all diversified configurations to find out which configuration of the
accelerator produces the highest placement profits. Permanent faults also reduces
the freedom of selecting diversified configurations for stress distribution as some
configurations may require the faulty CLBs.

6.6 Experimental Evaluation

In the evaluation platform (see Section 3.5), each region consists of 4×20 CLBs with
eight 6-input LUTs per CLB. STRAP performs optimizations on CLB granularity.
To evaluate the actual stress for each transistor, the transistor-level model of LUTs
using NMOS pass transistors for multiplexers is used (see Section 2.1.3). To evaluate
the threshold voltage shift due to stress, state-of-the-art aging models are employed
(detailed equations and used parameters are given in Section 2.4.3).

The resource usage of each accelerator within one region for the H.264 application
ranges from 8.8% to 66.3%. The architectural simulator is used to evaluate the
STRAP method for systems that differ in the number of reconfigurable regions and
runtime strategies, and to compare it with related work. Algorithm 3 is integrated
into the simulator and Alg. 4 is implemented as a script that generates the placement
constraints and automatically calls the Xilinx place-and-route tools.

6.6.1 Evaluation Flow

The experimental evaluation flow is shown in Fig. 6.7. The placed-and-routed accel-
erators are fed to Xilinx XPower analyzer to obtain the signal activities and power
consumption of logic elements and nets. The power consumption is then aggregated
to CLB granularity by summing up the power consumed by LUTs and their fan-in
nets in one CLB. The leakage power of a region is proportional to its size. Architec-
tural simulation produces the accelerator execution trace, i.e. the complete execution
and idle history of each accelerator in each region. Together with the power profile
of each accelerator, we obtain the power trace of each CLB. The power trace and the
fabric floorplan of the FPGA (based on a die image acquired from chipworks.com)

94

6.6 Experimental Evaluation

Architectural

simulation Hotspot thermal

simulation

Accelerator
configurations

XPower analyzer

CLB power trace

extraction

Accelerator execution

trace extraction

CLB power extraction

Accelerator
power profile

LUT signal activity

extraction

Threshold voltage

shift evaluation

Transistor stress

evaluation

Fabric
floorplan

Aging model

LUT transistor
model

Evaluation resultsIntermediate steps

Placement strategies:
[AZGT11],

[ZBK 13] and STRAP+

Figure 6.7: Experimental flow to evaluate the transistor stress and threshold voltage shift

is then fed into Hotspot1 [HGV+06] to obtain the temperature trace of each CLB,
which will be used to evaluate the threshold voltage shift. The accelerator execution
trace and the LUT signal activities of each accelerator are combined to calculate
the LUT signal activities for the regions. This is then used to evaluate the stress of
individual transistors by using the LUT transistor model.

The number of regions is varied from 5 to 12 and separate evaluation of the pro-
posed method is performed for dynamic and static stress mitigation, since STRAP
optimizes either for dynamic or for static stress. The baseline system does not use
any stress distribution method. For comparison, two state-of-the-art stress distri-
bution methods [AZGT11, ZBK+13] was implemented. Zhang et al. [ZBK+13] use
three different configurations for each accelerator and switch between them to mi-
grate stress, whereas Angermeier et al. [AZGT11] consider the peak stress of regions
to place an accelerator. As proposed for STRAP, [AZGT11, ZBK+13] was extended
to replace an accelerator if its reconfigurable region has not been reconfigured for
100 million cycles (see Section 6.3.2). This improvement reduces the peak stress
of [AZGT11, ZBK+13] and thus makes the comparison with state-of-the-art more
competitive. Regarding temperature variation, a conservative comparison is per-
formed. To calculate the threshold voltage shift for [AZGT11, ZBK+13], the lowest
temperature that was observed for any CLB at any time in the obtained temperature
trace is used as the constant temperature for all CLBs, while the highest observed
temperature is applied for STRAP. Thus, the threshold voltage shift reported for
[AZGT11, ZBK+13] is a lower limit, whereas the one for STRAP is a conservative
upper limit.

1smallest possible heat spreader and heat sink with 10 µm thickness, ambient temperature 50℃

95

6 Prolonging Lifetime via Stress Balancing

Table 6.1: Change in maximum frequency of accelerators
Accelerator Original [MHz] STRAP [MHz] Worstcase ∆ [%]

Clip3 133 122–130 8.2
CollapseAdd 158 158–158 0.0
LF_BS4 121 115–120 5.0
LF_Cond 146 132–140 9.6
PointFilter 89 89 0.0
QuadSub 257 232–257 9.7
SADrow_4 100 96–96 4.0
SAV 139 120–138 13.7
Transform 167 145–166 13.2

System freq. 89 89 0.0

6.6.2 Timing Overhead

STRAP’s stress-diversifying logic placement at synthesis time may affect the accel-
erator frequency. The timing impact of the placement constraints is shown in Ta-
ble 6.1. The place-and-route tool is given a target frequency of 250MHz as timing
constraint to obtain the maximum operating frequency of each accelerator. On av-
erage, the maximum accelerator frequency decreases by 7%. Since accelerators with
longer critical path (lower maximum frequency) are imposed with fewer constraints
(see Section 6.4.1), their maximum frequencies are less affected. The maximum sys-
tem frequency is however limited by the accelerator with the longest critical path,
i.e. PointFilter, which runs at fmin = 89MHz (see Section 6.4.1). Therefore, STRAP
has no negative timing impact on the whole system.

6.6.3 Stress Reduction and MTTF Improvement

Figure 6.8 shows the maximal (lighter color) and average (darker color; arithmetic
mean) dynamic transistor stress, measured in million toggles/s, in the whole recon-
figurable fabric for systems with different number of regions. Similarly, Figure 6.9
shows the static transistor stress measured in normalized stress time (stress duty
cycle), i.e. the fraction of operation time the transistor is under static stress. The
figures show that all methods reduce the average stress compared to the baseline
because they all distribute the stress to more transistors. While the reduction of
the average stress is similar for all three methods, the reduction of the maximal
stress (i.e. the critical part for system mean time to failure/MTTF) differs signif-
icantly and requires both runtime and synthesis time optimization. The reason is
that Angermeier et al. [AZGT11] perform only runtime inter-region stress distribu-
tion, while Zhang et al. [ZBK+13] perform only synthesis time intra-region stress
distribution for individual accelerators. In contrast, STRAP performs cross-layer
stress-aware placement at runtime and synthesis time, which leads to the highest
reduction of maximal stress in all evaluated cases. The reduction of the maximum
stress by STRAP in Fig. 6.8 and 6.9 is up to 64% and 35% higher than the closest

96

6.6 Experimental Evaluation

Number of reconfigurable regions

Tr
an

si
st

or
 t

og
gl

e
ra

te
 [

m
ill

io
n

 t
o

gg
le

s/
s] Baseline [AZGT11] [ZBK⁺13] STRAP

5 6 7 8 9 10 11 12
0.1

1

10

100 Lighter color:
max. stress

Darker color:
avg stress

Figure 6.8: Comparison to related work for dynamic stress in systems with different num-
ber of reconfigurable regions

competitors w.r.t. dynamic and static stress, respectively. Table 6.2 summarizes the
stress reduction shown in Fig. 6.8 and 6.9.

Figure 6.10 analyzes the detailed per-transistor stress (static and dynamic) of a
system with 8 reconfigurable regions. It compares STRAP that optimizes for static
stress or dynamic stress against the baseline. Each point represents the stress value
of one transistor in the reconfigurable fabric. Points closer to the lower-left corner
denote less dynamic and less static stress. The horizontal and vertical lines represent
the upper boundary for dynamic stress and static stress in all three cases. Although
during optimization only one type of stress is considered, actually both types of stress
are reduced simultaneously. With STRAP targeting the static stress distribution, a

Number of reconfigurable regions

N
o

rm
al

iz
ed

 t
ra

ns
is

to
r

st
re

ss
 t

im
e

Baseline [AZGT11] [ZBK⁺13] STRAP

5 6 7 8 9 10 11 12
0

0.25

0.5

0.75

1

Figure 6.9: Comparison to related work for static stress in systems with different number
of reconfigurable regions

97

6 Prolonging Lifetime via Stress Balancing

Lower static

stressL
o

w
e

r
d

y
n

a
m

ic

s
tr

e
s
s

-82%

-21%

-38%

-52%

Figure 6.10: Transistor stress for different STRAP optimization goals

reduction of 52% in dynamic and 38% in static stress is observed. When targeting
dynamic stress, STRAP delivers 82% reduction in dynamic stress and 21% reduction
in static stress. The reason behind the reduction of both stress types is that STRAP
implicitly distributes the transistor usage as well, which reduces the individual static
and dynamic transistor stress.

The MTTF improvement due to the stress reduction is calculated by assuming
that a device fails when ∆Vth of any transistor exceeds 50% of its original value
(Vth0). The MTTF improvement due to dynamic and static stress reduction is
shown in the last two columns in Table 6.2. With the STRAP method, the MTTF
improvement relative to the baseline is 413% and 13% in average for HCI and BTI
aging, respectively. Relative to the closest competitors, STRAP achieves up to 177%
and 14% MTTF improvement w.r.t. HCI and BTI aging, respectively.

Table 6.2: Reduction of avg./max. stress and MTTF increase of STRAP and state-of-the-
art [AZGT11, ZBK+13] compared to the baseline; averaged over all numbers of
reconfigurable regions

Strategy
Reduction of Reduction of MTTF
avg. stress[%] max. stress[%] improvement[%]
dyn. stat. dyn. stat. HCI BTI

[AZGT11] 60.6 47.4 61.2 0.02 157.7 0.0
[ZBK+13] 62.6 49.6 39.9 4.5 66.4 2.3
STRAP 67.9 59.6 80.5 33.1 413.0 13.4

98

7 Reliability Guarantee with Adaptive Modular Redundancy

Harsh environmental conditions (radiation, temperature, power noise) may cause
transient errors and failures which are not acceptable in safety- and mission-critical
applications (e.g. automotive, industrial, medical or aviation), where stringent re-
liability requirements such as ASIL [ISO11] have to be met under different envi-
ronmental and operating conditions and changing error rates in the system. The
reliable acceleration in the reconfigurable fabric in SRAM-based FPGAs are threat-
ened by soft errors resulted from SEUs in the configuration memory and functionally
used memory (e.g. block RAMs and flipflops), which may alter the functionality of
hardware accelerators and lead to wrong results. To ensure reliable computation, ac-
celerators must be protected by fault tolerance methods such as modular redundancy
(e.g. duplication with comparison (DWC), triple modular redundancy (TMR)), or
information redundancy (self-checking circuits, ECC of memory). These fault toler-
ance methods incur high error detection cost which must run concurrently to regular
system operation, in terms of hardware resources, performance, and energy. Error
correction by re-execution after an error has been detected typically incurs only a
small performance cost and happens rarely.

Due to changing soft error rates (see Section 2.3.4), application requirements (data
dependencies) and system states (available/used resources), it is not possible to
statically determine appropriate error detection methods for a given target reliability
at minimal cost. A static optimization is pessimistic since it must consider the
worst case and when the error rate is low, the system is over-protected at additional
hardware or performance cost. A static selection of fault tolerance methods during
design time cannot adapt to changing soft error rates during runtime and thereby
hinders trading off performance and reliability.

In contrast to the static and therefore pessimistic selection of fault-tolerance meth-
ods, this thesis presents a method of adaptive modular redundancy for reconfigurable
architectures. It guarantees an application-specified minimum level of reliability of
the accelerated computation at minimal performance cost. This is achieved by use of
monitoring information to dynamically choose between different redundancy modes
so that the error-detection overhead is minimized. At runtime, the soft error rate is
monitored and the reliability of future computations is estimated. Based on stati-
cally or dynamically given target reliability constraints, runtime reliability manage-
ment is performed. Based on the reliability estimation, the selection of accelerators
and the application of optimal fault tolerance methods are performed at runtime.
This allows for fast adaptation to changing reliability threats and guarantees the
given reliability constraints while maximizing the performance.

99

7 Reliability Guarantee with Adaptive Modular Redundancy

7.1 Overview of Adaptive Modular Redundancy

The accelerated computations in the reconfigurable fabric are described by data-
flow graphs where each node represents an accelerator and the edges represents
the data dependencies between accelerators. These data-flow graphs correspond to
accelerated functions (AFs, see Section 3.1). These AFs can be of different size, from
a complex function down to a short sequence of instructions. Figure 7.1a) shows
an example AF that consists of three different accelerator types (A1, A2, A3) and
requires at least three different reconfigurable regions (one for each accelerator type)
to be implemented. The example in Fig. 7.1a) uses exactly three regions and thus
the two instances of A3 in the DFG have to be executed in different control steps.

An AF may have multiple hardware implementation variants that trade-off per-
formance and resource usage (i.e. number of regions). The two variants shown in
Fig. 7.1a) and Fig. 7.1b) differ in latency and resource usage per step. Variant a)
uses only one instance A3 per step and finishes in 3 steps while variant b) uses two
instances of A3 in parallel (demanding two separate regions) in step 1 and thus fin-
ishes in 2 steps. Variants that use more accelerators exploit more parallelism and can
achieve higher performance. It is also possible to provide a partially or completely
fault tolerant variant, e.g. by triplicating A3, as shown in Fig. 7.1c). This variant
has the same schedule as variant a) but uses A3 in TMR mode to increase reliability
at higher resource usage. Variant a) is called the base variant of the reliable variant
c), which is derived from variant a) by duplicating or triplicating a subset of its
accelerators.

The term reliability denotes the probability of error-free operation for a specified
period of time [ALRL04]. The reliability requirement of an application specifies the
upper bound of error probability of individual AFs or the whole application. The
reliability of a system depends on the reliability of its components. It is assumed
that the processor core is a reliable computing base and an AF is error free during
its execution all of its component accelerators are not affected by soft errors (see
Section 3.3). An AF that is executed as a software routine on the reliable computing
base is considered as reliable. The reliability of an AF that is executed on the

A3A1

A2

A3A1

A2

A3 A3

Voter

a) Example for an Ac-

celerated Computation

c) Reliable variant with Tripli-

cated implementation of A3

A3A1

A2

b) Faster variant with two

parallel instances of A3

A3

A3

A3 A3 A3

Voter

Step

1

Step

2

Step

3

A1 A2
A3 Different accelerator typesLegend:

Figure 7.1: Different hardware implementation variants of an Accelerated Function (AF)

100

7.1 Overview of Adaptive Modular Redundancy

Runtime selection of
AF variants

A3A1

A2

A3

Reconf.
Region

Reconf.
Region

Reconf.
Region

...

R
eco

nf.
Fa

b
ric

Reliability
constraints

Monitored
soft error rate

Scrubber
Accelertor
reconfig.

Figure 7.2: Overview of proposed adaptive modular redundancy

reconfigurable fabric depends on the following factors:

Current error rate is determined by the environment.

System state corresponds to the reliability history of the regions, i.e. the time since
a region was last known to be error free because it was tested, reconfigured,
or scrubbed (i.e. reconfiguring it with the configuration data of the acceler-
ator that was already configured or reading back the configuration data and
correcting possible errors by an error correction code).

Hardware usage depends on the accelerators that implement the AF. The config-
uration information of an accelerator is stored in the SRAM configuration
memory of the FPGA, which is susceptible to soft errors. The critical bits
of an accelerator are those configuration bits that define its functionality (see
Section 2.4.4). Different accelerators exhibit different susceptibility to soft
errors in their configuration memory depending on the number of critical bits.

The variety in soft error vulnerability of accelerators also extends to the hardware
implementations of AFs: different AFs and various implementation variants of an
AF differ in their soft error vulnerability. This variety can be exploited by the
runtime system of the reconfigurable architecture. In order to guarantee a given
target reliability while optimizing the performance, the runtime system (see Fig. 7.2)
needs to address the following challenges:

1. If target reliability is specified for an AF, whenever the AF shall execute, guar-
antee that it meets the target reliability for the current error rate and system
state. If the target reliability cannot be satisfied at the moment due to pend-
ing reconfigurations of redundant accelerators or limited hardware resources,
then the AF needs to be executed on the reliable computing base.

2. If target reliability is specified for the application itself, decompose it into
the target reliability of individual AFs such that appropriate implementation
variants can be selected accordingly.

3. For all AFs to be executed by the application, decide which implementation

101

7 Reliability Guarantee with Adaptive Modular Redundancy

variant shall be reconfigured and find a good trade-off that ensures the target
reliability while maximizing performance for the monitored error rate and
system state. The runtime system chooses reliability measures accordingly to
give more resources to those more vulnerable accelerators while maximize the
performance of less vulnerable accelerators.

4. Decide for each region when to perform scrubbing. After scrubbing, an accel-
erator is known to be error-free. As no other region can be reconfigured until
scrubbing completes, scrubbing also reduces performance.

