
A Framework for
Non-Interference in

Component-Based Systems

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Simon Greiner
aus Freising

Tag der mündlichen Prüfung: 29. Januar 2018
Erster Gutachter: Prof. Dr. Bernhard Beckert
Zweiter Gutachter: Prof. Dr. Andrei Sabelfeld

A Framework for
Non-Interference in
Component-Based
Systems

Simon Greiner

Ich versichere wahrheitsgemäß, die Dissertation bis auf die dort angegebe-
nen Hilfen selbständig angefertigt, alle benutzten Hilfsmittel vollständig und
genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer und eigenen Veröffentlichungen unverändert oder mit Änderungen
entnommen wurde.

Karlsruhe, 28. Februar 2018
Simon Greiner

Acknowledgements
I would like to thank my supervisor Prof. Bernhard Beckert for giving me
the opportunity to work on many interesting research questions, providing
helpful support whenever it was necessary and giving me the freedom to
pursue any path that seemed interesting. I would also like to thank Prof.
Andrei Sabelfeld for agreeing to act as second reviewer of this thesis. Further,
I am thankful to Prof. Ralf Reussner and Prof. Gregor Snelting for their
valuable feedback on early presentations of this thesis and for agreeing to be
examiners.

I would like to thank Prof. Peter H. Schmitt who originally gave me the
idea to pursue a career in research while I was still a student.

Many different people helped me on the way to this thesis by fruitful
discussions, on and off-topic. I would like to thank my fellow researchers
who I had the chance to work with in the course of the RS3 and KASTEL
projects. In particular, I would like to thank Kaibin Bao, Dr. Pascal Birnstill,
Dr. Florian Böhl, Martin Hecker, Dr. Max Kramer, Dr. Erik Krempel,
Martin Mohr, and Kateryna Yurchenko. Also, I would like to thank my
current and former colleagues at the working group. Dr. Thorsten Bormer,
Dr. David Farago, Dr. Daniel Grahl, Sarah Grebing, Mihai Herda, Michael
Kirsten, Dr. Vladimir Klebanov, Tianhai Liu, Dr. Florian Merz, Dr. Christoph
Scheben, Dr. Mattias Ulbrich, and Alexander Weigl always found the time
for discussions on open questions, provided helpful feedback, answered one
of the many questions, or just joined into pointless discussions on the dinner
table. Special thanks go to everyone who agreed to read preliminary chapters
of this thesis and provided very helpful feedback on improving them. In
particular I would like to thank Karsten Diekhoff and Jonas Krämer who
helped me with implementations, especially during the last months of this
thesis.

Last but not least, I would like to thank my family and friends who
provided support, and distraction in countless different ways and more and
less severe situations. Their trust and help was fundamental throughout the
years of work on this thesis.

The work on this thesis was financially supported by the Bundesministe-
rium für Bildung und Forschung as part of the KASTEL projects.

vii

Abstract

Modern IT systems are required to implement complex functionalities and
support high scalability. At the same time, security properties like confiden-
tiality and integrity become more and more important for these systems.

An often used approach to realize such systems is component-based
system engineering, where different parts of the software are distributed to
several components, each realizing parts of the functionality as services and
using other components for required functionalities. These components can
then be distributed on different machines which allows high flexibility when
deploying the overall system. Further, component-based systems engineering
supports re-use of existing components in new contexts in possibly very
different usage scenarios.

A very popular approach for the specification and analysis of confiden-
tiality and integrity properties for software is using the concept of non-
interference, which describes a strict property of the allowed flow of informa-
tion in a software system. With non-interference specifications, inputs and
outputs of a system are labeled as secret (high) or public (low) information.
The program is non-interferent, if the public outputs are not influenced by
secret inputs. Typically, the separation of information into high or low is
performed according to an analysis of potential attackers to the system.

In this thesis, we present a novel and general framework for non-interference
in component-based systems. By exploiting restrictions to the programming
model of component-based systems the framework allows a very precise
specification of intended information flows in a system. The partition of
inputs and outputs into high and low values is based on equivalence relations
and thus allows the classification of partial information and the existence of
service calls to be secret or public. The resulting non-interference property is
compositional, a central requirement in the case of component-based systems.

Further, we present as part of the framework a notion of non-interference
as a services-local information flow property and show that non-interferent

ix

Abstract

services can be composed in non-interferent components. As a result, it is
sufficient to analyze the security of services, i.e. small and often relatively
simple programs, in order to gain a security guarantee for entire components
and component-based systems. We introduce the idea of dependency clusters
as service-local, attacker-independent, and compositional building blocks for
information flow specifications and show how these dependency clusters can
be used to gain system-wide security guarantees. Dependency clusters are
especially useful in the context of evolving components, since they allow to
reduce the overhead of software analysis when re-using components in new
environments, or adding, removing or changing services.

We show the practical use of our general framework by instantiating it
for two concrete tools.

For one, we instantiated the framework to gain an extension of the Palla-
dio Component Model (PCM), a graphical specification language specially
designed for component-based systems. Our extension allows an intuitive
specification of security properties for components. We map the general
definitions of the framework to Palladio entities and show that the compo-
sitionality properties of non-interference holds for PCM components. The
presented specification approach was used in several case-studies for security
specification of systems.

We also present an instantiation of our framework for a deductive soft-
ware verification tool for JavaEE, a programming framework for distributed
components implemented in Java. We present a novel non-interference speci-
fication technique on service- and component-level for JavaEE components
based on dependency cluster by extending the Java Modeling Language.
We also extend the KeY calculus, an approach for deductive verification of
Java programs and thus gain a program verification tool non-interference
specifications of JavaEE components. We apply the verification tool to a
web-shop system as a proof-of-concept.

Apart from our contributions presented in this thesis, the framework was
used by other researchers to build novel analysis techniques for components,
e.g. based on program dependency graphs and automatic software testing
approaches.

We finally discuss an extension of our framework, which allows non-
interference specification of input information to depend on previous inputs to
the system. In this extension, we sacrifice compositionality of non-interference
for a more expressive specification language. We sketch a concrete idea for
this extension by specifying and verifying a history-based non-interference
property for a concrete system.

x

Zusammenfassung

Moderne IT Systeme müssen komplexe Funktionen umsetzten und gleichzeitig
hochgradig skalierbar sein. Ebenso nimmt die Bedeutung von Sicherheitsei-
genschaften wie Geheimhaltung und Integrität von Informationen für solche
Systeme stetig zu.

Eine gängige Technik zur Umsetzung solcher System ist komponenten-
basierte Systementwicklung, in der Teile der Software auf unterschiedliche
Komponenten verteilt werden. Jede Komponente realisiert einen Teil des
Gesamtfunktionalität als Service, und nutzt andere Komponenten für hier-
für benötigte Funktionalitäten. Komponenten können auf unterschiedliche
Rechner verteilt werden, wodurch eine hohe Flexibilität beim Ausbringen des
Gesamtsystems erreicht wird. Komponentenbasierte Systementwicklung un-
terstützt außerdem die Wiederverwendung von existierenden Komponenten
in neuen Umgebungen und Anwendungsszenarien.

Nichtinterferenz ist ein beliebtes Konzept zur Beschreibung und Ana-
lyse von Geheimhaltungs- und Integritätseigenschaften von Software. Sie
beschreibt eine strenge Eigenschaft für erlaubte Informationsflüsse inner-
halb eines Softwaresystems. Ein- und Ausgaben eines Systems werden mit-
tels Nichtinterferenzspezifikationen als geheim oder öffentlich markiert. Ein
Programm erfüllt Nichtinterferenz, wenn öffentliche Ausgaben nicht durch
geheime Eingaben beeinflusst werden.

In dieser Arbeit präsentieren wir ein neuartiges und allgemeines Rahmen-
werk für Nichtinterferenz in komponentenbasierten Systemen. Wir nutzen
Einschränkungen die üblicherweise für Komponenten gemacht werden um
so sehr präzise Spezifikationen für erlaubte Informationsflüsse erreichen zu
können. Die Aufteilung von Ein- und Ausgaben in öffentlich und geheim
basiert auf Äquivalenzrelationen, so dass auch die Klassifikation von Teil-
informationen, sowie die reine Existenz von Ein- und Ausgaben ermöglicht
wird. Die resultierende Nichtinterferenzeigenschaft ist kompositional und

xi

Zusammenfassung

erfüllt somit eine grundlegende Voraussetzung um für komponentenbasierte
Systeme geeignet zu sein.

Wir präsentieren des Weiteren als Teil des Rahmenwerkes einen neuartigen
Nichtinterferenz-Begriff als Service-lokale Informationsflusseigenschaft, und
weisen nach, dass nichtinterferente Services zu nichtinterferenten Komponen-
ten zusammengestellt werden können. Demnach ist es ausreichend, einzelne
Service, d.h. kleine und oftmals relativ einfache Programme, zu analysieren,
um Sicherheitsgarantien für ganze Komponenten und komponentenbasierte
Systeme zu erhalten. Wir führen Dependency Cluster als servicelokale und
angreiferunabhängige, kompositionale Bausteine für Informationsflusspezifi-
kationen ein. Ebenso zeigen wir, wie Dependency Cluster genutzt werden
können um systemweite Sicherheitsgarantien zu erhalten. Insbesondere im
Kontext von evolvierenden Systemen sind Dependency Cluster nützlich, da
sie den Mehraufwand für die Analyse von Sicherheitseigenschaften auf ein
Minimum reduzieren, wenn bereits existierende Komponenten in einem neuen
Umfeld wiederverwendet werden.

Wir zeigen den praktischen Nutzen unseres Rahmenwerkes indem wir
zwei konkrete Werkzeuge auf dieser Basis entwickeln.

Einerseits erweitern wir das graphische Spezifikationswerkzeug Palladio
Component Model (PCM) auf Basis unseres Rahmenwerkes. Unsere Erwei-
terung ermöglicht die intuitive Spezifikation von Sicherheitseigenschaften
für Komponenten. Wir bilden Elemente aus dem PCM auf Definitionen
aus unserem Rahmenwerk ab und zeigen so, dass Kopositionalitätseigen-
schaften aus dem Rahmenwerk auch für PCM Komponenten gelten. Das
Spezifikationswerkzeug wurde in mehreren Fallstudien für die Spezifikation
von Sicherheitseigenschaften für Systeme eingesetzt.

Ausserdem präsentieren wir einen deduktiven Software Verifikationsan-
satz für JavaEE Komponenten basierend auf unserem Rahmenwerk. Wie
zeigen eine neuartige Spezifikationstechnik für Nichtinterferenzspezifikatio-
nen auf Service- und Komponentenebene als Erweiterung des Java Modeling
Language, und aufbauend auf Dependency Clustern. Wir erweitern auch den
KeY Kalkül, ein Ansatz zur deduktiven Verifikation von Java Programmen
und erhalten so ein Werkzeug für die Verifikation von Sicherheitseigenschaf-
ten für JavaEE Komponenten. Wir wenden das Verifikationswerkzeug auf
ein Web Shop System an.

Abschließend diskutieren wir eine Erweiterung unseres Rahmenwerkes,
die es erlaubt Nichtinterferenzspezifikationen von Eingaben abhängig von
vorherigen Eingaben zu formulieren. Wir opfern Kompositionalität von Nicht-
interferenz um eine aussagekräftigere Spezifikationssprache für Sicherheits-
eigenschaften zu erhalten. Wir erörtern eine konkrete Ausgestaltung dieser
Erweiterung an Hand einer Nichtinterferenzeigenschaft für ein konkretes
System.

xii

Contents

Page

Abstract ix

Zusammenfassung xi

1 Introduction 1
1.1 Motivation . 1
1.2 Context of this Thesis . 2

1.2.1 Component-Based System Engineering 3
1.2.2 Information Flow . 3

1.3 Contributions . 4
1.4 Outline . 6

1.4.1 Part I: A Framework for Non-Interference in Component-
Based Systems . 6

1.4.2 Part II: Instantiating the Framework 7
1.4.3 Part III: Beyond the Framework 8

I A Framework for Non-Interference in Component-Based
Systems 9

2 Distributed Service Components 11
2.1 Introduction . 11
2.2 Computational Model . 12
2.3 Distributed Service Components and Services 13
2.4 Composition . 19
2.5 Conclusion . 21

xiii

Contents

3 Non-Interference in Distributed Service Components 23
3.1 Introduction . 23
3.2 Non-Interference with What-Declassification 24

3.2.1 Security Specification of Messages and Values 25
3.2.2 Strategies . 27
3.2.3 Non-interference . 30

3.3 Cooperative Non-interference 33
3.4 Non-interference for Services 39
3.5 Conclusion . 45

4 Modular Specification with Dependency Clusters 47
4.1 Introduction . 47
4.2 A List-based Specification Language 49
4.3 Dependency Clusters and Services 51
4.4 Dependency Clusters and Components 54
4.5 Weakening Specifications . 58
4.6 Conclusion . 60

5 Related Work 61
5.1 Non-Interference in Interactive Programs 61
5.2 Non-Interference in Batch Programs 63
5.3 Rely-Guarantee Style Non-Interference 64
5.4 Compositional Specifications 65

6 Conclusion 67

II Instantiating the Framework 71

7 Model-Based Non-Interference Specification 73
7.1 Palladio . 74

7.1.1 Meta Model in Palladio 75
7.1.2 From Palladio Components to Distributed Service

Components . 77
7.2 Security Specification as an Extension of the PCM 84
7.3 Information Flow Specification 85

7.3.1 Syntax and Semantics 86
7.3.2 Soundness of Composition of Palladio Components . . 90

7.4 Related Work . 94
7.5 Conclusion . 95

xiv

Contents

8 Deductive Verification of Dependency Clusters in JavaEE 97
8.1 JavaEE . 98

8.1.1 Enterprise Java Beans 99

8.1.2 Container . 100

8.2 JavaDL and JML . 102

8.2.1 JavaDL Syntax and Semantics 102

8.2.2 Fields, Heaps and Object Creation 104

8.2.3 Sequences . 105

8.2.4 Calculus . 105

8.2.5 Java Modeling Language 106

8.2.6 The KeY Tool . 107

8.3 Extending JavaDL . 107

8.3.1 Extending JavaDL Syntax 108

8.3.2 Serialization and Deserialization 109

8.3.3 Service Contract . 115

8.4 Specification and Verification of Dependency Clusters in Beans124

8.4.1 Dependency Cluster Syntax in JML 124

8.4.2 Dependency Cluster Semantics in JavaDL 126

8.4.3 Cooperative Environments 135

8.4.4 Verifying Dependency Cluster 136

8.4.5 Combined Dependency Cluster 139

8.4.6 Bean-Level Verification 141

8.5 Case Study . 143

8.5.1 Web Shop System Description 143

8.5.2 Non-Interference Specification 145

8.5.3 Verification . 146

8.6 Related Work . 147

8.6.1 Deductive Verification of Interactive Programs 147

8.6.2 Deductive Verification of Object-oriented
Non-interference . 148

8.6.3 Automatic Program Analysis for Non-interference . . 149

8.7 Conclusion . 150

xv

Contents

III Beyond the Framework 153

9 Trace-based Non-interference 155
9.1 Introduction . 155
9.2 An Example: Privacy Preserving Video Surveillance 156
9.3 Specification . 159

9.3.1 Tracking Formalization 159
9.3.2 Formal Domain-driven Security Specification 161

9.4 Trace-based Non-interference 163
9.4.1 Trace-based Component Non-interference 163
9.4.2 Trace-Based Service Non-Interference 164
9.4.3 State-based Service Non-interference 168

9.5 Implementation and Verification 171
9.5.1 Implementation . 172
9.5.2 Specifications for the Trace-invariant 174
9.5.3 Service Non-interference Specification 177
9.5.4 Verification . 181

9.6 Related Work . 182
9.7 Conclusion . 183

10 Conclusion 185
10.1 Summary . 185
10.2 Future Work . 187

IV Appendix 189

Running Example 191
A.1 Implementation . 191
A.2 Specification . 193

A.2.1 Billing Department . 193
A.2.2 Controlling Department 195

Web Shop Case Study 197
A.3 System-wide Security Property 197

Implementation and Verification of Privacy Store 199
B.1 Implementation . 199
B.2 Service Specification . 203

B.2.1 Definition of the tracking predicate 203
B.2.2 Trace Invariant contracts 204
B.2.3 Visibility-preserving contracts 208
B.2.4 Non-Interference Contracts 209

B.3 Specification Statistics . 211
B.4 Verification . 211

xvi

Contents

Bibliography 215

Publication List 227

xvii

1
Introduction

1.1 Motivation

More and more, software systems become pervasive in our every-day life.
They collect information which describes for individuals where they are,
when they move, which movies they watch. At the same time, software more
and more interact with their environment physically, for example as part of
vacuum cleaners, industrial production lines, or as cars. These systems are
highly distributed and highly interconnected and more often than not, they
are interconnected via the internet, which makes them easily accessible for
everyone. A lack of security therefore can have profound consequences on
people’s lives.

As a result of software becoming more pervasive, while methods for secur-
ing software do not keep pace, reports of security problems with autonomous
systems become more frequent in the media. In 2017 a security company
demonstrated how easy it is to turn a vacuum cleaner into a spy tool1.
In 2016 an attack on network router2 caused a widespread disruption of
the internet in Germany and other parts of the world. In 2015 researchers
demonstrated that it possible to take over control of a car3 (even without
autonomous driving abilities built-in). These examples are only few incidents
which illustrate how profound of an impact on the people’s privacy and
health can be caused by insecure distributed systems.

1https://www.forbes.com/sites/thomasbrewster/2017/10/26/lg-hom-bot-robot-
hoover-hacked-into-surveillance-device/

2https://www.wired.de/collection/tech/das-mirai-botnet-koennte-hinter-
den-telekom-ausfaellen-stecken

3https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

1

https://www.forbes.com/sites/thomasbrewster/2017/10/26/lg-hom-bot-robot-hoover-hacked-into-surveillance-device/
https://www.forbes.com/sites/thomasbrewster/2017/10/26/lg-hom-bot-robot-hoover-hacked-into-surveillance-device/
https://www.wired.de/collection/tech/das-mirai-botnet-koennte-hinter-den-telekom-ausfaellen-stecken
https://www.wired.de/collection/tech/das-mirai-botnet-koennte-hinter-den-telekom-ausfaellen-stecken
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Chapter 1. Introduction

1.2 Context of this Thesis

In this thesis, we present a general framework for specification and analysis of
non-interference properties for distributed component-based systems. We aim
the framework to serve as a theoretical basis for security requirements in the
design process of a system, for program analysis in a quality assurance process,
and for specifications during the implementation phase. We demonstrate
that our framework can be instantiated in a concrete model-based design
approach as well as for the specification and analysis of Java implementations
of distributed component-based systems.

Our work therefore touches two general areas of research. The first area of
research is concerned with the question of what are properties which a secure
system has to satisfy. A very basic concept of security is the CIA triad, which
states that a system is secure if it satisfies the three properties confidentiality,
integrity, and availability. A common method to ensure that a system provides
confidentiality and integrity of information is information flow security, or
the strict form, non-interference. In a nut-shell, non-interference describes
which information managed by a system may influence which output. While
we concentrate on confidentiality in this thesis, we would like to mention
that integrity is a very similar property from theoretical point of view.

The second research area tries to answer the question of how to develop
distributed systems. Component-based system engineering provides methods
for how to design and build a distributed system throughout the different
phases of a development process. Our framework allows to integrate non-
interference into this development process.

When developing a system, security, and information flow in particular,
stretches over all phases of a development process. During requirement
elicitation, it has to be clarified which inputs of a system contain sensitive
information and which outputs may be available to a potential attacker.
During system design it has to be ensured that the composition of a system
satisfies its specified information flow property due to the behavior of in-
dividual components of the system. During implementation, the developer
needs a specification on the level of components and services, which allows
him to understand how a functionality can be realized, without knowing
every detail about the overall system. And during quality assurance it has to
be clear against which information flow specification a service, component,
or system has to be checked.

In the following, we briefly discuss the context of research for component-
based system engineering and non-interference as far as needed to make our
contributions clear.

2

1.2. Context of this Thesis

1.2.1 Component-Based System Engineering

Component-based system engineering is a system design and development
approach where the functionality of a system is distributed over several
components. What constitutes a component is very loosely defined in the
literature. One of the most commonly accepted definitions for software
components is by Szyperski et al. [2002]: “A software component is a unit
of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently
and is subject to composition by third parties”. Other definitions, e.g. by
Reussner et al. [2016], Meyer [2003], or Heineman and Councill [2001], go in
a very similar direction. According to these definitions, components provide
a block-box view of their functionality and are designed for re-use in different
contexts.

A more concrete definition of components can be found in practical frame-
works for implementing components. Components in Java are called beans
(JavaEE [2013]), in .Net (Wigley et al. [2003]) they are called assemblies.
These frameworks, among others, make restrictions on how components may
be implemented, e.g. they may restrict concurrent program execution within
one component or restrict components from using a shared state.

What many concepts for components have in common is that often the
functionality of a component is provided in the form of services, i.e. rela-
tively small sequential programs. Each service can call services which are
provided by the environment, or, in a composed system, by other compo-
nents. Especially when components are distributed in the sense that they
run on physically different machines, the only allowed or possible way of
communication between components is via remote service calls.

Specification languages for security in component-based systems are
mainly concerned with access control (Nguyen et al. [2015]). In approaches
which allow specification of information flow properties, these specifications
are either local to isolated activities (Jürjens [2005]), part of the specification
of the dynamic behavior of a single component (Stenzel et al. [2014]) and
therefore not easily relateable to the information flow of an entire system, or
they lack a theoretic semantic basis (Hafner and Breu [2009]) which would
allow reasoning about whether an implementation satisfies the resulting
specification.

1.2.2 Information Flow

Components are interactive programs in the sense that they communicate
with their environment via sending and receiving messages.

Several approaches to formalize non-interference for interactive programs
were studied in the past, for example, by Focardi and Gorrieri [1994],Ryan and
Schneider,Mantel,Sabelfeld and Mantel [2002], or Pottier. Non-interference

3

Chapter 1. Introduction

in these notions is formalized by comparing traces of messages which a
system can communicate. Generally speaking, an interactive program is
non-interferent in this notion, if given two streams of inputs, which have
equal non-sensitive information, the program produces outputs with equal
non-sensitive information.

One drawback of these non-interference notions is that they assume all
input to the system is pre-computed and the environment is not able to react
on outputs it was able to observe. A second problem with these notions in
the context of our work is that the environment, and therefore a potential
attacker, is not part of the security model. This makes it hard to map
a non-interference specification to an attacker model during requirements
elicitation of a system.

We therefore focus on another line of work which uses explicit envi-
ronments to model non-interference (e.g. Wittbold and Johnson,O’Neill
et al.,Clark and Hunt [2009], and Rafnsson et al. [2012]). In this model a
program is run in two environment, which provide the same non-sensitive
inputs after observing the same non-sensitive overall behavior of the pro-
gram. The program is secure, if every observation of non-sensitive outputs
of the program in one environment is also possible in the other environment.
Somebody observing the non-sensitive inputs and outputs of the program
therefore can not decide under which of these two environments the program
was run.

Non-interference notions with an explicit environment, as published in the
literature, do allow the specification of message existence and message content
to be non-sensitive. However so far no published notion allows to specify
only parts of a message content to be non-sensitive, e.g. the last four digits of
a credit card number. Also, existing non-interference definitions do not allow
to specify that the existence of a message is non-sensitive depending on a
parameter, e.g. a bank transaction with a transaction value of less than 5.000.
The second drawback is that notions using an explicit environment are overly
restrictive when the existence of a message is specified sensitive. Whenever the
program sends an non-sensitive message after receiving a sensitive message,
the program is deemed insecure, since the non-sensitive message reveals the
existence of the previous sensitive message. The consequence for a secure
distributed system is that it may never receive a sensitive message.

1.3 Contributions

We provide in this thesis a novel framework for requirement elicitation,
analysis and specification of non-interference for distributed component-
based systems. The framework consists of a collection of definitions of
non-interference properties and theorems describing properties of these non-
interference definitions and how they are related to each other. Apart from

4

1.3. Contributions

this, we provide individual contributions as part of the framework itself,
and as part of two instantiations of our framework which show that it is
practically applicable.

The following contributions are part of our framework itself.

• We provide the first notion of non-interference for interactive programs
with an explicit environment model which is compositional under
interleaving parallel composition, allows declassification of information,
and the specification of message existence as sensitive. (Section 3.2)

• We provide the first notion of non-interference for component-based
systems which allows declassification of information and the specifi-
cation of message existence as sensitive. We prove that our notion of
non-interference for components is compositional under synchronized
parallel composition. (Section 3.3) In particular, this notion of non-
interference for components is more precise than non-interference for
interactive programs in general, in that non-interferent components
can send non-sensitive outputs after receiving inputs whose existence
is specified sensitive. We overcome this limitation of existing work by
assuming that the environment behaves according assumptions which
are common in component-based systems.

• We provide a novel non-interference notion for services, which extends
state-of-the-art non-interference notions for sequential programs with
message passing. We prove that a component is non-interferent if all
services provided by the component are non-interferent. (Section 3.4)
As a result, the analysis of a component for non-interference can
be limited to analyzing each service modularly instead of the entire
component.

• We define the novel concept of Dependency Clusters as a specification
which describes ideally small dependencies of information between
inputs, outputs, and states caused by the execution of individual
services. (Chapter 4) Dependency cluster are service-local, i.e. whether
or not a service is non-interferent w.r.t. a Dependency Cluster solely
depends on the implementation of the service, and is independent
from other service, other components, or the environment a component
is deployed in. This way, Dependency Cluster simplify re-use and
evolution of components with non-interference requirements.
We prove that Dependency Clusters are compositional in the sense that
if a service is non-interferent w.r.t. two Dependency Clusters, it is also
non-interferent w.r.t. the composition of the two Dependency Clusters.
This makes Dependency Clusters useful building blocks for complex
non-interference specifications. Additionally, a service can be analyzed
for each Dependency Cluster individually, especially with different

5

Chapter 1. Introduction

analysis techniques. Thus, we allow to use different analysis techniques
for different Dependency Clusters depending on their strengths and
weaknesses, while still gaining non-interference specifications which
may not be practically analyzable by one technique alone.

In the second part of this thesis, we instantiate our framework to show
that it can be used to build specification tools and program analysis tools
for practically relevant component-based systems.

• We provide a novel, intuitive specification language for non-interference
properties as an extension of Palladio, a graphical specification language
for component-based systems. (Chapter 7) Our extension of Palladio
was used in multiple case-studies to specify information flow properties
and perform security analysis for systems.

• We provide a novel specification language based on Dependency Cluster
for component-based systems implemented in Java as an extension
of the Java Modeling Language. We further provide rules and proof
obligations which allow deductive verification of our specifications in
the deductive program verification tool KeY. We apply this program
analysis tool an a web shop system. (Chapter 8)

1.4 Outline

This thesis consists of three parts. In Part I we present our theoretical
framework. In Part II we instantiate our framework as a concrete specifica-
tion language for component-based systems and as a analysis technique for
concrete implementations of component-based systems. In Part III we discuss
an extension of our framework which allows more expressive non-interference
specifications on the example of a smart surveillance system.

1.4.1 Part I: A Framework for Non-Interference in Component-
Based Systems

In Chapter 2 we formally define components as distributed service components
(DSC) using Labeled Transition Systems (LTS) as the formal basis, and we
define synchronous composition of components.

In Chapter 3 we discuss non-interference for DSCs from a conceptual
point of view. We first define a notion of non-interference with an ex-
plicit environment for LTS, which supports declassification of information
as well as the specification of message existence as sensitive. We formally
prove that non-interference for LTS is compositional under asynchronous
composition. After that we define non-interference for DSCs by only con-
sidering environments which adhere to assumptions that are common in

6

1.4. Outline

component-based approaches. We prove that non-interference for DSCs is
compositional. Finally, we define non-interference for services and show that
service-non-interference implies non-interference for DSCs.

In Chapter 4 we switch to a constructive point-of-view on our framework.
We introduce Dependency Cluster as non-interference specifications for
services. Dependency cluster are modular and compositional building blocks
for non-interference specifications which describe small dependencies caused
by the execution of a service. We show that non-interference for DSCs can
be verified by checking a first-order predicate-logic condition for Dependency
Clusters of services, and that non-interference of a DSC w.r.t. a system-wide
non-interference specification can be shown by checking a first order predicate
logic condition for a non-interference specification of a DSC. Static analysis
for non-interference specifications of component-based systems thus requires
complicated program analysis only for Dependency Clusters of services,
and therefore only for comparably small and simple programs w.r.t. small
non-interference specifications.

In Chapter 5 we discuss work related to our framework and in Chapter 6
conclude the first part.

1.4.2 Part II: Instantiating the Framework

In the second part of this thesis we show that the theoretical framework from
Part I can be used as the basis for implementing tools for system engineering
and program analysis of component-based systems.

In Chapter 7, we define a specification language for non-interference as
an extension of the practically used graphical specification language Palladio.
By mapping specification primitives to elements of our framework, we show
that results from Part I also hold for our graphical specification language.
We also demonstrate that the relation between a model of potential attackers
of a system and a non-interference specification is intuitive.

In Chapter 8 we extend the deductive program verification tool KeY to
support reasoning about Java beans and extend the Java Modeling Language
with specifications for Dependency Cluster of remote methods, the service-
equivalent in Java beans. We provide proof obligations for Dependency
Cluster specifications in JavaDL, the logic underlying KeY. This way we
demonstrate that our framework can serve as the basis for program analysis
techniques for real programming languages.

7

Chapter 1. Introduction

1.4.3 Part III: Beyond the Framework

In the third part, we discuss in Chapter 9 an extension of our framework
which allows more expressive specifications. According to our framework,
the specification of sensitive information is limited to single messages. We
discuss the example of a smart surveillance system, where a domain-motivated
specification of sensitive information depends on the history of previously
communicated messages, not only the message itself. We provide a formal
specification, and during that lift restrictions on our framework by refining
definitions from Part I. Finally we verify that the example is secure w.r.t.
the specification using KeY. The results in Chapter 9 should serve as an
inspiration for future work which may want to extend our framework.

8

Part I

A Framework for
Non-Interference in

Component-Based Systems

9

2
Distributed Service Components

2.1 Introduction
Software components are defined in the literature rather informally. One
of the most commonly accepted definitions for software components is by
Szyperski et al. [2002]: “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to
composition by third parties”. Similar definitions for software components can
be found for example by Reussner et al. [2016], Meyer [2003], and Heineman
and Councill [2001].

The lack of concrete criteria makes it hard to formalize components in
a mathematical sense. We need, however, a formal definition for a formal
discussion of security properties in component-based systems. Frameworks for
implementing component-based systems provide a more concrete clarification
by the definition of the semantics of an implementation according to the
respective programming environment. Examples for common frameworks for
implementing potentially physically distributed component-based systems
are the Java Enterprise Edition (EJB 3.1 Expert Group [2009]) or the .Net
framework (Wigley et al. [2003]).

In this chapter, we provide a formal definition of software components.
We concentrate on software components which are designed to run in a
distributed fashion. We aim to provide a formal model, which is consistent
with common informal definitions as well as commonly used implementation
frameworks.

In the following section we introduce the computational model based
on Labeled Transition Systems that we use for formalization in the first
part of this thesis. In Section 2.3 we define Distributed Service Components
(DSC) as our notion of components using the computational model. In
Section 2.4 we define how DSCs are composed to larger systems, and after
this we conclude the chapter.

11

Chapter 2. Distributed Service Components

The results in this chapter are based on work by the author (Greiner and
Grahl [2016]).

2.2 Computational Model
A core property of DSCs in our setting is that they do not share a state
and thus cannot communicate via variable manipulation. The only form of
communication is via messages sent and received by a DSC (representing
calls and terminations of services). Labeled Transition Systems (LTS) are a
very general formalism for modeling programs communicating via messages.

The environment communicates with an LTS by passing messages over
channels and receiving output messages from the LTS. We define C as a
set of channels, over which values from a domain D can be communicated.
We refer to the communication of a value over a channel as a message in
M ⊆ C×D. An LTS can receive input messages I and send output messages
O, where M = I]O, and] is the disjoint union operator. We write α!v for
a message m ∈ O communicating the value v on a channel α, α?v for m ∈ I,
and if it is not relevant whether m is an input or output, we write α.v for
m ∈ M. The transition relation → describes the transition of an LTS by
communicating a message. We write p m−→ p′, if LTS p transitions to p′ for
some m ∈M. We write p m−→ if there exists some p′ such that p m−→ p′.

Further, we require an LTS not to discriminate on input acceptance due
to the communicated value (1) and neither to provide indeterministic output
(2) nor indeterministic internal behavior (3).

1. ∀α ∈ C, v ∈ D · p α?v−−→ =⇒ ∀v′ ∈ D · p α?v′
−−−→

2. If p m1−−→ p1 and p m2−−→ p2 and m1 6= m2 then m1 ∈ I and m2 ∈ I.
3. If p m−→ p1 and p m−→ p2 then p1 = p2.

The only source of indeterministic behavior is due to indeterministic input.
In related work by Rafnsson et al. [2012], this restricted form of an LTS is
called “input-output LTS.” For simplicity, we refer to them as LTS in the
remainder.

Traces T are finite lists of messages, where 〈〉 ∈ T is the empty list and
a is the concatenation operator. The trace consisting of a single message m
is 〈m〉. If it is clear from the context we write m instead of 〈m〉. The prefix
relation is defined as t1 ≤ t if ∃t2 · t1 a t2 = t. We say p can communicate
a trace t, written p t−→ , if t = 〈〉 or t = 〈m〉a t′ and p m−→ p′ and p′ t

′
−→ for

some p′. T(p) := {t | p t−→ } is the set of all traces, which p can communicate.
For simplicity, we say a trace t contains a message m written m ∈ t, if
∃t′, t′′ · t′ ama t′′ = t.

For better readability, we use the following conventions: We refer to
traces by t, channels by α and β, messages by m, values by v, and LTS by p
and, if necessary by s. If necessary, we add to this notion indices and/or use
its primed version.

12

2.3. Distributed Service Components and Services

2.3 Distributed Service Components and Services

We use the following intuitive understanding of components and refer to
them as Distributed Service Components (DSCs): We assume a DSC is an
entity that encapsulates its state and provides a set of functionalities in the
form of services. Each service is a deterministic and sequential program and
can itself call services provided by other DSCs. DSCs can communicate with
each other only by calling services and providing and receiving parameters,
but not via a shared state. DSCs are non-re-entrant, meaning while a service
is executed by a DSC, other calls to services provided by the DSC are
postponed until the current execution of the service terminates. DSCs can
be composed to compositions by binding required services of one DSC to
provided services of another DSC. In the rest of this section, we formalize
this intuitive understanding of DSCs.

A service is defined by a name, a signature and the body of the pro-
gram defining the service’s behavior. The signature describes the input
parameters of the service, the initial channel used for calling the service,
and the termination channel used for communicating the return value. The
function Ini(serv) defines the initial channel of the service serv, Fin(serv)
the termination channel.

Example 2.1 (The Cart DSC). As an example, see the following DSC
modeling a shopping cart in an online shop:

Component Cart {
int product, prodprice, prodamount;
int countbuy, countpay, countcheck;

int buy(int prod, int price, int amount) {...}
(int, int, int) checkCart(int) {...}
int clearCart(int) {...}
int pay(int ccnr) {...}
(int, int, int) getAllNums(int x) {...}

}

The DSC Cart provides services for adding a product to the cart (buy),
checking the content of the cart (checkCart), removing items (clearCart),
paying for the products in the cart (pay), and, for analysis and debugging
purposes, receiving information on how the cart is used (getAllNums).

In the example, the following following initial channels are defined:
Ini(buy), Ini(checkCart), Ini(clearCart), Ini(pay), Ini(getAllNums) Fur-
ther, the respective termination channels are defined:
Fin(buy), Fin(checkCart), Fin(clearCart), Fin(pay), Fin(getAllNums)

The domain D in our example contains the natural numbers and tuples
of natural numbers.

13

Chapter 2. Distributed Service Components

Skip
〈SKIP;σ〉 −→ 〈SKIP;σ〉

Seq1
〈SKIP; c2;σ〉 −→ 〈c2;σ〉

Seq2
〈c1;σ〉 t−→ 〈c′

1;σ′〉 c1 6= SKIP
〈c1; c2;σ〉 t−→ 〈c′

1; c2;σ′〉

Assign
σ(e) = v

〈x := e;σ〉 −→ 〈SKIP;σ[x := σ(e)]〉

If1
σ(e) 6= 0

〈if e then c1 else c2;σ〉 −→ 〈c1;σ〉

If2
σ(e) = 0

〈if e then c1 else c2;σ〉 −→ 〈c2;σ〉

While
〈while e do c1;σ〉 −→

〈if e then (c1; while e do c1) else SKIP;σ〉

Service
servC = Ini(serv) servR = Fin(serv)

〈x := serv(e);σ〉 −→ 〈write(e→ servC); read(x← servR);σ〉

Send
σ(e) = v

〈write(e→ α);σ〉 α!v−−→ 〈SKIP;σ〉

Rec
e ∈ D

〈read(x← α);σ〉 α?e−−→ 〈SKIP;σ[x := e]〉
Ext1

〈c1;σ〉 α?x−−→ 〈c′
1;σ′〉

〈c1 u c2;σ〉 α?x−−→ 〈c′
1;σ′〉

Figure 2.1: Semantics for the example language

The body of a service is a program consisting of the language primitives
from Figure 2.1. We give the semantics of the language with respect to a
state σ. A state is a function mapping program variables to values from the
domain D. In the remainder, σ and its primed and indexed counterparts
refer to states.

Example 2.2 (State Variables in Cart). Cart defines the state variables
product, prodprice, prodamount, countbuy, countpay, and countcheck.

We provide the simple while-language in Figure 2.1 as an illustration for
how services can be implemented. We do not require services to be actually
implemented in this language, but provide general properties DSCs and
services have to satisfy in order to be non-interferent. These properties are
language independent but require some assumptions on the implementation
of services, for example that services can not spawn threads and are deter-
ministic. These assumptions are made explicit in the further presentation.
Extending the language with additional features, e.g. objects, exceptions
and DSC-internal method calls not causing communication of a message,
therefore does not invalidate our results presented in the first part of this

14

2.3. Distributed Service Components and Services

thesis. However, considering a more complicated (and realistic) program-
ming language at this point would complicate the presentation without any
considerable benefit.

The rule Service in Figure 2.1 defines the semantics of a service call. A
service call consists of the sending of a message on the initial channel and
providing some value representing a parameter. After sending, the service
waits for the response of the called service on the termination channel.
Semantics of sending and receiving messages is shown in Figure 2.1. We refer
to the body of a service serv by bodyserv .

Example 2.3 (Body of the Service pay). When service pay is called, the
state variables paycount is increased and the sale is registered using another
service registerSale. During service call, the values provided as parameters
for the call are taken from the respective state variables. The variable param
holds the parameter passed to pay when it is called, and param#x refers to
the x-th element of the tuple stored in param. The return value is written
to the variable res.

The body of pay implemented in the Cart DSC according to our simple
while language looks as follows:
bodypay :=

payCount + +;
registerSale(prodId, price, amount, param#1);
res = 1;

The services defined by the language introduced above are limited to a
single parameter. This limitation is not a restriction of the expressiveness of
our language, since the parameter can be considered to be some encoding
of several parameters. An example for this is shown in the listing for the
service body of pay above. If a parameter encodes a tuple of values, we refer
to the x-th element of the tuple p by p#x.

The handler of a service represents the program which is executed when
a service is called. Initially, the service is started by a message on channel
Ini(serv) and after executing the service’s body, the handler writes the return
value on channel Fin(serv). We assume the variables param and res to be
available in the state of every DSC, the variable param can be used by the
program to access the parameter and res to write the return value.

Definition 2.1. The handler handlerserv of a service serv is defined as
handlerserv := read(param ← Ini(serv)); bodyserv

write(res → Fin(serv));

Example 2.4. The handler for the service pay looks as follows:
handlerpay :=

read(param ← Ini(pay));
bodypay
write(res → Fin(pay));

15

Chapter 2. Distributed Service Components

A service serv1 requires a service serv2, if a call to serv2 is contained
in the body of serv1. We denote the set of services required by serv1 with
reqserv1 . A DSC c provides a set of services provc to its environment. We
recursively define the body of the DSC, referred to as bodyc, with respect to
the services it provides.

The DSC initially provides all services, while the environment chooses
which service should be executed by sending a message to the respective
initial channel. After termination of the called service, again, the environment
can choose among all provided services. We formally define the body of a
DSC as follows:

Definition 2.2. Let {serv1, . . . , servn} = provc for some DSC c. Then the
body of c is recursively defined as

bodyc := (handlerserv1 u . . . u handlerservn); bodyc.

The external choice operator u connects two programs waiting for a
message on different channels. If a message is received on one of the channels,
the respective program is executed and the other program is dismissed.
Definition 2.2 enforces that DSCs are not re-entrant, since a message starting
a service call can not be accepted by the DSC until a previously called service
has terminated. The formal semantics of u is shown in Figure 2.1.

Example 2.5. The required services for the Cart DSC1:
reqbuy = reqcheckCart = reqclearCart = reqgetAllNums = ∅
reqpay = {registerSale}

The body of Cart is defined as follows:
bodyCart :=

(handlerbuy u handlercheckCart u handlerclearCart u
handlergetAllNums u handlerpay); bodyCart

We assume every DSC c to have some unique initial state σc without
explicitly specifying it. 〈bodyc;σc〉 represents an LTS as defined in Section 2.2.
We refer to this LTS by cLTS .

Definition 2.2 implicitly states that Services provided by one DSC share
a common state, i.e. information received by one service might be leaked by
another, subsequently executed, service. Further, it stated that services are
executed sequentially and the entire component halts while waiting for the
termination of a called service.

Example 2.6 (Trace Communication for Cart). For our running example,
〈bodyCart;σCart〉 defines the LTS describing the behavior of the DSC. By

1The full implementation of the Cart DSC can be found in Section A.1

16

2.3. Distributed Service Components and Services

calls to the services buy, checkCart, pay, the LTS produces the following
trace t:

t = 〈Ini(buy)?(1, 2, 3),Fin(buy)!(2),
Ini(checkCart)?(0),Fin(checkCart)!(1, 2, 3),
Ini(pay)?(12345678, 123),

Ini(registerSale)!(1, 2, 3, 123456789),Fin(registerSale)?(1),
Fin(pay)!(1)〉

The services buy and checkCart terminate without intermediate calls of
other services, while between the initial and terminating messages for pay,
the service registerSale is called by the DSC. The construction of the
body of the Cart DSC ensures that the LTS is sequential, i.e. it can not
accept calls to other services while a service is still executing. As a result,
the following trace is not consistent with the LTS:

tnot = 〈Ini(buy)?(1, 2, 3), Ini(checkCart)?(0),
Fin(buy)!(2),Fin(checkCart)!(1, 2, 3)〉

Also by construction, DSCs are not re-entrant, i.e. services can not be called
while another service waits for the termination of a called service. Therefore,
the following trace also can not be communicated by the LTS:

tnot2 = 〈Ini(pay)?(12345678, 123), Ini(registerSale)!(1, 2, 3, 123456789),
Ini(buy)?(1, 2, 3),Fin(buy)!(2),

Fin(registerSale)?(1),Fin(pay)!(1)〉

The set of services that a DSC requires is the union of the required services
of the provided services, i.e. reqc = {serv | ∃s · s ∈ provc ∧ serv ∈ reqs}.

Example 2.7 (Required Services per DSC). For the DSCs in the running
example2, the set of required service for Cart is reqCart = {registerSale}.

It is common in component-based system-engineering to assume a contract
between a component and its (unspecified) environment. A part of this
contract states that a component guarantees correct functionality of provided
services, if the environment guarantees that required services are available
and behave correctly. We do not discuss here in detail, what correct means,
but limit the consideration to the property that a component can assume
that all required services terminate. Since DSCs are designed as units for
composition, a DSC may also have to serve as part of the environment of
other DSCs. Therefore, we have to ensure that services provided by a DSC
terminate. A service is a terminating service, if for every trace the service can

2See Section A.1 for the full implementation of all DSCs.

17

Chapter 2. Distributed Service Components

communicate, there exists a trace which leads to termination of the service.
Components, and therefore also DSCs, are meant to be usable as black boxes,
termination should not depend on unknown behavior of the environment.
We therefore additionally require services to terminate independently from
intermediate input from the environment.

Definition 2.3 (Terminating Service). A service serv is terminating if
∀t, σ · 〈handlerserv;σ〉 t−→ =⇒ ∃t′〈handlerserv;σ〉

tat′−−→ 〈SKIP;σ′〉
and ∀σ∃n ∈ N ∀t · 〈handlerserv;σ〉 t−→ =⇒ |t| ≤ n

The first condition in Definition 2.3 ensures that every input provided
by the environment leads to a state in which the service still can run to
completion. The second condition ensures that the maximum length of a
trace needed for completion only depends on the initial state, but not on
intermediate input. It is possible to implement services which comply with
the first condition of this definition, but can still be forced by the environment
to perform infinite execution. Take for example the following program:

x = otherServ(0);
while x == 1 do {x = otherServ(0)};
return 1;

For every trace the program can communicate, there exists the case, when
the environment provides 0 as a return value of otherServ which leads to
infinite loop iterations. Therefore, we additionally require an upper bound
for the length of a trace a service can communicate, which is ensured by
the second condition in Definition 2.3. In combination the two conditions
guarantee that the implementation of the service ensures that it terminates,
independent from the environment the DSC runs in.

Example 2.8. The service pay is terminating according to Definition 2.3,
since it calls the required service registerSale exactly one time and does
not contain a loop in the body.

For technical reasons, we assume that a service is at most provided by
one DSC, i.e. serv ∈ provc ∧ serv ∈ provd =⇒ c = d. This restriction is
useful in the further presentation, but limits the expressivity of our language
only marginally. If two DSC are designed to provide the same service (i.e.
with the same name and the same parameter declaration), one of them can
be changed by a simple renaming of the initial and terminating channels and
the name of the service. It does however imply a static system in the sense
that we do not allow exchanging DSCs at run-time.

18

2.4. Composition

parsynch1
p
α.v−−→ p′ ∧ α /∈ C

p|[C]|s α.v−−→ p′|[C]|s
parsynch2

s
α.v−−→ s′ ∧ α /∈ C

p|[C]|s α.v−−→ p|[C]|s′

parsynch3
p
α!v−−→ p′ ∧ s α?v−−→ s′ ∧ α ∈ C

p|[C]|s α!v−−→ p′|[C]|s′

parsynch4
p
α?v−−→ p′ ∧ s α!v−−→ s′ ∧ α ∈ C

p|[C]|s α!v−−→ p′|[C]|s′

Figure 2.2: Inference rules for synchronized parallel composition

2.4 Composition

To compose DSCs, we define synchronized parallel composition for LTS.
Composition for two LTS p and p′ on a set of channels C, written p|[C]|p′,
means that communication between p and p′ on some channel from C is
performed by the DSCs directly without utilizing the environment. The
semantics of p|[C]|p′ is defined in Figure 2.2. If two LTS synchronize on
a channel, progress can only happen if one LTS sends a message on the
respective channel while the other LTS waits for a message on this channel.
Internal communication of two composed LTS becomes an output of the
composition such that the inter-DSC communication is observable for an
environment, but the environment can not provide inputs on these channels.

We call the combination of two DSCs using synchronized parallel compo-
sition a composition. Composed DSCs communicate on a set of services by
synchronizing on the respective initial and terminating channels. We provide
a formal definition for compositions:

Definition 2.4 (Composition). A DSC is a composition. For DSCs (or
compositions) c, c′ with

1. (provc ∩ provc′) = ∅,
2. (reqc ∩ reqc′) = ∅, and
3. S ⊆ (reqc ∩ provc′)

the composition d = c|[S]|c′ is defined as
1. provd := provc ∪ (provc′ \ S)
2. reqd := (reqc \ S) ∪ reqc′

3. dLTS := cLTS |[Ini(S) ∪ Fin(S)]|c′LTS

To compose two compositions on a set of services, one composition has
to provide the services, while the other composition has to require them.
The set of provided services of the composition results from the provided
services of each DSC, minus the services on which the DSCs synchronize on.
Also, the set of required services is the combination of the services required
by each DSC, except the services provided internally. The LTS defined by

19

Chapter 2. Distributed Service Components

the composition results from the parallel synchronous composition of the
two LTS of the DSCs.

We ensure that the channels used for synchronization represent calls and
termination of required services for one DSC and provided services for the
other DSC. This way, we enforce an acyclic structure in compositions, which
guarantees that there are no deadlock situations caused by call-backs of the
composed DSCs.

Composition removes services from the set of required services. Since
requiring a service from the environment states an assumption made on
the environment, composition can reduce the assumptions made about the
environment that the composition runs in.

Example 2.9 (Composition of Cart and Controlling DSC). The DSC
Controlling requires the service getAllNums, which is provided by the Cart
DSC. Further, Controlling provides the services getBuys, getPays, and
getChecks, which serve as an interface for the Controlling department to
gain information on how customers use the webshop. By composition of
Cart and Controlling the two DSCs are synchronized on the initial and
terminating channels for getAllNums.

CartControlling := Cart|[{getAllNums}]|Controlling
provCartControlling := {buy, pay, clearCart, checkCart, getBuys,

getPays, getChecks}
reqCartControlling := {registerSale}
CartControllingLTS :=

CartLTS |[{Ini(getAllNums),Fin(getAllNums)}]|ControllingLTS

The composition of the CartControlling can be composed with other DSCs
in order to gain full webshop functionality accordingly.

In a composition, provided services are also removed from the set of
provided services, which has the effect that at most one DSC can call a
particular service provided by a DSC. Practically, one may want to make
a service usable by several DSCs. This is a mere technicality, since we
can always add a copy of the respective services with renamed initial and
terminating channels to the DSC.

20

2.5. Conclusion

2.5 Conclusion
We introduced in this chapter the computational framework based on labeled
transition systems which we use throughout this first part of this thesis. We
further provided a formal definition of DSCs, services, compositions and how
DSCs and compositions interact with each other.

During formalization, we made several limitations to what constitutes a
DSC. By limiting DSCs to entities which do not share a state, we made the
decision that for example objects in object-oriented programming languages
or program libraries are in general not considered to be DSCs. Since we aim
for security properties in distributed systems in this thesis, this limitation is
fair. We also limited DSCs to entities which do not allow parallel execution
of services. This restriction is common in programming frameworks, as we
will discuss in detail in in Chapter 8 with the example of the Java Enterprise
Edition.

Further, we made the limitation that a service provided by a DSC may
at most be called by one other DSC in a composition. Also, different DSCs
must not provide the same service. For both limitations, we stated that they
are only technical, but do not limit our framework substantially. For the
remainder of the first part, we ask the reader to accept this statement. In
the second part of this thesis, when we apply our framework in a practical
setting, it will become clear why these limitations do not have a practical
impact.

21

3
Non-Interference in Distributed

Service Components

3.1 Introduction

In this chapter we define a non-interference property specially designed for
DSCs and show that non-interference for DSCs is compositional. We further
provide a non-interference property for services and show that a DSC is
non-interferent if all services are.

Non-interference is a program property which describes that sensitive
inputs do not influence outputs which are specified not to contain sensitive
information. A non-interference specification separates inputs and outputs of
a program into sensitive (high) and non-sensitive (low) inputs and outputs.
A program is non-interferent w.r.t. a specification, if the low output is not
influenced by the high input.

Existing notions for non-interference in literature differ in the expres-
siveness, i.e. what a specification can state to be high or low information;
in the precision, i.e. whether the non-interference property categorizes intu-
itively non-interferent programs as such; if non-interferent programs can be
composed and result in non-interferent programs; and in the possibilities for
analyzing programs for whether they are non-interferent. For an extensive
review of non-interference properties in the literature, we refer the reader to
related work described in Chapter 5. An additional, less technical, criterion
for non-interference notions is how intuitive it is, i.e. how easy is it for a
human to understand what it means that a program is non-interferent.

In this chapter, we define a non-interference property which is especially
designed for DSCs. By limiting the considered programs to DSCs, we
gain a very precise notion of non-interference, which also allows expressive
specifications for high and low inputs and outputs. Our specifications allows
to specify parts of inputs and outputs and even functions over inputs and

23

Chapter 3. Non-Interference in Distributed Service Components

outputs to be classified low, as well as the specification of the existence of
inputs and outputs, potentially depending on their parameters.

Our non-interference notion is based on an explicit model of the en-
vironment of a program which allows an intuitive understanding of how
non-interference of a DSC w.r.t. a specification relates to attacker mod-
els for a concrete program. Further, we show that non-interference for
DSCs is compositional, an important property especially in the context of
component-based systems.

We do not provide an explicit method for analysis of DSCs in this chapter,
however, we do provide a non-interference property for services, which is
similar to existing notions of non-interference for which there are analysis
methods available. This way, we provide a basis for tool developers who
want to design analysis methods for non-interference for DSCs.

In the next section, we introduce our specification language which is
based on equivalence relations and introduce strategies as an explicit model
for the environment of a DSC. Based on the specification language and the
environment model, we define non-interference for LTS in general and show
that non-interference for LTS is compositional for asynchronous parallel
composition of LTS. In Section 3.3 we specialize the non-interference notion
for DSCs and show that non-interference is also compositional for DSCs
and compositions. In Section 3.4 we define non-interference for services and
show that a DSC is non-interferent, if all services provided by the DSC are
non-interferent. Finally, we conclude the chapter.

The results in this chapter are based on work previously published by
the author (Greiner and Grahl [2016]).

3.2 Non-Interference with What-Declassification

To analyze information flow for an LTS, a specification of high and low
information is necessary. Typically, this specification is, depending on the
framework, given in the form of types of variables, parameters or channels.

Specification of high and low information for LTS with types is coarse-
grained, since it does not allow to specify that only partial information
contained in an input may be public (See ‘What’-declassification by Sabelfeld
and Sands [2009]). For example, it cannot be expressed that at most the
last four digits of a credit card number may be revealed. In our case, this
even does not allow different levels of confidentiality for two parameters
of one and the same service call, since by construction described in the
previous chapter, messages only provide one parameter (which may encode
several parameters). Please note that this coarse grained specification is not
inherent to type systems, since work on non-interference for batch programs
allows more precise declassification of information using type systems. See
Section 5.2 for a discussion.

24

3.2. Non-Interference with What-Declassification

Therefore, we introduce a specification of high and low information based
on equivalence relations. If two messages are equivalent with respect to this
specification, the observable behavior of the LTS should be equivalent for
an adversary. This is a generalization of specification using types, allows a
flexible specification of secret information, and we can express type-based
specifications with our relations.

For a compact presentation, we only consider the 2-element security lattice
consisting of high and low in this chapter. Nevertheless, a more complicated
security lattice can easily be expressed with our notion of non-interference,
but explicit consideration does not provide further insights.

3.2.1 Security Specification of Messages and Values

We assume the classification of high and low input and output for an LTS
is provided by an equivalence relation ∼ ⊆M×M over messages as part of
the specification. If two messages m1,m2 are equivalent with respect to ∼,
the information that discriminates m1 from m2 is secret.

In order to specify that the existence of a message itself is a secret,
we introduce a special placeholder � ∈ M. We call a message m ∼ �
invisible, and visible if m � �. We denote the set of all visible messages with
� = {m ∈M | m � �} If a message m is invisible, the observable behavior
of an LTS must not differ depending on whether m is provided as an input
or not.

Example 3.1. We illustrate the specification using equivalence relations for
the Cart DSC as introduced in the previous chapter. For the moment we
assume a potential attacker modeling an employee in the billing department.
In order to perform his job, he has to know about the products a customer
ordered, at which price he bought it, and how many items he ordered. We use
equivalence relations to express this information in input- and output-level.

