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Hamiltonians which are inaccessible in static systems can be engineered in periodically driven many-
body systems, i.e., Floquet many-body systems. We propose to use interacting particles in a one-
dimensional (1D) harmonic potential with periodic kicking to investigate two-dimensional
topological and many-body physics. Depending on the driving parameters, the Floquet Hamiltonian
of single kicked harmonic oscillator has various lattice structures in phase space. The noncommutative
geometry of phase space gives rise to the topology of the system. We investigate the effective
interactions of particles in phase space and find that the point-like contact interaction in quasi-1D real
space becomes along-rang Coulomb-like interaction in phase space, while the hardcore interaction in
pure-1D real space becomes a confinement quark-like potential in phase space. We also find that the
Floquet exchange interaction does not disappear even in the classical limit, and can be viewed as an
effective long-range spin—spin interaction induced by collision. Our proposal may provide platforms
to explore new physics and exotic phases by Floquet many-body engineering.

1. Introduction

Since the concept of topological order was first introduced into condensed matter physicsin 1973 [1],
topological phenomena have been intensively investigated in the past decades. Today, topology lies at the heart
of many research fields, e.g., quantum Hall physics [2], topological insulators/superconductors [3, 4], and many
more. The origin of topology in physics comes from the geometric phase factor of a quantum state when it
moves along an enclosed path. In quantum Hall physics, the geometric phase is induced by the applied magnetic
field and the resulting energy spectrum, also called the Hofstadter’s butterfly [5], is a fractal; while the band can
be characterized by its topological invariant (Chern number or TKNN invariant), which relates to the quantized
Hall conductance directly [6]. In topological insulators/superconductors, the spin—orbit coupling takes the role
of an effective magnetic field [7, 8] resulting in the geometric quantum phase factor. For the ultracold atoms in
optical lattice [9, 10], the geometric quantum phase (Berry phase [11]) is generated by shaking the lattice, which
creates an artificial gauge field [12—-15].

An alternative way to study topological physics is employing the noncommutativity of phase space in
quantum mechanics. In a noncommutative space, the concept of point is meaningless due to the commutative
relationship [X, P] = i\. Instead, we should define a coherent state | ) which is the eigenstate of the lowering
operator, i.e., dla) = ala)withd = (X + iP) /2. Asshown in figure 1, we observe that a coherent state
moving along a closed path in phase space naturally acquires an additional quantum phase factor ¢'>/*, where S
is the enclosed area [16]. This observation reveals the origin of topology in the study of many dynamical systems,
e.g., the kicked harmonic oscillator (KHO) [17-20] and the kicked Harper model (KHM) [21, 22]. The energy
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Figure 1. Geometric quantum phase in phase space. A coherent state |«) is moved along a closed triangle by three displacement
1

operators, i.e., D[—(§ + &)1D(&)D (&) |a) = exS|a), where D(€) = exp (%&T — %51) with two complex numbers &, &,

determining the moving path. The geometric phase factor is given by ey Swith § = % Im[&,£; being the area of the enclosed path
(blue area).

spectra of these dynamical systems exhibit butterfly structure and band topology similar to quantum Hall
systems [23, 24]. In the strong kicking strength regime, the dynamical systems become chaotic and exhibits
many novel behaviors such as dynamical localization, which has an intimate relation with the topology of bands
[25-27].

In many-body physics of equilibrium systems, many exotic phases of matter emerge when interaction makes
the system strongly correlated. It is the interplay between topology and interaction that gives rise to the fractional
quantum Hall effect [28-30], and many other fascinating phenomena [31-34], like fractional charge and anyons
[35—40]. Alternatively, it is also possible to engineer novel phases in periodically driven systems, i.e., the Floquet
systems. The Hamiltonian of a Floquet system is a periodic function in time, i.e., H(t) = H(¢t + T). The Floquet
theory[41, 42] allows us to describe stroboscopic time-evolution for every period by a time-independent

. i T
Hamiltonian which is called the Floguet Hamiltonian Hpand is defined by e = THr = Fe=1 Jy HOd op
equivalently

. pT
He =i 1n[,9‘ef?fo H(“d’]. (1.1)
T

Here, T'is the chosen stroboscopic time step and .7 is the time-ordering operator. Exotic Floquet Hamiltonians
[43-49] which are inaccessible in static systems can be engineered from equation (1.1) and a range of novel
physical phenomena, such as Floquet topological physics [50-53], phase space crystals [54, 55], Anderson
localization in time domain [56-58] and spontaneous breaking of discrete time-translation symmetry (Floquet
time crystals) [59-67], can be created by Floquet engineering [68—70]. While most work focus on the single-
particle physics of (dissipative) Floquet systems, the possible new physics by Floquet many-body engineering has
become an active research direction in recent years. Unlike the static many-body systems, the generic
nonintegrable Floquet many-body systems are expected to be heated up, by the driving field, to a trivial
stationary state with infinite temperature [71-73]. However, before reaching the long-time featureless infinite-
temperature state, there is a prethermal state with exponentially long lifetime for high driving frequencies, and
therefore existing a prethermal dynamics which can be described by the time-independent Floquet Hamiltonian
(1.1) [74-83]. By introducing disorder as in many-body localized systems [84] or coupling the Floquet many-
body system to a cold bath [85], it is also possible to protect the metastable prethermal state.

In this paper, we investigate cold atoms trapped in one-dimensional (1D) harmonic potential with a
stroboscopically applied optical lattice. The equation of motion of a single atom corresponds to the KHO and we
find that that intriguing two-dimensional (2D) topological and many-body physics emerges in phase space. The
Floquet Hamiltonian of a single KHO, in the rotating wave approximation (RWA), forms various lattice
structures in phase space depending on the driving parameters. The full dissipative quantum dynamics shows
that the stationary state forms a lattice structure in phase space but with a finite size limited by the dissipation
rate. Furthermore, we consider the interaction between cold atoms and find that the point-like contact
interaction of cold atoms in real space becomes a long-range Coulomb-like interaction in phase space. More
interestingly, the hard-core interaction of cold atoms in real space becomes a long-range potential which
increases linearly with the distance in phase space, i.e., a quark-like confinement potential. We also find the
Floquet exchange interaction has Coulomb-like long-range behavior, which does not disappear in the classical
limit and becomes an effective spin—spin interaction.

2.Model and Hamiltonian

We start from interacting cold atoms trapped by an elongated three-dimensional harmonic potential, with the
radial motion cooled down to the ground state. In this way, the spatial motion of the atoms is restricted to the
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remaining axial direction. In general, the 1D system is described by

HO =3B by 0+ V& = %), @1

i<j

where V (&; — %;) is the two-body interaction, which is typically contact or hard-core interactions in the context
of cold atoms [10, 86-91]. The H,(%;, p,, t)is the single-particle Hamiltonian which can be explicitly time-
dependent. Here the single-particle Hamiltonian is the quantum KHO, which is described by

H, = ! ﬁz + mw0x2 + Ko T cos(kx)>0 . 6(t — nTy), where wy is the axial harmonic frequency and m is
the atom s mass The periodic term is implemented by a stroboscopic optical lattice, which can be created by two
counter-propagating laser beams with off-resonant frequency far away from internal electronic transitions

[9, 10]. Parameters k and K, are the wave vector of the laser beams and the kicking strength, respectively.
Parameter T, is the time period between adjacent kicking pluses. We scale the coordinate and momentum by the
units of \/ 71/ (Amwy) and \/ m/iwy/ X with the parameter A = /ik?/muwy, respectively. Finally, we have the
dimensionless single-particle Hamiltonian scaled by 7w /A

o
Hy(%;, p;, 1) = %(fc,»z + f)iz) + Krcosk; » . 6(t — n7), (2.2)

n=—o00
where K = AKj /7wy is the dimensionless kicking strength, 7 = wy T is the dimensionless kicking period and
the time t has also been scaled by wj, '. The commutation relationship between the coordinate and the
momentum is now [X;, 13]-] = iAd;j, where the dimensionless parameter A plays the role of an effective Planck
constant. Thus, the semiclassical regime corresponds to thelimit A — 0. Accordingly, the two-body interaction
will be given by the new scaled dimensionless observable as V (X; — %;).

Our remaining paper is organized as follows. In section 3, we discuss the single-particle physics neglecting
interaction of particles. We first introduce the topological band theory of phase space lattices in section 3.1.
Then, in section 3.2, we investigate the dissipative quantum dynamics of a KHO in a realistic environment and
show how a lattice structure is formed in phase space. In section 4, we consider the interactions and investigate
the many-body dynamics. We first develop a general theory of transforming a given real space interaction
potential to a phase space interaction potential in section 4.1. Then, in section 4.2, we apply our theory of phase
space interaction to the special cases of contact interaction and hard-core interaction of cold atoms, and give the
analytical expressions of corresponding phase space interactions. In sections 4.3 and 4.4, we investigate the
many-body dynamics in the classical limit and discuss the concept of dynamical crystals. Finally, we summarize
our results in section 5.

