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Abstract

In this thesis, we study route planning algorithms designed to fulfill the specific re-
quirements of battery electric vehicles. First and foremost, battery electric vehicles
typically employ a rather limited cruising range. Given that charging the battery is
time consuming and charging stations are scarce, careful route planning that prevents
battery depletion during a ride is of utmost importance. Therefore, we propose algo-
rithms for quickly finding routes that help the user in reliably reaching a destination
before the battery fully depletes. Moreover, we introduce algorithmic tools for fast
and accurate visualization of the remaining cruising range of a vehicle.

Following the paradigm of Algorithm Engineering, our studies include algorithm
design based on realistic models, thorough analysis of their complexity, and comprehen-
sive experimental evaluation of all proposed techniques. As a result, our approaches
achieve good performance in practice, as we demonstrate on a large real-world instance
representing the road network of Western Europe.

The thesis is divided into three major parts. In the first part, we aim at routes
that minimize energy consumption in order to maximize the vehicle’s cruising range.
Algorithmic challenges entail handling negative edge costs (to model the ability of
recuperating energy while driving) and constraints imposed by the vehicle’s battery
capacity. We show that all problems considered in this part allow for efficient solutions,
not only in theory, but also in practice when executed on large-scale instances.

The second part deals with Constrained Shortest Path problems, where the objective
is to find the fastest route on which a desired target can be reached. We consider two
generalizations of this basic problem, by integrating charging stops to charge a battery
en route and adaptive speeds that allow for additional energy savings by passing speed
recommendations to the driver (or to an adaptive cruise control unit). We develop
algorithms to solve these challenging, N#-hard problems optimally and carefully
engineer them to enable fast solutions in practice.

Finally, we develop efficient techniques for accurate visualization of the remaining
range of a battery electric vehicle on a road map, which helps a user in identifying
reachable targets. This results in two major subproblems: the computation of the
reachable subnetwork and the efficient representation of the reachable area for the
actual visualization. For each of these subproblems, we propose a plethora of new
techniques that outperform previous approaches in terms of both result quality and
running time.
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Introduction

Electromobility is a cornerstone of sustainable transportation. During recent years,
battery electric vehicles (EVs) have become widely available, promising zero local
emissions and independence of fossil fuels. Their highly efficient powertrains help
keeping energy consumption low, especially in city traffic. Nevertheless, EVs are still
a rare sight on streets today. This can be partially explained by the limited battery
capacity of most vehicles, paired with the facts that charging stations are much rarer
than gas stations and recharging is time consuming. Consequently, drivers tend to
focus solely on preventing battery depletion during a ride. This fear of getting stranded,
often referred to as range anxiety in the literature [Fra+12, Fra+16, THS09], remains a
major restraining factor in the consolidation of EVs.

On the other hand, the past decade has seen a great amount of research in the area
of route planning in transportation. A plethora of novel approaches emerged, enabling
the computation of provably shortest routes in large-scale road networks within
milliseconds and below [Bas+16]. As a result, interactive web-based route planning
and onboard navigation have become a commodity for millions of users. However, most
services focus on the requirements of conventional vehicles using internal combustion
engines. When designing such route planning applications for EVs, careful guidance
of the user is crucial to overcome range anxiety. Therefore, energy consumption has
to be incorporated accurately in routes that are proposed to users. Given that charging
stations are scarce, time-consuming charging stops need to be planned in advance.
Besides a limited cruising range, there are other substantial differences to vehicles
run by combustion engines, such as the ability to recuperate energy when braking.
These aspects have to be reflected in any kind of route planning application for EVs.
Aside from the demand for realistic models of energy consumption, driving behavior,
and environment, this raises numerous algorithmic challenges. In addition to travel
time, route planning algorithms for EVs must explicitly take energy consumption into
account to provide adequate solutions. Users may then ask for energy-efficient routes,
routes with constraints on both travel time and energy consumption, or a visualization
of the remaining cruising range.

In this work, we study route planning algorithms that integrate the above modeling
considerations to capture the characteristics and needs of EVs. Thereby, route planning
applications could assist drivers in many ways to prevent range anxiety and increase
driving comfort and efficiency. Computing routes with low energy consumption,
possibly subject to time constraints by the user, could help in maximizing the range of
an EV. To save energy, onboard navigation might pass instructions regarding speed
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Algorithm

Engineering

Figure 1.1: The concept of Algorithm Engineering, following
Sanders [San09] and Miiller-Hannemann and Schirra [MS10].

and driving style to the driver or, going even further, directly to adaptive speed control
of a vehicle. If recharging en route is unavoidable to reach the desired destination,
route planners could propose charging stops that minimize the overhead in travel time,
taking possible detours to reach the charging station and charging time into account.
Furthermore, they should instruct the user on how much energy needs to be charged in
order safely reach the destination without wasting time. Finally, accurate estimation of
the remaining cruising range together with an appropriate range visualization would
assist the user in identifying reachable destinations, thereby further reducing range
anxiety. Ideally, the navigation system of an EV supports all these features. It turns
out that traditional route planning techniques do not cover any of them in an adequate
mannetr, as they focus solely on minimizing travel time of a journey. Therefore, novel
approaches are required to address the above requirements properly. This involves the
consideration of realistic models of energy consumption and charging infrastructure.
At the same time, algorithmic solutions must be fast enough in practice to enable
interactive applications.

This thesis introduces algorithmic ingredients of the ideal EV route planning system
described above. In particular, we develop algorithms that compute energy-optimal
routes, time-constrained shortest paths, routes via charging stops, and accurate visu-
alization of the remaining vehicle range. In doing so, we aim at solutions with good
performance, not only in theory, but also in practice when executed on large, realistic
inputs. We follow the principle of Algorithm Engineering [MS10, San09, SW11], where
algorithm design is followed by theoretical analysis and implementation. Insights
from experimental evaluation on real-word instances may then trigger a new cycle
of refining design, analysis, implementation, and experiments; see Figure 1.1 for an
illustration of this well-established paradigm. As a result, algorithmic approaches
presented in this work are substantiated by theoretical guarantees on result quality
and worst-case running time, but also by experiments in challenging, realistic settings.
The thesis is arranged into three major parts, dealing with energy-optimal routes, time-
constrained path computation, and range visualization, respectively. Each algorithmic
part is followed by an extensive experimental study, to demonstrate the practicability
of our approaches. In the following Section 1.1, we highlight the key contributions of
this thesis in more detail. Afterwards, Section 1.2 outlines the remainder of this work.



Main Contributions

1.1 Main Contributions

The major contributions of this thesis are separated into three parts. First, new
approaches for energy-optimal routes are presented in detail in Chapter 4. Second,
Constrained Shortest Path algorithms that broaden the state-of-the-art are discussed
in Chapter 5. Third, we propose novel algorithms for efficient range visualization in
Chapter 6. We briefly summarize the main results of each of these parts in turn.

Energy-Optimal Routes for Battery Electric Vehicles. As our first contribution,
we deal with the important algorithmic problem of computing routes that minimize
energy consumption of an EV. Any such approach must cope with specific properties.
For example, recuperation (i. e., regenerative braking) enables conversion of kinetic en-
ergy, so that it can be stored in the battery while driving. This corresponds to negative
costs in terms of energy consumption. Moreover, battery capacity constraints impose
limits on the state of charge (SoC) of an EV, restricting its range and the amount of
energy that can be recuperated. These restrictions can be captured by profiles modeling
the interdependence of battery constraints and energy consumption as a special form
of piecewise linear functions [EFS11]. These functions are relevant in various query
scenarios and a crucial ingredient of speedup techniques for energy-optimal routing.
On the theoretical side, we prove that such profiles have linear complexity, much in
contrast to conceptually similar profiles in time-dependent routing [FHS14]. We exam-
ine different methods to handle negative edge costs, such as potential shifting [Joh77],
which enable variants of Dijkstra’s algorithm and a stopping criterion for searches.
We also show how these methods facilitate efficient profile search.

Furthermore, we consider energy-optimal routes with intermediate stops at charging
stations, to recharge the battery. Unlike previous studies [GP14, SBW12, Sto12a], we
do not assume that using a charging station always results in a fully recharged battery.
Instead, we allow the charging process to be interrupted beforehand to save energy.
We show that the problem can be solved by a label-setting algorithm resembling
bicriteria search [Han80]. Building upon our theoretical findings, we also derive a
conceptually simple polynomial-time algorithm. We propose a heuristic variant that
is easy to implement, and carefully integrate it with the Contraction Hierarchies (CH)
algorithm [EFS11, Gei+12b] and A* search [HNR68].