Ini(buy).(pid, pr , am) ∼ Ini(buy).(pid ′, pr ′, am′) :⇔
pid = pid′ ∧ pr = pr′ ∧ am = am′

It is, however, irrelevant for the potential attacker, whether or not the
customer checked the content of his shopping cart.

Ini(checkCart).v ∼ � :⇔ true

We can also specify partial information to be low, for example to state that
the attacker may know the last four digits of the credit card number, as he
should print this information on the bill. The pin number, however is not
relevant.

Ini(pay).(ccnr , pin) ∼ Ini(pay).(ccnr ′, pin′) :⇔
ccnr%10000 = ccnr′%10000

25

Chapter 3. Non-Interference in Distributed Service Components

We assume in the remainder of this chapter some definition of ∼ to be
given. We also assume that an attacker is always able to distinguish on
which channel a visible message was communicated. Formally, this means:

m ∼ m′ =⇒ (m ∼ � ∧m′ ∼ �) ∨ (m = α.v ∧m′ = α.v′) for some α ∈ C.

The equivalence relation ∼ implicitly defines equivalence classes on M
with

[m] := {m′ | m′ ∼ m}.

For every equivalence class [m], we denote an arbitrary, but constant repre-
sentative [[m]] ∈ [m], where [[�]] = �.

Equivalence of messages gives rise to the equivalence of traces t, t′, written
t ∼ t′. Traces t, t′ are equivalent, if, after removing invisible messages, their
projection on the representative of the equivalence classes are equal.

Definition 3.1. We define ∼ ⊆ T× T with t ∼ t′ if t�∼= t′�∼ where

〈〉�∼ := 〈〉

(ma t)�∼ :=
{
t�∼ if m ∼ �
[[m]]a t�∼ otherwise

While we introduced ∼ for equivalence of messages, we overload the
symbol for equivalence of traces in order to avoid many different symbols. It
should be clear from the context, whether ∼ refers to messages, traces, or
sets of messages as defined below.

Example 3.2. Assume the following traces in our example:

t =〈Ini(buy).(1, 2, 3), Ini(checkCart).(0), Ini(pay).(12345678, 123)〉
t′ =〈Ini(buy).(1, 2, 3), Ini(checkCart).(0), Ini(checkCart).(1),

Ini(pay).(99995678, 666)〉

The projection of the two traces then provides us according to the specification
in Example 3.1 with the following traces, depending on the choice of the
representative of the equivalence classes:

t�∼ = 〈Ini(buy).(1, 2, 3), Ini(pay).(00005678, 000)〉
t′�∼ = 〈Ini(buy).(1, 2, 3), Ini(pay).(00005678, 000)〉

Since t�∼= t′�∼ the original traces t and t′ are equivalent w.r.t. ∼.

Apart from the projection operator ·�· on traces, we define projection
on sets and a filter operator B on traces and sets. These definitions will be
useful in the remainder for formalization and the presentation of proofs.

26

3.2. Non-Interference with What-Declassification

Definition 3.2. Let M,N ⊆M,m ∈M, t ∈ T.

• M�∼:= {[[m]] | m ∈M} \ [�]

• M ∼ N :⇔M�∼= N�∼

• M BN := M ∩N

• 〈〉BN := 〈〉

• (ma t)BN :=
{
ma (tBN) if m ∈ N
tBN otherwise

If two traces are equivalent, then the amount of visible messages in both
traces is equal.

Lemma 3.1. ∀t ∼ t′ · |tB�| = |t′ B�|

Proof. Follows from definition of equivalence of traces and the definition of
the filter operation for visible messages. /

Also, an LTS is input neutral for equivalent and visible messages, i.e. if
an LTS p accepts an input m and m ∼ m′ and m and m′ are visible, then p
also accepts m′.

Lemma 3.2. Given LTS p and m,m′ ∈ I with m � � and m′ ∼ m. Then
p

m−→ =⇒ p
m′
−→ .

Proof for Lemma 3.2. Follows directly from definition of LTS and the re-
strictions on ∼ stating that m and m′ have to be messages over the same
channel. /

As a shortcut, we define prefix equivalence, written s . t, as ∃t1 ≤ t · s ∼
t1.

3.2.2 Strategies

The environment observes the trace an LTS communicates and provides
input depending on this observation. The environment may also deny to
provide further input. We model the environment as a strategy, a function
mapping the previously communicated trace, i.e. the observation made by
the environment, to a set of possible inputs provided by the environment.

Our goal is to define non-interference for LTS. Therefore, we want to
ensure that detected leaks are due to an insecurity in the LTS not due to an
environment leaking confidential information. So, we require the strategy to
provide equivalent input for equivalent observations. We denote the set of
all strategies by Strat.

27

Chapter 3. Non-Interference in Distributed Service Components

Definition 3.3. A strategy is a function ω : T 7→ P(I), such that for all
t1, t2 ∈ T · t1 ∼ t2 =⇒ ω(t1) ∼ ω(t2).

A trace t is consistent with a strategy ω, written ω |= t, if all inputs
in the trace are provided by the strategy. Formally ω |= t, if for all m ∈ I
with t = t1 ama t2 for some t1 and t2, it holds that m ∈ ω(t1). An LTS p
produces or communicates t under ω, written ω |= p

t−→ if ω is consistent
with t and p can communicate t, formally p t−→ .

Example 3.3. We reconsider the trace of the DSC Cart from Example 2.6:

t =〈Ini(buy)?(1, 2, 3), Fin(buy)!(2), Ini(checkCart)?(0),
Fin(checkCart)!(1, 2, 3), Ini(pay)?(12345678, 123),
Ini(registerSale)!(1, 2, 3, 123456789), Fin(registerSale)?(1),
Fin(pay)!(1)〉

We have illustrated in Example 2.6 that this trace can be communicated
by the LTS for Cart. The trace is also consistent with a strategy ω, if it
provides the inputs in the trace, i.e. :

Ini(buy)?(1, 2, 3) ∈ ω(〈〉)∧
Ini(checkCart)?(0) ∈ ω(〈Ini(buy)?(1, 2, 3), Fin(buy)!(2)〉)∧
Ini(pay)?(12345678, 123) ∈ ω(〈Ini(buy)?(1, 2, 3), Fin(buy)!(2),

Ini(checkCart)?(0),
Fin(checkCart)!(1, 2, 3)〉)∧

Fin(registerSale)?(1) ∈ ω(〈Ini(buy)?(1, 2, 3), Fin(buy)!(2),
Ini(checkCart)?(0),
Fin(checkCart)!(1, 2, 3),
Ini(pay)?(12345678, 123),
Ini(registerSale)!(1, 2, 3, 123456789)〉)

If a strategy ω provides at most the input another strategy ω′ provides,
we say that ω refines ω′.

Definition 3.4 (Strategy Refinement). ω refines ω′, written ω ≤ ω′, if
ω(t) ⊆ ω′(t) for all t.

A strategy ω refining ω′ is at most consistent with the traces that ω′ is
consistent with.

Lemma 3.3. If ω ≤ ω′ then for all LTS p: ω |= p
t−→ =⇒ ω′ |= p

t−→ for
all t ∈ T.

28

3.2. Non-Interference with What-Declassification

Proof for Lemma 3.3. Proof according to Clark and Hunt [2009]. In general,
every trace accepted by ω is also accepted by ω′, due to definition of strategy
acceptance and refinement relation. ω |= t, so for every m ∈ I: t′ am ≤
t =⇒ m ∈ ω(t′) and since ω(t′) ⊆ ω′(t′) it holds that m ∈ ω′(t′), so
ω′ |= t. /

Non-interference informally states that given equivalent inputs for two
runs of a program, both runs provide equivalent outputs. Since in our
case, the output depends on intermediate input, which again depends on
previous outputs, we consider two runs in equivalent environments instead
of equivalent inputs. Two strategies are equivalent with respect to ∼, if they
provide equivalent input after the same observation.

Definition 3.5 (Equivalence of Strategies). Two strategies ω and ω′ are
equivalent with respect to an equivalence relation ∼ ⊆ M × M if ∀t ∈
T · ω(t)�∼ = ω′(t)�∼.

Again, we overload the symbol ∼ and write ω ∼ ω′ for strategies that
are equivalent with respect to ∼.

The following lemma states an equivalent formalization for strategy
equivalence. In the remainder of this chapter we will use different either
formalization in proofs, depending on which one is the most useful. Especially
Lemma 3.4, 3 will become important in the next section, since it provides an
intuitive understanding how environments and attacker are related.

Lemma 3.4. Given ω, ω′ ∈ Strat. Then, the following notions are equiva-
lent:

1. ω ∼ ω′

2. ∀m � � ∀t · ω(t)B [m] = ∅ ⇔ ω′(t)B [m] = ∅

3. ∀t, t′ · t ∼ t′ =⇒ ω(t) ∼ ω′(t′)

Proof for Lemma 3.4. .
Ad 1⇔ 2: Assume ω ∼ ω′. Then, by Definition 3.5, ∀t · ω(t) ∼ ω′(t), which is
by definition of low-projection ∀t · {[m] | ∃n ∼ m ∈ ω(t)∧m /∈ [�]} = {[m] |
∃n ∼ m ∈ ω′(t)∧m /∈ [�]}, which is equal to ∀t, [m] 6= [�] · ω(t)B [m] = ∅ ⇔
ω′(t)B[m] which is equivalent to ∀[m], t · [m] 6= [�]⇔ ω(t)B[m] ∼ ω′(t)B[m].
Ad 1 =⇒ 3: ω ∼ ω′ ∧ t ∼ t′ =⇒ ω(t) ∼ ω(t′) ∧ ω′(t) ∼ ω′(t′) since ω and
ω′ are strategies. ω ∼ ω′, therefore ω(t) ∼ ω′(t). And by transitivity of ∼:
ω(t) ∼ ω′(t) ∼ ω′(t′)
Ad 3 =⇒ 1: ∀t ∼ t′ · ω(t) ∼ ω′(t′), so especially ∀t · ω(t) ∼ ω′(t) and
by definition of ∼ on sets of messages: ∀t · ω(t)�∼= ω′(t)�∼ which is the
definition of ∼ on strategies. /

29

Chapter 3. Non-Interference in Distributed Service Components

3.2.3 Non-interference

To define non-interference for LTS, we compare different runs of an LTS.
Since execution of an LTS in general requires intermediate input, the runs
have to be executed in presence of an environment providing this input. We
want to ensure that different behavior of runs indicating information leaks is
due to leaks in the LTS, not by the environment leaking secrets. Therefore,
we require the different runs to be executed under equivalent environments.
We say an LTS is non-interferent, if for every trace which is consistent for
the LTS under a strategy, for every other, equivalent strategy there exists an
equivalent trace with which the LTS is also consistent.

Definition 3.6 (W -non-interference). An LTS p is W -non-interfering for
W ⊆ Strat, if
∀ω1, ω2 ∈W, ∀t1 · ω1 ∼ ω2 ∧ ω1 |= p

t1−→ =⇒
∃t2 · ω2 |= p

t2−→ ∧ t1 ∼ t2

The definition requires an LTS to run in two equivalent environments, i.e.
both runs are executed with equivalent inputs. The resulting traces being
equivalent expresses that for an attacker, who is only able to observe low
information in a trace, can not distinguish the two runs. Therefore, the
attacker can not distinguish under which environment the LTS was run. This
property has to hold for all pairs of equivalent environments, meaning that
seeing the low part of a trace, any environment could have produced the
respective trace from the point of view of the attacker.

A W-attack is a counter example for W -non-interference.

Definition 3.7 (Attack). AW -attack on p is a tuple (ω1, ω2, t1) ∈W×W×T
with

1. ω1 ∼ ω2 and
2. ω1 |= t1 and

3. ω1 |= p
t1−→ and

4. ∀t2 · ω2 |= p
t2−→ =⇒ (t1 � t2)

It is easy to see that an LTS is W -non-interferent if and only if there
does not exist a W -attack. We denote the set of all LTS, which are W -
non-interferent with W -NI. If an LTS is W -non-interferent, it is also non-
interferent with respect to all subsets of W .

Lemma 3.5. For all W1,W2 ⊆ Strat: W1 ⊆W2 =⇒ W2-NI ⊆W1-NI.

Proof for Lemma 3.5. We have to prove that, givenW1 ⊆W2, all p ∈W2-NI
it also holds that p ∈ W1-NI. We show the contrapositive. Assume p /∈
W1-NI. Then there exists (ω1, ω2, t) which is a W1-attack on p. Since
W1 ⊆ W2, ω1 ∈ W2 and ω2 ∈ W2, it follows that (ω1, ω2, t) is a W2-attack
on p. /

30

3.2. Non-Interference with What-Declassification

Related work by Rafnsson et al. [2012] provides a non-interference notion
similar to ours, however without declassification (See related work for details).
They show compositionality of their non-interference notion under parallel
interleaving, which models messages passing performed by the environment.
While their proof can not easily be transferred to our case with declassifica-
tion, we still show this kind of compositionality of our non-interference notion
with declassification for better comparability of the two non-interference
notions.

Theorem 3.1 (Compositionality). pA, pB ∈ Strat-NI =⇒ (pA ‖ pB) ∈
Strat-NI, where ‖ denotes asynchronous parallel composition.

For the following proof, we need a supporting lemma. Non-interference
of an LTS does not depend on feeding of invisible messages. If we can find
an attack on an LTS, then there also exists an attack with a strategy that
does not provide any secret input.

Lemma 3.6. If (ω1, ω2, t) is an attack on p, then, for ω′2 with ∀t · ω′2(t) =
ω2(t) \ [�], also (ω1, ω

′
2, t) is an attack on p.

Proof for Lemma 3.6. ω′2 refines by construction ω2 according to Defini-
tion 3.4. By Lemma 3.3, this means ∀t′ · ω′2 |= t′ =⇒ ω2 |= t′. Therefore, if
there would exist a trace t with ω′2 |= p

t−→ , then also ω2 |= p
t−→ would be

true, which contradicts the original assumption of the lemma. /

Proof for Theorem 3.1. We prove that (pA ‖ pB) /∈ Strat-NI =⇒ pA, pB /∈
Strat-NI.

Since (pA ‖ pB) /∈ Strat-NI we know that there exists an attack (ω1, ω2, t)
on pA ‖ pB. In particular, we know by Lemma 3.6 that ω2 does not produce
invisible input.

Assume towards contradiction pA, pB ∈ Strat-NI. Then by definition
we have for k ∈ {A,B}: ∀ω1k, ω2k ∈ Strat · ω1k ∼ ω2k =⇒ ∀t1k · ω1k |=
pk

t1k−−→ =⇒ ∃t2k · ω2k |= pk
t2k−−→ ∧ t1k ∼ t2k

Select t1A, t1B such that t is an interleaving of t1A and t1B and pA
t1A−−→

and sB
t1B−−→ . We now construct strategies ω1A, ω2A, ω1B, ω2B such that

ω1A ∼ ω2A and ω1B ∼ ω2B.
We use the notion t1 ‖t t2 to denote that t is an interleaving of t1 and t2.
Let j ∈ {1, 2}, k, k′ ∈ {A,B}, k 6= k′.

ωjk(t) :=
{
m | ∃t′1t′k, t′k′ · t ∼ t′k ∧ t′k ‖t′1 t

′
k′

∧ t′k am . t1k ∧ pk
t′kam−−−→

∧ t′k′ . t1k′ ∧ pk′
t′
k′−→

∧ t′1 am . t1 ∧ ωj |= (pA ‖ pB)
t′1am−−−→

}
31

Chapter 3. Non-Interference in Distributed Service Components

We have to show ωjk ∈ Strat, ω1k ∼ ω2k, ω1A |= pA
t1A−−→ and ω1B |=

pB
t1B−−→ .

Then, we show that this contradicts pA, pB ∈ Strat.

Proof for ωjk ∈ Strat Let t ∼ t′. Assume m ∈ ωjk(t). Let t′1, t′k, t′k′ be
the witnesses for m above. Since t ∼ t′ and t ∼ t′k also t′ ∼ t′k. Therefore
t′1, t

′
k, t
′
k′ is a witness for t′ and m ∈ ωjk(t′) and ωjk(t) ∼ ωjk(t′).

Proof for ω1k ∼ ω2k Let t be arbitrary. Assume w.l.o.g. m ∈ ω1k(t) and
m � �.

Let t′1, t′kt′k′ be the witness for m in the definition of ω1k. Since ωj |=

(pA ‖ pB)
t′1am−−−→ and ω1 ∼ ω2 there exists an m′ ∈ ω2(t′1) with m′ ∼ m. By

input neutrality, (pA ‖ pB)
t′1am

′

−−−−→ . Since t′kam ∼ t′kam′, also t′kam′ . t1k.
Similar since t′1 am ∼ t′1 am

′, also t′1 am′ . t1. Lines 1 and 3 from the
definition are independent from parameter j, therefore m′ ∈ ω2k(t).

Proof for ω1A |= pA
t1A−−→ We show that ω1A |= pA

t1A−−→ We already have
pA

t1A−−→ , pB
t1B−−→ , t1A ‖t1 t1B, and ω1 |= (pA ‖ pB) t1−→ .

We show ω1A |= pA
t1A−−→ by induction over n = |t1A B I|

Base case (n = 0): Since pA
t1A−−→ and t1A has no inputs, trivially it holds

ω1A |= pA
t1A−−→ .

Step case (|t1A B I| = n+ 1): Assume by induction ω1A |= pA
t′1A−−→ for

all t′1A with |t′1A B I| = n. We know t1A = t′1A ama t
′′
1A for some t′′1A with

|t′′1A B I| = 0 and some m ∈ I.

For some t′1B ≤ t1B and t′1 ≤ t1 we have t′1A ‖t′1 t
′
2B and ω1A |= pA ‖

pB
t′1am−−−→ . By pA

t1A−−→ and pB
t1B−−→ , we get pA

t′1Aam−−−−→ Since u ≤
u′ =⇒ u . u′, we get by definition of ω1A: m ∈ ω1A(t′1A). Therefore

ω1A |= pA
t′1Aam−−−−→ . And since t′′1A does not have inputs, it also holds that

ω1A |= pA
t′1Aamat

′′
1A−−−−−−−→ .

The proof for ω1B |= pB
t1B−−→ can be obtained by swapping A and B in

the previous paragraph.

32

3.3. Cooperative Non-interference

pA /∈ Strat-NI or pB /∈ Strat-NI We have assumed towards contradiction
that pA, pB ∈ Strat-NI. Since ω1k ∼ ω2k, there exist t1k ∼ t2k such that
ω2k |= pk

t2k−−→ . We now show that there exists t2 ∼ t1 with ω2 |= (pA ‖
sB) t2−→ , which contradicts the original assumption that there exists an
attack on (pA ‖ pB).

We assume |t2k B I| > 0. Let t2k = t′2k amk a t′′2k with |t′′2k B I| = 0 and
mk ∈ I. By definition of ω2k, we have mA ∈ ω2A(t′2A) and mB ∈ ω2B(t′2B).
Therefore, there exist tA1 , tB1 such that tA1 amA . t1 and tB1 amB . t1 and

ω2 |= pA ‖ pB
tA1 amA−−−−−→ and ω2 |= pA ‖ pB

tB1 amB−−−−−→ . Since m ∈ ω2(t) =⇒
m � �, we know tA1 amA B I B� = tA1 amA B I and tB1 amB B I B� =
tB1 amB B I.

By definition, we either get tA1 a mA . tB1 a mB . t1 or tB1 a mB .
tA1 a mA . t1. W.l.o.g. tB1 a mB . tA1 a mA . t1. Therefore, we get
tA1 amA B I ∼ t1 B I. Thus, there also exists t′1, t′′1 such that t′1 a t′′1 = t1
and t′′1 B I ∼ 〈〉 and t′1 ∼ tA1 amA. Now there is some u′′1 with u′′1 ∼ t′′1 and

t′′2A ‖u′′
1
t′′2B. Since |u′′1 B I| = 0 and ω2 |= (pA ‖ pB)

tA1 amA−−−−−→ , we also get

ω2 |= (pA ‖ pB)
tA1 amAau′′

1−−−−−−−→ . But tA1 a mA a u′′1 ∼ t1, which contradicts
the original assumption in this proof. Thus, either pA /∈ Strat-NI or
pB /∈ Strat-NI. /

Theorem 3.1 shows that non-interference with what-declassification is
compositional for LTS under asynchronous parallel composition, as is non-
interference for LTS without declassification defined by Rafnsson et al.
[2012].

3.3 Cooperative Non-interference

In this section, we show how our notion of non-interference relates to DSCs.
In contrast to the previous section, where we considered arbitrary LTS,
we limit our focus in this section to DSCs. Composition of DSCs is done
by synchronized parallel communication between DSCs and we define and
assume cooperative environments. Further, we show that non-interference
for DSCs is compositional.

Applying non-interference as defined in the previous section would be
sound, however it would not be very precise. The non-interference notion
as defined above would reject may DSCs we intuitively consider secure. We
illustrate this with the following example.

33

Chapter 3. Non-Interference in Distributed Service Components

Example 3.4. We revisit Example 2.3. For a reminder, this is the service’s
implementation.

read(param ← Ini(pay));
payCount + +;
registerSale(prodId, price, amount, param#1);
res = 1;
write(res → Fin(pay));

For this example, we consider all messages (and their contents) caused
by calls and termination of pay to be low and messages on registerSale
to be invisible. Intuitively, the service can not leak any information, since
one output (parameters provided to registerSale is invisible and the other
output (the return value) is constant 1. However, the service is not secure
w.r.t. our non-interference definition in the previous section.

We can construct a strategy which executes the service to termination
and another strategy providing the same input, except never providing a
termination message for registerSale. The second strategy then would
block execution of pay after the call of registerSale. Since this termi-
nation message is invisible, the two strategies are equivalent according to
Definition 3.5 and we have found an attack.

However, since we assume for DSCs all services to terminate, the en-
vironment has to provide a termination message for every service call. So
considering the program above to be insecure due to a not-provided termi-
nation message would be an over-approximation.

We stated that DSCs only guarantee correctness, if the environment
is cooperative. Therefore, we also assume cooperative environments when
defining non-interference for DSCs and compositions. An environment is
cooperative, if it satisfies three conditions.

1. Every service required by a composition is provided by the environment.
2. Every service called by a composition terminates.
3. A service terminates with a visible message if and only if it was called

with a visible message.
We model the environment as strategies, therefore cooperative environ-

ments can be modeled as a subset of all strategies. Condition 1 is trivially
satisfied by any strategy since the call of a service is an output message sent
by the composition and strategies cannot refuse outputs.

Condition 2 ensures that if a composition calls a required service, the
environment provides a message on the terminating channel. This is a real
restriction on strategies.

Finally Condition 3 ensures that the information whether or not a DSC
called a service is not leaked by the strategy. Assume a DSC calls a service
with an invisible message. If the environment answers this call with a visible

34

3.3. Cooperative Non-interference

message, the environment leaks the information whether the service was
called. Since we do not consider leaks caused by the environment, we rule
out this kind of leak by definition.

We call a strategy satisfying Conditions 2 and 3 a cooperative strategy
and formalize this in Definition 3.8.

Definition 3.8 (Cooperative Strategies). Given composition c providing
the services provc, ω ∈ Strat is a cooperative strategy for c, written ω ∈
Coopc, if for all t, t′, serv, σ, v such that serv ∈ reqc, and Fin(serv) /∈ t′, and
ω |= cLTS

taIni(serv)!vat′−−−−−−−−−−→ , it holds

∃t′′ · ω |= cLTS
taIni(serv)!vat′at′′−−−−−−−−−−−−→ ∧ (3.1)

Fin(serv)?v ∈ ω(ta Ini(serv)!v a t′ a t′′) (3.2)
and

Fin(serv)?v′ ∈ ω(ta Ini(serv)!v a t′) =⇒ (3.3)
Ini(serv)!v ∼ �⇔ Fin(serv)?v′ ∼ � (3.4)

The first restriction in Definition 3.8 formalizes Condition 2. We ensure
that for every trace which is consistent with a cooperative strategy and
a composition, and contains the call of a service, there also exists a trace
(Line 3.1) after which the called service terminates (Line 3.2). For DSCs,
the termination has to be communicated right after the call of the service,
because by construction of DSCs, no other traces are accepted by the DSC.
Especially, this also ensures that a strategy cannot block execution of a DSC
by not providing invisible termination messages. As a consequence, it may be
a secret, whether the environment calls a service, but not whether a service
terminates if it was called.

The second restriction formalizes visibility preserving execution of services
required by the DSC (Condition 3). It ensures that, if a cooperative strategy
provides a terminating message for a trace, which contains the initial message
for the service (Line 3.3), then this terminating message is visible if and
only if the initial message was visible (Line 3.4). This way, we avoid that
the strategy leaks the information that an invisible service call happened by
revealing the call through the termination message.

The set of cooperative strategies for a DSC or composition c only limits
the set of strategies in the case that the composition requires services and
therefore expects a cooperative environment. Directly from this, it follows
that if the composition does not require services, it is Strat-NI.

Lemma 3.7. For a composition c with reqc = ∅ it holds that Coopc = Strat
and cLTS ∈ Coopc-NI⇔ cLTS ∈ Strat-NI.

35

Chapter 3. Non-Interference in Distributed Service Components

Remember that composition as defined earlier possibly reduces the set of
required services. Thus, by composition the dependency of a DSC on the
cooperation of the environment can be reduced and finally removed.

The definition of non-interference for DSCs and compositions now is
straight-forward. If the composition does not leak any information in the
presence of cooperative environments, it is non-interferent.

Definition 3.9 (Cooperation-non-Interference). A composition c is non-
interferent, if cLTS ∈ Coopc-NI.

When composing two DSCs, one DSC becomes part of the environment
of the other DSC. Therefore, we have to ensure that the restrictions we
make on environments also hold for DSCs. Since all services are assumed
to terminate (Definition 2.3), we only have to ensure that the visibility of
service calls is preserved by their termination.

If a service is called with an invisible message, but terminates with a
visible message, the termination of a service reveals the initial message.
Hence, we require a service not to reveal its call by a visible termination
message. By the same argument, we make sure that the call of a service does
not reveal the upcoming termination of the service.

Definition 3.10 (Visibility-preserving Services). A service serv is visibility-
preserving if

∀σ, σ′, v, v′, t · 〈handlerserv;σ〉
Ini(serv)?vataFin(serv)!v′
−−−−−−−−−−−−−−−−−→ 〈SKIP;σ′〉 =⇒

(Ini(serv)?v ∼ �⇔ Fin(serv)!v′ ∼ �)

A DSC c is visibility-preserving if all services in provc are visibility-preserving.

Cooperation-non-interference is compositional for visibility-preserving
DSCs under synchronized parallel composition.

Theorem 3.2 (Composition Non-interference). For a composition d with
d = pA|[s]|pB, pA ∈ CooppA

-NI , pB ∈ CooppB
-NI, and pA, pB visibility-

preserving then d ∈ Coopd-NI

Proof. We prove the contrapositive. Let d /∈ Coopd-NI. Therefore, it exists
an attack (ω1, ω2, t1) on d with ω1, ω2 ∈ Coopd, ω1 |= dLTS

t1−→ and ∀t2 ·
ω2 |= dLTS

t2−→ =⇒ (t2 � t1).
Then, there exist traces t1A, t1B such that (t1A|[s]|t1B) = t1 and pALTS

t1A−−→
and pBLTS

t1B−−→ .
As in proof for Theorem 3.1, we construct strategies which then result in

attacks on pA or pB.

36

3.3. Cooperative Non-interference

First we construct strategies for pA and pB : Let j ∈ {1, 2}, k, k′ ∈ {A,B},
k 6= k′. We define strategies ω′jk:

ω′jk(t) := {m | ∃t′1, t′k, t′k′ · t ∼ t′k ∧ t′k|[s]|t′k′ = t′1

∧ t′k am . t1k ∧ sk
t′kam−−−→

∧ t′k′ . t1k′ ∧ sk′
t′
k′−→

∧ t′1 am . t1 ∧ ωj |= pA ‖ pB
t′1am−−−→ }

We extend the strategies ωjk with terminating events such that ωjk are
cooperative strategies.

ωjk(t) := ω′jk(t) ∪
{m | ∃t′, t′′, v, w, serv · t = t′ a Ini(serv)!v a t′ ∧
(Fin(serv)?w′ /∈ t′) ∧ Ini(serv)!v ∼ �∧

m = Fin(serv)?w ∧m ∼ � ∧ pk
tam−−−→ ∧

¬(∃u,w′′ · (Fin(serv)?w′ /∈ u) ∧

Fin(serv)?w′ ∈ ω′jk(ta u) ∧ ω′jk(t) |= pk
tau−−→)}

We have to show ωjk ∈ Strat, ωjk ∈ Cooppk
and ω1k ∼ ω2k.

Proof for ωjk ∈ Strat See proof of Theorem 3.1.

Proof for ωjk ∈ Cooppk
ωjk ∈ Strat, so it is left to show two properties

from Definition 3.8.
Lines 3.1, 3.2: We have to show

∀t, t′∀serv∀σ∀v · serv ∈ reqc∧

ωjk |= pk
taIni(serv)!vat′−−−−−−−−−−→ ∧ Fin(serv) /∈ t′

=⇒ ∃t′′ · ωjk |= pk
taIni(serv)!vat′at′′−−−−−−−−−−−−→ ∧

Fin(serv)?v′ ∈ ωjk(ta Ini(serv)!v a t′ a t′′)

Select t, t′, serv, v such that serv ∈ reqpk
,

ωjk |= pk
taIni(serv)!vat′−−−−−−−−−−→ , Fin(serv) /∈ t′.

Case 1: k = A: Since ωjA |= sA
taIni(serv)!vat′−−−−−−−−−−→ , there exists witnesses

t′1, t
′
k, t
′
A′ , such that t a Ini(serv)!v a t′ ∼ t′A. Therefore, it exists t′A =

u a Ini(serv)!v′ a u′ such that t ∼ u, Ini(serv)!v ∼ Ini(serv)!v′, t′ ∼ u′.
Therefore, u′ can contain Fin(serv)!w only if Fin(serv)!w ∼ �.

Case 1.1: (Ini(serv)!v � �): Since ωj ∈ Coopd and (Ini(serv)!v �
�) (Second condition of Definition 3.8), Fin(serv)!w is not in u′. Again,

37

Chapter 3. Non-Interference in Distributed Service Components

since ωj ∈ Coopd, there exists u′′, such that ωj |= d
uaIni(serv)!wau′au′′
−−−−−−−−−−−−−−→

∧ Fin(serv)?w′ ∈ ωj(u a Ini(serv)!w a u′ a u′′). Also, due to ωj ∈ Coopd
and (Ini(serv)!w � �), it holds: (Fin(serv)?w′ � �).

Similar to above, we can again split the trace u in uA, uB such that it
is accepted by pA. Since u ∼ t, Ini(serv)!v ∼ Ini(serv)!v′ and t′ ∼ u′, also
(t′1, t′k, t′A′) is a witness for Fin(serv)!w′ ∈ ωjA.

Case 1.2: Ini(serv)!v ∼ �: Due to the extension of ω′jk to ωjk as
constructed above, there is a trace u such that the terminating message can
be consumed.

Case 2: k = B: Proof is similar to Casees 1.1 and 1.2.
Definition 3.8, lines 3.3, 3.4 states:

∀t, t′, serv, σ · serv ∈ reqc ∧ ωjk |= pk
taIni(serv)!vat′−−−−−−−−−−→ ∧

Fin(serv) /∈ t′ ∧ Fin(?)v′ ∈ ωjk(ta Ini(serv)!v a t′)
=⇒ (Ini(serv)!v ∼ �⇔ Fin(serv)?v′ ∼ �)

This follows by construction of ωjk. ω′jk is constructed from ωj and
it is ensured during construction of ω′jk that visible calls are terminated
visibly. Since ω′jk is only extended with invisible termination events when
constructing ωjk , if the original call was also invisible, the claim holds.

Proof for ω1k ∼ ω2k See proof of Theorem 3.1. The definition of ω′jk
is essentially the same. Note that the extension to ωjk only adds invisible
events, therefore ω′jk ∼ ωjk.

Form the four ωjk, there results an attack pA or pB similar to the proof
for Theorem 3.1. /

Theorem 3.2 allows us to compose non-interferent DSCs and gain a
non-interferent composition.

In Definition 3.9, we have presented a compositional non-interference
property for DSCs which allows expressive specifications, including what-
declassification and the specification of high message existence. The non-
interference property is timing-insensitive and termination-insensitive. In
an LTS which is non-interferent w.r.t a timing-insensitive non-interference
property, an attacker may potentially be able to deduce high input from
the order of observable messages in combination with knowledge about the
typical execution time of services in the case of DSCs running in parallel.
Termination-insensitivity means that an attacker is able to deduce from
observable outputs whether or not a DSC terminated. Since DSCs by
definition can not terminate, termination-insensitivity does not provide any
additional knowledge to an attacker.

Further, our non-interference property is based on strategies as an explicit
model for the environment a component runs in. This allows an intuitive

38

3.4. Non-interference for Services

understanding of the relation of non-interference of a component and a notion
of confidentiality of high inputs in presence of an attacker as part of the
environment.

3.4 Non-interference for Services

Analyzing non-interference for entire DSCs according to Definition 3.9 may
be tedious, especially if ∼ contains complicated declassification terms. In
particular, we do expect that complex definitions of ∼, although useful for
specification, are hard to analyze. It would therefore be beneficial, if we
could utilize an additional dimension of modularity.

The next natural level of modularity are services. Services are rather
simple programs, in that they are deterministic and terminating; and only in
combination with each other, they result in complex DSCs and compositions.
In this section, we provide a non-interference property for services, which
allows combining services to non-interferent DSCs and thus, re-using the
compositionality result shown in Theorem 3.2.

Non-interference properties for terminating, deterministic programs can
be found in literature in many different shapes (see discussion in Chap-
ter 5). The notion presented here is inspired by non-interference for batch
programs. In this notion, a program, or service, is non-interferent, if it ter-
minates in equivalent post-execution states after being started in equivalent
pre-execution states. We extend non-interference for batch programs with
message passing. Especially, our definition of non-interference for services
does not require the concept of strategies, but is restricted to trace properties.

We define the equivalence of states σ, σ′ by an equivalence relation ≈
which defines a partitioning of the state in a high and a low part.

Example 3.5 (State Equivalence for Services). Again, we revisit pay in
Example 2.3. The service uses the variables payCount, prodId, price, and
amount.

In order to specify that the state variables payCount and price may
only contain low information, while all other variables may contain high
information, we define ≈ as σ ≈ σ′ ⇔ σ(payCount) = σ′(payCount) ∧
σ(price) = σ′(price).

While the definition of high and low information in a state in literature
often is considered as a specified security property of a program, we merely
consider this partition as a technical necessity. The specification of high
information is already given in our context by the equivalence relations on
messages, i.e. on input and output level. The equivalent relation over states
is only necessary in our context to ensure that high information stored in
the state by service is not leaked by subsequent service calls. Therefore, we
do not put any focus on the intended meaning of a partitioning defined by

39

Chapter 3. Non-Interference in Distributed Service Components

≈, neither do we discuss an attacker model, since we assume an attacker not
to have direct access to the state at all. As long as there exists some suitable
equivalence relation over states, it is sufficient for the purposes.

In order to define non-interference for services, we require a service not
to reveal its execution by changes to the low part of the state, whenever the
environment does not reveal it.

Definition 3.11 (Strictly Visibility-preserving Service). A service serv is
strictly visibility-preserving with respect to ∼ and ≈ if serv is visibility
preserving according to Definition 3.10 and

∀σ, σ′, t, t′ · 〈handlerserv;σ〉
tat′−−→ 〈SKIP;σ′〉 =⇒ (3.5)

(tB I ∼ 〈〉 =⇒ tBO ∼ 〈〉 ∧ (3.6)
ta t′ B I ∼ 〈〉 =⇒ σ ≈ σ′) (3.7)

Line 3.6 in Definition 3.11 states that if all inputs provided by the
environment to the service for any prefix of a terminating trace, the service
may only provide invisible outputs. This condition is a more strict version
of Visibility-Preserving Services as defined in Definition 3.10. Additionally
to the condition that a service called invisibly also terminates invisibly,
Definition 3.11 requires all intermediate service calls to be invisible.

However, the service may provide visible output after visible input,
which means that the environment answered an invisible service call with a
visible terminating message. In this case, it is not the service under analysis
which is insecure but the environment is not cooperative. In the context of
cooperative strategies, a DSC cannot be non-interferent, if a service makes a
visible service call after being called with an invisible initial message. Since
we are about to define a non-interference definition for services, which is
independent from strategies, we have to make this property explicit.

Additionally, we require the service to terminate in a poststate which
is equivalent w.r.t. ≈ to the prestate if only invisible inputs were sent to a
service (Line 3.7). This property formalizes that a service must not leak the
fact that it was called to the state. This condition is necessary in order to
provide sequential compositionality for services.

Example 3.6. Assume for the moment the messages on initial and termi-
nating channels for service pay of DSC Cart and for the required service
registerSale to be specified to be invisible. After a call to the service,
Cart changes the value of variable payCount on the state. Since the state,
in our model, is not directly observable by the attacker, these changes can
not directly provide any information to the attacker. Since all messages sent
and received during execution of pay are invisible, the attacker is assumed
not to be able to directly observe them either.

40

3.4. Non-interference for Services

However, in a subsequent call of another service, the value of payCount
may be revealed as a return value or parameter. If the respective message
is observable by the attacker, he may be able to indirectly see the changed
value of payCount and can therefore deduce that pay was called.

We define non-interference for a service according to the classic definition
of non-interference for batch programs and add the consideration of equivalent
traces.

Definition 3.12 (Service Non-interference). A Service serv is non-interferent
with respect to ∼ and ≈, written serv ∈ SNI≈∼ if it is strictly visibility-
preserving with respect to ∼ and ≈ and

∀σ1, σ2, σ
′
1, σ
′
2, t1, t2 · σ1 ≈ σ2 ∧ (3.8)

〈handlerserv;σ1〉
t1−→ 〈SKIP;σ′1〉 ∧ (3.9)

〈handlerserv;σ2〉
t2−→ 〈SKIP;σ′2〉 (3.10)

=⇒
(t1 B I ∼ t2 B I =⇒ σ′1 ≈ σ′2) ∧ (3.11)
(∀t′1 ≤ t1, t′2 ≤ t2 · t′1 B I ∼ t′2 B I =⇒ (3.12)
∃t′1, t′′2 · t′1 a t′′1 ≤ t1, t′2 a t′′2 ≤ t2 ∧ (3.13)
t′1 a t

′′
1 ∼ t′2 a t′′2) (3.14)

A service started in two equivalent states (Line 3.8) has to terminate
(Line 3.10) in equivalent states, if the input provided by the environment
is equivalent for both runs (Line 3.11). Implicitly, this condition encodes a
well-behaving environment in the sense that we assume the environment not
to leak information.

The second condition ensures that the service does not leak information by
providing non-equivalent output to the environment after receiving equivalent
input. (Lines 3.12) to (3.14) ensure that t1 and t2 are equivalent up to the
first non-equivalent input. For all prefixes of the two traces produced during
execution which got provided equivalent input (Line 3.12), the traces either
are equivalent, or at least there are further events in the traces such that
the traces can become equivalent (Line 3.14). We give in the condition the
possibility that both prefixes can be extended. In fact, it is sufficient to only
extend the prefix whose equivalence projection is shorter. But phrasing this
formally does not result in a simpler formula.

Example 3.7. The implementation of our example, the DSCs Cart manages
the state variables product, prodprice, prodamount, numbuys, numPays,
and numCheck. The low information, from the point of view of the billing
department, are the ordered product, the product’s price and the ordered
amount. However, the information of the number of calls to the respective
services are irrelevant to the billing department.

41

Chapter 3. Non-Interference in Distributed Service Components

We can define an equivalence relation over states the following way:

σ ≈ σ′ ⇔σ(product) = σ′(product)∧
σ(prodprice) = σ′(prodprice)∧
σ(prodamount) = σ′(prodamount)

All services provided by Cart are non-interferent w.r.t. the previously dis-
cussed equivalence relation ∼ in Example 3.1 and ≈.

We characterize DSCs that only have non-interferent services with respect
to the equivalence relation ≈.

Definition 3.13 (DSC State Non-interference). A DSC c is (∼,≈)-NI if
∀serv ∈ provc · serv ∈ SNI≈∼.

If a DSC only provides non-interferent services w.r.t the same equivalence
relation over states, and thus has the property in Definition 3.13, every
execution of a service ensures that there is no leak of previous secret input
due to an output. Neither is there a leak of previous secret input into the
low part of the DSC’s state. So Definition 3.13 implies Cooperation-Non-
Interference for a DSC.

Theorem 3.3. Given an equivalence relation ≈ such that the DSC c is
(∼,≈)-NI. Then 〈bodyc;σ0〉 ∈ Coopc-NI.

Before we can prove the theorem, we need the following lemma.

Lemma 3.8. Given ω1 ∼ ω2 ∈ Coopc, a DSC c, traces p1 and p2, such
that p1 ∼ p2, and states σ1, σ2, σ

′
1 with σ1 ≈ σ2. Let further and ω1 |=

〈bodyc;σ0〉
p1−→ 〈bodyc;σ1〉 and ω2 |= 〈bodyc;σ0〉

p2−→ 〈bodyc;σ2〉. Also, let
serv be a non-interferent service provided by c. Then

∀t1 · 〈handlerserv;σ1〉
t1−→ 〈SKIP;σ′1〉 =⇒

(t1 ∼ 〈〉 ∧ σ1 ≈ σ′1) ∨

∃t2, σ′2 · 〈handlerserv;σ2〉
t2−→ 〈SKIP;σ′2〉 ∧

t1 ∼ t2 ∧ σ′1 ∼ σ′2

The lemma states that for all pairs of executions of a series of non-
interferent services, such that the resulting traces p1 and p1 are equivalent
and the poststate of the last service executions σ1 and σ2, for every execution
of a non-interferent service to its termination, there exists a second execution
of that service started in the second poststate, such that the then resulting
traces and poststates again are equivalent.

42

3.4. Non-interference for Services

Proof for Lemma 3.8. Let t1 be an arbitrary trace with first message m. We
make a case distinction over the visibility of m.

Case 1: m ∼ �: Since serv is non-interferent, serv is also visibility-
preserving. By definition Definition 3.11, t1 ∼ 〈〉 and σ1 ∼ σ′1.

Case 2: m � �: We show that for all traces t′1 ≤ t1 exists a trace t2
such that t′1 ∼ t′2 and ω2〈handlerserv;σ2〉

t′2−→ . We prove the property by
induction over n = |t′1|.

Start: n = 1: Since m is visible, ω1 ∼ ω2 and m ∈ ω1(p1) and p1 ∼ p2,
there exists m2 ∈ ω2(p2) with m ∼ m2. Therefore t′2 = m2.

Step: n+ 1: We know by induction t′2 ∼ t′1 and choose m by t′1am ≤ t1.
We make a case distinction over the visibility of m.

Case 2.1: m ∼ �: Then t′2 is the witness for the hypothesis.
Case 2.2: m � �: Again, we make a case distinction, this time over m

being input or output.
Case 2.2a: m ∈ I: Therefore there exists some t′′1 such that t′1 = t′′1 a o1,

o1 ∈ O. Since ω1 ∈ Coopc, and o1 being the call of a service, which is
terminated by ω1 visibly, (o1 � �). Since t′1 ∼ t′2 and ω2 ∈ Coopc, there exists
the prefix t′′2 with t′2 = t′′2 a o2 and (o2 � �). Again, since m ∈ ω1(p1 a t′1)
and ω1 ∼ ω2 and p1a t′1 ∼ p2a t′2, there exists m′ ∈ ω2(p2a t′2) with m′ ∼ m.
Therefore t′1 am ∼ t′2 am′ and ω2 |= 〈handlerserv;σ2〉

t′2am
′

−−−−→ .
Case 2.2b: m ∈ O: We know t′1 ∼ t′2, thus t′1amB I ∼ t′2B I. Since serv

is non-interferent and σ1 ≈ σ2, there exists t′′2,m′ with t′2am′a t′′2 ≤ t2 with
t′1 am ∼ t′2 am′ a t′′2 and 〈handlerserv;σ2〉

t′2am
′

−−−−→ .
If m′ is visible, then m′ ∼ m and m′ ∈ O, and therefore we know

ω2 |= 〈handlerserv;σ2〉
t′2am

′

−−−−→ .
If m′ ∼ � and m′ ∈ O, then m′ represents the invisible call of a required

service. Since ω2 ∈ Coopc there exists the message terminating the service
call m′′ such that m′′ ∼ � and m′′ ∈ ω2(p2 a t′2 am

′) and therefore ω2 |=
〈handlerserv;σ2〉

t′2am
′am′′

−−−−−−−→ . Since m′ ∼ m′′ ∼ �, it holds t′1amB I ∼ t′2a
m′am′′BI. We redefine t2 from the induction hypothesis as t′2 := t′2am

′am′′.
We now recursively apply this proof until case 2.2b is not applied anymore.

Since serv is terminating and t′2 initially starts with a visible event, at some
point m′ will be visible and therefore this recursion terminates. Therefore,
t′1 am ∼ t′2 am′ and ω2 |= 〈handlerserv;σ2〉

t′2am
′

−−−−→ , which is the induction
hypothesis for n+ 1.

In conclusion, since t1 terminates on a visible output (Definition 3.10)
and t2 ∼ t1, t2 is a terminating trace. Since serv is non-interferent σ′1 ∼ σ′2
holds. This is equivalent with the last two lines of Lemma 3.8. /

Now, we can prove Theorem 3.3.

43

Chapter 3. Non-Interference in Distributed Service Components

Proof for Theorem 3.3. We show the contrapositive, i.e. we assume an attack
to exist which contradicts c ∈ (∼,≈)-NI.

Given a DSC c and a Coopc − Attack (ω1, ω2, t), i.e. ω1, ω2 ∈ Coopc,
ω1 ∼ ω2, ω1 |= 〈bodyc;σ0〉

t−→ and ∀t′ · ω2 |= 〈bodyc;σ0〉
t′−→ =⇒ (t � t′).

We select t1 as the longest prefix of t for which an equivalent trace exists,
which is consistent with ω2 and 〈bodyc;σ0〉. We select t2 such that it is
consistent with ω2 and 〈bodyc;σ0〉 and equivalent to t1 and has the most
visible events in the trace among the candidates. And finally, among those,
we select the longest possible trace, meaning, there are no invisible events
following t2 for c under ω2.

Formally let t1, t2 such that:
1. t1 ≤ t ∧ ∀t′ · t′ ≤ t =⇒ (∃t′′ · (t′′ ∼ t′ ∧ ω2 |= 〈bodyc;σ0〉

t′′−→) =⇒
|t′| ≤ |t1|).

2. t2 ∼ t1
3. ω2 |= 〈bodyc;σ0〉

t2−→
4. ∀t′ · (t′ . t ∧ ω2 |= 〈bodyc;σ0〉

t′−→) =⇒ |t′ B�| ≤ |t2 B�|
5. ∀t′·(t2 ≤ t′ ∧ t′ ∼ t1 ∧ ω2 |= 〈bodyc;σ0〉

t′−→) =⇒ t′ = t2
We split ti with i ∈ {1, 2}, into tia and tib such that the last event of tia

represents the termination of a provided service and tib does not contain an
event representing termination of a service provided by c:

ti =: tia a tib with i ∈ {1, 2} such that 〈bodyc;σ0〉
tia−→ 〈bodyc;σi〉 and

〈bodyservi
;σi〉

tib−→ 〈resti;σ′i〉.
This means, that there is an event m in t following t1. and some event m′,

which might be consumed by c and provided by ω2. More formally, let m,m′

such that t1 am ≤ t and 〈rest2;σ′2〉
m′
−→ . The event m′ must be visible,

because otherwise there would have existed a longer trace t2, such that t2
satisfies condition 5 above.

We make a case distinction over m ∈ I and m ∈ O and show that both
cases result in a contradiction to the original assumption.

Case 1: m ∈ I:Since ω1 ∼ ω2 and m visible, we know that there exists
an m′′ ∈ ω2(t2) such that m′′ ∼ m. If m represents the call of a provided
service, then m′′ is a call to the same service. Otherwise, m represents the
termination of a called service, meaning the last event in t1 represents the call
of this service and the call is visible. Since t1 ∼ t2, t2 also ends with a visible
call to the same service. Therefore, 〈bodyc;σ0〉

t2am′
−−−−→ . So there exists a trace

t′2 such that t′2 ∼ t1 and ω2 |= 〈bodyc;σ0〉
t′2−→ , i.e. ω2 |= 〈bodyc;σ0〉

t′2am
′′

−−−−→ .
But this means due to Lemma 3.1, that |t2′ am′ B�| > |t2 B�|, which
contradicts the construction of t2.

Case 2: m ∈ O: First we show, that m′ ∈ O. Since serv1 is terminating,
there exists a trace t′1 with t1a ≤ t′1 such that 〈bodyserv1 ;σ1〉

t′1−→ 〈SKIP;σ′′1〉.
Further, by induction and with Lemma 3.8, we also know σ1 ≈ σ2. Since

44

3.5. Conclusion

serv1 ∈ SNI≈∼ we know that for all traces t′2 such that 〈bodyserv2 ;σ2〉
t′2−→

〈SKIP;σ′′2〉 it holds that t1′ B I ∼ t2′ B I =⇒ t′1 ∼ t′2
serv2 can not be blocked due to missing termination of a called service.

Therefore, if m′ ∈ I, m ∈ Ini(provc). Since m ∈ O, (t1b 6= 〈〉), but t1b ∼ 〈〉,
especially the initial message is invisible. This contradicts Definition 3.11.

Therefore m′ ∈ O and by definition ω2 |= 〈bodyc;σ0〉
t2am′
−−−−→ . Due to the

construction of t2, m′ is visible.
According to Definition 2.3, there exists a trace t′2, such that t2′ B I ∼

t1
′ B I. Therefore, t′2 ∼ t′1, and it has to hold that m′ ∼ m, therefore

t1 am ∼ t2 am′, which is a contradiction to the construction of t2. /

Definition 3.12 provides us with a non-interference property for services
which we assume to be easier to analyze than non-interference for an entire
DSC. Theorem 3.3 states that it is sufficient to show non-interference for all
services provided by a DSC in order to show non-interference for a DSC.
Together with compositionality of non-interference for DSCs in Theorem 3.2,
we can reduce non-interference analysis for a component-based system to
non-interference analysis of each provided service.

3.5 Conclusion

In this chapter, we defined non-interference for LTS using strategies as explicit
models for the environment. Strategies can also be seen as a combination of
an attacker and non-attacking users of a system, where the attacker may know
low input and can observe low output. Our non-interference property then
states that the attacker can not distinguish between regular user behavior,
which differs on high input, since every observation the attacker makes could
be caused by any user behavior.

Our specifications of high and low information is based on equivalence
relations which allows very expressive declassification of information, includ-
ing parameter-dependent classification of the existence of messages. While
allowing expressive specifications, we did prove that non-interference for LTS
is compositional.

We further specialized the non-interference notion for DSC by limiting
the environment to cooperative environments which comply to the standard
assumption in component-based systems that all services terminate. This
specialization makes our non-interference notion more precise than other
non-interference definitions in literature, since we rule out the case that
the execution of a DSC is blocked due to the environment not providing
high, terminating messages for services called by the DSC. We showed that
non-interference for DSCs is also compositional under synchronized parallel
composition.

45

Chapter 3. Non-Interference in Distributed Service Components

Finally, we provided a non-interference property for services as a com-
bination of trace-based and state-based non-interference. For both types
of non-interference, a selection of analysis approaches exist for different
programming languages, which gives us the confidence that several different
analysis methods can be implemented for our non-interference property for
services. We describe one analysis method for object oriented programs in
Chapter 8 in the second part of this thesis as an example.

The biggest limitation of the work we have presented in this chapter
is that in order to show non-interference for a DSC, one non-interference
specification has to be identified such that all services are non-interferent w.r.t
this specification. While the specification of inputs and outputs is usually
(at least in parts) domain driven, the equivalence relation over states has to
be identified by an expert such that it is valid for all services. This requires
knowledge about the internals of the entire component and identifying it
in practice is a very cumbersome task. In the next chapter we provide a
constructive approach to find non-interference specifications for services which
can be combined to gain one component-global non-interference specification.

46

4
Modular Specification with

Dependency Clusters

4.1 Introduction

In Chapter 3 we developed a powerful approach for specification of non-
interference properties in DSCs and formally defined non-interference. The
additional notion of non-interference for services allows in general to build
analysis techniques for checking non-interference in DSCs. We assume a
specification of low inputs and outputs to be given a priori. This specification
practically is derived by some domain expert who decides what a potential
attacker can observe and input information he should be able to know.

The presentation in the previous chapter can be seen as a top-down
approach. Given a domain-driven non-interference specification we discussed
how a system consisting of DSCs can be shown to be non-interferent w.r.t.
the specification.

Components in modern systems are designed to be re-used in different
contexts and its implementation is tailored to fit special requirements in a
new context. Each time the context or some part of the implementation
changes, a new specification has to be found and the component has to be
re-analyzed for non-interference.

In this chapter, we change our perspective and consider information flow
as a property of a program, independently from the environment it is run in
and attackers that the domain expert may identify. The result in this chapter
can be seen as a bottom-up approach, where first modular dependencies of
services are identified and then combined to gain a security guarantee for a
domain-driven specification for DSCs and systems consisting of DSCs.

Dependencies between inputs, outputs, and the state of a DSC are
inherent to the implementation of the services.

47

Chapter 4. Modular Specification with Dependency Clusters

Figure 4.1: Simple information dependencies in DSC Cart caused by the
service pay

Example 4.1. We explain what we mean with dependencies being inherent
to the implementation of a service using an example. Figure 4.1 illustrates
some flows caused by the implementation of the service pay in DSC Cart
implemented as in Example 2.3. Different colors of arrows indicate different
clusters of dependencies between information contained in messages and
state variables. The figure illustrates three different sets of dependencies of
information, which are independent from each other and purely caused by the
implementation of pay. The solid orange arrows indicate that the information
passed as parameter ccnr during the service call on registerSale depends
on whether the service is called and on the information passed as parameter
ccnr when pay is called. This information again depends on the existence of
the call of pay itself. Additionally, the existence of the termination messages
of pay and registerSales depend on the existence of the respective initial
messages.

The dashed green arrows indicate that the information passed as param-
eter prodId during the call of registerSales depends on the information
stored in the state variable product and on the existence of the call to
registerSales. The existence of this call depends on the existence of the
call to pay. Again, the existence of the termination messages of each service
depends on the existence of the initial message.

The third set, indicated by blue dotted arrows, illustrates the dependencies
for the value of the state variable countpay. For one, it depends on the
value of countpay before the service call as well as the existence of the call
to pay itself. The existence of the termination message for pay depends on
the existence of the service call.

In this chapter, we formalize service-local dependencies as Dependency
Clusters. We show that Dependency Clusters can be combined to bigger,
more complicated information flow specifications. Further, we show how
Dependency Clusters can be combined in order to gain non-interference

48

4.2. A List-based Specification Language

specifications for DSCs and ultimately to gain information flow specifications
for compositions. We show that only Dependency Clusters have to be
analyzed using program analysis methods, while combinations of Dependency
Clusters for DSC-wide and system-wild non-interference specifications can be
verified by solving simple first order logic proof obligations. Overall, we show
in this chapter how Dependency Clusters can be used as building blocks for
domain-driven security specifications and illustrate how Dependency Clusters
are robust against changing environments and evolving components.