7.2 Reliability of Accelerated Functions

The reliability of an accelerated function depends on the soft error rate, the type,
structure and size of the used hardware accelerators, and the resident time the
accelerators have been instantiated without errors in the reconfigurable fabric, i.e.
the time elapsed since the last reconfiguration or scrubbing event of the region. As
already established in Section 2.4.4, the reliability R(A,t) of an accelerator A with
number of critical bits n and resident time t is

R(A,t) =
n∏
e−λt = e−λnt, (7.1)

which decreases with increasing resident time.

For accelerators without any fault-tolerance methods, the reliability of an accel-
erated function AF (probability that it produces the correct result) is

R(AF,t,τ) =
Ai∈AF∏

i

e−niλ(ti+τi) = e−λ
∑
ini(ti+τi), (7.2)

where ti is the resident time of accelerator Ai until the accelerated function starts to
execute, and τi denotes the time period until accelerator Ai finishes all its executions.
Since τi� ti, τ is ignored in the following calculation. It is assumed conservatively
that an accelerator computes the correct results only if all its critical bits are correct,
i.e. logic and data-dependent masking of errors are ignored here. Such error masking
can be added to this computation by derating factors derived for instance from fault
injection experiments. In a similar manner, it is assumed that an AF produces
correct results only if all of its belonging accelerators compute correctly and an
application operates correctly only when all its AFs are correct.

Frequent scrubbing improves the reliability of accelerators by checking and repair-
ing errors in short periods. It is however limited by the bandwidth of the configura-
tion port of the FPGA. When a reconfigurable fabric with N reconfigurable regions
is periodically scrubbed, the minimum scrubbing period (i.e. the time between two
scrubbing operations) of an accelerator is N ·TS , where TS denotes the time required
to scrub one reconfigurable region. In other words, the correctness of the critical
bits of an accelerator can only be checked in a period longer than or equal to N ·TS .
By scrubbing alone, the reliability of an accelerator Ai in a reconfigurable fabric

102

7.3 Reliability Guarantee of Accelerated Functions

with N regions can be maintained at

R(Ai)≥ e−λniN ·TS (7.3)

Similarly, the reliability of an accelerated function AFj (Eq. (7.2)) is maximized
when all of its accelerators are scrubbed at the fastest period N ·TS . In this case, it
holds that ∀Ai ∈ AF : ti ≤N ·TS and thus

R(AFj) = e−λ
∑
initi ≥ e−λ(

∑
ini)N ·TS (7.4)

where the right-most term expresses the lower bound of the reliability of the accel-
erated function AFj .

Implementation variants of accelerators may include partially or completely pro-
tected accelerators based on duplication or triplication (see Section 7.1). For ac-
celerators in TMR mode with hardened voter, the probability that it delivers the
correct output is the probability that at most one of the three replicated accelerators
is affected by soft errors in their critical bits, which is

R(ATMR
i) = (1−R(Aa))R(Ab)R(Ac)+

(1−R(Ab))R(Aa)R(Ac)+
(1−R(Ac))R(Aa)R(Ab)+
R(Aa)R(Ab)R(Ac)

= e−nλ(ta+tb) + e−nλ(ta+tc) + e−nλ(tb+tc)

−2e−nλ(ta+tb+tc),

(7.5)

where R(Aa), R(Ab) and R(Ac) denote the reliability of the three replicated acceler-
ators. ta, tb and tc denote the resident times of the three replicated accelerators. For
accelerators in DWC mode, the accelerated function is re-executed on the hardened
processor if an error is detected. Thus the probability of correct results equals to
the probability that at most one of the replicated accelerators is erroneous:

R(ADWC
i) = e−nλta + e−nλtb− e−nλ(ta+tb). (7.6)

7.3 Reliability Guarantee of Accelerated Functions

When a reliability constraint is specified for each AF, it requires that the error
probability of every execution of the accelerated function AFj , i.e. 1−R(AFj , tj), is
less than or equal to a statically or dynamically given threshold, usually written in
powers of ten as 10−rj :

∀j : 1−R(AFj , tj)≤ 10−rj . (7.7)

For instance, when rj = 5, the error probability of each execution of AFj must be
less than 10−5. In Eq. (7.2) and (7.7), the values of ni and τi are derived from the

103

7 Reliability Guarantee with Adaptive Modular Redundancy

AF implementations at design time. λ, ti, and the target reliability rj are variables
whose values may dynamically change during runtime.

7.3.1 Maximum Resident Time

To satisfy the reliability constraint in Eq. (7.7), the runtime system must ensure
that unprotected accelerators used in the next execution of AFj are still sufficiently
reliable. This requires that the resident times of non-redundant accelerators in AFj
satisfy the inequality: ∏Ai∈AFji e−niλti ≥ 1−10−rj . After applying the logarithm on
both sides, we obtain

Ai∈AFk∑
i

niti ≤−
1
λ

log
(
1−10−rk

)
. (7.8)

By making ti small enough, e.g. by scrubbing accelerators more frequently, the
reliability constraint can be fulfilled. However, there are many combinations of
resident times ti which satisfy Equation (7.8). To find the optimal combination
which maximizes every ti so that the scrubbing overhead is minimized, the runtime
system has to solve a max-min problem involving ‖AFj‖+2‖AFj‖ constraints, where
‖AFj‖ is the number of accelerators required by AFj . This is too complex for the
runtime system and would decrease its responsiveness to other important tasks.

To simplify the problem, let tmax denote the maximum resident time of all accel-
erators required by an accelerated function AFj , i.e. tmax = maxi{ti}. Then,

Ai∈AFj∑
i

niti ≤
Ai∈AFj∑

i

nitmax, (7.9)

and Equation (7.8) is automatically satisfied when

tmax ≤
1∑Ai∈AFk

i ni

(
−1
λ

log
(
1−10−rk

))
︸ ︷︷ ︸

Tupj

. (7.10)

We denote the right-hand side of Equation (7.10) as T upj , the upper bound of tmax
for AFj . With the above tightening, the runtime system only needs to schedule
scrubbing for non-redundant accelerators such that tmax satisfies Equation (7.10),
which is stricter than required.

For an AFj consisting of only triplicated accelerators and applying tightening
by tmax = max{ta, tb, tc}, the reliability constraint 1−R(ATMR

i) ≤ 10−rj becomes
3e−2nλtmax − 2e−3nλtmax ≥ 1− 10−rj . This can be easily solved by substitution to
obtain the bound for tmax. But it becomes difficult when we compute tmax for
partially fault tolerant variants as shown in Fig. 7.1c). However, we can always find
a suitable q (usually < 1) such that

3e−2nλtmax−2e−3nλtmax ≥ e−qnλtmax (7.11)

104

7.3 Reliability Guarantee of Accelerated Functions

holds for all tmax where e−nλtmax , the reliability of a non-redundant accelerator, is
assumed to be larger than a very conservative value such as 0.99. Therefore the
reliability constraint for an arbitrary accelerated function combining non-redundant
and triplicated accelerators is tightened to

Ai∈AFj ,non-red.∏
i

e−niλtmax
Ai∈AFj ,TMR∏

i

e−qniλtmax ≥ 1−10−rj , (7.12)

where tmax is the maximum resident time of all accelerators. After taking the
logarithm on both sides, we obtain

tmax ≤
1∑non-red.

i ni+
∑TMR
i qni

(
−1
λ

log
(
1−10−rj

))
︸ ︷︷ ︸

Tupj

, (7.13)

In a similar way, tightening is also applied to accelerated functions with accelerators
in duplicated mode.

7.3.2 Acceleration Variants Selection

When the application requests to execute accelerated functions in reconfigurable
fabric, the runtime system has to select from a large set of acceleration variants to
configure, which have distinct performance, reliability and resource usage charac-
teristics. The variants of an AF consists of a common set of accelerators and the
bitstream of these accelerators are stored in the memory for online reconfiguration.
As an motivational example, Fig. 7.3 shows the selection space for a complex H.264
encoder application, in which nine AFs are implemented. Each data point in the

0.0 0.10.20.3 0.40.5 0.60.7 0.8 0.91.0
Normalized performance (higher is faster)

M
in

im
um

 e
rr

or
 p

ro
ba

bi
lit

y

Number of
Regions

1
5
10
15
20
24

AFs
dctfour
htfour
httwo
ipredhdcsixteen
ipredvdc1sixteen
lfbsfour
mchzfour
sadsixteen
satdfour

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹²

Figure 7.3: Variants selection space for an error rate of 10 errors Mb−1month−1.

105

7 Reliability Guarantee with Adaptive Modular Redundancy

figure denotes an acceleration variant of a specific AF (coded in color and shape)
including partially and completely fault tolerant variants. Each variant is described
by three metrics: minimum error probability (Y-axis), performance (X-axis) and
number of regions (size of the data point). The minimum error probability of a
variant is its error probability when tmax equals the minimum scrubbing period of
the system. For the variants, the error probability differs by more than three orders
of magnitude. The performance shows the speedup of each variant compared to
software execution, normalized for each AF. The absolute speedup ranges from 6.3
to 70.2×. The displayed performance is normalized for every AF. Zero means least
speedup and one means most speedup.

The runtime system selects the accelerator variants upon an application request.
Thus, the selection must complete in a short time period despite of the large se-
lection space. This makes it computationally inviable to obtain an exact solution
to the underlying NP-complete Knapsack problem, where—in addition to satisfying
the reliability constraint—the number of accelerators to implement the chosen AF
variant must not exceed the number of regions (capacity of the Knapsack) and the
performance of the AFs shall be maximized (optimization).

Algorithm 5 shows the proposed greedy algorithm that selects the appropriate
variants for requested accelerated functions such that the target reliability and re-
source constraints are satisfied and the performance of the whole application is
maximized. Its worst-case complexity is O(n2), where n is the number of variants
to be selected.

The variant selection is guided by a performance score which ensures that the
selection is resource efficient and the performance of the whole application increases:
Line 1 collects those acceleration variants v for the requested accelerated functions
(v.fct ∈F) into set C which are able to meet the reliability constraint, i.e. the upper
bound of tmax for the variant is greater or equal to the minimum scrubbing period
of the system. As discussed in Section 7.3.1, the upper bound of tmax depends
on the used resources and applied fault tolerance method of the variant. Line 2
keeps the smallest derived variant per base variant (see Section 7.1) in C, i.e. the
variant using the fewest regions (‖v‖ denotes the number of regions required by
v). The loop from Line 5 to Line 30 iteratively selects the variant with the highest
performance score among others in C, and which still fits into the available regions.
Line 16 calculates the performance score of a variant as the weighted speedup gain
compared to a previously selected variant for the same accelerated function: The
weight is the history execution frequency fEX of the accelerated function divided
by the number of regions required by the variant. If there is no previously selected
variant, the speedup gain is calculated relative to the software execution (Line 14).
The variant vbest with highest score is added to the result set R if there is no faster
variant (fewer execution cycles) of the same function already in R. The main loop
continues until C is empty, or no variant with the targeted reliability fits into the
remaining regions.

Before the actual execution of an accelerated function, the runtime system checks
if the hardware variant selected by Alg. 5 is already configured, and if it still satisfies
the reliability constraint for the current error rate (both might have changed since

106

7.3 Reliability Guarantee of Accelerated Functions

Algorithm 5 Acceleration variants selection
Input: The set of accelerated functions to be executed F .
Output: Selected variants for each accelerated function in F .
1. C := {all variants v for v.fct ∈ F | T up(v)≥N ·TS}
2. C := {v | v ∈ C and ∀u ∈ C,u.base = v.base : ‖u‖> ‖v‖}
3. N := NumberOfRegions // Total number of reconfigurable regions
4. R := ∅ ; A := ∅ // Result set and set of accelerators required by the selected variants
5. while C 6= ∅ do
6. C := C \{v | v ∈ C,‖v.acc∪A‖> N}
7. if C = ∅ then
8. break
9. end if
10. vbest := NULL ; BestScore := −∞
11. for all v ∈ C do
12. vsel := fastest variant w ∈R with w.fct = v.fct
13. if vsel=NULL then
14. Score := fEX(v.fct) · (v.sw_cycles-v.hw_cycles)/‖v‖
15. else
16. Score := fEX(v.fct) · (vsel.hw_cycles-v.hw_cycles)/‖v‖
17. end if
18. if Score > BestScore then
19. vbest := v
20. BestScore := Score
21. end if
22. end for
23. vreplace := v ∈R∧v.fct = vbest.fct ; C := C \{vbest}
24. if vreplace = NULL then
25. R :=R∪{vbest} ; A :=A∪vbest.acc
26. else if vreplace.hw_cycles > vbest.hw_cycles then
27. R := (R\{vreplace})∪{vbest}
28. A := (A\vreplace.acc)∪vbest.acc
29. end if
30. end while
31. return R // Selected variants to be configured

the last execution of Alg. 5). If that is not the case, the AF is executed in software
by the hardened processor.

7.3.3 Non-uniform Accelerator Scrubbing

The scrubbing rate for each region is determined by the accelerator implemented
in it. If the accelerator belongs to an accelerator variant which requires a short
resident time to satisfy the reliability constraint, the region must be scrubbed more
frequently. More precisely, if tmax of a variant has to satisfy Eq. (7.13), then all the
regions it uses are scrubbed as soon as the resident time exceeds (T upj −N ·TS). In
this way, tmax of every implemented variant is guaranteed to satisfy the tightened
reliability constraint and the scrubbing overhead is minimized.

107

7 Reliability Guarantee with Adaptive Modular Redundancy

7.4 Reliability Guarantee of Applications

When the reliability constraint is specified for an whole application, instead of in-
dividual accelerated functions, that the error probability of the outputs from the
application must be lower than a given bound, kernels in the application (see Sec-
tion 3.1) bring another layer of complexity to the reliability-performance trade-off.

Consider the execution of an application consisting of two kernels targeting max-
imum performance, as shown in Fig. 7.4a). Kernel 1 requires a large amount of
resources and finishes in short time (fewer loops or lighter computation), while ker-
nel 2 has a lower resource utilization and needs more time to finish. When the
application is imposed by a reliability constraint, e.g. that the error probability of
the computed results must be small, accelerators in the kernels can be duplicated or
triplicated to build redundancy. This is shown in Fig. 7.4b), where some accelerators
in kernel 1 and all accelerators in kernel 2 are protected by DWC. However, due to
the limited amount of available resources (marked by the dashed horizontal line),
resources devoted to redundancy are not available for acceleration, which leads to
longer execution time of kernel 1. Longer execution time implies a higher chance of
being affected by soft-errors for protected and unprotected accelerators during the
execution. The protection strategy in Fig. 7.4b) does not necessarily fulfill the low
error probability required by the application. The resources spent for protection in
kernel 1 exhibit a lower protection efficiency than those in kernel 2. In Section 7.4.3
it will be shown that the error probability of a kernel without redundancy can be
expressed as 1− e−k×amount of resource×execution time. Instead, if just kernel 2 is pro-
tected with the awareness of the intrinsic low error probability of kernel 1 due to
its short execution time, the reliability constraint of the application may be met
without any loss of performance.

Overall, targeting the reliability of a whole application, multiple factors need to be
considered simultaneously: the kernel execution time, the implementation variants
of accelerated functions, the vulnerability of accelerators and their impact on each
other. This work presents a novel resource budgeting method to maximize the
system performance under a given application reliability constraint. This is achieved
by budgeting the effective critical bits, which is a metric that allows to capture all
reliability impacting factors as one single value. Budgeting of effective critical bits
is performed by the following three steps: 1) Transform the reliability constraint of
the application (i.e. its allowed error probability) to the number of allowed effective

Resources

Max. Resources

Resources

Max. Resources

Redundancy

Acceleration

Time Time

Redundancy

Acceleration

0 0

Kernel 1
(No redund.) Kernel 2

 (No redund.)

a) Kernel execution without
 redundancy

b) Kernel execution with
 redundant accelerators

Figure 7.4: Execution of kernels with different degrees of redundancy

108

7.4 Reliability Guarantee of Applications

critical bits of the application; 2) Theses allowed effective critical bits are then
assigned to the kernels based on their resource requirement and expected execution
time; 3) Based on that, the runtime system selects the redundancy modes for the
accelerated functions to maximize the performance within the budget.

7.4.1 Effective Critical Bits of Accelerators

By scrubbing with maximum frequency, the reliability of an accelerator pair in DWC,
i.e. Eq. (7.6) with ta = tb =N ·TS , can be maintained at

R(ADWC)≥ 2e−λnN ·TS − e−2λnN ·TS . (7.14)

By solving
2e−λnN ·TS − e−2λnN ·TS = e−λαnN ·TS (7.15)

for α, we obtain

α(n) = logu(2u−u2) with u= e−λnN ·TS and (7.16)
R(ADWC)≥ e−λαnN ·TS , (7.17)

where α is a number that is always less than 1 for 0<u<1. Equation (7.17) can
be interpreted in a way that by introducing redundancy with DWC, the reliability
of the accelerator pair can be maintained at a much higher level, as if the number
of critical bits of the accelerator were reduced from n to αn. Here, αn is called
the effective critical bits of the accelerator pair in DWC. By duplicating one of the
accelerators for DWC, e.g. A1, the lower bound of the reliability of an accelerated
function AFj is raised to

R(AFj)≥ e
−λ
(∑

i6=1ni+α(n1)n1

)
N ·TS

. (7.18)

By comparing Eq. (7.4) and Eq. (7.18), it can be observed that after introducing
DWC for an accelerator with ni critical bits, the total number of effective critical
bits of AFj is reduced by (1−α(ni))ni.