Moreover, exploiting multilevel overlay graphs [JP02, SWZ02], we extend the Cus-
tomizable Route Planning (CRP) approach of Delling et al. [Del+17] to our scenario
in a sound manner. This includes the integration of profile search into preprocessing
and the nontrivial adaptation of bidirectional search to respect battery constraints.
Thereby, we achieve fast (metric-dependent) preprocessing of the whole network,
allowing flexible updates due to, e. g., hourly weather forecasts or refinements of the
underlying consumption model (as is necessary when machine learning approaches
are used to improve the model [GM17, Mas+14]). We propose several query algorithms,

Section 1.1
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from which the most sophisticated variant simultaneously, and in parallel, employs a
backward search that helps bound the forward search in order to “guide” it toward the
target, while respecting battery constraints.

In a thorough experimental study, we demonstrate that our customizable method
exhibits faster query times than known approaches, while improving metric-dependent
preprocessing time by three orders of magnitude. Regarding the more complex setting
involving charging stops, our practical algorithm formally drops correctness, but
always finds the optimal solution in our tests. It computes even long-distance routes
with charging stops in less than 300 ms. We also show that our speedup techniques
scale excellently with the available cruising range. This makes our algorithms robust
to future developments in increasing battery capacities.

Constrained Shortest Path Problems. Our second major contribution considers
different variants of Constrained Shortest Path (CSP) problems [HZ80] for EVs. Since
battery capacities are limited, fastest routes are often infeasible. Instead, users are
interested in fast routes where the energy consumption does not exceed the battery
capacity. For that, users may drive below the posted speed limits to find attractive
solutions that save energy, but still use major roads (such as motorways). Hence,
route planning should provide both path and speed recommendations. Also, stops at
charging stations may be inevitable. Careful route planning that incorporates charging
stops is crucial in this case, as charging stations are scarce and recharging is time
consuming. We address two problem settings that are relevant in this scenario.

First, we introduce an N'P-hard variant of the CSP problem that includes realistic
models of charging stops for EVs. We are interested in routes that, while respecting
battery constraints, minimize overall trip time, including time spent at charging sta-
tions. Existing approaches presume that recharging takes constant time and always
results in a fully charged battery to simplify the problem [GP14, SBW12, Sto12a]. By
contrast, our solution is flexible enough to handle different types of stations accurately,
such as battery swapping stations, superchargers, and regular stations with various
charging powers. In particular, we allow partial recharging to save time.

Second, we take adaptive speeds into consideration, allowing drivers to deliberately
reduce speed to save energy. Hence, route guidance should incorporate speed recom-
mendations. To tackle the resulting N #-hard optimization problem [HZ80], previous
works trade accuracy of the underlying model or correctness for practical running
times [Fon13, GP14, HF14]. Instead, we present a novel algorithmic framework to
compute optimal constrained shortest paths that uses realistic physical models, takes
adaptive speeds into account, and respects battery constraints, i. e, ensures that the
SoC at the source suffices to reach the target.

Both settings described above, namely, shortest feasible paths including charging
stops or adaptive speeds, result in challenging N#-hard problems. As a first step, we
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solve them with (exponential-time) extensions of the well-known bicriteria shortest
path algorithm [Han80]. In the first problem setting involving charging stops, the
efficient modeling of infinitely many combinations of charging durations at different
stations poses a notable challenge. We resolve it by identifying, during the search,
a finite number of choices that provably include the optimal one. When integrating
adaptive speeds, we obtain, for each road segment, a function that maps travel time to
energy consumption based on a realistic consumption model. We derive operations
to efficiently link such functions in order to get a functional representation of the
energy consumption subject to time spent on a route—a crucial ingredient to our basic
algorithm for solving the problem.

To improve running times of the basic approaches, we propose speedup techniques
based on A* search [HNR68] and CH [Gei+12b], which are naturally combined for
further speedup. A particularly challenging aspect is the computation of shortcuts
in the presence of adaptive speeds, as they must store bivariate functions to capture
the constraints of our model. For faster queries, we propose heuristic approaches that
offer high (empirical) quality.

A comprehensive experimental evaluation on detailed and realistic data shows that,
even though we are dealing with N'P-hard problems, careful engineering and the
incorporation of speedup techniques allow us to optimally solve both problems in about
a minute on average, even for long-distance queries on continental road networks. On
sensible instances, queries with realistic journey duration are answered even faster,
within seconds and below. Our heuristic methods provide high-quality solutions,

while query times drop to tens of milliseconds, enabling even interactive applications.

Thereby, our approaches clearly outperform and broaden the state-of-the-art.

Range Visualization. The third chief contribution concerns algorithms to visualize
the remaining cruising range of an EV. In a more general setting, isocontours in
road networks represent the area that is reachable from a source within a given
resource limit. Besides range visualization for EVs, there is a wide range of other
practical applications for isocontour visualization, such as urban planning [GBI12] and
geomarketing [Efe+13b]. We study the problem of computing accurate isocontours in
realistic, large-scale networks. Efficient performance of our techniques is both proven
in theory and demonstrated in practice on large, realistic instances.

As a first subproblem, we deal with the identification of the region in range from a
given source within a certain resource limit (e. g., the current SoC). There has been little
research on fast algorithms for large-scale inputs. Also, existing approaches [EP14,
GBI12] tend to compute more information than necessary in our scenario. Using a
more compact representation of the reachable subgraph, we propose several techniques
that enable fast computation of its boundary and are easy to parallelize. We describe
a new algorithm based on CRP [Del+17, DW15] and a faster variant of the best

Section 1.1
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available technique isoGRASP [EP14], exploiting that not all information computed
by the original method is required for visualization purposes. Then, we introduce
novel approaches that combine graph partitions with variants of PHAST [Del+13b], a
technique originally designed for fast computation of batched shortest paths. We also
discuss parallelization for further speedup.

Regarding actual visualization, we propose isocontours represented by polygons
that separate reachable and unreachable components of the network. To allow for
fast rendering in practice, we aim at minimizing the number of segments of these
polygons. Since the resulting problem is not known to be solvable in polynomial time,
we introduce several heuristics that run in (almost) linear time and are simple enough
to be implemented in practice. All approaches compute isocontours that are exact in
the sense that they contain exactly the subgraph reachable within the given resource
limit, while aiming at a small number of segments. A key ingredient is a new practical
linear-time algorithm for minimum-link paths in simple polygons.

Experiments in a challenging realistic setting demonstrate excellent performance of
our algorithms in practice. Our portfolio of techniques for computing the reachable
subgraph offers different tradeoffs in terms of customization time, space require-
ments, and query performance. All of them compute the reachable subgraph in less
than 100 ms, significantly faster than previous methods. Parallelization reduces run-
ning times further, to only a few milliseconds. As for isocontour visualization, our
heuristics compute near-optimal solutions within tens of milliseconds, even for long
ranges. In total, we achieve query times that enable interactive range visualization for
online map services.

1.2 Thesis Outline

We briefly outline the structure of the remainder of this thesis. We point out that parts
of this work appeared in previously published scientific journals, proceedings, and
reports [Bau+13a, Bau+13b, Bau+15a, Bau+15b, Bau+16a, Bau+16b, Bau+16¢, Bau+16d,
Bau+17a, Bau+17b, Bau+18]. We also indicate these publications below.

Chapter 2 provides a thorough overview of related work. We distinguish practical ap-
proaches for classic problem settings in route planning, discussed in Section 2.1,
and more recent works discussing models and algorithms geared towards the
requirements of EVs, covered in Section 2.2.

Chapter 3 formalizes basic concepts and recaps known algorithms this thesis builds
upon. We introduce necessary notation from graph theory (Section 3.1) and
computational geometry (Section 3.2). In Section 3.3, we describe variants of the
shortest path problem, Dijkstra’s algorithm, and relevant speedup techniques.
Section 3.4 presents the experimental setup used in our evaluations.
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Chapter 4 considers energy-optimal routes for EVs. In Section 4.1, we formalize the
notion of battery constraints, SoC profiles, and energy-optimal routes. Further,
we investigate the complexity of these profiles. Section 4.2 discusses different ba-
sic approaches to compute energy-optimal paths or profiles. Section 4.3 extends
the problem setting to routes with charging stops. We examine the complexity
of the resulting problem and provide algorithmic solutions. Section 4.4 presents
a speedup technique that quickly computes energy-optimal routes, but at the
same time allows frequent changes in the cost function. Finally, Section 4.5
contains our experimental study, while Section 4.6 concludes the chapter. This
chapter is based on joint work with Julian Dibbelt, Thomas Pajor, Jonas Sauer,
Dorothea Wagner, and Tobias Ziindorf [Bau+13a, Bau+13b, Bau+17b].