In the next section we introduce a simple specification language which is
more intuitive than equivalence relations. We use this specification language
for examples throughout this chapter. In Section 4.3 we formally define
Dependency Clusters and show that different Dependency Clusters of one
service can be combined to a new non-interference specification. In Section 4.4
we show that Dependency Clusters of different services within one DSC can
be combined to gain an information flow specification for a complete DSC by
ensuring one first order logic (FOL) condition per service. In Section 4.5 we
show that non-interference specifications for a DSC can be checked against a
system-global non-interference specification, again by solving a simple FOL
condition. Finally, we conclude the chapter.

The results in this chapter are based on work previously published by
the author in (Greiner et al. [2017b] and Greiner et al. [2017a]).

4.2 A List-based Specification Language
We will use several different non-interference specifications to illustrate the
theorems and insights concerning Dependency Clusters in the following. Di-
rectly defining these specifications as equivalence relations as in the previous
chapter leads to confusing and verbose definitions. We therefore introduce
an alternative, list-based, notion for non-interference specifications. We only
indicate the formal semantics for the language, since it is for presentation
purposes only.

A list-based non-interference specification consists of a list Vis expressing
the visibility specification for messages, a list LowIO expressing the low
information in messages and a list LowIO expressing the low part of the
state. The grammar of for the specification is as follows:

Vis : 〈T (serv1).(bexpr1), . . . , T (servm).(bexprm)〉
LowIO : 〈T (serv1).(pexpr11, . . . , pexpr1n), . . . ,

T (servm).(pexprm1, . . . , pexprmo)〉
LowState : 〈sexpr1, . . . sexprn〉

where T ∈ {Ini(.),Fin(.)}, bexpr i are boolean expressions either over pa-
rameters or r for the return value of service, pexpr ij is an expression over
parameter of a service or r and sexpr i are expressions over state variables.

49

Chapter 4. Modular Specification with Dependency Clusters

A message Ini(serv).p is visible, if there exists an entry Ini(serv).(bexpr)
in Vis, such that bexpr evaluates to true for value p, and analogous for the
termination channel.

Two messages Ini(serv).p and Ini(serv).p′ are equivalent, if either both
are invisible, or there exists an entry Ini(serv).(pexpr1 , ...pexprn), such that
all pexpr i evaluate to the same values for p and p′, and analogous for
termination channels.

Two states σ and σ′ are equivalent, iff all entries in LowState evaluate to
the same value in the states σ and σ′.

Example 4.2. In order to specify that the initial and terminating messages
of the services pay and registerSales are visible, we write

Vis1 := 〈Ini(pay).(true), Fin(pay).(true),
Ini(registerSales).(true), Fin(registerSales).(true)〉

The resulting equivalence relation is as follows:

α.v � �⇔α ∈ {Ini(pay),Fin(pay), Ini(registerSales),
Fin(registerSales)}

∧ ((α = Ini(pay) ∧ true) ∨ (α = Fin(pay) ∧ true)∨
(α = Ini(registerSales) ∧ true)∨
(α = Fin(registerSales) ∧ true))

Messages not mentioned in the list are specified invisible by default.

In the lists LowIO, we specify the equivalence relation over messages in
case a message is visible. To express that the credit card number provided as
a parameter of pay is low, and the parameters prodId (the ID of a product)
and ccnr (the credit card number) of the service registerSale are low, we
specify:

LowIO1 := 〈Ini(pay).(ccnr),Fin(pay).(0),
Ini(registerSales).(prodId, ccnr),Fin(registerSales).(0)〉

The list in parenthesis is a list of expressions over the parameters or r for
the return value, which can be evaluated for two concrete messages. Two
messages on the respective services are equivalent, if the lists evaluate to the
same values.

50

4.3. Dependency Clusters and Services

Formalized directly as equivalence relation, the specification expresses:

α.v ∼ β.v′ ⇔(α.v ∼ � ∧ β.v′ ∼ �)∨
(α = β∧

((α = Ini(pay) ∧ v = ccnr ∧ v′ = ccnr′

∧ ccnr = ccnr′)∨
(α = Fin(pay) ∧ v = r ∧ v′ = r′ ∧ 0 = 0)∨
(α = Ini(registerSales)∧

v = (prodId, price, amount, ccnr)∧
v′ = (prodId′, price′, amount′, ccnr′)∧
prodId = prodId′ ∧ ccnr = ccnr′)∨

(α = Fin(registerSales) ∧ v = r ∧ v′ = r′ ∧ 0 = 0)))

Providing a constant as an expression specifies that all communicated content
for this message is high.

Similar the list LowState specifies the low part of the state as a list of
expressions over state variables. To express that the variable managing the
bought product (product), we specify:

LowState1 := 〈product〉

The resulting equivalence relation then is as follows:

σ ≈ σ′ ⇔ σ(product) = σ′(product)

Together, the lists Vis1,LowIO1, and LowState1 provide us with the
specification tuple (∼1,≈1). Note that pay is in SNI≈1

∼1 .

The lists only serve as a compact representation of equivalence relations.
All theorems and proofs provided in the remainder are based on our original
notion using equivalence relations. Thus, the list notion does not change the
generality of the framework.

4.3 Dependency Clusters and Services

A non-interference specification of a service describes dependencies between
inputs, outputs and parts of a state managed by a DSC. We call service-local,
implementation-specific non-interference specifications Dependency Cluster.
Each of the dependencies with the same color illustrated in Figure 4.1
represent a simple Dependency Cluster.

Definition 4.1 (Dependency Cluster for Services). A Dependency Cluster
for a service serv is a tuple (∼,≈) such that serv ∈ SNI≈∼.

51

Chapter 4. Modular Specification with Dependency Clusters

Example 4.3. We provide here two different Dependency Clusters for the
service pay.

Vis2 := 〈Ini(pay).(true), Fin(pay).(true),
Ini(registerSales).(true), Fin(registerSales).(true)〉

LowIO2 := 〈Ini(pay).(ccnr), Fin(pay).(0), Ini(registerSales).(ccnr),
Fin(registerSales).(0)〉

LowState2 := 〈0〉

Vis3 := 〈Ini(pay).(true), Fin(pay).(true),
Ini(registerSales).(true), Fin(registerSales).(true)〉

LowIO3 := 〈Ini(pay).(0),Fin(pay).(0), Ini(registerSales).(prodId),
Fin(registerSales).(0)〉

LowState3 := 〈product〉

The Dependency Cluster indexed by 2 represents the information flow illus-
trated in Figure 4.1 with the solid yellow arrows. The Dependency Cluster
indexed by 3 is displayed in Figure 4.1 with the dashed green arrows.

Since we allow in our specification a powerful way of declassification,
there does not exist something as a “smallest” Dependency Cluster. We can
construct arbitrarily many different Dependency Clusters for any service.
Therefore, we can not provide a set of Dependency Clusters for a service
which describe all dependencies of information in the service.

Example 4.4. We used LowState3 := 〈product〉 in the example, but we
could also specify LowState3 := 〈product%2〉, LowState3 := 〈product%4〉
and so on. Also any combination of parameters can be used for defining
Dependency Cluster, i.e. instead of Ini(registerSales).(prodId, ccnr), we
could specify Ini(registerSales).(prodId + ccnr).

Interestingly, Dependency Clusters are compositional, in the sense that
given two Dependency Clusters (∼1,≈1) and (∼2,≈2) for a service serv,
their combination (∼1,≈1) + (∼2,≈2) := (∼1 ∩ ∼2,≈1 ∩ ≈2) is also a
Dependency Cluster for serv.

Theorem 4.1 (Dependency Cluster Compositionality). Let d1 = (∼1,≈1)
and d2 = (∼2,≈2) be Dependency Clusters for a service serv. Then d1 + d2
is a Dependency Cluster for serv.

Proof for Theorem 4.1. Assume serv is non-interferent with respect to (∼1
,≈1) and (∼2,≈2). Let ∼:=∼1 ∩ ∼2 and ≈:=≈1 ∩ ≈2.

We first show that serv is visibility-preserving w.r.t. (∼,≈). Select arbi-
trarily σ, σ′, t, t′ such that 〈handlerserv;σ〉

tat′−−→ 〈SKIP;σ′〉 and tB I ∼ 〈〉.

52

4.3. Dependency Clusters and Services

By definition of ∼ and ≈, this implies tB I ∼1 〈〉 and tB I ∼2 〈〉. Since
d1 and d2 are Dependency Clusters for serv, this means tBO ∼1 〈〉 and
tBO ∼2 〈〉, and by definition of ∼ also tBO ∼ 〈〉.

Now, we assume t a t′ B I ∼ 〈〉. Again, by definition of ∼ and ≈,
this implies ta t′ B I ∼1 〈〉 and ta t′ B I ∼2 〈〉 and since d1 and d2 are
Dependency Clusters σ ≈1 σ

′ and σ ≈2 σ
′ which implies by definition of ≈

also σ ≈ σ′. Therefore serv is visibility preserving w.r.t. ∼ and ≈.
Second we show non-interference.
Select σ1, σ2, σ

′
1, σ
′
2, t1, t2 arbitrarily such that σ1 ≈ σ2 and

〈handlerserv;σ1〉
t1−→ 〈SKIP;σ′1〉 and 〈handlerserv;σ2〉

t2−→ 〈SKIP;σ′2〉
Now assume t1BI ∼ t2BI, which, by definition of∼means t1BI ∼1 t2BI

and t1 B I ∼2 t2 B I.
Since serv is non-interferent w.r.t. (∼1,≈1) and (∼2,≈2), we know that

σ′1 ≈1 σ
′
2 and σ′1 ≈2 σ

′
2, and therefore by definition of ≈ also σ′1 ≈ σ′2.

With an argument of the same structure, we also get ∀t′1 ≤ t1, t
′
2 ≤

t2 · t′1 B I ∼ t′2 B I =⇒ ∃t′1 a t′′1 ≤ t1, t′2 a t′′2 ≤ t2 · t′1 a t′′1 ∼ t′2 a t′′2)
And therefore d1 + d2 is a Dependency Cluster for serv. /

The composition of the specifications in Example 4.3 is again the Depen-
dency Cluster indexed by 1 from our initial example in Example 4.2.

According to Theorem 4.1, it is sufficient to show two Dependency Clus-
ters independently in order to gain a composed, potentially more complicated,
Dependency Cluster. Ideally, it is possible to identify simple Dependency
Clusters (in the sense of an applied analysis method) which describe infor-
mation flows inherent to the implementation of a service. More complicated
clusters, which are usually necessary to compare information flow to an
attacker-motivated security policy, can be generated by composing these
simple Dependency Clusters.

The composition of two Dependency Clusters is a weaker non-interference
specification than requiring the service to be non-interferent w.r.t. both
Dependency Clusters.

Example 4.5. Assume the state equivalence specifications LowStatea := 〈a〉
and LowStateb := 〈b〉 and their composition LowStateab := 〈a, b〉 The program
a := a+ 1; b := b+ b produces equivalent poststates, if executed in equivalent
prestates all three Dependency Cluster. However the program a := a + b
satisfies the specification LowStateab, but not LowStatea.

Since Dependency Clusters are properties only depending on services,
they hold independent from the environment a DSC is deployed in and other
services interacting on the same state.

53

Chapter 4. Modular Specification with Dependency Clusters

4.4 Dependency Clusters and Components

We can use Dependency Clusters for services to abstractly describe depen-
dencies of information caused by the execution of a service. However, we
cannot directly use Dependency Clusters for services to describe the flow
of information caused by the execution of a DSC, i.e. arbitrary sequential
compositions of services provided by a DSC. Definition 3.9 states that we
require an equivalence relation such that all services are non-interferent w.r.t.
this DSC-global equivalence relation. Dependency Clusters for a service,
however, do not consider all state variables of the state or even the state
variables used by the service. Similarly, we require an equivalence relation
over messages for all services provided by a DSC. A Dependency Cluster
does not necessarily provide us with the information if high information is
provided as a parameter during a service call.

Example 4.6. See for example the Dependency Clusters we defined so far
for the service pay in Example 4.2 and Example 4.3. None of the Dependency
Clusters mention the state variable countbuy. In this case the reason is
that this variable is not mentioned in the code of the service, it is never
involved in any calculation and therefore its classification is irrelevant for the
service. Practically, it would be surprising, if a variable not mentioned in the
implementation of a service would be mentioned in a service-local, attacker-
independent specification. Also the variable prodprice is not mentioned.
In this case, however, the reason is that there was no Dependency Cluster
identified in which the variable was specified to contain low information.
The variable is involved in other flows caused by the service.

Similarly, a Dependency Cluster may not mention a service for the same
two reasons. And for the same two reasons, maybe respective messages are
irrelevant for the service implementation or it is just not mentioned in the
specification.

A typical approach in program analysis to deal with irrelevant parts
of states, and similar with irrelevant services required by a DSC, is called
framing (Kassios [2006]). Framing uses an abstract description of an upper
bound of relevant variables and the services required by a particular service.
An assignable set describes the variables which may at most be changed by
a service and a callable set for a service describes the services that are at
most required by the service. The assignable set indirectly describes for all
variables not in the set that the content of the variable, and therefore the
security level of their contents, is not changed.

Definition 4.2 (Assignable Set for Services). F ⊆ V is an assignable set for
a service serv, iff
∀σ, σ′, t · 〈handlerserv;σ〉 t−→ 〈SKIP;σ′〉 =⇒ ∀v ∈ V · v ∈ F ∨ σ(v) = σ′(v)

54

4.4. Dependency Clusters and Components

When making arguments about pre- and poststates of a service with a
given assignable set, we use the anonymization function anon : S×P(V)×S 7→
S. The function anon(σ, V, σ′) yields a state σanon such that for all variables
v σanon(v) evaluates to σ′(v) if v ∈ V and to σ(v) otherwise.

Similar to the assignable set, a callable set specifies a list of services
which can at most be called by a service. Every service not in this set is
irrelevant for the information flow caused by the service.

Definition 4.3 (Callable Set for Services). C ⊆ S is a callable set for a
Service serv, iff
∀σ, σ′, t, t′,m · 〈handlerserv;σ〉

tamat′−−−−−→ 〈SKIP;σ′〉 =⇒
((∃v ∈ D, c ∈ C · m = c!v ∧ c = Ini(serv′)) =⇒ serv′ ∈ C)

Example 4.7. In our example, an assignable set for pay is 〈countcheck〉, for
buy it is 〈product, prodprice, prodamount, countbuy〉. A callable set for pay
is 〈registerSales〉 and for buy it is the empty set.

We can use Dependency Clusters for services, combined with assign-
able and callable sets to check for a potential DSC-global non-interference
specification (∼g,≈g), if serv ∈ SNI≈g

∼g , solely based on known Dependency
Clusters of the service.

Theorem 4.2. Let C be a callable set for service serv and F an assignable
set for serv. A tuple (∼g,≈g) is a Dependency Cluster for serv if there exists
a Dependency Cluster (∼serv ,≈serv) for serv, such that

∀m,m′ · m ∼g m′ =⇒ m ∼serv m
′ (4.1)

∧ ∀σ, σ′ · σ ≈g σ′ =⇒ σ ≈serv σ
′ (4.2)

∧ ∀m,m′(m ∼serv m
′ ∧m ∈ C) =⇒ m ∼g m′ (4.3)

∧ ∀σ, σ′, σp, σ′p · (σ ≈g σ′ ∧ σp ≈serv σ
′
p)

=⇒ anon(σ,F, σp) ≈g anon(σ′,F, σ′p). (4.4)

Proof. Assume we have ∼g,≈g and ∼serv,≈serv, such that conditions 4.1 to
4.4 hold.

We first show that serv is visibility-preserving with respect to ∼g,≈g.
Let σ, σp, t, t′ such that 〈handlerserv;σ〉

tat′−−→ 〈SKIP;σp〉, tB I ∼g 〈〉. So, for
all input messages m in t it holds that m ∼g � and since condition 4.1 holds,
it also holds m ∼serv �, and therefore tB I ∼serv 〈〉. Since (∼serv,≈serv) is
Dependency Cluster for serv, we know t B O ∼serv 〈〉. Since C is callable
set for serv, we know for all output messages m in t by Definition 4.3 and
Theorem 4.2, condition 4.3 we also know m ∼serv � =⇒ m ∼g � and
therefore tBO ∼g 〈〉.

55

Chapter 4. Modular Specification with Dependency Clusters

Further, we know σ ≈serv σp and since F is an assignable set, we know
by Definition 4.2 that σp = anon(σ,F, σp).

Since ≈g is an equivalence relation, we know σ ≈g σ and since (∼serv
,≈serv) is a Dependency Cluster for serv, we know σ ≈serv σp. With
Theorem 4.2 condition 4.4, we get anon(σ,F, σ) ≈g anon(σ,F, σp) , i.e.
σ ≈g σp.

Now we show equivalence of the poststates: Assume σ ≈g σ′ and fur-
thermore 〈handlerserv;σ〉 t−→ 〈SKIP;σp〉 and 〈handlerserv;σ′〉 t′−→ 〈SKIP;σ′p〉.
Due to Theorem 4.2, 4.2, also σ ≈serv σ′ and since (∼serv,≈serv) is a De-
pendency Cluster for serv, also σp ≈serv σ′p holds. Since F, we know due
to Definition 4.2 that σp = anon(σ,F, σp) and σ′p = anon(σ′,F, σ′p) and
therefore with Theorem 4.2 condition 4.4 we know σp ≈g σ′p.

Finally we show equivalence of the communicated traces: Assume t1 ≤ t
and t′1 ≤ t′ such that t1 B I ∼g t′1 B I. Due to Theorem 4.2 condition 4.1,
it also holds that t1 B I ∼serv t′1 B I and since (∼serv,≈serv) is Dependency
Cluster for serv, there exists t2, t′2 such that t1 a t2 ≤ t and t′1 a t

′
2 ≤ t′

and t1 a t2 ∼g t′1 a t′2. Since C is a callable set for serv, we know according
to Definition 4.3 for all m,m′ in t1 a t2 and t′1 a t′2 respectively m,m′ ∈ C
and by Theorem 4.2 condition 4.3 we know m ∼serv m′ =⇒ m ∼g m′ and
therefore t1 a t2 ∼g t′1 a t′2.

So combined, (∼g,≈g) is Dependency Cluster for serv. /

Condition (4.1) states that input messages which are equivalent w.r.t. the
DSC-global equivalence relation, are also equivalent w.r.t. the service-local
equivalence relation. Condition (4.2) ensures that if two states are equivalent
w.r.t. the global state equivalence relation, then they are also equivalent w.r.t.
the service-local relation. Indirectly, this ensures that if all other services
provided by a DSC ensure equivalence w.r.t. the global equivalence relation
for their poststate, then serv is guaranteed to be executed in prestates which
are equivalent w.r.t. the service-local specification.

Condition (4.3) states that it is guaranteed that all output messages of
a service are considered equivalent service-locally if they are also globally
equivalent. However, the service-local equivalence relation may be more
relaxed for outputs which are not generated by the service. In a similar
fashion, the service guarantees in condition (4.4) that the part of the state,
which is actually changed by the service, is changed such that this part is
also equivalent w.r.t. the DSC-global state-equivalence relation.

Example 4.8. Remember the Dependency Cluster indexed by 1 in Exam-
ple 4.2. We know this Dependency Cluster is, according to Theorem 4.1 a
Dependency Cluster for pay, since it is the intersection of the Dependency
Clusters indexed by 2 and 3 (see Example 4.3).

56

4.4. Dependency Clusters and Components

Assume the following Dependency Cluster, which adds specifications for
the service buy.

Vis4 := 〈Ini(pay).(true), Fin(pay).(true),
Ini(registerSales).(true), Fin(registerSales).(true),
Ini(buy).(true), Fin(buy).(true)〉

LowIO4 := 〈Ini(pay).(ccnr), Fin(pay).(0),
Ini(registerSales).(prodId, ccnr),
Fin(registerSales).(0),
Ini(buy).(prod), Fin(buy).(true)〉

LowState4 := 〈product, countbuy〉

Additional to the specifications for pay, this specification states that the
parameter prod of buy is low, as is the variable countbuy. While the
specification of countbuy actually is irrelevant for service pay (i.e. neither is
it required to contain low information by pay, nor is it in the assignable set
such that pay might store high values in the variable), in this Dependency
Cluster the specification states that all values stored in product has to only
contain low information.

We can use Theorem 4.2 to show for service pay that it is non-interferent
w.r.t. this specification. Since we know that pay is non-interferent w.r.t.
the Dependency Cluster indexed by 1 and we know by specification the
assignable set and the callable set for the service, no program analysis is
necessary, but a first order logic verification is sufficient.

Theorem 4.2 allows us to check non-interference of a service against a
DSC-global non-interference specification only using specifications of the
service. Practically, we first have to find a DSC-global specification. One
way to achieve this is to use relevant Dependency Clusters of all services
provided by a DSC and intersect them. As a result, we get a non-interference
specification for the entire DSC, and we have to check the condition from the
theorem for each service. An example how this can be applied is discussed
in Chapter 8.

Theorem 4.2 makes Dependency Cluster especially useful for evolving
DSCs. If a DSC is deployed into a new context, i.e. the considered attackers
change, also the domain-motivated security specification changes. This
might cause changes to the implementation of single services, and only these
changed services have to be re-verified against new Dependency Clusters.
All Dependency Clusters of the other services are still valid and we can
re-use them for construction of relevant information flow specifications. If
the implementation of services is only optimized, i.e. the actual behavior
of a service is unchanged and only the implementation is changed, only
the already existing Dependency Clusters of the changed service has to be
re-verified. The composition of Dependency Clusters still is valid.

57

Chapter 4. Modular Specification with Dependency Clusters

Example 4.9. We consider here two use cases. In the first case, assume the
Cart DSC should be re-used in a new context. Due to a changed attacker
model, it is required that only the last four digits of the credit card number
are low, instead of the entire credit card number. To realize this, the service
pay, implemented as in Example 2.3 has to be edited and instead of providing
the parameter ccnr to the service registerSales, the respective code is
changed:
temp = ccnr - (ccnr/10000)*10000;
registerSales(product, productprice, productamount, temp)
Where temp is a local variable. Since the code has changed, the Dependency
Clusters for pay have to be re-verified. We also require a new Dependency
Cluster for pay which expresses that only the last four digits are low. However
the Dependency Clusters for the other services can be re-used without
program analysis when they are verified against a new DSC-global tuple
(∼g,≈g) according to Theorem 4.2.

In a second case of evolution, we assume that the DSC is used in the
same context as in the previous example, but the implementation should be
optimized with the same functionality. The line we just added in pay above
is replaced by
temp = ccnr%10000
This time, we do not need to specify a new Dependency Cluster, since
the change was only an optimization which did not change the observable
behavior of the service. However, since the code has changed, the Dependency
Clusters for pay have to be re-verified. The Dependency Clusters for all
other services are still valid by definition, and even (∼g,≈g) is still valid,
such that we do not require program analysis for services that are unchanged
or a new proof according to Theorem 4.2.

4.5 Weakening Specifications

The equivalence relations on inputs and outputs which we gain by analyzing
dependencies in services as shown above do not necessarily match a security
policy for a DSC provided by a domain expert for the system under analysis.
The specification provided by a domain expert will mainly be motivated by
the attacker model gained from a threat analysis of a system.

As a result, a domain expert may decide that certain input is not neces-
sarily of high confidentiality, although the implementation of the DSC does
not provide this information in any way as an attacker-observable output.
At the same time, the domain expert may decide that some output is not
accessible directly or indirectly by a possible attacker and therefore may hold
high information, although the DSC does not actually provide any secret
information via the respective channel.

58

4.5. Weakening Specifications

In this case, the equivalence relation we gain from composing Depen-
dency Clusters does not exactly match the equivalence relation required by
specification, but is more strict than actually necessary. We can relax an
equivalence relation over messages by allowing to accept low input, although
high input is expected, and we can allow the environment to treat low output
of the DSC as high output. We call an equivalence relation ∼w with this
property a weakening of ∼.

Definition 4.4 (Specification Weakening). An equivalence relation ∼w is a
weakening of ∼, iff

m1 ∼w m2 ∧ m1,m2 ∈ I =⇒ m1 ∼ m2

∧ m1 ∼ m2 ∧ m1,m2 ∈ O =⇒ m1 ∼w m2

Example 4.10. Assume the DSC Cart from Example 2.3 with the changes
made in Example 4.9 is deployed in a an environment. The domain expert
may provide us with an attacker-motivated specification expressing that
the cashier may know the last five digits of the credit card number. The
specification we gained from bottom-up program analysis, however, provides
us with a more strict specification allowing at most the last four digits to be
visible to the cashier. In this case, we can not directly use our bottom-up
specification as an argument for security against this attacker. However, the
attacker-motivated specification is a weakening of the bottom-up specification.

If a service is non-interferent w.r.t. a specification (∼,≈), then it is also
non-interferent w.r.t. any weakening of ∼.

Theorem 4.3. Let serv be a service with serv ∈ SNI≈∼ and ∼w a weakening
of ∼. Then serv ∈ SNI≈∼w

.

Proof. Follows directly from Definition 3.12. We strengthen the left hand
side of the inner implication and weaken the right hand side. /

On first sight Theorem 4.3 seems to be a technicality. However, the
theorem serves as an important connection between bottom-up specifications,
which Dependency Clusters are, and top-down specifications, gained from
context- and attacker-motivated analysis. It frees the system engineer from
finding non-interference specifications for already implemented DSCs which
exactly fit the domain-driven idea of secrecy. Thus it serves as a glue which
allows flexibility when bringing together domain expertise and context-
independent program analysis.

Theorem 4.3 can easily be extended to DSCs. If all services are non-
interferent w.r.t. (∼,≈), they also are non-interferent w.r.t. (∼w,≈) and
therefore the DSC is non-interferent w.r.t. (∼w,≈) according to Definition 3.9.
We can verify with this theorem that our evolved Cart DSC is secure against
the attacker, although the required and verified information flows differ.

59

Chapter 4. Modular Specification with Dependency Clusters

4.6 Conclusion
In this chapter we introduced the notion of Dependency Clusters which
describe ideally small dependencies between inputs, outputs and parts of a
state. Dependency Clusters can be used as building blocks to gain complex
non-interference specifications for services, DSCs, and compositions. Since
bottom-up non-interference specifications, which Dependency Clusters are,
most likely do not exactly match a domain-driven non-interference specifica-
tion, we provided the weakening theorem which states under which conditions
a bottom-up non-interference specification implies the domain-driven security
specification.

Program analysis techniques are only required to show that a non-
interference specification is a Dependency Cluster for a service, while com-
bining Dependency Clusters either comes for free (within a service), or only
FOL conditions have to be shown to be valid (within components and for
the domain-driven non-interference specification).

Dependency Clusters have two major advantages. For one, we have illus-
trated that Dependency Clusters lead to robust non-interference specifications
in the case of a changing environment or when DSCs evolve.

Second, Dependency Clusters are also useful to combine different program
analysis tools. For example in previous publications (Greiner et al. [2017b]
and Greiner et al. [2017a]) we combined a fully automatic tool with a tool
for deductive program verification to identify simple Dependency Clusters
for all services in a system. For more complicated Dependency Clusters,
i.e. Dependency Clusters using some form of declassification, we used a
program analysis tool based on deductive verification, which requires manual
interaction, but is very precise. We discuss the interactive tool in detail and
the combination of the tools for a case study in Chapter 8.

The automatic tool alone would not have been able to verify the system
as secure due to declassification. With the interactive tool alone verification
would have been a very laborious. However the combination allowed the
verification with a reasonable effort.

60

5
Related Work

Non-interference in general is a well-researched security property. The
origins go back to strong dependency by Cohen [1977] and the definition of
non-interference by Goguen and Meseguer [1982]. State-of-the-art research,
related to the results presented in the first part of this thesis, can be separated
into (1) non-interference for interactive programs exchanging parametrized
messages with its environment, where secrets are inputs and outputs during
the run of a program; and (2) non-interference for batch-programs, where
partly high and partly low input is provided as a state at the start of the
program and the security property has to hold in the state after termination
of the program.

5.1 Non-Interference in Interactive Programs

Work on non-interference for programs with intermediate communication
with its environment is manifold. Non-interference is discussed using event
systems, for example by Mantel and Sabelfeld and Mantel [2002], or process
calculi, e.g. Focardi and Gorrieri [1994], Ryan and Schneider, and Pottier.
In both contexts, the environment is not modeled explicitly, but as traces or
streams of input and output events.

The work closest to ours uses labeled transition systems as representations
of programs and explicitly takes the environment of a program in the form of
strategies into consideration. Modeling the environment by using strategies
was pioneered by Wittbold and Johnson. Here, the environment is separated
into high and low users of a system, each modeled as a strategy, and providing
high and low input respectively. O’Neill et al. present a formal analysis
of non-interference for interactive programs in the presence of strategies.
Clark and Hunt [2009] show that for deterministic programs, it is sufficient
to model the environment as input-streams. Input-streams, in contrast to

61

Chapter 5. Related Work

strategies, do not take the observation of an execution of the program into
consideration, i.e. all input is predetermined.

Rafnsson et al. add an additional dimension to the specification of pa-
rameters of messages as low and high type. Rafnsson et al. [2012] define the
presence of messages as a possible secret, which leads to strategies, which
are able to block program execution by not providing further input on a
channel. The resulting non-interference property is very restrictive. Nearly
all programs receiving intermediate secret messages as inputs followed by low
outputs are considered insecure according to this property. Take, for example
the program read(x ← α); read(y ← β); write(1 → γ), where an event
on channel γ reveals that an event on channel β previously was provided to
the program. If the presence of events on channel β is high, the observable
communication has to be equivalent, independent from communication on
this channel.

By using cooperative environments, we make the non-interference prop-
erty more applicable in cases where we have some reason to assume a cooper-
ative environment. More concretely, we employ contracts which are assumed
in component-bases system engineering to hold for every environment the
component is deployed in. While the call of a service is still considered a
possible secret, the termination of a called service is not and therefore the
program can not be blocked by receiving the service termination as a high
input. After composition of DSCs, the fact that a service is called still is a
secret and can not be observed by an attacker.

Further, we extend the work by Rafnsson et al. [2012] with declassification
of information, according to Sabelfeld and Sands [2009] in the what-dimension
by using equivalence relations for the specification of secret information in-
stead of previously used type systems. This extension allows us to specify
parts of communicated parameters as high and low and preserve this spec-
ification over interface boundaries between components. Our extension is
a generalization of the previously used three dimensions of high and low
for communicated content and the secrecy of the existence of a message.
We can express specifications according to the type system proposed by
Rafnsson et al. with our equivalence relations. A channel H of type high,
specifying that the existence of messages on H is high, can be modeled with
the equivalence relation H.v ∼ � for all v; a medium channel M specifying
that the existence of a message on M is low, while the content is high is
modeled byM.v � � for all v andM.v ∼M.v′ for all v, v′; and a low channel
L, where the message’s existence as well as the content is low is specified by
L.v � � for all v and L.v ∼ L.v′ if v = v′. Nevertheless, the compositionality
proof performed by Rafnsson et al. [2012] does not apply in our more general
case, so we provide a new compositionality proof for Theorem 3.1.

Vanhoef et al. provide a similar notion of declassification which allows
declassification of partial information using a project function for specifi-
cation. Vanhoef et al. additionally allow the declassification of aggregated

62

5.2. Non-Interference in Batch Programs

information over a history of events, making the declassification policy state-
ful. Their work builds on results by Sabelfeld and Sands [2001], who allow
the specification of information flow properties using partial equivalence
relations for sequential batch programs. For enforcement of the policy, they
propose a dynamic approach based on secure multi-execution, but do not
provide a compositionality result for their non-interference property.

In contrast to Vanhoef et al. we aim for re-usability of components
in different contexts, possibly with several different security lattices. In
this setting a dynamic enforcement of non-interference using secure multi-
execution is not practical, since we expect the cost of multi-execution to be
too high in this case. We aim for a static and reusable analysis of components,
which makes a compositional non-interference property necessary. Therefore,
we prove compositionality for our extension of the strategy-based approach
by Rafnsson et al. In contrast to Sabelfeld and Sands, we consider interactive
programs instead of batch programs.

Clark and Hunt [2009] show that for deterministic LTS a strategy-based
notion of non-interference is equivalent to a stream-based non-interference
notion, if the specification is limited to high and low channels. Rafnsson et al.
[2012] show that this is also the case for deterministic LTS, if additionally the
specification of the presence of messages as high or low is allowed. We assume
that noth non-interference notions are also equivalent if equivalence relations
are allowed for specification, as presented here, although, we do not provide
a proof. Nevertheless, we presented non-interference for components using a
strategy-based notion. For one, we consider this strategy-based notion to
be more intuitive when communicating security properties of systems and
components to stakeholders, which do not have a formal security background.
Second, we find the idea of cooperative environments, which we require for
cooperative non-interference for components, to be easier to comprehend
than abstract limitations of potential streams to be considered.

5.2 Non-Interference in Batch Programs

When considering compositionality of services, we extend non-interference
for batch programs with intermediate message passing. A discussion on
non-interference in batch programs can be found in Barthe et al., Joshi and
Leino [2000], Amtoft and Banerjee [2004], and Darvas et al.. Here two runs
of a program started in two equivalent, but underspecified, initial states are
compared. The program is secure, if the terminal states of both runs are
equivalent with respect to some specification of secrets in the state.

Sabelfeld and Sands [2001] propose the PER model for information declas-
sification using partial equivalence relations, but without interactive message
passing with the environment. Sabelfeld and Myers [2004] introduce escape
hatches as a specification mechanism for precise semantic declassification

63

Chapter 5. Related Work

designed for analysis of batch programs without message passing using type
systems. Amtoft and Banerjee [2007] present a notion of non-interference for
batch programs where state equivalence is specified using an agree operator.
Two states are equivalent, if they agree on on a set of expressions, i.e. if
the expressions evaluate to the same values in both states. This technique
allows conditional declassification of information, and also supports different
equivalence relations over states in the pre- and the poststate.

We disallow by definition different equivalence relations for the pre-
and the poststate for service non-interference in order to ensure that non-
interferent services are sequentially compositional. We extend the common
notion of non-interference for batch programs with intermediate event com-
munication and we relate it to non-interference for interactive programs
by providing a compositionality result for components, which states that
non-interferent batch programs result in non-interferent interactive programs
in the case of components.

5.3 Rely-Guarantee Style Non-Interference

Rely-Guarantee style non-interference is a technique where parts of a pro-
gram are analyzed individually while relying on some assumption on the
environment of the partial program. The analysis then guarantees a non-
interference property for the partial program, if it can rely on the assumption
made. For composing several partial programs it has to be checked whether
assumptions of partial programs are consistent with guarantees provided by
the other programs it is composed with. Our non-interference property for
LTS and DSC can be considered as a rely-guarantee approach in that a DSC
assumes other components in the environment to be non-interferent w.r.t.
the non-interference specification.

Traditionally, rely-guarantee style non-interference is used for modular
non-interference properties for concurrent programs communicating over a
shared state, e.g. multi-threaded programs with each thread being considered
a partial program. Mantel et al. [2011] propose an approach where assump-
tions and guarantees express for threads whether or not the access state
variables by writing them or reading from them. Murray et al. [2016] extend
the approach to allow state-dependent assumptions for shared resources, i.e.
their work allows assumptions like a variable x may be accessed, if another
variable y has the value 0.

64

5.4. Compositional Specifications

5.4 Compositional Specifications
Composing specifications is a frequently used technique in functional ver-
ification. For example the conjunction and disjunction rules (Reynolds
[1982]) in Hoare logic (Hoare [1969]) allow a conjunctive and disjunctive
composition of Hoare triples, i.e. specifications. A common application of
this rule can be found in design by contract approaches. For example, the
specification language JML uses the also keyword to specify several pre-
and postcondition tuples for one method. Analysis can be limited to each
tuple individually, while the combination of the contracts can be used when
applying the contract. Composing functional contracts is also useful in the
context of class inheritance.

Separation logic (Reynolds [2002]) is a technique for reasoning about local
changes on the state caused by a program while gaining global properties.
This can be seen as another application of composing specifications for
programs. The frame rule allows to separate parts of pre- and postconditions
of a program into one part which is modified by the program and one part
which is not modified. We use a similar technique for Theorem 4.2.

Our framework provides the first notion of non-interference for services
where the specification is compositional. In fact, we make heavy use of com-
posing non-interference specifications when composing Dependency Clusters
and thus gain DSC-wide and system-wide non-interference specifications.

Framing as an abstract specification for relevant parts of a state w.r.t.
a program (i.e. service) was introduced by Kassios [2006]. We use their
result for consistency checks when composing non-interferent services to
non-interferent DSCs. Since framing allows us not to require a specification
of every variable on the state, we gain a more flexible condition to be checked
and we even gain a first-order logic condition which does not require program
analysis for consistency checks.

65

6
Conclusion

In the first part of this thesis, we formalized components as DSCs, services,
and compositions. Further, we defined a non-interference property for DSCs
using an explicitly model for the environment a DSC runs in. Building
on these definitions, we introduced Dependency Cluster as modular build-
ing blocks for specification and verification of non-interference in DSCs.
Figure 6.1 illustrated how the different contributions relate to each other.

In Chapter 2 we provided a formalization of components as DSCs. A DSC
is an LTS which provides its functionality as services to its environment, en-
sures that services are executed sequentially and all services terminate. DSCs
can be composed to compositions which communicate with each other via
message passing. We deliberately use the abstract notion of LTS to describe
DSCs in order to provide results independent from concrete programming
languages and technologies for implementing distributed systems.

In Chapter 3 we discussed non-interference for DSCs from a conceptual
point of view. Specification of high and low input and output information
of a DSC or composition is given in the form of equivalence relations,
which makes the specification language expressive. It allows nearly arbitrary
declassification of input information either encoded in parameters of services
or in the existence of messages. We use strategies as an explicit model of the
environment a DSC runs in. Strategies allow an intuitive understanding of
the relation between non-interference specifications and security properties.
A potential attacker is a part of the environment who can observe the low
output information and may know the low input information. A DSC is
non-interferent if an attacker can not distinguish between two environments
providing the same low input.

We formally state this intuitive definition of non-interference in Def-
inition 3.6 for interactive systems in general. Thus, we provide the first
compositional non-interference notion for interactive programs which sup-
ports what-declassification and specification of message existence as low
information. In Definition 3.9 we provide a non-interference notion specially

67

Chapter 6. Conclusion

Figure 6.1: Definitions and Theorems in the Framework (green, dotted: con-
ceptual; blue, dashed: constructive)

designed for components, i.e. DSCs. By making the assumption that the en-
vironment adheres to basic properties which are common in component-based
system engineering, i.e. all called services terminate and the environment does
not leak high information, we gain a more precise notion of non-interference.
In Theorem 3.2 we show that non-interference for DSCs is compositional, an
important property for component-based systems.

In Definition 3.12 we combine non-interference for batch programs and
interactive programs to gain a novel non-interference notion for services.
We assume services to be easier to analyze since they are in general rather
simple programs. We show that it is sufficient to show that all service
provided by a DSC are non-interferent in order to show that the entire DSC
is non-interferent (Theorem 3.3).

In Chapter 4 we take a more constructive point of view on non-interference
specification and analysis. While in Chapter 3, we provide a top-down
approach, i.e. given a non-interference specification, what does it mean for a
DSC to be non-interferent, in Chapter 4 we discuss a bottom-up approach,
i.e. given a component what information does depend on each other, and
how can a security guarantee against an attacker be constructed from this
information.

We introduce Dependency Clusters as a novel concept for modular de-
scriptions of information dependencies in services, DSCs and compositions.
Dependency Clusters are compositional specifications (Theorem 4.1) in the
sense that we can combine different Dependency Clusters of a service and

68

gain a new specification of information dependencies without requiring an
additional program analysis. Whether or not a specification is a Dependency
Cluster for a service only depends on the implementation of the service,
in particular it is independent from other services provided by a DSC or
the environment a DSC runs in. As a result Dependency Clusters are ro-
bust specifications for evolving components and components deployed in
new environments. Dependency Clusters, as non-interference specifications
in Chapter 3, support expressing what-declassification and dependency on
message existence.

Furthermore we show that we can use Dependency Clusters to build non-
interference specifications for DSCs. After selecting relevant Dependency
Clusters of different services provided by a component, only a rather simple
FOPL property has to be shown to be valid Theorem 4.2. Dependency Clus-
ters can be used as building blocks for complex non-interference specification
for DSCs, while program analysis techniques are only necessary to analyze
services. Compositionality is shown without program analysis.

A bottom-up approach, which is supported by Dependency Clusters,
most likely does not lead to a non-interference specification which exactly
expresses security against an attacker, for example identified by a domain
analysis. We therefore show in Theorem 4.3 that it is sufficient to show for
a bottom-up specification a FOPL condition to show that it is compatible
against an attacker-motivated specification and therefore the DSC is secure
against this attacker.

The framework as described in the first part of this thesis is meant to serve
as a basis for specification approaches and program analysis techniques for
practically used technologies for distributed systems. We show in the second
part of the thesis how our framework can be used to design a specification
language for non-interference of systems integrated in a graphical specification
language for distributed systems. We also show that based on our framework
we can implement program analysis tools for distributed systems implemented
in the object-oriented programming language Java.

69

Part II

Instantiating the Framework

71

7
Model-Based Non-Interference

Specification

In this chapter, we instantiate the framework from the first part of this thesis
as a specification language for information flow properties in a model-based
system-engineering process.

The term model, as used in this chapter, refers to a graphical and in-
tuitive representation of a system under design. A model typically has
different stakeholders at different phases of a system design process. During
requirements elicitation the model serves as a communication tool between
the system designer and domain experts As a result of this phase, the model
makes requirements for a system explicit and ideally unambiguous. The
system architect describes in the model the internal architecture of the system
and thus documents which components and compositions are responsible
for realizing parts of the functionality of the overall system. During imple-
mentation, the model provides the requirements for each component which
allows the programmer to implement the functionality of a single component
without being distracted from overall system requirements. During quality
assurance, the model provides black-box specifications for components and
compositions against which integration tests can be written.

A model describes one system throughout the entire development process.
For each stakeholder views show a particular part of the entire model such that
the focus is on the information necessary this stakeholder, while irrelevant
information is hidden. Thus, the model can describe the same subsystem as
black-box or white-box, depending on the purpose of a particular view.

Several properties of our framework as described in Part I are useful in
this scenario. For one, we can describe non-interference of a subsystem from
a black-box point of view, since the information flow specification ∼ only
considers inputs and outputs of a system. Thus, the specification does not
require information about the internal workings of the subsystem. Second, a

73

Chapter 7. Model-Based Non-Interference Specification

non-interference specification ∼ directly provides a specification for a single
component, which can be used by a programmer directly as a requirement
for the component he is about to implement. Third, the compositionality
properties of our non-interference notion allows a system architect to decide
early in the development process whether a particular architecture describes
an overall secure system.

In this chapter, we describe a graphical specification language for non-
interference properties for component-based systems as an extension of
the Palladio Component Model (PCM). By giving formal semantics to the
graphical representation of the system in the model, we show that the
properties of non-interference (e.g. compositionality) also hold for non-
interference specifications in the model. In the next section, we introduce
the Palladio Component Model as far as needed in the context of this
chapter and show how formal constructs from Part I map to elements in
a model. In Section 7.2, we give a brief introduction of an extension of
the PCM for security specifications in which non-interference specifications
are embedded. In Section 7.3, we discuss syntax and semantics of non-
interference specifications in the PCM in detail. We also show in Section 7.3
that non-interference as specified in a PCM model is compositional. After
this, we present related work and finally conclude.

The results presented in this chapter are an extension of parts of the work
by the author in previous publications (Kramer et al. [2014] and Kramer
et al. [2017]).

7.1 Palladio

“Palladio is a software component modeling approach that focuses on the
prediction of quality attributes of a software architecture” (Reussner et al.
[2016]). The approach provides the Palladio Component Model, a meta model
which describes the syntax of a graphical specification language for software
architectures, and the deployment of software to hardware. Additionally,
the PCM provides structures for modeling software behavior and tools for
analysis of expected response time, throughput, resource utilization, and
others for a given model of a component-based system. The approach aims
for early analysis of quality of service properties of software architectures
before they are actually implemented and deployed.

In this section, we introduce the meta-model PCM, which describes the
syntax of the graphical specification language. The PCM defines model
elements that can be used in Palladio and how they may be related with each
other. We concentrate on components in the PCM. For further information
on behavior modeling, deployment and other topics, we refer the interested
reader to Reussner et al. [2016].

74

7.1. Palladio

The presentation of the PCM in this section is based on Reussner et al.
[2016], and we additionally provide a formalization of the elements using the
notion from Part I in order to make clear how PCM components and DSCs
as defined in Chapter 2 are related.

7.1.1 Meta Model in Palladio

The PCM is a meta model and thus describes all possible models that can be
created using the PCM. We call an instantiation of the PCM, i.e. an actual
model, a PCM model. The central entity of a PCM model is the repository ,
which contains Datatypes, Interfaces and Components. Components are abstract
units encapsulating functionality and are subject to composition. Datatypes
are used as types of parameters for interfaces, while an interface describes a
set of functionalities, which can then be used by components. Interfaces are
“abstract descriptions of units of software. They can be used as points of
interaction between components”(Reussner et al. [2016]). According to the
PCM, an interface has a name and contains a list of service signatures. Each
signature has a name, a return data type and a list of parameters, each again
having a name and a data type.

A Component “is a contractually specified building block for software,
which can be composed, deployed, and adapted without understanding its
internals”. (Reussner et al. [2016]) As part of the contract, for example, a
component has to guarantee that it provides a specified set of services, if the
services it is specified to require are provided by the environment it runs in.
Additional contracts can also be given for more precise functional properties
using pre- and postconditions, or for non-functional properties like response
time and resource usage. A non-interference property, as discussed later in
this chapter, can also be seen as a contract.

According to the PCM, a Component has a name and a set of required roles
and provided roles. Each role again has a name and relates the component
it belongs to with an interface. Note that components do not directly have
interfaces, but are only related to interfaces which exist independent from
whether or not a component actually requires or provides it. This allows
that the same interface (as a model element) can be required and provided
by different components or even by the same component multiple times. The
PCM differentiates Basic Components and Composite Components, while the first
is a basic building block for systems and the latter consists of an assembly
of other components (i.e. a composite component represents a composition
of components).

Example 7.1. Figure 7.1 shows a repository diagram illustrating the differ-
ent entities of our shop example. The model contains the basic components
Cart, Sales, and Controlling . Each of the components have provided and re-
quired roles, indicated by the arrows from the components to the interfaces.

75

Chapter 7. Model-Based Non-Interference Specification

Figure 7.1: PCM Repository Diagram for the Shop example

For example, the component Cart provides the interfaces Controlling2CartIF
and CartIF , and requires Cart2SalesIF . Each interface declares a set of service
signatures which are contained in the respective interface element in the
diagram. The composite component Shop is related via provided roles to the
interfaces CartIF , SalesIF , and ControllingIF .

A PCM component can be seen as a construction plan for deployed
software units, comparable to classes in object-oriented programming lan-
guages. In order to gain an instance of a component (comparable to an
object in in object-oriented programming languages), the component has
to be instantiated. In a PCM model Assembly Contexts serve as instantia-
tions of components. An Assembly Context has a name and a reference to the
Component it instantiates. An assembly context also provides and requires
the interfaces which the instantiated component provides and requires via
its roles. Each assembly context can only be embedded into exactly one
composite component. In order to deploy a component into more than one
composite component or more than one instances of a component into the
same composite component, each of these instances are modeled as their own
assembly context.

Assembly contexts are used to model the internal structure of a composite
component. Additionally to the properties discussed above, a composite
component has a set of assembly contexts. The set of assembly contexts
describes the instances of components contained in the composite component.
Assembly Connectors relate required roles to provided roles of assembly contexts.
Delegation Connectors relate required roles of an assembly context to a required
role of the containing composite component, and provided roles accordingly.
Each required role of an assembly context has to be related to exactly one
provided role of another assembly context or exactly one required role of

76

7.1. Palladio

Figure 7.2: PCM assembly view for the Shop example

the composite component expressing which component’s functionality is
requested if the component related to the assembly context uses one of the
services described by the interface. Related roles also have to match in the
sense that the interfaces have to be compatible. We do not discuss how
compatibility is defined in this context, but refer the interested reader to
Reussner et al. [2016]. Instead, we require related interfaces to be the same
interfaces.

Example 7.2. In Figure 7.2 the internal structure of the composite com-
ponent Shop is shown. The components Cart, Sales, and Controlling are
instantiated by the assembly contexts cartAC , salesAC , and controllingAC re-
spectively. The internal required and provided roles are wired with assembly
connectors, while the Shop’s provided roles are connected to provided roles
of assembly contexts via delegation connectors (e.g. the role CartIF with role
ca).

A PCM model formally defines the structure of a component-based system
from the overall architecture, to its internal components, to single service
signatures. In the following subsection, we additionally provide a formal
model for the behavior of components and thus relate PCM components to
DSCs as defined in Part I.

7.1.2 From Palladio Components to Distributed Service Com-
ponents

In Chapter 2 we intuitively described components as DSCs in our framework
as follows: A DSC consists of an underspecified initial internal state and a
program. The program defines a sequential execution of a set of provided
services which can read and write from and to the internal state, and call
required services. Service calls are synchronous, i.e. after calling a service,

77

Chapter 7. Model-Based Non-Interference Specification

the DSC’s execution halts until the called service has terminated. All services
provided by a DSC have to terminate if all intermediately called services
terminate. Service calls and return values are communicated via messages, a
combination of channels and values.

In the following we show how our formal notion of DSCs relates to PCM
components. The PCM does not provide strict semantics or limitations for
the behavior of components in general, but limits the definition to what a
component guarantees based on provided and required roles. In order to
consider PCM components as DSCs, we need to make additional restrictions
to the behavior of a component.

Definition 7.1. A BasicComponent bc is a DSC, if

1. it is ensured that executions of all services of interfaces provided by bc
are sequential,

2. all calls to required services are synchronous,

3. all services implemented by bc terminate,

4. all parameters of all services of all provided and required interfaces are
passed by value, not by reference, and

5. the internal state of bc is neither write- nor readable by the environ-
ment.

Item 5 actually is more strict than necessary in order to map a Palladio
component to DSCs from our framework. It may be allowed that several
components are able to access shared constants. However, this can be seen
as each component having its own constants available in its internal state as
a copy.

A Composite Component cs is a composition (see Definition 2.4) if all
encapsulated components of all child assembly contexts of cs are either Basic
Components and DSCs or Composite Components and compositions.

We do not define whether these restrictions have to be ensured by the
implementation of the component or by the environment the component
runs in. This is a practical decision, since there are many frameworks used
for realizing PCM models as programs, each dealing with these kinds of
limitations to the programming model differently. For example, in widely used
programming frameworks, like the Java Enterprise Edition (see Chapter 8 for
details), the application container as the execution environment provides the
necessary guarantees. In other cases, for example relational databases, these
guarantees may be more implementation driven. Whether the guarantees
mentioned above are realized by implementation or the environment may
also depend on the granularity of the perspective. For example, it may

78

7.1. Palladio

differ whether a database system is considered abstractly or if the actual
implementation of the database is considered.

In the remainder of this chapter, we assume all Basic Components and
all Composite Components to have the properties described above. In the
remainder of this subsection, we describe how a component specified in the
PCM can be translated into our notion of DSCs as defined in Chapter 2.

Formalization of Basic Component

First we describe how Basic Components can be translated into our framework.
According to the PCM, a Basic Component bc has a set of provided and
required roles, which we refer to by bc.provides and bc.requires respectively.
For a role r we refer to the set of services declared in the respective interface
of the role by r.services. We define

provbc := {r.s | r ∈ bc.provides ∧ s ∈ r.services}
reqbc := {r.s | r ∈ bc.requires ∧ s ∈ r.services}

For each service, we require an initial and a terminating channel according
to Chapter 2. The channel name has to be unique for each service. While
services are unique within an Interface, the same Interface can be provided
and required by one component, or provided or required via several different
roles. In order to distinguish these channels, we encode the role under which
services are required and provided into the channel. Further, we have to
distinguish call and termination channels. We therefore define channels as
tuples consisting of the client component, the server component, the service
name and the direction:

Definition 7.2.

Ini(r.s) := (r, this, s,CALL) if r.s ∈ provbc
Fin(r.s) := (r, this, s,TERM) if r.s ∈ provbc
Ini(r.s) := (this, r, s,CALL) if r.s ∈ reqbc
Fin(r.s) := (this, r, s,TERM) if r.s ∈ reqbc

The channel name encodes a calling component, the called component
of a service call, the called service, and whether the channel is the initial
or terminating channel. If the component provides the respective service,
the calling component, which at this point is not defined, is represented
by the role over which the service is called and the called component is
represented by the keyword this. If the component requires the service, the
calling component, i.e. bc, is represented by this and the called component is
represented by the respective role name.

79

Chapter 7. Model-Based Non-Interference Specification

In the example shown in Figure 7.1 and Figure 7.2 the channels defined
for the component Controlling are

(cont, this,numBuys,CALL), (cont, this,numBuys,TERM),
(cont, this,numPays,CALL), (cont, this,numPays,TERM),
(cont, this,numChecks,CALL), (cont, this,numChecks,TERM),
(this, cart, getAllNums,CALL), (this, cart, getAllNums,TERM).

In Chapter 2 we left the domain of values underspecified. Given a PCM
model, we can make the domain concrete. The PCM defines primitive data
types as Primitive Type for integers, rational numbers, boolean and similar.
For each Primitive Type the domain D contains a set of respective values,
i.e. integers for INT , rational numbers for DOUBLE , {true, false} for BOOL.
The PCM allows a model to define Collection Data Types, a list of values of a
certain type. For each Collection Data Type, the domain contains all tuples
(name, list(l1, ..., ln)), with name being the name of the collection data type,
and l1, ..., ln each being a value of the inner type of the collection data type.
To model structured data types, i.e. data types which contain several values
of different types, the PCM provides Composite Data Types. Each composite
data type has a name and a set of inner variables. For each Composite Data
Type, the domain contains tuples (name, (id1, v1) . . . (idn, vn)) with name
being the name of the Composite Data Type, idi the name of the i-th inner
variable and vi being a value of the inner variable.

Messages are, as in Chapter 2, tuples of channels and values, while
we assume for a cooperative environment to only supply well-typed input
messages.

Combining Definition 7.1 and Definition 7.2, we can represent the LTS
defining the behavior of a component according to Chapter 2 as a configura-
tion of the initial state and the body of the component.

Definition 7.3. For a Basic Component bc which provides the set of services
provbc = {r1.s1, ...r1.sk, ..., rm.s1, ..., rm.sn}, we define the corresponding
DSC as

handlerr .s := read(p← Ini(r.s)); bodyr .s; write(res → Fin(r.s))
bodybc := handlerr1.s1 u . . . u handlerrm.sn

LTSbc := 〈bodybc;σbc〉

where r.s ∈ provbc, bodyr .s is the body of the service r.s for an implementation
of bc, and σbc is the initial state of an instantiation of bc.

We reuse the program constructs for reading and writing channels from
Chapter 2. However, we do not require the implementation of the body of a
service to actually use the simple while language defined there.

80

7.1. Palladio

Formalization of Composite Component

In Chapter 2 composition of DSCs makes use of the fact that required and
provided services use the same initial and terminating channels. Additionally,
we make the assumption that at most two components communicate over the
same channel, one by calling the respective service, the other one by providing
the respective service. In a composite component, however, a provided
interface of one assembly context may be related by assembly connectors
to several assembly contexts requiring the interface. Or several delegation
connectors may relate several provided roles of a composite component to
one provided roles of an assembly context.