When three instances of accelerators with n critical bits each are paired to im-
plement TMR, based on the similar derivation, the effective critical bits βn of the
TMR pair can be obtained:

β(n) = logu(3u2−2u3) and u= e−λnN ·TS . (7.19)

7.4.2 Reliability of Accelerated Kernels

The correct functionality of a kernel depends on the error-free execution of its AFs.
It is assumed that a kernel delivers correct results only when all its AFs are executed

109

7 Reliability Guarantee with Adaptive Modular Redundancy

A1

A2

A3

0 TS 2TS 3TS 4TS 5TS

t1 t2 t3 t4 t5

Time

One accelerator
execution

Last accelerator execution
in one scrubbing period

Figure 7.5: Illustrative execution series of an accelerated function

error-free. The reliability of a kernel Kk, i.e. the probability that it delivers correct
results, can be formulated as

R(Kk)=
∏

AFj∈Kk
P (every exec. of AFj is error-free). (7.20)

Since the configuration bits of accelerators in AFj are independent of each other,
the probability of error-free execution of an AF can be decomposed into the product
of the probability of error-free execution of its accelerators:

P (every execution of AFj is error-free) =∏
Ai∈AFj

P (every execution of Ai is error-free). (7.21)

The example shown in Fig. 7.5 is used to illustrate the calculation of the prob-
ability of error-free execution of an accelerator. It shows an execution series of an
AF consisting of three accelerators. Short solid lines on the time axis represent
the time points at which the scrubbing process of respective accelerators is finished.
Long solid lines with circles represent the time points (t1 to t5) at which the AF
is executed. The time difference between the consecutive execution of different ac-
celerators (few tens of cycles) is ignored since it is negligible in comparison to the
scrubbing period (thousands of cycles).

The error-free execution of A1 requires that all 5 executions of A1 at t1 to t5 are
error-free. The probabilities of error-free consecutive executions of A1, e.g. at t1
and t2, cannot be considered independent, as they rely on the same configuration
bits. The error-free execution at t2 implies that the underlying configuration bits
are error-free throughout the time period from 0 to t2 and therefore also implies the
error-free execution of A1 at t1:

P (error-free execution of A1 at t1 and t2) =
P (error-free execution of A1 at t2) = e−λn1t2 .

(7.22)

However, after scrubbing at time point 3TS , the underlying configuration bits are

110

7.4 Reliability Guarantee of Applications

ensured to be error-free and thus independent of those before the scrubbing. There-
fore, the executions of A1 at t3 to t5 are independent of those at t1 and t2 and
their correctness is implied by the correctness at t5. The probability of error-free
execution from t3 to t5 is

P (error-free execution of A1 at t3 to t5) =
P (error-free execution of A1 at t5) = e−λn1(t5−3TS).

(7.23)

The probability of error-free executions of A1 from time 0 throughout t5 is then

P (every execution of A1 is error-free) = e−λn1(t2+t5−3TS). (7.24)

In general, the probability that every execution of an accelerator is error-free
within one scrubbing period is equal to the error-free probability of the last execution
of the accelerator within that scrubbing period (marked by the long solid lines with
filled circles in Fig. 7.5). For example, the probability of error-free execution of A2
is e−λn2(t3−TS+t5−4TS) and e−λn3(t5−2TS) for A3.

7.4.3 Effective Critical Bits of Accelerated Kernels and Applications

The execution of an accelerator Ai that occurs just before the next scrubbing period
starts has the lowest error-free probability e−λniN ·TS . For an arbitrary execution
series of an accelerator Ai in a kernel Kk with total execution time Tk, the lower
bound of the its error-free probability can be obtained:

P (every execution of Ai is error-free)≥ e
−λni

Tk
N ·TS

N ·TS . (7.25)

where Tk
N ·TS represents the number of scrubbing periods occurred during the execu-

tion of Ai. Therefore, the lower bound of the reliability of the kernel can be derived
from Eq. (7.20), (7.21) and (7.25):

R(Kk,Tk)≥ e−λnkN ·TS with

nk(Tk) = Tk
N ·TS

∑
AFj∈Kk

∑
Ai∈AFj

ni, (7.26)

where nk denotes the effective critical bits of kernel Kk, which is dependent on its
own execution time Tk.

An application App delivers error-free results when all of its accelerated kernels
{Kk} are executed error-free. With Eq. (7.26), the lower bound of the reliability of
the application and its effective critical bits napp is obtained:

R(App) =
∏
k

R(Kk)≥ e−λnappN ·TS with

napp =
∑
k

nk = 1
N ·TS

∑
k

Tk
∑

AFj∈Kk

∑
Ai∈AFj

ni. (7.27)

111

7 Reliability Guarantee with Adaptive Modular Redundancy

7.4.4 Budgeting of Effective Critical Bits

Equation (7.27) shows that the reliability of an application is able to stay above
a certain lower bound depending on the application’s effective critical bits. The
reliability constraint r of an application denotes that the probability of obtaining an
error-free result is greater than 1−10−r and it is satisfied when its reliability lower
bound satisfies

e−λnappN ·TS ≥ 1−10−r (7.28)

which is equivalent to

napp ≤−
1

λN ·TS
log(1−10−r). (7.29)

If the number of effective critical bits of the application is lower than the value given
in Eq. (7.29), then the reliability requirement is automatically satisfied. This work
proposes a two-step budgeting method which assigns the maximum allowable num-
ber of effective critical bits of the application to kernels and accelerated functions.
In the first step, the number of effective critical bits of each kernel is determined
such that the application performance is maximized. In the second step, the num-
ber of effective critical bits of each AF in the kernels is calculated, which indirectly
determines the required redundancy for each AF.

Budgeting for Kernels

To find the number of effective critical bits allowed for individual kernels, which
depends on the kernel execution time, it is necessary to determine the relationship
between the number of accelerators and the kernel execution time.

The amount of resources available for hardware acceleration is limited by the
number of reconfigurable regions, which can be devoted to (i) accelerators of different
types to accelerate different functions, (ii) accelerators of the same type for parallel
execution and (iii) accelerators of the same type paired to compose DWC or TMR.
All these different scenarios of resource usage lead to different reliability-performance
trade-offs.

It is assumed here that the reliability-unaware runtime system of the reconfig-
urable architecture is optimized to maximize the application performance for the
given reconfigurable regions. The execution time Tk(N) of individual kernels k is
determined offline for different numbers N of regions in the reconfigurable fabric.
When more regions are available for acceleration, more independent accelerators can
be configured and the execution time of the kernel is reduced. When accelerators
are paired to implement modular redundancy, the number of used regions devoted
to acceleration is actually reduced. The acceleration provided by two accelerators
paired in DWC or three accelerators paired in TMR is as much as only one accel-
erator. In other word, M DWC or TMR pairs of accelerators reduce the number of
regions available for acceleration by M or 2M , respectively.

112

7.4 Reliability Guarantee of Applications

Given the maximum number of effective critical bits of the application determined
by Eq. (7.29), the problem of finding the number of effective critical bits of each ker-
nel Kk while maximizing the application performance, i.e. minimizing the execution
time of all kernels ∑k Tk, is formulated as follows:

minimize
∑
k

Tk(Nacc
k)

subject to
∑
k

(nk(Tk)−∆k)≤−
log(1−10−E)

λN ·TS
∆k ≈ (1−α(µk))µkMk+

µkmax(Mk− (N −||Kk||),0)

µk = nk(Tk)
||Kk||

Nacc
k = min(||Kk||,N −Mk)

Mk ≤min(||Kk||,bN/2c),

whereMk denotes the number of DWC pairs in kernelKk, ||Kk|| denotes the number
of regions used by the kernel without any redundancy, and µ denotes the average
number of critical bits in one region before applying DWC. ∆k estimates the reduc-
tion of the effective critical bits in kernel k after introducing Mk DWC pairs. Nacc

k
denotes the number of regions available for acceleration. In the above formulation,
it is assumed that accelerator redundancy is achieved by DWC. If TMR is chosen
as the redundancy method, ∆k, Nacc

k and Mk need to be changed as follows:

∆k ≈ (1−β(µk))µkMk +µkmax(2Mk− (N −||Kk||),0)
Nacc
k = min(||Kk||,N −2Mk)

Mk ≤min(||Kk||,bN/3c),

where Mk denotes the number of TMR pairs in kernel Kk.

The number of redundancy pairs Mk needed in each kernel is determined by
iterating through all possible combinations of Mk. The complexity of solving the
problem is thus (N/2)||K|| for DWC or (N/3)||K|| for TMR, where ||K|| denotes the
number of kernels. This search process is performed before the application starts
and when the soft error rate changes. Since the number of kernels is typically small,
in spite of the exponential time complexity, the runtime overhead is low, as evaluated
in Section 7.5.

After determining Mk, the number of effective critical bits of each kernel after
budgeting, i.e. n′k = nk−∆k, can be calculated. It determines the maximum total
number of effective critical bits of accelerated functions in each kernel: ∑AFj∈Kk n

′
j =

n′kN ·TS/Tk (see Eq. (7.26)).

113

7 Reliability Guarantee with Adaptive Modular Redundancy

Budgeting for Accelerated Functions

During the execution of each kernel, the accelerators to implement the AFs co-exist
in the reconfigurable fabric at the same time. They share the reconfigurable regions
among each other. The runtime system selects the appropriate implementation vari-
ants for each AF, such that the performance of the kernel is maximized for a given
number of reconfigurable regions. More effective critical bits budgeted to an AF
allow it to be implemented with more accelerators for higher performance. There-
fore, AFs that contribute more to the computation in the kernel or require complex
accelerators (more intrinsic critical bits) shall be assigned with more effective critical
bits.

Given the total number of effective critical bits n′kN ·TS/Tk that are budgeted to
all accelerated functions in each kernel, the budgeted critical bits of each accelerated
function n′j are calculated by solving the following equation:

n′j
n′kN ·TS/Tk

= wjnj∑
AFj∈Kkwjnj

, (7.30)

where wj and nj denote the proportion of the execution time of AFj in the kernel
and the number of critical bits of AFj obtained from the reliability-unaware kernel
profiling, respectively. Before the start of each kernel, the reliability-unaware run-
time system then selects from those AF implementations, whose number of effective
critical bits are within the budget, to maximize the kernel performance.

7.5 Experimental Evaluation

The presented method is evaluated in a reconfigurable architecture implemented
on a Xilinx Virtex-5 FPGA with an H.264 video encoder as the target application
(see Section 3.5). The application consists of three kernels which contain multiple
accelerated functions that are composed from 9 distinct accelerators as in Table 3.1.
The number of critical bits of the accelerators are obtained from the Xilinx bitgen
tool and range from 19,036 to 86,796 bits. The reliability requirement specifies
the upper bound of the error probability of one encoded frame, i.e. to guarantee
the reliability of the application encoding one frame. Therefore, the method of
budgeting of effective critical bits (see Section 7.4.4) is applied.

The architectural simulator (see Section 3.5) is used to evaluate the method for
systems with different number of reconfigurable regions. The algorithm for finding
the effective critical bits for kernels and AFs is implemented in fixed-point arith-
metic and integrated it into the runtime system. The reliability model presented in
Section 7.2 is integrated into the simulator to evaluate the application reliability. To
evaluate the response of the system to different environmental conditions, the soft
error rate is changed from 0.1 to 10 errors per Mb per month to simulate realistic
cases [QGM+13].

For the performance evaluation, the method of critical bits budgeting is applied

114

7.5 Experimental Evaluation

Number of regions

6 7 8 9 10 11 12 13

P
e

rf
o

rm
a
n

c
e

 I
m

p
ro

v
e
m

e
n

t
[%

]
 P

e
rr
 /
 1

0
-r

Figure 7.6: Ratios of error probability and performance improvement under different num-
bers of regions and reliability requirements

with reliability requirements from r= 6 to r= 9 (see Section 7.4.4), i.e. the error
probability of each encoded frame must be less than 10−r. DWC is applied as the
redundancy mode and compare the execution time for encoding one frame to an
approach which applies DWC to all used accelerators in the AFs (full DWC). The
error probability of a full DWC system is close to zero. To evaluate the achieved
application reliability, we use the ratio of the calculated application error probability
(see Section 7.2) and the required error probability (Perr/10−r). A value smaller
than 1 implies that the reliability requirement is satisfied.

7.5.1 Performance Improvement

Figure 7.6 shows the results in systems with different number of reconfigurable re-
gions when the soft error rate is set to 3Mb−1month−1. As can be seen from the
upper part of the figure, the reliability requirements are satisfied for all evaluated
cases. Without any modular redundancy, the error probability is lower than 10−6

and closer to 10−7, which leads to the smaller value of Perr/10−r in case of r= 6.
When the number of available regions is small, full DWC incurs high performance
loss, because some accelerated functions have to be implemented in software due
to lack of regions. In contrast, the proposed method only duplicates those acceler-
ators that are essential to the required application reliability, which leads to 85%
performance improvement.

Figure 7.7 shows the results under different soft error rates in a system with 8
regions. When the soft error rates and the reliability requirements are low, it is not
necessary to duplicate all accelerators to achieve high reliability, which translates
to about 20% performance improvement against full DWC while still satisfying the
required reliability. When the soft-error rate raises, more accelerators need to be
duplicated to compensate the increasing error rate. In worst case, almost all ac-
celerators are duplicated and the resulting error probability is lower than 10−15, as
shown in the upper part of Fig. 7.7, where the red bars are too small to be visible

115

7 Reliability Guarantee with Adaptive Modular Redundancy

Soft-error rate [Mb
-1

month
-1

]

0.1 1 2 3 4 5 6 7

P
e

rf
o

rm
a
n

c
e

 I
m

p
ro

v
e
m

e
n

t
[%

]
 P

e
rr
 /
 1

0
-r

8 9 10

Figure 7.7: Ratios of error probability and performance improvement under different soft-
error rates and reliability requirements

for soft-error rates higher than 4Mb−1month−1 and r=9. The resulting reliability
and performance of the system converges to a full DWC system.

7.5.2 Runtime Overhead

The budgeting of effective critical bits introduces two types of runtime overhead.
They are due to the computation of budgeted critical bits for each kernel (Type 1)
and each AF (Type 2). Type 1 overhead occurs before the start of an application
and when the soft error rate changes. In the worst case, which corresponds to a
system with 13 regions, it takes 4.1ms on a SPARC V8 LEON3 processor running
at 100MHz. Type 2 overhead occurs before the start of each kernel by solving
Eq. (7.30) and takes 0.07ms.

116

8 Overall Evaluation and Comparison

This chapter presents and discusses the evaluation results of the proposed depend-
ability approaches from the perspectives of structural integrity and functional cor-
rectness, as described in Section 3.4. They show the effectiveness of the proposed
methods against permanent faults in the reconfigurable fabric resulted from aging
effects and soft errors in the configuration memory due to single event upsets. The
results are compared with related state-of-the-art techniques.

8.1 Structural Integrity

In the presence of permanent faults, the system behavior and the transistor stress
in the fabric are investigated in a reconfigurable architecture with eight reconfig-
urable regions. A complex H.264 video encoder (with nine distinct accelerators),
an ADPCM audio encoder (one accelerator), an AES encryption (one accelerator)
and a JPEG image decoder (three accelerators) were chosen as target applications
to represent different computational requirements. Table 8.1 shows all accelerators
along with their logic utilizations (2nd column) and bitstream sizes (3rd column).
The total bitstream size of all configurations that need to be stored in the system
memory is about 1636KB. To accommodate the accelerator resource requirement,
each reconfigurable region has a size of 4×20 CLBs with eight 6-input LUTs per
CLB. The only exceptions are the JPEG accelerators that use 8×20 CLBs for their
reconfigurable regions. They would have fit into 4×20 CLB regions when using DSP
blocks. But as the transistor-level structure of Xilinx DSP blocks is not publicly
known, the stress balancing for DSP blocks cannot be evaluated and thus the JPEG
accelerators are implemented using CLBs only. A minimal set of diversified con-
figurations to tolerate any single-CLB fault is generated for each accelerator (4th
column).