Chapter 5 investigates CSP problems for EVs. We formally introduce the basic prob-
lem setting in Section 5.1. Section 5.2 extends this problem to routes via charging
stations. We present algorithms and speedup techniques to solve it optimally, as
well as heuristics. Section 5.3 considers another generalization of the basic prob-
lem, by taking adaptive speeds into consideration. Again, we discuss techniques
to solve the resulting setting, either optimally or by heuristic means. Our exper-
imental study follows in Section 5.4. Section 5.5 closes with final remarks. This
chapter is based on joint work with Julian Dibbelt, Andreas Gemsa, Dorothea
Wagner, and Tobias Zindorf [Bau+15b, Bau+17a]. It uses insights from joint
work with Julian Dibbelt, Andreas Gemsa, Lorenz Hiibschle-Schneider, Thomas
Pajor, and Dorothea Wagner [Bau+14, Bau+16e].

Chapter 6 deals with the fast computation of isocontours to visualize the range of
an EV. The problem and our general approach are described in Section 6.1. Fol-
lowing sections tackle different steps of this approach, namely, computing the
subgraph that is reachable from a given position (Section 6.2), the transformation
of this subgraph to a geometric representation of its boundary (Section 6.3), and
algorithms to compute range polygons for an important special case (Section 6.4)
and in the general case (Section 6.5). We present experimental results in Sec-
tion 6.6 and draw a conclusion in Section 6.7. This chapter is based on joint work
with Thomas Blasius, Valentin Buchhold, Julian Dibbelt, Andreas Gemsa, Ignaz
Rutter, Dorothea Wagner, and Franziska Wegner [Bau+15a, Bau+16a, Bau+16b,
Bau+16¢, Bau+16d, Bau+18].

Chapter 7 concludes the thesis with a brief summary of the key results and insights
in Section 7.1. Finally, we provide an outlook on interesting and promising
directions of future work in Section 7.2.







Literature Overview

This chapter gives a comprehensive overview of existing work related to this thesis.
We review existing algorithmic approaches towards route planning in general and for
EVs in particular. We begin with known techniques designed for classic shortest path
problems in road networks (with vehicles running on combustion engines in mind)
in Section 2.1. We focus on practical approaches that achieve good (empirical) query
performance by means of preprocessing. For a more complete literature overview,
we refer the reader to recent survey articles [Bas+16, FSR06, Som14]. Afterwards,
Section 2.2 summarizes algorithmic publications in the context of route planning
for EVs. We discuss literature related to the major aspects of this thesis, namely,
the computation of energy-optimal routes, constrained shortest paths, routes with
charging stops, and range visualization.

While the focus of this chapter is on route planning algorithms for (single) EVs,
we remark that other lines of research deal with aspects of electromobility that have
no immediate ties to our work, such as reasonable placement of new charging sta-
tions [APV16, FNS15, FNS16, Hes+12], the integration of EVs into car sharing applica-
tions [Bra+16], as well as management and routing of fleets of EVs [PJL16, YHZ16].

2.1 Speedup Techniques

Route planning in road networks in general has seen substantial algorithmic progress
over the past years. Classic route planning approaches make use of a graph-based
representation of the underlying transportation network, where scalar edge weights
correspond to, e. g., travel times. A shortest path is then found by Dijkstra’s well-
known algorithm [Dij59]. However, despite its low asymptotic complexity, Dijkstra’s
algorithm is too slow in practice when run on large, realistic input. Therefore, a
great amount of research has focused on improving its practical performance. In
particular, speedup techniques [Bas+16] accelerate online shortest-path queries with
data preprocessed in an offline phase, with different benefits in terms of preprocessing
time and space, query time, and simplicity. Most were initially developed for static
edge costs representing travel times in a road network and later extended to more
complex scenarios, such as time-dependent edge costs.

Bidirectional search [Dan63, Dre69, Nic66] improves the running time of Dijkstra’s
algorithm by simultaneously searching from both the source and the target vertex.
Another important concept is goal-directed search, which attempts to “guide” the
search towards the target. In A* search [HNR68], this is achieved by deriving estimates
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on the distance to the target based on, e.g., Euclidean distance [Poh71, SV86]. A
successful variant, ALT (A*, Landmarks, Triangle Inequality) [EP13, GH05, GW05],
obtains good potentials from precomputed distances to selected landmark vertices.
In Arc Flags [Hil+09, Lau04, Moh+06], on the other hand, the graph is partitioned
into multiple regions. Precomputed flags at edges indicate whether they are contained
in at least one shortest path to a specific region. In a query, this enables Dijkstra’s
algorithm to prune the search at edges without a set flag for the target cell.

Other techniques use precomputed distances between important vertices for faster
queries. Many employ overlay edges or shortcuts that maintain shortest path distances,
allowing the search to skip parts of the graph. In Reach [GKW09, Gut04, MCB14],
each vertex stores the maximum length of (the shorter end of) a shortest path passing
through that vertex, called its reach value. Based on this information, the search can
be pruned at vertices with low reach value. Transit Node Routing (TNR) [ALS13,
Bas+07, BFM09] uses a distance table between a subset of important vertices for
speedup. In Hub-Based Labeling (HL) [Abr+11, Abr+12b, AIY13, Coh+03, Del+14a,
Del+14b, Gav+04], each vertex stores a set of hub vertices, together with corresponding
distances. The distance between arbitrary pairs of vertices is obtained from the
intersection of their hubs. Contraction Hierarchies (CH) [DSW16, Gei+12b] iteratively
contract vertices in increasing order of (heuristic) importance during preprocessing,
maintaining distances between all remaining vertices by adding shortcut edges where
necessary. The CH query is then bidirectional, starting from source and target, and
proceeds only from less important to more important vertices on the original graph
augmented with shortcuts. Multilevel Dijkstra (MLD) [Del+09, HSW09, JP02, SWW00,
SWZ02] adds shortcuts between separators of a multilevel partition of the input graph.
Queries run on an overlay graph utilizing these shortcuts and the subgraphs of the
original graph induced by cells containing the source and the target.

Combining CH and ALT, the technique Core-ALT [Bau+10] contracts all but the
most important vertices (e. g., the top 1 %), performing ALT on the remaining core graph.
This approach can also be adapted to more complex scenarios, such as edge constraints
that model, e.g., the maximum allowed height or weight of a vehicle [Gei+12a].
Combinations of other aforementioned techniques are possible as well, typically by
integrating a goal-directed algorithm (ALT or Arc Flags) with an approach that employs
precomputed distances, such as Reach [Bau+10, GKW09], TNR [Bau+10], CH [Bau+10,
BD09], or MLD [EPV15, Hol+06].

Dynamic and Time-Dependent Route Planning. To enable relatively fast inte-
gration of (local) traffic updates, dynamic variants of CH [Gei+12b], ALT [DW07], and
Arc Flags [DAn+12] have been studied. Going even further, more recent techniques
based on CH [DSW16], ALT [EP13], and MLD [Del+17] were developed that allow
an additional customization phase after preprocessing, providing fast updates of the
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whole network to quickly incorporate global traffic information or user preferences. In
particular, a recent variant of MLD called Customizable Route Planning (CRP) [Del+17]
is explicitly designed to work with arbitrary metrics and is capable of integrating new
cost functions within seconds and below. Applying the same concept to CH, Customiz-
able Contraction Hierarchies (CCH) are introduced by Dibbelt et al. [DSW16]. As an
important ingredient of their preprocessing routine, all customizable approaches rely
on graph partitioning algorithms tailored to road networks, which compute partitions
with balanced cell sizes and small separators [Del+11b, HS16, S512, SS15].

While dynamic techniques aim at fast integration of unforeseen changes in traffic
or user-dependent modifications, time-dependent route planning takes historic knowl-
edge about traffic patterns into account. Scalar edge costs are replaced by (periodic)
functions, mapping departure time to travel time along an edge. Dijkstra’s algorithm
can be extended to earliest arrival (EA) queries in this scenario, computing the shortest
path subject to departure time at the source [CH66, Dre69]. A profile query asks for a
functional representation of travel time between two vertices for any departure time.
Such functions may have superpolynomial complexity [FHS14], but can be computed
by an (output-sensitive) variant of Dijkstra’s algorithm [Dea04, DW09]. Both EA
and profile queries can also be handled by (approximate) landmark-based distance
oracles [Kon+15, Kon+16, KZ16] and by extensions of speedup techniques mentioned
above, including ALT [DW07, Nan+12], CH [Bat+13], as well as (core-based) combina-
tions of different techniques [Del11, DN12]. Batz et al. [BS12] consider a variant of
time-dependent shortest paths, where costs are the sum of time-dependent travel times
and independent scalar costs (e. g., energy consumption). Even though this makes the
problem N'#-hard, a heuristic variant of time-dependent CH enables query times in
the order of milliseconds for beneficial instances. Finally, variants of Core-ALT [DN12]
and CRP [Bau+16f] allow dynamic changes in time-dependent graphs. Extensions of
the speedup techniques ALT [Kir+11], TNR [DPW09], HL [Del+15], and CH [Del+13a,
DPW15b] are also used in multimodal scenarios, which combine road networks with
time-dependent schedule-based public transit [Pyr+08].