As a first step, we remove these n : 1 relations for provided roles by a
program transformation. As stated in Section 2.4 if more than one DSCs use
the same service provided by another DSC, we can just add a copy of that
service to the body of the DSC with renamed initial and terminating channels.
In order to be consistent with the channel naming above, additionally to
duplicating the service, we also duplicate the provided role of the component
and thus gain a role with a fresh name. The LTS for a basic component after
adding the additional interfaces is then defined as in Definition 7.3. As a
result, we can assume in the remainder that each provided interface of an
assembly context within a composite component is at most related to one
required interface via an assembly connector or one provided interface via a
delegation connector.

In the PCM the allocation of required and provided roles of components
communicating with each other is defined by Assembly Connectors. In order
to formalize a composite structure as a composition of DSCs according to
Definition 2.4 in our framework, we have to ensure that services provided and
required by assembly contexts and related via assembly connectors within
a composite component use the same initial and terminating channels. We
achieve this by defining a renaming function ρ for channels which depends on
the allocation contexts and allocation connectors of a composite component.

Definition 7.4. Let c be a Composite Component. We define the renaming
function ρc : C 7→ C, such that for all assembly contexts a and b embedded
in c and all Assembly Connectors binding role p of the component embedded in
a and role r of the component embedded in b, and all Delegation Connectors
binding role i of a component embedded in an Assembly Context to the role e

81

Chapter 7. Model-Based Non-Interference Specification

of c such that

ρc(p, this, s,CALL) := (a.r, b.p, s,CALL)
ρc(p, this, s,TERM) := (a.r, b.p, s,TERM)
ρc(this, r, s,CALL) := (a.r, b.p, s,CALL)
ρc(this, r, s,TERM) := (a.r, b.p, s,TERM)
ρc(i, this, s,CALL) := (e, this, s,CALL)
ρc(i, this, s,TERM) := (e, this, s,TERM)
ρc(this, i, s,CALL) := (this, e, s,CALL)
ρc(this, i, s,TERM) := (this, e, s,TERM)

ρc(α) := α otherwise.

The renaming function ρc implies a renaming function ρc : T 7→ T for traces
defined as

ρc(〈〉) := 〈〉
ρc(α.v a t) := ρc(α).v a ρc(t)

The renaming function replaces the roles and this used as placeholders
above by the respective instantiation of the components, i.e. the assembly
contexts, and the roles. If a provided interface of an assembly context is
delegated to a provided interface of the composite component, the role used
as a placeholder for the calling component in the channel is replaced by
the respective role of the composite component. Analogous, the renaming
function replaces roles for required interfaces of an assembly context delegated
to a required role of the composite component.

The renaming function for channels implies a canonical renaming function
for traces, for which we overload the function operator. Renaming a trace
with ρc : T × T amounts to renaming all channels in a trace according to
ρc : C × C. In the remainder of this chapter it should be clear from the
context if a renaming is applied to a channel or a trace.

82

7.1. Palladio

Example 7.3. In the example shown in Figure 7.1 and Figure 7.2, the
renaming for the channels is according to Definition 7.4 as follows:

ρShop((cont, this,numBuys,CALL))
= (this.ControllingIF , controllingAC .cont,numBuys,CALL),

ρShop((cont, this,numBuys,TERM))
= (this.ControllingIF , controllingAC .cont,numBuys,TERM),

ρShop((cont, this,numPays,CALL))
= (this.ControllingIF , controllingAC .cont,numPays,CALL),

ρShop((cont, this,numPays,TERM))
= (this.ControllingIF , controllingAC .cont,numPays,TERM),

ρShop((cont, this,numChecks,CALL))
= (this.ControllingIF , controllingAC .cont,numChecks,CALL),

ρShop((cont, this,numChecks,TERM))
= (this.ControllingIF , controllingAC .cont,numChecks,TERM),

ρShop((this, cart, getAllNums,CALL))
= (controllingAC .cart, cartAC .toCont, getAllNums,CALL),

ρShop((this, cart, getAllNums,TERM))
= (controllingAC .cart, cartAC .toCont, getAllNums,TERM).

Using the renaming function for traces, we can define a renaming of the
LTS defining the behavior of a component after channel renaming.

Definition 7.5. Let c be a component instantiated by assembly context a in
composite component d. Let further cLTS be the LTS defining the behavior
of c. We define the renaming function ρLTS ,d : LTS 7→ LTS for a respective
renaming function ρd : T× T such that ∀t · ρLTS ,d(cLTS) ρd(t)−−−→⇔ cLTS

t−→.

The renaming function for an LTS can be seen as modeling the instantia-
tion of a component with an assembly context within a composite component.
Note that for all messages that can be communicated by a component d and
all messages the translated LTS can communicate, ρc is bijective. Also, for all
traces that dLTS can communicate and all traces ρcdLTS can communicate,
the renaming function over traces ρc is bijective.

We can now define the behavior of a composite component as a composi-
tion of the assembly contexts within the composite component by synchro-
nizing their LTS on their shared channels.

Definition 7.6. Let c be a composite component with assembly contexts
a1, . . . , an instantiating components c1, . . . , cn. Let further ρc : C×C be the
renaming function for c according to Definition 7.4 and ρLTS ,c : LTS × LTS

83

Chapter 7. Model-Based Non-Interference Specification

be the renaming function for c according to Definition 7.5. The LTS for c is
defined as

cLTS := (((ρLTS ,c(c1LTS) |[synch(c, (c1), (c2))]| ρLTS ,c(c2LTS))
|[synch(c, (c1, c2), (c3))]| ρLTS ,c(c3LTS))
. . .

|[synch(c, (c1, ..., cn− 1), (cn))]| ρLTS ,c(cnLTS))

with

synch(c, (c1, ..., cn), (d1, ..., dm)) :=
{(ci.r, dj .p, s,CALL), (ci.r, dj .p, s,TERM) |
∃ AssemblyConnector binding role r of ci to role p of dj , and
i ∈ {1 . . . n}, j ∈ {1 . . .m} and
s is declared by the Interface which r is a type of}

The composition for a composite component is constructed by iteratively
composing the translated LTS of each component, i.e. the LTS of the assembly
contexts, and synchronizing them on their shared channels.

Example 7.4. In the running example, the composition for the assembly
contexts cartAC and controllingAC is according to Definition 7.6 as follows:

ρLTS ,Shop(cartACLTS)
|[(controllingAC .cart, cartAC .toCont, getAllNums,CALL),

(controllingAC .cart, cartAC .toCont, getAllNums,TERM)]|
ρLTS ,Shop(controllingACLTS)

7.2 Security Specification as an Extension of the
PCM

Recently the PCM was extended to support explicit security specifications
for systems. See Kramer et al. [2017] for details. The presentation this
section is the result of the author of this thesis in close cooperation with
other researchers and should not be considered a contribution of the author.
In this section, we present the basics of the overall security extension of
Palladio in order to provide the context for information-flow specifications in
the next section. Security specifications are provided on three levels: explicit
attacker specification, physical deployment and securing mechanisms, and
information flow specifications for software components.

Attacker types are explicitly provided in the model as entities that should
not use the system at all as well as entities which have a legitimate reason to

84

7.3. Information Flow Specification

use the system. For each attacker it is specified which physical locations he
can access, while it is up to the domain expert to decide and argue why the
attacker is not able to access other areas. Reasons for access restrictions may
be due to not-modeled security mechanisms like camera surveillance within
a building or locks on doors to certain areas. Also, for each attacker, the
domain expert makes a judgment on types of tamper protections an attacker
type is willing and able to overcome. For example, an entity not related to a
company may be willing to destroy seals on hardware, while an employee
of the company may not take this risk in an area under video surveillance.
Additionally, for each attacker it can be specified that he should be allowed
to have access to a certain type of information (see datasets in the following
section), because he requires this information to fulfill his role.

From a physical point of view it can be specified for hardware resources
at which physical locations they are deployed and which mechanisms are
provided to secure the hardware against tampering. For hardware resources
connecting parts of a system it can be specified which information transmitted
over the links is secured by encryption.

The explicit attacker model and the specification of hardware in combina-
tion with software components deployed on the hardware, it can be deduced
which attacker has physical access to information exchanged between software
components. In order to decide whether this access poses a security risk,
it is necessary to know if information this attacker should not know about
is exchanged via accessible interfaces. Judging whether this is the case is
twofold. For one, it has to be specified which categories of information are
passed via accessible interfaces, and two, it has to be ensured that infor-
mation passed via these interfaces indeed only contains information of the
respective category. Access to information can be checked as a combination
of physical access of an attacker to an interface and specification of the
information passed via the interfaces. The condition that information passed
via an interfaces indeed only contains information of the specified category
is a non-interference property for a software component.

In the following section we introduce an information flow specification
language for PCM models that relates input and output information with
categories of information and states non-interference requirements for com-
ponents.

7.3 Information Flow Specification

In this section we apply information flow specifications as annotations of
services. An information flow specification serves two different purposes in
the context of the security framework as introduced above, useful in different
phases of system design. From a technical point of view, an information
flow specification states a non-interference property as a requirement for

85

Chapter 7. Model-Based Non-Interference Specification

Figure 7.3: Information flow specification for Cart component

the behavior of a component. The specification states which outputs of a
component are influenced by which inputs. From a domain-oriented point of
view, an information flow specification states which attacker or stakeholder
is intended to know which input information and which outputs an attacker
may potentially be able to actually observe.

We first introduce the syntax of non-interference specifications the ex-
tension of the PCM, and define its semantics using the formalization of
components as LTS from earlier in this chapter. Following syntax and se-
mantics, we show that compositionality properties for non-interference as
shown in Part I also hold for non-interference specifications in PCM models.

7.3.1 Syntax and Semantics

Typically, a realistic component-based system manages information from
different sources intended for different stakeholders used for different purposes.
It is easy to see that a simple lattice separating information into high and low
is not sufficient to describe intended or actual flows of information in a system
or component. We therefore introduce Datasets as abstract descriptions for a
collection of information (the term “information” is used informally here).
Each dataset defines a lattice of high and low, stating that information which
is in a dataset is low and information not in the dataset is high. If output
information in a dataset is at most influenced by information in the same
dataset, clearly this output information at most contains information in that
dataset.

Example 7.5. Figure 7.3 shows an information flow specification for the
Cart component. The example shows the dataset contData expressing the

86

7.3. Information Flow Specification

dataset representing information which an entity working in the controlling
department may gain access to from a domain point of view.

A dataset is a model element and has as only property a name. In the
following, we typically refer to a dataset by its name. In order to specify
that some input or output of a component is specified to be in a dataset,
we annotate the respective service signature with �D includes L�, where
D is a dataset and L is a list of expressions, each expression either ranging
over the parameters of the signature, the return value of the signature (here
denoted by \result), or the keyword \call. The keyword \call states that
the existence of a call to the respective service, as well as its termination, is
low.

Example 7.6. The specification shown in Figure 7.3 states for the services
buy , checkCart, and pay declared in the interface CartIF the existence of a call
(and its termination) to the respective service is an element of contData, i.e.
an entity which may know contData, also may know whether these services
are called. The parameters, however, are not mentioned in the annotations
meaning that the information transmitted as values of the parameters is
high. For the service clearCart, the call itself is high with respect to contData,
as is registerSale in the interface Cart2SalesIF . For service getAllNums in the
interface Controlling2CartIF all return values are low, as is the call and its
termination.

Note that the information flow specification is a property of an inter-
face, and therefore all components providing or requiring the interface via
a role have to satisfy the resulting non-interference property. Applying
the specification to the interface, not the role, makes compositionality, as
described later in this chapter, easier. On the other hand, this approach
reduces re-usability of interfaces and components compared to applying the
specification to a role, which would make the specification a property of the
component instead of a the interface.

We do not fix here a concrete language for expressions used in a non-
interference specification, except for the keywords \result and \call. De-
pending on the purpose of the model and the domain of the modeled system,
different languages may be a reasonable choice. The objects constraint
language (OCL) (Warmer and Kleppe [1999]) may be a useful language for
expressions in a general setting, while JML may be useful if the model is used
as a basis for code generation of Java programs. The choice of language may
also depend on other tools to which parts of the model are an input for further
analysis. We assume, however, that there exists some kind of evaluation
function eval, which allows evaluation of expressions given concrete values
for parameters and return values. For a list of expressions L ranging over
the parameter p, and p having value v we refer to the evaluation of L with

87

Chapter 7. Model-Based Non-Interference Specification

evalv(L). Lists of expressions are evaluated by evaluating each expression in
the list separately, yielding a list of values.

We use JML as a specification language for expressions in examples in
the remainder of this chapter.

Given a list L of expressions as introduced above, we can split the list
in elements either concerning information in the call event of a service and
elements concerning information in the termination event.

Lcall := 〈〉 iff L = 〈〉 (7.1)
(〈e1〉a L)call := Lcall iff e1 ranges over \result (7.2)
(〈e1〉a L)call := 〈e1〉a Lcall otherwise (7.3)

Lterm := 〈〉 iff L = 〈〉 (7.4)
(〈e1〉a L)term := Lterm iff e1 ranges over parameters (7.5)
(〈e1〉a L)term := 〈e1〉a Lterm otherwise (7.6)

Example 7.7. In Figure 7.3, the specification for getAllNums defines the lists
L, Lcall, and Lterm as

L = \call, \result[0], \result[1], \result[2]
Lcall = \call
Lterm = \call, \result[0], \result[1], \result[2]

The semantics of the �D includes L� annotation is defined from a
component’s point of view. Each dataset defines in combination with the
�D includes L� specifications an equivalence relation over messages, i.e.
tuples of channels and values.

Definition 7.7 (Dataset Equivalence Relation). Given a component c and
a dataset D. The equivalence relation for messages w.r.t. the dataset D for

88

7.3. Information Flow Specification

component c is defined as

(p, r, s, dir).v ∼c,D �⇔ (7.7)
(p 6= this ∧ r 6= this)∨ (7.8)
(r = this ∧ c does not provides s via role p)∨ (7.9)
(p = this ∧ c does not require s via role r)∨ (7.10)
(s has annotation with D∨ (7.11)
(s has annotation with D,L∧ (7.12)

dir = CALL ∧ \call /∈ evalv(Lcall))∨ (7.13)
(s has annotation with D,L∧ (7.14)

dir = TERM ∧ \call /∈ evalv(Lterm)) (7.15)
(p, r, s, dir).v ∼c,D (p′, r′, s′, dir ′).v′ ⇔ (7.16)

((p, r, s, dir).v ∼c,D � ∧ (p′, r′, s′, dir ′).v′ ∼c,D �)∨ (7.17)
(p = p′ ∧ r = r′ ∧ s = s′ ∧ dir = dir ′∧ (7.18)

((r = this ∧ c provides s via role p∧ (7.19)
s has annotation with D,Li)∨ (7.20)

(p = this ∧ c requires s via role r∧ (7.21)
s has annotation with D,L))∧ (7.22)

((dir = CALL ∧ evalv((L)call) = evalv′((L)call))∨ (7.23)
(dir = TERM ∧ evalv((L)term) = evalv′((L)term)))) (7.24)

First, we define the invisible events (Line 7.7). All messages neither sent
nor received by the component are invisible (Line 7.8), as are all messages
communicated on services neither provided (Line 7.9) nor required (Line
7.10) by the component. Messages are also invisible w.r.t. the dataset D, if
there are annotations for the service adding any information to the dataset
(Line 7.11). For those services, which do have an annotation with D, the
message is invisible, if it represents a service call and the evaluated list
L, limited to calling expressions does not contain the marker \call (Line
7.12). Similar, a termination message is invisible, if the list L, limited to
termination expressions, does not contain the marker \call (Line 7.14).

Note that this specification language only allows to specify calls to be
either high or low. It does not allow to specify a service call to be high or low
depending on values of parameters, as allows our framework in Part I. This
design decision was made to avoid very long textual specifications in a model,
even if this means limiting the expressiveness of the specification language. If
in the future specifying services invisible depending on parameters is deemed
useful, the specification language can be extended in a straight forward way.

Two events are equivalent according to the specification (Line 7.16), if
both events are invisible (Line 7.17). Further, two events are equivalent if

89

Chapter 7. Model-Based Non-Interference Specification

they refer to the same caller and callee, both messages are sent because of
the same service, and both messages have the same the same communication
direction (i.e. call or termination) (Line 7.18). Further, the service referenced
in the channel is provided by the component and the component is the receiver
of the call (Line 7.19), or the service is required by the component and the
service is called by the component (Line 7.21). Finally, the specification lists
Lcall and Lterm respectively evaluate with the communicated values to the
same lists (Lines 7.23 and 7.24).

Example 7.8. In Figure 7.3 the equivalence relation for the component Cart
for dataset contData is defined (in part) as follows. We limit the presentation
of the equivalence relation to some examples of channels due to its verbosity.

(ca, this, buy,CALL).v ∼ � ⇔ false
(ca, this, buy,TERM).v ∼ � ⇔ false
(ca, this, clearCart,CALL).v ∼ � ⇔ true
(ca, this, clearCart,TERM).v ∼ � ⇔ true
(this, sales, registerSale,CALL).v ∼ � ⇔ true
(this, sales, registerSale,TERM).v ∼ � ⇔ true
(toCont, this, getAllNums,CALL).v ∼ � ⇔ false
(toCont, this, getAllNums,TERM).v ∼ � ⇔ false
(ca, this, buy,CALL).v ∼ (ca, this, buy,CALL).v′ ⇔ true
(this, sales, registerSale,CALL).v ∼ (this, sales, registerSale,CALL).v′

⇔ true
(toCont, this, getAllNums,TERM).v ∼ (toCont, this, getAllNums,TERM).v′

⇔ eval(v[0]) = eval(v′[0]) ∧ eval(v[1]) = eval(v′[1])
∧ eval(v[2]) = eval(v′[2])

A component c satisfies its non-interference specification for a dataset D
specified in the model with annotations of the form �D includes L�, if the
LTS of the component is non-interferent w.r.t. ∼c,D, i.e. cLTS ∈ Coopc-NI
w.r.t. ∼c,D according to Definition 3.9.

7.3.2 Soundness of Composition of Palladio Components

We have introduced the syntax for non-interference specifications for PCM
components and provided semantics for the specification using our frame-
work discussed in Part I. However, compositionality results are not directly
applicable. First of all, if a PCM component is non-interferent w.r.t. its
specification, this is not trivially true for the composition of components,
since channels and traces are renamed for assembly contexts, i.e. instan-
tiations of components. Second, the non-interference specification for a

90

7.3. Information Flow Specification

composite component is different than the specification of each component
and their composition. It is not directly clear that if each instantiated
component embedded in a composite component is non-interferent w.r.t. its
own specification, it is also non-interferent w.r.t. the composite component’s
specification.

We show in the following that if a component is non-interferent w.r.t.
its specification, there exists a non-interference specification such that the
instantiation of the component is non-interferent w.r.t. this specification.
After this, we discuss non-interference in composed assembly contexts. We
show that if two assembly contexts are non-interferent w.r.t. their own
specification, there exists a non-interference specification such that both
assembly contexts are non-interferent w.r.t. this specification. Finally, we
discuss non-interference for composite components. We show that if assembly
context contained in the composite component is non-interferent w.r.t. its
own specification, then the composite component is non-interferent w.r.t. its
specification.

First we show that non-interference is robust w.r.t. renaming of the
channels as described in Definition 7.4. In order to do this, we first define a
renaming function for equivalence relations w.r.t. a renaming function for
channels.

Definition 7.8. Given a Composite Component c, its renaming function ρc
according to Definition 7.4 and an equivalence relation ∼. We define a
renaming function ρc : (M × M) 7→ (M × M) such that α.v ∼ β.w ⇔
ρc(α).vρc(∼)ρc(β).w

The renamings of two messages are equivalent w.r.t. the translated
equivalence relation iff the original messages are equivalent to the original
equivalence relation. In the remainder, we write ∼c instead of ρc(∼).

Theorem 7.1. Given a component d embedded in an AssemblyContext in a,
embedded in a composite component c, and an equivalence relation ∼ such
that dLTS ∈ Coopd-NI w.r.t. ∼. It holds ρc(dLTS) ∈ Coopρc(dLT S)-NI w.r.t.
∼d

Proof. We proof the contra-positive. Assume ρc(dLTS) is not non-interferent
w.r.t. ∼d. That means, there exists an attack (Definition 3.7) (ω1, ω2, t) on
ρc(dLTS), such that ω1 |= ρc(dLTS) t−→ and for all t2 with ω2 |= ρc(dLTS) t2−→
it holds t �d t2.

We now construct an attack on dLTS w.r.t. ∼.
Let ω′1(s) = {α1.v1, . . . , αn.vn} :⇔ ω1(ρc(s)) = {ρc(α1).v1, . . . ρc(αn).vn}
and ω′2 analogous. Due to the definition of �d in Definition 7.8 it directly
follows ω′1 ∼ ω′2. Since the renaming function over channels is bijective, there
exists a trace s such ρc(s) = t. By definition of the renaming function for
LTS in Definition 7.5, we get ω′1 |= dLTS

s−→ . Since dLTS ∈ Coopd-NI w.r.t.

91

Chapter 7. Model-Based Non-Interference Specification

∼, there exists a trace s2 such that ω′2 |= dLTS
s2−→ . Again, by Definition 7.5

and additionally by definition of ω′2, we get ω2 |= ρc(dLTS) ρc(s2)−−−−→ . And
finally, by Definition 7.8 and s ∼ s2, we know that ρcs ∼c ρc(s2), and
therefore ρc(s2) is the witness contradiction the assumption that (ω1, ω2, t)
is an attack. /

We now show that if two components are non-interferent w.r.t. their own
specification, the instantiation of the two components within a composite
component are also non-interferent w.r.t. the intersection of the translated
equivalence relations.

Theorem 7.2. Let a be a Composite Component with renaming function ρa,
let D be a dataset, and c and d components embedded in a. Let further be
∼c,D and ∼d,D be the equivalence relations according to the specification of c
and d gained by applying Definition 7.7 and let cLTS ∈ CoopcLT S

w.r.t. ∼c,D
and dLTS ∈ CoopdLT S

w.r.t. ∼d,D. Let ∼:= ρa(∼c,D) ∩ ρa(∼d,D). Then it
holds ρa(cLTS) ∈ Coopρa(cLT S) w.r.t. ∼ and ρa(dLTS) ∈ Coopρa(dLT S) w.r.t.
∼.

Proof. We know according to Theorem 7.1 that ρa(cLTS) ∈ Coopρa(cLT S)
w.r.t. ρa(∼c,D) and ρa(dLTS) ∈ Coopρa(dLT S) w.r.t. ρa(∼d,D).

We assume towards contradiction that ρa(cLTS) /∈ Coopρa(cLT S) w.r.t.
ρa(∼), i.e. there exists an attack: ω1 ∼ ω2 and ω1 |= ρa(cLTS) t1−→ and for
all t2 with ω2 |= ρa(cLTS) t2−→ it holds t1 � t2. We show that there does
exist such a trace t2.

By definition of ∼, we know that for all messages m1 ∼ m2 it also holds
m1ρa(∼c,D)m2 and therefore also for all traces it also holds t1 ∼ t2 =⇒
t1ρa(∼c,D)t2, and thus ω1ρa(∼c,D)ω2.

Since cLTS ∈ CoopcLT S
w.r.t. ∼c,D and Theorem 7.1 (i.e. ρa(cLTS) ∈

Coopρa(cLT S) w.r.t. ρa(∼c,D)), we know there exists a trace t2 such that
ω2 |= ρa(cLTS) t2−→ and t1ρa(∼c,D)t2. For all messages in t1 and t2, either
they are communications between c and d, or they do not involve d. By
construction of ∼c,D (Definition 7.7) and the renaming function ρa, we
know that all messages which represent communication not involving d:
mρa(∼d,D)�. All messages which involve c as well as d in their communication
are due to calls or terminations of services which are either provided by c
and required by d or vice versa. Since c and d can only be bound via the
same interfaces, the services have the same specification in the PCM model.
Therefore, for messages m1,m2 involving c and d it holds m1ρa(∼c,D)m2 ⇔
m1ρa(∼d,D)m2. Therefore it has to hold that t1ρa(∼d,D)t2 and therefore
also t1 ∼ t2. This contradicts the assumption that no such trace exists and
therefore ρa(cLTS) ∈ Coopρa(cLT S) w.r.t. ∼.

The proof for ρa(dLTS) ∈ Coopρa(dLT S) w.r.t. ∼ is analogue. /

92

7.3. Information Flow Specification

Theorem 7.2 shows that we can intersect the equivalence relations we
gain from the PCM model for components and gain a common equivalence
relation for their assembly contexts by intersecting the equivalence relations
of each assembly context. Since both components are equivalent w.r.t.
the intersection, we can apply the Composition Non-Interference Theorem
(Theorem 3.2) and know the composite component is non-interferent.

It is left to show that the composition of all components embedded in a
Composite Component are also non-interferent w.r.t. the specification of the
Composite Component. Trivially, all messages which are communicated by
the Composite Component via the provided and required interfaces have the
same specification as the messages of the internal components, since they are
declared by the same interfaces with the same specifications in the model.
The composition however communicates additionally the internal messages as
outputs of the composition (messages on synchronized channels are considered
outputs of the composition). By construction of the equivalence relation for
the Composite Component (Definition 7.7), these outputs are specified to be
invisible. According to Definition 4.4 the equivalence relation gained from
the specification of the composite component is a weakening of the combined
equivalence relations gained from the specifications of the assembly contexts.
Therefore the composition is non-interferent w.r.t. the specification of the
Composite Component according to the Weakening Theorem (Theorem 4.3).

Theorem 7.3. Let c be a Composite Component with assembly contexts
a1, ..., an instantiating components c1, ..., cn. Let further D be a dataset
and each component ci be non-interferent w.r.t. its specification referring to
D. Then c is non-interferent w.r.t. its specification referring to D.

Making information flow specifications a property of service declarations
in interfaces instead of properties of roles was a design decision made above.
As a result, components, assembly contexts, and composite components
share a common non-interference specification, if they provide or require the
same interface via a role. This design decision directly provides us with a
non-interference guarantee for composed assembly contexts and composite
components, if each basic component in a system is non-interferent w.r.t. its
own specification.

However, this design decision makes components less re-usable, since,
if an interface is used in a different context, the required non-interference
specification can differ in the new context. This problem can be overcome
by making non-interference specifications a property of roles rather than
interfaces. Then, for composed assembly contexts it has to be shown that
required and provided interfaces related via assembly connectors or delegation
connectors are compatible w.r.t. their specification in order to make the
composition well-defined. Since we do allow in general declassification in our
specification language, this compatibility check is an undecidable problem,

93

Chapter 7. Model-Based Non-Interference Specification

which we consider impractical for a graphical specification language like the
PCM on an architecture level.

7.4 Related Work

A recent systematic overview of specification approaches for model-driven
system design for security properties can can be found in Nguyen et al. [2015].
One finding of the review is that many approaches concentrate on access
control properties, which is orthogonal to the work presented in this chapter.
We limit the discussion here to approaches which support information flow
specifications.

SECTET by Alam et al. [2004] is a specification language for security
requirements in workflow management systems. The main focus of this
approach is on the specification of access control mechanisms. Hafner and
Breu [2009] extend the specification language with basic security policies,
which allow the specification of confidentiality, integrity and non-repudiation
for documents. The specification is meant to be implemented using public
key encryption mechanisms, and thus specifies less of an information flow
property than a requirement for encrypting documents.

UMLSec by Jürjens [2005] extends UML with a multitude of security
related specification mechanisms ranging from fair exchange, over access
control, to information flow security. Information flow specifications are
given for specifications of dynamic behavior in the form of state machines
using UML stereotypes. The stereotype explicitly states the low information
(or high information for integrity properties). Semantics of information flow
properties in UMLSec are given as attacker knowledge, which makes it hard
to compare the non-interference notion with the notion underlying the work
presented in this chapter. Information flow properties in UMLSec are local
to activities, do not provide a specification of non-interference of components
and are to the best of our knowledge not compositional.

IFlow by Stenzel et al. [2014] extends UML by a UML profile for the
specification of confidentiality of data. Messages in sequence diagrams can
be annotated with security domains, and UML activity diagrams are used to
specify which security domains may not influence each other. IFlow supports
temporal declassification of information in the sense of a variable being
declassified after a particular action. Analysis on whether a behavioral model
of the system satisfies its non-interference specification is done by creating
code from sequence diagrams and applying information flow analysis tools
on the generated code (Katkalov et al. [2013]). The main differences to our
approach are that for one, IFlow does not support what-declassification,
including different security properties for different parameters of one message,
and, second, due to the underlying non-interference notion does not support
secrecy of message existence. Further, by using sequence diagrams for the

94

7.5. Conclusion

specification of the classification of information, a behavioral specification of
a system is required, while for our approach a static representation of the
system is sufficient.

secBIP by Ben Said et al. [2014] is a model-driven approach for explicit
information flow specification and analysis of components. The approach
distinguishes between event-flow and data-flow security, where data-flow
security is similar to our non-interference notion for services in Part I and
event-flow security is similar to non-interference for interactive systems. A
specification maps data variables, ports and interactions to security levels and
a policy defines allowed flows between security levels. One difference between
their work and ours is that they do not allow detailed specification of secrecy
of the content of messages, but only their existence. Also, they consider
event-flow security (similar to message equivalence in our framework) and
data-flow security (similar to state equivalence in our framework) as separate,
unrelated security properties. Our extension of Palladio is only concerned
with what they call event-flow security. We consider their data-security
a supporting property for compositionality of services, and irrelevant for
black-box specifications for components.

7.5 Conclusion

In this chapter we instantiated our framework as a graphical specification lan-
guage for non-interference properties of components specified in the Palladio
Component Model. Non-interference specifications are provided as annota-
tions of services in a PCM model. Further, non-interference specifications
are parameterized with datasets, i.e. abstract descriptions of information
managed by the modeled system. We provided semantics for non-interference
specifications based on LTS as used in our framework and we showed that
non-interferent components can be combined to non-interferent composite
components.

Parametrized specifications allow input and output information to be
precisely specified as high or low for different purposes, e.g. billing data and
delivery data, or based on a domain-oriented security lattice, like public,
internal, and top secret. Especially the notion of datasets allows to specify the
sensitivity of information close to the domain in which a system is used. Thus
our specifications can serve as a communication tool between stakeholders and
the system engineer during requirement elicitation. Compositionality of non-
interference for PCM components allows to limit information flow analysis
to basic components during quality assurance. Also, the specifications of
basic components directly provide a requirement for the programmer of a
component during the implementation phase.

Our specification language was applied in two case studies. Greiner and
Herda [2017a] applied our specification language to specify information flow

95

Chapter 7. Model-Based Non-Interference Specification

requirements for CoCoME (Rausch et al. [2008]), a case study describing
a cashier system of a retail store. Different entities involved directly or
indirectly in a purchase process or store management are considered as
attackers. For each entity one dataset is defined and the overall information
flow policy for the system is specified from a domain point-of-view, i.e.
for each entity it is specified, which input information the entity is meant
to gain knowledge about, and which outputs the entity is directly able to
observe. The system specification then is refined by additional specifications
for interfaces binding internal components.

In work by Kramer et al. [2017] a multi-user cloud storage system is
modeled, including security mechanism for physical accessibility of hardware
and encryption requirements for communication links. Multiple entities
interacting with the cloud storage system are modeled as potential attackers,
including users of the cloud, administration staff, unregistered guest users,
and others. For each potential attacker a dataset is declared and an extension
of the non-interference specifications as presented in this chapter are used
to label input and output information as an element of these datasets. An
analysis shows that the modeled system is secure w.r.t. the attackers, taking
information flow properties into account, combined with physical access
specifications and tampering powers of each attacker.

96

8
Deductive Verification of

Dependency Clusters in JavaEE

In this chapter, we preset a program analysis technique for Dependency
Cluster (as introduced in Chapter 4) for components implemented in the
Java Enterprise Edition. Our approach is based on the deductive verification
tool for Java programs KeY.

Many different techniques can be found in the literature for program
analysis for non-interference properties. A discussion of some of the tech-
niques can be found in Section 8.6. We are confident that several of these
techniques can be adapted to support our framework, however, each with
limitations unique to the approach. Automatic approaches typically lack
the precision necessary to analyze programs w.r.t. elaborate declassification.
Interactive and autoactive techniques, on the other hand, require manual
interaction, often making verification a time-consuming task.

One novel and important feature of our framework is that declassification
can be described very precisely on a semantic level. Therefore, we want to
present an analysis technique which supports this precision as far as possible.
We extend in this chapter the KeY-approach, a technique for reasoning
about Java programs based on the dynamic logic JavaDL. The analysis itself
is implemented in the KeY tool, an interactive theorem prover which can
read annotated Java source code, and translate specifications into JavaDL
formulas. By applying rules of a sequent calculus, KeY can auto-actively, i.e.
potentially with user interaction, verify the validity of the formulas.

In order to apply our framework to the KeY approach, we have to make
extensions on several levels: we extend the logic itself, introduce new rules
to the calculus, extend the specification language and create new proof
obligations for Dependency Cluster verification.

We first introduce JavaEE, a framework for implementing distributed
systems in the Java programming language. JavaEE is widely used in prac-
tice, often in web service architectures for implementing the business logic

97

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

of an application. We then introduce in Section 8.2 JavaDL, a dynamic
logic for reasoning about Java programs, and JML, a specification language
for Java programs. Both, JavaDL and JML, currently support sequential
Java programs, but not constructs necessary for remote method invocations,
the JavaEE equivalent of service calls. In Section 8.3 we extend JavaDL
by constructs required for reasoning about JavaEE programs and introduce
service contracts, a variation of method contracts which abstractly describe
the effects of remote method calls. In the section thereafter, we define an
extension of JML for Dependency Cluster specification for JavaEE services,
and apply our non-interference framework from Part I to gain proof obli-
gations for distributed programs implemented in JavaEE. As a result, this
allows us to verify for JavaEE components that they are non-interferent
w.r.t. an object-oriented Dependency Cluster specification. In Section 8.5
we apply our extension of KeY by verifying non-interference for a web shop
system. Finally, we present related work and conclude the chapter.

The results presented in this chapter are an extension of work by the
author previously published in Greiner et al. [2017b] and Greiner et al.
[2017a]. Parts of the results presented here are based on two Bachelor
Theses, which were supervised by the author of this thesis (see Diekhoff
[2017] and Krämer [2017]).

8.1 JavaEE

The Java Enterprise Edition (JavaEE) is a framework that extends the
Java programming language to modular, distributed, and highly scaleable
applications, aimed for business applications. JavaEE is specified in the
Java Specification Request (JSR) 342 (JavaEE [2013]). Our presentation in
this section is based on this document, while we concentrate on the parts
of JavaEE most relevant for our purposes. Hence, the presentation in this
section is not a complete introduction for JavaEE, but should only be seen
as an introduction of some concepts which we require in the remainder of
this chapter.

JavaEE separates low-level system requirements like transaction handling,
authentication, communication, and concurrency from the actual business
logic. The business logic is implemented as so-called applications, consisting
of a set of Enterprise Java Beans (EJBs), to which we refer to in the following
as beans. Beans are executed by containers, which are responsible to ensure
the low-level guarantees on which the application relies on.

98

8.1. JavaEE

8.1.1 Enterprise Java Beans

Beans are components of a JavaEE application and the services provided by
beans are defined in remote interfaces, i.e. Java interfaces with the annotation
@Remote.

Example 8.1. import javax.ejb.Remote;

@Remote
public interface CartIF {

public int buy(int prod, int price, int amount);
public int pay(int ccnr);

}

The interface CartIF defines the methods buy and pay. Since CartIF is
annotated with @Remote, the methods are declared to be remote methods.

A bean is implemented as a Java class which implements a remote
interface, and is additionally annotated, with @Stateless, @Stateful, or
@Singleton, declaring the bean a stateless bean, a stateful bean, or a singleton
bean. Stateless beans must not manage an internal state in the sense that
whenever a remote method provided by a stateless bean is called, the behavior
of the method execution is independent from an internal state. Stateful beans
may manage an internal state and can thus be used to keep information over
several remote method calls. Singleton beans also may manage an internal
state and are instantiated exactly once per application. Singleton beans can
be used to exchange information between different beans, since all beans
access the same singleton bean.

Message-driven beans are a third kind of bean which do not provide
return values with their remote methods. Remote methods provided by
message-driven beans can be called by another bean asynchronously, i.e. the
calling bean resumes its execution, while the message-driven bean executes
the called remote method.

We do not consider message driven beans in this chapter, however we
would like to note that we assume that our framework can be easily extended
to support this kind of asynchronous execution. Since we do not provide
formal proofs for this asynchronous behavior in our framework, we exclude
message driven beans from the further discussion.

A bean can hold a reference to another bean by implementing a field
of the respective remote interface type annotated with @EJB. At creation
time of the bean the container in which the bean is run, is responsible
to instantiate the field with a non-null object implementing the respective
remote interface, the proxy object. In order to call remote methods the bean
calls the respective method of the proxy object.

99

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

Example 8.2. The following listing defines the bean Cart. The annotation
@Stateful declares the bean to be a stateful session bean and the annotation
@EJB declares the field sale to contain a reference to a bean implementing
the interface Cart2SalesIF. The bean manages several fields representing
the product in the cart, its price, and the amount of the product in the
cart. Further, it manages the fields countbuy, countpay, and countcheck
to record how the bean is used by a customer. The bean implements
the functionality of the cart component of the running example we used
throughout Part I of this thesis.

@Stateful
public class Cart implements CartIF{

int product;
int prodprice;
int prodamount;
int countbuy;
int countpay;
int countcheck;

@EJB
Cart2SalesIF sale;

public int buy(int prod, int price, int amount) {... }
public Triple checkCart(int x) {...}
public int clearCart(int x) {...}
public int pay(int ccnr) {...}
public Triple getAllNums(int x) {...}

}

JavaEE defines some restrictions to implementations of applications.
Applications must not directly access persistent storage or manage sockets,
but have to use the API provided by the container. Applications must not
create or manage threads on their own, only the container may manage
concurrency. Also, applications must not access static fields, unless they are
declared final.

8.1.2 Container

Container are responsible for executing beans, managing their life cycle,
concurrent remote method calls, and forwarding remote method calls to the
respective objects actually implementing the called bean.

The life cycle of a stateless bean is undefined. The container may decide
if only one instance of the class is created at application start-up and all
remote method calls are redirected to this one bean, if for each call a new

100

8.1. JavaEE

bean is created, or anything in between. Typically, the container decides
on this strategy based on what is best for performance and memory usage.
Stateful beans belong to one client, e.g. one other bean holding a reference to
an associated proxy object, and all remote method calls to this proxy object
are forwarded by the container to this one bean. Therefore, the life cycle of
a stateful bean is defined by the life cycle of the client. Singleton beans are
created at start-up of the application and terminate with the application.

When a client makes a remote method call, the container uses the Java
API to serialize the parameters of the call and, after termination, the return
value. If the application is distributed, the serialized data is transmitted to
another container, where the respective called bean lives. Then the data
is deserialized and the respective method of the bean is called with the
deserialized parameters, or, in case of the return value, the deserialized
return value is provided the calling bean. Since the container ensures that
parameters are always passed by value and by disallowing beans to have
write-access to static fields, each bean manages its own state and two beans
can never have access to one reference.

By default, the container ensures that concurrent calls of remote methods
implemented by the same bean are sequential, i.e. from the bean’s point
of view, a remote method is only called after any previous call to a re-
mote method has terminated. Since beans are disallowed to create threads,
within one bean all remote method executions are single-threaded and no
concurrency can be caused.

We would like to note that JavaEE allows two ways for the programmer to
override the default concurrency management and allow concurrency within
one singleton bean by using special annotations. For one, the programmer
can declare by annotation read-only remote methods, which must not change
the state of the bean. Then read-only remote methods may be executed
concurrently, while remote methods marked to write the state may only
be executed without other threads executing the bean. And second, pro-
grammers may also define their own concurrency management, however this
has to be done very carefully. We assume in the following that there are
no concurrent remote method executions allowed in a bean, i.e. the default
configuration is chosen.

The container provides several guarantees: Remote methods are executed
sequentially, not concurrently. Parameters and return values are serialized
and deserialized, and beans must not manage threads. This combination
makes beans very similar to DSCs as defined in our framework.

101

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

8.2 JavaDL and JML

In this section, we introduce syntax and semantics of Java Dynamic Logic
(JavaDL), and explain some elements of the logic which are not common in
first order predicate logic. Further, we introduce the Java Modeling Language
(JML) as a specification language for Java programs. We limit the discussion
of JavaDL and JML to the extent needed in this chapter; for a full account
please refer to Weiß [2011] and Ahrendt et al. [2016]. The presentation in
this section is based on the foundations chapter by Scheben [2014].

8.2.1 JavaDL Syntax and Semantics

JavaDL is a first order dynamic logic (Harel et al. [2000]) tailored for the
Java programming language. Additionally to first order predicate logic
elements, JavaDL defines the diamond operator 〈p〉 where p is a sequential
Java program. The logic also contains updates {u}, which can be seen as
substitutions, directly built into the logic.

The syntax of JavaDL is based on signatures. A signature is a tuple
Σ = (F ,FUniqueP,V, (T ,4), α,Prg) where

• F is a set of function symbols,

• FUnique ⊆ F is a set of unique function symbols,

• P is a set of predicate symbols,

• V is a set of variable symbols,

• T is a set of types and 4⊆ T × T is the sub type relation,

• α is a static typing function for variables, program variables, functions,
and predicates,

• and Prg is a fragment of a sequential Java program

The set of function symbols consists of program variables PV and interpreted
function symbols. The set FUnique are function symbols which are marked
unique, which means for 0-ary function symbols that for pairwise different
symbols they are interpreted differently.

The signature contains common boolean operators like equality, implica-
tion, equivalence and others. In line with the notation common in JavaDL,
we use dotted symbols for these operators (=̇ for equality, →̇ for implication,
↔̇ for equivalence, . . .). In the remainder of this chapter, we introduce
several functions and predicates which we assume to have a corresponding
representation in the signature.

The grammar for JavaDL terms and formulas is straight forward, we
only consider here the grammar of the more special operators modality and

102

8.2. JavaDL and JML

update. If Frm is a formula, and p is a fragment of a sequential Java program,
then 〈p〉Frm is a formula. If v is a program variable of type A and t is a
Term of type A, then v := t is an update; if u1, u2 are updates, then u1 ‖ u2
(parallel update), u1;u2 (sequential update), and {u1}u2 are updates. If t is
a term, f is a formula, and u is an update, then {u}t is a term and {u}f is
a formula.

The type hierarchy resembles the type hierarchy of Java. T contains Any,
which is the supertype for primitive types like integers, and boolean. Any is
also the supertype for reference types like Object. T additionally contains
for a given Java program types of classes contained in the program. Parallel
to Any, the set also contains the type Heap for heaps and Field for fields of
objects. The type Seq is the type for the abstract sequence datatype, which
represents finite lists in the logic. We will extend T in the remainder of this
chapter with new types for events and remote methods and discuss them
where this becomes relevant.

A JavaDL formula is interpreted in a Kripke structure, which is a tuple
(Dom, I,S, δ, P) where

• Dom is a set of values, called the domain,

• I is a function assigning meaning to predicate symbols in P and function
symbols in F \ PV. The function is called interpretation function.

• S is a set of states consisting of functions assigning values to program
variables in PV,

• δ : Dom 7→ T is a function assigning types to the elements in the
domains, called the dynamic typing function,

• P associates to each program fragment a transition relation from
prestates to poststates.

Free variables are interpreted by a variable assignment β, as common in
first order logic. Formulas not containing updates or modalities are evaluated
as in first order logic. We write tD,s,β for a term t evaluated in Kripke
structure D, state s and variable assignment β. The notion D, s, β |= ϕ
states that formula ϕ evaluates to true in (D, s, β). The tuple (D, s) is called
a model of ϕ, if D, s, β |= ϕ for all variable assignments β.

The semantics for the diamond modality and updates is defined as follows:

• D, s, β |= 〈p〉ϕ holds, if and only if there exists a state s2 such that
(s, s2) ∈ ρ for ρ ∈ P , the transition relation for program p, and
D, s2, β |= ϕ. Intuitively, this means the program fragment p, started
in s terminates in s2 and ϕ holds in the state after execution of p.

• ({u}t)D,s,β = t(D,s
u,β) with su = valD,s′,β(u)(s) where

103

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

– valD,s′,β(x := t)(s) is the state stx defined as

stx(y)
{
tD,s

′,β if y = x
s(y) otherwise

– valD,s′,β(u1 ‖ u2)(s) = valD,s′,β(u2)(s′′) with s′′ = valD,s′,β(u1)(s)
– valD,s′,β({u1}u2)(s) = valD,s′′,β(u2)(s) with s′′ = valD,s′,β(u1)(s)

and
– valD,s′,β(u1;u2)(s) = valD,s′,β({u1} ‖ {u1}u2)(s)

• D, s, β |= {u}ϕ holds if and only if D, su, β |= ϕ holds, where su is
defined as above as su = valD,s,β(u)(s)

8.2.2 Fields, Heaps and Object Creation

Domain elements of type Field represent the fields in a Java program. The
tuple (o, f) with object o and field f is called a heap location. A heap is a
mapping from heap locations to values in the domain, where the program
variable heap of type Heap represents the current heap of a Java program.
The function selectA(h, o, f) returns the value of the heap location (o, f) with
type A on heap h, i.e. selectA models a field access. Heaps in JavaDL follow
the idea of the theory of arrays (Kassios [2006]). We omit here functions for
storing values on the heap.

Object creation in JavaDL is modeled with the field created, which is
TRUE if an object is created and FALSE otherwise. The value of the field
created can not be modified directly using the store function, but instead
the creation of an object is modeled by the function create(h, o), yielding
a heap which is equal to h except for selectbool(create(h, o), o, f) returning
TRUE . When a new object is created in a Java program, JavaDL assumes
that a previously non-created object is selected for creation deterministicly.
However, it is underspecified, which object is selected.

The function anon(h, a, h′), called anonymization function, is frequently
used in JavaDL to characterizes underspecified changes to heap. The location
set a is a set of locations denoting the locations of heap h which are at most
changed. Additionally new objects may be created in h′ which were not
created in h. For an object o and a field f the semantics of anon is formally
defined as

anon(h, a, h′)(o, f) =

h′(o, f) if (o, f) ∈ aandf 6= created

or(o, f) ∈ unusedLocs(h)
h(o, f) otherwise

The function unusedLocs describes the set of locations of non-created
objects in a heap:

unusedLocs(h) = {(o, f) | o 6= null ∧ h(o, created) 6= TRUE}

104

8.2. JavaDL and JML

A well-formed predicate wellformed(h) evaluates to true, if for a heap h
several assumptions are satisfied. Intuitively, a heap is well-formed, if it can
be reached by a Java program. A heap is well-formed, if all objects stored
on the heap are either created or null, and only finitely many objects are
created.

8.2.3 Sequences

Finite sequences are modeled in JavaDL by the abstract data type Seq and
may contain elements of different types, as long as the element is subtype
of Any. We use seq(a1, ..., an) as a constructor of a sequence containing the
elements a1 to an with ai ∈ Dom. seqConcat (s1 , s2) is the concatenation of
the sequences s1 and s2. seqEmpty refers to the empty sequence, seqGet (s, i)
returns the i-th element of s. The function length(s) returns the length of
sequence s.

8.2.4 Calculus

To reason about formulas, KeY defines a sequent calculus. Sequents consist
of an antecedent Γ and a succedent ∆, each a finite set of formulas. Sequences
are typically written as Γ =⇒ ∆. A sequent is semantically equivalent to the
formula

∧
Γ→

∨
∆.

The calculus consists of a set of schematic rules which operate on sequents.
Rules have the form

Γ1 =⇒ ∆1 . . .Γn =⇒ ∆n

Γ =⇒ ∆

where Γ =⇒ ∆ is the conclusion and Γ1 =⇒ ∆1 . . .Γn =⇒ ∆n are the
premisses of the rule. The sequents in schematic rules may contain schema
variables, placeholders which are substituted by terms and formulas when
a rule is applied on a concrete sequent. A rule is sound, if the universal
validity of the premises implies the universal validity of the conclusion. In
order to apply a schematic rule on a sequent, the sequent has to match the
rule’s conclusion and is replaced by the premisses, substituting the matched
schema variables.

When a modality occurs in a formula, the modality typically has the form
〈πp;ω〉, where π is a prefix of the program containing non-active statements,
like opening brackets, labels, beginnings of try-catch blocks and others. p is
the active statement, i.e. the next statement of the program to be executed,
and ω is the rest of the program. Typically, rules either replace the active
statement by another statement, e.g. in order to gain a single assignment
form of the program, or the rule removes the active statement from the
program and adds the effect of the program statement to the formula, e.g.
by adding an update to the formula. Applying rules on a formula which

105

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

contains a program until the formula does not contain a program anymore is
called symbolic execution.

A proof for the universal validity of a formula f in the sequent calculus is
represented by a closed proof tree. In a proof tree each node is annotated with
a sequent, and the root note is annotated with the formula f . Each child
of a node N is annotated with an instantiation of a premise of a schematic
rule, whose conclusion is applicable to the sequent N is annotated by. A
branch is closed if its leaf node is annotated with an axiom (a rule without a
premise). A proof tree is closed if all branches of the tree are closed.

8.2.5 Java Modeling Language

The Java Modeling language (JML) (Leavens et al. [2008]) is a specification
language for Java programs. We refer here to JML∗, an extended version of
JML (Weiß [2011]). Program specifications are written as formulas using side-
effect-free Java expressions plus some additional constructs, like quantifiers
and operations on abstract data types. Specifications are written directly
in the program code as comments expressing pre- and postconditions of
methods, class invariants, loop invariants, or others.

Example 8.3. The following example shows a simple Java class with a JML
specification.

public class JMLExample {
//@ public invariant o1 != o2;
Object o1; Object o2;

/*@ public normal_behavior
@ requires p1 != p2;
@ ensures \result == p1;
*/

public Object doSth(Object p1, Object p2) {
o1 = p1; o2 = p2;
return o1;

}
}

In Line 2 the class invariant is specified stating that the fields o1 and o2
must not point to the same object.

In line 5 a method contract is specified. The keyword normal_behavior
states that the method must not throw an exception, and the keyword
requires in Line 6 introduces the precondition of the method. The precon-
dition states that the parameters must not point to the same object. A caller
of the method has to ensure that in the state when the method is called, the
invariant holds as well as the precondition. The method satisfies its method

106

8.3. Extending JavaDL

contract if in the poststate the class invariant and the postcondition hold.
The postcondition is the formula following the ensures keyword in the JML
contract (Line 7).

JML specifications can be translated into JavaDL formulas which then
can be shown to be universally valid using KeY. Method contracts provide an
abstract description of a program in logical form. These specifications can be
translated into schematic rules, which then can be applied during verification
of a formula containing a Java program. For example when verifying that a
program satisfies its specification and the active statement is a method call,
the proof tree can be expanded by two branches. In the first branch, it has
to be shown that the precondition of the method holds and in the second
branch the method’s postcondition can be assumed to hold.

We assume here that there exists a translation of a JML specification into
respective JavaDL formulas without discussing this translation in detail. For
a full account of JML and its connection to JavaDL, the interested reader
may refer to Weiß [2011] and Ahrendt et al. [2016].

8.2.6 The KeY Tool

The KeY tool 1 implements the calculus rules, rule application and the
translation of Java programs and JML specifications into JavaDL formulas,
rules and proof obligations. Using this tool, the correctness of Java programs
w.r.t. their specification can be verified. Either KeY applies a strategy for
rule selection and application automatically, or the user can step in and
manually apply rules to support the proof process.

KeY ensures that the proof tree can only be manipulated by rule applica-
tions in order to ensure a sound proof. Further, proof management ensures
that all required proofs are performed, i.e. if in one proof the rule gained
from a method contract is applied, it also has to be shown that the respective
method satisfies its method contract.

8.3 Extending JavaDL
In JavaDL a Java program fragment manipulates a state, where the state is a
mapping from program variables (for example for parameters, local variables,
and return values) to values in the domain. A distinct program variable is
mapped to the heap. When considering distributed systems, i.e. JavaEE
beans as described in Section 8.1, we make a small change to this point of
view. We always consider a Java program from the point of view of one
particular bean. The bean manages its own state containing an exclusive
heap and all beans the program interacts with cannot manipulate this heap.

1The official version of the KeY tool is available online at the project website www.
key-project.org

107

www.key-project.org
www.key-project.org

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

Additionally, the state contains a program variable which records the bean’s
history, i.e. the trace of events sent or received by the bean. Again, this
history is local to the bean and interactions of other beans do not influence
the bean’s history. In the following, we extend JavaDL by the relevant
elements.

8.3.1 Extending JavaDL Syntax

We extend JavaDL by events, a program variable storing the sequence of
events communicated by a bean, and representations for remote methods.
We assume the signature (T , 4, V , PV , F , FUnique, P , α, Prg) of Section 8.3
additionally contains the following symbols.

• Event,Calltype,Method ∈ T
• Event 4 Any
• servcall : Calltype, servterm : Calltype ∈ FUnique

• For each method declared remote and visible in Prg there is a 0-ary
function symbol m in FUnique and α(m) = Method called method
identifier

• event : (Object,Object,Method,Calltype,Seq,Heap)→ Event ∈ F
• evCalltype : Event → Calltype ∈ F
• evCaller : Event → Object ∈ F
• evClient : Event → Object ∈ F
• evMethod : Event → Method ∈ F
• evParams : Event → Seq ∈ F
• evHeap : Event → Heap ∈ F
• hist, histpre ∈ PV and α(hist) = Seq, α(histpre) = Seq
• histlocal, histpre

local ∈ PV and α(histlocal) = α(histpre
local) = Seq

• wellformedHist : Seq,wellformedHist l : Seq ∈ P
• callingComp : Object ∈ PV

We model messages as elements in the domain of type Event, a subtype of
Any. Domain elements of type Method are representatives for Java methods
declared remote. The constructor function event yields an event containing
the object identity of the bean calling a remote method, the identity of the
called bean, the identifier of the called remote method, and a marker whether
the message represents the call of the remote method or its termination.
Further, the event contains the values communicated by the messages, i.e. a
sequence of the parameters of a call or the communicated return value for
a termination message. Finally, the event contains a heap in which a field
access on the communicated parameters and return value can be resolved.

Note that the heap is not actually communicated in a message. We will
see later that during communication, beans exchange messages containing
the parameters of remote method calls, as well as the transitive closure of

108

8.3. Extending JavaDL

the fields of the parameters. In order to represent the communicated values
of messages, we make the heap in which field values can be evaluated an
element of the event.

We assume the logic to contain selector functions for retrieving from an
event the calling bean (evCaller), the client bean (evClient), the method
identifier (evMethod), whether it is a call or termination event (evCalltype),
the sequence of parameters/return value (evParams), and the heap for
resolving field access to the parameters and return value (evHeap).

Additional program variables hist, histpre, histlocal, histpre
local repre-

sent the history of a bean. The program variable hist contains all events
sent or received by a bean over its lifetime, while histlocal represents the
history communicated by the execution of a single service without the calling
event starting the execution of the service and the respective termination
event.

While after the execution of a remote method, hist does contain all
events also contained in histlocal, introducing histlocal simplifies some proof
obligations as described in the remainder of this chapter. The predicates
wellformedHist and wellformedHist l express a wellformedness property for
histories and local histories, similar to the wellformedness predicate for heaps.
The program variable callingComp represents the remote bean initiating a
service call.