For the evaluation, a fault model at CLB granularity is assumed. A CLB is
considered faulty if any faulty behavior in its internal structure makes it unusable
for functional operation. It is not limited to a specific fault model (e.g. stuck-at
faults), but it is assumed that the position of faulty CLBs is detected and diagnosed.
To investigate the system behavior under the presence of faulty CLBs, 1 up to 80
CLBs (from all CLBs of all regions) are randomly selected to be faulty. To ensure
correct operation, any accelerator configuration that requires at least one of the
faulty CLBs is not allowed to be configured anymore. For a given number of faulty
CLBs, 100 simulation runs are executed with randomly selected faulty CLBs.

The architectural simulator (see Section 3.5) is used to evaluate the system be-
havior in the presence of different number of detected permanent faults and using
different runtime strategies. For comparison, a baseline, a state-of-the-art strategy,

117

8 Overall Evaluation and Comparison

Table 8.1: Properties of reconfigurable accelerators and their change in maximum fre-
quency of diversified configurations

Accelerator CLB utili- Bitstream #Divers. Original AccDiv Worstcase
zation [%] [KByte] Config. [MHz] [MHz] ∆ [%]

Clip3 66 30 3 133 119–133 10.5
CollapseAdd 23 30 2 158 142–158 10.1
LF_BS4 48 30 2 121 117–121 3.3
LF_Cond 23 30 2 146 139–146 4.8
PointFilter 65 30 3 89 81–89 9.0
QuadSub 9 30 2 257 217–257 15.6
SADrow_4 38 30 4 100 99–103 1.0
SAV 33 30 2 139 122–139 12.2
Transform 45 30 2 167 160–167 4.2

AdpcmEncDec 84 30 7 67 63–67 5.6

AesLutEnc 53 30 3 269 258–269 3.7

JpegTransform 59 52 3 108 98–108 8.8
Jpegidcte 69 52 4 156 135–156 13.1
Jpegidcto 83 52 6 158 149–160 5.5

System freq. 67 63 5.6

STRAP without module diversification and STRAP with module diversification
(summarized in Table 8.2) are evaluated:

• The baseline strategy does not perform fault-tolerant and stress-aware place-
ment and each accelerator has only one configuration, i.e. without diversified
configurations. When the runtime system decides to place an accelerator into
a region where one of the required CLBs is faulty, then the accelerator will
not be configured and its functionality will be emulated in software.

• Angermeier et al. [AZGT11] proposed another state-of-the-art stress distribu-
tion method which places one accelerator after the other into the region that
minimizes the peak stress. It is not capable to tolerate faults.

• The ‘STRAP alone’ strategy distributes the stress of accelerators uniformly
into all reconfigurable resources, where each accelerator has only one configu-
ration, i.e. module diversification is not applied. Thus, the runtime placement
algorithm provides limited capability of fault tolerance.

Table 8.2: Compared strategies in the experiments
Strategy Fault-tolerance Stress-aware Mod. Div.
Baseline No No No
[AZGT11] No Yes No

STRAP alone Yes Yes No
STRAP+ModDiv Yes Yes Yes

118

8.1 Structural Integrity

• STRAP together with module diversification can maximally exploit the diver-
sity in different accelerators for fault tolerance and stress distribution.

As proposed for STRAP, [AZGT11] is extended to replace an accelerator if its re-
configurable region has not been reconfigured for 20 million cycles to provide a fair
comparison (see Section 6.3.2).

8.1.1 Accelerator Diversification

Since the module diversification method applies additional constraints to prohibit
certain CLB locations during place-and-route, the maximally achievable frequency
of an accelerator may be affected. Table 8.1 reports the maximum frequency of
the diversified configurations of each accelerator (6th column) and of the original
configuration (5th column) that is place-and-routed without prohibit constraints.
The worst-case frequency impact (7th column) compares the slowest configuration
of the accelerator to the original configuration. The place-and-route tool is given a
target frequency of 250MHz as timing constraint to obtain the maximum operating
frequency of each accelerator. The frequency of one of the diversified configuration
may actually be better than the original configuration, e.g. in the case of SADrow_4
and Jpegidcto, because the additional placement constraints may actually help the
place-and-route tool to explore new placement and routing possibilities that are
not discovered during the generation of the original configuration. The maximum
system frequency is however limited by the accelerator with the longest critical path,
i.e. AdpcmEncDec, which runs at 67.2MHz with the original configuration and at
63.4MHz with the slowest configuration, which leads to 5.6% decrease of the system
frequency. The original configuration is one of the diversified configurations and
thus can be used when full performance is required.

8.1.2 Aging Resilience and Fault Tolerance

The MTTF improvement due to the stress reduction is calculated by assuming that
a device fails when ∆Vth of any transistor exceeds 50% of its original value (Vth0).
Table 8.3 reports the dynamic stress reduction for different benchmark applications
in a fault-free system and Table 8.4 reports the resulting MTTF increase. On
average, STRAP with module diversification achieves 6.8× higher MTTF than the
baseline, 1.8× higher than [AZGT11] and 1.6× higher than using STRAP alone.

Table 8.3: Reduction of maximum transistor toggle rate w.r.t. the baseline system [%]

Strategy H.264 ADPCM JPEG AES Avg.

[AZGT11] 49.5 87.3 63.9 49.7 62.6
STRAP alone 66.0 87.3 73.6 49.7 69.2

STRAP+ModDiv 78.5 90.8 87.3 73.5 82.5

119

8 Overall Evaluation and Comparison

Table 8.4: MTTF improvement w.r.t. the baseline system [×] (e.g. 2× improvement means
the MTTF is doubled)

Strategy H.264 ADPCM JPEG AES Avg.

[AZGT11] 2.0 7.9 2.8 2.0 3.7
STRAP alone 2.9 7.9 3.8 2.0 4.1

STRAP+ModDiv 4.7 10.9 7.9 3.8 6.8

The impact of faults in the fabric on the application performance and the peak
stress is investigated in detail for a H.264 video encoder as the target application.

Figure 8.1 shows the application performance in the presence of faults in the
reconfigurable fabric when different strategies are applied. The box plots (whose
values refer to the left Y-axis) show the statistical distribution of the performance
degradation w.r.t. a fault-free baseline system, which is measured by

Execution time in the presence of n faulty CLBs
Execution time in a fault-free baseline system . (8.1)

It represents how many times slower the application runs than it would run in a fault-
free system. If only one or two CLBs are detected faulty, the application performance
is typically not affected, as these faulty CLBs are not required by the accelerators.
When the number of faulty CLBs increases in the baseline system, fewer accelerators
can be placed and computationally intensive parts of the application have to be
executed in software, which significantly degrades the performance. In extreme
cases, e.g. with 80 faulty CLBs, the application is completely executed in software
without acceleration, which leads to more than 22× degraded performance.

With module diversification, the application experiences less than 8% performance
degradation with 1 to 8 faulty CLBs, since these faulty CLBs are avoided by using
diversified configurations. As faults accumulate (e.g. more than 25 faulty CLBs),
they are not tolerable any more by the diversified configurations, which leads to the
increased performance degradation. Without module diversification, STRAP alone
delivers limited capability of fault tolerance. The application performance degrades
in a similar rate to the baseline system after the number of faulty CLBs exceeds 7.

The line plots in Fig. 8.1 (with values referring to the right Y-axis) show the
average performance gain of a runtime strategy w.r.t. the baseline system, given the
same number of faulty CLBs. It is measured by

Avg. Exec. time in baseline with n faulty CLBs
Avg. Exec. time in other strategy with n faulty CLBs , (8.2)

where the average is over all simulation runs for a given number of faulty CLBs.
This metric measures the ability of a strategy to provide fault-tolerance. With the
STRAP algorithm and module diversification, the application is able to deliver 1.9–
3.7× the performance of a baseline system in the presence of 4 to 40 faulty CLBs. As
the number of faulty CLBs increases, the system performance is gracefully degraded
until it converges to the baseline system. Without module diversification, STRAP

120

8.1 Structural Integrity

N
um

be
rA

of
Afa

ul
ty

AC
LB

s

PerformanceAdegradation
vsAaAfault7freeAbaselineAsystemA[x]

wBoxAplotsk

PerformanceAgain
vsAfaultyAbaselineAsystemA[x]

wLineAplotsk

B
as

el
in

e
A

ng
er

m
ei

e
rA

[2
3]

S
T

R
A

P
A[2

5]
T

hi
sA

w
or

k

1
2

3
4

5
6

7
8

9
10

15
20

25
30

35
40

60
80

0510152025

012345

Fi
gu

re
8.
1:

A
pp

lic
at
io
n
pe

rfo
rm

an
ce

in
th
e
pr
es
en

ce
of

fa
ul
ts

un
de

r
di
ffe

re
nt

st
ra
te
gi
es
.
Le

ft
Y
-a
xi
s
(b
ox

pl
ot
s)
:
pe

rfo
rm

an
ce

de
gr
ad

at
io
n
w
.r.
t.

a
fa
ul
t-
fre

e
ba

se
lin

e
sy
st
em

.
R
ig
ht

Y
-a
xi
s
(li
ne

pl
ot
s)
:
pe

rfo
rm

an
ce

ga
in

w
.r.
t.
to

th
e
fa
ul
ty

ba
se
lin

e
sy
st
em

121

8 Overall Evaluation and Comparison

alone delivers up to 1.5× performance gain for fewer than 10 faulty CLBs. [AZGT11]
optimizes for stress reduction and do not consider fault-tolerance during accelerator
placement. It place an accelerator into a region that results in the lowest peak
stress. However, this may prevent the successful placement of other accelerators,
which leads to lower application performance.

The box plots (left Y-axis) in Fig. 8.2 shows the statistical distribution of peak
dynamic stress in the reconfigurable fabric in the presence of different number of
CLB faults. When there are only a few (e.g. fewer than 6) faulty CLBs in the
reconfigurable fabric, accelerators have a higher placement freedom. The runtime
system can freely choose into which region an accelerator shall be placed such that
the maximum stress is minimized. All stress-aware strategies avoid the stress ac-
cumulation in individual CLBs and result in a lower peak stress than the baseline
system. [AZGT11] performs only inter-region stress distribution and thus produces
higher peak stress than other stress-aware strategies in systems with fewer faults
(e.g. 1 to 3 faulty CLBs), i.e. high placement freedom.

Combining module diversification and intra- and inter-region stress distribution,
STRAP+ModDiv produces the most uniform stress distribution in the fabric, which
leads to the lowest peak stress compared to other approaches. The placement free-
dom diminishes as more CLBs become faulty and the stress distribution becomes
ineffective. As can be seen from the resulting peak stress, STRAP alone does not
have clear advantage over the baseline system when the fabric has 6 to 10 faulty
CLBs. As the number of faulty CLBs increases further (e.g. 15 to 60 faulty CLBs),
the resulting peak stress from STRAP+ModDiv is higher than that from other
strategies. The reason behind that is, that other strategies are not capable to toler-
ate these faults and are not able to find feasible placements of accelerators into the
faulty regions, i.e. the resources in the reconfigurable fabric are less stressed by the
execution of accelerators. This can be seen by looking at the performance degra-
dation in Fig. 8.1, where computations are more frequently emulated in software
instead of being executed on the reconfigurable fabric.

The line plots (right Y-axis) in Fig. 8.2 show the utilization of the reconfigurable
fabric for acceleration w.r.t. a fault-free baseline system. The fabric utilization is
defined as follows:

Exec. time in the reconfigurable fabric (accelerated)
Total execution time . (8.3)

The values plotted are

Average utilization in the presence of faults
Utilization in the fault-free baseline system . (8.4)

The average is over all simulation runs for a given number of faulty CLBs. The fault-
free baseline system has a fabric utilization value of 75.0%. It means that 75% of the
total execution time is spent in the execution of accelerators in the reconfigurable
fabric while the rest 25% is on the processor pipeline. Since the fault-free baseline
system is optimized for performance which fully utilizes the reconfigurable fabric,
75% is the maximum utilization value that can be achieved. In the presence of

122

8.1 Structural Integrity

N
um

be
rv

of
vfa

ul
ty

vC
LB

s

Maxmiumvtransistorvtogglevrate
[Millionvtoggles6s]

PBoxvplots5

Reconfigurablevfabricvutilization
vsvfault1freevbaselinevsystemv[3]

PLinevplots5

B
as

el
in

e
A

ng
er

m
ei

e
rv

[9
0]

S
T

R
A

P
v[9

5]
T

hi
sv

w
or

k

8
9

0
4

5
6

7
8

9
87

85
97

95
07

05
47

67
87

7587859795

787
7

95577589
5

Fi
gu

re
8.
2:

Pe
ak

st
re
ss

an
d
ut
ili
za
tio

n
in

th
e
re
co
nfi

gu
ra
bl
e
fa
br
ic

in
th
e
pr
es
en

ce
of

fa
ul
ts
.
Le

ft
Y
-a
xi
s
(b
ox

pl
ot
s)
:
m
ax

im
um

tr
an

sis
to
r
to
gg

le
ra
te
.
R
ig
ht

Y
-a
xi
s
(li
ne

pl
ot
s)
:
ut
ili
za
tio

n
of

th
e
re
co
nfi

gu
ra
bl
e
fa
br
ic

fo
r
ac
ce
le
ra
tio

n
w
.r.
t.
a
fa
ul
t-
fre

e
ba

se
lin

e
sy
st
em

123

8 Overall Evaluation and Comparison

faults, requested accelerators may not be placed into the reconfigurable fabric due
to faults, which leads to a reduced fabric utilization and less CLB stress. In extreme
case (e.g. with 60 or 80 faulty CLBs) the reconfigurable fabric is not used at all
as almost all accelerator functions are emulated in software. With fault tolerance
by diversified configurations, nearly full fabric utilization is achieved for less than
7 faulty CLBs. Even at a high amount of faults (e.g. 15 to 35 faulty CLBs), the
reconfigurable fabric is still used for acceleration, as can be seen from the induced
stress. At around 25% full fabric utilization, the application delivers more than 2×
higher performance than other strategies (see Fig. 8.1).

For the evaluated systems, the worst-case runtime overhead of the accelerator
placement algorithm occurs when 8 accelerators need to be placed into 8 regions.
These calculations only take 1.3ms on a LEON3 processor running at 100MHz.

8.2 Functional Correctness

To evaluate the functional correctness of the system, i.e. the capability to produce
correct outputs, in response to different environmental conditions (e.g. radiation),
soft error rates between 0 (no errors) and 10 errors Mb−1month−1 are simulated to
comprise the realistic cases [QGM+13]. The variation speed is in the order of seconds
to exercise the dynamic adaptation in the system. Therefore, a sinusoidal soft error
rate is used as input stimuli for the runtime system. The period corresponds to 10 s
in real time for a 100MHz clock frequency.

To evaluate the performance of a H.264 encoder application under different relia-
bility constraints and different soft error rates, the runtime system is imposed with
reliability constraints from r= 8 to r= 11 (see Section 7.3), i.e. the error probability
of each AF execution must be less than 10−r. It is compared to a threshold-based
approach similar to [JCG+12] which duplicates (DWC) or triplicates (TMR) every
accelerator when the error rate exceeds 1.8Mb−1month−1. This guarantees that the
AF error probability is always less than 10−10. In the threshold-based approach,
scrubbing is performed at maximum rate.

The results are shown in Fig. 8.3. Depending on the soft error rate, the sys-
tem reacts and implements modular redundancy methods adaptively. These require
hardware resources which are no longer available for acceleration and thus the per-
formance decreases. With more relaxed reliability constraints (i.e. smaller values of
r), it is less probable that modular redundancy are required and therefore less perfor-
mance impact is observed. When the threshold-based methods switch to duplicated
or triplicated implementations, much more resources are consumed. This causes a
stark performance drop. For a low soft error rate, the performance is still below the
proposed approach since the high scrubbing frequency blocks the configuration port
and delays the reconfiguration of accelerators.

Figure 8.4 shows the average AF error probability of the approaches. In the
unprotected system, the failure probability reaches 4.4× 10−6. For the proposed
method, the error probability is effectively bound by the given reliability constraint,
even for higher soft error rates. The step-shaped change in the curve for r= 11 is due

124

8.2 Functional Correctness

0 100 200 300 400 500 600 700 800 900 1000
Execution time [Million cycles]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
er
fo
rm
an
ce
 [M
ill
io
n
A
Fs
/s
]

0

1

2

3

4

5

6

7

8

9

10

S
of
t e
rr
or
 ra
te
 [M
b⁻
¹m
on
th
⁻¹
]

DWC/TMR threshold

Threshold TMR

r = 11

r = 10

r = 8

r = 9

Soft error rate

Threshold DWC

This work r = 8
This work r = 9
This work r = 10
This work r = 11
Threshold DWC
Threshold TMR
Varying soft error rate

Figure 8.3: Performance under varying soft error rate

0 100 200 300 400 500 600 700 800 9001000
Execution time [Million cycles]

A
ve
ra
ge
 A
F
E
rr
or
 P
ro
ba
bi
lit
y

0

2

4

6

8

10

S
of
t e
rr
or
 ra
te
 [M
b⁻
¹m
on
th
⁻¹
]

DWC/TMR threshold

Threshold based, error pro-
bability is dropped close to 0

Unprotected

r = 8

r = 9

r = 10

r = 11

Only scrubbing

Soft error rate

Unprotected
Threshold DWC/TMR
Only scrubbing at max. rate
This work r = 8

This work r = 9
This work r = 10
This work r = 11
Varying soft error rate

10⁻⁵
10⁻⁶
10⁻⁷
10⁻⁸
10⁻⁹
10⁻¹⁰
10⁻¹¹
10⁻¹²
10⁻¹³
10⁻¹⁴
10⁻¹⁵

Figure 8.4: Average AF error probability for different fault tolerance methods under vary-
ing soft error rate

to the large gap in error probability in the selection space (see Fig. 7.3). A system
which applies only scrubbing at maximal frequency can obtain a minimum error
probability of approx. 10−9. The threshold-based methods over-protect the system
when scrubbing alone cannot guarantee sufficient reliability and accelerators are
replicated. Then, the resource usage is excessive with adverse performance impact
as shown in Fig. 8.3.

