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Crystal-melt interface mobility in bcc Fe: Linking molecular dynamics to phase-field and
phase-field crystal modeling

M. Guerdane1 and M. Berghoff2

1Institute of Applied Materials, Computational Materials Science, Karlsruhe Institute of Technology (KIT), Germany
2Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Germany

(Received 19 December 2017; revised manuscript received 23 March 2018; published 12 April 2018)

By combining molecular dynamics (MD) simulations with phase-field (PF) and phase-field crystal (PFC)
modeling we study collision-controlled growth kinetics from the melt for pure Fe. The MD/PF comparison shows,
on the one hand, that the PF model can be properly designed to reproduce quantitatively different aspects of the
growth kinetics and anisotropy of planar and curved solid-liquid interfaces. On the other hand, this comparison
demonstrates the ability of classical MD simulations to predict morphology and dynamics of moving curved
interfaces up to a length scale of about 0.15 μm. After mapping the MD model to the PF one, the latter permits to
analyze the separate contribution of different anisotropies to the interface morphology. The MD/PFC agreement
regarding the growth anisotropy and morphology extends the trend already observed for the here used PFC model
in describing structural and elastic properties of bcc Fe.
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I. INTRODUCTION

The use of multiscale modeling is motivated by the fact that
many phenomena in materials science and engineering involve
interactions between microscopic and macroscopic length and
time scales [1,2]. One of the central challenges of multiscale
modeling is how to achieve the coupling between atomistic
and macroscopic approaches to ensure that the descriptions at
all levels remain quantitatively consistent with one another.
This task is carried out in this work for the hierarchical
coupling approach that combines molecular dynamics (MD)
with phase-field (PF) simulations. We test the consistency by
achieving detailed comparisons of quantitative predictions of
the considered approaches for a typical multiscale problem:
the solidification and melting kinetics.

Our way of proceeding consists of two steps: (1) Analyze
how the phenomenological PF model can be properly designed
in order to reproduce quantitatively the solidification kinetics
observed by MD. The latter atomistic approach, considered
as the reference, provides all the physical parameters needed
to construct the former continuous one. (2) Once a consistent
MD/PF hybrid model is constructed, we use it for a better
understanding of the growth kinetics, going further than would
one single approach. The consistency analysis is aimed at
continuously improving the design of the PF model and,
consequently, enhancing the predictive accuracy of the MD/PF
coupling.

We already applied this approach for an understanding of
the thermodynamics and kinetics during growth of bcc Zr from
an undercooled NiZr melt under chemical nonequilibrium [3].
We showed that the PF approach describes the same aspects
of physics as MD, when the key parameters (like free energy,
diffusivity, and interface properties) are transferred from MD
to PF. Moreover, the effective thermodynamic enhancement of
the diffusivity through the strong negative enthalpy of mixing
in the NiZr solution was quantified. In another study [4], we

applied the same coupling approach to capture, quantitatively,
the correlation between the short-range order in the melt,
the in-plane ordering (coupled to a diffusion drop) at the
crystal-liquid interface, and the stability of the liquid against
crystallization. In both studies [3,4], we dealt with the case
of solidification under chemical nonequilibrium where the
growth kinetics is dominated by the long-range-diffusion.
In this study, we consider, however, the case of collision-
limited solidification which is controlled by the attachment
rate of liquid atoms to the crystal surface. Consequently,
solid-liquid (SL) anisotropies are expected to play a more
significant role than for the diffusion-controlled solidification.
The collision-limited growth is typical for pure and stoichio-
metric phases. We illustrate it here for pure Fe and investigate,
thereby, the effect of interface anisotropies with regard to
the interfacial energy γ (capillarity), the kinetic coefficient
μ (interface mobility), and, possibly, the interface thickness
ε. It is worth noticing that understanding the interplay of γ

and μ anisotropies is a prerequisite to predict the dynamics of
interface morphologies like dendrites and eutectics [5,6]. The
latter pattern control the properties and, hence, the function-
ality of the final solidification product. In general, and due
to the difficulty to get γ - and μ-anisotropy measurements,
one still relies on atomistic simulation methods to provide
these data or any insight into the physics of SL interfaces
(and grain boundaries). In MD simulations, the SL interface
anisotropies arise naturally as a product of the interatomic
interaction. They are, however, intrinsically coupled and can
hardly be separated from one another. In the PF approach,
these anisotropies are included per construction and connected
in a phenomenological way. The MD/PF coupling allows, on
the one hand, to assess the phenomenological construction
of the PF model. On the other hand, it permits to separate
the role of each anisotropy independently. Berghoff et al. [7]
already investigated the solidification of pure Ni linking MD
calculations to PF ones. In an earlier pioneer work, Bragard
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et al. [6] presented a PF study of rapid solidification in
undercooled liquid nickel [8] based on γ and μ anisotropies
calculated by MD. Growth rates and morphological evolution
of dendrites were found in well agreement with experimental
data as well as the predictions of the solvability theory.