Extended Scenarios. Although originally designed for point-to-point queries, both
CH and CRP can be adapted to other scenarios. Scanning the hierarchy of vertices in
the graph (induced by a vertex order or multilevel partition, respectively) in a final
top-down sweep enables one-to-all queries: PHAST (PHAST Hardware-Accelerated
Shortest Path Trees) [Del+13b] applies this technique to CH, GRASP (Graph Separators,
Range, Shortest Path) [EP14] to CRP. For one-to-many queries, RPHAST (restricted
PHAST) [Del+13b] and reGRASP (restricted GRASP) [EP14] restrict the downward
search in an initial target selection phase. Furthermore, many-to-many queries can
be handled by bucket-based approaches [Kno+07], which precompute pairs of target
and distance at vertices. This generic approach can be implemented by means of
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different speedup techniques [DGW11]. Other related query types investigated in the
literature include point-of-interest (POI) queries, best-via queries (shortest paths that
visit certain types of POIs), and k-nearest-neighbor (kNN) queries. Adaptations of the
speedup techniques ALT [EEP16, EPV15], HL [EEP15], CH [FWL12, Gei+10, Geill],
and CRP [DW15, EPV15] to these and other related query types exist. Bucket-based
approaches can be extended to such scenarios as well [Abr+12a].

The techniques mentioned above optimize a single criterion, typically travel time.
However, Dijkstra’s algorithm also extends to scenarios with multiple criteria, by utiliz-
ing multi-dimensional vertex labels that represent sets of Pareto-optimal paths [Han80,
Mar84]. Several variants exist, which employ different expansion strategies [CM82,
RE09, Skr00]. Pareto optimization is of particular relevance in the context of routing
in public transportation networks [Dib+13, DPW15a, MW06]. Although comput-
ing all Pareto-optimal paths is theoretically hard [G]79, Han80], it is often feasible
for such transportation networks in practice [MWO01]. For general networks, the
recent NAMOA* (New Approach to Multi-Objective A*) algorithm is an extension of
A” search to the multicriteria case [MP10, SW91]. This approach was also applied
to road networks [MM12] and later parallelized [EKS14, SM13]. Closely related CSP
formulations [HZ80, Zie01] ask to find a shortest path that does not exceed a certain
resource limit. CH was also adapted to CSP problems [Sto12b]. For the case that the
metric is a user-specific linear combination of multiple criteria, extensions of CH are
available as well [FLS17, FS13, GKS10].

2.2 Route Planning for Battery Electric Vehicles

We discuss known approaches that tackle problems in the context of route planning
for EVs. First, we survey publications dealing with algorithms that minimize energy
consumption on a trip. Often, these works also examine physical energy consumption
models. Second, we cover literature on more complex CSP settings, where both travel
time and energy consumption are constrained. Third, existing techniques that take
charging stops into account are summarized. Finally, we review related work on
estimation and visualization of the remaining cruising range of an EV.

Energy-Efficient Routes. Using energy consumption as routing metric may result
in negative cost values for some edges, though physical constraints prohibit negative
cycles. A label-correcting variant of Dijkstra’s algorithm can be applied to compute the
shortest path in such a scenario, however, it can have exponential running time [Joh73].
The well-known algorithm of Bellman-Ford-Moore [Bel58, For56, Moo59] handles
negative edge costs and has quadratic time complexity. Algorithms with better worst-
case bounds in the presence of negative edge costs exist for certain graph classes [CF14,
DI10, KMW10, Yen70]. Moreover, there are approaches for fast detection of negative
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cycles in graphs [Che+10]. To get rid of negative edge costs, one can use a technique
called potential shifting [Joh77]. This reenables Dijkstra’s (label-setting) algorithm.

Quite a few works explicitly consider EVs and attack the problem of computing
routes that minimize energy consumption. In this setting, algorithms must ensure
that the battery of an EV does not fully deplete, but energy is recuperated when
braking (e. g., going downbhill), though only up to the limited capacity. These additional
battery constraints have to be checked during route computation.

Artmeier et al. [Art+10a, Art+10b] handle negative costs with the Bellman-Ford-
Moore algorithm and label-correcting variants of Dijkstra’s algorithm. While the
former turns out to be too slow in practice, the latter achieves running times in the
order of seconds on a graph of subcountry scale in their implementation. Battery
constraints are checked explicitly in the algorithm during edge relaxation, without
affecting its asymptotic complexity. Using a simple physical energy consumption
model, Sachenbacher et al. [Sac+11] combine potential shifting (obtained directly from
the consumption model) with goal-directed search to get a factor of 3 speedup over
their previous label-correcting approach.

Eisner et al. [EFS11, Sto13] observe that battery constraints can be managed im-
plicitly, by assigning a consumption profile to each road segment, which maps current
SoC to actual consumption. Thereby, battery constraints are modeled as piecewise
linear functions, similar to approaches in time-dependent route planning [Bat+13,
Dre69, DW09], but mapping SoC to energy consumption instead. They show that the
complexity of the consumption profile of a path is constant. Further, they adapt CH
to compute energy-optimal routes in less than 50 ms on large graphs, making their
technique the fastest one available for this problem.

Integrating battery constraints into route planning via piecewise linear functions,
Schénfelder et al. [SLW14] consider profile search to compute optimal consumption for
every initial SoC between a given pair of vertices, along the lines of time-dependent
profiles [Dea04, DW09]. Variants of A* search and CH are proposed, the latter of which
has average running times of a few milliseconds on a subcountry-scale road graph. The
connection of energy-optimal routing and profile search to the more general concepts
of functional and algebraic routing is investigated in a follow-up work [SL15].

Kluge et al. [Klu+13, Klu11] consider energy-optimal routes in a time-dependent
scenario, using a detailed physical model and a mesoscopic traffic load model. They
propose a search based on Dijkstra’s algorithm. Dealing with a rather complex setting,
its running time is in the order of minutes, even on small inputs. Heuristic extensions
enable faster query times of less than a second.

Models of Energy Consumption. Another line of research covers realistic con-
sumption models and their effect on optimal route choices. Typically, these works do not
focus on routing algorithms. Masikos et al. [Mas+14] use machine learning to obtain
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consumption data from real EVs in field tests. Genikomsakis and Mitrentsis [GM17]
propose EV consumption models explicitly designed for route planning applications,
allowing efficient adaptation of model parameters. Neubauer [Neul0] analyses con-
sumption models and incorporates them into route optimization. Other works examine
the effect of model parameters (e. g., road types) and data accuracy (e. g., elevation
data samples) on energy consumption models [Asa+16, GAP15, Yao+13, ZY15].

Constrained Shortest Path Problems. Approaches discussed above optimize en-
ergy consumption as single criterion. However, energy-optimal routes often exhibit
disproportionate detours, as using minor, slow roads saves energy due to less air drag.
To reflect this tradeoff between travel time and energy consumption, other approaches
deal with variants of the N'#-hard CSP problem, computing routes that minimize
energy consumption of an EV without exceeding some time limit [Jur+14, LSS17,
Sto12a], or fastest routes that do not violate battery constraints [WJM13]. As a general
observation, problem complexity increases significantly in such multicriteria scenarios.
Many works drop correctness to achieve practical performance. Even in traditional
route planning (not explicitly designed for EVs), practical exact speedup techniques
are only known for basic problem variants [FS13, GKS10, Sto12b].

Several works extend bicriteria search [Han80, Mar84] to tackle the CSP problem
variants for EVs mentioned above. Liu et al. [LSS17] examine time-dependent energy
consumption and propose a label-setting variant of bicriteria search that handles the
constraints of their model. They apply a known approximation algorithm [PS08] and
a greedy heuristic to answer queries within milliseconds on a country-scale graph.
Wang et al. [WJM13] take dynamic traffic changes into account, proposing vehicle-
to-vehicle communication for context awareness during route computation. Energy-
optimal paths are computed with a variant of A* search. Similarly, Jurik et al. [Jur+14]
propose a simple bicriteria extension of A* search. However, neither of the two
aforementioned works evaluate running times in detail, as they focus mostly on
system architecture. Finally, Storandt [Sto12a] employs CH in a CSP scenario for EVs,
which yields provably optimal results and query times in the order of milliseconds on
subcountry-scale networks.