Figure 8.5 gives an overview of the system performance degradation over a wide
span of soft error rate and reliability specifications, in comparison to the scenario

125

8 Overall Evaluation and Comparison

0

0.0001
0.001

0.01
0.1

1
10

100
1000

0%
10%
20%
30%
40%

50%

60%

70%

80%

90%

100%

5 6 7 8 9 10 11 12 13 14

Soft error rate
[Mb-1month-1]

Pe
rf

o
m

an
ce

 d
eg

ra
d

at
io

n

Reliability constraints

Figure 8.5: Performance degradation over a wide range of soft error rates and reliability
constraints

when the system does not need any fault tolerance techniques (i.e. soft error rate
is zero). Given reliability constraint r = 10, the system performance degradation is
kept under 27% with the proposed method even when the soft error rate tends to
100 Mb−1month−1, while the threshold-based approach (see Fig. 8.3) shows 57%
performance degradation due to static and pessimistic design decisions.

Table 8.5 summarizes the results of the scenarios investigated in Fig. 8.3 and
Fig. 8.4. For r = 9, this work achieves a reliability improvement factor of 2384
at only 5.3% average performance reduction compared to the unprotected system.
Compared to the threshold-based methods, this work guarantees the same target
reliability while providing 20.0% (DWC) or 42.6% (TMR) higher performance in
average. In the best case, this work is up to 34.8% (DWC) or 68.3% (TMR) faster.

Table 8.5: Performance and error probability results

Method Perf. [Million AFs/s] Error Probability
min avg max avg max

Unprotected 3.45 3.56 3.60 8.70×10−7 4.40×10−6

Thresh. DWC 1.81 2.34 3.30 8.28×10−12 9.12×10−11

Thresh. TMR 1.45 1.97 3.32 8.28×10−12 9.12×10−11

This work r=8 3.40 3.50 3.59 3.49×10−9 5.49×10−9

This work r=9 3.03 3.37 3.58 3.65×10−10 5.62×10−10

This work r=10 2.44 2.81 3.56 4.77×10−11 7.91×10−11

This work r=11 2.36 2.61 3.53 1.48×10−12 6.92×10−12

126

9 Conclusion and Future Work

9.1 Thesis Conclusion

A sustainable down-scaling in the semiconductor industry is of great importance for
driving innovations in an ever more digitalized and interconnected world, which in
turn serves to promote progress and prosperity of the human society. The benefits of
higher logic density, faster processing speed and lower energy consumption brought
by smaller transistor size can only be utilized if the nano-CMOS devices perform
dependable computation, i.e. produce results that we can trust and rely on. However,
Latent faults escaped from manufacturing tests, transistor degradation caused by
microscopic aging effects and soft errors induced by environmental radiation threaten
the dependable operation of modern semiconductor devices.

FPGA-based reconfigurable architectures provide the capability to change the
hardware organization at runtime so that compute-intensive functions of different
applications can be efficiently accelerated using the reconfigurable fabric on FPGAs.
The structural integrity of the reconfigurable fabric and the error-free configuration
data of accelerators are of crucial significance for the dependable operation of re-
configurable architectures. Targeting permanent and transient faults, this thesis
provides a comprehensive solution for maintaining the structural integrity of FP-
GAs and guaranteeing the functional correctness of applications. These are enabled
by the following proposed techniques:

• The underlying hardware structures of the reconfigurable fabric and the error-
free accelerator reconfiguration process are ensured by on-demand and periodic
testing: Pre-configuration test checks the structural integrity of the underly-
ing hardware before the instantiation of accelerators and Post-configuration
test periodically checks the correct functionality of configured accelerators af-
ter they are instantiated. The tight integration of the test schemes into the
runtime system and the system scheduling minimize the performance overhead
while achieving a high fault coverage and low test latency. The structure of the
whole reconfigurable fabric with 5 regions can be exhaustively tested every 4
seconds. The time a soft-error remains undetected in the system is reduced by
up to two orders of magnitude to 64.7 µs. These are achieved at a performance
cost of less than 4.4 percent.

• A novel design method called module diversification was developed to tolerate
permanent faults in the reconfigurable regions. For each module or acceler-
ator, a set of configurations is generated that is diversified in terms of their
CLB usages, such that for every CLB in a region, at least one configuration
of a module does not require that CLB. A generic algorithm was developed
to generate the minimal set of configurations to tolerate arbitrary single-CLB

127

9 Conclusion and Future Work

faults and to generate additional configurations to tolerate multi-CLB faults
in a reconfigurable region. If a fault is localized in a region, a diversified con-
figuration of a module can be reconfigured into the region at runtime that
does not use the faulty CLB. Self-repairing was achieved from the application
perspective since in the present of faults the application experiences no per-
formance degradation. For a set of benchmark modules, experimental results
showed a significant improvement of module reliability due to fault tolerance,
where reliability improvement factors between 19 and 330 were achieved. For
an H.264 video application, the system experiences less than 8% performance
degradation with 1 to 8 faulty CLBs, since these faulty CLBs are avoided by
using diversified configurations. In addition, it delivers from 1.9× up to 3.7×
the performance of a baseline system in presence of 4 to 40 faulty CLBs.

• System degradation threatened by aging effects was addressed by a novel
stress-aware placement method to reduce the maximum stress induced from
workload. It combines complex offline optimizations at synthesis time with
situation-dependent adaptation at runtime to balance the intra- and inter-
region stress distribution simultaneously. At the runtime, it places accelerators
to different reconfigurable regions (i.e. it decides to which region they shall
be reconfigured) while considering the induced intra- and inter-region stress
distribution simultaneously. At the synthesis time, it diversifies stress during
place-and-route by preventing overlapping of high-stress CLBs from different
accelerators, which further improves the intra-region stress distribution at run-
time. Compared to state-of-the-art methods, this work significantly reduces
the maximum dynamic and static stress by up to 64% and 35% with negli-
gible impact on application performance, respectively. As a result, STRAP
achieves up to 177% and 14% Mean-Time-To-Failure (MTTF) improvement
relative to the closest competitors w.r.t. Hot Carrier Injection (HCI) and Bias
Temperature Instability (BTI) aging, respectively.

• An adaptive runtime system was developed that guaranteed a target reliabil-
ity in a varying environment while optimizing the performance. To guarantee
the required reliability for individual Accelerated Functions (AFs), the runtime
system dynamically determines whether the AF should be executed by a hard-
ened processor, or whether it should be accelerated by inherently less reliable
reconfigurable hardware which can trade-off performance and reliability. Com-
pared to related work with statically optimized fault tolerance techniques, the
proposed method provides up to 68.3% higher performance at the same target
reliability. To guarantee the required reliability for an application consisting
of multiple functions, the runtime system performs budgeting of critical bits,
i.e. decomposing the critical bits allowed by an application into critical bits
allowed by its computational kernels and then into critical bits of their AFs.
This budgeting enables the runtime system to select appropriate accelerators
and fault tolerance techniques to maximize the performance under a given
target reliability. Compared to a strategy that duplicates all accelerators in
the system, this method achieves up to 85% higher performance for a variety
of reliability targets and soft error rates.

In these techniques, the runtime system makes decisions based on parameters

128

9.2 Future Work

propagated across multiple layers and is able to perform a precise cause-effect anal-
ysis, which leads to the delivery of optimized impact directly on the concerned
dependability objectives.

9.2 Future Work

A basic architectural assumption in this thesis is that all reconfigurable regions are of
the same dimension. A heterogeneous reconfigurable fabric can be considered in the
future work. The regions can be of different sizes, have different types of resources
such as DSPs and floating point units, which in turn exhibit different performance
levels and vulnerability to aging and SEUs.

When the assumption of a hardened core pipeline is dropped, software transfor-
mation techniques such as those proposed in [RSKH11] can be employed to generate
different software variants for a given function to trade-off performance and reliabil-
ity. Combining software variants and hardware variants will create a larger explo-
ration space for the runtime system. Complex decisions have to be made whether
a function shall be executed in software or be accelerated in hardware and with
which variants to meet the performance and reliability goals. In addition, stress
distribution method can be extended to balance the stress between the processor
and the reconfigurable fabric, where the different degradation rates of different types
of resources need to be taken into consideration. A function executed in software
induces stress in the processor but not in the fabric and vice versa.

Multi-tasking poses another challenge to the runtime system since different tasks
have different performance, reliability and resource demands and they compete with
each other for available resources. Hence, a resource allocation approach will be
needed that considers system decisions for all tasks based on a global knowledge of
the task characteristics and requirements. In addition, the resource allocation shall
take short-term and long-term solutions for performance, reliability and lifetime
management into account.

Short-term decisions are employed to quickly react to temporary changes in the
system state and environment like exposure to high radiation. Therefore available
resources will be distributed according to the required performance and reliability
levels of the tasks and configuration requests for test and scrubbing from multiple
tasks will be scheduled to minimize conflicts. This can be achieved by a global opti-
mization procedure for scheduling the configurations during runtime that selects the
best execution variants depending on the current environmental conditions, available
reconfigurable resources (with various degradation levels) and task constraints.

A first step would be to address the following problem: given the reliability con-
straints of multiple tasks, decide the number of regions shall be allocated to each
task while optimizing the average speedup of these tasks. Tasks assigned with fewer
regions may need to offload computations to the hardened processor to satisfy the
reliability constraints, resulting in less speedup. Tasks assigned with more regions
generally achieve higher speedup as they have more freedom to use the region for
parallelism or redundancy. Speedup or reliability increase per region may be used

129

9 Conclusion and Future Work

as a metric of efficiency during decision making for the allocation of regions. The
runtime algorithm needs to maximize the efficiency of the allocated regions for each
task, maximizing the performance under the reliability constraints.

Long-term decisions keep track of the healthiness of resources with respect to
aging. Aging of hardware resources is mitigated by distributing the stress between
multiple resources in a periodic fashion. This results in a homogeneous aging of the
regions and increases the availability of computing resources for as long as possi-
ble. For critical tasks with high performance demands, available resources can be
grouped into subsets of resources for general and critical tasks, where heterogeneous
aging between groups is applied. The resource utilization is managed in such a way
that the critical resources are less stressed in order to ensure high performance and
lifetime by pro-active resource reservation and aging mitigation. These subsets can
be further subdivided into groups with different performance levels. Given a set of
tasks/workload and operating conditions, offline lifetime characterization needs to
be performed to aid the online decision.

A first step would be to address the following problem: given the performance
constraints of multiple tasks, decide the number and location of regions allocated
to each task while optimizing the lifetime of the reconfigurable fabric. When no full
performance is required, some regions can be turned off (e.g. by power gating) to
reduce aging. The stress balancing algorithm proposed in this work distributes the
stress uniformly among the regions used by one task (intra-task stress distribution).
If multiple tasks share the reconfigurable fabric, the stress should also be distributed
among different tasks (inter-task stress distribution) by dynamically reallocating the
regions to tasks. Intuitively, tasks inducing less stress should be assigned with highly
stressed regions and vice versa.

130

A Proof of the Minimal Set Generation in Module Diversification

This section gives the proof that for a module using U CLBs and implemented in
a X × Y region, the first generated d XY

XY−U e configurations by Alg. 2, including
the initial configuration, satisfy the completeness and max diversification condition.
In addition, these configurations constitute the minimal set of configurations that
satisfy both conditions, since at least d XY

XY−U e configurations are required to satisfy
the completeness condition (see Section 5.2.2). Furthermore, the random swapping
in Lines 46 to 48 of Alg. 2 is not executed during the generation process of the
minimal set, as no repeated configuration is generated.

First, let’s define a few special sets and notations that will be used later in the
proof.

Definition 1. Let the universe set U be the set of positions of all elements in an
X×Y matrix:

U = {(x,y)|1≤ x≤X,1≤ y ≤ Y and x,y ∈ N}.

Given a set of configuration matrices, each using U CLBs

C = {A1,A2, · · ·},Ai : X×Y Boolean matrix,

let Oi be the set of positions of all zero-elements (i.e. unused CLBs) in Ai:

Oi = {(x,y)|[Ai]x,y = 0} ⊂ U

and similarly Ii the set of positions of all one-elements (i.e. used CLBs) in Ai:

Ii = {(x,y)|[Ai]x,y = 1} ⊂ U.

Give the universe set U, we denote the complement of a subset X of U, which is
U \X, simply as X{. Thus, O{

i = U \Oi = Ii and I{i = U \ Ii = Oi. Also note that
|Oi|=XY −U and |Ii|= U .

Algorithm 2 generates configuration matrices iteratively. In each iteration, incre-
mental changes are made on the configuration matrix generated in the last iteration
(Ai) to produce a new one (Ai+1), where zero-elements in Ai are swapped with
one-elements in Ai to generate Ai+1. In other words, given the initial configuration
matrix A1, A2 is generated by swapping zero-elements and one-elements in A1,
A3 is generated by swapping zero-elements and one-elements in A2, · · · , Ai+1 is
generated by swapping zero-elements and one-elements in Ai.

There are two cases that need to be proved separately:

1. When the number of one-elements |Ii| is less than or equal to the number of
zero-elements |Oi|, and

131

A Proof of the Minimal Set Generation in Module Diversification

2. When the number of one-elements |Ii| is greater than the number of zero-
elements |Oi|.

Proof of Case 1) |I1| ≤ |O1| (U ≤ 1
2XY):

In this case d XY
XY−U e = 2. A2 is generated by swapping all one-elements with a

part of or all zero-elements in A1 depending on whether the equal sign holds, which
leads to I1 ⊆O2 and I2 ⊆O1, or rather I1 ⊆ I{2 and I2 ⊆ I{1. Therefore we have

I1∩ I2 = ∅ and thus
∑
x,y

[A1]x,y · [A2]x,y = 0,

i.e. both completeness and max diversification conditions are satisfied.

In the second case, as there are more one-elements than zero-elements, we need
to select a subset of one-elements to swap in each iteration. This selection is based
on the score matrix S.

Lemma 1. Let the score matrix S be the sum of N configuration matrices: S =∑
1≤i≤N Ai. If ∀1≤ i < j ≤N : Oi∩Oj = ∅, then

∀(x,y) ∈
⋃

1≤i≤N

Oi : [S]x,y = N −1.

Proof. Because for any two matrices Ai and Aj (i 6= j), they do not have common
zero elements (Oi∩Oj = ∅), namely ∀(x,y)∈Oi : [Ai]x,y = 0, [Aj]x,y = 1 and ∀(x,y)∈
Oj : [Aj]x,y = 0, [Ai]x,y = 1, so ∀(x,y) ∈Oi∪Oj : [Ai + Aj]x,y = 1.

Therefore we have

∀(x,y) ∈O1 : [S]x,y =
N∑

i=1
[Ai]x,y = [A1]x,y +

N∑
i=2

[Ai]x,y

= 0 +
N∑

i=2
([A1]x,y + [Ai]x,y)

=
N∑

i=2
1 = N −1.

Similarly this holds for all other Oi (2≤ i≤N).

Proof of Case 2) |I1|> |O1| (U > 1
2XY):

In this case Ai+1 is generated by swapping in Ai all zero-elements with those
one-elements with higher scores.

In the first iteration, S = A1 where

∀(x,y) ∈O1 : [S]x,y = 0 and ∀(x,y) ∈ I1 : [S]x,y = 1.

132

After the generation of A2 by swapping in A1 all zero-elements with a part of one-
elements (all one-elements have equal scores 1), which leads to O2 ⊂ I1 and O1 ⊂ I2,
we have O1∩O2 = ∅ and from Lemma 1

∀(x,y) ∈O1∪O2 : [S]x,y = 1.