3. Phase space lattices

In this section, we investigate the single-particle Hamiltonian of the quantum KHO, i.e., equation (2.2), in the
resonant condition that the kicking period satisfies 7 = 27/gq with qo an integer. When the kicking strength is
weak |K| < 1, the single-particle dynamics is still dominated by the fast harmonic oscillation. Then we
transform into an appropriately chosen rotating frame generated by the free time-evolution operator
o) = exp(iziti;r dit/\), where d; is the annihilation operator defined by 4; = (&; + ip,) / 2A. We transform
the coordinates and momenta of particles by

(A)(t)ae,-é-r(t) = Pisint + X, cost, G.1)

O(t)f)i é-r(t) = P;cost — X;sint. '
Here, the operators X; and B, describe the dynamics of the ith atom’s phase and amplitude. For the harmonic
oscillator, X; and P are fixed and correspond to the initial state of X;(t) and p.(¢). In our case, however, the
phase and amphtude of KHO are slightly changed every harmonic time period due to the weak kicking. The
time-evolution of X; and P, is slow compared to the fast global harmonic oscillation and can be obtained
stroboscopically from the time-evolution of £;(¢) and p,(t) every time period of 2.

From equation (3.1), we have [X;, j] [%;, ﬁj] = i) The canonical transformation of the single-particle

Hamiltonian is given by O (¢) H, o' (1) — i0(H) O (t). InRWA, we drop the fast oscillating terms and arrive at
the time-independent Hamiltonian (see detailed derivation in appendix A)

A 9y 2 R 2 7
Hpwa (X, P) = — Z cos (X cos — il + Psin ﬂ) (3.2)
dp j=1 9 4y
Here, we have dropped the index of the operators since we are considering single-particle physics. Another way
of deriving Hpwa (X, P)is based on the series expansion of the Floquet Hamiltonian (1.1) in order of the kicking
strength K. By replacing the Planck constant # by a dimensionless one A and choosing the stroboscopic time step
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Figure 2. Phase space lattices: Hrwa (X, P) for different go. (a) 2D density plot of square lattice for go = 4. (b) 3D plot of square lattice
for gy = 4. (c) Hexagonal lattice for gy = 3 or gy = 6. (d) Quasicrystal structures for g, = 5. The value of Hrwa (X, P) hasbeen
scaled by the kicking strength Kin all figures.

T = qy7, we have the time-evolution operator in one stroboscopic time step 7~ e iy HOd = B yith the
Floquet operator for one period F = e~ i(¥*+5")7/2)¢iK cos#/ Tp the appendix A, we show that Hpwa (X, P) is
indeed the first order expansion of the Floquet operator F%.

To display the symmetries of Hrywa X, P)in phase space, we calculate the averaged Hywa (X, P)inthe
coherent state representation (see the details in appendix B), i.e.,

(a|Hrwa (X, P)|a) = e *Hrwa (X, P).

Here, the coherent state |«v) is defined by the eigenstate of the annihilation operator 4 = (X + iP) /2], i.e.,
dla) = ala). The averaged position and momentumare X = (a|X|a) = +/2\ Re[a]and

pP= <a|13|a> = 2\ Im[a]. The quantity Hrwa (X, P) has the same expression as equation (3.2) but replacing
the operators X and P by the averaged values X and Prespectively. In figure 2, we plot Hrwa (X, P) in phase
space for different q,. We see that the Hrwa (X, P) has a square lattice structure for g, = 4, hexagonal lattice
structure for gy = 3 or g, = 6, and even quasicrystal structure for g = 5o0rqy > 7. The translational symmetry
of the Hamiltonian (3.2) in phase space gives rise to the band structure of its spectrum.

3.1.Band structure and topology
We will deal with the case of square lattice (g, = 4) in detail but the results can be readily generalized to the case
of hexagonal lattice (qo = 3 or6). For qo = 4, the effective Hamiltonian (3.2) is further simplified as

qu(f(, 13) = %K(cosf( + coslS). (3.3)

This Hamiltonian is closely related to the established Harper’s equation, which is a tight binding model
governing the motion of noninteracting electrons in the presence of a 2D periodic potential and a uniformly
threading magnetic field [5, 92]. The Hyq (X, P)is invariant under discrete translation in phase space by two

A 2 B A 2% .
operators I} = eixPand T, = e X, e,

TiHy (X, PYT] = Hy(R + 27, P) = Hy(X, P), o
BH (R, BTy = Hy(X, P + 2m) = Hy(R, P). '

The translation operators T; and T generate an invariance group G of H,q [93], which is a nonabelian group due
to the identity [flr, f; 1= L5(1 — e /%) with integer powers r, s € Z. However, the group G has abelian
subgroups G, generated by T, and T; if 27rrs/\ € Z, which means the value of the parameter A/27 needs to be a
rational number, i.e., \/2m = p/q, where p and q are coprime integers. Here, we choose the abelian subgroup G,
generated by the following two generators (r= 1,5 = p)

4
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Figure 3. Quasienergy band structures. (a) Hofstadter’s butterfly: the quasienergy spectrum of Hamiltonian (3.3) with rational
number \/27 € [0, 1].(b)-(e) Quasienergy band structures in 2D Brillouin zone for different parameters A which are given above
the figures. For \/27 = 1/2, the two bands touch each other in the center of Brillouin zone. The linear dispersion relationship near
the touching point is shown in figure (c).

TX = fi = eizfﬁ, fp = sz = eizzpj(. (35)
Therefore, we can find the common eigenstates of commutative operators Ty and Tp with eigenvalues given by
el27kx and e 2Pk respectively. The boundaries of the 2D Brillouin zone are defined by 0 < ky < 1and
0 < kp < 1/p, where kyand kpare quasimomentum and quasicoordinate, respectively [94]. The corresponding
eigenvalues of the Hamiltonian H, are also called quasienergies.

The discrete translational symmetry in phase space allows us to determine the quasienergy spectrum
numerically in Zak’s kg-representation (see the instruction in appendix C or [94]). Given the parameters of A/
2w = p/q, kxand kp, the eigenvalues E of Hy, are determined by the following polynomial equation (see the
derivation in appendix D or [95])

q 4E .
cos(qMky) + cos(ghkp) = 1 + %Tr IT [? — 2cos(jN) —1]. 3.6)
j=1 1 0

Theleft-hand side of equation (3.6) takes values in the range [—2, 2] when the quasimomentum kyand
quasicoordinator kp run over the whole Brillouin zone. The right-hand side of equation (3.6) is a periodic
function of A with period 27. Therefore, the quasienergy spectrum is also a periodic function of A with period
2m. Infigure 3(a), we plot the quasienergy spectrum for /27 € [0, 1], showing a Hofstadter’s butterfly
structure identical to that in quantum Hall systems. In figures 3(b), (d) and (e), we plot the quasienergy band
structures in the 2D Brillouin zone (kx, k) for \/2m = 1/2,1/3 and 2/3, respectively. For the given parameter
A/2m = 1/2,we can obtain the analytical solutions from equation (3.6), i.e.,

E= :I:%K\/l + %(cos 27kx + cos2mkp) .

The two bands touch each other at the central point of the Brillouin zone, i.e., (kx = %, kp = %), where the

dispersion relationship becomes linear near the touching point, i.e., E ~ + % |k| with

k| = \/ (kX — %)2 + (kp — %)2 ,as shown in figure 3(c). In general, the two innermost bands always touch each
other for even integer q. We also see that the quasienergy band structure is two-fold degenerate for \/27m = 2/3
while there is no degeneracy for A\/2m = 1/2and A/2m = 1/3. In fact, for each rational A\/27 = p/q
(remembering p, q are coprime integers), the spectrum contains q bands and each band has a p-fold degeneracy
due to the fact that the invariance group G can be expressed as the coset sum >2_, flr G, [93].