8.3.2 Serialization and Deserialization

Containers perform remote method calls by copying parameters and return
values, and possibly communicating them remotely as byte-representations
of the parameters. The Java API EJB 3.1 Expert Group [2009] provides a
functionality called serialization that translates Java object structures into a
byte representation, e.g. for persistently storing information or transmitting
information in distributed systems. The reverse functionality, deserialization,
translates the byte representation back into an Java object structure that
can be used in a Java program. JavaEE uses serialization and deserialization
for the transmission of parameters and return values in remote method
calls. In the following we provide a JavaDL formalization of serialization and
deserialization.

Effects of Serialization on the Heap

During serialization, for all objects in the object structure a unique represen-
tation is created and stored together with the type of the object. Additionally,
for each object and each field the value of this field is stored. If the type of
the field is Object, the respective object representation is stored (or null); if
the field is of primitive type, the primitive value is stored.

109

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

During deserialization, for each object in the byte representation a new
object of the previously stored type is created. For each object the values
of the fields are set to the value as stored in the byte representation. If the
field type is a reference type, its value is set to the newly created object. If
its type is primitive, the field’s value is set to the respective primitive value.
We ignore here details like transient fields, we assume they are not used in a
program.

Example 8.4. In the following example, we illustrate some properties of
serialization and deserialization of remote method calls before describing
these functionalities formally. Although we have not yet formally introduced
service contracts, we use them in this example for illustration purposes.

The method doSth implemented by class SerialExample calls the remote
method callMethTo and provides as a parameter a transfer object. This
remote method sets the field i of the transfer object to 1 and returns the
object. The method doSth satisfies its contract.

public class SerialExample {
/*@ invariant to.o1 == to.o2 && to.o1 != null &&

@ to.o2 != null;*/
private TransObj to;
private int x;
@EJB
private RemoteIF r;

/*@ public normal_behavior
@ requires true;
@ ensures this.to.o1 != \old(this.to.o1) &&
@ this.to.o2 != \old(this.to.o2) &&
@ x == \old(x) &&
@ \fresh(this.to) && \result == 1; */

public int doSth() {
this.to = r.callMethTo(to);
return to.i;

}
}

@Remote
public Interface RemoteIF {

/*@ public normal_behavior
@ requires true;
@ ensures \result == t && \result.o1 == \old(t.o1) &&
@ \result.o2 == \old(t.o2) && \result.i==1 &&
@ \result.o1 != null && \result.o2 != null; */

public TransObj callMethTo(TransObj t);

110

8.3. Extending JavaDL

}

public class TransObj {
Object o1; Object o2; int i; }

The example illustrates several properties of serialization and deserialization.
For example, the contract of callMethTo guarantees in its postcondition
that it returns the same objects o1 and o2, as it received with the parameter
t. The postcondition of doSth however guarantees that after its execution
the values of these fields have changed. The postcondition of doSth also
guarantees that the new value of the field to is a freshly created object.

Further, the postcondition of doSth guarantees that the value of field x
does not change. The contract of callMethTo, however, does not provide
any explicit guarantee on how it changes the heap apart from the fields of
the transfer object.

The sequential serialization and deserialization of an object structure
ensures an isomorphic relation between the original object structure and the
new, deserialized one. Let’s assume, a Java program calls a remote method
with the values {o1, ..., om} as parameters in heap h1, which leads to a call
to the respective remote method of the client bean with heap h2. During
deserialization, the heap h2 is changed into a heap h′2 by creating the object
structure of the values in the heap using freshly created objects.

We refer to the heap h′2 gained by serialization of {o1, ..., om} in heap h1
and deserialization in heap h2 by deserial(h2, h1, {o1, ..., om}). Serialization
and deserialization ensure several properties for h′2 with respect to h1 and
h2 that we can use for reasoning in our logic.

For one, deserialization does not change already existing objects or their
fields on the heap h2, but only creates new ones.

Definition 8.1 (Deserialization Anonymization). Given heaps h1, h2, and
values o1, . . . , om. For the heap h′2 = deserial(h2, h1, {o1, ..., om}) it holds
deserial(h2, h1, {o1, ..., om}) = anon(h2, ∅̇, h) for some unspecified heap h.

Second, serialization and deserialization of {o1, ..., om} ensures a partial
isomorphism γ : Any 7→ Any which maps the original values in the original
data structure to those in the deserialized data structure, i.e. γ(oi) = o′i
where o′i is the value created by deserialization of oi. The mapping γ ensures
that the data structure in the heap h1 is preserved for the heap h′2. The
following definition states the properties of γ:

Definition 8.2 (Serialization Isomorphism). Given heaps h1, h2, and values
o1, . . . , om. For the heap h′2 = deserial(h2, h1, {o1, ..., om}) there exists a
partial isomorphism γ from values in h1 to values in h′2 such that

• x =̇ y ⇔ γ(x) =̇ γ(y) for all x, y : Any

111

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

• γ(null) =̇ null

• o ∼= γ(o) for all o ∈ {o1, . . . , om}

where o ∼= γ(o) is defined as

γ(o) =̇ o if δ(o) ∈ Primitive
γ(length(o)) =̇ length(γ(o)) if o is of array type
δ(o) =̇ δ(γ(o))∧
∀f : Field ·

γ(selectE(h1, o, f)) = selectE(h′2, γ(o), f)∧
selectE(h1, o, f) ∼= selectE(h′2, γ(o), f)

if δ(o) 4 Object∧

o ˙6= null

The first two conditions formalize that γ is indeed an isomorphism. The
third condition in combination with the definition of ∼= states that γ is
the identity function for primitive values, that isomorphic array objects
have equal length and for isomorphic objects, all fields store respectively
isomorphic values. Note that we treat array accesses here as field access with
the index of the array access as the field.

Third, the entire object structure of serialized objects are freshly created,
especially this means that every field of an object that is created during
deserialization holds a primitive value, a reference to null, or a reference to
a freshly created object. We use the predicate transfresh(o, h2, h

′
2) to state

for a object o that it is not created in h2, and that transitively the same
holds for all references stored in fields of o evaluated in h′2 .

Definition 8.3 (Serialization Freshness). Given heaps h1, h2, and values
o1, . . . , om. For the heap deserial(h2, h1, {o1, . . . , om}) it holds

∀o ∈ {o1, ..., om} · transfresh(γ(o), h2, deserial(h2, h1, {o1, ..., om}))

with

transfresh(o, h2, h
′
2) :⇔ δ(o) 4 Object ∧ o ˙6= null =⇒

selectbool(h2, o, created) ˙6= TRUE
∧ ∀f : Field · transfresh(selectAny(h′2, o, f), h2, h

′
2)

The three properties of a sequential execution of serialization and deseri-
alization as formalized in Definition 8.1, 8.2, and 8.3 follow directly from the
semantics of Java serialization and deserialization.

112

8.3. Extending JavaDL

Optimizations for Serialization

The properties for serialization and deserialization as formalized above have
to be represented in the sequent of a proof. Especially when a remote method
has several parameters, and symbolically executing a remote method call
would lead to very big sequents with many nested quantifier. As a result,
performing a proof would become very time consuming. We therefore provide
an optimization for remote method calls in the following.

The selection of which object identity is chosen during object creation
is up to Java and can not be observed by a Java program. We can assume
that for two beans that whenever a new object is created, object identities
are always chosen in a way such that in the heaps of the two beans no
object with the same identity chosen. We therefore can assume that the
two two heaps are completely disjoint in the sense that whenever one object
is created in a heap h1, the same object is not created in the other heap
h2, and vice versa, i.e. selectbool(h1, o, created) →̇ ¬̇(selectbool(h2, o, created))
and selectbool(h2, o, created) →̇ ¬̇(selectbool(h1, o, created)). In this case, it is
sound to assume w.l.g. that the objects created during deserialization in
the heap h2 are exactly those objects used in h1. We then can assume γ
to be the identity function, which results in simpler proofs during program
verification, which we will see later in this chapter.

We introduce a new function ⊕ : (Heap,Heap,P(Object)) 7→ Heap to join
two disjoint heaps. In the following definition, p-expression characterizes heap
access expressions starting with a parameter and self -expression characterizes
heap access expressions starting with self. We define the semantics for field
access in a joined heap as follows:

Definition 8.4 (Joined Heaps). For heaps h1 and h2 and the finite set of ob-
jects {p1, ..., pm} the semantics of the joined heap hj = ⊕(h1, h2, {p1, ..., pm})
is

selectE(hj , o, f) =

selectE(h1, o, f) if o is p-expression w.r.t. hj
selectE(h2, o, f) if o is self -expression w.r.t. hj
undefined otherwise

where o is p-expression w.r.t. hj iff

• o ∈ {p1, ..., pm} or

• o = selectE′(h1, o
′, f) and o′ is p-expression w.r.t. hj or

• o = selectE′(hj , o′, f) and o′ is p-expression w.r.t. hj

and o is self -expression w.r.t. hj iff

• o = oself , where oself refers to the object identity of the bean with heap
h2 or

113

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

• o = selectE′(h2, o
′, f) and o′ is self -expression w.r.t. hj or

• o = selectE′(hj , o′, f) and o′ is self -expression w.r.t. hj

In Definition 8.4 heap access-expressions are evaluated in one of the two
disjoint heaps, depending on whether they represent a field access starting
with the this, i.e. the called bean, or with a parameter, i.e. the objects
created during deserialization. Expressions starting with self are evaluated
in the heap of a bean before serialization, while expressions staring with
a parameter are evaluated on the heap of the sending bean. Note that in
JavaEE remote method calls must not communicate references to beans as
parameters. Therefore, Definition 8.4 is well-defined.

Under the assumption that γ is the identity function, evaluation of
self -expressions and p-expressions yield the same values for a joined heap
as for a direct encoding of the heap gained by deserialization as defined in
Definition 8.1, 8.2, and 8.3.

Lemma 8.1. Given two disjoint heaps h1 and h2, a set of values {p1, ..., pm},
a term t = selectA(heap, o, f), program variables o1, . . . , om, and a state s
such that s(oi) =̇ pi. If t is a p-expression or self -expression w.r.t. {p1, ..., pm},
then the formula

{heap := ⊕(h1, h2, {o1, ..., om})}t =̇{heap := deserial(h2, h1, {o1, ..., om})}t

is universally valid in s.

We do not provide a full proof for the lemma, but limit the presentation
to a proof-sketch for the case when the term is a heap access. Note that we
assume the extension to other expressions, especially to function symbols,
predicates and quantifier to be relatively straight forward, although laborious
and without explicit benefit.

Proof sketch for Lemma 8.1. We proof Lemma 8.1 by induction over the
length of the formula t.

Induction start: Case a: t = selectA(heap, self, f). After applying the
update, we gain t = selectA(deserial(h2, h1, {p1, ..., pm}), self, f). Since the
heap gained by deserialization is an anonymization of h2 and self was
already created in h2, we gain t = selectA(h2, self, f), which is equal to the
unrolling of the definition for {heap := ⊕(h1, h2, {p1, ..., pm})}t.

Case b: t = selectA(heap, pi, f). After applying the update, we gain
t = selectA(deserial(h2, h1, {p1, ..., pm}), pi, f). We know by definition of
deserialization above that pi ∼= γ(p′i) for some parameter variable oi, and
since γ is the identity function, we know that pi = p′i. Also from conditions
for the deserial operator, we know
γ(selectA(h1, pi, f)) =̇ selectA(deserial(h2, h1, {p1, ..., pm}), pi, f), which is the
same term we gain for {heap := ⊕(h1, h2, {p1, ..., pm})}t.

114

8.3. Extending JavaDL

Additionally, Definition 8.2 provides us with
selectA(h1, pi, f) ∼= selectA(deserial(h2, h1, {o1, ..., om}), pi, f).

Induction step Case a: t = selectA(heap, o, f) and o is a self -expression
w.r.t. ⊕(h1, h2, {p1, ..., pm}). With the same argument above, i.e. that o
must have been created in h2 and deserial is an anonymization operator,
no field of o must have been changed during deserialization. Therefore
selectA(deserial(h2, h1, {p1, ..., pm}), o, f) = selectA(h2, o, f). Again, this is
the same term we gain by unrolling the definition of the ⊕ operator.

Case b: t = selectA(heap, o, f) and
o is a p-expression w.r.t. ⊕(h1, h2, {p1, ..., pm}). Since o is a p-expression,
we know by induction that
selectA(h1, o, f) ∼= selectA(deserial(h2, h1, {p1, ..., pm}), o, f) has to hold (Note
that γ is the identity). By the definition of ∼= we gain
γ(selectA(h1, o, f)) =̇ selectA(deserial(h2, h1, {p1, ..., pm}), γ(o), f) and thus
γ(selectA(h1, o, f)) =̇ selectA(deserial(h2, h1, {p1, ..., pm}), , f) and
γ(selectA(h1, t, f

′)) ∼= selectA(deserial(h2, h1, {p1, ..., pm}), t, f ′).
Again, γ(selectA(h1, o, f)) is what we gain by unrolling the definition for
⊕. /

8.3.3 Service Contract

We have to ensure that the distinct program variables hist and histlocal
during reasoning with JavaDL reflect the actual trace of events communicated
by a bean. JavaDL deals with Java programs by symbolic execution, i.e.
by applying rules reflecting the semantics of the Java language formulas are
modified such that the effect of a Java statement is reflected by changes to
the formula. We have to ensure that during symbolic execution of remote
method calls the history program variables are updated properly. JavaDL
knows two ways to deal with the symbolic execution of methods in general.

The first technique is inlining, where a method call is replaced during
symbolic execution by the method body which then again can be symbolically
executed. Since in JavaEE remote method calls are typically performed on
methods declared in interfaces, the implementation is not available. Also, the
method is executed in another state, which would additionally complicate
the rule for replacing a remote method call by its implementation while
reflecting JavaEE semantics.

The second technique is the application of method contracts, i.e. the
method call is replaced by an abstraction, typically generating two branches
in the proof tree. In the first branch, it has to be shown that in the state in
which the method is called, the precondition of the called method is satisfied.
In the second branch it can be assumed that the method terminates in a state
where its postcondition holds and the remaining program can be symbolically
executed in this state. Additionally, it has to be shown in a separate proof

115

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

that the method satisfies its postcondition after termination if it is started
in a state when its precondition holds.

We introduce in this subsection service contracts, a modification of method
contracts which reflect the semantics of JavaEE for remote method calls.
During verification, service contracts can be used for symbolic execution of
remote method calls. In the following, we develop the proof obligation which
has to be valid in order to ensure that a service satisfies its contract. Finally,
we introduce the JavaDL rule for symbolic execution of remote method calls
using service contracts.

In JML, the functional specification for a method is given as a method
contract. A method contract mct according to Weiß [2011] is a tuple

(m, self, (a1, . . . am), res, heappre, exc, pre, post,mod)

A method contract expresses that, assuming method m is executed with
parameters (a1, . . . am) in a state in which the precondition pre holds, the
method terminates in a state such that the postcondition post holds. Addi-
tionally, the execution at most changes the heap on the elements described
in a location set mod. The method contract also describes the variables used
in pre and post to refer to the return value (res), the heap before method
execution (heappre), and the exception which may be thrown (exc). For a
full description of method contracts, we refer to Weiß [2011].

For service contracts, we restrict the method m to those methods which
are declared remote, since only remote methods represent services. We
extend method contracts by a program variable referring to the history
before execution (histpre), and a callable set callable describing the clients
and the remote methods which may at most be called during execution of a
remote method.

Example 8.5. The following service contract expresses that the remote
method pay must at most call the remote method registerSale provided
by the bean to which sale points.

/*@ public normal_behavior
@ requires true;
@ ensures true;
@ callable sale.registerSale; */

public int pay(int ccnr) {
countpay++;
sale.registerSale(product, prodprice,

prodamount, ccnr);
return 0;

}

The formal definition for service contracts is as follows:

116

8.3. Extending JavaDL

Definition 8.5 (Service Contract). A service contract sct is a tuple

(m, self, (a1, . . . am), res, heappre, histpre, exc,

prenoinv , inv, post,mod, callable)

where m is a Java method declared remote in type C ∈ T with argument
types A1, . . . Am ∈ T and return type A ∈ T ; where self : D ∈ PV for
some D 4 C, where a1 : A1, . . . am : Am ∈ PV; where res : A ∈ PV; where
heappre : Heap ∈ PV; where histpre : Seq ∈ PV; where exc : Exception ∈
PV; where prenoinv ∈ FmaΣ is the precondition of the method contract
without the class invariant; inv ∈ FmaΣ is the class invariant of the class
in which m is declared; post ∈ FmaΣ is the postcondition of m, including
the class invariant; where mod is a list (e1, . . . , ek) with e1, . . . ek ∈ LocSet
and callable is a list (exp1.m1, . . . , expn.mn) with exp1, expn ∈ LocSet and
m1 : Method, . . .mn : Method.

Service Contract Validity

In order to soundly apply service contracts during symbolic execution of a
program, we have to ensure that the called remote method actually satisfies
its service contract.

Before we provide the formal definition of the proof obligation, we in-
troduce the intuitive meaning of some variables used in the definition and
motivate parts of the proof obligation.

The heap of the called bean before the call of the remote method is
represented by the program variable heap. We assume that all remote
methods preserve the class invariant inv, which means that we can assume
the invariant to hold in heap.

Deserialization of the remote method parameters causes the heap of the
called bean to change, and we denote the heap after deserialization by the
variable heappserial . Due to the properties of deserialization, as discussed
above, we know that the heap after deserialization is equal to the heap before
deserialization, except that new objects may have been created. We therefore
can assume that heappserial = anon(heap, ∅̇, h). The heap h represents some
underspecified heap.

Again due to the properties of deserialization, we know that the pa-
rameters, as well as fields of parameters reference freshly created objects,
if they are of some reference type. We introduced the predicate transfresh
above to express this property. So, we can assume for all parameters ai:
transfresh(heap, ai, heappserial)

Further, the calling component has to ensure that the precondition of the
remote method holds. Opposed to the original method contract, the calling
component should not be required to provide guarantees about the internal

117

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

state of the bean, therefore, we only consider here the precondition without
the class invariant. So, we can assume {heap := heappserial}prenoinv .

Two program variables are used to represent the event history of the
called bean. The program variable hist records the overall history of the
bean, while histlocal records the history caused by a single remote method
execution. Before the call, we can assume histlocal to be the empty sequence,
i.e. histlocal = seqEmpty.

In order to add the events caused by the call of the remote method and
its termination, we require a representation of the communication partner,
i.e. the calling bean. We represent the calling bean by some underspecified
variable callingComp, and all we assume about this object is that it must
not be null and is different than the called bean, i.e. callinComp 6= self.

Before we can symbolically execute the body of the remote service,
we have to set the state such that it represents the state after the calling
event was received. We do this in an update, which contains the respective
update assignments. The update heap := heappserial sets the heap before
execution to the heap after deserialization of the parameters. The update
hist := seqConcat (hist, callevent) adds the call event to the history. The
postcondition of the remote method may reference the history and heap
before the execution, thus we have to remember them with the updates
heappre := heappserial and histpre := hist.

After symbolic execution of the body of the remote method, the termi-
nation event is sent to the calling component, and thus added to the history
of the remote method. In the proof obligation, this is represented by the
update hist := seqConcat (hist, termevent) after the modality containing
the body of the remote method.

It has to be shown, that after execution of the remote method, the post-
condition holds (including the class invariant). Apart from other conditions,
which are equal to those in the original proof obligation of method contracts,
it additionally has to be shown that the callable clause of the contract is
satisfied. This is represented by the formula calls. We also require remote
methods to terminate normally, i.e. the service must not throw an exception.
It has to be shown that after execution exc = null holds.

Additionally, we assume several well-formed properties for heaps and
histories used in the formula.

The following definition states the complete formal proof obligation for a
service contract.

Definition 8.6 (Proof Obligation for Service Contracts). Let sct be a service
contract, such that sct =

(m, self, (a1, . . . am), res, heappre, histpre, exc,

prenoinv , inv, post,mod, callable)

118

8.3. Extending JavaDL

with self : D and given type E ∈ T with E 4 D, mod = {l1, . . . , ln}
with li ∈ LocSet , callable = (b1.m1, ..., bk.mk) with bi ∈ LocSet and
δ(mi) = Method and mi is declared remote, the proof obligation formula
CorrectServiceContract(sct, E) is defined as

wellformed(heap) ∧ wellformed(heappserial) ∧ wellformed(h) (8.1)
∧ wellformedHist(hist) ∧ histlocal = seqEmpty (8.2)
∧ self ˙6= null ∧ bean =̇ self ∧ exactInstanceE(self) (8.3)
∧ selectbool(heap, self, created) =̇ TRUE ∧ inv (8.4)
∧ wellformed(h) ∧ heappserial =̇ anon(heap, ∅̇, h) (8.5)
∧ callingComp ˙6= null ∧ callingComp ˙6= self (8.6)
∧ selectbool(heap, callingComp, created) =̇ TRUE (8.7)
∧ transfresh(a1, heap, heappserial) ∧ . . . (8.8)
∧ transfresh(am, heap, heappserial) (8.9)
∧ {heap := heappserial}(prenoinv ∧ reachableIn) (8.10)
→̇ {heap := heappserial ‖ heappre := heappserial (8.11)

‖ hist := seqConcat (hist, callevent) ‖ histpre := hist (8.12)
‖ histlocal := seqEmpty} (8.13)
〈exc = null; (8.14)
try {res = self.m(a1, ..., am); } (8.15)
catch(Exception e) { exc = e;}〉 (8.16)
{hist := seqConcat (hist, termevent)} (8.17)
(post ∧ frame ∧ calls ∧ wellformedHist(hist) ∧ exc =̇ null) (8.18)

where:

• frame ∈ FmaΣ is the formula

∀Object o; ∀Field f ;
((o, f) ∈̇{heap := heappre}mod ∪̇ unusedLocs(heappre)
∨ selectAny(heap, o, f) =̇ selectAny(heappre, o, f))

• calls ∈ FmaΣ is the formula∧
i∈{0,...,length(histlocal)}

∨
bj .mj∈callable

(evMethod(seqGet(histlocal, i)) =̇mj

∧ {heap := heappre}(evClient(seqGet(histlocal, i)) =̇ bj))

119

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

• reachableIn ∈ FmaΣ is the formula∧
i∈{1,...,n},δ(li)4Object

(li =̇ null ∨ li. created =̇ TRUE)

∧
∧

i∈{1,...,n},δ(li)=LocSet
(disjoint(li, unusedLocs(heap)))

• callevent ∈ TermΣ is the term
event(callingComp, self,mid, call, seq(a1, . . . , am), heappserial)

• termevent ∈ TermΣ is the term
event(callingComp, self,mid, term, seq(res), heap)

• mid ∈ Method is the method identifier for remote method m

We say a remote method satisfies its service contract sct, if the formula
in Definition 8.6 is valid.

Service Contract Application

We can use service contracts as an abstraction of the effect of a remote
method call curing symbolic execution. In the following, we explain the
service contract rule before formally defining it.

Applying the service contract rule in a proof leads to a split of the proof
into two branches. In one branch it has to be shown that the precondition
of the called service is satisfied. In the second branch, we can assume the
postcondition of the service contract to hold for the remaining proof.

Precondition Branch: The precondition of the service contract has to
hold in the heap of the called bean. We therefore use the fresh heap variable
heapo to represent the heap of the called bean. Similarly, the fresh history
variable histo represents the history of the called bean.

Due to serialization and deserialization of the remote method call and
its parameters, the heap of the called bean changes. We refer to with
this changed heap with the fresh variable heapopre. In this heap, the pa-
rameters are transitively fresh created, as explained earlier in this section,
such that we can assume transfresh(ai, heapopre, heapo) for all parameters
ai. Further, the heap after deserialization of the remote method call is
the joined heap according to Definition 8.4, such that we can assume
heapopre =̇⊕(heap, heapo, {a1, . . . , am}), where a1, . . . , am are the parame-
ters of the remote method call.

Since all beans are ensured to execute remote methods sequentially and all
remote methods preserve the invariant, we know that before deserialization,
i.e. in heapo and history histo, the class invariant inv of the called bean holds.
After deserialization, i.e. in heapopre and history histopre, it has to be shown
that the precondition without the invariant prenoinv of the called remote
method holds.

120

8.3. Extending JavaDL

Postcondition Branch: In the second branch, where we resume the
original proof, we can assume the called remote method’s postcondition, have
to update the history, and resume the symbolic execution. The postcondition,
however holds from the point of view of the called bean, i.e. in the heap of
the called bean, while symbolic execution resumes in the heap caused by
deserialization of the return value.

We therefore again introduce fresh variables representing the heap of
the called bean before (heapo) and after deserialization of the parameters
(heapopre) and after termination of the called remote method (heapopost).
The heaps have the same properties as in the first branch, i.e.
heapopre =̇⊕(heap, heapo, {a1, . . . , am}).

Similarly we can express the histories. The history of the remote
method after execution of the remote service is extended by the call-
ing event and termination event from the perspective of the called bean.
It is also extended by some local history (histolocal) which may contain
events referring to calls to remote methods by the called bean. So, we get
for the history of the called bean after execution of the remote method
histopost =̇ seqConcat(histo, callevento, histolocal , termevento).
The events callevento and termevento represent the calling and terminating
events caused by the symbolically executed remote method call from the
perspective of the called bean.

From the perspective of the bean whose implementation is currently sym-
bolically executed, we refer to the heap after deserialization of the return value
by heappost . Compared to the heap before the remote method call (heap), at
most new objects may be created during deserialization, so we can assume
heappost =̇ anon(heap, ∅̇, h2). Additionally, we know that the return value (r)
is transitively fresh created, i.e. we can assume transfresh(r, heappost , heap).

We also know that serialization and deserialization of the return value
preserves the data structure of the return value, as defined in Definition 8.2.
We therefore introduce a fresh function γ, representing the mapping from the
return value from the perspective of the called bean (ro) to the return value
from the perspective of the calling bean, so we can assume that r =̇ γ(ro).
The predicate ∼= encodes that two values have an isomorphic structure and
we assume r ∼= ro.

Finally, we can assume that the postcondition (post) of the remote method
holds in the poststate (established by the update uopost in the definition
below) of the remote bean, and we can establish the poststate from the
perspective of the calling bean (upost in the definition). Note that the update
of the histories of the calling bean, i.e. hist and histlocal is performed
directly in the update upost.

The following definition shows the full formal definition of the service
contract rule.

121

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

Definition 8.7 (Service Contract Rule).

Γ =⇒ {u}{w}(wellformed(heapo)(∧wellformed(heapopre)
∧ transfresh(a1, heapopre, heapo) ∧ . . .
∧ transfresh(am, heapopre, heapo)
∧ wellformedHist(histo)
∧ heapopre =̇⊕(heap, heapo, {a1, . . . , am})
∧ callevento =̇ event(callingComp, self,mid, call,

seq(a1, . . . am), heapopre)
∧ {uo}(inv))
→̇{uo}{uopre}(prenoinv ∧ reachableIn
∧ self ˙6= null ∧ self. created =̇ TRUE)),∆

Γ =⇒ {u}{v}(wellformed(heapopost) ∧ wellformed(heapopre)
∧ wellformed(h1) ∧ wellformed(h2)
∧ wellformedHist(histo) ∧ wellformedHist(histopost)
∧ heapopre =̇⊕(heap, heapo, {a1, . . . , am})
∧ histopost =̇ seqConcat(histo, callevento, histolocal , termevento)
∧ heappost =̇ anon(heap, ∅̇, h2)
∧ callevent =̇ event(self, o,mid, call, seq(a1, ..., am), heap)
∧ termevent =̇ event(self, o,mid, call, seq(r), heappost)
∧ callevento =̇ event(self, o,mid, call, seq(a1, ..., am), heapopre)
∧ termevento =̇ event(self, o,mid, call, seq(ro), heapopost)
∧ transfresh(r, heappost , heap)
∧ r =̇ γ(ro) ∧ r ∼= ro
∧ {uopost}(post)
→̇{upost}(reachableOut →̇ [πω]ϕ)),∆

Γ =⇒ {u}[πr = o.m(a′1, . . . , a
′
m);ω]ϕ,∆

where:

• w = (self := o ‖ bean := o ‖ callingComp := bean ‖ a1 := a′1 ‖ . . . ‖
am := a′m)

• v = (a1 := a′1 ‖ . . . ‖ am := a′m

• uo = (heap := heapo ‖ hist := histo ‖ histlocal := seqEmpty)

• uopre = (heap := heapopre ‖ hist := seqConcat (histo, callevento) ‖
histlocal := seqEmpty)

• prenoinv is the precondition of the service contract, without the invariant

• uopost = (heap := heapopost ‖ histlocal := histolocal ‖ hist :=
histopost ‖ heappre := heapopre ‖ histpre

local := seqEmpty ‖ histpre :=
histopre ‖ res := ro)

122

8.3. Extending JavaDL

• upost = (heap := heappost ‖
histlocal := seqConcat(histlocal, callevent, termevent) ‖
hist := seqConcat(hist, callevent, termevent) ‖ r := γ(ro) ‖ res :=
r)

• ∼=∈ P is a fresh predicate symbol with the semantics defined as in
Definition 8.2 with respect to heapopost and heappost

• reachableIn ∈ FmaΣ for the assignable set mod = {l1, . . . , ln} for the
service with li ∈ LocSet is the formula∧

i∈{1,...,n},δ(li)4Object
(li =̇ null ∨ li. created =̇ TRUE)

∧
∧

i∈{1,...,n},δ(li)=LocSet
(disjoint(li, unusedLocs(heap)))

• reachableOut ∈ FmaΣ is the formula

(res =̇ null ∨ res. created =̇ TRUE) ∧ exc =̇ null

if δ(res) 4 Object and (exc =̇ null) otherwise.

• heapo, heapopre, heapopost , h1, h2, heappost : Heap ∈ F are fresh function
symbols

• histo, histolocal , histopost , histpost : Seq ∈ F are fresh function symbols

• callevent, callevento, termevent, termevento : Event ∈ F are fresh func-
tion symbol

• mid is the method identifier for the remote method m.

The rule is applicable when the first active statement of the program is
a remote method call. It splits the proof into two branches as explained in
detail above.

The main changes to the original method contract rule are, for one, we
switch perspective, i.e. the precondition and postcondition of the method
contract are evaluated from the point of view of the client bean, while the
symbolic execution of the remaining program is performed from the point
of view of the calling bean. We also directly encode the effect of calling
remote methods into the rule, i.e. adding respective events to the histories
and leaving the heap of the calling bean unchanged except creating new
objects.

We only treat the case when remote methods do not throw exceptions,
which is ensured in the proof obligation for service contracts. This limitation
is not justified by the JavaEE specification, since exceptional behavior is
explicitly allowed, however, we leave lifting this limitation for future work.

123

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

8.4 Specification and Verification of Dependency
Clusters in Beans

In this section, we extend JML with primitives that allow the specification
of Dependency Clusters for beans. This way, we instantiate the framework
from Part I for JavaEE applications. We first introduce the syntax of the
specification language for Dependency Cluster in JML and then develop step
by step how the equivalence relations based on a specification written in this
language are defined in JavaDL. We provide the JavaDL proof obligation
resulting from a JML Dependency Cluster specification and the framework
in Part I. Finally we provide the syntax for combined Dependency Cluster
and the proof obligation to verify a component-global specification using a
service-local Dependency Cluster.

8.4.1 Dependency Cluster Syntax in JML

In Chapter 4 we briefly introduces a specification language for Dependency
Clusters for services as three lists expressing the visibility of messages, the
low content of communicated values and the low part of the state. While this
specification method was sufficient for presentation purpose in the examples,
it is insufficient for Java programs, since it leads to imprecise specifications
for object-oriented languages, as we will see in the reminder.

Figure 8.1 shows the syntax of Dependency Cluster specifications in
JML. If 〈clusterSpec〉 is part of a remote method specification, it specifies
a Dependency Cluster. If it is part of a class specification, it specifies the
equivalence relations for which a bean is specified to be non-interferent.

A JML Dependency Cluster specification starts with the keyword cluster,
followed by a label. The label can be used to refer to a JML Dependency
Cluster in other specifications.

Then the cluster specifies five lists. The first list, following the keyword
lowIn specifies for input events the low information. If the list contains an
entry this.m.\call(x, y), then the values of the parameters x and y of
a call to the remote method m is low. Analogous, the list following lowOut
specifies the low information contained in output events.

The keyword lowstate starts a list of expressions over the heap of the
bean. The expressions describe the low information on the heap. The
keyword visible starts the list specifying the visibility of events. If the list
contains an entry this.m.\term(\result > 0), then termination event of
the remote method m is visible, it the return value is positive.

Finally the keyword new_objects starts a list of object valued expression
over the heap. The list describes all low objects which are newly created
on the state during the execution of the remote method. For bean-level

124

8.4. Specification and Verification of Dependency Clusters in Beans

〈clusterSpec〉 ::=’cluster ’ 〈label〉
’\lowIn’ 〈lowSpecList〉
’\lowOut’ 〈lowSpecList〉
’\visible’ 〈visibilitySpecList〉
’\lowState’ 〈expressionList〉
[’\new_objects’ 〈objExprList〉’];’

〈lowSpecList〉 ::=’\nothing
| 〈lowSpec〉 (’,’ 〈lowSpec〉)*

〈lowSpec〉 ::=〈comp〉’.’〈serv〉’.’〈cType〉’(’〈paramExprList〉’)’
〈paramExprList〉 ::=〈paramExpr〉 (,〈paramExpr〉)*’
〈paramExpr〉 ::=JML expression over parameters
〈expressionList〉 ::=〈stateExpression〉 (, 〈stateExpression〉)*
〈stateExpression〉 ::=JML expression without parameters
〈visibilitySpecList〉::=〈visibilitySpec〉 (,〈visibilitySpec〉)*
〈visibilitySpec〉 ::=〈comp〉’.’〈serv〉’.’〈cType〉’(’〈paramBoolList〉’)’
〈paramBoolList〉 ::=〈paramBoolExpr〉 (,〈paramBoolExpr〉)*
〈paramBoolExpr〉 ::=JML expression over parameters of boolean

type
〈objExprList〉 ::=〈objExpr〉 (, 〈objExpr〉)*
〈objExpr〉 ::=JML expression without parameters of Type

Object
〈cType〉 ::=’\call’ |’\term’
〈comp〉 ::=JML expression starting with ’this’ of an

object type declared remote
〈serv〉 ::=Method identifier for a method declared re-

mote.

Figure 8.1: Grammar for JML Dependency Cluster

Dependency Cluster specifications, this list can be omitted. The new_-
objects list is a technicality which simplifies dependency cluster verification.
Details will be presented in the reminder.

Example 8.6. As an example, we re-phrase the Dependency Clusters for the
service pay from Example 4.3 in JML for a respective JavaEE implementation.

/*@ public normal_behavior
@ cluster cluster2
@ \lowIn this.pay.\call(ccnr),
@ sale.registerSale.\term(0)
@ \lowOut this.\term.pay(0),
@ sale.registerSale.\call(ccnr)
@ \lowState \nothing
@ \visible this.pay.\call(true),
@ this.pay.\term(true),

125

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

@ sale.registerSale.\call(true),
@ sale.registerSale.\term(true)
@ \new_objects \nothing;
@
@ cluster cluster3
@ \lowIn this.pay.\call(0),
@ sale.registerSale.\term(0)
@ \lowOut this.pay.\term(0),
@ sale.registerSale.\call(prodId)
@ \lowState product
@ \visible this.pay.\call(true),
@ this.pay.\term(true),
@ sale.registerSale.\call(true),
@ sale.registerSale.\term(true)
@ \new_objects \nothing;
*/

public int pay(int ccnr) {
this.countpay++;
sale.registerSale(this.product, this.prodprice,

this.prodamount, ccnr);
return 0;

}

The first Dependency Cluster, labeled cluster2, states that the parameter
ccnr contains low information and that the existence termination message of
sale.registerSale is low. The list lowOut states that the implementation
of the remote method guarantees that the existence of the termination
message only depends on low information (not the return value, however), as
does the existence of a call to sale.registerSale. The Dependency Cluster
does not consider any information on the state to be low, indicated by the
keyword nothing. The visible list states that call and termination of the
remote methods pay and sale.registerSale are visible unconditionally.

Analogous the Dependency Cluster labeled cluster3 expresses that the
value of parameter prodId of sale.registerSale depends on the value of
the field product. Again, all messages involved in the contract are specified
visible.

8.4.2 Dependency Cluster Semantics in JavaDL

The elements in a JML Dependency Cluster specification define an equiva-
lence relation over states and an equivalence relation over heaps, representing
∼ and ≈ from Chapter 3. In the following, we describe in detail the definition
of the predicates modeling these equivalence relations in JavaDL.

126

8.4. Specification and Verification of Dependency Clusters in Beans

We use the following abstract JML Dependency Cluster specification for
illustration purposes. We frequently refer to the variables names used in this
specification for definitions.

/*@ cluster <label>
@ \lowIn cin1 .s

in
1 .t

in
1 (vin1), . . . cinm .sinm .tinm(vinm)

@ \lowOut cout1 .sout1 .tout1 (vout1), . . . coutl .soutl .toutl (voutl)
@ \visible cvis1 .svis1 .tvis1 (vvis1), . . . , cvisj .svisj .tvisj (vvisj)
@ \lowState R
@ \new_objects N;
@*/

Definition 8.8 (JavaDL Dependency Cluster). A JavaDL Dependency
Cluster dc is a tuple (label, ins, outs, visibles, state,new) where

• label is a label unique among all JavaDL Dependency Cluster specifi-
cations in a Java class,

• ins is a set of tuples {(cin1 , sin1 , vin1), . . . , (cinm , sinm , vinm)},

• outs is a set of tuples {(cout1 , sout1 , vout1), . . . , (coutl , soutl , voutl)},

• visibles is a set of tuples {(cvis1 , svis1 , vvis1), . . . , (cvisj , svisj , vvisj)},

• cini , couti , cvisi are terms of type Object,

• sini , souti , and svisi are method identifier of type Method,

• tini , touti , and tvisi ∈ {call, term},

• vini and vouti are observation expressions over parameters and return
values of remote methods,

• vvisi are JavaDL terms of type bool over parameters and return values
of remote methods,

• state is an observation expression over the bean’s heap (see R in the
example above)

• new is an observation expression of objects over the bean’s heap (see
N in the example above)

A JavaDL Dependency Cluster defines two equivalence relations: one
for event equivalence (analogous to ∼ in Chapter 3) and one for heap
equivalence (analogous to ≈ in Chapter 3). Instead of introducing an explicit
invisible representative (see � in Chapter 3), we use an additional predicate
expressing whether an event is visible or not. In the following, we define the
predicates invEvent, equivEvent, and combine them to gain the equivalence

127

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

relation for histories equivHist for a Dependency Cluster. We further define
two equivalence relations for heaps, agreepre and agreepost , for heaps in the
prestate and in the poststate of a remote method and explain, why we use
two different equivalence relations here.

For the following definitions, we assume a JavaDL Dependency Cluster
to be given and refer to the names of the elements of the tuples with the
names as used in Definition 8.8.

Event Visibility A call event for a remote method m of bean b is specified
to be visible, if the list visible contains an entry b.m.call(vis) for the
respective remote method, and vis evaluates to true given the communicated
values in the event. Analogous, visibility of termination events is specified.

Formally, the predicate invEvent is defined as follows.

Definition 8.9.

invEvent(e) :⇔
j∧

x=1
(o =̇ cvisx ∧ s =̇ svisx ∧ t =̇ tvisx) →̇{uvisx }vvisx =̇ FALSE

where

• s = evMethod(e), t = evCalltype(e), h = evHeap(e), o = evClient(e)

• pix =

a if tvisx = call and a is the program variable used

as the i-th parameter of svisx
res if tvisx = term

• parami
x = seqGet (evParams(e), i)

• uvisx = p1
x := param1

x, ‖ . . . ‖ ppx := paramp
x ‖ heap := h

Each of the tuples (indexed 1 to j) in visibles specifies a boolean expression
(vvisx) which states that an event with the respective receiving object cvisx ,
method identifier svisx and communication direction tvisx is visible, if vvisx
evaluates to TRUE in the heap stored in the event.

Event Equivalence To define event equivalence, we define several pred-
icates for channel equality, equivalence of types of communicated low in-
formation and primitive values, and for equivalence of objects-valued low
information. We combine the predicates in order to gain a definition of
equivalence of events (analogue to state equivalence ∼ in Chapter 3).

In Chapter 3 we formulated the side condition for equivalence relations
over messages, that if two messages are visible and equivalent, then they
have to be communicated over the same channel. In Section 2.4 we also

128

8.4. Specification and Verification of Dependency Clusters in Beans

stated that a channel must at most be shared between two components,
one requiring the respective service, the other one providing it. We further
stated, that this does not state a major problem, since a service can be made
available for more than one component by simply renaming the initial and
terminating channel and copying the body of the service implementation.
Actually copying the code of the Java implementation of a bean, however
would be very impractical.

Thus, we model the channel as a combination of the calling bean, the client
bean, the method identifier and whether the event is a call or termination
event. This way, we do not require an explicit renaming of channels, but
different beans calling the same remote method provided by one bean use
different channels by definition. The predicate equalMetadata expresses
whether two event are communicated over the same channel.

Definition 8.10 (Channel Equality).

equalMetadata(eA, eB) :⇔
evCaller(eA) =̇ evCaller(eB) ∧ evClient(eA) =̇ evClient(eA)

∧ evCalltype(eA) =̇ evCalltype(eB) ∧ evMethod(eA) =̇ evMethod(eB)

Apart from the same channels, equivalent events have to communicate
equivalent information. In specification b.m.call(e1, e2), the list of low infor-
mation contained in an event for the call of remote method m of bean b is
given by the expressions e1 and e2. The easiest and straight forward way to
define information equivalence would be to require the observation expres-
sions to evaluate to the same sequence of values, as done in the approach
in Chapter 4. For the example, this would mean, we require e1 and e2 to
evaluate to the same values, given the values communicated by the respective
events. However this would mean that whenever an object is communicated
as a low information, the expression evaluating to this object would have to
evaluate to the exactly same object in both events.

Example 8.7. See for example the following method with a partial specifi-
cation.

/*@ cluster someCluster
@ ...
@ \lowOut (otherbean.m.call(a), ...)
@ \visible (otherbean.m.call(true) ,...)
@ ...
@*/
public void doSth() {

otherbean.m(new Object());
}

129

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

When a is the name of the only parameter of m, evaluating the observation
expression containing a for two different runs of doSth() would mean that
the two call events of otherbean.m would only be equivalent, if in both
runs the same object would be created. Since the order of object creation in
JavaDL is underspecified, this can not be guaranteed. The events therefore
would not be equivalent in general, and the remote method would not
satisfy its specification. Labeling doSth as insecure, however, would be an
over-approximation.

We require a less strict condition for equivalence of parameters which
takes into consideration that object identities are opaque. The approach we
present in the following is inspired by object-sensitive information flow for
sequential Java programs as discussed by Beckert et al..

As a first condition, we require the observation expressions for both
events to evaluate to sequences of the same length and that values on the
same position in the two sequence are of the same dynamic type. If the
entry is neither of type Object nor Seq, i.e. a primitive value is communi-
cated, the entries actually have to be equal. If the entry is of type Seq, we
recursively require the respective sequences to contain elements of the same
type themselves. Remember that sequences are an abstract datatype, i.e.
they only exist in specifications. They are not Java datatypes, which are
actually communicated. The predicate agreeT formalizes type equivalence of
two sequences.

Definition 8.11.

agreeT (SA, SB) :⇔
length(SA) =̇ length(SB)∧
∀0 ≤ i < length(SA); (δ(seqGet (SA, i) =̇ δ(seqGet (SB, i)))
∧ ((¬̇(δ(seqGet (SA, i)) 4 Object) ∧ ¬̇(δ(seqGet (SA, i)) 4 Seq))

→̇ seqGet (SA, i) =̇ seqGet (SB, i))
∧ (δ(seqGet (SA, i)) 4 Seq →̇ agreeT (seqGet (SA, i), seqGet (SB, i))))

The predicate agreeT ignores values of entries in the sequence of type
Object.

Beckert et al. argue that if the object identities are opaque, it is sufficient
to ensure that there exists an isomorphism between object identities in
two observation expressions. To be precise, Beckert et al. also argue that
this is only true for newly created objects, because otherwise, it might be
possible for an attacker to check if he had already seen the object in a
previously observable state. However, due to serialization and deserialization
of remote method calls, the entire communicated object structure is newly
created, be it with new identifier during serialization or object creation during
deserialization.

130

8.4. Specification and Verification of Dependency Clusters in Beans

The predicate agreeObj evaluates to true for two pairs of sequences TA,
SA and TB, SB, if for every entry in TA and every entry in SA, the lists
contain the same object, iff the same entries in TB and SB also refer to the
same object. If agreeObj(TA, TA, TB, TB) evaluates to true, then there exists
an isomorphism for TA and TB

The predicate agreeObj evaluates to true for two observation expressions
TA and TB if for each object-valued element in TA that it is equal to an entry
in SA that the corresponding entry in TB is equal to the same entry of SB. If
agreeObj(TA, TA, TB, TB) is satisfied, then there exists a partial isomorphism
for object identities in TA and TB.

We formally define agreeObj :

Definition 8.12.

agreeObj(SA, TA, SB, TB) :⇔
∀0 ≤ i < length(TA); (
(seqGet (TA, i) 4 Object

→̇((seqGet (TA, i) =̇ null ∧ seqGet (TB, i) =̇ null)
∨ agree2

Obj(SA, seqGet (TA, i), SB, seqGet (TB, i))))
∧ (seqGet (TA, i) 4 Seq →̇ agreeObj(SA, seqGet (TA, i), SB, seqGet (TB, i))))

where

agree2
Obj(SA, OA, SB, OB) :⇔

∀0 ≤ i < length(SA); ((seqGet (SA, i) 4 Object
→̇(seqGet (SA, i) =̇OA ↔̇ seqGet (SB, i) =̇OB))

∧ (seqGet (SA, i) 4 Seq
→̇(agree2

Obj(seqGet (SA, i), OA, seqGet (SB, i), OB))))

The definition of agreeObj walks through all entries of TA and TB. If the
respective entry is of type object, it uses the predicate agree2

Obj , which checks
if all entries in a list SA are equal to an object OA, iff the same entry in SB
is equal to an object OB. If an entry of TA is a sequence, it recursively calls
itself.

We can now combine agreeT and agreeObj to define information equiva-
lence for events with predicate equivInfo. Given a JML dependency Cluster
specification, equivInfo first selects the relevant entry in the lowIn and
lowOut lists by checking if the meta data of an event matches the respective
information of an entry in the specification. Then the predicate evaluates
to true, if agreeT and agreeObj evaluate to true, if the lists over parameters
in the specification evaluate to true, given the communicated values in the
event.

We formally define information equivalence as follows:

131

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

Definition 8.13 (Equivalent Information).

equivInfo(eA, eB) :⇔
m∧
x=1

(orA =̇ cinx ∧mA =̇ sinx ∧ tA =̇ tinx)

→̇ agreeT (V in
A,x, V

in
B,x) ∧ agreeObj(V in

A,x, V
in
A,x, V

in
B,x, V

in
B,x)

∧
l∧

x=1
(orA =̇ coutx ∧mA =̇ soutx ∧ tA =̇ toutx)

→̇ agreeT (V out
A,x , V

out
B,x) ∧ agreeObj(V out

A,x , V
out
A,x , V

out
B,x , V

out
B,x)

where

• orA = evClient(eA) ∧mA = evMethod(eA) ∧ tA = evCalltype(eA)

• V in
A,x = {pin,1x := param1

A ‖ . . . ‖ pin,kx := paramk
A

‖ heap := evHeap(eA)}(vinx)

• V in
B,x = {pin,1x := param1

B ‖ . . . ‖ pin,kx := paramk
B

‖ heap := evHeap(eB)}(vinx)

• V out
A,x = {pout,1x := param1

A ‖ . . . ‖ pout,kx := paramk
A

‖ heap := evHeap(eA)}(voutx)

• V out
B,x = {pout,1x := param1

B ‖ . . . ‖ pout,kx := paramk
B

‖ heap := evHeap(eB)}(voutx)

• pin,ix =

a if tinx = call and a is the program variable used

as the i-th parameter of sinx
res if tinx = term

• pout,ix =

a if toutx = call and a is the program variable used

as the i-th parameter of soutx

res if toutx = term

• parami
C = seqGet (evParams(eC), i) for C ∈ {A,B}

The predicate equivInfo extracts the relevant observation expression from
the specification depending on the meta data (i.e. channel) in the event
eA and evaluates the observation expression with the parameters and heap
provided by the events. Note that we only evaluate the meta data of event
eA in Definition 8.13. Since in the following predicate equivEvent the events
are also checked for equal metadata, i.e. equal channels, only checking the
meta data of eA is sufficient.

The predicate equivEvent defines the equivalence relation for events (see
∼ in Chapter 3) by combining the predicates invEvent, equalMetadata, and
equivInfo.

132

8.4. Specification and Verification of Dependency Clusters in Beans

Definition 8.14 (Event Equivalence).

equivEvent(eA, eB) :⇔

(invEvent(eA) ∧ invEvent(eB))∨
(¬̇ invEvent(eA) ∧ ¬̇ invEvent(eB)
∧ equalMetadata(eA, eB) ∧ equivInfo(eA, eB)

History Equivalence Equality for events gives a rise for equivalence of
histories, similar to the definition in Chapter 3. Two histories are equivalent,
if the contained events are equivalent, while invisible events are ignored.

The formal definition is straight forward.

Definition 8.15 (History Equivalence).

equivHist(hA, hB)

:⇔

TRUE if hA =̇ seqEmpty ∧hB =̇ seqEmpty
equivHist(h′A, hB) if hA = seqConcat (eA, h′A) ∧ invEvent(eA)
equivHist(hA, h′B) if hB = seqConcat (eB, h′B) ∧ invEvent(eB)
equivHist(h′A, h′B) if hA = seqConcat (eA, h′A) ∧ seqConcat (eB, h′B)

∧ equivEvent(eA, eB)

Heap Equivalence To define the equivalence relation over states (i.e. ≈
in Chapter 3), we directly employ the approach as discussed by Beckert
et al.: an object sensitive notion for equivalence of heaps based on two
observation expressions. The first observation expression is provided in a
JavaDL Dependency Cluster as the observation expression R following the
lowState keyword. The second list N , following the keyword new_objects,
the low objects newly created during execution of a service are listed.

Directly comparing the evaluation of the observation expression R for
equality, as done in Chapter 4, would, again, lead to over-approximation as
already discussed for information equivalence in events.

Example 8.8. In the example below, the content of the field f is specified
to contain low information. After execution of the remote method, the
field points to a new object, independent from any high information. When
comparing two runs, however, it can not be guaranteed that in both runs,
the same object was newly created. Therefore, requiring equality of the
expression this.f in both poststates would consider doSthElse not to satisfy
its contract.

/*@ cluster someCluster
@ ...
@ \lowState (this.f ,...)
@ ...
@*/
public void doSthElse() {

133

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

this.f = new Object();
}

We apply the solution by Beckert et al. for object-sensitive information
flow with minor changes. Beckert et al. differentiate between equivalence in
the prestate and the poststate of a program execution. In both prestates the
observation expression is assumed to evaluate to equal values. The formula
agreepre defines for a given observation expression R the equivalence relation
≈ for prestates.
Definition 8.16 (Prestate Equivalence).

agreepre(ha, hb) :⇔ {heap := ha}R =̇{heap := hb}R

In order to gain a precise notion of equivalence in the case of object
creation, a different notion of equivalence is defined for the poststate. As for
event equivalence defined above, an isomorphism of newly created objects
in R is required. To make verification easier, the newly created objects are
explicitly given in the JavaDL Dependency Cluster as observation expression
N .

The predicate agreepost evaluates to true for an observation expression
and two pre heaps ha, hb and two post heaps h′a, h′b′, if all not-newly created
objects in h′a and h′b contained in R are equal, and there exits an isomorphism
for the newly created objects in R evaluated in the two post heaps.

The formal definition for agreepost is as follows:
Definition 8.17 (Poststate Equivalence).

agreepost(ha, h′a, hb, h′b) :⇔
newIso(ha, h′a, h′b, hb)
∧ ({heap := h′a}N =̇{heap := h′b}N →̇{heap := h′a}R =̇{heap := h′b}R)

where

newIso(ha, h′a, hb, h′b) :⇔
allNew({heap := h′a}N,ha) ∧ allNew({heap := h′b}N,hb)
∧ agreeT ({heap := h′a}N, {heap := h′b}N)
∧ agreeObj({heap := h′a}N, {heap := h′a}N, {heap := h′b}N,

{heap := h′b}N)

and

allnew(S, h) :⇔
∀0 ≤ i < length(S); (

(δ(seqGet (S , i)) 4 Object ∧ (seqGet (S , i) ˙6= null)
→̇ selectObject(h, seqGet (S , i), created) =̇ FALSE)

∧ (δ(seqGet (S , i)) 4 Seq →̇ allnew(seqGet (S , i), h)))

134

8.4. Specification and Verification of Dependency Clusters in Beans

The heaps ha and hb represent the heaps before program execution and
h′a and h′b represent the heaps after execution. Note that in contrast to
equivInfo only the the newly created objects, i.e. observation expression N ,
are checked for an existing isomorphism (predicate newIso). The reason is
that in contrast to events, potentially only some of the objects in R are
newly created during execution of a remote method.

The allnew predicate ensures that all objects described by the observation
expression N actually are newly created during execution.

Beckert et al. present a compositionality proof which states that if for
two heaps in the poststate and their respective heaps in the prestate agreepost
holds, it is sound to assume agreepre(ha, hb) when the heaps in the poststate
become heaps in the prestate for the next execution of a remote method.
The idea behind this assumption is that if an isomorphism for the newly
created objects exist, it can be assumed that in both runs of the remote
method, the same object identities were selected for creation.

8.4.3 Cooperative Environments

In Chapter 3 we made the assumption that the environment in which a
component is executed is cooperative, i.e. for every service called with two
equivalent call messages, the environment returns two equivalent termination
events. The assumption of a cooperative environment is a restriction on the
history of a bean.

We directly provide a definition for cooperative environments with the
predicate coopHistEquiv for two histories:

Definition 8.18 (JavaDL Cooperative Environments).

coopHistEquiv(hA, hB)

:⇔

TRUE if hA =̇ seqEmpty ∧hB =̇ seqEmpty

equivEvent(e′A, e′B)
∧ coopHistEquiv(h′a, h′B) if

hA =̇ seqConcat(eA, e′A, h′A)
∧hB =̇ seqConcat(eB, e′B, h′B)
∧ equivEvent(eA, eB)
∧ evCalltype(eA) =̇ call
∧ evCalltype(eB) =̇ call
∧ evCalltype(e′A) =̇ term
∧ evCalltype(e′B) =̇ term

The predicate coopHistEquiv states for two histories that they are co-
operatively equivalent, iff, given two equivalent call events followed by a
termination event each, the termination events again are equivalent.

Cooperative environments also ensure that an (in-)visible call event
is always followed by an (in-)visible termination event respectively. The
predicate coopHist formalizes this behavior as a property for a history in
JavaDL.

135

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

Definition 8.19 (Visibility Preserving Histories).

coopHist(h)

:⇔

TRUE if h =̇ seqEmpty

invEvent(e) ↔̇ invEvent(e′)
∧ coopHist(h′) if

h =̇ seqConcat(e, e′, h′)
∧ evCalltype(e) =̇ call
∧ evCalltype(e′) =̇ term

8.4.4 Verifying Dependency Cluster

We have now defined the JavaDL formalization for event equivalence (∼),
state equivalence (≈) and cooperative environments. This allows us to provide
a JavaDL formalization of the non-interference criterion as in Definition 3.12
as a JavaDL proof obligation.