It is also easy to verify that

∀(x,y) ∈ (O1∪O2){ = I1∩ I2 : [S]x,y = 2

In the second iteration, we assume that |I1∩ I2| ≥ |Oi|. A3 is then generated by
swapping in A2 all zero-elements with those one-elements in the set I1∩ I2, because
they all have a higher score 2 than the rest of one-elements. We get O3 ⊆ I1∩I2 and
thus O3∩O1 = ∅, O3∩O2 = ∅. By applying Lemma 1 again we have the updated
score matrix S:

∀(x,y) ∈
⋃

1≤i≤3
Oi : [S]x,y = 2

∀(x,y) ∈
⋃

1≤i≤3
O{

i =
⋂

1≤i≤3
Ii : [S]x,y = 3.

In the Nth iteration, as long as |∩1≤i≤N Ii| ≥ |Oi|, AN+1 is always generated
by swapping in AN all zero-elements with those one-elements with score N , which
results in

ON+1 ⊆
⋂

1≤i≤N

Ii and (A.1)

∀1≤ i < j ≤N + 1 : Oi∩Oj = ∅. (A.2)

and the updated score matrix S:

∀(x,y) ∈
⋃

1≤i≤N+1
Oi : [S]x,y = N

∀(x,y) ∈

 ⋃
1≤i≤N+1

Oi

{

=
⋂

1≤i≤N+1
Ii : [S]x,y = N + 1.

Note that ∣∣∣∣∣∣
⋂

1≤i≤N

Ii

∣∣∣∣∣∣=
∣∣∣∣∣∣U\

⋃
1≤i≤N

Oi

∣∣∣∣∣∣= |U|−N |Oi|= XY −N(XY −U).

When |∩1≤i≤N Ii| = |Oi| or N + 1 = XY
XY−U , because we have Eq. (A.1), and thus

ON+1 = ⋂
1≤i≤N Ii = I{N+1, so ⋂

1≤i≤N+1
Ii = ∅, (A.3)

which is equivalent to ∑
x,y

N+1∏
i=1

[Ai]x,y = 0.

133

A Proof of the Minimal Set Generation in Module Diversification

The completeness condition is then satisfied with the first generated N+1 or XY
XY−U

configurations.

The condition |∩1≤i≤N Ii| ≥ |Oi| fails when XY −N(XY −U)<XY −U or N >
XY

XY−U − 1. It occurs earliest when N = d XY
XY−U − 1e = d XY

XY−U e− 1. In this itera-
tion, AN+1 (the d XY

XY−U eth configuration matrix) is generated by swapping in AN
|∩1≤i≤N Ii| zero-elements with those one-elements with score N and swapping the
remaining zero-elements with other one-elements with score N −1.

ON+1 can then be divided into two disjoint sets O(1)
N+1 and O(2)

N+1, where

O(1)
N+1 =

⋂
1≤i≤N

Ii and O(2)
N+1 ⊂

⋃
1≤i≤N

Oi. (A.4)

To check whether the completeness condition is satisfied now, note that

O(1)
N+1 =

 ⋂
1≤i≤N

Ii

{{

=

 ⋃
1≤i≤N

Oi

{

= U\

 ⋃
1≤i≤N

Oi

O(1)
N+1∪

 ⋃
1≤i≤N

Oi

= U

(
O(1)

N+1

){
∩

 ⋂
1≤i≤N

Ii

= ∅

(
IN+1∪O(2)

N+1

)
∩

 ⋂
1≤i≤N

Ii

= ∅

⋂
1≤i≤N+1

Ii∪

O(2)
N+1∩

 ⋂
1≤i≤N

Ii

= ∅. (A.5)

Because

O(2)
N+1 ⊂

⋃
1≤i≤N

Oi =

 ⋂
1≤i≤N

Ii

{

,

and therefore

O(2)
N+1∩

 ⋂
1≤i≤N

Ii

= ∅.

Equation (A.5) remains valid if and only if⋂
1≤i≤N+1

Ii = ∅,

which is exactly the same as Eq. (A.3), so the completeness condition is in this case
also satisfied with the first generated d XY

XY−U e configurations.

Because each configuration matrix Ai+1 is generated by swapping in Ai all zero-

134

elements with certain one-elements, we have

∀1≤ i≤ d XY
XY−U e : Oi+1 ⊆ Ii.

We can therefore write

|Ii∩ Ii+1|=
∣∣∣Ii∩O{

i+1

∣∣∣= |Ii \Oi+1|= |Ii|− |Oi+1|

= U − (XY −U) = 2U −XY,

which means
∀1≤ i≤ d XY

XY−U e :
∑
x,y

[Ai]x,y · [Ai+1]x,y = 2U −XY.

The max diversification condition is herewith satisfied with the first generated
d XY
XY−U e configurations.

It is easy to verify from Eq. (A.2) and (A.4) that

∀1≤ i < j ≤ d XY
XY−U e : Oi 6= Oj , so Ai 6= Aj.

Therefore, the while loop in Alg. 2 from Lines 46 to 48 will not be executed for the
first d XY

XY−U e configurations.

135

B Terrestrial Soft Error Rates in a Virtex-5 FPGA

Figure B.1: This figure shows how the soft error rate varys depending on the altitude. The
neutron flux is lower at low altitude regions due to atmospheric shielding. It
is almost 30 times higher at mountain peaks in the US than it is at sea level.

137

B Terrestrial Soft Error Rates in a Virtex-5 FPGA

Figure B.2: The neutron flux also varys in the geomagnetic field. This figure shows the
resulted variation of soft error rate around the globe at 10 km altitude, where
commercial flights typically cruise. In the equator regions, the soft error rate
is roughly 6 times lower than it is in other regions.

138

Bibliography

[ABB+12] M. S. Abdelfattah, L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, H. Zhang,
J. Henkel, and H.-J. Wunderlich, “Transparent structural online test for recon-
figurable systems,” in Proc. IEEE 18th International On-Line Testing Symposium
(IOLTS), 2012, pp. 37–42.

[AD16] A. Alzahrani and R. F. DeMara, “Fast online diagnosis and recovery of reconfigurable
logic fabrics using design disjunction,” IEEE Transactions on Computers, vol. 65,
no. 10, pp. 3055–3069, 2016.

[Aer] Aeroflex Gaisler, “Homepage of the Leon Processor.” Online available: http:
//www.gaisler.com/index.php/products/processors/leon3 (Accessed on 28.10.2016).

[AFC+09] T. Ando, M. M. Frank, K. Choi, C. Choi, J. Bruley, M. Hopstaken, M. Copel,
E. Cartier, A. Kerber, A. Callegari, D. Lacey, S. Brown, Q. Yang, and V. Narayanan,
“Understanding mobility mechanisms in extremely scaled HfO2 (EOT 0.42 nm) us-
ing remote interfacial layer scavenging technique and Vt-tuning dipoles with gate-first
process,” in Proc. IEEE International Electron Devices Meeting (IEDM), 2009, pp.
1–4.

[Ahm07] A. Ahmadinia, “Optimal free-space management and routing-conscious dynamic
placement for reconfigurable devices,” IEEE Transactions on Computers, vol. 56,
no. 5, pp. 673–680, 2007.

[AHOAD11] R. Al-Haddad, R. Oreifej, R. A. Ashraf, and R. F. DeMara, “Sustainable modular
adaptive redundancy technique emphasizing partial reconfiguration for reduced power
consumption,” International Journal of Reconfigurable Computing, vol. 2011, no. 2,
pp. 1–25, 2011.

[AKGH16] H. Amrouch, B. Khaleghi, A. Gerstlauerz, and J. Henkel, “Reliability-aware design to
suppress aging,” in Proc. 53rd Annual Design Automation Conference (DAC), 2016,
pp. 12:1–12:6.

[AKL12] H. A. Almurib, T. N. Kumar, and F. Lombardi, “A single-configuration method for
application-dependent testing of SRAM-based FPGA interconnects,” in Proc. 20th
Asian Test Symposium (ATS), 2012, pp. 444–450.

[AKS93] V. D. Agrawal, C. R. Kime, and K. K. Saluja, “A tutorial on built-in self-test. I.
Principles,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 73–82, 1993.

[ALHS12] U. Abelein, H. Lochner, D. Hahn, and S. Straube, “Complexity, quality and ro-
bustness - the challenges of tomorrow’s automotive electronics,” in Proc. Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2012, pp. 870–871.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxon-
omy of dependable and secure computing,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[ALWA+14] F. Adamu-Lema, X. Wang, S. M. Amoroso, C. Riddet, B. Cheng, L. Shifren,
R. Aitken, S. Sinha, G. Yeric, and A. Asenov, “Performance and variability of doped
multithreshold FinFETs for 10-nm CMOS,” IEEE Transactions on Electron Devices,
vol. 61, no. 10, pp. 3372–3378, 2014.

[AMv+17] H. Amrouch, S. Mishra, V. van Santen, S. Mahapatra, and J. Henkel, “Impact of
BTI on dynamic and static power: From the physical to circuit level,” in Proc. IEEE
International Reliability Physics Symposium (IRPS), 2017, pp. CR–3.1–CR–3.6.

[And12] T. Ando, “Ultimate scaling of high-k gate dielectrics: Higher-k or interfacial layer
scavenging?” Materials, vol. 5, no. 12, pp. 478–500, 2012.

[AS01] M. Abramovici and C. E. Stroud, “BIST-based test and diagnosis of FPGA logic

139

http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3

Bibliography

blocks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9,
no. 1, pp. 159–172, 2001.

[ASE04] M. Abramovici, C. E. Stroud, and J. M. Emmert, “Online BIST and BIST-based
diagnosis of FPGA logic blocks,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 12, no. 12, pp. 1284–1294, 2004.

[ASH+99] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and V. Verma, “Using roving
STARs for on-line testing and diagnosis of FPGAs in fault-tolerant applications,” in
Proc. International Test Conference (ITC), 1999, pp. 973–982.

[AvE+14] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel, “Towards interde-
pendencies of aging mechanisms,” in Proc. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2014, pp. 478–485.

[AZGT11] J. Angermeier, D. Ziener, M. Glaß, and J. Teich, “Stress-aware module placement
on reconfigurable devices,” in Proc. International Conference on Field Programmable
Logic and Applications (FPL), 2011, pp. 277–281.

[BAG+15] V. Boppana, S. Ahmad, I. Ganusov, V. Kathail, V. Rajagopalan, and R. Wittig, “Xil-
inx 16nm UltraScale+ MPSoC and FPGA Families,” in Hot Chips 27: A Symposium
on High Performance Chips, 2015.

[Bau05] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor tech-
nologies,” IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
305–316, 2005.

[BB07] S. Bhoj and D. Bhatia, “Thermal modeling and temperature driven placement for
FPGAs,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS),
2007, pp. 1053–1056.

[BBI+12] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, H. Zhang, H.-J. Wunderlich, and
J. Henkel, “OTERA: Online test strategies for reliable reconfigurable architectures
— Invited paper for the AHS-2012 special session “Dependability by reconfigurable
hardware”,” in Proc. NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), 2012, pp. 38–45.

[BBI+13] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider, H. Zhang, J. Henkel,
and H.-J. Wunderlich, “Test Strategies for Reliable Runtime Reconfigurable Archi-
tectures,” IEEE Transactions on Computers, vol. 62, no. 8, pp. 1494–1507, 2013.

[BDB+13] A. R. Brown, N. Daval, K. K. Bourdelle, B.-Y. Nguyen, and A. Asenov, “Comparative
simulation analysis of process-induced variability in nanoscale SOI and bulk trigate
FinFETs,” IEEE Transactions on Electron Devices, vol. 60, no. 11, pp. 3611–3617,
2013.

[BHW+14] R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pionteck, “Identifying ho-
mogenous reconfigurable regions in heterogeneous FPGAs for module relocation,” in
Proc. International Conference on ReConFigurable Computing and FPGAs (ReCon-
Fig), 2014, pp. 1–6.

[BKS00] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement for recon-
figurable computing systems,” IEEE Design & Test of Computers, vol. 17, no. 1, pp.
68–83, 2000.

[BKT14] C. Beckhoff, D. Koch, and J. Torresen, “Portable module relocation and bitstream
compression for Xilinx FPGAs,” in Proc. International Conference on Field Pro-
grammable Logic and Applications (FPL), 2014, pp. 1–8.

[Bla69] J. R. Black, “Electromigration—A brief survey and some recent results,” IEEE Trans-
actions on Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.

[BMS10] A. A. M. Bsoul, N. Manjikian, and L. Shang, “Reliability- and process variation-aware
placement for FPGAs,” in Proc. Design, Automation and Test in Europe (DATE),
2010, pp. 1809–1814.

[BPP+08] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. A. LaBel, M. Friendlich,
H. Kim, and A. Phan, “Effectiveness of internal versus external SEU scrubbing mit-
igation strategies in a Xilinx FPGA: Design, test, and analysis,” IEEE Transactions

140

Bibliography

on Nuclear Science, vol. 55, no. 4, pp. 2259–2266, 2008.
[BSB+14] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, “FPGAs in the

cloud: Booting virtualized hardware accelerators with OpenStack,” in Proc. IEEE
22nd Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2014, pp. 109–116.

[BSH08] L. Bauer, M. Shafique, and J. Henkel, “A computation- and communication- in-
frastructure for modular special instructions in a dynamically reconfigurable proces-
sor,” in Proc. International Conference on Field Programmable Logic and Applications
(FPL), 2008, pp. 203–208.

[BSH09] L. Bauer, M. Shafique, and J. Henkel, “Cross-architectural design space exploration
tool for reconfigurable processors,” in Proc. Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2009, pp. 958–963.

[BSH11] L. Bauer, M. Shafique, and J. Henkel, “Concepts, architectures, and run-time systems
for efficient and adaptive reconfigurable processors,” in Proc. NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), 2011, pp. 80–87.

[BSKH07] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “RISPP: rotating instruction set
processing platform,” in Proc. 44th Annual Design Automation Conference (DAC),
2007, pp. 791–796.

[BSKH08] L. Bauer, M. Shafique, S. Kreutz, and J. Henkel, “Run-time System for an Extensible
Embedded Processor with Dynamic Instruction Set,” in Proc. Design, Automation
and Test in Europe (DATE), 2008, pp. 752–757.

[BSN+15] B. Bowhill, B. Stackhouse, N. Nassif, Z. Yang, A. Raghavan, C. Morganti,
C. Houghton, D. Krueger, O. Franza, J. Desai, J. Crop, D. Bradley, C. Bostak,
S. Bhimji, and M. Becker, “The Xeonr processor E5-2600 v3: A 22nm 18-core prod-
uct family,” in Proc. IEEE International Solid-State Circuits Conference (ISSCC),
2015, pp. 1–3.

[Car06] C. Carmichael, “Triple Module Redundancy Design Techniques for Virtex FPGAs,”
Xilinx Application Note 197 (v1.0.1), 2006.

[CGG+14] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Reinman,
“Accelerator-rich architectures: Opportunities and progresses,” in Proc. 51st Annual
Design Automation Conference (DAC), 2014, pp. 180:1–180:6.

[CH11] J. M. P. Cardoso and M. Hübner, Reconfigurable computing: From FPGAs to hard-
ware/software codesign. Springer, 2011.

[CKGdK03] F. Crupi, B. Kaczer, G. Groeseneken, and A. de Keersgieter, “New insights into the
relation between channel hot carrier degradation and oxide breakdown short channel
nMOSFETs,” IEEE Electron Device Letters, vol. 24, no. 4, pp. 278–280, 2003.

[CKR+15] A. Chaudhary, B. Kaczer, P. J. Roussel, T. Chiarella, N. Horiguchi, and S. Mahapatra,
“Time dependent variability in RMG-HKMG FinFETs: Impact of extraction scheme
on stochastic NBTI,” in Proc. IEEE International Reliability Physics Symposium
(IRPS), 2015, pp. 3B.4.1–3B.4.8.

[Con15] Continental AG, “Supplier Requirements Manual,” 2015.
[CSZ+14] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “Enabling

FPGAs in the cloud,” in Proc. 11th ACM Conference on Computing Frontiers, 2014,
pp. 1–10.

[CVS+14] Y. Cao, J. Velamala, K. Sutaria, M. S.-W. Chen, J. Ahlbin, I. S. Esqueda, M. Bajura,
and M. Fritze, “Cross-layer modeling and simulation of circuit reliability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 1, pp. 8–23, 2014.

[DKS+10] A. Dasu, R. Kallam, A. Sudarsanam, J. Carver, and R. Barnes, “Dynamically recon-
figurable systolic array accelerators: A case study with extended Kalman filter and
discrete wavelet transform algorithms,” IET Computers & Digital Techniques, vol. 4,
no. 2, pp. 126–142, 2010.

[DLW09] D. G. Drmanac, F. Liu, and L.-C. Wang, “Predicting variability in nanoscale lithog-

141

Bibliography

raphy processes,” in Proceedings of the 46th Annual Design Automation Conference
(DAC), 2009, p. 545.

[DSSF10] P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and J. A. Felix, “Current and Fu-
ture Challenges in Radiation Effects on CMOS Electronics,” IEEE Transactions on
Nuclear Science, vol. 57, no. 4, pp. 1747–1763, 2010.