We denote the quasienergy states by |1, i) with k = (kx, kp) and b the band index counting from the

bottom. To visualize the quasienergy states, we define the Husimi Q-function of a given eigenstate in phase space
[96]

Qo o) = %(awm (pida) = %|<a|wb,k> 2, (3.7)

where |«v) is the coherent state introduced at the beginning in this section. In figures 4(a) and (b), we plot the Q-
functions of eigenstates |1y (o,0)) and |43 o,0) for % = %, which are the ground-like states of the lower band and
upper band, respectively. Comparing the Q-functions of the two states to the phase space lattices shown in
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Figure 4. Husimi Q-functions of eigenstate |1}, x). (a) Eigenstate [1)1 (,)) with the minimum quasienergy of the lower band for
A1 . . . - A1 . A2
5- = 5 (b) Eigenstate [¢),¢,0) with the maximum quasienergy of the upper band for —— = . (c) Eigenstate |1/)1,( 11 )) for ~ = 3.(d)
. A2
Eigenstate |'l/}]‘(%,%)> for ~ = 3.

figure 2(a), we see that the Q-function of eigenstate |t/ (o)) mostly occupies the negative phase space lattice
Hy (X, P) < 0while the Q-function of eigenstate [¢), (o 9)) is shifted by  along both X and P directions in phase
space, mostly occupying the positive phase space lattice Hy(X, P) > 0. In fact, our system has a chiral symmetry
defined by the chiral operator T, = ei%eii?,i.e., f}qu Tj = —H,q. Thus, for a given eigenstate [t/ k), there

must be another eigenstate le@[)b,@ with opposite quasienergy. In figures 4(c) and (d), we plot the Q-functions of
eigenstates [t (1 1)) and [y (3 1)) for % = %, which are the degenerate states of the lower band shown in
figure 3(e). We see that the period along X-direction is 27 while the period along P-direction is 4. In fact, this

degeneracy depends on the discrete translation operators we choose in equation (3.5). For % = 2 the period of

b
q
any Q-function of eigenstate is 27 p-period in P-direction and 27-period in X-direction. Theses p-degenerate
states are given by

~ A2 Ap—1
1Wbi)s Blni)s Toltbni)s - TF 1ons)

with the same quasicoordinator but different quasimomenta. In the case of % = %, the two degenerate states of

[1px) and ’f2|wb,k> in the X-representation are (X|1}, k) = ¥ (X) and (X| 7A"2|wh,k> = e’ X4pp1(X). Therefore,
the Q-functions of the two degenerate states are the same in the X-dimension. But due to the relationship
(Yl Plopi) = (fz Uil Pl ﬁzl)b,k} + 2m, the Q-functions are shifted by 27 in the P-dimension.

The underlying topology of a quasienergy band is defined by the Chern number [97]

= 512 (Yol Oultpx) - dk, (3.8)

where the contour ¥ is integrated over the boundary of the Brillouin zone. The Chern number associated with a
gap is subtle here. For the equilibrium systems, the Chern number of a gap is defined by the sum of the Chern
numbers of the energy bands below the gap. However, in our present work, we are dealing with a Floquet system
far from equilibrium. The general statistic law of the Floquet states for the long-time stationary state is an on-
going research topic [98—100]. We assume that the statistic mechanics near the ground state of each sublattice
can be described by an effective Floquet—Gibbs statistics [100], i.e., p = e Ha/ksTer / Tr[e~Hsa/ksTer], where kp is
the Boltzmann constant and Tu is the effective temperature in the rotating frame. In [55], we have investigated a
similar driven system and showed that the effective temperature To¢s equals to the real temperature if the local
ground states near the stable points of phase space lattice are the standard coherent states. Actually, the positive
and negative sublattices shown in figure 2(a) make no difference in the frame of Floquet theory. Therefore, we
define the Chern number of a gap below (above) the zero energy line as the sum of Chern numbers of all the
quasienergy bands below (above) the gap. As shown in figure 3(a), the Chern number of some gaps are calculated
and labeled symmetrically with respect to zero energy line.
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3.2. Full dissipative quantum dynamics
In the above section, our analysis is based on the RWA where the kicking strength needs to be weak |K| < 1.In
this section, we will investigate the full quantum dynamics of KHO based on the original full Hamiltonian (2.2)
and confirm the validity of the RWA, which is used to derive the effective Hamiltonian (3.3). From a practical
point of view, the oscillators are inevitably in contact with the environment, which is conventionally modeled by
aharmonic bath model. The coupling with the environment results in dissipation or decoherence of the
quantum system. Here, we describe the dissipative dynamics of the quantum KHO by the following master
equation,

b _ T 71a 7[a

i LEE » p1 + K(no + DZalp + knoZ[a’]p, (3.9)
where k characterizes the dissipation rate and #, is the Bose—Einstein distribution of the thermal bath. The
dissipative dynamics is described by the Lindblad superoperator defined by
7[01p = OpOT — %((A)T(A)p + pOATOA), where O isan arbitrary operator. The two Lindblad terms in
equation (3.9) represents relaxation and heating processes respectively. We notice that some authors also choose
the non-Lindblad Caldeira—Leggett master equation to describe the dissipative dynamics [97]. Here, we choose
the Lindblad master equation (3.9) since it can give the correct thermal equilibrium state of harmonic oscillator
without kicking force while the non-Lindblad Caldeira—Leggett master equation cannot [101].

As the kicks act as delta-functions, we can separate the dissipative dynamics from the kicking dynamics. In

order to solve the dissipative dynamics, we define the characteristic function of the Wigner distribution by [96]

w(s, k) = fdxei"k/ A < x + % ‘ p ‘ x — %>, Then the master equation (3.9) without kicking can be transformed
into the following Fokker—Planck equation [97]

ow + (g — )\k)asw + (% + )\s)akw = —%(no + %)(52 + Bw. (3.10)

The dissipative dynamics between two successive kicks is solvable from the above Fokker—Planck equation.
Given the initial state at the moment right after n — 1kicks w(s, k; 7,/_,), where 7;_; = (n — 1)7 + A witha
positive infinitesimal increment A, the final state at the moment right before n kicks w (s, k; 7,,) with

T, = nT — A, is given by the following map [97]

w(s, k;7,) =€ Ry (5, ks ) (3.11)
with's, = e~ 7 (ksinT + scosT)and k, = e~ 2 (k cosT — s sin 7). The kicking dynamics is an instantaneous
unitary transformation p — p’ = Uk pf],: with Ux = e K7/A0sX [nappendix E, we prove that the
corresponding map of the characteristic function of the Wigner distribution at the time 7,, = n7 is given by

w(s, ks 7)) = Z ]j(ZK sin %)w(s, k4 X 71,), (3.12)

j=—o0

where the J;are the jth-order cylindrical Bessel function. Hence, the full dynamics of the quantum KHO in
contact with a thermal bath is realized by applying the two maps (3.11) and (3.12) sequentially. From the
characteristic function w(s, k), it is direct to obtain the corresponding Husimi Q-function (see appendix F).

In figure 5(a), we evolve the dynamics of the system starting from the ground state of the harmonic oscillator.
We then plot the Husimi Q-functions of the states after 1000 and 3000 kicks in figures 5(b) and (c) respectively.
We see clearly that a final state with square lattice structure in phase space forms gradually revealing the
underlying square structure of Hamiltonian (3.3). Interestingly, we find that the transient state shown in
figure 5(b) has no reflection symmetries with respect to X and P although the RWA Hamiltonian (3.3) has. There
is a chiral feature as marked by the dashed lines along the backbone of the quasiprobability distribution. This
chirality is a reflection of the topological property of our system and the noncommutative geometry [102, 103] of
the phase space. The probability amplitude of a particle appearing at a fixed point (a coherent state in phase
space) is the sum of all the possible trajectories. Different from the path integral in 2D real space, each trajectory
in phase space associates with a geometric phase due to the noncommutative geometry. The interference of
geometric phase breaks the mirror symmetry of phase space. As approaching the stationary state, the chirality
disappears in the end since the stationary state should recover the mirror symmetry of Hyg X, P).

Without dissipation, the quantum KHO will experience unbounded diffusion for resonant condition, where
the average energy of the harmonic oscillator increases infinitely due to the energy pump from kicking [23].
When dissipation is present, the diffusion process approaches a nonequilibrium stationary state with a finite size
in phase space depending on the driving strength and dissipation rate. In figure 6, we plot the average energy of
the KHO A (a'a) = (X* + P?) /2 asa function of the kicking number for different dissipation rates. We see that
the smaller the dissipation rate is, the lager the phase space lattice is in the long-time limit. If the dissipation rate
is so strong that the system can relax to its ground state during the successive kicks, the lattice state cannot be
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Figure 5. Dissipative quantum dynamics. (a) Husimi Q-function of the initial state, which is the ground state of the harmonic trapping
potential. (b) Husimi Q-function after 1000 kicks. We mark the main diffusion path by the dashed lines showing a chiral feature. (c)
Husimi Q-function after 3000 kicks. In all figures, we set kicking strength K= 0.1, dissipation rate £ = 0.0001.
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Figure 6. The average energy versus kick number. The averaged energy A (a'a) = (X* + P?) /2 is proportional to the area of the
lattice size shown in figure 5. The black solid line, red dashed line and blue dotted line correspond to the dissipation rate £ = 0.0001,
k = 0.0005and £ = 0.001 respectively. The kicking strength is K= 0.1.

formed in phase space. Therefore, in order to create a phase space lattice with enough large size, the dissipation

rate has to be much weaker than the kicking strength, i.e., K < |K].