In our present PF simulations, we use the γ anisotropy
of Fe that was predicted before by MD simulations [8]. The
kinetic coefficient μ and its anisotropy will be here revisited to
account for thermostat issues that have been neglected before
[8] causing a significant underestimate of μ (by almost a factor
of 2).

A further comparison will be achieved between the MD
growth results and those from an atomistic phase-field crystal
(PFC) model. The PFC approach emerged recently as a new
promising research direction in the development of multiscale
models [9]. The MD/PFC comparison can be considered here
only for relative quantities, like growth-anisotropy parameters,
whereas growth velocities cannot be directly compared. This
is mainly because MD simulations treat collision-controlled
solidification driven by undercooling (solid and liquid keep
homogeneous atomic densities), whereas the PFC modeling
describes a diffusion-controlled growth driven by density
gradients. The growth velocity is constant in the first case while
it decreases with time in the second one.

II. MODELING METHODS

A. Molecular dynamics simulations

We perform large-scale MD simulations for an isothermal-
isobaric (N,T ,p) ensemble of N (up to ∼3 × 106) atoms,
zero pressure p, and periodic boundary conditions in the
three directions of space. We use the Fe interatomic potential
developed by Mendelev et al. [10] (used also in Ref. [8]).

1. Planar solid-liquid interface

In order to create a planar SL interface, we start with a
crystalline sample, the half of which (along one axis) is molten
by heating it at a high temperature, while the other half is kept
at its initial configuration. Then, the whole layer system is
annealed at a temperature of interest for several picoseconds
and, subsequently, production runs are carried out. The melting
temperature Tm is defined as the temperature at which the
interface velocity VI vanishes. The crystal grows below Tm

and melts above. A fit of the relation VI = μ(Tm − T ) yields
the kinetic coefficient μ. In all the directional solidification
simulations, only the box length normal to the interface is
allowed to change. The two-phase samples have a rectangular
cross section with sides corresponding to about 10–20 times
a0, the lattice constant of bcc Fe. Based on results of many
MD works performed to date [8,11], we can say that these
box lengths are beyond the range where finite-size effects can
be expected. The samples have a thickness of 50–150 times
a0 along the direction normal to the interface. For a better
statistics of the calculated interface velocities, each growth or
melting simulation is repeated 2–3 times starting from different
configurations. The average is then achieved over the 4–6
resulting growth or melting fronts.

FIG. 1. Cylindrical crystalline seed that can grow freely in all
directions perpendicular to the cylinder axis. We choose the cylinder
axis parallel to the Cartesian direction z. The cylinder length is equal
to the simulation-box length in that direction Lz.

2. Cylindrical solid-liquid interface

The analysis of interfacial anisotropies requires the simu-
lation of curved interfaces, which call for MD systems much
larger than those used for planar interfaces. The increasing
computational capabilities make nowadays accessible such
large-scale MD simulations (106–107 atoms), at least for high
growth velocities typical for collision-limited kinetics. We
consider pseudo-two-dimensional solidification by setting up
cylindrical crystalline seeds which can grow freely in all
directions contained in the plane xy (Fig. 1). During the
growth simulations, the box lengths Lx and Ly are allowed
to change while Lz is kept at its equilibrium value. Along
the z Cartesian direction, the length of the cylindrical seed
is set up equal to the simulation-box dimension Lz. Because of
the periodic boundary conditions, the cylindrical SL interface
remains parallel to the z axis. Lz is chosen as small as possible
(6–12 times a0), which allows the use of much larger box
dimensions in x and y directions. Anisotropy effects are
analyzed up to a length scale of about 0.15 μm (1500 Å).
Two crystal orientations are simulated in our study: cylinder
axis (z) along [100] and [110] crystal directions. The growth
rate in a given SL front direction is determined by averaging
over 2–3 simulations, added to the average over all equivalent
crystal directions owing to symmetry considerations.

3. Temperature control: Layered and rectangular-cell thermostats

As discussed in Ref. [12], a special care has to be taken when
determining SL interface velocities by means of MD methods.
The application of a global thermostat to the simulation sample
leads to the formation of temperature gradients at the interface
during growth or melting. In MD methods, the electronic
contribution to the thermal conductivity is absent, making the
dissipation of the latent heat abnormally slow. We remedy this
problem by using the layered thermostat approach presented
in [12]. In the case of a planar SL interface, the simulation
cell is divided into layers parallel to the interface. Each layer
has its own thermostat maintained at the same undercooling
by a simple velocity rescaling after every MD step. It has
been shown in [12] that the layer thickness δ below which the
growth-simulation results are not affected by the temperature
control method is in the range of 20 Å. We use a layer
thickness δ = 15 Å for the directional one-dimensional free
solidification.