Works mentioned so far assume that the speed on a road segment is fixed in the
sense that it cannot be adjusted by the driver, neglecting the possibility to save a
significant amount of energy by reducing the driving speed (e.g., on motorways).
Flores et al. [Flo+15] consider the problem of planning driving speeds of an EV for
a given route in the network, i. e., they only plan speeds, but not the route itself.
Lv et al. [Lv+16] introduce a dynamic programming approach to optimally plan the
speed of a solar-powered EV. Designed for simulation purposes, it is too slow for
interactive applications. Fontana [Fon13] proposes a variant of the CSP problem with
the additional requirement of determining velocities for all road segments. Taking
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additional robustness criteria into account to deal with uncertainty in terms of time and
energy consumption, a heuristic approach based on Lagrangian relaxation [AMO93]
achieves reasonable running times (few seconds) on small graphs. Hartmann and
Funke [HF14] model tradeoffs as continuous functions, assuming the driver can go at
any speed up to a given speed limit per edge. They propose an extension of CH to
this scenario, but do not consider battery constraints. Their heuristic query algorithm
resorts to sampling the continuous tradeoff functions and requires minutes to answer
queries on large networks. Alternatively, two-phase paths consist of a fastest and
an energy-optimal subpath [GP14], where driving speed along edges is determined
by the type of the respective subpath. This allows for reasonably fast queries in
the order of seconds (without preprocessing), but results are not optimal in general.
Strehler et al. [SMS17] give theoretical insights for a CSP problem including variable
speeds for EVs. Most importantly, they develop a fully polynomial-time approximation
scheme (FPTAS) [Cor+09] for this problem. Unfortunately, the algorithm is slow in
practice. They also propose a heuristic search based on discretized speeds, but do not
evaluate their approach.

Other works consider multicriteria optimization in closely related fields. For ex-
ample, Sun and Zhou [SZ16] consider tradeoffs between monetary costs and travel
time in route planning for plug-in hybrid vehicles. De Souza et al. [SRB16] propose a
bicriteria shortest path search in traffic assignment. They investigate changes in the
traffic flow caused by EV route choices and also take congestion effects into account.
Finally, we note that speed planning for vehicles is relevant not only in the context
of route planning for EVs, but also in several other areas of transportation, such as
vehicle (fleet) routing [QE16], supply chain management [BM16], or aviation [XDP16].

Integrating Charging Stops. Without recharging, large parts of the road network
are simply not reachable by an EV, rendering long-distance trips impossible. (For
conventional cars, broad availability of gas stations and short refuel duration allow
to neglect this in route optimization.) Charging stations have been considered by
previous works, often under the simplifying assumptions that the charging process
takes constant time (independent of the initial SoC) and always results in a fully
recharged battery [GP14, LLS16, SF12, Sto12a, SZ16]. Then, feasible paths between
charging stations are independent of source and target, hence easily precomputed.
Routes with a minimum number of intermediate charging stops can then be computed
in less than a second on subcountry-scale graphs [SF12, Sto12a]. Smith et al. [SBW12]
consider a related problem (motivated by aircraft scheduling rather than route planning
for EVs), where certain edges in a network reset resource consumption.
Nevertheless, the simple model used in the above works only applies to battery swap-
ping stations, which are still an unproven technology and business model. For regular
charging stations, charging time depends on the desired SoC. Kobayashi et al. [Kob+11]
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distinguish slow and fast charging stations, but assume that the battery is always
fully recharged. They propose a heuristic search based on preselected candidates of
charging stations for a given pair of source and target. Their approach takes several
seconds on metropolitan-scale routes.

In reality, while nearly linear for low SoC, the charging rate decreases when ap-
proaching the battery’s limit. Thus, it can be reasonable to only charge up to a fraction
of the limit. Sweda et al. [SDK17] reflect this behavior by combining a linear with an
exponential function for high SoC. Liu et al. [LWL14] model charging between 0 % and
80 % SoC with a linear function, but recharging above 80 % SoC is suppressed altogether.
Neither approach was shown to scale to road networks of realistic size. Also, while
omitting the possibility of charging beyond 80% might be appropriate for regions well
covered with charging stations, it drastically deteriorates reachability in regions with
few stations, where recharging to a full battery can be inevitable [Mon+17].

Other works discretize possible charging durations to model different options [HB15,
SMS17, WJM13]. This enables search algorithms that closely resemble the well-known
bicriteria shortest path algorithm [Han80]. The FPTAS of Strehler et al. [SMS17]
mentioned above can also be extended to allow charging stops.

A technique based on dynamic programming to optimize a certain cost function on
a route with charging stops is given by Sweda and Klabjan [SK12], extending previous
approaches on refueling strategies for conventional cars [KMM11, LGR07]. Similarly,
Liang et al. [LLS16] use dynamic programming to solve different routing problems
for EVs, including the possibility of battery swaps along the way. Finally, charging
stops are considered in several works dealing with vehicle (fleet) routing problems
for EVs [Des+16, GS15, Mon+17, PCW 16, SSG14, SW18, Yan+15] or scenarios with
additional constraints [Adl+16, Ali+14], which are handled by means of mathematical
programming or heuristics. Aiming at complex scenarios (often involving optimization
for multiple vehicles), these approaches do not scale to large input instances.

Range Visualization. Visualization of the remaining cruising range of an EV is
another important tool to reduce range anxiety. The area reachable by an EV is
represented by its boundary, which is called isocontour.

Several works propose systems for accurate range estimation, but typically do not
set their focus on fast visualization of isocontours [CBH11, OP14a, OP14b]. A closely
related application is the computation of isochrones, where the considered resource
limit is time instead of energy consumption. There is a wide range of applications for
isochrones, including reachability analyses [Bau+08, Gam+11, GBI12, OMS00, SC07],
geomarketing [Efe+13b], as well as environmental and social sciences [IBG13].

Some existing algorithms deal with the subproblem of computing the part of the
network that is reachable within a given timespan. The MINE (Multimodal Incremental
Network Expansion) algorithm [Gam+11] is a search based on Dijkstra’s algorithm
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that computes the reachable part in multimodal networks (including road and public
transit). An improved variant, called MINEX (MINE with Vertex Expiration), reduces
space requirements [GBI12]. Both approaches work on databases and were later
extended to incremental searches, where multiple isocontours with different ranges
from a given source are computed [KSG14]. However, due to the lack of preprocessing,
running times are prohibitively slow, even on relatively small instances.

Regarding speedup techniques, the boundary of the reachable subnetwork is not
known in advance, but part of the query output. Hence, target selection (as in one-
to-many queries) [Del+13b, EP14] or backward searches [EPV15] are not directly
applicable in our scenario. Tesfaye and Augsten [TA16] propose a technique based
on graph partitioning for closely related “reachability queries” in public transport
networks, but they do not evaluate their algorithm. An extension of the CRP ap-
proach [Del+17, DW15] to isochrones is outlined in a patent,! however, in a simpler
than our intended scenario. Furthermore, the approach was neither implemented
nor evaluated. Finally, GRASP can be extended to isochrone queries, but isoGRASP
(isochrone GRASP) [EP14] computes distances to all vertices that are reachable from
the source, which can be wasteful if only the actual isocontour is required.

Approaches listed above only deal with the computation of the reachable subgraph
with respect to some resource limit, rather than computing the actual isocontours.
Regarding their visualization, efficient approaches exist for shape characterization of
point sets, such as a-shapes [EKS83], y-shapes [Duc+08], or Voronoi Filtering [AB99].
However, we are interested in separating subgraphs rather than point sets. A work by
O’Sullivan et al. [OMS00] introduces approaches for isocontour visualization based on
merging shapes covering the reachable area. Alternatively, one can subdivide the plane
into cells and highlight those that intersect the reachable area [KH16]. Marciuska
and Gamper [MG10] present two approaches to visualize isochrones in transportation
networks. The first transforms a given reachable network into an isochrone by simply
drawing a buffer around all edges in range. The second creates a polygon without
holes, induced by the edges on the boundary of the embedded reachable subgraph.
This algorithm is also used as state-of-the-art in several recent works that consider
applications of isocontours [Efe+13a, Efe+13b, GBI12]. However, both aforementioned
approaches were implemented on top of databases, providing running times that are
too slow for many applications (several seconds for small and medium ranges).

Numerous works present applications that make use of isocontours in the context of
urban planning [Bau+08, IBG13, MG10, OMS00], geomarketing with integrated traffic
information [Efe+13a, Efe+13b], and range visualization for EVs [CBH11, GBL14,
OP14a, OP14b]. For isocontour visualization, these works typically resort to the
approach of Marciuska and Gamper [MG10] or less accurate solutions, such as a-
shapes or the convex hull of all reachable points.

1US Patent Application 13/649,114; http: //www.google.com/patents/US20140107921
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Fundamentals

In this chapter, we introduce notation and describe basic concepts used throughout
the thesis. In doing so, we assume the reader to be familiar with foundations of
computational complexity, such as the concept of NP-hardness and the Bachmann-
Landau notation. For backgrounds on these topics, we refer to fundamental literature
on theoretical computer science and algorithmics [Cor+09, GJ79, MS08]. Below, we
first give basic definitions on graph theory and computational geometry in Section 3.1
and Section 3.2, respectively. In Section 3.3, we formally define variants of the shortest
path problem and review Dijkstra’s algorithm and possible generalizations. We also
recap speedup techniques relevant for our work. In Section 3.4, we describe the
experimental setup of our evaluations presented in subsequent chapters.