[DZT12] C. Dennl, D. Ziener, and J. Teich, “On-the-fly Composition of FPGA-Based SQL
Query Accelerators Using a Partially Reconfigurable Module Library,” in Proc. IEEE
20th International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2012, pp. 45–52.

[EBS+11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Proc. 38th Annual International Sympo-
sium on Computer Architecture (ISCA), 2011, pp. 365–376.

[Ent07] R. Entner, Modeling and simulation of negative bias temperature instability, 2007.
[ESA07] J. M. Emmert, C. E. Stroud, and M. Abramovici, “Online fault tolerance for FPGA

logic blocks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 15, no. 2, pp. 216–226, 2007.

[FCMG13] V. Ferlet-Cavrois, L. W. Massengill, and P. Gouker, “Single Event Transients in
Digital CMOS—A Review,” IEEE Transactions on Nuclear Science, vol. 60, no. 3,
pp. 1767–1790, 2013.

[Fri73] A. D. Friedman, “Easily testable iterative systems,” IEEE Transactions on Comput-
ers, vol. C-22, no. 12, pp. 1061–1064, 1973.

[GB11] C. Galuzzi and K. Bertels, “The instruction-set extension problem: A survey,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 4, no. 2, pp. 1–28, 2011.

[GB16] Z. Ghaderi and E. Bozorgzadeh, “Aging-aware high-level physical planning for recon-
figurable systems,” in Proc. 21st Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), 2016, pp. 631–636.

[GBF+04] D. Gil, T. A. Brunner, C. Fonseca, N. Seong, B. Streefkerk, C. Wagner, and
M. Stavenga, “Immersion lithography: New opportunities for semiconductor man-
ufacturing,” Journal of Vacuum Science & Technology B: Microelectronics and
Nanometer Structures, vol. 22, no. 6, p. 3431, 2004.

[GBH12] A. Grudnitsky, L. Bauer, and J. Henkel, “Partial online-synthesis for mixed-grained
reconfigurable architectures,” in Proc. Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2012, pp. 1555–1560.

[GBS14] X. Guo, W. Burleson, and M. Stan, “Modeling and experimental demonstration of
accelerated self-healing techniques,” in Proc. 51st Annual Design Automation Con-
ference (DAC), 2014, pp. 1–6.

[GCS+06] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, “An overview of reconfig-
urable hardware in embedded systems,” EURASIP Journal on Embedded Systems,
vol. 2006, no. 7, pp. 1–19, 2006.

[Gha91] P. B. Ghate, “Industrial perspective on reliability of VLSI devices,” MRS Proceedings,
vol. 225, 1991.

[GMP15] E. Giaquinta, A. Mishra, and L. Pozzi, “Maximum convex subgraphs under I/O
constraint for automatic identification of custom instructions,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 3, pp.
483–494, 2015.

[GSR+14] R. Glein, B. Schmidt, F. Rittner, J. Teich, and D. Ziener, “A self-adaptive SEU
mitigation system for FPGAs with an internal block RAM radiation particle sensor,”
in Proc. IEEE 22nd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2014, pp. 251–258.

[Gup15] P. K. Gupta, “Xeon+FPGA platform for the data center,” in Proc. Workshop on the
Intersections of Computer Architecture and Reconfigurable Logic, vol. 119, 2015.

[Han16] L. Hansen, “Unleash the Unparalleled Power and Flexibility of Zynq UltraScale+
MPSoCs,” WP470 (v1.1), 2016.

142

Bibliography

[HB03] H. L. Hughes and J. M. Benedetto, “Radiation effects and hardening of MOS tech-
nology: Devices and circuits,” IEEE Transactions on Nuclear Science, vol. 50, no. 3,
pp. 500–521, 2003.

[HBD+13] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and
N. Wehn, “Reliable on-chip systems in the nano-era: Lessons learnt and future
trends,” in Proc. 50th Annual Design Automation Conference (DAC), 2013, pp. 1–10.

[HBGZ14] J. Henkel, L. Bauer, A. Grudnitsky, and H. Zhang, “Adaptive embedded computing
with i-core,” ACM SIGBED Review, vol. 11, no. 3, pp. 20–21, 2014.

[HCF+15] V. Huard, F. Cacho, X. Federspiel, W. Arfaoui, M. Saliva, and D. Angot, “Technology
scaling and reliability: Challenges and opportunities,” in Proc. IEEE International
Electron Devices Meeting (IEDM), 2015, pp. 20.5.1–20.5.6.

[HCJ+90] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin,
L. Tinkey, and R. Kanazawa, “Third-generation architecture boosts speed and den-
sity of field-programmable gate arrays,” in Proc. IEEE Custom Integrated Circuits
Conference (CICC), 1990, pp. 31.2/1–31.2/7.

[HGV+06] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R.
Stan, “HotSpot: A compact thermal modeling methodology for early-stage VLSI
design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14,
no. 5, pp. 501–513, 2006.

[HHB+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hubner, R. K. Pujari, A. Grud-
nitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe, “Invasive manycore
architectures,” in Proc. 17th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2012, pp. 193–200.

[HHH+11] J. Henkel, L. Hedrich, A. Herkersdorf, R. Kapitza, D. Lohmann, P. Marwedel,
M. Platzner, W. Rosenstiel, U. Schlichtmann, O. Spinczyk, M. Tahoori, L. Bauer,
J. Teich, N. Wehn, H.-J. Wunderlich, J. Becker, O. Bringmann, U. Brinkschulte,
S. Chakraborty, M. Engel, R. Ernst, and H. Härtig, “Design and architectures for de-
pendable embedded systems,” in Proc. 9th International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS), 2011, pp. 69–78.

[HL99] C. Hu and Q. Lu, “A unified gate oxide reliability model,” in Proc. IEEE 37th Inter-
national Reliability Physics Symposium (IRPS), 1999, pp. 47–51.

[HM01] W.-J. Huang and E. J. McCluskey, “Column-based precompiled configuration tech-
niques for FPGA,” in Proc. 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2001, pp. 137–146.

[HMCL98] W. K. Huang, F. J. Meyer, X.-T. Chen, and F. Lombardi, “Testing configurable LUT-
based FPGA’s,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 6, no. 2, pp. 276–283, 1998.

[HMO81] C. M. Hsieh, P. C. Murley, and R. R. O’Brien, “A field-funneling effect on the col-
lection of alpha-particle-generated carriers in silicon devices,” IEEE Electron Device
Letters, vol. 2, no. 4, pp. 103–105, 1981.

[Hol16] W. M. Holt, “Moore’s law: A path going forward,” in Proc. IEEE International
Solid-State Circuits Conference (ISSCC), 2016, pp. 8–13.

[HS15] J. Hussein and G. Swift, “Mitigating Single-Event Upsets,” Xilinx White Paper 395
(v1.1), 2015.

[HSWK09] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfiguration via
configuration scrubbing,” in Proc. International Conference on Field Programmable
Logic and Applications (FPL), 2009, pp. 99–104.

[HTH+85] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, “Hot-electron-
induced MOSFET degradation—Model, monitor, and improvement,” IEEE Transac-
tions on Electron Devices, vol. 32, no. 2, pp. 375–385, 1985.

[IBM15] IBM, “Coherent Accelerator Processor Interface User’s Manual (Version 1.2),” 2015.
[IEC10] “IEC Functional Safety and IEC 61508,” IEC, 2010. Online available: http:

//www.iec.ch/functionalsafety/ (Accessed on 21.07.2016).

143

http://www.iec.ch/functionalsafety/
http://www.iec.ch/functionalsafety/

Bibliography

[IMF98] T. Inoue, S. Miyazaki, and H. Fujiwara, “Universal fault diagnosis for lookup table
FPGAs,” IEEE Design & Test of Computers, vol. 15, no. 1, pp. 39–44, 1998.

[IPD10] A. Ilias, K. Papadimitriou, and A. Dollas, “Combining duplication, partial reconfigu-
ration and software for on-line error diagnosis and recovery in SRAM-based FPGAs,”
in Proc. 18th IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2010, pp. 73–76.

[ISO11] “ISO 26262: Road vehicles – Functional safety,” ISO, 2011. Online available: http:
//www.iso.org/iso/catalogue_detail?csnumber=43464 (Accessed on 14.11.2016).

[JCG+12] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and H. Lam, “Reconfig-
urable fault tolerance: A comprehensive framework for reliable and adaptive FPGA-
based space computing,” ACM Transactions on Reconfigurable Technology and Sys-
tems, vol. 5, no. 4, pp. 1–30, 2012.

[JED06] JEDEC Standard, “Measurement and Reporting of Alpha Particles and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” JEDEC Solid State
Technology Association, 2006.

[JMGM12] K. Joshi, S. Mukhopadhyay, N. Goel, and S. Mahapatra, “A consistent physical frame-
work for N and P BTI in HKMG MOSFETs,” in Proc. IEEE International Reliability
Physics Symposium (IRPS), 2012, pp. 5A.3.1–5A.3.10.

[KAT11] S. Kiamehr, A. Amouri, and M. B. Tahoori, “Investigation of NBTI and PBTI induced
aging in different LUT implementations,” in Proc. International Conference on Field-
Programmable Technology (FPT), 2011, pp. 1–8.

[Kau67] W. H. Kautz, “Testing for faults in combinational cellular logic arrays,” in Proc. 8th
Annual Symposium on Switching and Automata Theory (SWAT), 1967, pp. 161–174.

[KHT08] D. Koch, C. Haubelt, and J. Teich, “Efficient reconfigurable on-chip buses for FP-
GAs,” in International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), K. L. Pocek, Ed., 2008, pp. 287–290.

[KKK+08] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W.-k. Shih, S. Sivakumar,
G. Taylor, P. VanDerVoorn, and K. Zawadzki, “Managing process variation in Intel’s
45nm CMOS technology,” Intel Technology Journal, vol. 12, no. 2, 2008.

[KKYY09] A. Kanamaru, H. Kawai, Y. Yamaguchi, and M. Yasunaga, “Tile-based fault toler-
ant approach using partial reconfiguration,” in Proceedings of the 5th International
Workshop on Reconfigurable Computing (ARC), vol. 5453, 2009, pp. 293–299.

[KR07] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2,
pp. 203–215, 2007.

[KTR08] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,”
Foundations and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253,
2008.

[Kuh12] K. J. Kuhn, “Considerations for ultimate CMOS scaling,” IEEE Transactions on
Electron Devices, vol. 59, no. 7, pp. 1813–1828, 2012.

[Lal01] P. K. Lala, Self-checking and fault-tolerant digital design. Morgan Kaufmann, 2001.
[LBW12] M. Lin, Y. Bai, and J. Wawrzynek, “Selectively fortifying reconfigurable computing

device to achieve higher error resilience,” Journal of Electrical and Computer Engi-
neering, pp. 5:5–5:5, 2012.

[Le12] R. Le, “Soft Error Mitigation Using Prioritized Essential Bits,” Xilinx Application
Note 538 (v1.0), 2012.

[Lie13] J. Lienig, “Electromigration and its impact on physical design in future technologies,”
in Proc. ACM International Symposium on Physical Design (ISPD), 2013, p. 33.

[LKC+13] K. T. Lee, W. Kang, E.-A. Chung, G. Kim, H. Shim, H. Lee, H. Kim, M. Choe, N.-I.
Lee, A. Patel, J. Park, and J. Park, “Technology scaling on High-K & Metal-Gate
FinFET BTI reliability,” in Proc. IEEE International Reliability Physics Symposium
(IRPS), 2013, pp. 2D.1.1–2D.1.4.

144

http://www.iso.org/iso/catalogue_detail?csnumber=43464
http://www.iso.org/iso/catalogue_detail?csnumber=43464

Bibliography

[LMSP98] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Low overhead fault-tolerant
FPGA systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 6, no. 2, pp. 212–221, 1998.

[LQB08] X. Li, J. Qin, and J. B. Bernstein, “Compact modeling of MOSFET wearout mecha-
nisms for circuit-reliability simulation,” IEEE Transactions on Device and Materials
Reliability, vol. 8, no. 1, pp. 98–121, 2008.

[LSV06] R. Lysecky, G. Stitt, and F. Vahid, “Warp Processors,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 11, no. 3, pp. 659–681, 2006.

[LWL+14] S. E. Liu, J. S. Wang, Y. R. Lu, D. S. Huang, C. F. Huang, W. H. Hsieh, J. H.
Lee, Y. S. Tsai, J. R. Shih, Y.-H. Lee, and K. Wu, “Self-heating effect in FinFETs
and its impact on devices reliability characterization,” in Proc. IEEE International
Reliability Physics Symposium (IRPS), 2014, pp. 4A.4.1–4A.4.4.

[Mah15] S. Mahapatra, Fundamentals of bias temperature instability in MOS transistors:
Characterization methods, process and materials impact, DC and AC modeling, ser.
Springer series in advanced microelectronics, 2015, vol. 52.

[McC85] E. McCluskey, “Built-in self-test techniques,” IEEE Design & Test of Computers,
vol. 2, no. 2, pp. 21–28, 1985.

[MDS06] D. Milton, S. Dhingra, and C. E. Stroud, “Embedded processor based built-in self-
test and diagnosis of logic and memory resources in FPGAs,” in Proc. International
Conference on Embedded Systems and Applications (ESA), 2006, pp. 87–93.

[MHS+04] S. Mitra, W.-J. Huang, N. R. Saxena, S.-Y. Yu, and E. J. McCluskey, “Reconfigurable
architecture for autonomous self-repair,” IEEE Design & Test of Computers, vol. 21,
no. 3, pp. 228–240, 2004.

[MKSM03] J. McPherson, J.-Y. Kim, A. Shanware, and H. Mogul, “Thermochemical description
of dielectric breakdown in high dielectric constant materials,” Applied Physics Letters,
vol. 82, no. 13, p. 2121, 2003.

[MMM+13] C. Ma, H. J. Mattausch, M. Miyake, T. Iizuka, M. Miura-Mattausch, K. Matsuzawa,
S. Yamaguchi, T. Hoshida, M. Imade, R. Koh, T. Arakawa, and J. He, “Compact reli-
ability model for degradation of advanced p-MOSFETs due to NBTI and hot-carrier
effects in the circuit simulation,” in Proc. IEEE International Reliability Physics
Symposium (IRPS), 2013, pp. 2A.3.1–2A.3.6.

[Moo75] G. E. Moore, “Progress in digital integrated electronics,” in Proc. IEEE International
Electron Devices Meeting (IEDM), 1975, pp. 11–13.

[Muk08] S. Mukherjee, Architecture design for soft errors. Morgan Kaufmann Publishers,
2008.

[NOY77] T. H. Ning, C. M. Osburn, and H. N. Yu, “Emission probability of hot electrons from
silicon into silicon dioxide,” Journal of Applied Physics, vol. 48, no. 1, p. 286, 1977.

[NR11] A. N. Nowroz and S. Reda, “Thermal and power characterization of field-
programmable gate arrays,” in Proc. 19th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), 2011, pp. 111–114.

[NSC13] G. L. Nazar, L. P. Santos, and L. Carro, “Accelerated FPGA repair through shifted
scrubbing,” in Proc. 23rd International Conference on Field Programmable Logic and
Applications (FPL), 2013, pp. 1–6.

[OWTK10] A. Oetken, S. Wildermann, J. Teich, and D. Koch, “A bus-based SoC architecture for
flexible module placement on reconfigurable FPGAs,” in Proc. International Confer-
ence on Field Programmable Logic and Applications (FPL), 2010, pp. 234–239.

[PA12] M. Psarakis and A. Apostolakis, “Fault tolerant FPGA processor based on runtime
reconfigurable modules,” in Proc. 17th IEEE European Test Symposium (ETS), 2012,
pp. 1–6.

[PAS+09] C. Patterson, P. Athanas, M. Shelburne, J. Bowen, J. Surís, T. Dunham, and J. Rice,
“Slotless module-based reconfiguration of embedded FPGAs,” ACM Transactions on
Embedded Computing Systems, vol. 9, no. 1, pp. 1–26, 2009.

[PBH+11] M. M. Pereira, L. Braun, M. Hubner, J. Becker, and L. Carro, “Run-time resource

145

Bibliography

instantiation for fault tolerance in FPGAs,” in Proc. NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), 2011, pp. 88–95.

[PC03] T. Pi and P. J. Crotty, “FPGA lookup table with transmission gate structure for
reliable low-voltage operation,” Patent US6 667 635, 2003.

[PCC+14] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger, “A reconfigurable fabric for accelerating large-scale dat-
acenter services,” in Proc. ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), 2014, pp. 13–24.

[PCG+06] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving FPGA
design robustness with partial TMR,” in Proc. 44th International Reliability Physics
Symposium (IRPS), 2006, pp. 226–232.