Concerning the pseudo-two-dimensional solidification,
where the interfaces are no longer planar, the simulation box is
divided into a lattice of small rectangular cells of volume lx ly lz
(lz can be chosen here equal to Lz). Each cell has its thermostat
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fixed at the same temperature. Similar to the layered thermostat
above, we choose thermostat cell lengths lx and ly in the
range of 15 Å. This allows to maintain a nearly homogeneous
temperature field in the growth plane xy. It is worth mentioning
that the cell volume Vcell = lx ly lz has to be chosen large enough
to ensure that the temperature is properly described within
each rectangular cell and Tm remains constant. Following
statistical mechanics, the kinetic temperature of a system of
Z particles has a standard deviation σ = (

√
〈T 2〉 − 〈T 〉2) =

Tbath
√

2/(3Z), where Tbath is the target temperature [13]. Thus,
the number of atoms in each cell must be large enough to keep
the temperature fluctuations at a reasonable level.

B. Phase-field modeling

For the PF simulations, we use the phase model described in
[14]. We start from an entropy functional defined on a spatial
domain �:

S =
∫

�

(
s(φ,T ) − a(∇φ) − 1

ε
w(φ)

)
d�, (1)

which contains separate bulk contributions s(φ,T ) as a func-
tion of temperature and phase field φ. The latter is an order
parameter that distinguishes the solid from the liquid phase in
our case. The gradient term a(∇φ) = 1

T γ0
ε|γ (n̂)∇φ|2 controls

traditionally the interfacial energy γ (n̂), made anisotropic by
writing γ (n̂) = γ0A(n̂), where γ0 is the mean value and A(n̂) a
dimensionless anisotropy function depending on the interface
normal vector n̂ = ∇φ

|∇φ| . A SL interface thickness is given by
2ε. For w(φ), we choose the double-well potential w(φ) =
9γ0 φ2(1 − φ)2 with two minima representing the liquid and
solid phases.

The evolution equation for the phase field φ follows from a
local maximization of the entropy functional of Eq. (1) using
a variational approach:

ετ
∂φ

∂t
= ∇ ·

(
∂

∂∇φ
− ∂

∂φ

)
a(∇φ)

− 1

ε

∂w(φ)

∂φ
− 1

2T
(f s − f l)

∂h(φ)

∂φ
. (2)

f s(T ) and f l(T ) denote the free-energy density of solid and
liquid, respectively. h(φ) is a suitable interpolation function
between the two phases. We use the polynomial h(φ) =
φ3(6φ2 − 15φ + 10).

The coefficient τ follows from an asymptotic analysis of the
sharp-interface limit: τ (n̂) = L

μ(T ,n̂)TmT
. We use a T -dependent

kinetic coefficient μ(T ,n̂) = VI (T ,n̂)

T

to account for the nonlin-
earity between the growth velocity VI and the undercooling

T (see Sec. III A).

For pure elements, [fs(T ) − fl(T )] can well be approxi-
mated by [7]

f s(T ) − f l(T ) = L(T − Tm)

Tm

+ 
Cp(T − Tm)

− T 
Cpln

(
T

Tm

)
, (3)

where 
Cp = Cs
p − Cl

p, the difference between the specific
heat capacities of solid and liquid, respectively. MD values

TABLE I. Thermodynamic parameters calculated from the MD
Fe model.

Tm L Cs
p Cl

p

(K) (eV/atom) [meV/(K atom)] [meV/(K atom]

1772 0.162 (Ref. [8]) 0.333 0.353

of Cs,l
p are calculated from the slope of the enthalpy curve:

Cp = dH/dT (see Table I). L is the latent heat.
Equation (3) is readily deduced by relating the free energy

f = H − T S at an arbitrary temperature T to that at Tm by
means of a thermodynamic integration

f s,l(T ) = Hs,l(Tm) + Cs,l
p (T − Tm)

− T

(
Ss,l(Tm) + Cs,l

p

∫ T

Tm

dT ′

T ′

)
(4)

and considering the enthalpy and entropy jump at Tm:
Hl(Tm) − Hs(Tm) = L; Sl(Tm) − Ss(Tm) = L/Tm. The first
term of Eq. (3) expands the difference between liquid and solid
free energies near Tm. The second and third terms represent a
correction taking into account that the enthalpy curves Hs(T )
and Hl(T ) do not run parallel to one another.

Despite we deal with the case of isothermal growth by
setting T constant everywhere, curved interfaces are non-
isothermal owing to the Gibbs-Thomson effect. This latter
is naturally included in MD simulations. In order to account
for this effect in the PF simulations, the undercooling at the
interface is implicitly replaced by an effective one according
to the equation [5,6]

(
T )eff = Tm − T − Tm

L

∑
i=1,2

(
γ (n̂) + ∂2γ (n̂)

∂θ2
i

)
1

Ri

, (5)

where the bracketed term denotes the interface stiffness. Ri

(i = 1,2) are the principal radii of curvature and θi two
principal local angles fixing the interface.