The formula is a direct encoding of Definition 3.12 in JavaDL. We compare
two executions of a remote method. We assume that both executions repre-
sent a call to the same bean (selfa =̇ selfB) and are performed by the same
caller (callingCompa =̇ callingCompB). We further assume that the fields bi
of the bean, which reference other remote beans, actually reference the same
remote beans selectObject(heapA, selfA, bi) =̇ selectObject(heapB, selfB, bi).

We assume the both executions are started in equivalent prestates
(agreepre(heapA, heapB)), and called with equivalent call events:

equivEvent(calleventA, calleventB)

Further, we assume cooperative environments:

coopHist(histlocalA), coopHist(histlocalB), and
coopHistEquiv(histlocalA, histlocalB).

We then have to check after the two executions, that they terminate in
equivalent poststates and that the events communicated during execution
are equivalent.

agreepost(heapA, heapAtPostA, heapB, heapAtPostB) and
equivHist(histlocalA, histlocalB)

We have to check that both executions terminate with equivalent termination
events (equivEvent(termeventA, termeventB)).

Finally, we also have to verify that the remote method is visibility-
preserving. It is sufficient to check this for one execution. So, we additionally
require the remote method to terminate with a visible event, if the it was
called with a visible event:

¬̇(invEvent(calleventA)) →̇ ¬̇(invEvent(termeventA))

136

8.4. Specification and Verification of Dependency Clusters in Beans

If the service was called with an invisible event, it has to terminate with an
invisible event, the events sent during execution have to be invisible, and the
prestate has to be equivalent to the poststate:

invEvent(calleventA)
→̇(invEvent(termeventA) ∧ equivHist(histlocalA, seqEmpty)
∧ agreepre(heapA, heapAtPostA))

The complete definition of the proof obligation is presented in the following
definition. It additionally contains some technicalities (especially Lines 8.19
to 8.25), which we do not discussed here:

Definition 8.20 (Remote Method Non-interference). A method m declared
remote is non-interferent w.r.t. to a JavaDL Dependency Cluster dc, defining
the predicates invEvent, equivEvent, agreepre, and agreepost if the following

137

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

formula is valid.
wellformed(heapA) ∧ wellformedHist(histA) (8.19)
∧ wellformed(heapB) ∧ wellformedHist(histB) (8.20)
∧ selfA ˙6= null ∧ selfB ˙6= null (8.21)
∧ callingCompA ˙6= null ∧ callingCompB ˙6= null (8.22)
∧ callingCompA ˙6= beanA ∧ callingCompB ˙6= beanB (8.23)
∧ selfA =̇ beanA ∧ selfB =̇ beanB (8.24)
∧ beanA =̇ selfA ∧ beanB =̇ selfB ∧ callA ∧ callB (8.25)
∧ {heap := heapA ‖ self := selfA ‖ hist := histA (8.26)
‖ callingComp := callingCompA ‖ histlocal := seqEmpty (8.27)
‖ a′1 := a1A ‖ . . . ‖ a′m := amA} (8.28)
{hist := seqConcat (hist, calleventA)} (8.29)
〈r = this.m(a′1, . . . , am)〉 (8.30)

(termeventA =̇ event(callingComp, self,mid, term, seq(res), heap)
(8.31)

∧ histAtPostA =̇ seqConcat (hist, termeventA) (8.32)
∧ resultAtPostA =̇ res ∧ heapAtPostA =̇ heap (8.33)

∧ histlocalA =̇ histlocal) (8.34)
∧ executionB (8.35)
→̇ (8.36)
((selfA =̇ selfB ∧ callingCompA =̇ callingCompB (8.37)
∧ selectObject(heapA, selfA, b1) =̇ selectObject(heapB, selfB, b1) (8.38)
∧ . . . (8.39)
∧ selectObject(heapA, selfA, bk) =̇ selectObject(heapB, selfB, bk) (8.40)
∧ agreepre(heapA, heapB) ∧ equivEvent(calleventA, calleventB) (8.41)
∧ invEvent(calleventA) ↔̇ invEvent(calleventB) (8.42)
∧ coopHist(histlocalA) ∧ coopHist(histlocalB) (8.43)
∧ coopHistEquiv(histlocalA, histlocalB)) (8.44)
→̇ (8.45)

(agreepost(heapA, heapAtPostA, heapB, heapAtPostB) (8.46)
∧ equivHist(histlocalA, histlocalB) (8.47)
∧ equivEvent(termeventA, termeventB) (8.48)
∧ (¬̇(invEvent(calleventA)) →̇ ¬̇(invEvent(termeventA))) (8.49)
∧ (invEvent(calleventA) (8.50)
→̇(invEvent(termeventA) ∧ equivHist(histlocalA, seqEmpty) (8.51)
∧ agreepre(heapA, heapAtPostA))))) (8.52)

138

8.4. Specification and Verification of Dependency Clusters in Beans

where

• for C ∈ {A,B}:
callC = (calleventC =̇ event(callingCompC , selfC ,mid, call,
seqConcat(a1C , ..., amC), heapC))

• mid is the identifier for method m

• executionB is the same formula as the formula from 8.26 to 8.34, indexed
with B instead of A

• b1, . . . , bk are the fields of the bean which themselves are declared to
hold beans.

• equivHist, invEvent, equivEvent, agreepre, and agreepost are the predi-
cate as defined above according to JavaDL Dependency Cluster dc.

8.4.5 Combined Dependency Cluster

Dependency Cluster are meant to be building blocks for complex non-
interference specifications. In order to build complex non-interference speci-
fications, we introduced combined Dependency Cluster in Chapter 4. We
now provide a JML specification scheme to define combined Dependency
Cluster in JML. The following listing shows the syntax of a specification
combining non-interference specifications.

/*@ cluster label \combines labels; */

where labels is a list of labels used for Dependency Cluster specifications.

Example 8.9. In the following listing, we declare the JML Dependency
Cluster clusterBuy1 for the remote method buy of our running example.
The JML Dependency Cluster expresses the dependency of the value of the
field product on the value of the parameter prod of the remote method.

We also define the bean-global Dependency Cluster prodLowCluster as
a combination of clusterBuy1 cluster and cluster3 as declared in Exam-
ple 8.6.

public class Cart implements CartIF {
...
/*@ cluster prodLowCluster

@ \combines clusterBuy1, cluster3; */
...

/*@ public normal_behavior
@ cluster clusterBuy1
@ \lowIn this.buy.\call(prod)
@ \lowOut this.buy.\term(0)

139

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

@ \lowState this.product
@ \visible this.buy.\call(true),
@ this.buy.\term(true)
@ \new_objects \nothing;
@*/

public int buy(int prod, int price, int amount) {...}
}

Similar to Dependency Cluster specifications, combined Dependency
Cluster specifications in JML can be applied on class level and on remote
method level. If it is applied on class level, any label can be used in the list,
which identifies either a bean-level or a remote method-level JML Dependency
Cluster in the same class. If the specification is applied on method level, only
those labels are allowed which refer to a specification for the same remote
method.

The semantics of a combined non-interference specification is given as the
intersection of the equivalence relations, which are defined by the predicates
invEvent, equivEvent, agreepre, and agreepost . We indicate in the following
predicates that specified by different JavaDL Dependency Cluster by adding
the label to the predicate name.

Definition 8.21 (Combined Non-interference Specification). The predicates
invEventcombined , equivEventcombined , and agreecombined

pre for a Combined De-
pendency Cluster with label combined and combining JML Dependency
Clusters with labels l1, . . . , ln are defined as

invEventcombined(e) :⇔
n∧
x=1

(invEventlx(e))

equivEventcombined(eA, eB) :⇔
n∧
x=1

(equivEventlx(eA, eB))

agreecombined
pre (hA, hB) :⇔

n∧
x=1

(agreelxpre(hA, hB))

agreecombined
post (hA, hB) :⇔

n∧
x=1

(agreelxpost(hA, hB))

Combined Dependency Clusters do not need to be verified, since as
shown in Theorem 4.1, a remote method is non-interferent w.r.t. a combined
non-interference specification if it is non-interferent w.r.t. all non-interference
specifications that are combined.

140

8.4. Specification and Verification of Dependency Clusters in Beans

8.4.6 Bean-Level Verification

To show that a bean is non-interferent w.r.t. a bean-level JML Dependency
Cluster specification, we have to verify according to Definition 3.13 and
Theorem 3.3 that all remote methods are non-interferent w.r.t. the specifica-
tion. In Theorem 4.2 we showed that service-level Dependency Clusters can
be used to show that a service is non-interferent w.r.t. a component-wide
non-interference specification without reasoning about a program. We want
to make use of this property for remote method non-interference.

To do so, we provide a specification mechanism which allows for each
remote method to directly provide the method-local Dependency Cluster,
which implies the bean-wide specification. This specification represents
the connection between component-level non-interference and service-level
non-interference.

The following method-level specification states that one or more remote
method-level Dependency Clusters satisfy a component-global Dependency
Cluster.

/*@ cluster g \satisfied_by l; */

where g is a label used for a component-level JavaDL Dependency Cluster
and l is a label of a method-level JavaDL Dependency Cluster.

Example 8.10. We can specify for each remote method provided by the
bean Cart which local clusters are used in order to verify that the bean-level
Dependency Cluster prodLowCluster from Example 8.9 is also a Dependency
Cluster for the remote method. In the following listing, we use the cluster
clusterBuy1 for the service buy and cluster3 for pay.

public class Cart implements CartIF {
...

/*@ cluster prodLowCluster \satisfied_by clusterBuy1;*/
public int buy(int prod, int price, int amount) {...}

/*@ cluster prodLowCluster \satisfied_by cluster3; */
public int pay(int ccnr) {

}

Theorem 4.2 directly provides us with the proof obligation which we
proved to verify that a method-level Dependency Cluster implies a component-
level non-interference specification. We formalize the condition as a direct
translation of the original condition in JavaDL:

Theorem 8.1. A method m declared remote, which is non-interferent w.r.t.
a JavaDL Dependency Cluster dcl with label l is also non-interferent w.r.t. a

141

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

JavaDL Dependency Cluster or Combined Dependency Cluster dcg with label
g, if the following formula is valid.

self ˙6= null ∧ callingComp ˙6= null (8.53)
∧ evCaller(eA) ˙6= null ∧ evCaller(eB) ˙6= null (8.54)
∧ evClient(eA) ˙6= null ∧ evClient(eB) ˙6= null (8.55)
∧ wellformed(evHeap(eA)) ∧ wellformed(evHeap(eB)) (8.56)
∧ wellformed(hA) ∧ wellformed(hB) (8.57)
∧ wellformed(h2A) ∧ wellformed(h2B) (8.58)
∧ hpostA =̇ anon(h2A,mods, hA) ∧ hpost

B =̇ anon(h2B,mods, hB) (8.59)
→̇ (8.60)

equivEventg(eA, eB) →̇ equivEvent l(eA, eB) (8.61)
∧ agreeg

post(hA, hB) →̇ agreel
post(hA, hB) (8.62)

∧ ((equivEvent l(eA, eB) ∧ isCallable(eA) ∧ isCallable(eB)) (8.63)
→̇ equivEventg(eA, eB)) (8.64)

∧ (agreeg
post(hA, hB) ∧ agreel

post(h
post
A , hpostB)) (8.65)

→̇ agreeg
post(h

post
A , hpostB) (8.66)

where

• mid is the representative for the method m

• isCallable is the formula:

isCallable(e) :⇔
(evMethod(e) =̇ mid ∧ evCaller(e) =̇ callingComp

∧ evClient(e) =̇ self)
∨ (evMethod(e) =̇ m1 ∧ evCaller(e) =̇ self

∧ evClient(e) =̇ o1)
∨ . . .
∨ (evMethod(e) =̇ mn ∧ evCaller(e) =̇ self

∧ evClient(e) =̇ on)

• callable = (exp1 .m1, . . . , expn .mn)

• oi = {heap := evHeap(e)}(expi)

• mods is the assignable set of m

We omit the proof for the theorem since it is a direct JavaDL encoding
of Theorem 4.2.

142

8.5. Case Study

The first part of the formula (8.53 to 8.59) ensures that the events are
wellformed in the sense that the calling bean and the client bean are non-
null,and the heaps are wellformed. The post-heaps are an anonymization
of the pre-heaps, considering the assignable set of the remote method the
specification belongs to. The second part (from 8.61) is a direct JavaDL
representation of the formula in Theorem 4.2. The helper formula isCallable
formalizes whether an event, according to the callable set of the method, can
actually appear in the history generated by the execution of the method.

Note that the formula in Theorem 8.1 does not contain a program, as
does the formula in Theorem 4.2. Verifying the formula thus is first order
predicate logic reasoning with substitution due to the updates in the formula.

8.5 Case Study

We implemented the rules and JML extensions in the KeY tool with slight
simplifications, and applied it to a component-based web shop system. The
tool, the web shop implementation, and the specifications can be found at
the accompanying website2. In this section, we describe the system, its
functionality and the Java beans implementing the functionality. We present
the non-interference specification for the system and report on the verification
process.

The case study is based on a previously published analysis of the case
study by Greiner et al. [2017b] and Greiner et al. [2017a]. We focus here on
the JML Dependency Cluster verification using our extension of KeY, while
re-using some results from these publications.

8.5.1 Web Shop System Description

The web shop system provides interfaces for interacting with customers,
employees at the delivery department, and at the billing department. The
web shop also requires interfaces from a financial institute and the product
database storing product information and prices. Figure 8.2 shows the
interfaces and the remote methods declared by them.

A customer uses the remote method addToCart, declared in the interface
CartIF to add products to his shopping cart. In order to check which products
he already put into his cart, he can call the remote method getCartContent.
The interface AccountIF provides remote services for managing the cus-
tomer’s account information. orderElementsInCart performs the payment
process with the financial institute and marks the products in the cart as
ordered. With the remote methods setName, setAdress, setCCNr, and
setCVC, the customer can provide his name, delivery address, credit card
number, and his card validation code for the credit card.

2https://formal.iti.kit.edu/~greiner/niframework/

143

https://formal.iti.kit.edu/~greiner/niframework/

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

CartIF
Service Parameter Return Value
getCartContent OrderElement[]
addToCart int prodId, int amount boolean

AccountIF
orderElementsInCart boolean
setName char[] name
setAdress char[] adr
setCCNr int ccnr
setCVC int cvc

BillingIF
getBillsToSend - Bill[]

DeliveryIF
getDeliverySheets - DeliverySheet[]

BankIF
makePayment char[] name, int ccnr,

int cvc, int amount
boolean

ProductDBIF
getProductPrice int prodId int

Figure 8.2: Interfaces provided and required by the Webshop system

An employee at the billing department calls getBillsToSend provided
via the interface BillingIF to get the information required to issue bills
to the customer. An employee at the delivery department calls the remote
method getDeliverySheets provided by the interface DeliveryIF to gain
the information necessary to package ordered products and ship them to the
customer’s address.

The web shop system is made up of five components, implemented as
Java beans: The component Cart implements functionalities of the shopping
cart; Account implements the customer’s account; OrderDB implements the
database which keeps track of all orders and their status; Billing prepares
the relevant data from the OrderDB bean for employees working in the billing
department; and Delivery does the same for the delivery department.

The web shop application consists in total of the five aforementioned
beans, and the six external interfaces mentioned in Figure 8.2. The com-
ponents are internally connected via four additional interfaces, declaring 12
additional remote services.

144

8.5. Case Study

8.5.2 Non-Interference Specification

Domain-Motivated Specification The overall domain-motivated secu-
rity specification states who (customer, delivery department, billing depart-
ment) may gain knowledge about which input information. For example, the
billing department may gain knowledge about the last four digits of the credit
card used for payment, since this information should be printed on the bill.
The delivery department must not gain knowledge about this information at
all. Further, the billing department may gain knowledge about the price of
the products payed by the customer, while the delivery department does not
need this information.

In the specification, we assume that the customer has access to the
interfaces AccountIF and CartIF, the delivery department has access to
the interface DeliverIF, and the billing department to BillingIF. Each
of theses stakeholders can see all output events provided via the respective
interfaces. The full domain-motivated specification of who may know what
information can be found in Appendix A.2.2.

Dependency Cluster Specification We provide JML Dependency Clus-
ter specifications in two ways: For one we manually specify JML Dependency
Clusters using the JML specification mechanism discussed earlier in this
chapter. And second, we use an extension of the JOANA tool3 to extract
Dependency Clusters automatically from the implementation of the remote
services. The manually specified Dependency Clusters are necessary, since
the automatic tool sacrifices precision for automation and therefore does not
extract all Dependency Cluster necessary to verify the concrete information
flow specification.

We manually specified a total of 22 Dependency Clusters using our JML
extension.

Additionally, we automatically extracted Dependency Cluster for the
remote methods using an extension of the tool JOANA by Martin Mohr (see
Greiner et al. [2017b] and Greiner et al. [2017a] for details on the tool). Given
the Byte code of a Java program, JOANA calculates a program dependency
graph (PDGs) for the program. The nodes in a PDG represent statements
and expressions of the program under analysis, including method calls and
parameters. The edges represent dependencies between the nodes. Data
dependencies represent for a statement that it depends on the value of a
previous expression, and control dependencies represent for a statement
that its execution depends on a previous statement. The backward slice for
a node, in particular a return value or field, contains all expressions and
statements on which the value of the node depends. By calculating backward

3https://pp.ipd.kit.edu/projects/joana/

145

https://pp.ipd.kit.edu/projects/joana/

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

slices for return values and fields, we can calculate a dependency cluster for
the remote method under analysis.

We gained a total of 502 automatically extracted Dependency Cluster.
In order to verify non-interference for our web shop example, we selected 245
of these Dependency Cluster and provided corresponding JML Dependency
Cluster specifications for each of them.

We finally provide for each bean in the web shop a specification for
two combined Dependency Cluster, one representing the non-interference
property for the delivery department and one for the billing department.
For each remote method we provide for the two bean-global Dependency
Clusters a satisfied by clause. All specifications can be found in the online
available material.

8.5.3 Verification

We applied our KeY implementation on each of the manually specified JML
Dependency Cluster as well as the satisfies-clause for each service. Both of
these verification goals posed their own challenges.

Program verification for simple JML Dependency Clusters for simple
programs runs automatically most of the time. Also, verifying very precise
dependency cluster, e.g. a Dependency Cluster expressing declassification
of the last four digits of a credit card number, did not pose an additional
challenge.

Manual interaction is necessary during the proof, however, if dependency
clusters are larger, i.e. event- or state equivalence depends on many different
expressions. The main problem in this case is especially the need for proving
object isomorphism, which leads to infeasible many quantifier instantiations
a user has to provide. One way to overcome this problem is by introducing a
proof obligation for equivalence of outgoing messages, which assumes newly
generated objects in both runs of a service to be equal, and showing equality
of objects instead of an existence of an isomorphism. While this solution
should heavily reduce manual interactions, it is an over-approximation of the
proof obligation shown here.

Additional manual interactions are typical for KeY, e.g. when heaps with
many manipulations have to be simplified or when nested quantifier have to
be instantiated. This problem is not unique to our approach but a general
challenge in program verification with KeY.

The grade of automation for verification of satisfies-clauses depends
mainly on two properties of the proof obligations. For one, if a service
potentially calls many other services, i.e. many event equivalences have to
be verified, many case splits are necessary to support the prover.

A second criterion is the complexity of the specification of the low state.
For one, if many nested quantifier are contained in the specification, again
many manual interactions are necessary to show global low equivalence of

146

8.6. Related Work

the poststates. And second, if many object-valued expressions are contained
in the specification of the low part of the state, showing object isomorphy is
practically infeasible. We therefore simplified the proof obligation to require
agreepre for the poststates instead of agreepost .

In conclusion, we did require support from an automatic tool to verify
simple dependency cluster for our components in order to make the verifica-
tion feasible. Dependency Cluster allowed us to combine the tools on a very
fine-gained specification level. We also re-used many dependency cluster,
including manually specified ones, for verification of non-interference w.r.t.
the delivery department and the billing department. This freed us from
verifying both properties from scratch, and verifying the second property
was only a small overhead in the verification.

We also found that improvements for the verification are necessary for
bigger, more realistic programs. We expect optimizations similar to those by
Scheben and Schmitt [2014] for sequential Java programs to be possible and
useful for our proof obligations as well. We also think that additional support
for method contracts and block contracts can make precise dependency cluster
verification a more feasible task.

We finally want to mention that we selected the 245 Dependency Cluster
out of the 502 automatically generated ones manually. This task is error prone
and time consuming. However, we assume that it is possible to automate
this task by providing an overall domain-driven specification, automatically
selecting a set of the given Dependency Cluster, and check the weakening
property of the selected Dependency Cluster against the domain-motivated
Specification. This check could, for example, be efficiently executed using
SMT solver based tools.

8.6 Related Work

We distinguish in the discussion of related work between related work for
deductive verification of object-oriented interactive programs, deductive
verification of non-interference in object-oriented sequential programs, and
automatic program analysis approaches for non-interference.

8.6.1 Deductive Verification of Interactive Programs

ABS (Johnsen et al. [2012]) is an executable modeling language for distrib-
uted interactive systems, which supports synchronous as well as asynchronous
communication. Components in ABS communicate via message passing,
similar to our DSCs and the modeling language is object oriented. Spec-
ifications for component-based systems modeled in ABS are provided as
invariants over global histories of the system, typically expressing some kind
of functional well-behavior of the system.

147

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

ABSDL (Din et al. [2015a]) is a dynamic logic for the ABS modeling
language, and the tool KeY-ABS, a deductive verification tool based on KeY
for modular reasoning about ABS models, is presented. Similar to our work,
the authors provide a calculus for ABSDL, which also supports events with
a similar structure as our extension of JavaDL, as well as local histories for
components. Contrary to our work, the calculus for ABS supports different
forms of synchronization, as well as futures in the specification language, and
allows reasoning about global histories of systems consisting of components
(Din et al. [2015b]). While they focus on the verification of global properties
of a composed system, we concentrate on reasoning about properties local
to remote methods, which we require in order to verify non-interference
properties w.r.t. Dependency Clusters.

History-based reasoning for asynchronous method calls in interactive
systems was first done for the programming language Creol in Dovland et al.
[2005]. The approach was adapted to dynamic logic by Ahrendt and Dylla
[2012] and later on simplified by Din et al. [2012] and extended to support
futures by Din and Owe [2014] and Din and Owe [2015]

8.6.2 Deductive Verification of Object-oriented
Non-interference

We limit the discussion here to work on deductive verification of non-
interference properties for sequential object-oriented programs.

Amtoft et al. [2006] present a Hoare-like logic (Hoare [1969]) specialized
for the deductive verification of non-interference in a small object-oriented
programming language. The approach is termination insensitive and does
not allow what-declassification in the sense that only variables and fields can
be specified to be low, not parts of them. Amtoft and Banerjee [2007] extend
this approach with what they call conditional information flow, where the
classification of input or output of a program may depend on a condition
over the state of the program. This work was implemented as a software
contract approach for SPARK Ada and supports a simple while language
(Amtoft et al. [2008]). Amtoft et al. [2010] added array support for this
approach.

Bubel et al. [2008] present an approach where dependencies between
program locations (i.e. variables and fields) are tracked using an approach
based on abstract interpretation and deductive verification.

Self-composition is a technique where non-interference is directly encoded
in a formula by executing a program twice and expressing equivalence of pre-
and poststates in a formula. Concrete applications of self-composition for
non-interference formalization was presented by Darvas et al. for dynamic
logic, by Barthe et al. for temporal logic, and by Joshi and Leino [2000] for
the weakest precondition calculus.

148

8.6. Related Work

Darvas et al. provided also the basis for a series of work on non-
interference analysis based on dynamic logic for sequential Java programs.
Scheben and Schmitt [2012] provide a formalization of low equivalence of
terms over a state is presented in the form of views that allows declassification
of nearly arbitrary terms. We extended this approach for the specification
of Dependency Clusters and our formalization of Dependency Clusters for
remote methods can be seen as an extension of their non-interference prop-
erty with events and histories. Beckert et al. present a specification method
for JML and Java programs, on which our JML extension for Dependency
Cluster is based. Scheben and Schmitt [2014] present optimizations for
reasoning about non-interference properties in Java programs, which reduces
significantly the effort for program analysis. Their results in general can be
applied to the analysis of services and Dependency Clusters, which we leave
for future work.

8.6.3 Automatic Program Analysis for Non-interference

A large body of work on automatic approaches for program analysis for
non-interference properties is on type systems. A good overview of type
systems for non-interference analysis is provided by Hedin and Sabelfeld
[2012]. Typically, type systems are designed for rather simple program-
ming languages and not easily extendable for practically used programming
languages. Additionally, type systems typically sacrifice precision in order
to be applied automatically, which prevents them from allowing expressive
semantic declassification of information.

An exception here is the PER model presented by Sabelfeld and Sands
[2001], where partial equivalence relations are used to describe which partial
information of some input variable is declared low. The work also presents
a type system which allows analysis for a simple while language with non-
deterministic commands. A line of work on dependent types (e.g. Zheng
and Myers [2007],Swamy et al. [2010], Swamy et al. [2011], Nanevski et al.
[2011], and Lourenço and Caires [2015]) allows a dynamic classification of
information, which may also depend on constraints, e.g. , conditions over a
state. As a consequence, type checking generates proof obligations that have
to be checked for validity, which is in general an undecidable task.

Another exception is JIF (Myers et al. [2006]), a security-typed extension
of Java. JIF supports a realistic programming language, including exceptions,
and object-orientation.

Hammer and Snelting [2009] propose a program analysis technique based
on program dependency graphs implemented in the tool JOANA. Inputs and
outputs of a program are labeled high or low. The authors show that if the
program dependency graph does not contain a path from a high input to low
output, the program is non-interferent w.r.t. its specification. Based on this
technique, the tool JOANA can check non-interference properties for realistic

149

Chapter 8. Deductive Verification of Dependency Clusters in JavaEE

Java programs. An modification of JOANA was used to extract Dependency
Cluster from remote methods by Greiner et al. [2017b] and Greiner et al.
[2017a].

8.7 Conclusion

In this chapter, we applied our framework from Part I to concrete JavaEE
implementations of components, so-called beans. We extended JavaDL by
events and histories and a rule for symbolic execution of remote method calls.
The rule directly formalizes the effects of serialization and deserialization
of parameters and return values on the heap, as well as the resulting proof
obligation for remote methods. We further extended JML with specification
primitives for Dependency Cluster and bean-wide non-interference specifi-
cations. Using both of these extensions we provide a proof obligation for
Dependency Cluster of remote methods.

Additional specification primitives for combining Dependency Clusters
and bean-level non-interference specifications allow a modular specification
of non-interference properties for beans, as described for DSCs in general in
Chapter 4. The condition whether a remote method is non-interferent w.r.t.
a bean-wide non-interference specification is given as a JavaDL formalization
of Theorem 4.2 in first order predicate logic.

Our specification language is intuitive while practically still providing
the expressiveness of equivalence relations. Further, Dependency Cluster
formulated in our JML extension can be used as building blocks for elaborate
non-interference specifications and combinations of Dependency Cluster is
made explicit on a syntactical level.

We provide an implementation of the techniques described this chapter
as an extension of the KeY theorem prover. This way, we show that it is
feasible to build precise program analysis technique based on our framework
for a real, object-oriented programming language.

We presented here an approach for program analysis for individual beans
and left open how bean-wide specifications are motivated. While typically in
the literature specifications of this form are given by some oracle (or domain
expert), in our case it would make sense if these specifications are related to
some overall systems-engineering approach. Yurchenko et al. [2017] shows
that code-generation techniques can be extended to enrich code skeletons
gained from model-based specifications (see Chapter 7) with non-interference
specifications. These specifications are then domain-motivated and ensure a
system-wide security property with respect to a specific attacker model.

While deductive verification, as used in this chapter, allows verification of
very precise specifications, it often does not scale very well. Martin Mohr show
(Greiner et al. [2017b] and Greiner et al. [2017a]) that Dependency Cluster
can be extracted from programs efficiently using an automatic static program

150

8.7. Conclusion

analysis tool, in that case based on the tool JOANA. While automatically
generated Dependency Cluster do not cover flows which express semantic
declassification, they amount for the vast majority of relevant dependencies
caused by the implementation of a remote method. Only very specific
dependencies have to be specified and verified manually with our interactive
tool. We make use of this Dependency Cluster extraction in our case study.

We would like to stress that the modularity of Dependency Clusters allows
a combination of tools on service level and limited to partial information flow
specifications. While feasibility for this combination was shown with JOANA,
this does not mean that there is a limit to this particular combination. We
expect that many different forms of program analysis techniques, including
dynamic techniques, may be useful in order to achieve scaleablitiy. The
more techniques are available for analysis, the more options exist in order to
combine the strength of different approaches while avoiding weaknesses of
the respective approach.

151

Part III

Beyond the Framework

153

9
Trace-based Non-interference

9.1 Introduction

In this chapter, we discuss how our framework from Part I can be extended
to support non-interference specifications where the sensitivity of a message
depends on the history of previously communicated messages. In the original
definitions, whether or not a message or parts of the information communi-
cated in a message is low may only depend on the values of the parameters
of the message. This limitation prevents our framework from being used in a
context where secrecy of information depends for example on whether a user
was previously added as a friend, a property common in social networks.

In this chapter we discuss a privacy preserving video surveillance system
as an example. One requirement of the video surveillance system is to
ensure that an operator watching the system’s monitors does not gain
information about people under surveillance, which the operator should not
know. Whether or not some input to the system contains this sensitive
information depends on the history of inputs to the system, i.e. the non-
interference specification the video surveillance system should obey to is trace-
dependent. Along this example, we revisit strategies and non-interference
from Chapter 3 and extend them to support trace-based non-interference.
We further develop specifications for the services of the system and show for
an implementation that the system obeys to the privacy requirement of our
example.

In the next section we introduce the privacy preserving video surveillance
system and the intuitive idea of the information flow property which the
system should guarantee. In Section 9.3 we provide a trace-dependent
equivalence relation which formally defines which input information is low
from point of view of the operator. We thus formalize the privacy requirement
motivated by the domain of the video surveillance system. In Section 9.4
we extend several definitions from Chapter 3 such that we gain a notion
of trace-dependent non-interference for DSCs, as far as needed for the

155

Chapter 9. Trace-based Non-interference

example system. We additionally provide a trace-dependent non-interference
notion for services, which implies trace-based non-interference for a DSC. We
further we provide trace-independent conditions for services, which imply
trace-based non-interference for services. In Section 9.5 we present the
implementation of the core component of the video surveillance system and
provide a formalization of the trace-independent conditions in JML, and
report on the formal verification of the component w.r.t. these conditions
with KeY. After this we discuss related work and conclude the chapter.

The work presented in this section is an extension of the work published
in Greiner et al. [2013] and Birnstill et al. [2015].

9.2 An Example: Privacy Preserving Video Sur-
veillance

In this section, we introduce a smart video surveillance system with enhanced
privacy protection mechanisms for people under surveillance. We present
here a simplified system which is inspired by an implementation, which
is discussed by Birnstill and Pretschner [2013]. The system was designed
in order to make video surveillance possible in sensitive environments, as
for example hospitals. The purpose of the surveillance system is detecting
dangerous situations, e.g. patients lying on the floor helplessly or theft being
committed on the property of patients in the hospital.

A hospital is a very sensitive place, where different regulations have to
be obeyed to. Of course it is not allowed to install video surveillance systems
in patient’s rooms or restrooms, since this would constitute a strong invasion
of privacy of people. Even if there is no surveillance at these sensitive places,
worker protection regulations also would not allow to put the entire hospital
under surveillance, because this would allow the employer to perform strict
surveillance of employees.

The smart surveillance system we use as an example in this chapter
therefore implements several privacy protection mechanisms. The first pro-
tection mechanism is that the system does not directly provide surveillance
images on a screen. Instead, only abstract information about the areas under
surveillance is provided to the operator of the system. Figure 9.1 shows an
abstract map, as it is displayed to the operator.

The smart video surveillance system uses object recognition to extract
where people are located in the hospital. Then, these people are shown on
the screen abstractly as white figures. Additionally, the system can detect
dangerous situations, like people lying on the floor. In this case, the operator
receives an alert from the system and can request live images to examine if
an actual emergency situation is shown and whether she has to organize help.
These requests are logged such that misuse of live images can be detected.

156

9.2. An Example: Privacy Preserving Video Surveillance

Figure 9.1: Screen shot of abstract map

Figure 9.2: System diagram for the smart surveillance system

The abstraction of concrete information makes it harder to directly iden-
tify for each abstractly shown figure which person in reality it represents.
However, employees of the hospital, e.g. nurses and doctors, have charac-
teristic patterns of movement due to their tasks. By observing one abstract
figure over a period of time would allow to identify the employee which it
represents.

The smart surveillance system therefore implements a second protection
mechanism which states that employees should not be displayed in the
abstract map at all. When an employee enters the hospital, she can identify
herself as a member of the protected group (as an employee) by holding a
smartphone into a camera displaying a QR code. Then the system should
not show this person at all on the abstract map.

In order to achieve this functionality, the smart video surveillance system
has to track this person. Only if the system knows, which person has
previously identified herself a an employee, the system can decide not to
show her on the screen. To perform the tracking in a reliable way, the system
has to store sensitive information, i.e. the information which should not be
displayed, about the person. The situation where sensitive information has to
be stored in order to protect it is called the tracking paradox (Greiner et al.
[2013]). We can formalize the property that stored sensitive information
must not be available to the operator’s desk as an information flow property.

In Figure 9.2 the general architecture of the smart surveillance system
shown. Figure 9.3 shows the services provided by the privacy store.

157

Chapter 9. Trace-based Non-interference

public class PrivacyStore {
2 public void updateObservation(int[] observation) {...}

public void registerCoWorker(int[] observation) {...}
public int[] getGuest(int pos) {...}

}

Figure 9.3: Interface of a privacy store

The system consists of three kinds of components. The first kind of
components are the cameras. The cameras record pictures of a certain area
and perform object recognition tasks on the images and extract features,
e.g. the location of a person, his height, and hair color. Cameras can also
detect whether a person identifies himself with a QR code displayed on a
smart phone. The cameras pass the features, but not the original image, on
to the privacy store. If the camera identified a person, it calls the service
updateObservation, if the camera additionally identified the person to
register with a QR code, it calls the service registerCoWorker.

The operator’s desk (OD in Figure 9.2) is the component which shows
the abstract map to the operator. The component frequently calls getGuest
provided by the privacy store and receives as a return value an observation,
i.e. the features of one person. The operator’s desk then displays the gained
information on the abstract map.

The privacy store is the core component which stores the observations
and performs the tracking of persons. For each observation the privacy store
receives from a camera, it has to decide whether or not the observation
shows some person already in the system, or if a new person entered the area
under surveillance. The privacy store also has to ensure that no observation
of a registered person is forwarded to the operator’s desk. So all privacy
preserving functionality is encapsulated in the privacy store and we limit our
presentation in the following to this component.

We make the following idealizing assumptions about the system. For
one, we assume that feature extraction performed by the cameras is perfect.
It always provides the correct features, never misses a person and never
identifies a non-exiting person. And second, we also assume that the tracking
algorithm is perfect in the sense that every observation provided by the
camera to the privacy store is matched to the correct person already known
to the system.

158

9.3. Specification

9.3 Specification

In order to analyze whether the privacy store component only provides
non-sensitive information to the operator’s desk, we require a specification of
sensitive and non-sensitive information. We define sensitive and non-sensitive
information based on inputs and outputs of the privacy store, i.e. based in
the event trace of the component.

Potentially sensitive information is provided to the privacy store via the
inputs to the services updateObservation and registerCoWorker. Simply
put, an observation is non-sensitive, i.e. low, if it does not show an employee.
An observation is also non-sensitive, if a member of the protected group
registers himself as such. In this case, the operator is able to see on his
screen that one abstract figure disappears from the abstract map. Finally, all
information provided to the operator’s desk as a return value of the service
getGuest has to be low.

In this section, we provide a formal definition of sensitive and non-sensitive
information. We reuse the formal notations introduced in Part I.

9.3.1 Tracking Formalization

The surveillance system distinguishes two groups of people under surveillance.
One group consists of the employees, which may be tracked, however whose
personal information must not be shown to the operator. Their personal
information is high. We call these people registered, because they identified
themselves to the system via registration at a camera. The other group of
people are those under surveillance who are shown at the operator’s desk
for security reasons. We call this group of people guests. Their private
information is low.

Intuitively a person is registered, if she registered herself at the system.
From the point of view of the privacy store component, this information
is provided as a call to the service registerCoworker, while the provided
parameter contains the person’s features. A person can move in the building
while frequently observations of the person are provided to the privacy store
by the cameras as calls to the service updateObservation. The privacy store
has to ensure that new observations are correctly matched with previously
observed people. Especially, if a registered person is shown in the provided
feature vector, this information must not be conflated with information about
a non-registered person.

In order to formalize the tracking functionality, we introduce the two
predicates. samePerson evaluates to true if for a given trace two observations
in the trace show the same person. The tracking predicate ξ evaluates to
true for two observations, if the same person is shown in two observations.

We leave the tracking predicate ξ : D×D undefined for the moment. We
formally define samePerson : (int× int× T) as follows:

159

Chapter 9. Trace-based Non-interference

Definition 9.1 (samePerson). Let α, β, γ ∈ {Ini(updateObservation),
Ini(registerCoWorker)}.

samePerson(i, j, t)⇔ (9.1)
i = j ∨ (9.2)
(i < j < |t| ∧ (9.3)
(∃i < k < j · samePerson(i, k, t) ∧ samePerson(k, j, t) ∨ (9.4)
(∃t = t1 a α.v a t2 a β.w a t3 · (9.5)
|t1| = i− 1 ∧ |t2| = j − i− 1 ∧ ξ(v, w) ∧ (9.6)

¬∃i < k < j · t = t1 a α.v a t
′
2 a γ.xa t

′
3 ∧ (9.7)∣∣t′2∣∣ = i− k − 1 ∧ sameObs(i, k, t)))) (9.8)

samePerson takes as parameters two indices and a trace. The definition
contains several case distinctions: For one, samePerson evaluates to true, if
the two indices are equal, i.e. i and j point to the same input event in the
trace (Line 9.2).

The second case (Line 9.4) covers transitivity of samePerson. If in a
trace t1 a α.v a t2 a β.w a t3 a γ.xa t4, the observation in the events α.v
and β.w show the same person and the events β.w and γ.x show the same
person, then of course α.v and γ.x also show the same person.

The third case (Line 9.6) reduces the semantics of samePerson to the
tracking predicate ξ. Two events contain an observation showing the same
person, if the tracking predicate ξ evaluates to true for the two observations,
unless there is another observation at position k between i and j, such that i
and k show the same person (Line 9.8). With this exception, we ensure that
ξ only identifies the same person in two observations, if it maps to the last
observation of that person, and not to a person which has moved to another
place in the meantime.

The definition of samePerson provides us with a domain-driven formal-
ization of the tracking functionality, expressed only using trace properties.
For the remainder of this chapter it is convenient to have a more intuitive
notion of the people tracked by the system. The function lastObs : T 7→ P(N)
returns for a given trace t the indices showing the last observation of all
persons in the trace:

lastObs(t) := {i | 1 ≤ i ≤ |t| ∧ ¬∃i < j ∧ j ≤ |t| · samePerson(i, j, t)} (9.9)

As stated above, we leave the definition of ξ open for the moment, however
we do assume that tracking works correctly. This means, we assume that the
tracking predicate is sufficiently precise such that the resulting samePerson
predicate only evaluates to true, if the two indexed observations actually
show the same person in the physical world. We do not want to formalize
the real world here, but we can formalize a part of the assumption: Tracking
does not confuse two different people.

160

9.3. Specification

Definition 9.2 (Perfect Tracking). The tracking predicate ξ is perfect, if

∀t, v, i, j ·
(i, j ∈ lastObs(t) ∧ t[i] = α.w ∧ t[j] = β.x ∧ ξ(w, v) ∧ ξ(x, v))

=⇒ i = j

Definition 9.2 expresses that a new observation v can never be matched
by ξ to the last observation of two different persons.

Similar to lastObs, the functions registered and guests provide us with the
last observations of registered and non-registered persons under surveillance.

registered(t) ={i | i ∈ lastObs(t)∧
∃j < i · t[j] = Ini(registerCoWorker).v∧

samePerson(j, i, t)}
guests(t) =lastObs(t) \ registered(t)

registered returns the set of indices of the last observation of a person, which
previously registered as a member of the protected group. guests returns the
last observation of all persons, except registered persons.

9.3.2 Formal Domain-driven Security Specification

We can now formalize whether messages are high or low according to the infor-
mal description given in the previous section. A call to updateObservation
is high, if it provides an observation showing a person that registered as
a member of the protected group. Further, a call to registerCoworker is
high, if the provided observation shows a previously registered person or if it
shows a person who has not previously been seen by the system. However, if
a guest is shown in the observation, the call to registerCoworker is low,
since the operator should be allowed to see the abstract figure disappearing
from the screen.

Whether or not the existence of a message is high, depends on the
trace previously communicated by the privacy store component. For the
sake of simplicity, we define the termination events of the two services
updateObservation and registerCoworker to be high, iff the previous call
was high. Note that we were not able to provide this particular specification
of high termination event with our framework described in Part I.

The service getGuest is called by the operator’s desk and therefore its
existence as well as the provided parameter is low. The same is true for its
termination and the return value, since this is the information provided by
the operator’s desk to the operator by updating the abstract map.

We define the resulting trace-dependent equivalence relation T∼ ⊆ (T×
M)× (T×M) as follows:

161

Chapter 9. Trace-based Non-interference

Definition 9.3. Given a trace t and a message α.v. A message α.v after t
is invisible, written (t, α.v) T∼ �, iff

(α = Ini(updateObservation)∧
∃i ∈ registered(t) · t[i] = β.w ∧ ξ(w, v))∨

(α = Ini(registerCoworker)∧
¬(∃i ∈ guests(t) · t[i] = β.w ∧ ξ(w, v))∨

(α ∈ {Fin(updateObservation),Fin(registerCoWorker)}∧
∃t′, β ∈ {Ini(updateObservation), Ini(registerCoWorker)}, w ·

t = t′ a β.w ∧ (t′, β.w) T∼ �)

Given traces t1, t2 and messages α.v and β.w. α.v after t1 is trace-equivalent
to β.w after t2, written (t1, α.v) T∼ (t2, β.w), iff

((t1, α.v) T∼ � ∧ (t2, β.w) T∼ �) ∨ (α = β ∧ v = w) (9.10)

We now extend the definitions for strategy-based non-interference in
Chapter 3 for our extended definition of equivalence relations over messages
and traces. We re-define the projection function over traces such that all
invisible events are removed from a trace. In the case of the example used in
this chapter the equivalence class of a visible event only contains the event
itself, we therefore do not need to consider equivalence classes here explicitly.

〈〉�T∼
:=〈〉

(ta α.v)�T∼
:=

t�T∼
iff (t, α.v) T∼ �

t�T∼
aα.v otherwise

Note that we define the projection function recursively from the end of
the trace. The main reason for this is because of the definition of T∼, the
classification of a message as high or low only depends on the history of a
message, never on the future.

Finally, we define trace equivalence analogous to Definition 3.1 in our
framework in Part I.

Definition 9.4. Two traces t1 and t2 are trace-equivalent w.r.t. a specifica-
tion T∼, written t1

T∼ t2, iff

t1�T∼
= t2�T∼

Given the equivalence relation defined in Definition 9.3 and the def-
inition of trace equivalence in Definition 9.4, we can define trace-based
non-interference as an extension of the definition in Chapter 3.

162

9.4. Trace-based Non-interference

9.4 Trace-based Non-interference
In this section, we extend the notion of non-interference as introduced in
Chapter 3 by allowing the trace-based equivalence relation T∼ as a speci-
fication. In Subsection 9.4.2 we then break the general trace-based non-
interference notion for DSCs down to a trace-based non-interference property
for the services provided by the privacy store component. Analogous to
Part I, this gives us a property on service-level such that non-interferent
services result in a non-interferent DSC. This non-interference property for
services is still dependent on the history of the entire component, and we
provide in Subsection 9.4.3 a non-interference property for the services pro-
vided by the privacy component which is independent from the entire trace
of the DSC. This state-dependent non-interference property then can be
checked using state-of-the-art deductive program analysis tools.

Please note that all service-local non-interference properties discussed in
this section are specific to our example and do not directly provide a general
concept for an unwinding of trace-based non-interference. However, we want
to provide an idea on how a general framework for unwinding trace-based
non-interference properties for DSCs can be developed.

9.4.1 Trace-based Component Non-interference

First, we extend the definition of strategies as a model of the environment.
The original definition in Definition 3.3 requires a strategy to provide equiv-
alent input messages for equivalent traces. We have to generalize this notion
to trace strategies, since in this chapter message equivalence depends on the
previously communicated trace.

Definition 9.5 (Trace Strategies). A trace strategy ω is a function ω : T 7→
P(M) such that
∀t1

T∼ t2 · ∀α.v ∈ ω(t1) · (t1, α.v) T∼ � ∨ ∃β.w ∈ ω(t2) · (t1, α.v) T∼ (t2, β.w)

We call the set of all trace strategies TStrat. The difference between trace
strategies and the original strategies (Definition 3.3) is that the messages a
strategy provides depend on the history of inputs and outputs earlier in an
interaction. Analogue to the definition of strategies, the definition of trace
strategies formalizes that the environment does not leak information.

We also extend the definition of equivalent strategies (Definition 3.5) to
trace-equivalent strategies.

Definition 9.6 (Trace Strategy Equivalence). Two trace strategies ω1, ω2 ∈
TStrat are trace-equivalent, iff

∀t, α.v ∈ ω1(t) · (t, α.v) T∼ � ∨ ∃β.w ∈ ω2(t) · (t, α.v) T∼ (t, β.w)∧

∀t, α.v ∈ ω2(t) · (t, α.v) T∼ � ∨ ∃β.w ∈ ω1(t) · (t, α.v) T∼ (t, β.w)

163

Chapter 9. Trace-based Non-interference

Again, the definition is analogue to Definition 3.5 in the sense that two
strategies are equivalent, if they produce equivalent traces after communi-
cating equivalent traces in the past.

Finally, we define trace-non-interference for components using trace-
strategies.

Definition 9.7 (Component Trace Non-interference). A component c is
trace-non-interferent w.r.t. a specification T∼, iff

∀ω1, ω2 ∈ TStrat, t1 ·

((ω1
T∼ ω2 ∧ ω1 |= c

t1−→) =⇒ (∃t2 · ω2 |= c
t2−→ ∧ t1

T∼ t2))

The changes made compared to Definition 3.6 again are straight forward
and only caused by the dependency of message equivalence on the entire
trace.

We refrain here from a counterpart for cooperative strategies (Defini-
tion 3.8), since the privacy store component does not call services, and thus
no strategy can block the execution of a component by refusing terminating
messages for services called by the component.

On first sight, we merely replaced message equivalence ∼ with message-
trace equivalence T∼ in the definitions. This replacement has profound
consequences for the properties of the non-interference notion. Especially,
trace-based non-interference is not compositional for LTS nor for DSCs.

We also would like to point out that whether or not some information
in a message is high or low only depends on the previously communicated
trace. We can not express specifications which would allow some information
to be high or low depending on the future. For example, we can not express
a message m to be low, if some time in the future a message m′ is received
by the component.

9.4.2 Trace-Based Service Non-Interference

Analogous to Definition 3.12 in Chapter 3 we provide a non-interference
property for services such that non-interferent services can be composed
to a non-interferent DSC. We re-use state equivalence ≈ to express the
low information stored in a state. We extend the original notion of non-
interference for services such that trace-equivalence is reflected in the non-
interference property for services.

Note that all definitions from here are specific to the privacy store
example. For the specific example of the privacy store component we know
that between the call of a provided service and its termination, no other
messages can be sent or received by the component. Further, for all messages
it holds that either the message’s existence itself is high, or the entire content
of the communicated value is low.

164

9.4. Trace-based Non-interference

Analogous to Chapter 3 we extend the original definition of visibility
preserving services in Definition 3.11 to trace-visibility-preserving services as
follows:

Definition 9.8 (Trace-Visibility-Preserving). A service serv provided by
PrivacyStore is trace-visibility-preserving w.r.t. ≈ and T∼, iff

∀σ1, σ2, α.v, β.w, t · (9.11)

(t, α.v) T∼ �∧ (9.12)

〈bodyc;σ0〉
t−→ 〈bodyc;σ1〉∧ (9.13)

〈handlerserv ;σ1〉
α.vaβ.w−−−−−→ 〈SKIP;σ2〉 (9.14)

=⇒ (9.15)
σ1 ≈ σ2 (9.16)

The first important difference compared to Definition 3.11 in Line 9.13 is
that we limit the consideration to states σ1 which are actually reachable by
the component after a full execution of a series of services. This is necessary,
since we require the trace that is communicated by the component to the
point when the new message α.v is received, in order to decide whether
the message is visible or not. The second difference is that we do not need
to consider intermediate messages communicated by the trace between the
service call (α.v) and its termination (β.w) (Line 9.14), since the services
provided by the privacy store component do not call any services. Finally, we
only require that the initial state is equivalent to the poststate of the service
execution (Line 9.16), but not that the terminating messages are visible iff
the initial message is visible. This is because the terminating message is
invisible by definition iff the initial message is invisible (see Definition 9.3).

Analogous to Section 3.4, we extend the definition of non-interference for
services in Definition 3.12 with trace-dependent equivalence.

Definition 9.9 (Service-Trace-Non-interference). A service serv provided
by PrivacyStore is service-trace-non-interferent w.r.t. ≈ and T∼ iff it is trace

165

Chapter 9. Trace-based Non-interference

visibility preserving w.r.t. ≈ and T∼ (Definition 9.8) and

∀σ1, σ2, σ
′
1, σ
′
2, t1, t2 · (9.17)

σ1 ≈ σ2 ∧ t1
T∼ t2∧ (9.18)

(t1, α.v) T∼ (t2, α.v′)∧ (9.19)

〈bodyPrivacyStore;σ0〉
t1−→ 〈bodyPrivacyStore;σ1〉∧ (9.20)

〈bodyPrivacyStore;σ0〉
t2−→ 〈bodyPrivacyStore;σ2〉∧ (9.21)

〈handlerserv ;σ1〉
α.vaβ.w−−−−−→ 〈SKIP;σ′1〉∧ (9.22)

〈handlerserv ;σ2〉
α.v′aβ.w′
−−−−−−→ 〈SKIP;σ′2〉∧ (9.23)

=⇒ (9.24)
σ′1 ≈ σ′2∧ (9.25)

(t1 a α.v, β.w) T∼ (t2 a α.v′, β.w′) (9.26)

Again, we only consider states which are reachable by a sequence of
terminated service executions (Lines 9.20 and 9.21). Then, the states after
execution of the service (Lines 9.22 and 9.23) have to be equivalent w.r.t. ≈
(Line 9.25). We do not directly require the resulting traces (t1aα.vaβ.w and
t2 a α.v′ a β.w′) to be equivalent, but only the terminating messages (Line
9.26). For our simple example, this requirement implies t1 a α.v a β.w

T∼
t2 a α.v′ a β.w′, but is simpler to analyze, as we will see in the remainder of
this chapter.

Analogue to Theorem 3.3, if all services provided by the privacy store
component are trace-non-interferent, then the component itself is trace-non-
interferent.

Theorem 9.1. If all services provided by PrivacyStore are service trace
non-interferent w.r.t. ≈ and T∼ (Definition 9.9), then Privacy Store is trace
non-interferent w.r.t. T∼ (Definition 9.7).

The proof for Theorem 9.1 is simpler than the proof for Theorem 3.3
because we only have to show that it is valid for the concrete privacy store
component with the concrete information flow specification T∼.

Proof. We prove inductively for two trace strategies ω1
T∼ ω2 that for any

trace t1 which can be produced by PrivacyStore under an ω1, there exists
an equivalent trace t2 which can be produced under ω2. The induction is
over the number n of terminated service calls in t1.

Induction Hypothesis: For a trace t1 with n terminated service calls, end-
ing with a termination event, such that ω1 |= PrivacyStore t1−→ 〈σ1; SKIP〉,

166

9.4. Trace-based Non-interference

there exists t2 such that t1
T∼ t2 and ω2 |= PrivacyStore t2−→ 〈σ2; SKIP〉 and

σ1 ≈ σ2.

Induction start: n = 0: This case is trivially true, since t1 = t2 = 〈〉 and
σ1 = σ2 = σ0, i.e. the initial state of the PrivacyStore component.

Induction step: n+ 1. Let t1 = t′1 a Ini(serv)?v1 a Fin(serv)!w1, with
ω1 |= PrivacyStore t1−→ 〈σ1; SKIP〉 and ω1 |= PrivacyStore

t′1−→ 〈σ′1; SKIP〉.
By the induction hypothesis, we know there exists a trace t′2 with ω2 |=
PrivacyStore

t′2−→ 〈σ′2; SKIP〉 with t′1
T∼ t′2 and σ′1 ≈ σ′2. Since t1 can

be communicated under ω1 and Ini(serv)?v1 is an input, we know that
Ini(serv)?v1 ∈ ω1(t′1).

We make a case distinction over the visibility of Ini(serv)?v1.

Case 1: (t1, Ini(serv)?v1) T∼ �. By definition of T∼, we also know that
(t1aIni(serv)?v1,Fin(serv)!w1) T∼ �. By the induction hypothesis, we know
there exists a trace t2

T∼ t′1, namely t2 = t′2 and therefore t2
T∼ t1 which can

be produced under ω2. Further, since by assumption all services provided by
PrivacyStore are service trace non-interferent (Definition 9.9), and therefore
trace visibility preserving (Definition 9.8), we know that σ1 ≈ σ′1 and therefore
σ1 ≈ σ′2.

Case 2: ¬((t1, Ini(serv)?v1) T∼ �). Since ω1
T∼ ω2, there exists (by Defini-

tion 9.6) α.v ∈ ω2(t′1) with (t′1, Ini(serv)?v1) T∼ (t′1, α.v) and by definition of
trace strategies (Definition 9.5) and since t′1

T∼ t′2, we know there exists β.w ∈
ω2(t′2) with (t′1, α.v) T∼ (t′2, β.w) and therefore (t′1, Ini(serv)?1) T∼ (t′2, β.w).
By definition of T∼ (Definition 9.3), we know β.w = Ini(serv)?v1. Since serv
terminates, we know there exists Fin(serv).w1 and Fin(serv).w2 with (due
to Definition 9.9, and the induction hypothesis)
〈handlerserv ;σ′1〉

Ini(serv).v1aFin(serv).w1−−−−−−−−−−−−−−−−→ 〈SKIP;σ1〉 and
〈handlerserv ;σ′2〉

Ini(serv).v2aFin(serv).w2−−−−−−−−−−−−−−−−→ 〈SKIP;σ2〉.

Since by induction hypothesis (t′1, Ini(serv).v1) T∼ (t′2, Ini(ser).v2) and
σ′1 ≈ σ′2 and since serv is service trace non-interferent (Definition 9.9), it
also holds that
(t′1 a Ini(serv).v1,Fin(serv).w1) T∼ (t′2 a Ini(serv).v2,Fin(serv).w2) and
σ1 ≈ σ2.

Therefore the induction hypothesis for n+ 1 holds. /

167

Chapter 9. Trace-based Non-interference

9.4.3 State-based Service Non-interference

While Definition 9.9 is service-local, it still yields a proof obligation requiring
reasoning about the entire trace of a DSC, since T∼ depends on the trace
previously communicated. However, if a service provided by PrivacyStore
is implemented in a secure way, all information necessary to decide whether
some input provides high or low information has to be encoded in some
way in the state of the DSC. It therefore has to be possible to express
non-interference for services dependent on the prestate, and independent
from the history of the DSC.