[PGP98] M. Psarakis, D. Gizopoulos, and A. Paschalis, “Test generation and fault simulation
for cell fault model using stuck-at fault model based test tools,” Journal of Electronic
Testing, vol. 13, no. 3, pp. 315–319, 1998.

[PTM] “Predictive Technology Model.” Online available: http://ptm.asu.edu/
[QGM+13] H. Quinn, P. Graham, K. Morgan, Z. Baker, M. Caffrey, D. Smith, M. Wirthlin, and

R. Bell, “Flight Experience of the Xilinx Virtex-4,” IEEE Transactions on Nuclear
Science, vol. 60, no. 4, pp. 2682–2690, 2013.

[RAKT13] P. M. B. Rao, A. Amouri, S. Kiamehr, and M. B. Tahoori, “Altering LUT configura-
tion for wear-out mitigation of FPGA-mapped designs,” in Proc. 23rd International
Conference on Field Programmable Logic and Applications (FPL), 2013, pp. 1–8.

[RBC+13] A. Rahman, P. Bai, G. Curello, J. Hicks, C.-H. Jan, M. Jamil, J. Park, K. Phoa,
M. S. Rahman, C. Tsai, B. Woolery, and J.-Y. Yeh, “Reliability studies of a 22nm
SoC platform technology featuring 3-D tri-gate, optimized for ultra low power, high
performance and high density application,” in Proc. IEEE International Reliability
Physics Symposium (IRPS), 2013, pp. PI.2.1–PI.2.6.

[RCN03] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić, Digital Integrated Circuits (2nd
Edition). Pearson Education, 2003.

[Ren98] M. Renovell, “SRAM-based FPGAs: a structural test approach,” in Proc. XI Brazil-
ian Symposium on Integrated Circuit Design, 1998, pp. 67–72.

[RP88] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,”
Journal of Applied Physics, vol. 63, no. 12, p. 5776, 1988.

[RPFZ97] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian, “Test pattern and test con-
figuration generation methodology for the logic of RAM-based FPGA,” in Proc. 6th
Asian Test Symposium (ATS), 1997, pp. 254–259.

[RSKH11] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable software for unreliable
hardware,” in Proc. 9th International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2011, pp. 237–146.

[SAB+13] K. Schuegraf, M. C. Abraham, A. Brand, M. Naik, and R. Thakur, “Semiconductor
logic technology innovation to achieve sub-10 nm manufacturing,” IEEE Journal of
the Electron Devices Society, vol. 1, no. 3, pp. 66–75, 2013.

[SC11] E. Stott and P. Y. K. Cheung, “Improving FPGA reliability with wear-levelling,” in
Proc. International Conference on Field Programmable Logic and Applications (FPL),
2011, pp. 323–328.

[Shi16] C. Shin, Variation-aware advanced CMOS devices and SRAM. Springer, 2016.
[SKCA96] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-in self-test of logic blocks

in FPGAs (Finally, a free lunch: BIST without overhead!),” in Prof. 14th IEEE VLSI
Test Symposium (VTS), 1996, pp. 387–392.

[SKM78] S. SU, I. Koren, and Y. Malaiya, “A Continuous-Parameter Markov Model and De-
tection Procedures for Intermittent Faults,” IEEE Transactions on Computers, vol.
C-27, no. 6, pp. 567–570, 1978.

146

http://ptm.asu.edu/

Bibliography

[SKM+08] S. Srinivasan, R. Krishnan, P. Mangalagiri, Yuan Xie, V. Narayanan, M. J. Irwin,
and K. Sarpatwari, “Toward Increasing FPGA Lifetime,” IEEE Transactions on De-
pendable and Secure Computing, vol. 5, no. 2, pp. 115–127, 2008.

[SRK04] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple Modular redundancy
(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs,” IEEE Trans-
actions on Nuclear Science, vol. 51, no. 5, pp. 2957–2969, 2004.

[SS07] K. Siozios and D. Soudris, “A novel methodology for temperature-aware placement
and routing of FPGAs,” in Proc. IEEE Computer Society Annual Symposium on
VLSI, 2007, pp. 55–60.

[SSC08] E. Stott, P. Sedcole, and P. Y. K. Cheung, “Fault tolerant methods for reliability in
FPGAs,” in Proc. International Conference on Field Programmable Logic and Appli-
cations (FPL), 2008, pp. 415–420.

[SSC09] E. Stott, P. Sedcole, and P. Y. K. Cheung, “Modelling degradation in FPGA lookup
tables,” in Proc. International Conference on Field-Programmable Technology (FPT),
2009, pp. 443–446.

[Sta16] Statistica, “Global car sales 1990-2016,” 2016. Online available: http:
//www.statista.com/statistics/200002/international-car-sales-since-1990/ (Accessed
on 23.08.2016).

[Ste00] A. Steininger, “Testing and built-in self-test — A survey,” Journal of Systems Archi-
tecture, vol. 46, no. 9, pp. 721–747, 2000.

[STW98] K. Seshan, J. M. Timothy, and K. J. Wu, “The quality and reliability of Intel’s quarter
micron process,” Intel Technology Journal, 1998.

[STY+15] M. C. Smayling, K. Tsujita, H. Yaegashi, V. Axelrad, R. Nakayama, K. Oyama,
S. Yamauchi, H. Ishii, and K. Mikami, “7nm logic optical lithography with OPC-
Lite,” in Proc. SPIE Advanced Lithography, 2015, p. 94261U.

[SVDK14] R. Santos, S. Venkataraman, A. Das, and A. Kumar, “Criticality-aware scrubbing
mechanism for SRAM-based FPGAs,” in Proc. International Conference on Field
Programmable Logic and Applications (FPL), 2014, pp. 1–8.

[SWC10] E. Stott, J. S. Wong, and P. Y. Cheung, “Degradation analysis and mitigation in
FPGAs,” in Proc. International Conference on Field Programmable Logic and Appli-
cations (FPL), 2010, pp. 428–433.

[SWHA98] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in self-test of
FPGA interconnect,” in Proc. International Test Conference (ITC), 1998, pp. 404–
411.

[SWS+14] J. H. Stathis, M. Wang, R. G. Southwick, E. Y. Wu, B. Linder, E. G. Liniger,
G. Bonilla, and H. Kothari, “Reliability challenges for the 10nm node and beyond,” in
Proc. IEEE International Electron Devices Meeting (IEDM), 2014, pp. 20.6.1–20.6.4.

[SWSC10] E. A. Stott, J. S. Wong, P. Sedcole, and P. Y. Cheung, “Degradation in FPGAs: Mea-
surement and modelling,” in Proc. 18th Annual ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays (FPGA), 2010, pp. 229–238.

[SXCT00] X. Sun, J. Xu, B. Chan, and P. Trouborst, “Novel technique for built-in self-test
of FPGA interconnects,” in Proc. International Test Conference (ITC), 2000, pp.
795–803.

[Tah03] M. B. Tahoori, “Using satisfiability in application-dependent testing of FPGA inter-
connects,” in Proc. 40th Design Automation Conference (DAC), 2003, pp. 678–681.

[Tah06] M. Tahoori, “Application-dependent testing of FPGAs,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 14, no. 9, pp. 1024–1033, 2006.

[TCW+05] T. J. Todman, G. A. Constantinides, S. Wilton, O. Mencer, W. Luk, and P. Cheung,
“Reconfigurable computing: architectures and design methods,” IEE Proceedings -
Computers and Digital Techniques, vol. 152, no. 2, pp. 193–207, 2005.

[TM05] M. B. Tahoori and S. Mitra, “Application-independent testing of FPGA intercon-
nects,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 11, pp. 1774–1783, 2005.

147

http://www.statista.com/statistics/200002/international-car-sales-since-1990/
http://www.statista.com/statistics/200002/international-car-sales-since-1990/

Bibliography

[Tri15] S. M. Trimberger, “Three ages of FPGAs: A retrospective on the first thirty years of
FPGA technology,” Proceedings of the IEEE, vol. 103, no. 3, pp. 318–331, 2015.

[TUKT97] T. Tomita, H. Utsunomiya, Y. Kamakura, and K. Taniguchi, “Hot hole induced
breakdown of thin silicon dioxide films,” Applied Physics Letters, vol. 71, no. 25, p.
3664, 1997.

[vAMM+16] V. M. van Santen, H. Amrouch, J. Martin-Martinez, M. Nafria, and J. Henkel, “De-
signing guardbands for instantaneous aging effects,” in Proc. 53rd Annual Design
Automation Conference (DAC), 2016, pp. 69:1–69:6.

[van93] A. J. van de Goor, “Using march tests to test SRAMs,” IEEE Design & Test of
Computers, vol. 10, no. 1, pp. 8–14, 1993.

[VHL+05] S. Velusamy, W. Huang, J. Lach, M. Stan, and K. Skadron, “Monitoring tempera-
ture in FPGA based SoCs,” in Proc. International Conference on Computer Design
(ICCD), 2005, pp. 634–637.

[vMMA+17] V. M. van Santen, J. Martin-Martinez, H. Amrouch, M. M. Nafria, and J. Henkel,
“Reliability in super- and near-threshold computing: A unified model of RTN, BTI,
and PV,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1–14,
2017.

[VS07] S. Vassiliadis and D. Soudris, Eds., Fine- and coarse-grain reconfigurable computing.
Springer, 2007.

[vT08] V. von Tils, “Zero defects - Reliability for automotive electronics,” in Proc. Interna-
tional Interconnect Technology Conference (IITC), 2008, pp. 1–3.

[WA10] M. A. Watkins and D. H. Albonesi, “ReMAP: A reconfigurable heterogeneous mul-
ticore architecture,” in Proc. 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2010, pp. 497–508.

[WBR11] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom cmos and the impact
on processor microarchitecture,” in Proc. 19th ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays (FPGA), 2011, pp. 5–14.

[WST08] L.-T. Wang, C. E. Stroud, and N. A. Touba, Eds., System-on-chip test architectures:
Nanometer design for testability. Morgan Kaufmann, 2008.

[WSV09] E. Y. Wu, J. Sune, and R.-P. Vollertsen, “Comprehensive physics-based breakdown
model for reliability assessment of oxides with thickness ranging from 1 nm up to 12
nm,” in Proc. IEEE International Reliability Physics Symposium (IRPS), 2009, pp.
708–717.

[WTH14] M. J. Wirthlin, H. Takai, and A. Harding, “Soft error rate estimations of the Kintex-7
FPGA within the ATLAS Liquid Argon (LAr) Calorimeter,” Journal of Instrumen-
tation, vol. 9, no. 01, p. C01025, 2014.

[WWW06] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design
for Testability (Systems on Silicon). Morgan Kaufmann, 2006.

[Xil12a] Xilinx, “Constraints Guide,” UG625 (v13.4), 2012.
[Xil12b] Xilinx, “Partial Reconfiguration User Guide,” UG702 (v14.1), 2012.
[Xil12c] Xilinx, “Virtex-5 FPGA Configuration User Guide,” UG191 (v3.11), 2012.
[Xil12d] Xilinx, “Virtex-5 FPGA User Guide,” UG190 (v5.4), 2012.
[Xil15a] Xilinx, “UltraScale Architecture Configurable Logic Block User Guide,” UG574

(v1.4), 2015.
[Xil15b] Xilinx, “UltraScale Architecture Configuration User Guide,” UG570 (v1.6), 2015.
[Xil16a] Xilinx, “7 Series FPGAs Memory Resources User Guide,” UG473 (v1.12), 2016.
[Xil16b] Xilinx, “Device Reliability Report,” UG116 (v10.4), 2016.
[Xil16c] Xilinx, “Vivado Design Suite User Guide: High-Level Synthesis,” UG902 (v2016.2),

2016.
[Yan91] S. Yang, “Logic synthesis and optimization benchmarks user guide version 3.0,” 1991.

[YJGR11] S. Yousuf, A. Jacobs, and A. Gordon-Ross, “Partially reconfigurable system-on-

148

Bibliography

chips for adaptive fault tolerance,” in Proc. International Conference on Field-
Programmable Technology (FPT), 2011, pp. 1–8.

[YWW+14] L. Yan, B. Wu, Y. Wen, S. Zhang, and T. Chen, “A reconfigurable processor architec-
ture combining multi-core and reconfigurable processing units,” Telecommunication
Systems, vol. 55, no. 3, pp. 333–344, 2014.

[ZBK+13] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E. Imhof, H.-J.
Wunderlich, and J. Henkel, “Module diversification: Fault tolerance and aging mit-
igation for runtime reconfigurable architectures,” in Proc. IEEE International Test
Conference (ITC), 2013, pp. 1–10.

[Zor13] Y. Zorian, “Test & reliability challenges in advance semiconductor geometries,” in
Proc. IEEE Semiconductor Wafer Test Workshop, 2013.

149

	Acknowledgments
	List of Own Publications
	List of Figures
	List of Tables
	Acronyms
	Kurzfassung
	Abstract
	Introduction and Motivation
	Dependability Challenges in the Nano-CMOS Era
	Challenges from Up-Scaling
	Challenges from Down-Scaling
	Addressing the Challenges

	Thesis Contributions
	DFG Research Program SPP-1500 and InvasIC
	Thesis Outline

	Backgrounds
	Field-Programmable Gate Arrays
	The Reconfigurable Fabric
	Configurable Logic Blocks
	Transistor-Level LUT Model
	Programmable Switching Matrices
	Configuration Memory
	Partial Reconfiguration

	Fine-Grained Reconfigurable Architectures
	Filling the Gap between GPP and ASIC
	Coupling of a Reconfigurable Fabric to a GPP
	Hardware Acceleration of Application Kernels

	Dependability Issues in CMOS Circuits
	Basic Operation Principles of MOSFET
	Biased Temperature Instability
	Hot Carrier Injection
	Single Event Upset
	Recent Advancement in Aging

	Fault, Stress and Aging Models Used in the Thesis
	Stress Model for Aging Effects
	Stress Properties
	Aging Models
	Fault Model for Soft Errors

	Basic Dependability Techniques
	FPGA Test and Diagnosis
	Concurrent Error Detection in FPGAs
	Scrubbing of Configuration Memory

	Related Work
	FPGA-Based Reconfigurable Architectures
	Online Test and Diagnosis of Reconfigurable Systems
	Fault Tolerance in Reconfigurable Systems
	Aging Mitigation in Reconfigurable Systems
	Handling Soft-Errors in the Configuration Memory

	System Overview and Cross-Layer Dependability
	Application Model
	Target Architecture
	Base Architecture
	Architectural Extension

	Architectural Assumptions
	Cross-Layer Dependability
	Lifetime Increase
	Fault Discovery
	Self-Repair
	Reliability Guarantee
	Runtime Orchestration

	Evaluation Platform

	Fault Discovery through Strategic Online Testing
	Overview of Online Test Strategies
	Integration of Online Tests
	Scheduling of Online Tests
	PRET Scheduling
	PORT Scheduling

	Experimental Evaluation
	Fault Models of Tests
	Test Configurations for PRET
	PRET Scheduling
	PORT Scheduling
	Combined PRET and PORT Scheduling

	Self-Repair by Module Diversification
	Overview of the Module Diversification Method
	Diversified Configurations
	Matrix Representation of Configurations
	Properties of Diversified Configurations

	Generation Algorithm
	Reliability Analysis
	Diversification for Interconnect Resources
	Implementation Flow
	Experimental Evaluation
	Timing Overhead
	Reliability Improvement

	Prolonging Lifetime via Stress Balancing
	Overview of the Stress-Aware Placement Method
	Representation of Stress
	Stress Granularity
	Stress Accumulation
	Stress Estimation Flow

	Runtime Accelerator Placement
	Placement Profit
	Placement Algorithm
	Intermediate Results

	Synthesis Time Logic Placement
	Placement Algorithm
	Stress Distribution Results

	Extended Runtime Accelerator Placement with Module Diversification
	Experimental Evaluation
	Evaluation Flow
	Timing Overhead
	Stress Reduction and MTTF Improvement

	Reliability Guarantee with Adaptive Modular Redundancy
	Overview of Adaptive Modular Redundancy
	Reliability of Accelerated Functions
	Reliability Guarantee of Accelerated Functions
	Maximum Resident Time
	Acceleration Variants Selection
	Non-uniform Accelerator Scrubbing

	Reliability Guarantee of Applications
	Effective Critical Bits of Accelerators
	Reliability of Accelerated Kernels
	Effective Critical Bits of Accelerated Kernels and Applications
	Budgeting of Effective Critical Bits

	Experimental Evaluation
	Performance Improvement
	Runtime Overhead

	Overall Evaluation and Comparison
	Structural Integrity
	Accelerator Diversification
	Aging Resilience and Fault Tolerance

	Functional Correctness

	Conclusion and Future Work
	Thesis Conclusion
	Future Work

	Proof of the Minimal Set Generation in Module Diversification
	Terrestrial Soft Error Rates in a Virtex-5 FPGA
	Bibliography