In figures 2(a) and (b), we also notice that there are actually two identical square lattices with a relative shift in
phase space, which support eigenstates with positive and negative quasienergy respectively. In figures 7(a) and
(b), we plot the two Husimi Q-functions evolving from two coherent states with different initial positions in
phase space, i.e., (X, P) = (0,0) and (X, P) = (—m, 7) respectively. We see that a state initially prepared on one
sublattice stays on that lattice during the evolution and has negligible occupation on the other sublattice. This is
different from the static potential, where the minimum points correspond to stable state while maximum points
correspond to unstable state. Since we are working on a dynamical system far from equilibrium, both minimum
and maximum points of the Hamiltonian in phase space are stable; only the saddle points are unstable. This is
the reason why we define the Chern number of the gaps symmetrically with respect to the zero line for the
Hofstadter’s spectrum in figure 3(a).

4. Many-body dynamics

In the above discussion, we have neglected the interaction terms in the original Hamiltonian (2.1). From this
section, we will consider the interactions between particles. Using the free time-evolution operator

o) = exp (i/\Ziﬁf&i t) defined at the beginning in section 3, the total Hamiltonian in the rotating frame is
given by the canonical transformation, i.e., O H (1) o} (t) — i0(1) o' (t). Inthe RWA, we drop the fast
oscillating terms and arrive at the time-independent Hamiltonian
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Figure 7. Husimi Q-functions for different initial states. The initial state is a coherent state with its center locating on (0, 0) and (—, )
as marked by two dashed circles in figures (a) and (b) respectively. The Q-functions are plotted after 3000 kicks. Other parameters:
K = 0.1,k = 0.0001.

Hgwa = > Hrwa (X, P) + > UX;, P X;, ). (4.1)
i i<j

Here, Hpwa (X;, P)isthe single-particle RWA Hamiltonian given by equation (3.2). The RWA interaction
potential U (X, P; Xj, P)is the time-independent part of transformed real space interaction potential

OV (% — £) o' (t). In general, U X, P; X'j, 13].) is defined in phase space and depends on both coordinates
and momenta of two particles. Thus, we call U (X;, P; Xj, Isj) the phase space interaction potential. We aim to
determine the explicit form of U X, P; Xj, ﬁj) in this section.

4.1. Phase space interaction potential

For two arbitrary particles, we introduce the operators X=X+X)/2,L=@+P)/2 representing the
coordinator and momentum of two particles’ center of mass, and the operators AX=X - X%, AP=P - P
representing their relative displacement in phase space. We further define the operator of phase space distance by

R=JAX® + AP’ (4.2)

It is important to notice that the background of the phase space interaction potential is a noncommutative space.
From the commutation relationship X, ﬁj] = i\g;j, we have [AX, AP] = i(2)\),and [ﬁz, X,] = 0 which
means the motion of two particles’ center of mass and their relative motion are independent. Thus, we write the
common eigenstate of commutative operators R*and X, as aproduct state U(X;, X5) = f (X)P(X — X),
where the wave function f(X,) is the state of two particles’ center of mass and the wave function ®(X; — X;)
describes their relative motion. Reminiscent of the Hamiltonian operator of a harmonic oscillator, the
eigenvalues of operator R are givenby4\(N 4+ 1/2)with N = 0, 1, 2, .... Therefore, the eigenvalues of the

operator R are given by
Ry =2 /)\(N—&-%), N=0,1,2,... (4.3)

For each N, the corresponding eigenstate is given by

_ l % L 741 AXZ

where Hp(*) is the Hermite polynomial of degree N. We choose functions § (X, — C), i.e., the eigenstate of
operator X, as the basis of two particles’ center of mass. Therefore, we use the Dirac notation [N, C ) to represent
the total eigenstate, which is determined by two good quantum numbers Cand Ry, i.e., X.|N, C) = C|N, C)
and ﬁ|N , C) = Ry|N, C).Inthe coordinate representation, the total eigenstate has the explicit

form (X, XIN, C) = Uy o(Xp, X2) = 6(X. — C)Pn(AX).

There is a fundamental difference between the commutative real space and the noncommutative phase
space. The concept of point is meaningless in noncommutative space. Instead, we are only allowed to define the
coherent state |«) as the point in noncommutative geometry. Similarly, the concept of distance also needs to be
reexamined. The distance of two particles in real space is a continuous variable from zero to infinity. However,
the distance in phase space is a quantized variable and has a lower limit ~/2\ as seen from equation (4.3). Here,
we actually provide a description for the quantization of the noncommutative background.

We now start to determine the phase space interaction potential U (X;, Pj; X,, P,). From the transformation
(3.1), the relative displacement of two particles in the rotating frame is
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O)(& — &) o' (t) = APsint + AX cost. Therefore, for a given real space interaction potential, we have
OV — %) O = f_ tzo quq O with the Fourier coefficients V,= i f_ t: dxV (x)e~%* and the operator

Q = exp[iq(APsint 4+ AX cost)]. The matrix element of the operator Q in the R-representation is given by
the Laguerre polynomials [55, 104]

A M i((M— T _Q ! _
(NIQIM) = & T 03 k’)ﬂl% O LN O, 4.5)

where |N) and | M) are the eigenstates of the operator R given by equation (4.4). In the RWA, we only keep the
time-independent diagonal elements of the matrix (4.5), i.e., (N|Q|N) with N = 0, 1,2, .... Thus, given an
arbitrary real space interaction potential V (x; — %), we find a compact expression for the phase space
interaction potential

N +00 2
UR) = ﬁ quqe*%Lﬁﬁgé(z\qz). (4.6)
In the eigenbeasis |N, C), we have

UR) =Y URy) f dCIN, C) (N, .
N

Here, the interaction potential U (R) takes the value U (Ry) with Ry = 2/A(N + 1/2).

If the two particles have spins, their spatial state is either antisymmetric or symmetric depending on the
symmetry of total spin state, i.e., for bosons in a symmetric (antisymmetric) spin state the wave function is
symmetric (antisymmetric), and vice versa for fermions,

€
V2

We seperate the average phase space interaction potential by

Xy, Xo) = —=[pX) o (X2) £ ¢(X) (X))

(U)s = (X, XU R)|(X,, X)) = U £ U

Here, we have defined the direct interaction U, and the the exchange interaction U,, respectively,

{Uc = (p(X) P U R) |9 (X) 6 (X)), @7)

U = (p(X) o (X)|U R) (X)) p(Xa)).

The direct interaction part U, = %(<U>+ + (U)_) corresponds to the classical interaction while the exchange
interaction part U, = %(( U). — (U)_)isapure quantum effect without classical counterpart, which we call U,
the Floquet exchange interaction for our system. In the R-representation, they have been calculated in the
appendix G, i.e.,

U= UR\L, U=>(-DNURWIy (4.8)
N N

with the overlap integral

2

= [dc ’ <<p(C + %AX)(;S(C - %AX)|<I’N(AX)> (4.9)

In the appendix H, we have given the overlap integral IN(R) for the two displaced coherent states

1 1
pX) = (ﬁ)z e n &RV’ and ¢ (X) = (ﬁ)2 e~ n(X+R/2" ‘where Ris the distance between the centers of

two coherent states in phase space. Since the coherent states ¢(X) and ¢(X) are not orthonormal, there should be
an additional normalized factor (1 + e ®*/2%)~1/2in constructing the symmetric (antisymmetric) state

¥.(X;, X,). In this work, we take the normalized factor (1 & e ®*/2%)71/2 &~ 1in the regime of R2 >> 2. Below,
we will calculate the analytical expressions of U/(R) and U,(R) for contact and hardcore interactions of ultracold
atoms.

4.2. Applications

In this section, we apply our general theory of phase space interaction to the special cases of contact interaction
and hardcore interaction for ultracold atoms. We show that, in quasi- 1D, the point-like contact interaction in
real space becomes along-range Coulomb-like interaction in phase space. In pure 1D, the hardcore interaction
in real space produces a quark-like confinement interaction potential in phase space, which increases linearly
with the phase space distance of two atoms.
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Figure 8. Phase space interactions. (a) Contact interaction. The parameter R is the distance between the centers of two coherent states
in phase space. The direct phase space interaction potential U (R) is scaled by the strength of the contact interaction e. The black solid
curve is the result in quantum regime given by equation (4.11) with A = 1. The blue dashed line is the Coulomb-type interaction
(4.12), which is the result in the classical limit. (b) Hardcore interaction. The direct phase space interaction potential U(R) is scaled by
the radius of hardcore interaction a. The black solid curve is the result in quantum regime given by equation (4.14) with A = 1. The
red dotted—dashed line is the result in the linear approximation given by equation (4.15) with A = 1. The blue dashed line is the linear
interaction (4.16) in the classical limit.