III. RESULTS

A. MD and phase-field simulations

Concerning the free energy γ (n̂), we use the calculations
of Sun et al. [8]. For systems with a cubic symmetry, the
anisotropy of a quantity q(n̂) can be accurately described using
two parameters δ1 and δ2 defined by an expansion in terms of
cubic harmonics [15]:

q(n̂)

q0
= 1 + δ1

(
Q − 3

5

)
+ δ2

(
3Q + 66S − 17

7

)
, (6)

with Q = n4
1 + n4

2 + n4
3 and S = n2

1n
2
2n

2
3. The ni’s are the

components of the interface normal n̂. The same expansion
function is assumed to describe the anisotropy of γ (n̂) and
μ(n̂). The expansion parameters used in the PF model are listed
in Table II.

To characterize the crystal-to-liquid transition, we choose
to use the fine-grained number-density profile (using about 10
bins per Å). We justify this choice at the end of the present
section. The results of this MD analysis are illustrated in
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TABLE II. Anisotropic quantities γ (n̂) (in mJ/m2) and μ(n̂)
(in m/s K) with their anisotropy parameters δ1 and δ2 according to
Eq. (6). For μ, we used μ(T ,n̂) = VI (T ,n̂)


T
, where VI are the velocities

in Fig. 3.

q100 q110 q111 q0 δ1 δ2

γ (Ref. [8]) 177.0 173.5 173.4 174.5 0.033 0.0025
μ(Tm) 0.774 0.677 0.668 0.702 0.235 0.0136
μ(
T = 45 K) 0.691 0.634 0.611 0.644 0.184 − 0.0025

Fig. 2 for the (110) SL interface. The decaying amplitude of
the density wave is taken as a structural order parameter. We
determine the interfacial width from a fitting of the density
maxima by a hyperbolic tangent function:

η(x) = (ρl + ηs)

2
+ (ρl − ηs)

2
tanh

(
3(x − x0)

2ε

)
. (7)

ηs fits the average density maximum in the solid, while x0 fits
the mean position of the interface. The average liquid density ρl

is determined separately and used as a fixed parameter in the fit.
The function (7) is physically founded as it is the equilibrium
solution of Eq. (2) at Tm for a planar SL interface using the
double-well potential w(φ) [16]. The fitting procedure yields
an interface width averaged over the three low-index directions
2ε̄ = 16.89 Å. This value is used in our PF simulations below.

Figure 3 exhibits interface velocities VI versus temperature
for planar solidification and melting for the low-index orienta-
tions. The melting temperature Tm follows from the intersec-
tion of the fitted VI curves with the T axis. An averaging over
the three interface orientations yields Tm = 1772.3 ± 1.5 K,
which is the same as the Tm value in Refs. [8,10]. For
the determination of the kinetic coefficient μ in the small
undercooling range, about 10 temperatures within the interval
[1750,1790] K are used for a linear fit VI = μ(Tm − T ). We
obtain μ100 = 77.4 ± 1.7 cm/s K, μ110 = 67.7 ± 1.4 cm/s K,
and μ111 = 66.8 ± 1.7 cm/s K. The data of this analysis
can be found in the Supplemental Material [17]. For larger
undercooling, we use a polynomial fit of the data (dashed lines
in Fig. 3). The anisotropies μ100/μ110 and μ100/μ111 are 1.15
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FIG. 3. MD velocities of planar SL interfaces as a function of
T . Positive (versus negative) velocities correspond to growth (versus
melting). The dashed lines are least-squares fits to the data. The
standard errors are illustrated for the largest undercooling only. PF
data for (100) are included. Inset: growth-rate anisotropy for large
undercooling calculated by using the fitting curves. Regarding the
calculation of the kinetic coefficient μ near Tm, a linear fit was used
(see text).

and 1.16, respectively. These results are comparable to those
obtained by Gao et al. [18] for the same Fe potential model
using a global temperature thermostat but considering the local
interface temperature to determine the actual undercooling.
This agreement confirms the conclusion made by Monk et al.
[12] about the equivalence between the layered thermostat
technique, we use here, and that relying on the true interface
temperature. We notice that earlier MD works, which applied a
global thermostat, came to smaller μ values (by about a factor
2) and to overestimated anisotropies [8,19].

As illustration, Fig. 3 includes a few interface velocities
from PF calculations for the (100) orientation by solving
Eq. (3). This very good concordance between MD and PF
results was found for the three low-index orientations of the
interface. This shows that the PF model can be properly
parametrized to reproduce quantitatively the collision-limited
solidification dynamics given by MD modeling. This confirms
the agreement we already observed in the case of diffusion-
controlled growth in a binary alloy (NiZr) under chemical
nonequilibrium [3]. In return, this agreement assesses the
ability of MD modeling to treat correctly solidification kinetics
driven by thermodynamic forces. Equation (2) confirms that
the thermodynamic driving force of freezing can be represented
by fs − fl , that is, the difference between the free energies of
solid and liquid. In the case of diffusion-determined growth [3],
the growth kinetics was found to depend on the difference be-
tween the chemical potentials (derivative of the free energies)
of the individual species in the solution. The MD/PF agreement
in Fig. 3 concerns, however, only directional velocities and
says nothing about reproducing or not the anisotropy effects
that are, namely, not active for planar-interface growth. The
situation is different for the following cylindrical interfaces.