3.1 Graph Theory

A (directed) graph is a tuple G = (V,E) consisting of a finite set V of vertices and a set
E C V XV of ordered pairs of vertices, called edges. We denote by n = |V| the number
of vertices and by m = |E| the number of edges in the graph. Road networks are
typically modeled as directed graphs, where intersections are represented by vertices
v € V and road segments between intersections by edges e = (u,v) € E. In an
undirected graph G = (V,E), the set E C 2" of edges consists of two-element subsets
of V, denoted e = {u,v} € E, rather than ordered pairs. We also consider multi-
graphs G = (V,E), where E is a multiset of edges, i. e., there is a mapping y: E —» N
denoting the multiplicity of each edge. In other words, multi-graphs may contain
parallel (multi-)edges between vertices. If not mentioned otherwise, we assume that
graphs are directed and contain no multi-edges in what follows. Definitions given
below extend to the undirected case or multi-graphs canonically.

We call u the tail and v the head of an edge (u,v) € E, and vertices are neighbors if
they are connected by an edge. Moreover, the edge (u,v) is incident to both u and v, it
is an outgoing edge of u, and an incoming edge of v. The vertices u and v are also called
adjacent. Given a vertex v € V, its in-degree is the number of its incoming edges, i. e.,
the cardinality |{u € V | (u,v) € E}|. Similarly, the out-degree of v is the number of
its outgoing edges. Finally, the degree of v is the sum of its indegree and its outdegree.

Cost Functions. A cost function z: E — Y on a graph G = (V,E) maps edges
e € E to costs z(e), where the codomain Y typically is a subset of the real numbers,
i.e, Y € R. We simplify notation by defining z(u,v) := z((u,v)) for an edge (u,v) € E.
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Figure 3.1: The plot of a piecewise linear func-
tion f. The function is defined by the sequence
F = [(2,4),(3,1),(5,2),(5,4),(6,5)] of break-

N W s G
=
=

1 points, with f(x) = oo for x < 2. Note that
0 x there is a discontinuity at f(5) = 4. Filled circles
1 2 3 4 5 6 7 8 indicate function values at segment borders.

To give a simple example, we assume that graphs representing road networks come
with two cost functions d: E — Ry and ¢: E — R mapping each road segment to its
corresponding driving time and energy consumption, respectively. Note that energy
consumption may be negative, reflecting the possibility of recuperation.

We also deal with edge costs that are not scalar, to model, e. g., different driving
speeds when traversing an edge or energy consumption that depends on the current
SoC of an EV. We therefore require function spaces F consisting of functions of the
form f: X — Y, with domain X C R U {—00,00} and codomain Y € R U {—o0,00}.
We often consider piecewise-defined functions, i.e., functions defined by multiple
subfunctions, each applying to certain subdomains of X.

A class of piecewise-defined functions that are of particular interest in this thesis
are piecewise linear functions. A piecewise linear function f is represented by a
sequence F = [(x1,41),. .., (Xk,yx)] of breakpoints, such that x; < x; for i < j. Each
breakpoint (x;,y;) € X X Y, with i € {1,...,k}, is defined by its x-coordinate x; and
its y-coordinate y;. Then, f is evaluated by linear interpolation between breakpoints,
handling border cases according to the general form

+00 if x < xq,
fx) =14y + (x —xi)% if x; < x < x;41 for some i € {1,...,k—1},
12 12
Uk otherwise;

see Figure 3.1 for an example. Note that we allow the case x; = x;;; for (at most) two
consecutive breakpoints to model discontinuities. Moreover, we abuse notation from
set theory for sequences of breakpoints or vertices. For example, an empty sequence
is denoted F = () and represents the function f = +oo. (The sign of the infinite value
has to be specified in the definition of the function space.)

We often denote by f, = a the constant function that evaluates to f,(x) = a for
all x € X. A function f is nonnegative on some interval I € X if f(x) > 0forallx € I
and nonpositive if f(x) < 0 for all x € X. Similarly, it is positive or negative if the
respective inequalities are strict. We denote by f™" := minyex f(x) the minimum
value and by f™* := maxyex f(x) the maximum value of f (provided that these
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values exist). A function is said to be invertible on some interval I C Y if for all y € I,
there is a unique value x € X such that f(x) = y. In this case, the function f™1: I — X
with f~1(f(x)) = x is called the inverse of f (on I). Another special function is the
identity function, denoted id: X — X, which evaluates to id(x) = x for all x € X.

Given two functions f and g defined on the same domain X, we denote by f + g the
function obtained by pointwise addition, i.e., (f +g)(x) := f(x) + g(x). The definition
of f — g is analogous. The pointwise minimum min(f,g) of f and g yields their
lower envelope, which evaluates to min{ f(x),g(x)} for all x € X. The upper envelope
max(f,g) of f and g equals the pointwise maximum of both functions. Finally, we
denote by f o g the composition of two functions f and g, that is, (f o g)(x) := f(g(x))
for all x € X. For any x € R, we define x + 00 := 00 and x — 00 := —0c0.

We define the slope f’ of a function f at some x” € X as the corresponding right
derivative f'(x") := (0f(x)/0x)(x’). (Thereby, slope is well-defined also for piecewise-
defined functions.) A function f is (monotonically) increasing on some interval I C X
if for all x; € I and x, € I with x; < x;, we get f(x;) < f(x2). Conversely, if
f(x1) = f(x) always holds, f is (monotonically) decreasing on this interval. The
function f is convex on the interval I in case that for all x; € I, x; € I with x; # x3
and A € [0,1], it holds that f(Ax; + (1 — A)xz) < Af(x1) + (1 — A) f(5x2). It is concave
on I if for all values x; € I, x, € I with x; # x; and A € [0,1], the inequality
fAx1 + (1 = A)xz) = Af(x1) + (1 — 1) f(x2) holds. Intuitively, a function is convex
(concave) on some interval if a straight line between any two points of the plotted
function in this interval lies above (below) the function. For example, the function
shown in Figure 3.1 is convex on the interval [2,5) and concave on the interval [5, c0).
A function f is called strictly increasing, decreasing, convex, or concave if equality is
ruled out in the respective inequalities above.

Shortest Paths. An s—t path P, sometimes written Ps;, is defined as a sequence
P =[s = v1,0y,...,0% = t] of vertices in a graph G = (V,E), such that (v;,v;+1) € E
foreachi € {1,...,k—1}. If k > 1 and the vertices s and t coincide, we call P a cycle.
Any path P’ = [v;,0j41,...,v;] with 1 < i < j < kis called a subpath of P. If i = 1, we
say that P’ is a prefix of P. If j = k, P’ is a suffix of P. Given two paths P = [v1,...,v;]
and Q = [vj,...,vk], we denote by P o Q := [vy,...,v;,...,0] their concatenation.
Consider a function z: E — R mapping edges to scalar costs. The length or cost
z(P) = Zf:_ll z(v;,v;41) of a path P is the sum of its edge costs. (For a vertex v € V,
[v] is a v-v path with cost 0.) For two verticess € Vand t € V, an s—t path P is a
shortest path from s to t with respect to the cost function z if z(P) is minimal among
all paths from s to t in G. Observe that a shortest s—t path may not exist if the graph
contains a cycle of negative cost: Repeatedly including such a cycle in an s—t path,
we could decrease its cost beyond any negative value. Hence, we assume in this work
that graphs contain no such negative cycles. The distance dist,(s,t) from s to ¢ (with
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respect to the cost function z) is then defined as the cost of a shortest s—t path if it
exists, otherwise dist,(s,t) = co. Note that in general, dist,(s,t) # dist,(t,s). Unless
mentioned otherwise, we also presume that graphs are (strongly) connected, i. e., there
exists an s—t path for each pair s € V, t € V and therefore dist,(s,¢) # co. The diameter
of a graph is the maximum length of any shortest path in the graph. Note that in cases
where no cost function is specified, any of the above concepts apply if we assume
uniform costs z = 1.

Special Graphs. For a given graph G = (V,E), the graph G’ = (V',E’) is a subgraph
of G, denoted G’ C G, if V! C V and E’ C E. Given a subset V’ C V of the vertices
in G, its induced subgraph G’ = {V',{(u,v) € E | u € V',u € V'}} consists of the
vertices in V”’ and all edges in E connecting two vertices in V’. A subgraph G’ is also
called a (strongly) connected component of G if it is a maximal strongly connected
induced subgraph of G, i. e., there exists no induced subgraph G”” of G that is strongly
connected and it holds that G’ € G”.