4.2.1. Contact interaction

In the experiments, the ultracold atoms are confined in 1D if the transverse trapping frequency w is much larger
than the longitudinal trapping frequency w,. If the characteristic length of transverse trapping I, = /7 /(mwy)
is much larger than the cold atom’s size, i.e., in the quasi- 1D, the effective interaction between cold atoms is
described by the contact interaction V (x; — %) = €6(x; — %), where ¢ is the interaction strength [10, 86, 87].
FromV, = % L +: dxed (x)e i = % and equation (4.6), the phase space interaction potential can be
calculated

L+ v I(55Y)

N ()

Here, N = 0,1,2,3...and I'(*) is the gamma function. We see that U (Ry) is zero for odd integer N and finite for
even integer N. The wave function of two atoms’ relative motion ®x(A X) is antisymmetric for odd N, which
means the probability amplitude is zero when the two atoms contact each other. The result is that the total
average interaction of @y (AX) is zero for odd N.

The direct phase space interaction U(R) and Floquet exchange interaction U,(R) of two cold atoms, which
are described by two coherent states, can be calculated from equations (4.8), (4.10) and (H.8)

URy) = (4.10)

!UC(R) = %@m(-%) Io(%)’ (4.11)
(L® = U.®.

Here, R s the distance in phase space between the centers of two coherent states and Io(*) is the zeroth order
modified Bessel function of the first kind. In the large distance limit, we use the asymptotic behavior of the
special function Iy(z) ~ e?/+/2mz for z > 1and have

U.(R) ~ %% for R>> 2. (4.12)

In figure 8(a), we plot the U/(R) as function of R and its long-range asymptotic behavior. We see that a point-like
contact interaction indeed becomes a long-range Coulomb-like interaction in the long-distance limit, which is
consistent with the pure classical analysis [49].

As shown in equation (4.11), we also find that the Floquet exchange interaction is equal to the direct phase
space interaction, i.e., U,(R) = U.(R), and does not disappear even in the classical limit A — 0, which cannot
happen in a static system. Usually, the effective spin—spin interaction in Heisenberg model comes from the
quantum exchange interaction between the nearest-neighboring electrons and cannot be explained by classical
dynamics. One should always keep in mind that we are investigating the effective stroboscopic dynamics and the
two atoms indeed collide with each other during every stroboscopic time step. The phase space interaction is
actually the time-averaged real space interaction in one harmonic period. The spin—spin interaction in
Heisenberg model is a short-range interaction due to the exponentially small wave function overlap of two next-
nearest-neighboring electrons. However, here in our system, the Floquet exchange interaction has long-range
behavior following Coulomb’s law. In the classical limit A — 0, the long-range Floquet exchange interaction
can be viewed as an effective long-range spin—spin interaction induced by collision of two atoms. The equality
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U.(R) = U.(R) comes from the ¢ function modeling the contact interaction and the fact that the spatial
antisymmetric state of two atoms has zero probability to touch each other. If the interaction potential between
cold atoms is different from the d-function model, it is possible to tune the phase space interaction U(R) and
collision-induced spin—spin interaction U,(R) independently in the experiments.

4.2.2. Hardcore interaction
If the characteristic length of transverse trapping [, is much smaller than the cold atom’s size, which is called
pure-1D, the contact interaction is no longer valid for the description of interaction between cold atoms
[88—91]. In this situation, the atom can be viewed as a hardcore particle with a radius a, which means the
interaction potential between the two atoms is infinite when their distance is smaller than 2a and zero when the
distance is larger than 2a. Our theory of phase space interaction can be applied to the small hardcore limit

a < /. Since the two atoms can not contact each other due to the hardcore interaction, the engenstates of
phase space distance operator R have to be zero at zero distance, which means that only the odd eigenstates
D,,,+1(AX) with m € N satisfy this condition. The even eigenstate should be reconstructed as

D,,,(AX) = sgn(AX) Dy, 1(AX) with sgn(¢) the sign function. The eigenstates ®,,,,(AX) and D,,, 1(AX) are
degenerate with the same eigenvalue Ry, = Ry 1 = 24/ A(2m + 3/2).In the appendix I, we calculate the
phase space interaction potential of the hardcore interaction potential for odd integers N = 2m + 1

ay2r/7 B Coppiomeay — k-1 2a

~ —Ry. 4.13
2NN G2 2NN — 20N — 2!« @13

URy) =

Here, [%] means the closest integer number less than % For even integers N = 2m, we have

U (Ry) = U (Ry11)- Here, we find that U (Ry) can be approximated very well by the linear relation-
ship U (Ry) ~ 2am~'Ry.

The direct phase space interaction U/(R) and the Floquet exchange interaction U,(R) of two coherent states
can be calculated from equations (4.8), (4.13)

UR) =23, U R Doy
U.(R) = 0.

(4.14)

Here, R is phase space distance between the centers of two coherent states and the overlap integral bL,,, . 1 is given
by equation (H.8). The zero Floquet exchange interaction comes from the degeneracy of the symmetric and
antisymmetric states. Thus, there is no collision-induced spin—spin interaction for the hardcore interaction.
Using the linear approximation U (Ry) =~ 2am~ 'Ry and equation (4.14), we have

(o] 2m+1
U.(R) ~ 8avA > V2m + 3/2 exp( RZ)(RZ) . (4.15)

T = Qm+ 1) ax \axn

In the long-distance limit, we have the asymptotic expression of equation (4.15), i.e.,
UQR) — 2R, for R > 24X, (4.16)
T

This is consistent again with the classical analysis [49]. In figure 8(b), we plot the direct phase space interaction
potential U/(R) as a functions of phase space distance R. We see that the linear relationship (4.16) (blue dashed
line) is a very good approximation of equation (4.14) (black solid curve) and equation (4.15) (red dotted—dashed
curve). Itis interesting to find that the linear phase space interaction potential (4.16) mimics the interaction
potential between quarks in QCD [105, 106]. Actually, this surprising behavior of hardcore atoms can be
understood in a simple picture. Since the two atoms have a tiny hardcore radius a, they prefer to oscillate in a
synchronized way, i.e., in-phase oscillation. If the atoms are out of phase due to the finite phase space distance R,
they are more likely to collide with each other during the oscillation. The collision effect becomes stronger as the
phase space distance R is larger, resulting in a confinement potential in the end.

4.3. Classical many-body dynamics
Although it is very difficult to numerically simulate the quantum many-body dynamics from the original many-
body Hamiltonian (2.1), we can simulate the classical many-body dynamics and verify our theory of phase space
interaction. From now on, we consider the classical dynamics of spinless atoms and replace all the operators by
their corresponding classical quantities. The time evolution of the original coordinates, x(¢) and p,(t), of a single
atom are given by the canonical equations of motion (EOM) from equation (2.1)

dx;  OH(1) dp, ~ OH()

, _ . (4.17)
at  op, dt Ox;
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Figure 9. Classical three-body dynamics. (a) The initial conditions of three atoms (red dots). (b) Phase space trajectories of the first
atom with different contact interaction strengths ¢ = 0.194 (small circle)and e = 0.775 (large circle). (c) Time evolutions of the first
atom’s position and momentum with contact interaction strength ¢ = 0.194. (d) Time evolutions of the first atom’s position and
momentum with contact interaction strength ¢ = 0.775. (e) Phase space trajectories of three atoms with hardcore interaction strength
a = 0.05. (f) Time evolutions of all the three atoms’ positions and momenta with hardcore interaction strength a = 0.05. In all figures,
the black dots are the results obtained from Poincaré map and the red lines are the results calculated from the RWA EOM (4.19). In
(b)—(d), the blue lines are the results given by the linear solution (4.20) and the black dots are so dense that theylook like lines. Other
parameters: kicking strength K = —0.027~".

As seen from equation (3.1), the values of X;(f) and P{(t) can be obtained from the time evolution of x,(t) and p;(¢)
stroboscopically every time period of 2. In this sense, the X;(f) and Py(t) define the time evolution of the
amplitude and phase of an oscillating atom in the discrete time domain t = 27 mwithm = 0, 1,2, .... This
method is called Poincaré map [107, 108].

In the rotating frame, we write the RWA many-body Hamiltonian explicitly for g, = 4

K
Hywa =Y E(coin + cosP) + Y U(Ry), (4.18)

i i<j

where R;; = \/ (X; — Xj)* + (P, — P)* is the classical phase space distance of two arbitrary atoms. Depending
on the original interaction potential, the phase space interaction potential U, (R;;) takes the form of either
equation (4.12) or equation (4.16). The EOM of X;(¢) and P;(¢) is described by

dX;/dt = 8H1{WA /OP, dP./dt = — 3H}{W A/ 0X;. Using equation (4.18), we have the explicit form of EOM

dU.(R;) P;— P;
dr;  R;

dU(Ry) X; — X;

dR,j Ri]‘

d 1 .
EX{ = —EK Sll’lP,‘ + g i
(4.19)

d 1 . L
Epi = EK sin X; Zj

Using the above two methods, we can calculate the dynamics of many interacting atoms, and compare them to
verify our phase space interaction theory.