Figure 4 compares cross-section snapshots during the
growth of initial cylindrical seeds from MD and PF
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FIG. 4. Snapshots from MD and PF simulations at T = 1600 K
which illustrate the growth of cylindrical crystalline samples. Crystal
orientation: cylinder axis along [100] (top) and [110] (bottom).
Simulation time: 585 and 560 ps, respectively. MD-sample size:

2 613 124 atoms in (1374.4 × 1374.4 × 17.4) Å
3

and 2 558 500 atoms

in (1268.1 × 1271.2 × 20.7) Å
3
, respectively. The initial seeds of

diameters D0 = 90 and 140 Å are indicated by the red disks at the
centers of the PF samples. The shown length scale concerns MD and
PF samples.

simulations for [100] (top) and [110] (bottom) orientations
of the cylinder axis. The samples exhibit clearly a fourfold
and twofold symmetry, respectively, with a preferential growth
in (100)-interface front relative to (110) one. These growth
symmetries are reproduced with the same degree of perfectness
for all MD simulations we achieved at different undercoolings.
This fact is remarkable when we keep in mind that the
curved interfaces are constructed atom by atom. The sharper
curvature in 〈100〉 direction presages the dendrites branches
which would develop at larger space and timescales (and
nonisothermal setup), conditions which are still beyond the
capabilities of atomistic modeling. In the following, we analyze
the effect of γ (n̂) and μ(n̂) anisotropies on the growth rate
and morphology. For this sake, we represent in Figs. 5 and
6 the position-time relationship 
R(t) = [D(t) − D0]/2 for
the growth front along the (100)- and (110)-interface fronts
for an undercooling 
T = 45 K. D(t) is the corresponding
diameter of the seed at time t , D0 is the diameter of the
initial cylindrical seed. Common to MD and PF results is the
increase of the growth velocity [slope of 
R(t)] with time. This
reflects the Gibbs-Thomson effect which becomes weaker as
the interface curvature decreases with growth. After t = 1 ns,
the (100)-interface front propagates with a velocity of about
300 Å/ns (30 m/s) which is comparable with the velocity
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FIG. 5. Front position 
R(t) along the [100] and [110] directions
for a cylinder-axis orientation along [100] (top of Fig. 4). MD results
are compared with PF ones at an undercooling of 
T = 45 K. Inset:
growth-rate anisotropy. The velocity functions are obtained by the
derivative of the polynomial fits of 
R(t).

31.1 m/s of a planar (100) interface at the same undercooling
in Fig. 3. The anisotropy V100/V110 ∼ 1.05 (inset of Fig. 5)
is smaller than the value ∼1.1 for planar interfaces in Fig. 3.
This anticipates the conclusion we will draw below, namely,
that the growth morphology can not be rationalized only by
the anisotropy of the kinetic coefficient μ(n̂).

The Gibbs-Thomson effect on the growth velocity becomes
weaker at much larger undercoolings as depicted in Fig. 7 for

T = 175 K. The curvature undercooling becomes only a
neglectible fraction of the interface undercooling which can
be, then, assimilated to the kinetic one [(
T )eff ∼ VI (T ,n̂)

μ(T ,n̂) ].
As a consequence, the approximately constant-velocity regime
is faster reached at larger undercoolings. These observations
confirm the known fact that the interface dynamics is kinetics
(versus capillary) dominated at high (versus low) undercool-
ings [6].

0

 100

 200

 300

 400

 500

 600

0  0.2  0.4  0.6  0.8 1  1.2  1.4  1.6  1.8 2

velocity (100) MD

In
te

rf
ac

e 
po

si
tio

n 
[Å

] ;
 V

 [Å
/n

s]
 

Time [ns]

(100) MD
(110) MD
(100) PF
(110) PF

FIG. 6. As in Fig. 5 for a cylinder-axis orientation along [110]
(bottom of Fig. 4).
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Relative to the MD approach, PF modeling has the ad-
vantage to allow a quantitative analysis of how a given
physical parameter separately affects the growth process. This
possibility is not given in MD modeling since all contributions
are intrinsically and inseparably included in the interatomic
interaction. However, after MD modeling has provided the PF
model with the necessary physical parameters, it benefits from
this model to identify the role of each parameter independently.
We used this particularity to study the influence of γ (n̂)
and μ(n̂) anisotropies on the observed growth morphology.
Figure 8 exhibits results of three growth simulations, where
either both anisotropies are activated or one of them is “on” and
the other is “off.” The latter simulation condition is obviously
hypothetical and is likely nonphysical because γ (n̂) and μ(n̂)

(a) (b) (c)

(d) (e) (f)