Definition 9.3 makes T∼ dependent on whether or not some observation
shows a previously registered person with the functions registered and guests.
We introduce a predicate isRegistered which encodes whether an observa-
tion shows a previously registered employee depending on the state. In a
similar way, the predicate isGuest expresses whether an observation shows
a previously observed guest. So the two predicates are a state-dependent
formalization of the trace-dependent functions registered and guests from
Subsection 9.3.1. We do not provide a concrete definition for the predicates
yet, but formalize the connection between the state-dependent predicates
and the trace-dependent functions as an invariant of all service executions of
PrivacyStore.

Definition 9.10. The privacy store component preserves its trace-invariant,
if there exists functions isRegistered : S× D and isGuest : S× D such that
the following property holds:

∀σ, v, t · 〈bodyPrivacyStore;σ0〉
t−→ 〈bodyPrivacyStore;σ〉 =⇒

(isRegisterd(σ, v)⇔
∃i ∈ registered(t) · t[i] = β.w ∧ ξ(w, v))∧

(isGuest(σ, v))⇔
∃i ∈ guests(t) ∧ t[i] = β.w ∧ ξ(w, v))

The privacy store component satisfies its invariant for isRegistered and
isGuest if the following holds. Given a state σ after the termination of a
service with trace t. isRegistered evaluates to true for all observation v, iff
there exists a registered person whose last observation matches v according
to the tracking predicate ξ. Similarly, isGuest evaluates to true, iff there
exists a guest according to the trace which matches v according to ξ.

Given predicates isRegistered and isGuest, we define state-dependent
message equivalence T≈ ⊆ (M× S)× (M× S) as follows:

168

9.4. Trace-based Non-interference

Definition 9.11 (State-dependent Message Equivalence).

(σ, α.v) T≈ �⇔
(α = Ini(updateObservation) ∧ isRegisterd(σ, v))∨
(α = Ini(registerCoworker) ∧ ¬isGuest(σ, v))∨
(α ∈ {Fin(updateObservation),Fin(registerCoworker)}∧

previous call was invisible)

Further, we define that a state σ1 and a message α.v is state-dependent
equivalent w.r.t. T≈ to σ2 and β.w as:

(σ1, α.v) T≈ (σ2, β.w)⇔

((σ1, α.v) T≈ � ∧ (σ2, β.w) T≈ �) ∨ (α = β ∧ v = w)

Note that state-dependence message equivalence is a state-dependent
re-phrasing of the original trace-dependent specification from Definition 9.3.

Given the state-dependent equivalence relation for messages, we can
formalize state-dependent visibility preserving services, a state-dependent
notion of Definition 9.8.

Definition 9.12. A service serv provided by the privacy store component
is state-dependent visibility preserving, w.r.t. T≈, iff

∀σ1, σ2, α.v, β.w, t · (9.27)

(σ1, α.v) T≈ �∧ (9.28)

〈σ0; bodyPrvicyStore〉
t−→ 〈σ1; bodyPrvicyStore〉∧ (9.29)

〈handlerserv ;σ1〉
α.vaβ.w−−−−−→ 〈SKIP;σ2〉 (9.30)

=⇒ (9.31)
σ1 ≈ σ2 (9.32)

We require the observation provided by the initial message of the service
call to be invisible (Line 9.28) and the state σ1 in which the service is called,
to be reachable by a terminating sequence of service executions (Line 9.29).
Then the prestate of the service call σ1 and the poststate σ2 have to be
equivalent.

And finally, we define state-dependent non-interference for services, the
state-dependent notion of Definition 9.9.

169

Chapter 9. Trace-based Non-interference

Definition 9.13. A service serv is service state-dependent non-interferent
w.r.t. ≈, and T≈, iff serv is state-dependent visibility preserving and

∀σ1, σ2, σ
′
1, σ
′
2, t1, t2 · (9.33)

σ1 ≈ σ2∧ (9.34)

(σ1, α.v) T≈ (σ2, α.v
′)∧ (9.35)

〈handlerserv ;σ1〉
α.vaβ.w−−−−−→ 〈SKIP;σ′1〉∧ (9.36)

〈handlerserv ;σ2〉
α.v′aβ.w′
−−−−−−→ 〈SKIP;σ′2〉∧ (9.37)

=⇒ (9.38)

σ′1 ≈ σ′2 ∧ (σ′1, β.w) T≈ (σ′2, β.w′) (9.39)

We can verify for all services provided by the privacy store component
that they are state-dependent visibility preserving w.r.t. T≈ and ≈ in order
to show that the service is non-interferent w.r.t. T∼ and ≈.

Theorem 9.2. If a service provided by the privacy store component is non-
interferent w.r.t. T≈ and ≈ according to Definition 9.13, and if all services
preserve the invariant defined in Definition 9.10, then the service is also
non-interferent w.r.t. T∼ and ≈ according to Definition 9.9.

Proof. Assume a service serv, provided by PrivacyStore is non-interferent
w.r.t. Definition 9.13.

First, we show that serv is visibility preserving. Let σ1, σ2, α.v, β.w, t

such that (t, α.v) T∼ �, 〈bodyPrivacyStore;σ0〉
t−→ 〈bodyPrivacyStore;σ1〉, and

〈handlerserv ;σ1〉
α.vaβ.w−−−−−→ 〈SKIP;σ2〉. By definition of T∼ (Definition 9.3), we

know ∃i ∈ registered(t) · t[i] = γ.x ∧ ξ(x, v) and by definition of isRegistered
(Definition 9.10) and T≈ (Definition 9.11), we get (σ1, α.v) T≈ �. Since serv
is visibility preserving according to Definition 9.12, we get σ1 ≈ σ2 which
proves serv is visibility-preserving according to Definition 9.8.

Now, let σ1 ≈ σ2, t1
T∼ t2, (t1, α.v) T∼ (t2, α.v′),

〈bodyPrivacyStore;σ0〉
t1−→ 〈bodyPrivacyStore;σ1〉,

〈bodyPrivacyStore;σ0〉
t2−→ 〈bodyPrivacyStore;σ2〉,

〈handlerserv ;σ1〉
α.vaβ.w−−−−−→ 〈SKIP;σ′1〉, and

〈handlerserv ;σ2〉
α.v′aβ.w′
−−−−−−→ 〈SKIP;σ′2〉.

If (t1, α.v) T∼ � the proof is according to the prove for visibility preserving
above, extended by the definition of invisibility of termination events of
invisible calls.

170

9.5. Implementation and Verification

So, by definition of T∼ (Definition 9.3), we get v = v′, which gives us with
definition of T≈ (Definition 9.11) (σ1, α.v) T≈ (σ2, α.v

′). Since serv is non-
interferent w.r.t. Definition 9.13, we know σ′1 ≈ σ′2 and (σ′1, β.w) T≈ (σ′2, β.w′)
which again gives us according to (Definition 9.11) w = w′, and therefore,
since the call is visible and by Definition 9.3, (t1aα.v, β.w) T∼ (t2aα.v′, β.w′),
which shows Definition 9.9. /

As a result, if we can show that all services provided by the privacy
store component are state-dependent non-interferent, then the privacy store
component is trace-non-interferent.

Corollary 9.3. If there exists a state-dependent equivalence relation T≈
for messages and a relation ≈ for states, such that all services provided by
PrivacyStore are state-dependent non-interferent w.r.t. ≈, T≈ and all services
provided by the privacy component preserve the invariant in Definition 9.10,
then PrivacyStore is trace-non-interferent w.r.t. T∼.

Proof. Follows directly from Theorem 9.2 and Theorem 9.1. /

We now gained a set service-local properties which are only dependent
on the input to a service and the state of the component, which allow us
to verify non-interference for the component using an off-the-shelf program
verification tool. We can provide a JavaDL formalization for the proof
obligations resulting from state-dependent non-interference (Definition 9.13)
and the proof obligation expressing for a service that it preserves the invariant
in Definition 9.10. In the following section, we present the JavaDL proof
obligations for the privacy store component for a concrete implementation of
the component and verify that it is non-interferent.

9.5 Implementation and Verification
In this section, we present a concrete implementation of the privacy store
component, the JML specifications expressing the non-interference property
from Definition 9.13, and the JML specifications expressing that the services
preserve the invariant from Definition 9.10. We limit the presentation here to
the most central methods and simplified specifications for the example. The
full implementation of the privacy store together with the full specifications
for the services and statistics on specification and verification can be found
in Appendix A.3. The full specification for all methods can be found online
with the supplemental material online1.

We verify that the implementation of the services satisfies each of these
specification using KeY, version 2.7. The tool can also be found online with

1https://formal.iti.kit.edu/~greiner/niframework/

171

https://formal.iti.kit.edu/~greiner/niframework/

Chapter 9. Trace-based Non-interference

public final class PrivacyStore {
private static final int NUM_FEATURES = 5;
private static final int POS_X = 0;
private static final int POS_Y = 1;

5 private static final int FEAT1 = 2;
private static final int FEAT2 = 3;
private static final int FEAT3 = 4;
private static final int BLURX = 4;
private static final int BLURY = 4;

10

private int[][] guestVectors;
private int[][] coworkerVectors;

public void updateObservation(int[] observation) {...}
15 public void registerCoworker(int[] observation) {...}

public int[] getGuest(int pos) {...}
}

Figure 9.4: Code skeleton of the implementation of the PrivacyStore compo-
nent

the supplemental material. An extensive discussion of KeY is provided by
Ahrendt et al. [2016] and more details on non-interference specifications and
verification in KeY are presented by Scheben [2014].

The main reason for using KeY instead of our extension discussed in
Chapter 8 is that it supports all features necessary for the proofs in this
section, while supporting several optimizations for the proofs which make
KeY more scaleable compared to our extension. Due of the size of the
resulting proofs, the better scaleability showed itself to be necessary for our
task.

9.5.1 Implementation

We implement the privacy store component as a Java class and Figure 9.4
shows the code skeleton of the implementation. The class declares the three
public methods updateObservation, registerCoworker, and getGuest.
The first two methods receive an int array as a parameter encoding the
observation provided by the camera components and do not provide a return
value. The third method takes an int value as a parameter, which is provided
by the observation desk component, and returns an int array encoding the
features of a guest under surveillance.

The privacy store manages observations with five features. The first two
features are the position of the person described by the observation, the third

172

9.5. Implementation and Verification

/*@ public normal_behaviour
@ requires observation.length == toCompare.length &&

3 @ observation.length == NUM_FEATURES;
@ ensures \result ==
@ (observation[POS_X] - toCompare[POS_X] < BLURX &&
@ toCompare[POS_X] - observation[POS_X] < BLURX &&
@ observation[POS_Y] - toCompare[POS_Y] < BLURY &&

8 @ toCompare[POS_Y] - observation[POS_Y] < BLURY &&
@ observation[FEAT1] == toCompare[FEAT1] &&
@ observation[FEAT2] == toCompare[FEAT2] &&
@ observation[FEAT3] == toCompare[FEAT3]);
@ model public strictly_pure boolean sameObs(

13 @ int[] observation, int[] toCompare) {...}*/

Figure 9.5: JML specification for the tracking predicate ξ

to fifth feature are underspecified here, but they may describe the height,
hair color and similar information extracted by the camera. For each of
these features, we introduce a constant which can be used by the program
to access the respective positions in arrays. Additionally, we have to allow
people under surveillance to move in space, however we assume a person to
move at most four units on the x-axis and y-axis between two consecutive
observation. This movement tolerance is again represented in the program
with the constant values BLURX and BLURY.

The fields guestVectors and coworkerVectors are used by the program
to store the last observation of registered and unregistered people. Whenever
an observation is provided by a camera, these arrays are updated according
to the tracking property, and if requested, the return values provided to the
operator’s desk are read from these vectors.

We use the model method sameObs(int[], int[]), i.e. a specification-
only method, to define the tracking predicate ξ. The JML formalization of
the predicate is shown in Figure 9.5.

The contract of sameObs formalizes the tracking predicate ξ. The pre-
condition (following the requires keyword) requires the two parameters
to be of the proper length, i.e. containing exactly NUM_FEATURES features.
The postcondition (following the ensures keyword) of sameObs, i.e. ξ, states
that it evaluates to true if the difference in location of the two observations
is within the movement tolerance, and all other features are equal in both
observations. Note that sameObs does not depend on the actual state, but
only on the values of the two arrays provided as parameters.

173

Chapter 9. Trace-based Non-interference

9.5.2 Specifications for the Trace-invariant

To verify that all services preserve the invariant as defined in Definition 9.10
we need a formalization of the predicates isRegistered and isGuest. Given
the arrays representing the guests and coworkers under surveillance, we can
phrase the invariant from a state point of view.

Theorem 9.4 (Trace Invariant). PrivacyStore satisfies its trace invariant,
iff for all states σ and traces t, such that
〈bodyPrivacyStore;σ0〉

t−→ 〈bodyPrivacyStore;σ1〉, and
α ∈ {Ini(updateObservation), Ini(registerCoworker)} and v ∈ D it holds

(∃i ∈ guests(t) · t[i] = α.v)⇔ (9.40)
(∃0 ≤ j < σ(guestVectors.length) · (9.41)

σ(guestVectors[j]) = v∨ (9.42)
(∃i ∈ registered(t) · t[i] = α.v)⇔ (9.43)

(∃0 ≤ k < σ(coworkerVectors.length) · (9.44)
σ(coworkerVectors[k]) = v) (9.45)

Proof. Follows directly from Definition 9.10. /

The first equivalence (Line 9.40) states that if there exists an observation
v which is among the last observations of guests of trace t, then there exists an
entry in guestVectors with the same values as v. The second equivalence
(Line 9.43) states that if there exists an observation v which is the last
observation of a registered person in trace t, then there exists an entry in
coworkerVectors with the same values as v. The invariant ensures that
guestVectors and coworkerVectors actually record the last observation
registered and unregistered people.

From Theorem 9.4, the definition of the predicates isRegistered and
isGuest (introduced in Definition 9.10) directly follows.

isGuest(σ, v) :=∃ 0 ≤ i < σ(guestVectors.length) ·
σ(sameObs(guestVectors[i], v))

isRegistered(σ, v) :=∃ 0 ≤ i < σ(coworkerVectors.length) ·
σ(sameObs(coworkerVectors[i], v))

We specify for each service provided by PrivacyStore a functional con-
tract expressing that the service satisfies the trace invariant as stated in
Theorem 9.4.

The contract for getGuest is rather simple. Neither the initial nor the
terminating message for this service changes the values of registered or guests,
so we ensure by contract that the service does not change the component’s
state, and thus it does not change the evaluation of isGuest nor isRegistered.
The modifies clause of the following contract expresses this behavior.

174

9.5. Implementation and Verification

/*@ public normal_behavior
2 @ requires true;

@ ensures true;
@ modifies \nothing; */

public /*@ nullable */ int[] getGuest(int pos) {...}

The contract for service updateObservation is more complicated. Due
to its verbosity, we sketch here a strong simplification using a more intuitive
style of specification than a formal JML contract. The full contract, as
verified, can be found in the appendix.

/*@ public normal_behaviour
@requires
@ exists i: sameObs(observation, guestVectors[i]) ==>
@ !exists i!=j:sameObs(observation,guestVectors[j])&&

5 @ !exists k: sameObs(observation, guestVectors[k]) &&
@ (... analogue for coworkerVectors ...);
@ensures
@ (exists i: sameObs(observation,guestVectors[i])@pre
@ ==>

10 @ (values(guestVectors[i]) == values(observation) &&
@ other values of guestVectors stay unchanged &&
@ coworkerVectors stays unchanged)) &&
@ (exists i: sameObs(observation,
@ coworkerVectors[i])@pre

15 @ ==>
@ (values(coworkerVectors[i])==values(observation)&&
@ other values of coworkerVectors stay unchanged &&
@ guestVectors stays unchanged)) &&
@ ((!exists i: sameObs(observation,

20 @ guestVectors[i])@pre) &&
@ !(exists i: sameObs(observation,
@ coworkerVectors[i])@pre)
@ ==>
@ (observation values added to guestVectors &&

25 @ other values of guestVectors stay unchanged &&
@ coworkerVectors stays unchanged));
*\
public void updateObservation(int[] observation) {...}

The precondition (from Line 2) expresses perfect tracking (Definition 9.2):
if the provided observation matches one last observation, it only matches
this one last observation.

For the postcondition, we consider three different cases. If the observation
matches a guest (Line 8), then the respective entry of guestVectors is

175

Chapter 9. Trace-based Non-interference

updated to the values of the observations. All other entries of guestVectors
and all entries of coworkerVectors are left unchanged. This is consistent
with updating guests according to the changed trace, while leaving the result
of registered unchanged for the new trace.

In the second case, when the observation matches a registered person
(Line 13), the respective entry of coworkerVectors is updated. Again, all
other entries of coworkerVectors and all entries of guestVectors are left
unchanged. This is consistent with updating registered w.r.t. the new trace,
while leaving guests unchanged.

The third case covers the situation, when the observation is a new person,
i.e. it does not show a guest nor a registered person (Line 19). In this case
the observation is added to guestVectors, while all entries of guestVectors
and coworkerVectors are unchanged. Again, this is consistent with adding
a new entry to guests while registered remains unchanged.

As a result, the contract ensures, if the trace invariant as formulated
in Theorem 9.4 holds before execution of updateObservation, then it also
holds after execution.

In a similar way, we provide the trace invariant contract for the service
registerCoworker. Again, the full formal JML contract is presented in the
appendix, we limit the presentation here to an intuitive, simplified version.

/*@ public normal_behaviour
2 @requires

@ exists i: sameObs(observation,guestVectors[i]) ==>
@ !exists i!=j:sameObs(observation,guestVectors[j])&&
@ !exists k: sameObs(observation,guestVectors[k]) &&
@ (... analogue for coworkerVectors ...);

7 @ensures
@ (exists i: sameObs(observation,guestVectors[i])@pre
@ ==>
@ (i-th entry of guestVectors is removed &&
@ other entries of guestVectors stay unchanged &&

12 @ coworkerVectors stay unchanged &&
@ observation is added to coworkerVectors)) &&
@ (exists i: sameObs(observation,
@ coworkerVectors[i])@pre
@ ==>

17 @ (values(coworkerVectors[i])==values(observation)&&
@ other values of coworkerVectors stay unchanged &&
@ guestVectors stays unchanged)) &&
@ ((!exists i: sameObs(observation,
@ guestVectors[i])@pre) &&

22 @ !(exists i: sameObs(observation,
@ coworkerVectors[i])@pre)

176

9.5. Implementation and Verification

@ ==>
@ (guestVectors stays unchanged &&
@ coworkerVectors stay unchanged &&

27 @ observation is added to coworkerVectors));
*/

public void registerCoworker(int[] observation) {...}

The precondition (Line 2) expresses perfect tracking, as in the contract
for updateObservation.

For the postcondition, we again distinguish three cases. If the observation
shows a guest (Line 8), so a guest registers as a coworker, The respective
entry is removed from the guests, while the other last observations of the
guests are left unchanged. Also, all entries of the registered persons are left
unchanged, while observation is added as new registered person.

In the second case, the observation maps to a registered person (Line
14), so basically the person re-registers. In this case, the observation of this
person is updated, while all other last observations of registered person’s
stays unchanged, as do the last observations of the guests.

In the third case, the observation does not match a guest nor a registered
person (Line 20), so a previously unknown person registers. In this case, the
last observations of the guests are left unchanged while the observation is
added as a new entry to the coworkerVectors.

Again, if the trace invariant as formulated in Theorem 9.4 holds in the
prestate, it also holds in the poststate of the service registerGuest.

The three contracts for the services getGuest, updateObservation, and
registerCoworker together ensure that PrivacStore satisfies the invariant
stated in Definition 9.10, i.e. isGuest and isRegisterd are a state-based
notion for the functions guests and registered which we can use in pre- and
postconditions for non-interference contracts.

9.5.3 Service Non-interference Specification

In order to show non-interference for each service, we have to show that there
exists an equivalence relation over states ≈ such that all services provided
by the privacy store component are non-interferent w.r.t. (T≈,≈) according
to Definitions 9.11 and 9.13. We provide the definition of ≈ indirectly by
specifying the low part of the state as a model field defining a sequence of
expressions over the state:

1 /*@ public instance model \seq lowvalues; */
/*@ public represents lowvalues <-

@ \seq(guestVectors.length, guestVectors,
@ (\seq_def int j; 0; guestVectors.length;
@ (\seq_def int k; 0; NUM_FEATURES;

6 @ guestVectors[j][k]))); */

177

Chapter 9. Trace-based Non-interference

lowvalues is a sequence listing the length of guestVectors as well as all en-
tries of the feature vectors held in it. We use in the following the equivalence
relation ≈ to be defined as two states being equivalent, if lowvalues evaluates
to the same lists in both states: σ1 ≈ σ2 ⇔ σ1(lowvalues) = σ2(lowvalues).
This way, we specify that the low part of the state is the content of
guestVectors.

Now, we specify for each service one contract expressing that it is visibility
preserving and after that for each service one contract expressing non-
interference.

Visibility Preserving Services The service getGuest can never be called
with an invisible call event according to Definition 9.13, and therefore the
service is trivially visibility preserving.

The service updateObservation takes as a parameter a new observation,
i.e. an array of features provided by the camera system. The following
contract expresses that the service is visibility preserving in a simplified,
intuitive version.

/*@public normal_behavior
@requires
@ !(exists i: sameObs(observation,guestVectors[i]))&&

4 @ exists i:sameObs(observation,coworkerVectors[i]);
@ensures lowvalues == lowvalues@pre;
@*/
public void updateObservation(int[] observation) {...}

In the precondition (Line 3), we limit the consideration of the contract to
the case when the observation shows a registered person (and due to perfect
tracking, not a guest). According to the definition of message invisibility in
Definition 9.11 in combination with the invariant from Definition 9.10 this
states that the service is called with an invisible message. The postcondition
(Line 5) states that the low part of the state after execution is the same
as the low part of the state before execution, i.e. pre- and poststate are
lowequivalent according to ≈

The contract for registerCoworker follows a similar pattern. The
precondition for registerCoworker only requires the observation not to be
registered as a guest, which would be observable by the respective entry being
removed from the feature vectors the operator’s desk can observe. Otherwise,
the contract follows the same reasoning as for updateObservation.

/*@public normal_behavior
@requires

3 @ !(exists i: sameObs(observation,guestVectors[i]));
@ensures lowvalues == lowvalues@pre;
@*/

178

9.5. Implementation and Verification

public void registerCoworker(int[] observation) {...}

The message calling registerCoworker is invisible according to Defini-
tion 9.11, if the observation does not show a guest. This is formalized in the
precondition (Line 3). The postcondition (Line 4) states the the pre- and
tho poststate are equivalent according to ≈.

Service Non-Interference For specifying non-interference of the services,
we use the specification mechanism introduced in Scheben [2014]. Non-
interference is specified in a contract by a determines clause. @determines
listAfter \by listBefore as part of a contract states that the expressions
in listAfter are at most influenced by the expressions in listBefore. A
service is non-interferent if for two executions of a service started in states
where listBefore evaluate to the same values, they terminate in states
where listAfter evaluate to the same values. This specification allows
declassification in the sense that the low information before and after service
execution may differ.

In particular, this specification allows, in contrast to our extension JML
extension in Chapter 8, to specify equivalence of state depending on parame-
ters and the return value of a methods, or in our a case a service. We have to
relate, however, parameters, return values and the state in order to formalize
T≈ in JML.

For the service getGuest, the parameter pos is low, as is the part of the
state described by lowvalues. The service has to guarantee that the values
of the returned feature vector is low and that lowvalues still only contains
low information. The resulting JML information flow contract is straight
forward:

The service getGuest has to ensure that the poststates of two executions
of the service are equivalent w.r.t. ≈, if they are equivalent in the prestates.
Additionally, the return value has to be equivalent in both executions, given
the parameter pos is equal. We have to make a case distinction in the
specification for the case that the parameter does not refer to a legal element
stored in the privacy store. The service returns null in case the parameter
is out of bounds, otherwise the entries of the returned array is low. The
following listing is the simplified JML representation of this non-interference
property.

/*@ public normal_behaviour
@ requires true;
@ determines content of \result, lowvalues

4 @ \by lowvalues, pos;
*/

public /*@ nullable */ int[] getGuest(int pos) {...}

179

Chapter 9. Trace-based Non-interference

We do not consider in this simplified contract the case that the parameter is
out of bounds, in which case, the return value of the service is null. The
full contract in the appendix covers this case.

The following listing shows the non-interference contract for the service
updateObservation.

/*@ public normal_behaviour
@ requires
@ exists i: sameObs(observation,guestVectors[i])||

4 @ !(exists i: sameObs(observation,
@ coworkerVectors[i]));
@ determines lowvalues
@ \by lowvalues,
@ exists i: sameObs(observation,coworkerVectors[i]),

9 @ exists i: sameObs(observation, guestVectors[i]),
@ values(observation);
*/

public void updateObservation(int[] observation) {...}

The precondition limits the validity of the contract to the case when the
initial message is visible, i.e. the observation shows a guest or it does not
show a registered person.

In this case, the service has to ensure that the low part of the state,
expressed by lowvalues, only contains low information after execution (Line
7).

We know that the low part of the state only contains low information in
the prestate (Line 8). Further, the information whether or not the observation
shows a registered person is low (Line 8), as is the information whether or
not the observation shows a guest (Line 9). And, of course, the content of
the observation itself is low (Line 10).

In a similar way, we specify the service registerCoworker.

/*@ public normal_behavior
@ requires

3 @ !(exists i: sameObs(observation,guestVectors[i]))||
@ !(exists i: sameObs(observation,
@ coworkerVectors[i]));
@ determines lowvalues
@ \by lowvalues,

8 @ values(observation),
@ (exists i: sameObs(observation,guestVectors[j]));
@*/

public void registerCoworker(int[] observation) {...}

The precondition (Line 2) again limits the validity to the case when the
initial message is low. This is the case, when the observation does not show a

180

9.5. Implementation and Verification

guest. Additionally, we need for technical reasons to express perfect tracking
in the precondition, namely that the observation either does not show a
guest or it does not show a registered person (ξ can not map to both). As
a result, we show non-interference for all observations which are consistent
with perfect tracking.

We have to show that the service guarantees that the low part of the state
only contains low information (Line 6). We can assume that the low part of
the state in the prestate only contains low information (Line 7). Further, the
information in the observation is low (Line 8), as is the information whether
or not the observation shows a guest (Line 9).

9.5.4 Verification

We verified all specifications as described in the previous subsection using
the KeY tool in version 2.7. All specifications, including helper specifications,
e.g. loop invariants, block contracts, and helper methods, as well as the tool
together with the implementation can be found at online2. We present here
some findings we made during the verification of the privacy store component.
Detailed numbers for the specifications can be found in Section B.3 and for
the verification in Section B.4 in the Appendix.

The implementation of PrivacyStore consists of 13 methods, including
services and helper methods. For easier verification, we provided separate
specifications for proving that the services preserve the trace invariant, that
services are visibility preserving and that services are non-interferent. The
implementation consists of about 100 lines of program code. For invariant
preservation, we required 262 lines of specification, for visibility preserving
167 lines and for non-interference 247 lines.

In general the 1:2 ratio between lines of code and lines of specification is a
common ratio for non-trivial specifications with JML, however it stands out
that the functional specification for invariant preservation was the largest.
The main reason for this is that for our compact implementation, we basically
required a full specification of the functionality of each method plus a repre-
sentation of the trace properties for each service, while for non-interference
and visibility properties we could omit specifications for parts not concerning
the low part of the state.

For verification, we required a total of about 700,000 proof steps for
invariant preserving, 350,000 for visibility preserving and 1,400,000 for non-
interference. Since the specification for invariant and visibility preservation
are functional properties, while non-interference is a relational program
property, i.e. two symbolic executions are compared, we expected the result
that non-interference proofs are more complicated. This can also be seen
by comparing necessary manual interactions during verification (1049 for

2https://formal.iti.kit.edu/~greiner/niframework/

181

https://formal.iti.kit.edu/~greiner/niframework/

Chapter 9. Trace-based Non-interference

invariant preservation, 341 for visibility preservation, and 2973 for non-
interference proofs), and run-time of KeY during auto mode (420 minutes for
invariant preservation, 59 minutes for visibility preservation and 550 minutes
for non-interference proofs).

The two main reason for manual interaction were, for one, case splits
on rather big concatenations necessary for class invariants, as well as in-
stantiations for quantifier. While KeY is in general quite good in finding
correct quantifier instantiations in easier cases, it typically has problems
with finding the required instantiations for nested quantifier. Since the main
functionality in our example is implemented using two-dimensional arrays, we
frequently required nested quantifier for the class invariants. Especially for
non-interference proofs, we required frequently instantiations of correspond-
ing quantifier for the two runs of the program as well as manual interaction
for unrolling sequences used for specification.

One additional problem with the non-interference proofs in our case
was, that for registerCoworker in some cases elements are removed from
two-dimensional arrays, where the contents of the arrays are low. In this
case, indices of equivalent contents of guestVectors are shifted by one,
however only for those elements with a higher index than the removed index.
Manually instantiating these indices in nested quantifier is error prone and
lead to additional time effort during verification.

In summary, the entire verification effort takes about 2 weeks of full-time
work, not counting additional work for finding helper specifications which
are sufficiently precise for a verification.

9.6 Related Work

In the work as presented in this chapter, we had to unwind the overall non-
interference property, which is defined over trace-equivalence, into smaller
specifications which guarantee some form of well-behavior of each individual
service. Of course, it would be easier to directly express the class invariant
with the history of communicated events. How the history can be constructed
in general in a deductive program verification approach was introduced in
Chapter 8. However, in order to gain an overall proof for our security
property, we would require some form of temporal logic in the deductive
verification framework. In Beckert and Bruns [2013], the authors define
Dynamic Trace Logic, a combination of dynamic logic for program verification
with a temporal logic. Traces in their work are sequences of intermediate
states of a program, not input or output events. However, the temporal
extension of the logic presented in their work should in general also be
extendable for traces of events.

The specification of our non-interference property defines inputs to be high
or low depending on the history of communicated events. A very natural way

182

9.7. Conclusion

to express such properties is linear time logic (LTL). Balliu et al. [2011] studies
non-interference using epistemic temporal logic and Clarkson et al. [2014]
for LTL formulas, for expressing non-interference of a system by comparing
traces which can be communicated by the system. Both approaches allow
declassification of information for a program implemented in a simple while
language. However, both approaches do not explicitly support intermediate
input events (they do support output events), therefore all information has
to be encoded as part of the initial state. Our non-interference property
therefore can not be easily expressed in their approaches. Further, in both
approaches, the entire system has to be analyzed, a modular analysis of
partial programs, e.g. services, is not considered in both approaches.

The approach closest to our solution is a line of work presented in Kanav
et al. [2014]; Bauereiß et al. [2016]. The authors define Bounded-Deducability
(BD) security, a notion of bounded non-interference. A relation B over the
secrets of two traces expresses what parts of the secrets in a trace an attacker
may learn. A system is non-interferent w.r.t. a bound B, if for a trace of
events tr and a sequence of secrets sl′, the secrets in tr and sl′ are in relation
according to B, and there exists a trace tr′ such that the secrets in tr′ are
sl′ and tr and tr′ contain the same public events.

In order to verify that a system is BD secure, the authors propose
an unwinding theorem, which relates intermediate states and intermediate
secrets of two runs of a system. Our approach basically follows this unwinding
idea (although, we did not plan this). We ensure equivalent intermediate
states of our privacy store by showing non-interference for the provided
services. We also ensure that our state correctly stores the relevant secrets
contained in the trace by verifying the trace invariant. For verifying case
studies for BD security, the authors use Isabell/HOL (Nipkow et al. [2002];
Nipkow and Klein [2014]).

9.7 Conclusion

In this chapter we showed on the example of a privacy preserving video
surveillance system how our framework from Part I can be extended to
support non-interference specifications where the secrecy of a message de-
pends on the history of events. We could show that the non-interference
property can be expressed by extending our framework for this one example.
However, gaining a program property which we can analyze with the theorem
prover KeY, is laborious and takes a lot of effort even for this small example.
Additionally, the verification itself takes huge effort and useful properties,
like compositionality of non-interference, are lost.

For certain types of systems, trace-dependent secrecy of input and output
information has become a very common security policy. For example social
networks specify the content of a message secret depending on whether a

183

Chapter 9. Trace-based Non-interference

person was previously added as a friend or if certain privacy settings were set
(both actions a represented as messages in the trace of the overall system).
Also in cloud based systems, it is very common to provide a functionality
where a file or folder is labeled public by providing a special link which
can be sent to friends or colleagues. It is easy to see that with the rise of
relationship-based access control (e.g. see Fong et al. [2009]; Fong [2011];
Carminati et al. [2011]; Cheng et al. [2012]) these properties become more
and more commonly used in practice.

It would be interesting to find out whether our framework can be ex-
tended to support relationship-based access control, at least with limitations,
while keeping the resulting non-interference notion to be compositional. We
do assume that limitations of the computational model to DSCs that we
introduced in Chapter 2 helps to achieve this. The general assumption that
there is no concurrent computation with shared heaps in a single component
in an otherwise highly distributed system should be true for the biggest part
of architectures for social networks and cloud storage systems.

184

10
Conclusion

10.1 Summary

We have presented a framework for non-interference in distributed component-
based systems. Our framework serves as the theoretical basis for integrated
consideration of non-interference properties during requirement elicitation,
system design, implementation and quality assurance in development pro-
cesses for component-based systems. We instantiated our theoretical frame-
work for two concrete applications.

In the first part of this thesis, we presented a novel notion of non-
interference for DSCs, our formalization of components. Specifications
for non-interference properties are given as equivalence relations, which
allows very precise what-declassification of information exchanged between a
component and its environment. Further, we allow messages existence to be
specified as sensitive information conditional on the content of the messages.

Our non-interference property for DSCs is based on an explicit environ-
ment, which is modeled using strategies. Since an attacker gained from a
domain-motivated attacker analysis can be seen as a part of the environ-
ment, a mapping between a domain-motivated security requirement and
a non-interference specification during the requirement elicitation phase is
intuitive.

Our non-interference property is compositional, an important requirement
to be useful in component-based systems. During system design, non-
interference specifications for individual components can easily be derived
from a system-wide non-interference specification or vice versa.

We further provide a novel non-interference notion for services, and we
show that non-interference for services implies non-interference for DSCs.
Service-local non-interference specifications provide a requirement for the
developer of a service which has to be followed when implementing the
functionality.

185

Chapter 10. Conclusion

We introduced Dependency Cluster as building blocks for non-interference
specifications on service-, component-, and system-level. Apart from the
general relation between system-, component-, and service-non-interference as
discussed in Chapter 3, Dependency Cluster support a bottom-up approach
for developing secure systems. Since Dependency Cluster for services are
independent from other services, components, and the environment, they
are a powerful tool to support secure re-use of components in different
environments and system-evolution, i.e. when parts of a system are re-
implemented or optimized. Dependency cluster are in particular helpful
during quality assurance, since every Dependency Cluster can be checked
individually, using different approaches for quality assurance.

Pure top-down or pure bottom-up development processes are practically
never used. In our framework the direction of development can be switched
individually for every service, component or composition, and thus supports
these development processes.

In the second part of this thesis we instantiate our framework and provide
an extension for non-interference specifications in the graphical specification
language Palladio. We show that theoretical results from the first part
of the thesis hold in our new specification language by mapping elements
in a Palladio model to elements in our framework. We further provide a
novel deductive verification approach for Dependency Cluster specifications
formalized in JML for components implemented in Java using the JavaEE
framework. We show that our approach can be used to verify information
flow security of Java beans and illustrate the relationship between the novel
specification language and our framework.

Our work has been picked up by other researchers in the community.
Greiner et al. [2017b] and Greiner et al. [2017a] present an automatic, but
less precise program analysis technique for Dependency Cluster, based on
the tool JOANA. Our graphical specification language for non-interference
properties was applied for the specification of a cash register system (Greiner
and Herda [2017a]) and in an extended version for a cloud storage system
(Kramer et al. [2017]). Currently ongoing work develops a code-generation
technique where Java code skeletons from Palladio models are generated,
and enriched with non-interference specifications based on our work.

In the third part of this thesis, we discuss the limitation that our frame-
work does not allow temporal declassification of information. Such properties
become more and more interesting, as privacy properties, for example in
social media platforms, are based on information flow depending on actions
performed in the past. We hinted several ideas on how our framework may
be extended to support temporal declassification, however we do not expect
a respective solution to be straight forward.

186

10.2. Future Work

10.2 Future Work

Our results leave several open problems, raise new questions and allow for
novel approaches making use of our results.

Future work on the framework Currently, our framework is limited to
synchronous service calls, where a service halts execution when calling another
service until this service terminates. JavaEE supports so-called message-
driven beans, where services can be called asynchronously, but asynchronous
services must not provide a return value. We expect asynchronous service
calls, where only an initial message is generated but no terminating message,
to be relatively easily integrated into our framework.

Further, our framework does not allow concurrent execution of services
within a component. At least with limitations, it should be possible to
allow concurrent execution of non-interferent services, while still achieving
non-interference for components. Well-researched rely/guarantee approaches
ensure non-interference of concurrent threads with shared memory by en-
suring that a thread (or service) provides a guarantee on its memory usage
while assuming other threads to provide certain guarantees on theirs. We
expect that rely/guarantee approaches to be a good starting point to identify
non-interference properties for services such that non-interferent services
result in non-interferent components.

In Chapter 9 we extensively discussed the limitation that our framework
does not allow temporal declassification on the example of a smart surveil-
lance system. It would be very interesting to see if our framework can be
extended to allow temporal declassification, while still ensuring composition-
ality properties of the resulting non-interference notion and compositionality
of non-interferent services. However, we expect this task to be non-trivial.

Finally, we presented our framework mainly from a perspective where
non-interference is the basis for confidentiality properties of a system. It
is often noted that non-interference is also the basis for integrity. It would
be interesting to see if our framework can directly, or at least with small
changes, be used to enforce integrity requirements for systems, components,
and services.

Future work on instantiations of the framework We provided two
concrete instantiations of our framework, one as a graphical specification
language and the other as a program analysis technique. Others provided an
additional program analysis technique based on program dependency graphs.
We are confident that our framework can be used as the basis for other novel
analysis techniques in other domains or based on other techniques.

For example, databases can be seen as DSCs according to our definition.
When a database is only used via so-called stored procedures, i.e. predefined

187

Chapter 10. Conclusion

SQL commands where some fields are parametrized, it should be possible to
describe the effect of each query using relational algebraic data structures.
Also, parameters can easily be specified as high or low, such that based on our
framework, especially the results in Chapter 4, as powerful non-interference
checker for databases can be implemented. We also expect our framework to
be re-usable in embedded systems, for example in control units as used in the
automotive systems. In this domain, integrity may be more important than
privacy in order to ensure that safety-critical actions are not influenced by
untrusted inputs, for example from an infotainment system. Our framework
may be able to serve as a theoretical basis for the development of novel
secure architectures or program analysis techniques for components.

Finally, we would like to point out that our framework, especially non-
interference for components, can be the basis for novel security testing
approaches. A common technique for security testing is fuzz-testing, where
more or less random inputs to a system are generated in order to check
whether the system under test crashed. This technique can be extended to
allow direct non-interference testing. The main problem with automatic non-
interference testing is that two equivalent runs have to be compared, i.e. for
each input, another, equivalent input has to be generated. Non-interference
for components is based on equivalence classes of messages, such that each
equivalence class directly provides for an arbitrary input another equivalent
input, which is gained by calculating the representative of the respective
equivalence class. It is then relatively easy to check outputs for equivalence.

188

Part IV

Appendix

189

Running Example

A.1 Implementation

Implementation of the shop system used as a running example in Part I.
The implementation is provided using the simple while language introduced
in Chapter 2.

Component Cart {
//State variables
int product, prodprice, prodamount;
int countbuy, countpay, countcheck;

int buy(int prod, int price, int amount) {
product := prod;
prodprice := price;
prodamount:= amount;
countbuy := countbuy + 1;
return 0;

}

(int, int, int) checkCart(int x) {
countcheck := countcheck + 1;
return (product, prodprice, prodamount);

}

int clearCart(int x) {
product := 0;
prodprice := 0;
prodamount := 0;
return 0;

}

int pay(int ccnr) {

191

Running Example

countpay := countpay + 1;
registerSale(product, prodprice, prodamount, ccnr);
return 0;

}

(int, int, int) getAllNums(int x) {
return (countbuy, countpay, countcheck);

}
}

Component Sales {
//state variables
int lastprod, lastprice, lastamount;
int lastccnr;

(int, int, int, int) lastSale(int x) {
return (lastprod, lastprice, lastamount, lastccnr);

}

int registerSale(int prodId, price, amount, ccnr) {
lastprod := prodId;
lastprice := price;
lastamount := amount;
lastccnr := ccnr;
//Alternative with declassification:
//lastccnr := ccnr % 10 000;
return 0;

}
}

Component Controlling {
// no state variables managed
int numBuys(int x) {

return (getAllNums(0)#1);
}
int numPays(int x) {

return (getAllNums(0)#2);
}
int numChecks(int x) {

return (getAllNums(0)#3);
}

}

192

A.2. Specification

A.2 Specification

Definition of the equivalence relation ∼ specifying a domain-motivated secu-
rity specification for the running example.

A.2.1 Billing Department

For the Cart component:

Ini(buy).(prod, price, am) ∼ � ⇔ false
Ini(buy).(prod, price, am) ∼ Ini(buy).(prod′, price′, am′)
⇔ prod = prod′ ∧ price = price′ ∧ am = am′

Fin(buy).(r) ∼ � ⇔ false
Fin(buy).(r) ∼ Fin(buy).(r′) ⇔ true

Ini(checkCart).(x) ∼ � ⇔ true
Ini(checkCart).(x) ∼ Ini(checkCart).(x′) ⇔ true
Fin(checkCart).(r1, r2, r3) ∼ � ⇔ true
Fin(checkCart).(r1, r2, r3) ∼ Fin(checkCart).(r1′, r2′, r3′) ⇔ true

Ini(clearCart).(x) ∼ � ⇔ false
Ini(clearCart).(x) ∼ Ini(clearCart).(x′) ⇔ true
Fin(clearCart).(r) ∼ � ⇔ false
Fin(clearCart).(r) ∼ Fin(clearCart).(r′) ⇔ true

Ini(pay).(ccnr) ∼ � ⇔ false
Ini(pay).(ccnr) ∼ Ini(pay).(ccnr′) ⇔ ccnr = ccnr′

Fin(pay).(r) ∼ � ⇔ false
Fin(pay).(r) ∼ Fin(pay).(r′) ⇔ true

Ini(getAllNums).(x) ∼ � ⇔ true
Ini(getAllNums).(x) ∼ Ini(getAllNums).(x′) ⇔ true
Fin(getAllNums).(r1, r2, r3) ∼ � ⇔ true
Fin(getAllNums).(r1, r2, r3) ∼ Fin(getAllNums).(r1′, r2′, r3′)

⇔ true

193

Running Example

For the Sales component:

Ini(lastSale).(x) ∼ � ⇔ false
Ini(lastSale).(x) ∼ Ini(lastSale).(x′) ⇔ true
Fin(lastSale).(r1, r2, r3, r4) ∼ � ⇔ false
Fin(lastSale).(r1, r2, r3, r4) ∼ Fin(lastSale).(r1′, r2′, r3′, r4′)
⇔ r1 = r1′ ∧ r2 = r2′ ∧ r3 = r3′ ∧ r4 = r4′

Ini(registerSale).(po, pr, am, cc) ∼ � ⇔ false
Ini(registerSale).(po, pr, am, cc) ∼ Ini(registerSale).(po′, pr′, am′, cc′)
⇔ po = po′ ∧ pr = pr′ ∧ am = am′ ∧ cc = cc′

Fin(registerSale).(r) ∼ � ⇔ false
Fin(registerSale).(r) ∼ Fin(registerSale).(r′) ⇔ true

For the Controlling component:

Ini(numBuys).(x) ∼ � ⇔ true
Ini(numBuys).(x) ∼ Ini(numBuys).(x′) ⇔ true
Fin(numBuys).(r) ∼ � ⇔ true
Fin(numBuys).(r) ∼ Fin(numBuys).(r′) ⇔ true

Ini(numPays).(x) ∼ � ⇔ true
Ini(numPays).(x) ∼ Ini(numPays).(x′) ⇔ true
Fin(numPays).(r) ∼ � ⇔ true
Fin(numPays).(r) ∼ Fin(numPays).(r′) ⇔ true

Ini(numChecks).(x) ∼ � ⇔ true
Ini(numChecks).(x) ∼ Ini(numChecks).(x′) ⇔ true
Fin(numChecks).(r) ∼ � ⇔ true
Fin(numChecks).(r) ∼ Fin(numChecks).(r′) ⇔ true

194

A.2. Specification

A.2.2 Controlling Department

For the Cart component:

Ini(buy).(prod, price, am) ∼ � ⇔ false
Ini(buy).(prod, price, am) ∼ Ini(buy).(prod′, price′, am′)

⇔ true
Fin(buy).(r) ∼ � ⇔ false
Fin(buy).(r) ∼ Fin(buy).(r′) ⇔ true

Ini(checkCart).(x) ∼ � ⇔ false
Ini(checkCart).(x) ∼ Ini(checkCart).(x′) ⇔ true
Fin(checkCart).(r1, r2, r3) ∼ � ⇔ false
Fin(checkCart).(r1, r2, r3) ∼ Fin(checkCart).(r1′, r2′, r3′)

⇔ true

Ini(clearCart).(x) ∼ � ⇔ true
Ini(clearCart).(x) ∼ Ini(clearCart).(x′) ⇔ true
Fin(clearCart).(r) ∼ � ⇔ true
Fin(clearCart).(r) ∼ Fin(clearCart).(r′) ⇔ true

Ini(pay).(ccnr) ∼ � ⇔ false
Ini(pay).(ccnr) ∼ Ini(pay).(ccnr′) ⇔ true
Fin(pay).(r) ∼ � ⇔ false
Fin(pay).(r) ∼ Fin(pay).(r′) ⇔ true

Ini(getAllNums).(x) ∼ � ⇔ false
Ini(getAllNums).(x) ∼ Ini(getAllNums).(x′) ⇔ true
Fin(getAllNums).(r1, r2, r3) ∼ � ⇔ false
Fin(getAllNums).(r1, r2, r3) ∼ Fin(getAllNums).(r1′, r2′, r3′)
⇔ r1 = r1′ ∧ r2 = r2′ ∧ r3 = r3′

195

Running Example

For the Sales component:

Ini(lastSale).(x) ∼ � ⇔ true
Ini(lastSale).(x) ∼ Ini(lastSale).(x′) ⇔ true
Fin(lastSale).(r1, r2, r3, r4) ∼ � ⇔ true
Fin(lastSale).(r1, r2, r3, r4) ∼ Fin(lastSale).(r1′, r2′, r3′, r4′)

⇔ true

Ini(registerSale).(po, pr, am, cc) ∼ � ⇔ true
Ini(registerSale).(po, pr, am, cc) ∼ Ini(registerSale).(po′, pr′, am′, cc′)

⇔ true
Fin(registerSale).(r) ∼ � ⇔ true
Fin(registerSale).(r) ∼ Fin(registerSale).(r′) ⇔ true

For the Controlling component:

Ini(numBuys).(x) ∼ � ⇔ false
Ini(numBuys).(x) ∼ Ini(numBuys).(x′) ⇔ true
Fin(numBuys).(r) ∼ � ⇔ false
Fin(numBuys).(r) ∼ Fin(numBuys).(r′) ⇔ r = r′

Ini(numPays).(x) ∼ � ⇔ false
Ini(numPays).(x) ∼ Ini(numPays).(x′) ⇔ true
Fin(numPays).(r) ∼ � ⇔ false
Fin(numPays).(r) ∼ Fin(numPays).(r′) ⇔ r = r′

Ini(numChecks).(x) ∼ � ⇔ false
Ini(numChecks).(x) ∼ Ini(numChecks).(x′) ⇔ true
Fin(numChecks).(r) ∼ � ⇔ false
Fin(numChecks).(r) ∼ Fin(numChecks).(r′) ⇔ r = r′

196

Web Shop Case Study

A.3 System-wide Security Property

Domain-motivated specification of who may know what for the web shop
system.

197

Web Shop Case Study

Customer DeliveryDept BillingDebt
CartIF.getCartContent
call X X X
CartIF.addToCart
call X X X
prodId X X X
amount X X X
AccountIF.orderElementsInCart
call X X X
AccountIF.setName
call X X X
name X X X
AccountIF.setAdress
call X X X
adr X X X
AccountIF.setCCNr
call X X X
ccnr X X %10000
AccountIF.setCVC
call X X X
cvc X X X
BillingIF.getBillsToSend
call X X X
DeliveryIF.getdeliverySheets
call X X X
BankIF.makePayment
result X X X
ProductDBIF.getProductPrice
result X X X

198

Implementation and Verification of
Privacy Store

B.1 Implementation

In the following, we present the implementation of the Privacy Store compo-
nent as discussed in Chapter 8. The specifications for the methods can be
found in the online available resources linked in the main chapter.

1 public final class PrivacyStore {

private static final int NUM_FEATURES = 5;
private static final int POS_X = 0;
private static final int POS_Y = 1;

6 private static final int FEAT1 = 2;
private static final int FEAT2 = 3;
private static final int FEAT3 = 4;

private static final int BLURX = 4;
11 private static final int BLURY = 4;

private int[][] guestVectors;

private int[][] coworkerVectors;
16

private void registerGuest(int[] observation) {
int[][] temp =

getNewVectors(guestVectors.length + 1);

21 for (int i = 0; i < guestVectors.length; i++) {
temp[i] = guestVectors[i];

}
temp[guestVectors.length] = observation;

199

Implementation and Verification of Privacy Store

this.guestVectors = temp;
26 }

private boolean helper(int[] observation) {
int wasUpdated = updateGuest(observation);
if (wasUpdated == -1) {

31 wasUpdated = updateCoworker(observation);
}
return (wasUpdated >= 0);

}

36 private int updateGuest(int[] observation) {
int pos = -1;
for (int i = 0; pos == -1 &&

i < guestVectors.length; i++) {
if (sameObservation(observation,

41 guestVectors[i])) {
pos = i;

}
}
if (pos >= 0) {

46 updatePerson(guestVectors, observation, pos);
}
return pos;

}

51 private int updateCoworker(int[] observation) {
int pos = -1;
for (int i = 0; pos == -1 &&

i < coworkerVectors.length; i++) {
if (sameObservation(observation,

56 coworkerVectors[i])) {
pos = i;
}

}
if (pos >= 0) {

61 updatePerson(coworkerVectors, observation, pos);
}
return pos;

}

66 private void updatePerson(int[][] featVec,
int[] observation, int pos) {

for (int i = 0; i < observation.length; i++) {

200

B.1. Implementation

featVec[pos][i] = observation[i];
}

71 }

public void updateObservation(int[] observation) {
boolean wasUpdated = helper(observation);
if (!wasUpdated) {

76 registerGuest(observation);
}

}

public void registerCoworker(int[] observation) {
81 int pos = findSimilar(observation,

this.guestVectors);
if (pos > -1) {

moveGuestToCoworker(pos, observation);
} else {

86 pos = findSimilar(observation,
this.coworkerVectors);

if (pos >= 0) {
updatePerson(coworkerVectors, observation, pos);

} else {
91 addCoworker(observation);

}
}

}

96 private void moveGuestToCoworker(int pos,
int[] observation) {

removeGuest(pos);
addCoworker(observation);

}
101

public void removeGuest(int pos) {
int[][] newGuest =

getNewVectors(this.guestVectors.length-1);
int counter = 0;

106 for (int i = 0; i < guestVectors.length; i++) {
if (pos > i) {

newGuest[i] = this.guestVectors[i];
} else if (pos < i) {

newGuest[i-1] = this.guestVectors[i];
111 }

}

201

Implementation and Verification of Privacy Store

this.guestVectors = newGuest;
}

116 public void addCoworker(int[] observation) {
int[][] newCoworker =

getNewVectors(this.coworkerVectors.length+1);
for (int m = 0; m < coworkerVectors.length; m++) {

newCoworker[m] = this.coworkerVectors[m];
121 }

newCoworker[newCoworker.length-1] = observation;
this.coworkerVectors=newCoworker;

}

126 private int findSimilar(int[] observation,
int[][] toCompare) {

int pos = -1;
for (int i = 0; pos == -1 &&

i < toCompare.length; i++) {
131 if (sameObservation(observation, toCompare[i])) {

pos = i;
}

}
if(pos == -1) {

136 return -1;
} else {

return pos;
}

}
141

private int[][] getNewVectors(int l) {
return new int[l][NUM_FEATURES];

}

146 private boolean sameObservation(int[] observation,
int[] toCompare) {

int deltaXPos =
observation[POS_X] - toCompare[POS_X];

if (deltaXPos < 0)
151 deltaXPos = deltaXPos * -1;

int deltaYPos =
observation[POS_Y] - toCompare[POS_Y];

if (deltaYPos < 0)
deltaYPos = deltaYPos * -1;

156 if (deltaXPos < BLURX && deltaYPos < BLURY) {

202

B.2. Service Specification

if (observation[FEAT1] == toCompare[FEAT1] &&
observation[FEAT2] == toCompare[FEAT2] &&
observation[FEAT3] == toCompare[FEAT3]) {

return true;
161 } else {

return false;
}

} else {
return false;

166 }
}

public int[] getGuest(int pos) {
if (pos < 0 || pos >= guestVectors.length) {

171 return null;}
int[] ret = new int[NUM_FEATURES];
for (int i = 0; i < NUM_FEATURES; i++) {

ret[i] = guestVectors[pos][i];
}

176 return ret;
}

}

B.2 Service Specification

B.2.1 Definition of the tracking predicate

/*@ public normal_behaviour
2 @ requires observation.length == toCompare.length &&

@ observation.length == NUM_FEATURES;
@ ensures \result ==
@ ((observation[POS_X] - toCompare[POS_X]) < BLURX &&
@ (-1*(observation[POS_X]-toCompare[POS_X])<BLURX)&&

7 @ (observation[POS_Y] - toCompare[POS_Y]) < BLURY &&
@ (-1*(observation[POS_Y]-toCompare[POS_Y])<BLURY)&&
@ observation[FEAT1] == toCompare[FEAT1] &&
@ observation[FEAT2] == toCompare[FEAT2] &&
@ observation[FEAT3] == toCompare[FEAT3]);

12 @ model public strictly_pure boolean sameObs(
@ int[] observation, int[] toCompare) {...}*/

203

Implementation and Verification of Privacy Store

B.2.2 Trace Invariant contracts

/*@ public normal_behavior
2 @ requires true;

@ ensures true;
@ modifies \nothing; */

public /*@ nullable */ int[] getGuest(int pos) {...}

/*@ public normal_behaviour
@requires observation.length == NUM_FEATURES &&
@ (\forall int i; 0 <= i && i < guestVectors.length;
@ guestVectors[i] != observation) &&

5 @ (\forall int i; 0<=i && i<coworkerVectors.length;
@ coworkerVectors[i] != observation) &&
@ (\forall int i; 0 <= i && i < guestVectors.length;
@ sameObs(observation, guestVectors[i]) ==>
@ (!(\exists int j;0<=j&&j<coworkerVectors.length;

10 @ sameObs(observation, coworkerVectors[j]))) &&
@ (\forall int k; 0<=k && k<guestVectors.length;
@ sameObs(observation,guestVectors[k])==>i==k))&&
@ (\forall int i; 0<=i && i<coworkerVectors.length;
@ sameObs(observation, coworkerVectors[i]) ==>

15 @ !(\exists int j; 0<=j && j<guestVectors.length;
@ sameObs(observation, guestVectors[j])) &&
@ (\forall int k; 0<=k&&k<coworkerVectors.length;
@ sameObs(observation,coworkerVectors[k])==>i==k));
@ensures

20 @ ((\exists int i;0<=i&&i<\old(guestVectors.length);
@ \old(sameObs(observation,guestVectors[i])))==>
@ (\old(guestVectors.length)==guestVectors.length &&
@ (\forall int j; 0<=j && j<guestVectors.length;
@ (\old(sameObs(observation,guestVectors[j])))?