In figure 9, we investigate the dynamics of three interacting particles. For convenience, we introduce the
complex position of the jth atom in phase space Z;(t) = X;(t) + iP;(t). As shown in figure 9(a), we set the three
atoms initially at the local equilibrium points of single particle Hamiltonian, i.e., Z;(0) = 21,

Z,(0) = —27 — 2wiand Z5(0) = 27 — 2i. Ifthe displacement of each atom in phase space is small, i.e.,
|Z;(t) — Z;(0)| < 1, we can linearize the EOM (4.19), and have the following solution
2 dy,
Z,(t) ~ Z;0) + — elzKt — 1 —ce‘,-, 4.20
() (0) K( );dRij] (4.20)

where ej; = [Z;(0) — Z;(0)]/|Z;(0) — Z;(0)|is the unit vector directing from ith atom’s initial position to jth
atom’s initial position in phase space as shown by the black arrows in figure 9(a). The above linear solution
indicates that each atom oscillates harmonically around a shifted equilibrium point

Z;(0) — 2K ' (dUC/dRij)ej,- and with theamplitude AZ; = 2K~1|>° (dUC/dR,-j)ejil.

j=i j=i
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Figure 10. One-dimensional dynamical crystal. The initial positions of seven atoms are marked by red dots. Black lines and red lines
are the phase space trajectories calculated from Poincaré map and RWA EOM (4.19) with contact interaction strength ¢ = 0.194. The
one-dimensional dynamical crystal survives if the two atoms at the ends oscillate inside the dashed circles. Kicking strength:

K= —0.027"1.

In figures 9(b)—(d), we show the three-body dynamics with the real space contact interaction potential
V (x; — xj) = €0(x; — xj), whichis modeled by a Lorentz function V (x; — xj) = %m witho = 0.1in
%. We

ij

plot the phase space trajectories of the first atom for different interaction strengths ¢ = 0.194and e = 0.775in
figure 9(b), and the corresponding time evolutions of positions and momenta in figures 9(c) and (d). We see that
the dynamics given by the three methods agree with each other very well for weak interaction e = 0.194 as
shown in figure 9(c). However, for alarger interaction ¢ = 0.775, the linear solution (4.20) breaks down while
the RWA EOM (4.19) is still a very good approximation as shown in figure 9(d).

In figures 9(e) and (f), we show the three-body dynamics with the hardcore interaction, which is modeled

approximately by an inverse power-law potential V (x; — x;) = (X(Zuzj -
i

numerical simulations. The corresponding phase space interaction potential is given by U (R;;) = 2am ™ 'R;;. As
shown in figure 9(e), for a small hardcore radius a = 0.05, the phase space interaction is already strong enough
to make the three particles overcome the potential barrier of phase space lattice and exhibit global motions. In
figure 9(f), we compare the results from Poincaré map (black dots) and the RWA EOM (4.19) (red lines), which
agree with each other very well.

our numerical simulations. The corresponding phase space interaction potential is given by U, (R;;) = %

with a high power n = 20in our

4.4. Dynamical crystals

In figure 10, we show the dynamics of seven interacting atoms for contact interaction with e = 0.194. The seven
atoms are located initially at the equilibrium points with zero momenta as shown by the seven red dots. It can be
seen that the two atoms at the ends oscillate with the largest amplitude. If the interaction is weak enough, the
atoms only oscillate locally around their equilibrium points. If the interaction is strong enough, the two edge
atoms can overcome the potential barrier of the phase space lattice, and destroy the crystal state. The existence of
the crystal state is guaranteed by the condition that the oscillating amplitude of the edge atom AZqg. is smaller
than the radius of the dashed circle indicated in figure 10, i.e., AZ.gqe < (/2 — 1)7. We can estimate the
critical condition from the linear solution (4.20). For the contact interaction, the oscillating amplitude of the
edge atom converges for infinite atoms, i.e., AZedge = ﬁ Therefore, the critical interaction strength for the
existence of 1D crystal state in phase space is given by

e~ 12(J2 — )7K. (4.21)

For hardcore interaction with U.(R;;) = 2am ™ 'R;;, the oscillating amplitudes of the two edge atoms can be

ii>
estimated by AZgq = :—; (N — 1), where Nis the number of atoms. The oscillating amplitude AZqg increases
linearly with the number of atoms, which means it is impossible to create an infinitely long 1D crystal state with
hardcore interaction. For a given kicking strength K and hardcore radius g, the critical atom number for the

existence of 1D crystal state is

N~ (V2 — 1)#2%. (4.22)

We call the stable crystal state in phase space formed by many atoms, the dynamical crystals.

One should distinguish the concepts of phase space lattice discussed in section 3 and the dynamical crystal
introduced here. Phase space lattice refers to the periodic structure in phase space of the single-particle
Hamiltonian (3.2) without consideration of atomic interaction, while the dynamical crystal refers to the many-
body state formed by interacting atoms. In the experiments, the dynamical crystal can be realized by two basic
steps: first, prepare the initial state of atoms via applying a very strong static optical lattice; then, suddenly turn
off the strong static optical lattice and add a weak optical lattice stroboscopically.

If the atoms have spins and tightly bound at the their fixed points by the phase space lattice, the direct phase
space interaction U/(R) does not play a role in the dynamics. However, as discussed in section 4.2.1, the contact
interaction can induce a Coulomb-like Floquet exchange interaction U,(R) = %%, and thus the system shown in
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figure 10 can be modeled by a 1D spin chains with isotropic spin—spin interaction. The famous Mermin—Wagner
theorem claims that, at any nonzero temperature, a one- or two-dimensional isotropic Heisenberg model with
finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic [109]. This theorem
clearly excludes a variety of types of long-range ordering in low dimensions, and is crucial to the search for low-
dimensional magnetic materials in the recent years [110—112]. Here in our model, the collision-induced spin—
spin interaction has a Coulomb-like long-range behavior, which is beyond the definition of finite-range
interaction in Mermin-Wagner theorem®. Hence, the dynamical crystals actually provide a possible platform to
test the Mermin—Wagner theorem and search for other new phenomena with long-range interactions such as
causality and quantum criticality [113—119], nonlocal order [120-122], etc.

5. Summary

In summary, we have studied the possibility to create new physics by Floquet many-body engineering in the
dynamical system of kicked interacting particles in 1D harmonic potential. Our system exhibits surprisingly rich
topological and many-body physics in 2D phase space. In the weak kicking strength regime K < 1, the single-
particle RWA Hamiltonian has various lattice structures in phase space depending on the kicking period. The
topological physics comes from the noncommutative geometry of phase space, which naturally provides a
geometric quantum phase. We analyzed the topological quasienergy band structure of the square phase space
lattice. We investigated the full dissipative quantum dynamics of a single KHO using master equation and the
Fokker—Planck equation. The time evolution of the Husimi Q-functions confirms that the nonequilibrium
stationary state is indeed a lattice state in phase space, but has a finite size due to the dissipation.

For the many-body dynamics, we made several findings and predictions based on the theory of phase space
interaction potential. We found that the original contact interaction becomes a long-range Coulomb-like
interaction in phase space, and the hardcore interaction becomes a quark-like confinement interaction in phase
space. For the contact interaction, we predicted that the long-range Floquet exchange interaction does not
disappear even in the classical limit, and can be viewed as collision-induced spin—spin interaction. We
investigated the classical many-body dynamics and proposed the concept of dynamical crystals. We found that
the contact interaction can create an infinitely long 1D dynamical crystal but the hardcore interaction cannot.

Finally, we point out that our method can increase the speed of numerical simulation significantly. For
example, in simulating the dynamics of seven interacting atoms in section 4.4, the method of Poincaré map
based on the original Hamiltonian costs more than ten hours using Wolfram Mathematica while the method
based on the phase space interaction only needs one second. The reason is that our method only needs to
calculate the dynamics on the stroboscopic time points by averaging the dynamics between stroboscopic steps
using the phase space interaction potential.