FIG. 8. Results of different PF growth simulations at an under-
cooling 
T = 75 K after 0.5 ns, starting from cylindrical seeds.
Top [(a)–(c)]: cylinder-axis orientation along [100]. Bottom [(d)–
(f)]: cylinder-axis orientation along [110]. In (a) and (d), γ and
μ anisotropies are activated. In (b) and (e), only the μ anisotropy
is activated, while γ (n̂) = γ0. In (c) and (f), only γ anisotropy is
activated, while μ(n̂) = μ0. All simulations are carried out starting
from cylindrical seeds of diameter D0 = 40 Å. The simulation box
has a side of about 600 Å.

anisotropies are thought to be dependent. This dependency has
been poorly investigated [5,6]. Figure 8 demonstrates clearly
that the fourfold and twofold morphology is controlled by
the capillarity γ (n̂) anisotropy. When only μ(n̂) anisotropy
is activated [μ(n̂)/μ0 = 1], the sample keeps almost its initial
cylindrical shape. We conclude that the growing seed is shaped
rather by the anisotropic tension γ (n̂) that acts on the SL in-
terface. μ(n̂) anisotropy likely favors the existing morphology
but does not generate it. This conclusion is not obvious to
draw when using MD tools alone, as illustrated by the study
[19] of growth simulations based on another Fe potential. The
authors assigned the observed fourfold morphology to the μ(n̂)
anisotropy.

Our choice of the fine-grained density profile to characterize
the SL interface was motivated by the idea to identify a possible
interface-width anisotropy. The nature and extension of a SL
interface remains a controversial issue in condensed-matter
physics. Various order parameters expected to distinguish
crystalline from liquid environment have been proposed in
the literature (see [20] and references therein). Linking an
atomistic method (MD) to a theoretical model (PF), where
the interface thickness enters explicitly as a parameter, offers
a physically reasoned way to say whether an order parameter
is a good candidate for an objective, orientation-dependent,
delimitation of the interface. We postpone this analysis to a
future work since we realized that treating this issue would
go beyond the scope of this paper. In order to account for a
possible width anisotropy, as suggested by the fine-grained
density representation, it is not enough to let ε depend on the
interface orientation in the evolution equation (3). We have
to start at the level of the entropy functional of Eq. (2). The
dependence of ε(n̂) of ∇φ (since n̂ = ∇φ

|∇φ| ) has to be taken
into account when applying the variational principle to derive
the evolution equations and when achieving the asymptotic
analysis of the sharp-interface limit.

B. Phase-field crystal

Instead of using spatially uniform or slow-varying phase
fields of the traditional PF approach, PFC uses a local time
average of the atomic density ρ(r). The free-energy functional
of a solid phase is minimized when the density field is periodic.
Any disturbance or topological defect of the lattice leads to an
increase of the free energy, capturing in this way information
which is inherent only to atomistic approaches. This enables
the PFC description to naturally incorporate anisotropy, crystal
grain orientations, dislocations, and other lattice defects. The
advantage of the PFC approach over the MD one is that,
per construction, it integrates atomic vibrations on timescales
many orders of magnitude larger than the time associated
with the Debye frequency. Therefore, it is possible for the
PFC methodology to work on diffusive timescales beyond a
μs. There are different formulations of the PFC model in the
literature [9]. We use the model of Jaatinen et al. [21] based
on an eighth-order fitting (EOF) of the two-body correlation
function of liquid. As reference, the authors used the system
described by the same MD model [10] in Sec. II A, which
allows us a direct comparison of our MD and PFC calcula-
tions. The authors showed that this PFC model reproduces
reasonable values of the crystal-melt interface energy γ , the

144105-6



CRYSTAL-MELT INTERFACE MOBILITY IN bcc Fe: … PHYSICAL REVIEW B 97, 144105 (2018)

TABLE III. Parameters of the PFC model after Jaatinen et al. [21].

ρ0 km a b C0 � EB us

0.0801 Å
−3

2.985 Å
−1

0.6917 0.0854 −49 11.583 38.085 0.72

SL coexistence gap, the bulk modulus, and the grain boundary
energy of bcc Fe.

Defining the dimensionless density deviation n(r) =
[ρ(r)−ρ0]

ρ0
, where ρ0 is a uniform reference density, the free-

energy functional can be expressed as (we use the notation of
[21])


F
[
n(r)

]
kBTρ0

=
∫ {

1

2
n(r)Ĉn(r) − a

6
n(r)3 + b

12
n(r)4

}
dr (8)

with the operator Ĉ = 1 − C(km) − �[ k2
m+∇2

k2
m

]
2 − EB[ k2

m+∇2

k2
m

]
4
.

We have C(k) = 1 − 1/S(k); km is the position of the
first peak of the static structure factor of liquid S(k).
The model parameters a, b, �, and EB are defined by
a = 3[2S(km)us]−1, b = 4[30S(km)u2

s ]−1, � = − 1
8k2

mC
′′
(km),

EB = C(km) − C0 − �. S(k) and us are obtained from MD
simulations of the same Fe model we use in this work [22].
The different parameters are listed in Table III. More details
can be found in Ref. [21]. This model delivers the equilibrium
coexistence densities nl = −0.025 and ns = 0.009 for liquid
and solid, respectively.