The backward graph G of a directed graph G is defined as G = (V,E), with the
reverse edges E = {(v,u) | (u,v) € E}. A cost function z defined on G carries over to
its backward graph canonically, by defining z(v,u) := z(u,v) for all (u,v) € E.

Given a graph G = (V,E) and a cost function z on G, an overlay graph of G (with
respect to z) is a graph G’ = (V’,E’) with a cost function z’, such that V' € V and
distances are preserved, i. e., dist,/(s,t) = dist,(s,t) foralls € V' and t € V".

A graph G = (V,E) is called bipartite if it contains no cycle of odd length (assuming
uniform costs of 1 for every edge). A graph is called directed acyclic graph (DAG) if
it contains no cycles at all. (Observe that undirected graphs always contain cycles
unless E = ().) Further, an undirected graph T = (V,E) is a tree if it is connected
and m = n — 1. A directed graph T = (V,E) is a tree with root s € Vifm =n -1 and
there is an s—v path for every v € V. Note that by definition, directed trees are DAGs.
A subgraph T = (V,E’) of some graph G = (V,E) is called shortest-path tree (with
respect to a cost function z) with root s € V if it is a (directed) tree and for every v € V,
the s—v path in T is a shortest s—v path in G.

Partitions. A (vertex) partition of a graph G = (V,E) isasetV = {V;,...,V;} of
cells V; C V,with i € {1,...,k}, such that each vertex v € V is contained in exactly
one cell Vi,ie, ViNV; = 0 fori # jand Ule Vi = V. We call the subgraph of G
induced by some cell V; the cell-induced subgraph of V;.

A (nested) multilevel partition with L € N levels is a family IT = {V!,...,VL} of
partitions with nested cells, i. e., for each level £ € {1,...,L — 1} and cell Vf e V¢,
there is a cell Vf“ e V& atlevel £ + 1 with V! C Vf“. We call Vf“ the supercell

of Vf. For consistency, we define V° := {{v} | v € V} (the trivial partition where each
vertex defines its own cell) and VI*! := {V} (the trivial single-cell partition). An edge
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Figure 3.2: Illustration of a graph and a multilevel partition IT = {V?,V?} of its vertices with
two levels and the nested cells V! = {V, ... ,V81} and V? = {Vz,sz,V:,'z}. Boundary edges
are drawn dotted. Vertices filled in the same tone belong to the same level-2 cell.

(u,v) € E is a boundary edge (u and v are boundary vertices) on level £ € {1,...,L} if
u and v are in different cells of V¢. Note that a boundary vertex on level £ is also a
boundary vertex on lower levels. Figure 3.2 shows a multilevel partition of a graph.

Similar to vertex partitions, we use edge partitions & = {Eq,. .. ,Ex} withE; NE; =0
fori # jand Ui.(:l E; = E. Avertex v € V is distinct (with respect to &) if all its incident
edges belong to the same cell, otherwise v is a boundary vertex or ambiguous.

3.2 Geometry

A point p = (x,y) € R? is defined by its real-valued coordinates in the Euclidean
plane. We denote by pq the line segment between two endpoints p € R? and q € R?,
where p # q. A line segment contains all points that lie on it. More formally, a closed
segment pq contains all points p + A(q — p) for A € [0,1], where p and q are interpreted
as vectors on the vector space formed by RZ. In particular, a closed line segment pq
also contains its endpoints p and q. Conversely, an open line segment does not contain
pand g, so A € (0,1) holds in the above term. The points p and q also define a line ¢
passing through them, which contains all points p + A(q — p) with 1 € R.

Two lines or line segments p1q; and p,q, intersect if there is at least one point that
is contained in both lines or line segments, respectively. Two line segments cross each
other if they intersect in exactly one point p € R? that is no endpoint of either segment,
i.e., pis distinct and p ¢ {p1,q1,p2,92}-

Polygons. A polygonal path or chain r is a sequence of line segments represented by
a sequence [p,. . .,pr] of endpoints, such that exactly the (closed) line segments p;p;1
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Figure 3.3: Different types of polygons. (a) A simple polygon P and its (shaded) interior R.
(b) A hole-free polygon with bounded regions R; and R, enclosed by its (shaded) interior. (c) A
plane polygon defined by two closed chains 7; and 7.

are contained in 7 forall i € {1,...,k—1}. We also allow the case k = 1, 1. e, paths that
consist of a single point p € R2. A polygonal path is simple if no two line segments of
the path cross each other. Note that we allow collinear segments to overlap, though. A
polygonal path is closed if its first and last point coincide, i. e., p; = p. The complexity
|| of a polygonal path 7 is the number k — 1 of segments it is composed of.

A polygon is a non-empty set P = {m,...,7,} of closed polygonal paths. Each
polygonal path =;, with i € {1,...,€}, is called a (connected) component of P. An
endpoint of 7; is also called vertex of P and a segment between two consecutive
endpoints in 7; is called edge of P. The complexity |P| of a polygon P is its number of
edges, i. e., the sum of the complexities of all its polygonal paths. A polygon is called
plane or non-crossing if all its components are simple and any pair of components r; and
mj with i # j has empty intersection. Additionally, we demand that in the subdivision
of the Euclidean plane defined by a plane polygon P, there is a (unique) bounded
region R that intersects all points of every line segment in P; see also Figure 3.3. The
set P is called the boundary of R. The region R bar its boundary P is called the interior
of P. Observe that for any pair of points p € R? and q € R? in the interior of a plane
polygon P, there is a polygonal path connecting p and q that is entirely contained in the
interior of P. Conversely, a polygon is called self-intersecting if two of its components
intersect or at least one component is not simple.

Geometric Graphs. Ina geometric graph G = (V,E), each vertex v € V corresponds
to a (distinct) point p,, € R? in the Euclidean plane. Moreover, every edge (u,v) € E
corresponds to a line segment p,p,,. A geometric graph is planar if there exists no pair
of edges (more formally, no pair of corresponding line segments) that cross each other.
A planar graph subdivides the Euclidean plane into multiple regions, which are called
faces of the graph; see Figure 3.4 for an example. The (unique) unbounded region is
called the outer face, while all other regions are inner faces. A planar graph is called
outerplanar if all points p,, corresponding to vertices v € V intersect the outer face.
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Figure 3.4: Illustration of a planar graph. (a) The graph together with its weak dual graph (red).
The primal graph has the inner faces fi, f2, f3, f1 and the (unbounded) outer face fs. (b) A tri-
angulation of the planar graph from Figure 3.4a is obtained after adding the dotted segments.

The (weak) dual graph G’ = (V',E’) of a geometric graph G = (V,E) is an undirected
graph that contains exactly one vertex for every inner face of G. Two vertices u € V'
and v € V' are adjacent if and only if their corresponding faces in G share at least one
common edge in E; see Figure 3.4a.

Every inner face f of a planar graph induces a plane polygon Py, such that the
boundary of Pr corresponds to the edges bounding the face f. Conversely, any plane
polygon P induces an undirected planar graph Gp, where the vertices of Gp are the
vertices of P and the edges in Gp correspond to edges in P.

Triangulations. A triangulation of a plane polygon P is defined as a set T of line
segments, such that (1) each line segment in T is fully contained in P and its interior,
(2) both endpoints of each segment in T coincide with two vertices of P, (3) different
line segments in T only intersect in at most one of their endpoints, and (4) the set
is maximal, i. e., no line segment can be added without violating at least one of the
previous conditions. Observe that T subdivides P into smaller subregions and each
of these regions is bounded by a triangle. A triangulation T of a planar graph is the
union of triangulations of all its inner faces; see Figure 3.4b. Then, the segments of T
can also be interpreted as edges that are added to the graph.

Special Polygons. We distinguish three types of plane polygons, described below
and illustrated in Figure 3.3, to characterize polygons that correspond to inner faces of
(certain types of) planar graphs. First, a simple polygon P subdivides the Euclidean
plane into a (single) bounded region R and an unbounded region; see Figure 3.3a.
For example, inner faces of outerplanar geometric graphs induce simple polygons.
Second, a hole-free polygon is a polygon P that subdivides the Euclidean plane into an
unbounded region, a (unique) bounded region R that intersects every point of every
line segment in P, and an arbitrary number of other bounded regions Ry,. .., Rg; see
Figure 3.3b. An inner face of a strongly connected planar graph corresponds to a
hole-free polygon. Finally, the class of plane polygons defined above corresponds to
the inner faces of planar graphs (which may not be strongly connected); see Figure 3.3c.