Recently, we learned of a related study [123] in which the authors also discussed that the contact interactions
between atoms can result in exotic long-range interactions in the effective description of the resonantly driven
many-body system.
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Appendix A. RWA Floquet Hamiltonian

The method we adopt here is the same as that in [55]. We start with the dimensionless Hamiltonian (2.2). To be
clear, we write it again here

1

H = 5(922 + p?) + KrcosX ) 6(t — nT), (A.1)

n

where we have neglected the particle index and simplified the notation of the summation in the kicking part. As
discussed in the main text, we transform equation (A.1) into the rotating frame by employing the unitary
transformation O = exp [i(4'@ + 1/2)t]and using the relationship (3.1)

®Inthe rigorous proof of Mermin—-Wanger theorem, it is enough that 3" R|U, (R ) | converge.
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Hie = OH,0" — ix00'
= KO cos % OTZ 6(1 - n)
. T

- g[M(f(, ES A0 5(1 _ n) (A.2)
n T

where we define M (X, P) = exp {i[X cost + P sin ¢]}. The harmonic term in equation (A.2) disappears due to
the resonant condition.
The element of M ()2 R ﬁ) in the basis of Fock states is evaluated to be [55, 104]

k=1

A A oA . | 2
<I|M(X, P)|k> _ e)\/4+1(kl)(ﬂ/2t)\/g(%) lefl(/\/2)‘ (A.3)

Here the L ~" are the generalized Laguerre polynomials. Inserting equation (A.3) into Hgg we have

k=1
K ; N(xYyz
HRF . § :ef)\/4+1(kfl)(7r/2ft) el (_)

x L' O/2)10) (k| + hel Y 5(5 — n) (A.4)
n T

The sum of the Dirac é-functions in equation (A.4) obeys the following identity [17]

Z (5(1 — n) = z cos 27rnt. (A.5)
n T n

T

Making use of this relation and dropping all terms relevant to t in Hyz (RWA) we get

40
K » / n AY2
H == E :e*/\/4+mqo7r/2 - (_)
RWA =5 L" (I +ng)!\2

x L"o(\/2)|1) (I + nqq| + h.c.]. (A.6)

The sum over 1 can be formulated as the sum over k = | + ng, with the help of the formula

- i e—i2nk=Dj/a, — {0’ (k=D/a, 22,

g0 = 1, (k—1/q, € Z,
thatis,
Hywa = £ iz e*/\/4+i(k7l)(ﬁ/2727rj/qu) ﬂ (A)kzl
24|21k V k2
x LET O/ 2|1 (k] + hel. (A7)

Using equation (A.3), we have the final effective Hamiltonian

K S if(cos(27r'/ )+i13 sin(27r‘/ )
HRWA = — Z[e /40 1/ 40 —+ hC]

o j=1
A X omi . o
= K Z cos (X cos A + Psin ﬂ] (A.8)
oy j=1 4o un

Another way to derive the effective Hamiltonian equation (3.2) is to start from the Floquet operator in one
harmonic oscillation

IE}% _ [e—i(3€2+ﬁ2)7/2)\efiK cosa?//\]qo . (A.9)

Following the same procedure in [23] , we can reformulate equation (A.9) as

. qofl . [
Flo — H exp{—iK cos [\/;(&e—lzm/% + &Te‘zm/%)]/)\}.
=0

Expanding F% into a power series of the kicking strength K and keeping the terms in the first order, we again get
the effective Hamiltonian Hywa.
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Appendix B. Calculation of (o|Hpwa (X, P)|a)

Defining displacement operator D, = @ ~“"4, then we have the following relationship

DDy = ™D, 4, (B.1)
Da|5> — eiIm(aﬂ*)la + ﬂ) .

We consider a general Hamiltonian H = cos(pX + gP) which can be rewritten as
H = cos(pX + qP)

_ l(eipf(+iq}3 + e—ipf(fiqﬁ)
_ %[eﬁ@ipmu,g(qﬂpm I h.c.]

1
_ E[Df Fam+D g@qp)]- (B.2)

Here we have used X = \/g @" + d)and P = i\/g (@' — ). Using the relationship (B.1) and the identity
(a|B) = e~ laP/2-15P /2405 e have the matrix element of Hamiltonian H = cos(pX + gP) in coherent state

representation
(alH|B) = [<a|ﬂ \/7(q1p)> i3 Imlq—ip) 5]

+<mﬁ+J§m—m»eﬁmmmWQ

_ 1( YaP - 46— [T a-ip) P+a*d-a*[3 @-ip)-i[2 imig-ip)p]

2

LlaP =118+ 4 (q—ip) P+a*B+a* [ 5 (q—ip)+i Im[(q— 1p)ﬂ*]
 deie e B o

— L tap—118P+a*8-31g—ipP
2

8 Ix . g* h . 1 . .
" [ S i (o) 3 a1 ta-in o -
A arin-( o) -G a-ine- (q+1p)3]]

Z e~ tlaP =3P +a*3-}q-ipP
2

" (eﬂﬁ(qﬂp)a*ﬁ @-ip) | o~E @riprrat [} <qip>)

— L lap—118P+a*8-}1g—ipP
2

« (eﬁwmq + i3 @ranp ey (G-atg-if3 (ﬁ+a*>p)_ (B.3)

By defining the average coordinator and momentum

X = (a|X]|a) = \/—(a + ),

(B.4)
P = (a|P|la) = 1\/_(a - ),
we have the diagonal elements of H = cos(pX + gP)
A .
(a|H|a) = exp(——|q - 1p|2)c0s(pX + gP). (B.5)

Using equation (B.5) by setting p = cos X . 7 and q = sin q—l, we can easily

obtain <O[|HRWA(X, P)lOé> = e*)‘/“HRWA(X, P)
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Appendix C. Zak’s kq representation

The kq representation introduced in [94] is the complete orthonormal basis constructed by the common
eigenstates of the translation operators in both X and P directions. In general, for the translation operation in X
direction ePA/ A the ‘shortest’ commutative translation operator in P direction is eXB/Awith B = 27\ JA.
Given the dimensionless Planck constant A = p/q, where p and g are coprime integers, we choose A = 27/q
and B = 27 p for constructing our Zak’s kg representation. In the coordinate representation, the basis for given
quantum numbers kxand kpis [94]

Ptk X) = \/gz eik"zglé(X — Mep — %Tl) (C.1)
1

with [ € Z. State function (C.1) is composed of a series of Dirac’s delta function with shifted phases. Note that
the quantum numbers ky and kp take value in the region 0 < kx < ¢, 0 < kp < 1/p, which is g-times larger
than the Brillouin zone. Since function (C.1) is the eigenstate of translation operator elin? itisalso the eignestate
of the translation operator Ty = (eifTK113 )4, defined by equation (3.5) in the main text, with the the same
quasimomentum ky but different Brillouin range 0 < ky < 1. States (C.1) with g different quasimomentsa, i.e.,
Bty X P11y X5 o and B, -1,k (X)» can be treated as g degenerate states of operator Tk, which
guarantee the completeness of the Zak’s basis.

Appendix D. Derivation of equation (3.6)

We outline how to derive equation (3.6) in the main text. The quasienergy state |1/, ) can be spanned as
[px) = qu_:lo Ul P, (X)), where m = (kx + m, kp) with 0 < kx < 1and ¢,,(X) is the basis (C.1) of the kg-
representation. In this subspace, the eigenequation is simply [95]
. . 4E
2cos A(ky + m)u,, + e Mry, 4 oMoy, = ?um (D.1)

together with the boundary condition uy = u,. To eliminate the dependence on kp, we make the substitution
i, = e™Mry  whichleads to

4E
2cos Nkx + m)iy, + 1 + Gy = ?ﬂm (D.2)

and the boundary condition iy = e~ 2™* 4. This equation can be formulated as
Un-1= T,,U,, (D.3)
where U,, = (il,;;, #i;,+1) and the matrix T,,, is

% —2cosAkx + m) —1
1 0

T, = (D.4)

From this recursive relation it is easy to find that Uy = T(kx) U, with T(kx) = [I},_, T,. As U, = e~ i2mpky U, we
have the secular equation det(T(kx) — e 2"%) = 0, which can be expanded as

Tr T(kx) = 2 cos(igAkp). (D.5)

Due to the cyclic permutation invariance of matrix trace, we have Tr T(kx + 1) = Tr T(ky). Thus the
expansion of Tr T(kx) in terms of power series of e« is simply

Tr T(ky) = Co + Cyelthx 4 Cre iatk, (D.6)

The coefficient C, can be directly evaluated by extracting the term with the highest power, resultingin C, = —1.
This leads to the relation

Tr T(kx) = Tr T(0) + 2 — 2cos Agk,,
which gives equation (3.6) combining with equation (D.5).

Appendix E. Kicking dynamics

As we mentioned, the kicking dynamics is realized by an unitary transformation p~ — p* = Uk P, Ulz To
translate it in terms of the characteristic function w(s, k), we do the straightforward calculation
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w(s, ks 7))

:f dxe™/Mx + s/2|UKf);U;|x —5/2)

=3 ﬁ(ZKT Sini/A)f de™ 60 (x + 5/20 T — 5/2)

j=—00
=3 ]j(zm sin%/)\)w(s, k+ X 7o), (E.1)
j=—00

where we have used the Jacobi—Anger relation in the second line.