One-dimensional crystallization simulations are carried out
using a planar SL layer system similar to that in Sec. II A 1.
Pseudo-two-dimensional solidification is achieved using initial
cylindrical crystalline seeds, similar to the setup described in
Section II A 2. The initial liquid has a constant density, whereas
the crystal part has a periodic structure that we realize here
through the use of a one-mode approximation

n(r) = 4us(cos(qx)cos(qy) + cos(qy)cos(qz)

+ cos(qz)cos(qx)), (9)

where us and q are the amplitude and the wave number,
respectively, of the density fluctuations around n = 0. We
start with an initial supersaturated liquid by setting its density
n higher than that deduced from the coexistence condition:
n > nl = −0.025. We recall that growth by PFC approaches
is driven by a density gradient that builds in the liquid and
becomes flatter with time. This situation differs from our
simulations of Fe growth by MD where the density remains
homogeneous in liquid and solid. This aspect has to be kept in
mind when comparing PFC with MD results. Concerning the
simulation methodology, growth driven by a density gradient
requires to choose the simulation-box size along the growth
direction large enough to avoid (otherwise minimize) the
finite-size effects.

The PFC dynamics is assumed to be conservative and driven
to minimize the functional of Eq. (8):

∂n

∂t
= M∇2 δ(
F)

δn

= M∇2

(
n(r)Ĉn(r) − a

2
n(r)2 + b

3
n(r)3

)
. (10)
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FIG. 9. Interface position versus time by PFC for the reduced
densities n1 = −0.00123, n2 = 0.0048, and n3 = 0.0131. The data
are fitted according to Eq. (11) (dashed lines).

The mobility parameter M sets the timescale and depends, in
general, on local density. For simplicity, we assume M to be
constant and set it to the value of the diffusivity in liquid Fe near
the model melting temperature Tm: M = 10−9m2/s. Equation
(10) is solved on a periodic regular grid using the semi-implicit
spectral method suggested by Tegze et al. [23]. The time and
spatial steps are 
t = 0.1 ps and 
x = 
y = 
z = a/10 �
0.29 Å, respectively.

Figure 9 depicts the position-time relationship of the (100),
(110), and (111) SL interfaces during one-dimensional crys-
tallization. The data are fitted to the function

z(t) = C(t − t0)m + z0. (11)

The exponent m is found to be in the range of 0.71–0.74 for
all orientations and densities of Fig. 10. The latter exhibits
the density-dependent growth velocity after t ′ = 1 ns. The
quotients ε1 = V100/V110 and ε2 = V100/V111 (inset) give an
idea about the growth anisotropy. We obtain similar ε1 and ε2
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FIG. 10. Growth velocity versus density after t ′ = 1 ns, obtained
by the derivative of the fitting functions in Fig. 9. Inset: anisotropy
coefficients ε1 and ε2 (see text) versus density n.
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FIG. 11. PFC simulation snapshot during growth of a cylindrical
crystalline sample. The initial seed has a diameter of 24 bcc cells
(about 70 Å) and is indicated by the red disk at the center. Liquid
density: n = n3 = 0.0131. Crystal orientation: cylinder axis parallel
to [100] (compare with top of Fig. 4). The sample has a thickness
of three bcc elementary cells perpendicular to the figure plane. The
atomic structure can be resolved by zooming in on the figure.

curves for other t ′ values or when defining the anisotropy as
the quotient of the C coefficients in Eq. (11) (this definition
was used in the PFC studies [24,25]).

The deviation of the growth kinetics from a square-root
behavior (i.e., z ∝ √

t − t0) is somewhat unexpected owing
to the fact that PFC models deal with a diffusion-controlled
growth (driven by density differences). The PFC model in
Ref. [25], which is based on a different parametrization of the
free-energy functional of Eq. (8), predicts indeed an exponent
m = 1

2 . We notice that a deviation of a diffusion-controlled
growth from a square-root law is, though, not that strange. In
our earlier work [4] regarding the growth kinetics of bcc Zr
from a Ni-supersaturated NiZr melt, we observed a variation
of the exponent m from 0.5 to 0.7 with increasing undercooling.
This case was found to correlate with a confinement effect of
the liquid through the crystalline wall, leading to a diffusion
drop at the SL interface.

As mentioned in the Introduction, the comparison of PFC
with MD and PF can be considered here only for relative
quantities, like anisotropy parameters, owing to the different
growth kinetics in play, that is, diffusion- versus collision-
controlled one, respectively. A comparison of the insets of
Figs. 3 and 10 shows that the PFC model used here agrees
better with the MD results regarding the growth anisotropy
than does the PFC model of [25]. The latter yields ε1 ≈ 2 and
ε2 < 1 for a bcc structure. The MD/PFC agreement in our case,
concerning the dynamical properties ε1 and ε2, corroborates the
trend shown by Jaatinen et al. in Ref. [21] for thermodynamic
and elastic properties of bcc Fe.