25 @ (\forall int k; 0<=k && k<guestVectors.length;
@ guestVectors[j][k]==observation[k]):
@ (\forall int k; 0<=k && k<guestVectors.length;
@ guestVectors[j][k]==
@ \old(guestVectors[j][k])))&&

30 @ (\old(coworkerVectors.length)==
@ coworkerVectors.length) &&
@ (\forall int j; 0<=j && j<coworkerVectors.length;
@ (\forall int k;0<=k&&k<coworkerVectors[j].length;
@ coworkerVectors[j][k] ==

204

B.2. Service Specification

35 @ \old(coworkerVectors[j][k]))))) &&
@ ((\exists int i;0 <= i&&
@ i < \old(coworkerVectors.length);
@ \old(sameObs(observation,coworkerVectors[i])))==>
@ (\old(coworkerVectors.length)==

40 @ coworkerVectors.length &&
@ (\forall int j; 0<=j && j<coworkerVectors.length;
@ (\old(sameObs(observation,coworkerVectors[j])))?
@ (\forall int k; 0<=k&&k<coworkerVectors.length;
@ coworkerVectors[j][k]==observation[k]):

45 @ (\forall int k; 0<=k&&k<coworkerVectors.length;
@ coworkerVectors[j][k]==
@ \old(coworkerVectors[j][k])))&&
@ (\old(guestVectors.length) ==
@ guestVectors.length) &&

50 @ (\forall int j; 0<=j && j<guestVectors.length;
@ (\forall int k; 0<=k&&k<guestVectors[j].length;
@ guestVectors[j][k]==
@ \old(guestVectors[j][k])))))&&
@ (((!(\exists int i; 0 <= i &&

55 @ i < \old(guestVectors.length);
@ \old(sameObs(observation,guestVectors[i]))))&&
@ (!(\exists int i; 0<=i &&
@ i<\old(coworkerVectors.length);
@ \old(sameObs(observation, coworkerVectors[i])))))

60 @ ==>
@ (guestVectors.length ==
@ \old(guestVectors.length)+1&&
@ coworkerVectors.length ==
@ \old(coworkerVectors.length) &&

65 @ (\forall int i;0<=i&&i<\old(guestVectors.length);
@ (\forall int j; 0<=j &&
@ j<guestVectors[i].length;
@ guestVectors[i][j] ==
@ \old(guestVectors[i][j]))) &&

70 @ (\forall int i; 0 <= i && i < observation.length;
@ guestVectors[guestVectors.length-1][i]==
@ observation[i]) &&
@ (\forall int i; 0<=i &&
@ i<\old(coworkerVectors.length);

75 @ (\forall int j; 0<=j &&
@ j<coworkerVectors[i].length;
@ coworkerVectors[i][j]==
@ \old(coworkerVectors[i][j])))));

205

Implementation and Verification of Privacy Store

*\
80 public void updateObservation(int[] observation) {...}

/*@ public normal_behaviour
@ requires observation.length == NUM_FEATURES &&
@ (\forall int i; 0 <= i && i < guestVectors.length;
@ guestVectors[i] != observation) &&

5 @ (\forall int i; 0<=i && i<coworkerVectors.length;
@ coworkerVectors[i] != observation) &&
@ (\forall int i; 0 <= i && i < guestVectors.length;
@ sameObs(observation, guestVectors[i]) ==>
@ (!(\exists int j; 0<=j&&j<coworkerVectors.length;

10 @ sameObs(observation,coworkerVectors[j]))) &&
@ (\forall int k; 0 <= k && k < guestVectors.length;
@ sameObs(observation,guestVectors[k])==>i==k))&&
@ (\forall int i; 0<=i && i<coworkerVectors.length;
@ sameObs(observation, coworkerVectors[i]) ==>

15 @ !(\exists int j; 0<=j &&j< guestVectors.length;
@ sameObs(observation, guestVectors[j])) &&
@ (\forall int k; 0<=k && k<coworkerVectors.length;
@ sameObs(observation,coworkerVectors[k])==>i==k));
@ ensures

20 @ ((\exists int i; 0<=i&&i<\old(guestVectors.length);
@ \old(sameObs(observation,guestVectors[i])))==>
@ (\old(guestVectors.length)==
@ guestVectors.length+1 &&
@ (\forall int j; 0<=j && j<guestVectors.length;

25 @ (\old(sameObs(observation, guestVectors[j])))?
@ ((\forall int m; 0 <= m && m < j;
@ (\forall int k; 0<=k&&k<guestVectors.length;
@ guestVectors[m][k]==
@ \old(guestVectors[m][k]))) &&

30 @ (\forall int m; j<m && m<guestVectors.length;
@ (\forall int k;0<=k&&k<guestVectors.length;
@ guestVectors[m-1][k]==
@ \old(guestVectors[m][k])))):
@ true) &&

35 @ (\old(coworkerVectors.length) + 1 ==
@ coworkerVectors.length) &&
@ (\forall int j;0<=j&&j<coworkerVectors.length-1;
@ (\forall int k;0<=k&&k<coworkerVectors[j].length;
@ coworkerVectors[j][k] ==

206

B.2. Service Specification

40 @ \old(coworkerVectors[j][k]))) &&
@ (\forall int k; 0 <= k &&
@ k < coworkerVectors[
@ coworkerVectors.length-1].length;
@ coworkerVectors[coworkerVectors.length-1][k] ==

45 @ observation[k]))) &&
@ ((\exists int i; 0 <= i &&
@ i < \old(coworkerVectors.length);
@ \old(sameObs(observation,coworkerVectors[i])))==>
@ (\old(coworkerVectors.length) ==

50 @ coworkerVectors.length &&
@ (\forall int j; 0 <= j &&
@ j < coworkerVectors.length;
@ (\old(sameObs(observation,coworkerVectors[j])))?
@ (\forall int k;0<=k && k<coworkerVectors.length;

55 @ coworkerVectors[j][k]==observation[k]):
@ (\forall int k;0<=k && k<coworkerVectors.length;
@ coworkerVectors[j][k]==
@ \old(coworkerVectors[j][k]))) &&
@ (\old(guestVectors.length) ==

60 @ guestVectors.length) &&
@ (\forall int j; 0<=j && j<guestVectors.length;
@ (\forall int k; 0 <= k &&
@ k < guestVectors[j].length;
@ guestVectors[j][k] ==

65 @ \old(guestVectors[j][k]))))) &&
@ (((!(\exists int i; 0 <= i &&
@ i < \old(guestVectors.length);
@ \old(sameObs(observation,guestVectors[i])))) &&
@ (!(\exists int i; 0 <= i &&

70 @ i < \old(coworkerVectors.length);
@ \old(sameObs(observation,coworkerVectors[i])))))==>
@ (guestVectors.length==\old(guestVectors.length) &&
@ coworkerVectors.length ==
@ \old(coworkerVectors.length)+1 &&

75 @ (\forall int i; 0 <= i && i < guestVectors.length;
@ (\forall int j; 0<=j && j<guestVectors[i].length;
@ guestVectors[i][j] ==
@ \old(guestVectors[i][j]))) &&
@ (\forall int i; 0 <= i &&

80 @ i < \old(coworkerVectors.length);
@ (\forall int j; 0 <= j &&
@ j < coworkerVectors[i].length;
@ coworkerVectors[i][j] ==

207

Implementation and Verification of Privacy Store

@ \old(coworkerVectors[i][j]))) &&
85 @ (\forall int i; 0 <= i && i < observation.length;

@ coworkerVectors[coworkerVectors.length-1][i] ==
@ observation[i])));

*/
public void registerCoworker(int[] observation) {...}

B.2.3 Visibility-preserving contracts

Model field for state equivalence JML formalization of the low-part
of the state, i.e. JML formalization for ≈:

1 /*@ public instance model \seq lowvalues; */
/*@ public represents lowvalues <-

@ \seq(guestVectors.length, guestVectors,
@ (\seq_def int j; 0; guestVectors.length;
@ (\seq_def int k; 0; NUM_FEATURES;

6 @ guestVectors[j][k]))); */

/*@public normal_behavior
@requires observation.length == NUM_FEATURES &&
@ (\forall int j; 0<=j && j<coworkerVectors.length;

4 @ coworkerVectors[j] != observation) &&
@ (\forall int j; 0 <= j && j < guestVectors.length;
@ guestVectors[j] != observation) &&
@ (!(\exists int j; 0<=j && j<guestVectors.length;(
@ sameObs(observation,guestVectors[j])))) &&

9 @ (\exists int j; 0<=j && j<coworkerVectors.length;(
@ sameObs(observation,coworkerVectors[j])));
@ensures lowvalues == \old(lowvalues);
@*/
public void updateObservation(int[] observation) {...}

/*@public normal_behavior
2 @requires observation.length == NUM_FEATURES &&

@ (\forall int j; 0<=j && j<coworkerVectors.length;
@ coworkerVectors[j] != observation) &&
@ (\forall int j; 0 <= j && j < guestVectors.length;
@ guestVectors[j] != observation) &&

208

B.2. Service Specification

7 @ (!(\exists int j; 0<=j && j<guestVectors.length;(
@ sameObs(observation,guestVectors[j]))));
@ensures lowvalues == \old(lowvalues);
@*/
public void registerCoworker(int[] observation) {...}

B.2.4 Non-Interference Contracts

/*@ public normal_behaviour
@ requires true;
@ determines ((pos < 0 ||

4 @ pos >= guestVectors.length))
@ ?(null)
@ :((\seq_def int k; 0;
@ NUM_FEATURES; \result[k])),
@ lowvalues

9 @ \by lowvalues, pos;
*/

public /*@ nullable */ int[] getGuest(int pos) {...}

/*@ public normal_behaviour
@ requires observation.length == NUM_FEATURES &&
@ (\forall int i; 0<=i && i<guestVectors.length;

4 @ guestVectors[i] != observation) &&
@ (\forall int i; 0<=i && i<coworkerVectors.length;
@ coworkerVectors[i] != observation) &&
@ ((\exists int j; 0<=j && j<guestVectors.length;(
@ sameObs(observation, guestVectors[j]))) ||

9 @ (!(\exists int j;0<=j&&j<coworkerVectors.length;(
@ sameObs(observation, coworkerVectors[j])))));
@ determines lowvalues \by lowvalues,
@ (\exists int j; 0<=j&&j<coworkerVectors.length;(
@ sameObs(observation, coworkerVectors[j]))),

14 @ (\exists int j; 0<=j && j<guestVectors.length;(
@ sameObs(observation, guestVectors[j]))),
@ ((\seq_def int j; 0;
@ observation.length; observation[j]));
*/

19 public void updateObservation(int[] observation) {...}

209

Implementation and Verification of Privacy Store

1 /*@ public normal_behavior
@ requires observation.length == NUM_FEATURES &&
@ (\forall int j; 0<=j && j<coworkerVectors.length;
@ coworkerVectors[j] != observation) &&
@ (\forall int j; 0<=j && j<guestVectors.length;

6 @ guestVectors[j] != observation) &&
@ (!(\exists int j; 0<=j && j<guestVectors.length;
@ (sameObs(observation,guestVectors[j]))) ||
@ !(\exists int j; 0<=j && j<coworkerVectors.length;
@ (sameObs(observation,coworkerVectors[j]))));

11 @ determines lowvalues \by lowvalues,
@ observation, observation.length,
@ (\seq_def int k; 0; observation.length;
@ observation[k]),
@ (\exists int j; 0<=j && j<guestVectors.length;(

16 @ sameObs(observation,guestVectors[j])));
@*/

public void registerCoworker(int[] observation) {...}

210

B.3. Specification Statistics

B.3 Specification Statistics

The following table shows the relation between size of the source code and the
size of the specifications for each method. The table shows separate statistics
for specifications for trace-invariant preservation, visibility preservation and
secure information flow.

Method LoC Invariant
LoS

Visibility
LoS

InfFlow
LoS

Class level 2 23 23 24
registerGuest 6 12 6 15
helper 5 35 13 25
updateGuest 8 26 18 33
updateCoworker 8 27 19 42
updatePerson 3 8 11 11
updateObservation 4 29 9 11
registerCoworker 10 33 9 16
moveGuestToCoworker 3 14 5 12
removeGuest 9 11 11 12
addCoworker 6 14 13 13
findSimilar 9 17 17 20
sameObservation 16 4 4 4
getGuest 7 9 9 9
Sum 96 262 167 247

B.4 Verification

Trace-Invariant Verification The following table illustrates the effort
required for verifying that each service preserves the trace invariant. We
provide for each method the number of rule applications required during the
proof, the number of required manual rule applications and the amount of
time the tool performed in auto mode.

211

Implementation and Verification of Privacy Store

Method #Rule
Apps

#Manual
Rules

Automode
Time (sec.)

registerGuest 18,014 4 86
helper 102,825 346 7,735
updateGuest 42,789 9 288
updateCoworker 52,285 10 366
updatePerson 6,545 11 17
updateObservation 90,014 255 10,215
registerCoworker 226,353 244 4,768
moveGuestToCoworker 46,811 55 624
removeGuest 55,116 103 841
addCoworker 17,291 6 56
findSimilar 22,886 8 97
sameObservation 45,712 7 128
getGuest 11,372 2 32
Sum 738,013 1,049 25,255

State-Visiblity Preserving Verification The following table illustrates
the effort required for verifying that each service is state-visibility-preserving.
We provide for each method the number of rule applications required during
the proof, the number of required manual rule applications and the amount
of time the tool performed in auto mode.

Method #Rule
Apps

#Manual
Rules

Automode
Time (sec.)

registerGuest 2 0 0
helper 36,541 90 654
updateGuest 52,041 15 324
updateCoworker 65,160 85 889
updatePerson 8,854 1 21
updateObservation 19,306 29 433
registerCoworker 44,912 15 290
moveGuestToCoworker 23,715 33 339
removeGuest 26,150 47 300
addCoworker 15,630 1 47
findSimilar 22,886 8 92
sameObservation 45,712 7 124
getGuest 11,848 10 33
Sum 372,757 341 3,545

Non-Interference Verification Each information flow contract yields
two proof obligations. The first proof obligation consists of a functional proof
for post-conditions, loop invariants and similar. The second proof obligation
is the actual relational proof comparing two executions of the service.

212

B.4. Verification

The following table illustrates the effort required for verifying the func-
tional part of the information flow contract. We provide for each method
the number of rule applications required during the proof, the number of
required manual rule applications and the amount of time the tool performed
in auto mode.

Method #Rule
Apps

#Manual
Rules

Automode
Time (sec.)

registerGuest 21,829 13 215
helper 53,353 166 5,124
updateGuest 57,002 28 354
updateCoworker 67,794 61 907
updatePerson 8,854 1 18
updateObservation 56,482 48 1,068
registerCoworker 126,081 35 916
moveGuestToCoworker 35,015 42 360
removeGuest 22,907 35 237
addCoworker 15,474 3 45
findSimilar 22,180 15 84
sameObservation 45,712 7 115
getGuest 10,556 2 28
Sum 543,239 456 9,470

The following table illustrates the effort required for verifying the rela-
tional part of the information flow contract. If the table does not contain
numbers for a service, then we did not require an information flow contract
for specification but a functional contract was sufficient for verification of the
overall information-flow properties. We provide for each method the number
of rule applications required during the proof, the number of required manual
rule applications and the amount of time the tool performed in auto mode.

Method #Rule
Apps

#Manual
Rules

Automode
Time (sec.)

registerGuest 36,796 264 459
helper 154,885 362 12,924
updateGuest 142,834 543 1,099
updateCoworker 23,992 97 104
updatePerson —- — —
updateObservation 258,997 280 5,566
registerCoworker 86,950 374 1,168
moveGuestToCoworker 50,673 219 445
removeGuest 58,384 164 1,087
addCoworker —- — —
findSimilar 32,929 119 327
sameObservation —- — —
getGuest 33,710 95 358
Sum 880,150 2,517 23,536

213

Bibliography

Wolfgang Ahrendt and Maximilian Dylla. A system for compositional
verification of asynchronous objects. Science of Computer Program-
ming, 77(12):1289–1309, 2012. doi: 10.1016/j.scico.2010.08.003. URL
https://doi.org/10.1016/j.scico.2010.08.003. (Cited on page 148.)

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Pe-
ter H. Schmitt, and Mattias Ulbrich, editors. Deductive Software Ver-
ification - The KeY Book: From Theory to Practice, volume 10001 of
Lecture Notes in Computer Science. Springer, December 2016. doi:
10.1007/978-3-319-49812-6. (Cited on pages 102, 107, and 172.)

M. M. Alam, R. Breu, and M. Breu. Model driven security for web services
(mds4ws). In 8th International Multitopic Conference, 2004. Proceedings of
INMIC 2004., pages 498–505, Dec 2004. doi: 10.1109/INMIC.2004.1492930.
(Cited on page 94.)

Torben Amtoft and Anindya Banerjee. Information flow analysis in logical
form. In Roberto Giacobazzi, editor, Static Analysis, volume 3148 of
LNCS. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22791-5. doi:
10.1007/978-3-540-27864-1 10. (Cited on page 63.)

Torben Amtoft and Anindya Banerjee. Verification condition generation for
conditional information flow. In Proceedings of the 2007 ACM Workshop
on Formal Methods in Security Engineering, FMSE ’07, pages 2–11, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-887-9. doi: 10.1145/
1314436.1314438. (Cited on pages 64 and 148.)

Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for
information flow in object-oriented programs. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

215

https://doi.org/10.1016/j.scico.2010.08.003

Bibliography

Languages, POPL ’06, pages 91–102, New York, NY, USA, 2006. ACM.
ISBN 1-59593-027-2. doi: 10.1145/1111037.1111046. URL http://doi.
acm.org/10.1145/1111037.1111046. (Cited on page 148.)

Torben Amtoft, John Hatcliff, Edwin Rodríguez, Robby, Jonathan Hoag,
and David Greve. Specification and Checking of Software Contracts for
Conditional Information Flow, pages 229–245. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008. ISBN 978-3-540-68237-0. doi: 10.1007/978-
3-540-68237-0 17. URL https://doi.org/10.1007/978-3-540-68237-
0 17. (Cited on page 148.)

Torben Amtoft, John Hatcliff, and Edwin Rodríguez. Precise and Automated
Contract-Based Reasoning for Verification and Certification of Information
Flow Properties of Programs with Arrays, pages 43–63. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-11957-6. doi: 10.
1007/978-3-642-11957-6 4. URL https://doi.org/10.1007/978-3-642-
11957-6 4. (Cited on page 148.)

Musard Balliu, Mads Dam, and Gurvan Le Guernic. Epistemic temporal logic
for information flow security. In Proceedings of the ACM SIGPLAN 6th
Workshop on Programming Languages and Analysis for Security, PLAS ’11,
pages 6:1–6:12, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0830-4.
doi: 10.1145/2166956.2166962. (Cited on page 183.)

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information
flow by self-composition. In IEEE CSFW-17 2004), 28-30 June 2004,
Pacific Grove, CA, USA. doi: 10.1109/CSFW.2004.17. (Cited on pages
63 and 148.)

Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco
Raimondi. CoSMed: A Confidentiality-Verified Social Media Platform,
pages 87–106. Springer International Publishing, Cham, 2016. ISBN
978-3-319-43144-4. doi: 10.1007/978-3-319-43144-4 6. URL https://doi.
org/10.1007/978-3-319-43144-4 6. (Cited on page 183.)

Thomas Bauereiß, Simon Greiner, Mihai Herda, Michael Kirsten, Ximeng
Li, Heiko Mantel, Martin Mohr, Matthias Perner, David Schneider, and
Markus Tasch. Rifl 1.1: A common specification language for information-
flow requirements. Technical Report TUD-CS-2017-0225, TU Darmstadt,
August 2017.

Bernhard Beckert and Daniel Bruns. Dynamic Logic with Trace Semantics,
pages 315–329. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN
978-3-642-38574-2. doi: 10.1007/978-3-642-38574-2 22. URL https://
doi.org/10.1007/978-3-642-38574-2 22. (Cited on page 182.)

216

http://doi.acm.org/10.1145/1111037.1111046
http://doi.acm.org/10.1145/1111037.1111046
https://doi.org/10.1007/978-3-540-68237-0_17
https://doi.org/10.1007/978-3-540-68237-0_17
https://doi.org/10.1007/978-3-642-11957-6_4
https://doi.org/10.1007/978-3-642-11957-6_4
https://doi.org/10.1007/978-3-319-43144-4_6
https://doi.org/10.1007/978-3-319-43144-4_6
https://doi.org/10.1007/978-3-642-38574-2_22
https://doi.org/10.1007/978-3-642-38574-2_22

Bibliography

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben,
Peter H. Schmitt, and Mattias Ulbrich. Information flow in object-oriented
software. In Gopal Gupta and Ricardo Peña, editors, LOPSTR 2013,
Revised Selected Papers, number 8901 in Lecture Notes in Computer
Science. Springer. (Cited on pages 130, 133, 134, 135, and 149.)

Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, and Marius Bozga.
Model-Driven Information Flow Security for Component-Based Systems,
pages 1–20. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN
978-3-642-54848-2. doi: 10.1007/978-3-642-54848-2 1. URL https://doi.
org/10.1007/978-3-642-54848-2 1. (Cited on page 95.)

Pascal Birnstill and Alexander Pretschner. Enforcing privacy through usage-
controlled video surveillance. In Advanced Video and Signal Based Sur-
veillance (AVSS), 2013 10th IEEE International Conference on, pages
318–323. IEEE, 2013. (Cited on page 156.)

Pascal Birnstill, Sebastian Bretthauer, Simon Greiner, and Erik Krem-
pel. Privacy-preserving surveillance: an interdisciplinary approach.
International Data Privacy Law, 5(4):298–308, September 2015. doi:
10.1093/idpl/ipv021. (Cited on page 156.)

Daniel Bruns, Huy Quoc Do, Simon Greiner, Mihai Herda, Martin Mohr,
Enrico Scapin, Tomasz Truderung, Bernhard Beckert, Ralf Küsters, Heiko
Mantel, and Richard Gay. Poster: Security in e-voting. In Sophie Engle,
editor, 36th IEEE Symposium on Security and Privacy (S&P 2015), Poster
Session, May 2015. URL https://www.ieee-security.org/TC/SP2015/
posters/paper 10.pdf.

Richard Bubel, Reiner Hähnle, and Benjamin Weiß. Abstract interpretation
of symbolic execution with explicit state updates. In Formal Methods
for Components and Objects, 7th International Symposium, FMCO 2008,
Sophia Antipolis, France, October 21-23, 2008, Revised Lectures, pages
247–277, 2008. doi: 10.1007/978-3-642-04167-9 13. URL https://doi.
org/10.1007/978-3-642-04167-9 13. (Cited on page 148.)

Florian Böhl, Simon Greiner, and Patrik Scheidecker. Proving correctness
and security of two-party computation implemented in java in presence of a
semi-honest sender. In Dimitris Gritzalis, Aggelos Kiayias, and Ioannis G.
Askoxylakis, editors, 13th International Conference on Cryptology and
Network Security (CANS 2014), volume 8813 of Lecture Notes in Computer
Science, pages 175–190. Springer, October 2014. ISBN 978-3-319-12279-3.
doi: 10.1007/978-3-319-12280-9 12. URL http://dx.doi.org/10.1007/
978-3-319-12280-9 12.

Barbara Carminati, Elena Ferrari, Raymond Heatherly, Murat Kantarcioglu,
and Bhavani Thuraisingham. Semantic web-based social network access

217

https://doi.org/10.1007/978-3-642-54848-2_1
https://doi.org/10.1007/978-3-642-54848-2_1
https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
https://doi.org/10.1007/978-3-642-04167-9_13
https://doi.org/10.1007/978-3-642-04167-9_13
http://dx.doi.org/10.1007/978-3-319-12280-9_12
http://dx.doi.org/10.1007/978-3-319-12280-9_12

Bibliography

control. Comput. Secur., 30(2-3):108–115, March 2011. ISSN 0167-4048.
doi: 10.1016/j.cose.2010.08.003. URL http://dx.doi.org/10.1016/j.
cose.2010.08.003. (Cited on page 184.)

Y. Cheng, J. Park, and R. Sandhu. Relationship-based access control for
online social networks: Beyond user-to-user relationships. In 2012 In-
ternational Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing, pages 646–655, Sept 2012.
doi: 10.1109/SocialCom-PASSAT.2012.57. (Cited on page 184.)

David Clark and Sebastian Hunt. Non-interference for deterministic in-
teractive programs. In Pierpaolo Degano, Joshua Guttman, and Fabio
Martinelli, editors, Formal Aspects in Security and Trust, volume 5491
of Lecture Notes in Computer Science. Springer, 2009. ISBN 978-3-642-
01464-2. doi: 10.1007/978-3-642-01465-9 4. (Cited on pages 4, 29, 61,
and 63.)

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sánchez. Temporal logics for hyper-
properties. In Martín Abadi and Steve Kremer, editors, POST, volume
8414 of Lecture Notes in Computer Science, pages 265–284. Springer, 2014.
ISBN 978-3-642-54791-1. (Cited on page 183.)

Ellis Cohen. Information transmission in computational systems. SIGOPS
Oper. Syst. Rev., 11(5), November 1977. ISSN 0163-5980. doi: 10.1145/
1067625.806556. (Cited on page 61.)

Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach
to analysis of secure information flow. In 2nd Int. Conf SPC 2005. doi:
10.1007/978-3-540-32004-3 20. (Cited on pages 63 and 148.)

Karsten Diekhoff. Specification and verification of javaee services with key,
2017. Bachelor Thesis at Karlsruhe Institute for Technology. (Cited on
page 98.)

Crystal Chang Din and Olaf Owe. A sound and complete reasoning system
for asynchronous communication with shared futures. J. Log. Algebr. Meth.
Program., 83(5-6):360–383, 2014. doi: 10.1016/j.jlamp.2014.03.003. URL
https://doi.org/10.1016/j.jlamp.2014.03.003. (Cited on page 148.)

Crystal Chang Din and Olaf Owe. Compositional reasoning about active
objects with shared futures. Formal Asp. Comput., 27(3):551–572, 2015.
doi: 10.1007/s00165-014-0322-y. URL https://doi.org/10.1007/s0016
5-014-0322-y. (Cited on page 148.)

Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, and Olaf Owe.
Observable behavior of distributed systems: Component reasoning for

218

http://dx.doi.org/10.1016/j.cose.2010.08.003
http://dx.doi.org/10.1016/j.cose.2010.08.003
https://doi.org/10.1016/j.jlamp.2014.03.003
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/s00165-014-0322-y

Bibliography

concurrent objects. J. Log. Algebr. Program., 81(3):227–256, 2012. doi: 10.
1016/j.jlap.2012.01.003. URL https://doi.org/10.1016/j.jlap.2012.
01.003. (Cited on page 148.)

Crystal Chang Din, Richard Bubel, and Reiner Hähnle. Key-abs: A deductive
verification tool for the concurrent modelling language ABS. In Automated
Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pages 517–
526, 2015a. doi: 10.1007/978-3-319-21401-6 35. URL https://doi.org/
10.1007/978-3-319-21401-6 35. (Cited on page 148.)

Crystal Chang Din, Silvia Lizeth Tapia Tarifa, Reiner Hähnle, and
Einar Broch Johnsen. History-based specification and verification of
scalable concurrent and distributed systems. In Formal Methods and Soft-
ware Engineering - 17th International Conference on Formal Engineering
Methods, ICFEM 2015, Paris, France, November 3-5, 2015, Proceed-
ings, pages 217–233, 2015b. doi: 10.1007/978-3-319-25423-4 14. URL
https://doi.org/10.1007/978-3-319-25423-4 14. (Cited on page 148.)

Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Verification of concur-
rent objects with asynchronous method calls. In 2005 IEEE International
Conference on Software - Science, Technology and Engineering (SwSTE
2005), 22-23 February 2005, Herzelia, Israel, pages 141–150, 2005. doi:
10.1109/SWSTE.2005.24. URL https://doi.org/10.1109/SWSTE.2005.
24. (Cited on page 148.)

EJB 3.1 Expert Group. JSR 318: Enterprise JavaBeans, Version 3.1.
Sun Microsystems, 2009. URL https://jcp.org/en/jsr/detail?id=366.
Accessed 29/01/2016. (Cited on pages 11 and 109.)

Riccardo Focardi and Roberto Gorrieri. A classification of security properties
for process algebras. J. of Comp. Sec., 3:5–33, 1994. (Cited on pages 3
and 61.)

Philip W. L. Fong, Mohd M. Anwar, and Zhen Zhao. A privacy preservation
model for facebook-style social network systems. In Computer Security
- ESORICS 2009, 14th European Symposium on Research in Computer
Security, Saint-Malo, France, September 21-23, 2009. Proceedings, pages
303–320, 2009. doi: 10.1007/978-3-642-04444-1 19. URL https://doi.
org/10.1007/978-3-642-04444-1 19. (Cited on page 184.)

Philip W.L. Fong. Relationship-based access control: Protection model and
policy language. In Proceedings of the First ACM Conference on Data
and Application Security and Privacy, CODASPY ’11, pages 191–202,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0466-5. doi: 10.1145/
1943513.1943539. URL http://doi.acm.org/10.1145/1943513.1943539.
(Cited on page 184.)

219

https://doi.org/10.1016/j.jlap.2012.01.003
https://doi.org/10.1016/j.jlap.2012.01.003
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.1109/SWSTE.2005.24
https://doi.org/10.1109/SWSTE.2005.24
https://jcp.org/en/jsr/detail?id=366
https://doi.org/10.1007/978-3-642-04444-1_19
https://doi.org/10.1007/978-3-642-04444-1_19
http://doi.acm.org/10.1145/1943513.1943539

Bibliography

Joseph A. Goguen and José Meseguer. Security policies and security models.
In IEEE S&P, 1982. (Cited on page 61.)

Daniel Grahl and Simon Greiner. Non-interference with what-declassification
in component-based systems. Technical Report 2015,10, Department of
Informatics, Karlsruhe Institute of Technology, November 2015. URL
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000050422.

Simon Greiner and Daniel Grahl. Non-interference with what-declassification
in component-based systems. In Proceedings of the Computer Security
Foundations Symposium (CSF 2016), June 2016. ISBN 978-3-319-12279-3.
(Cited on pages 12 and 24.)

Simon Greiner and Mihai Herda. Cocome with securitys, 2017a. URL http:
//dx.doi.org/10.5445/IR/1000065106. (Cited on pages 95 and 186.)

Simon Greiner and Mihai Herda. Cocome with security. Technical report,
Karlsruhe Institute of Technology, Faculty of Informatics, Karlsruhe, April
2017b.

Simon Greiner and Jie Yang. Privacy protection in an electronic chron-
icle system. Proceedings of the 34th Annual Northeas Bioengineering
Conference.

Simon Greiner, Pascal Birnstill, Erik Krempel, Bernhard Beckert, and Jürgen
Beyerer. Privacy preserving surveillance and the tracking paradox. In
Proceedings, Future Security Conference 2013, 15–19 September 2013,
Berlin, September 2013. (Cited on pages 156 and 157.)

Simon Greiner, Martin Mohr, and Bernhard Beckert. Modular verification
of information flow security in component-based systems – proofs and
proof of concept. Technical Report 2017,9, Department of Informatics,
Karlsruhe Institute of Technology, Karlsruhe, June 2017a. URL http:
//dx.doi.org/10.5445/IR/1000070463. (Cited on pages 49, 60, 98, 143,
145, 150, and 186.)

Simon Greiner, Martin Mohr, and Bernhard Beckert. Modular verification
of information flow security in component-based systems. In Alessandro
Cimatti and Marjan Sirjani, editors, 15th International Conference on
Software Engineering and Formal Methods (SEFM 2017), volume 10469 of
Lecture Notes in Computer Science, pages 300–315. Springer, September
2017b. doi: 10.1007/978-3-319-66197-1 19. (Cited on pages 49, 60, 98,
143, 145, 150, and 186.)

Michael Hafner and Ruth Breu. Modeling Security Critical SOA Applications,
pages 93–119. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN
978-3-540-79539-1. doi: 10.1007/978-3-540-79539-1 7. URL https://doi.
org/10.1007/978-3-540-79539-1 7. (Cited on pages 3 and 94.)

220

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000050422
http://dx.doi.org/10.5445/IR/1000065106
http://dx.doi.org/10.5445/IR/1000065106
http://dx.doi.org/10.5445/IR/1000070463
http://dx.doi.org/10.5445/IR/1000070463
https://doi.org/10.1007/978-3-540-79539-1_7
https://doi.org/10.1007/978-3-540-79539-1_7

Bibliography

Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs. International Journal of Information Security, 8(6):399–422,
December 2009. doi: 10.1007/s10207-009-0086-1. (Cited on page 149.)

David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press,
Cambridge, MA, USA, 2000. ISBN 0262082896. (Cited on page 102.)

Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control.
In Software Safety and Security - Tools for Analysis and Verification, pages
319–347. 2012. doi: 10.3233/978-1-61499-028-4-319. URL https://doi.
org/10.3233/978-1-61499-028-4-319. (Cited on page 149.)

George T. Heineman and William T. Councill, editors. Component-based
Software Engineering: Putting the Pieces Together. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001. ISBN 0-201-70485-4.
(Cited on pages 3 and 11.)

C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, October 1969. ISSN 0001-0782. (Cited on pages 65
and 148.)

JavaEE. Enterprise JavaBeans, version 3.2, 2013. URL http://jcp.org/
en/jsr/detail?id=345. (Cited on pages 3 and 98.)

Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Mar-
tin Steffen. ABS: A Core Language for Abstract Behavioral Specification,
pages 142–164. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN
978-3-642-25271-6. doi: 10.1007/978-3-642-25271-6 8. (Cited on page 147.)

Rajeev Joshi and K. Rustan M. Leino. A semantic approach to secure
information flow. Sci. Comput. Program., 37(1-3), 2000. doi: 10.1016/
S0167-6423(99)00024-6. (Cited on pages 63 and 148.)

Jan Jürjens. Model-Based Security Engineering with UML, pages 42–77.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-
31936-8. doi: 10.1007/11554578 2. URL https://doi.org/10.1007/115
54578 2. (Cited on pages 3 and 94.)

Sudeep Kanav, Peter Lammich, and Andrei Popescu. A Conference Man-
agement System with Verified Document Confidentiality, pages 167–183.
Springer International Publishing, Cham, 2014. ISBN 978-3-319-08867-9.
doi: 10.1007/978-3-319-08867-9 11. URL https://doi.org/10.1007/978-
3-319-08867-9 11. (Cited on page 183.)

Ioannis T. Kassios. Dynamic Frames: Support for Framing, Dependencies and
Sharing Without Restrictions, pages 268–283. Springer Berlin Heidelberg,

221

https://doi.org/10.3233/978-1-61499-028-4-319
https://doi.org/10.3233/978-1-61499-028-4-319
http://jcp.org/en/jsr/detail?id=345
http://jcp.org/en/jsr/detail?id=345
https://doi.org/10.1007/11554578_2
https://doi.org/10.1007/11554578_2
https://doi.org/10.1007/978-3-319-08867-9_11
https://doi.org/10.1007/978-3-319-08867-9_11

Bibliography

Berlin, Heidelberg, 2006. ISBN 978-3-540-37216-5. doi: 10.1007/1181304
0 19. URL http://dx.doi.org/10.1007/11813040 19. (Cited on pages
54, 65, and 104.)

Kuzman Katkalov, Peter Fischer, Kurt Stenzel, Nina Moebius, and Wolfgang
Reif. Evaluation of Jif and Joana as Information Flow Analyzers in a
Model-Driven Approach, pages 174–186. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013. ISBN 978-3-642-35890-6. doi: 10.1007/978-3-642-35890-
6 13. URL https://doi.org/10.1007/978-3-642-35890-6 13. (Cited
on page 94.)

Max E. Kramer, Anton Hergenröder, Martin Hecker, Simon Greiner, and
Kaibin Bao. Specification and verification of confidentiality in component-
based systems. Poster at the 35th IEEE Symposium on Security and
Privacy, 2014. URL http://www.ieee-security.org/TC/SP2014/poste
rs/KRAME.pdf. (Cited on page 74.)

Max E. Kramer, Martin Hecker, Simon Greiner, and Kateryna Yurchenko.
Model-driven specification and analysis of confidentiality in component-
based systems. Technical report, Karlsruhe Institute of Technology, Faculty
of Informatics, Karlsruhe, November 2017. (Cited on pages 74, 84, 96,
and 186.)

Jonas Krämer. Specification and verification of service-local dependency
clusters in key, 2017. Bachelor Thesis at Karlsruhe Institute for Technology.
(Cited on page 98.)

Thomas Lauscher and Simon Greiner. Wirtschaftlichkeit bei der verbesserung
von systemspezifikationen durch uml-modellierung. Signal und Draht, 104
(12):21, December 2012.

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Müller, Joseph Kiniry, and Patrice Chalin. Jml reference
manual, 2008. (Cited on page 106.)

Luísa Lourenço and Luís Caires. Dependent information flow types.
SIGPLAN Not., 50(1):317–328, January 2015. ISSN 0362-1340. doi:
10.1145/2775051.2676994. (Cited on page 149.)

Heiko Mantel. Possibilistic definitions of security – an assembly kit. In
13th IEEE CSFW ’00. doi: 10.1109/csfw.2000.856936. (Cited on pages 3
and 61.)

Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions and
guarantees for compositional noninterference. In Proceedings of the 24th
IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-
la-Ville, France, 27-29 June, 2011, pages 218–232, 2011. doi: 10.1109/

222

http://dx.doi.org/10.1007/11813040_19
https://doi.org/10.1007/978-3-642-35890-6_13
http://www.ieee-security.org/TC/SP2014/posters/KRAME.pdf
http://www.ieee-security.org/TC/SP2014/posters/KRAME.pdf

Bibliography

CSF.2011.22. URL https://doi.org/10.1109/CSF.2011.22. (Cited on
page 64.)

Bertrand Meyer. The grand challenge of trusted components. In Proceedings
of the 25th International Conference on Software Engineering, ICSE ’03,
pages 660–667, Washington, DC, USA, 2003. IEEE Computer Society.
ISBN 0-7695-1877-X. (Cited on pages 3 and 11.)

Toby C. Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah.
Compositional verification and refinement of concurrent value-dependent
noninterference. In IEEE 29th Computer Security Foundations Symposium,
CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 417–431, 2016.
doi: 10.1109/CSF.2016.36. URL https://doi.org/10.1109/CSF.2016.36.
(Cited on page 64.)

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif 3.0: Java information flow, July 2006. URL
http://www.cs.cornell.edu/jif. (Cited on page 149.)

A. Nanevski, A. Banerjee, and D. Garg. Verification of information flow and
access control policies with dependent types. In 2011 IEEE Symposium on
Security and Privacy, pages 165–179, May 2011. doi: 10.1109/SP.2011.12.
(Cited on page 149.)

Phu H. Nguyen, Max Kramer, Jacques Klein, and Yves Le Traon. An
extensive systematic review on the model-driven development of secure
systems. Information and Software Technology, 68(Supplement C):62 – 81,
2015. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2015.08.006.
(Cited on pages 3 and 94.)

Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL.
Springer Publishing Company, Incorporated, 2014. ISBN 3319105418,
9783319105413. (Cited on page 183.)

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002. ISBN 3-540-43376-7. (Cited on page 183.)

Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow
security for interactive programs. In 19th IEEE CSF 2006, Piscataway,
NJ, USA, July . IEEE Press. (Cited on pages 4 and 61.)

François Pottier. A simple view of type-secure information flow in the pi-
calculus. In 15th IEEE CSF 2002, CSFW ’02, Washington, DC, USA.
IEEE Computer Society. ISBN 0-7695-1689-0. (Cited on pages 3 and 61.)

223

https://doi.org/10.1109/CSF.2011.22
https://doi.org/10.1109/CSF.2016.36
http://www.cs.cornell.edu/jif

Bibliography

Willard Rafnsson, Daniel Hedin, and Andrei Sabelfeld. Securing interactive
programs. In 25th IEEE CSF 2012, 2012. doi: 10.1109/CSF.2012.15.
(Cited on pages 4, 12, 31, 33, 62, and 63.)

Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and F Plasil. The
common component modeling example. Lecture notes in computer science,
5153, 2008. (Cited on page 96.)

Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Kozi-
olek, Heiko Koziolek, Max Kramer, and Klaus Krogmann. Modeling and
Simulating Software Architectures: The Palladio Approach. The MIT
Press, 2016. ISBN 026203476X, 9780262034760. (Cited on pages 3, 11, 74,
75, and 77.)

John C Reynolds. Idealized algol and its specification logic. Tools and notions
for program construction, pages 121–161, 1982. (Cited on page 65.)

John C Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE
Symposium on, pages 55–74. IEEE, 2002. (Cited on page 65.)

Peter Y. A. Ryan and Steve A. Schneider. Process algebra and non-
interference. In CSFW 1999. IEEE Computer Society. ISBN 0-7695-0201-6.
(Cited on pages 3 and 61.)

Andrei Sabelfeld and Heiko Mantel. Static Confidentiality Enforcement for
Distributed Programs. In Manuel Hermenegildo and Germán Puebla,
editors, Static Analysis, volume 2477 of LNCS. Springer, 2002. doi:
10.1007/3-540-45789-5\ 27. (Cited on pages 3 and 61.)

Andrei Sabelfeld and Andrew C. Myers. A model for delimited information
release. In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki,
editors, Software Security - Theories and Systems, pages 174–191, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-37621-7.
(Cited on page 63.)

Andrei Sabelfeld and David Sands. A PER model of secure information flow
in sequential programs. Higher-Order and Symbolic Computation, 14(1),
2001. doi: 10.1023/A:1011553200337. (Cited on pages 63 and 149.)

Andrei Sabelfeld and David Sands. Declassification: Dimensions and princi-
ples. J. Comput. Secur., 17(5), October 2009. ISSN 0926-227X. (Cited on
pages 24 and 62.)

Christoph Scheben. Program-level Specification and Deductive Verification of
Security Properties. PhD thesis, Karlsruhe Institute of Technology, 2014.
(Cited on pages 102, 172, and 179.)

224

Bibliography

Christoph Scheben and Simon Greiner. Information flow analysis. In De-
ductive Software Verification - The KeY Book: From Theory to Practice,
volume 10001 of Lecture Notes in Computer Science, chapter 13, pages
453–471. Springer, December 2016. doi: 10.1007/978-3-319-49812-6 13.

Christoph Scheben and Peter H. Schmitt. Verification of Information Flow
Properties of Java Programs without Approximations, pages 232–249.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-
31762-0. doi: 10.1007/978-3-642-31762-0 15. URL https://doi.org/10.
1007/978-3-642-31762-0 15. (Cited on page 149.)

Christoph Scheben and Peter H. Schmitt. Efficient Self-composition for Weak-
est Precondition Calculi, pages 579–594. Springer International Publishing,
Cham, 2014. ISBN 978-3-319-06410-9. doi: 10.1007/978-3-319-06410-9 39.
URL http://dx.doi.org/10.1007/978-3-319-06410-9 39. (Cited on
pages 147 and 149.)

Kurt Stenzel, Kuzman Katkalov, Marian Borek, and Wolfgang Reif. A
model-driven approach to noninterference. pages 30–43, 2014. (Cited on
pages 3 and 94.)

Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing Stateful Authorization
and Information Flow Policies in Fine, pages 529–549. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-11957-6. doi: 10.
1007/978-3-642-11957-6 28. URL https://doi.org/10.1007/978-3-642-
11957-6 28. (Cited on page 149.)

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan
Bhargavan, and Jean Yang. Secure distributed programming with value-
dependent types. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’11, pages 266–278, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0865-6. doi: 10.1145/
2034773.2034811. URL http://doi.acm.org/10.1145/2034773.2034811.
(Cited on page 149.)

Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Soft-
ware: Beyond Object-oriented Programming. Pearson Education, 2002.
ISBN 978-0-201-74572-6. (Cited on pages 3 and 11.)

Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and
Tamara Rezk. Stateful declassification policies for event-driven programs.
In IEEE 27th CSF 2014. IEEE, July . doi: DOI10.1109/CSF.2014.28.
(Cited on page 62.)

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, Reading, MA, 1999. ISBN 978-0-
201-37940-2. (Cited on page 87.)

225

https://doi.org/10.1007/978-3-642-31762-0_15
https://doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-319-06410-9_39
https://doi.org/10.1007/978-3-642-11957-6_28
https://doi.org/10.1007/978-3-642-11957-6_28
http://doi.acm.org/10.1145/2034773.2034811

Bibliography

Benjamin Weiß. Deductive Verification of Object-oriented Software: Dynamic
Frames, Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe
Institute of Technology, January 2011. URL http://digbib.ubka.uni-
karlsruhe.de/volltexte/documents/1600837. (Cited on pages 102, 106,
107, and 116.)

Andy Wigley, Stephen Wheelwright, Robert Burbridge, Rory MacLoed, and
Mark Sutton. Microsoft .NET Compact Framework (Core Reference).
Microsoft Press, 2003. (Cited on pages 3 and 11.)

J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic
systems. In IEEE S&P 1990. IEEE Computer Society. ISBN 0-8186-2060-9.
(Cited on pages 4 and 61.)

Kateryna Yurchenko, Moritz Behr, Heiko Klare, Max Kramer, and Ralf
Reussner. Architecture-driven reduction of specification overhead for veri-
fying confidentiality in component-based software systems. In MoDeVVa
at MoDELS, 2017. accepted. (Cited on page 150.)

Lantian Zheng and Andrew C. Myers. Dynamic security labels and static
information flow control. Int. J. Inf. Sec., 6(2-3):67–84, 2007. doi: 10.
1007/s10207-007-0019-9. URL https://doi.org/10.1007/s10207-007-
0019-9. (Cited on page 149.)

226

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1600837
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1600837
https://doi.org/10.1007/s10207-007-0019-9
https://doi.org/10.1007/s10207-007-0019-9

Publication List

Peer-Reviewed full paper

• Simon Greiner, Martin Mohr, and Bernhard Beckert. Modular veri-
fication of information flow security in component-based systems. In
Alessandro Cimatti and Marjan Sirjani, editors, 15th International Con-
ference on Software Engineering and Formal Methods (SEFM 2017),
volume 10469 of Lecture Notes in Computer Science, pages 300–315.
Springer, September 2017b. doi: 10.1007/978-3-319-66197-1 19

• Simon Greiner and Daniel Grahl. Non-interference with what-declassification
in component-based systems. In Proceedings of the Computer Security
Foundations Symposium (CSF 2016), June 2016. ISBN 978-3-319-
12279-3

• Florian Böhl, Simon Greiner, and Patrik Scheidecker. Proving correct-
ness and security of two-party computation implemented in java in
presence of a semi-honest sender. In Dimitris Gritzalis, Aggelos Kiayias,
and Ioannis G. Askoxylakis, editors, 13th International Conference on
Cryptology and Network Security (CANS 2014), volume 8813 of Lecture
Notes in Computer Science, pages 175–190. Springer, October 2014.
ISBN 978-3-319-12279-3. doi: 10.1007/978-3-319-12280-9 12. URL
http://dx.doi.org/10.1007/978-3-319-12280-9 12

• Simon Greiner, Pascal Birnstill, Erik Krempel, Bernhard Beckert,
and Jürgen Beyerer. Privacy preserving surveillance and the tracking
paradox. In Proceedings, Future Security Conference 2013, 15–19
September 2013, Berlin, September 2013

227

http://dx.doi.org/10.1007/978-3-319-12280-9_12

Publication List

Journal article

• Pascal Birnstill, Sebastian Bretthauer, Simon Greiner, and Erik Krem-
pel. Privacy-preserving surveillance: an interdisciplinary approach.
International Data Privacy Law, 5(4):298–308, September 2015. doi:
10.1093/idpl/ipv021

• Thomas Lauscher and Simon Greiner. Wirtschaftlichkeit bei der
verbesserung von systemspezifikationen durch uml-modellierung. Signal
und Draht, 104(12):21, December 2012

Book Chapter

• Christoph Scheben and Simon Greiner. Information flow analysis.
In Deductive Software Verification - The KeY Book: From Theory
to Practice, volume 10001 of Lecture Notes in Computer Science,
chapter 13, pages 453–471. Springer, December 2016. doi: 10.1007/978-
3-319-49812-6 13

Peer-Reviewed Poster and Short Paper

• Daniel Bruns, Huy Quoc Do, Simon Greiner, Mihai Herda, Martin
Mohr, Enrico Scapin, Tomasz Truderung, Bernhard Beckert, Ralf Küs-
ters, Heiko Mantel, and Richard Gay. Poster: Security in e-voting.
In Sophie Engle, editor, 36th IEEE Symposium on Security and Pri-
vacy (S&P 2015), Poster Session, May 2015. URL https://www.ieee-
security.org/TC/SP2015/posters/paper 10.pdf

• Max E. Kramer, Anton Hergenröder, Martin Hecker, Simon Greiner,
and Kaibin Bao. Specification and verification of confidentiality in
component-based systems. Poster at the 35th IEEE Symposium on
Security and Privacy, 2014. URL http://www.ieee-security.org/
TC/SP2014/posters/KRAME.pdf

• Simon Greiner and Jie Yang. Privacy protection in an electronic chron-
icle system. Proceedings of the 34th Annual Northeas Bioengineering
Conference

228

https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
http://www.ieee-security.org/TC/SP2014/posters/KRAME.pdf
http://www.ieee-security.org/TC/SP2014/posters/KRAME.pdf

Non-Peer-Reviewed Publications
• Max E. Kramer, Martin Hecker, Simon Greiner, and Kateryna Yurchenko.

Model-driven specification and analysis of confidentiality in component-
based systems. Technical report, Karlsruhe Institute of Technology,
Faculty of Informatics, Karlsruhe, November 2017

• Simon Greiner, Martin Mohr, and Bernhard Beckert. Modular ver-
ification of information flow security in component-based systems –
proofs and proof of concept. Technical Report 2017,9, Department of
Informatics, Karlsruhe Institute of Technology, Karlsruhe, June 2017a.
URL http://dx.doi.org/10.5445/IR/1000070463

• Thomas Bauereiß, Simon Greiner, Mihai Herda, Michael Kirsten, Xi-
meng Li, Heiko Mantel, Martin Mohr, Matthias Perner, David Schnei-
der, and Markus Tasch. Rifl 1.1: A common specification language for
information-flow requirements. Technical Report TUD-CS-2017-0225,
TU Darmstadt, August 2017

• Simon Greiner and Mihai Herda. Cocome with security. Techni-
cal report, Karlsruhe Institute of Technology, Faculty of Informatics,
Karlsruhe, April 2017b

• Daniel Grahl and Simon Greiner. Non-interference with what-declassification
in component-based systems. Technical Report 2015,10, Department of
Informatics, Karlsruhe Institute of Technology, November 2015. URL
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000050422

229

http://dx.doi.org/10.5445/IR/1000070463
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000050422

	Title
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Context of this Thesis
	1.2.1 Component-Based System Engineering
	1.2.2 Information Flow

	1.3 Contributions
	1.4 Outline
	1.4.1 Part I: A Framework for Non-Interference in Component-Based Systems
	1.4.2 Part II: Instantiating the Framework
	1.4.3 Part III: Beyond the Framework

	I A Framework for Non-Interference in Component-Based Systems
	2 Distributed Service Components
	2.1 Introduction
	2.2 Computational Model
	2.3 Distributed Service Components and Services
	2.4 Composition
	2.5 Conclusion

	3 Non-Interference in Distributed Service Components
	3.1 Introduction
	3.2 Non-Interference with What-Declassification
	3.2.1 Security Specification of Messages and Values
	3.2.2 Strategies
	3.2.3 Non-interference

	3.3 Cooperative Non-interference
	3.4 Non-interference for Services
	3.5 Conclusion

	4 Modular Specification with Dependency Clusters
	4.1 Introduction
	4.2 A List-based Specification Language
	4.3 Dependency Clusters and Services
	4.4 Dependency Clusters and Components
	4.5 Weakening Specifications
	4.6 Conclusion

	5 Related Work
	5.1 Non-Interference in Interactive Programs
	5.2 Non-Interference in Batch Programs
	5.3 Rely-Guarantee Style Non-Interference
	5.4 Compositional Specifications

	6 Conclusion

	II Instantiating the Framework
	7 Model-Based Non-Interference Specification
	7.1 Palladio
	7.1.1 Meta Model in Palladio
	7.1.2 From Palladio Components to Distributed Service Components

	7.2 Security Specification as an Extension of the PCM
	7.3 Information Flow Specification
	7.3.1 Syntax and Semantics
	7.3.2 Soundness of Composition of Palladio Components

	7.4 Related Work
	7.5 Conclusion

	8 Deductive Verification of Dependency Clusters in JavaEE
	8.1 JavaEE
	8.1.1 Enterprise Java Beans
	8.1.2 Container

	8.2 JavaDL and JML
	8.2.1 JavaDL Syntax and Semantics
	8.2.2 Fields, Heaps and Object Creation
	8.2.3 Sequences
	8.2.4 Calculus
	8.2.5 Java Modeling Language
	8.2.6 The KeY Tool

	8.3 Extending JavaDL
	8.3.1 Extending JavaDL Syntax
	8.3.2 Serialization and Deserialization
	8.3.3 Service Contract

	8.4 Specification and Verification of Dependency Clusters in Beans
	8.4.1 Dependency Cluster Syntax in JML
	8.4.2 Dependency Cluster Semantics in JavaDL
	8.4.3 Cooperative Environments
	8.4.4 Verifying Dependency Cluster
	8.4.5 Combined Dependency Cluster
	8.4.6 Bean-Level Verification

	8.5 Case Study
	8.5.1 Web Shop System Description
	8.5.2 Non-Interference Specification
	8.5.3 Verification

	8.6 Related Work
	8.6.1 Deductive Verification of Interactive Programs
	8.6.2 Deductive Verification of Object-oriented Non-interference
	8.6.3 Automatic Program Analysis for Non-interference

	8.7 Conclusion

	III Beyond the Framework
	9 Trace-based Non-interference
	9.1 Introduction
	9.2 An Example: Privacy Preserving Video Surveillance
	9.3 Specification
	9.3.1 Tracking Formalization
	9.3.2 Formal Domain-driven Security Specification

	9.4 Trace-based Non-interference
	9.4.1 Trace-based Component Non-interference
	9.4.2 Trace-Based Service Non-Interference
	9.4.3 State-based Service Non-interference

	9.5 Implementation and Verification
	9.5.1 Implementation
	9.5.2 Specifications for the Trace-invariant
	9.5.3 Service Non-interference Specification
	9.5.4 Verification

	9.6 Related Work
	9.7 Conclusion

	10 Conclusion
	10.1 Summary
	10.2 Future Work

	IV Appendix
	Running Example
	A.1 Implementation
	A.2 Specification
	A.2.1 Billing Department
	A.2.2 Controlling Department

	Web Shop Case Study
	A.3 System-wide Security Property

	Implementation and Verification of Privacy Store
	B.1 Implementation
	B.2 Service Specification
	B.2.1 Definition of the tracking predicate
	B.2.2 Trace Invariant contracts
	B.2.3 Visibility-preserving contracts
	B.2.4 Non-Interference Contracts

	B.3 Specification Statistics
	B.4 Verification

	Bibliography
	Publication List