Appendix F. Obtaining Q (X, P) from w(s, k)

The definition of the characteristic function w(s, k) we used in the main text can be formulated into an elegant

form [96]
w(n, %) = Tr pe'~1'e (E.1)
with ) = (s 4 ik) /+/2)\, whereas the characteristic function of the Husimi distribution is given by,
Co(n, m%) = Tr pe e, (F.2)

Clearly, the two characteristic functions are related through Co (1, 7*) = w (1, n*)e~1"F/2.Once Co (1, 7*)is
obtained, the Husimi distribution Q(X, P) can be retrieved by the Fourier transform

1 * *,
Q(w, o) = = f dn?e®” = *"1Cq(n, n*)

with @ = (X + iP) /2\.

Appendix G. Expressions for U and U,

First, we calculate the matrix element of U (R) for two given functions f (X, X,) and g(X3, X;) as following
(f X0 XU R)Ig (X, X))

1 1 A 1 1
- _A > N T _A c _A y N T _A
<f(XC+ 5 X, X > X)|U(R)Ig(X + ; X, X > X)>
1 1
= dC c _A > c _A > C
}N:U(RN)I <f(x AKX — 2 X)|N >
x <N, C|g(XC n %AX X, — %AX)>
=S URy) fdc<f(c +Iax, c- le)|<I>N(AX)>
~ 2 2

X <tI>N(AX)|g(C n %AX, c— %AX)>. G.1)

Here, we have used the property of X.|C) = C|C)and the resulting
(fX)IC) = f fX)o6(X, — C)dX, = f(C) for any f(X,) in the representation of coordinate of center of mass.
Then, we apply the result (G.1) to calculate U, and U, defined in the main text, i.e., the direct integral

U = (p(X) d () [U (R) | (X)) ¢ (X2))
=> U(Ry) de<(p(C + lAX)d)(C = lAX)|<1>N(AX)>
N 2 2
« <<I>N(AX)|¢(C + %AX)¢(C _ %AX)>

2

SN [ac ‘ < gp(c 4 %AX)QS(C - %AX)|<1>N<AX>>

=Y URWIy, (G.2)
N
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and the exchange integral
U = (9 )¢ (X [U (R 6 (XD) 9 (X))
- %j U(Ry) de<g0(C n %AX)(ﬁ(C - %AX)|<I>N(AX)>
« <<I>N(AX)|¢(C + %AX)@(C _ %AX)>
=> (—=DNU(Ry)

2

N
« de‘ <¢(c + %AX)QZ)(C _ %AX)|<I>N(AX)>

=S (- DNU Ry) Iy (G.3)
N

Here, the overlap integral I is given by

INEde

2
(G.4)

<¢(c + %AX)QS(C _ %AX)|<I>N(AX)>

Appendix H. I for coherent states

Now, we assume the two states ¢(X) and ¢(X) are two displaced squeezed coherent states described by

P = Yo(X — 1) = (L) e b, .
H.1

D) = Uo(X + ) = (L) e brocn,
The product state ¢ (X)) ¢(X;) = ¢ (C + %AX ) o (C — %AX ) can be calculated from equation (H.1)
PORG(X) = L e U, (.2
From equation (4.9), we obtain the following overlap integral

2 +00 2
Iy = 5 f e 20°CdC ‘ <e*f’2(%AX*’m)2|<1>N(AX)>‘
™ —00

1 2

‘ <¢N<M>|(i)2eé(y'%)2<“2fm>2>

= (H.3)

The displacement operator 157, = exp (ya" — ~*a) has the property Iij &DAV = 4 + ~y. We further introduce the
squeezing operator

S = exp[é(&*az - 5&*%]
with parameter ¢ = rel’. The squeezing operator has the following property

8. a8c = va + ua

with the squeezing parameters v = coshr, u = —e'sinh r. Inversely, the parameter ¢ = rel’ is related to vand
uvia
r = arccosh(v) = In(v + v? — 1),
y . (H.4)
e = —u/sinhr.
Using operators 157 and §§, we write the displaced squeezed state in equation (H.3) as
1
p )2 A(i,)z(Axfzr ) A &
e 22 " =D .S ¢0)=]| -7, =§&), (H.5)
( Nz o= ) ¥ —&)
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where the displacement parameter is ¥ = —1,,/+/\ and the squeezing parameters are given by
1 1
A B+ ——| ——PXﬂ———J. (H.6)
( fﬁ 2 YA B
Using the formula (7.81) in [96], the overlap integral Iy = |{N| — ~, —&) [*is given by
1 N r . 2
(5 tanh r) y*e¥sinhr — v coshr
Iy=——— | Hy
Nlcoshr \/Winh(h)
X exp [ [7? + ; (7*%! 4 42~ tanh r] (H.7)

Given the parameters r,,, and (3, we can calculate U, and U, from equations (4.8), (H.6) and (H.7).
The standard coherent state, whose squeezing parameters are v = 1 and u = 0, can be obtained by choosing
B = 1/+/) in equation (H.6). From equation (H.7), the overlap integral of two standard coherent states Iy, can

be calculated
WY e 1 (R R2
=1 =_—]—| exp| ——1 H.8
TN Nl ] TP (H38)

Here, R = 2r,, = 2/ is the distance between the centers of two coherent states in phase space. The quantity
Ris different from the quantized phase space distance Ry. For two overlapped coherent states, their distance R is
zero but Ry is always positive as shown by equation (4.3).

Appendix I. U(Ry) for hardcore interaction

We derive U(Ry) for hard-core interaction in equation (4.13). In the rest frame, assuming the interaction
potential between two atoms is V(x; —x;), the eigenequation of energy is given by

2 92 2 92
[za - ?Z + —(x1 +x3) + V(g — xz):|‘1’(xh %)

= Er¥(x, x). (LD

Here, Eris the total energy. We introduce the coordinate of central of mass x. = (x; + %) /2 and the relative
coordinate x = x;—x,. By separating the eigenstate into a product state ¥ = ¢ (x.) 1 (x), we have the eigen
equation for the motion of center of mass

N 0?2
oM ox? + —MX @ (xc) = Ecp(xc) (1.2)
with M = 2 the total mass and E, the energy of center of mass motion. The eigenequation for the relative motion
is

X 92
[ 24 Ox?

a5 T Mx + V(X)]l/ﬂ(x) Ey(x) 1.3)

with yt = 1/2 thereduced mass, E = Er — E, is the energy of relative motion.
The solutions of equation (I.2) are just the harmonic motions. We now try to find the solutions of
equation (I.3). Without interaction V (x; — x,), the eigenproblem is determined by H, ¢,(x) = E, ¢, (x) with

- X0 e
"Touoxr 2 s
The eigenstates are given by
wur{—i—ﬁu@ewz (L4)
n ﬁznn’ n > .

where the parameter { = /1/(2)). With consideration of hard-core interaction, i.e., V (x; — %) = +oo for
lxg — x| < 2aand V (x; — %) = Ofor|x — x| > 2a, the boundary condition requires that wave function
must be zeroat x € [—a, a]. For odd integer 1, we assume the approximate eigenstates are just repulsed outside
the hard-core region, i.e.,
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Yopp1(x — 2a) x > 2a,
Drp1(®) =10 —2a<x<2a neN, 1.5)
Yaur1(x + 2a) x < —2a.

For even integer n, the wave functions ¢, (x), however, do not satisfy the hard-core boundary condition and
the continuity condition. Therefore, we construct the symmetric eingenstates from antisymmetric states

Vanr1(x — 2a) x> 2a,
@,,(x) =40 —2a<x<2a neN, 1.6)
—aui1(x + 2a) x < —2a.

The energy levels to the first order correction are

<¢2n|HV|¢2n> = <¢2n+1|Hr|¢2n+1>
2

1 o X o
= Eﬁw dx 93,4100 + 251)(—;@-4'/“2)1%%1@ + 2a)
+ = dx 93, 4(x — 20)(———2 + uxz)w2n+1(x — 2a)
2 J2 w Ox
= [ A @ H ) + 22 [ dx U )

+4uaj; dx ¢>2kn+1(x)x 7/)2n+1(x)
a 1
C@n+ D2 yT

[n+§]’[n+§] (_1)k+l[(2n + 1)!]2(271 +1 -k — Z)!22(2n+lfkfl)’
KI=0 KI'Cn +1 = 2k)'2n + 1 — 2D)!

1
=A2n+ 1) + E6124-

X

(1.7)

where we have used ;1 = 1/2 in the last step. In fact, one can prove that U(Ry) is the first order correction,
from the weak interaction, to the Nth energy level of the harmonic trapping potential. Relabeling N = 2n + 1,
we have from equation (I.7)

ayznm BT ez — k= 1y
2NN A7, 2PN — 26)I(N — 2D))

U(RN) = (1.8)

which is exactly equation (4.13) in the section 4.2.2.
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