FIG. 12. As in Fig. 12 for a cylinder-axis orientation along [110]
(compare with bottom of Fig. 4).

Similar to [25], the solidification velocity is found to
increase continuously with n in Fig. 10. We miss here a
decrease of the curve slope with increasing n. This decrease
is known for velocity-versus-undercooling curves, similar to
Fig. 3. It follows from the competition between an increasing
driving force and a decreasing diffusion as T decreases [26].
The absence of such a behavior in Fig. 10 and in Ref. [25] is
likely due to the simplified assumption of a constant (density-
independent) diffusivity M in Eq. (10).

Solidification results by PFC for cylindrical seeds are
illustrated by Figs. 11–13. As in Sec. III A, we considered the
orientations [100] and [110] of the cylinder axis. These PFC
simulations reproduce the fourfold morphology we observed
by MD in Fig. 4. The ratio of the growth rates along (100) and
(110) fronts is found to be about 1.06 for both cylinder-axis
orientations, which is comparable to the growth anisotropy by
MD and PF calculations in Fig. 5 (inset). This is consistent with
the fact that MD and the EOF PFC model yield comparable γ

anisotropies [21].

IV. CONCLUDING REMARKS

Our study illustrates how the PF approach is able to
reproduce different aspects of the growth kinetics deduced
from MD simulations when the key physical parameters (struc-
tural, thermodynamic, and kinetic) are provided by the latter
method to construct the former one. We showed the MD-PF
consistency in the case of collision-limited growth for pure Fe.
This concerns the growth velocity and growth anisotropy of
pseudo-two-dimensional cylindrical seeds. These conclusions
extend the ones we did earlier for diffusion-limited growth
under chemical nonequilibrium in the binary alloy NiZr [3].
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FIG. 13. PFC results of the SL interface position 
R(t) along
the [100] and [110] directions for a cylinder axis parallel to [100]
(lower two curves) and to [110] (upper two curves). All curves should
start at the origin. For clarity, the upper two curves have been shifted
vertically.

We revisited the kinetic coefficient μ of pure Fe to account
for thermostat issues that have been neglected before and which
led to a significant underestimate of μ by almost a factor of 2.
Furthermore, a special care has to be taken when determining
the velocity of curved SL interfaces under isothermal condi-
tions. In order to avoid the formation of temperature-gradient
artifacts at the interface during solidification, we divided the
simulation box into a lattice of rectangular cells and maintained
each one of them at the same target temperature T . The volume
of one cell must be large enough to describe T properly. After
the MD model has been mapped to the PF one, this latter
offers the possibility for analyzing the separate contribution of
each anisotropy to the dynamics of SL interface morphology.
We found, for instance, that the fourfold growth shape of the
cylindrical seed is controlled predominantly by the capillary
anisotropy of γ (n̂). Notice that γ (n̂) and its anisotropy in
Table II has been calculated from the density-fluctuation
profile (i.e., capillarity) of plane SL interfaces with different
orientations [8]. These fluctuations at atomic level, present
naturally in MD simulations, are absent in the PF model where

the γ (n̂) anisotropy is incorporated in a phenomenological
way. Linking PF to MD modeling permits, on the one hand,
to assess this phenomenological construction. On the other
hand, it shows that our MD simulations are capable to predict
correctly interface-morphology symmetry and dynamics up to
∼0.15 μm.

We showed further that the Fe PFC model of Jaatinen et al.
[21] reproduces well the growth anisotropy and morphology
deduced by MD simulations. This MD/PFC agreement regard-
ing a dynamical property extends the trend observed in [21]
for thermodynamic and elastic properties of bcc Fe. We notice,
however, that this agreement is not obvious in view of the fact
that PFC describes a diffusion-controlled growth, while MD
simulations model a collision-limited solidification process
with a constant velocity. Moreover, Tegze et al. [27] pointed
out that MD models represent materials of low melting entropy
leading to an extended SL interface (4–5 atomic layers),
whereas PFC tends to realize a sharp interface. Nevertheless,
our result confirms the possibility of the EOF model to be
used in PFC studies where the quantitative accuracy of the
results is desired [21]. Such a possibility could be useful when
we know that the PFC approach generally lacks accuracy
in reproducing physical properties of the system to which
the energy functional has been fitted [28]. We notice that
a better quantitative comparison of MD and PFC growth
modeling would be, in principle, possible when performing the
MD simulations in a NVT (instead of NPT) thermodynamic
ensemble which is the natural ensemble of PFC methods. The
growth kinetics would be then diffusion controlled, in MD as
well as in PFC simulations.

Our study illustrates how atomistic MD modeling, with the
increasing computational capabilities, is progressing beyond
its status as “parameters provider” to become a framework
for validating the accuracy of solidification theories and phe-
nomenological modeling approaches.
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