Section 3.3

25



Chapter 3

26

Fundamentals

3.3 The Shortest Path Problem

Given a directed graph G = (V,E) and a cost function z: E — R on G, a general
variant of the shortest path problem takes as input a set S C V of sources and a set
T € V of targets. It asks for the distance dist, (s, ¢) and a shortest path between each
s € Sand each t € T. Certain variants of this generic problem setting often are of
particular interest in the literature:

1. The single-pair shortest path (SPSP) problem takes as input a source s € V and a
target t € V and asks for the distance dist,(s,t),i.e., S = {s} and T = {¢}.

2. In the single-source shortest path (SSSP) problem, a source s € V is given and
distances dist, (s,v) from s to all vertices v € V are required,i.e.,S = {s}, T = V.

3. The all-pairs shortest path (APSP) problem asks for the distances dist, (u,v) for
everyueVandveV,ie,S=T=V.

In addition to the distance, any variant may also ask for an actual shortest path
between each considered pair of vertices. Next, we discuss Dijkstra’s algorithm, which
solves the SPSP and SSSP problem, and extensions to more general problem settings
(Section 3.3.1). Afterwards, we recap speedup techniques, which apply preprocessing
to improve the performance of Dijkstra’s algorithm (Section 3.3.2).

3.3.1 Dijkstra’s Algorithm and Generalizations

The algorithm of Dijkstra [Dij59] is a well-known approach that, in its basic variant,
solves the SSSP problem on a graph G = (V,E) with an associated nonnegative cost
function z: E — Ryx¢. Pseudocode of the algorithm is shown in Figure 3.5. To compute,
for a given source s € V, the distances dist,(s,v) to all vertices v € V, it maintains
a tentative distance label d(v) at each vertex. Initially, the algorithm sets d(s) = 0
and d(v) = oo for all v € V' \ {s}. The source s is also inserted into a priority queue
(denoted by Q in Figure 3.5), which uses d(-) as its key function. In each iteration of
its main loop, the algorithm then extracts a vertex u € V with minimum key d(u)
from the priority queue, thereby settling (or scanning) it. Next, it scans all outgoing
edges (u,v) € E of u. If d(u) + z(u,v) < d(v), i. e., the tentative distance at v can be
improved via (u,v), it updates d(v) accordingly and adds or updates v in the priority
queue. This operation is also called edge relaxation. The algorithm terminates as soon
as the queue runs empty.

Correctness of Dijkstra’s algorithm follows from its label-setting property: Once a
vertex v € V has been extracted from the queue, the distance label d(v) is final and
equals the length dist, (s, v) of a shortest path from s to v. This is due to the fact that
when v is settled, the key d(v) (and hence, the cost of the best s—v path found so far)
is minimal among any vertices in the priority queue. Since edge costs are nonnegative,
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// initialize labels
1 foreachv €V do
2 | d(v) =

3 d(s) «—0
4 Q.insert(s,0)

// run main loop
while Q.isNotEmpty () do
u «— Q.deleteMin()
foreach (u,v) € E do
if d(u) + z(u,v) < d(v) then
d(v) «— d(u) + z(u,v)
L Q.update(v,d(v))

o 0 N G

Figure 3.5: Pseudocode of Dijkstra’s algorithm. Given a graph G = (V, E), a nonnegative cost
function z: E — R, and a source s € V, it computes the distances dist,(s,v) forallv € V.

any s—v path encountered afterwards must have cost at least d(v). When solving the

SPSP problem, we can exploit this observation by making use of the stopping criterion:

As soon as the target vertex t € V is extracted from the queue, we know that a shortest
s—t path has been found. Hence, the algorithm can terminate at this point. While this
has no effect on the asymptotic complexity of the algorithm, the number of iterations
in the main loop is reduced by about a factor of 2 on average [Baull, Lemma 2.2].

To retrieve the actual s—t path, parent pointers can be added: Together with its
distance label, every vertex v € V maintains its parent p(v), which is updated to
a vertex u € V whenever the distance label d(v) is improved after scanning some
edge (u,v) € E. Backtracking the parent pointers from an arbitrary vertex v € V
then yields the vertices of a shortest s—v path (in reverse order). Using a Fibonacci
heap [FT87] to implement the priority queue, the running time of Dijkstra’s algorithm
is in O(nlogn + m). More complex data structures [Tho04] or integral bounds on
the maximum distance [Ahu+90, CGS99] yield slightly better asymptotic running
times. Even though they result in a higher complexity of O((n + m) log n), generalized
versions [Joh75] of binary heaps [Flo64, Wil64] tend to be faster on sparse graphs
(such as road networks) in practice [CGR96].

Below, we consider two common generalizations of the SPSP (and SSSP) problem
formulated above. The first considers multicriteria problems, where we deal with
multiple cost functions instead of a single one. The second generalizes (scalar) costs at
edges to functions of some variable.

Multicriteria Shortest Paths. In multicriteria scenarios, the input graph G has
more than one cost function associated with its edges. For example, there may be a
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// initialize label sets
1 foreachv €V do
2 L L(v) «— 0
3 L(s) «— {(0,...,0)}
4 Q.insert((0,...,0),s,key((0,...,0)))

// run main loop

5 while Q.isNotEmpty () do

6 (€ = (x1,...,%r),u) «— Q.deleteMin()

7 foreach (u,v) € E do

8 0 — (x1 + z21(4,0),...,x% + zk(u,0))

9 if L(v) does not dominate ¢’ then

10 L(v).deleteLabelsDominatedBy ({’)
11 L(v).insert ({’)

12 Q.update (¢’,v,key(£’))

Figure 3.6: Pseudocode of the multicriteria shortest path algorithm. For a graph G = (V,E),
cost functions z;: E = Ryo,...,2zx: E = Ry, and a source s € V, it computes, for each
vertex v € V, a maximal Pareto set of solutions corresponding to nondominated s—v paths.

cost function modeling travel time along road segments and another cost function
modeling energy consumption. In a general setting, we are given k € N scalar,
nonnegative cost functions zi,...,zx on G. For two vertices s € V and t € V, the
cost of an s—t path P can be expressed by a k-tuple d = (z1(P),...,zx(P)). In general,
there is no unique path that is the shortest with respect to every cost function. We
adopt the notion of Pareto dominance to compare tuples representing costs of paths: A
tuple di = (x1,...,xx) dominates a tuple d; = (y1,. . .,yx) if d; is at least as good as d;
in any criterion. Formally, d; dominates d; if x; < y; holds for all i € {1,...,k}. A set
D = {dy,....,de} oftuples dominates a tuple d if at least one tuple d;, with i € {1,...,{},
dominates d. The set D is called a Pareto set if there are no two tuples d; € D and
d;j € D such that i # j and d; dominates d;. We extend the notion of dominance to
paths as well, saying that for some s € V and t € V, an s—t path P dominates another
s—t path Q if its associated tuple dominates the one associated with Q.

The multicriteria shortest path algorithm [Han80, Mar84] is a natural extension of
Dijkstra’s algorithm to the multicriteria setting; see Figure 3.6 for pseudocode. Given
a source s € V, it computes, for each vertex v € V, a maximal Pareto set of s—v paths
and the associated cost tuples, i. e., any s—v path in the graph is dominated by this
set. It is well known that the size of these Pareto sets can be exponential in the input
size [Han80, Theorem 1]. Consequently, the worst-case running time of the search is
exponential as well. Instead of scalar values, it uses label sets L(-) at vertices, which
may hold several labels £ = (x1,...,xx). The algorithm starts with empty label sets
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at every vertex, initially adding only the label (0,. . .,0) to L(s) and a priority queue.
Then, it works similar to Dijkstra’s algorithm. In each step, it extracts a label ¢ that has
the smallest associated key from the priority queue. Given the vertex u € V the label £
belongs to, all outgoing edges (u,v) € E are scanned. For each edge, the algorithm
generates a new label ¢’ by adding the costs of (u,v) to €. If £’ is not dominated by L(v),
the algorithm adds ¢’ to L(v), removing labels dominated by ¢’ from L(v) on-the-fly.
Thereby, it maintains the invariant that L(v) is a Pareto set.

The priority of labels in the queue is determined by the function key(:). Typically, it
reflects a lexicographic order of labels, though other expansion strategies are possible,
too [RE09, Skr00]. For nonnegative edge costs, such key functions can ensure that
the algorithm is label setting, that is, after a label has been extracted from the queue,
it will not be dominated by any label generated later on. If only the Pareto set for
a single target vertex is required, the practical performance of the algorithm can be
improved: Using target pruning [DMS08], labels at any vertex are discarded if they are
dominated by the label set at the target. To retrieve the actual path corresponding to
some label, the algorithm can use parent pointers, storing for each label its predecessor.
Observe that in the special case that only a single cost function is given (k = 1), the
multicriteria shortest path algorithm behaves like Dijkstra’s algorithm.

Profile Search. In another generalized problem setting, scalar edge costs are re-
placed by functions of some variable, which represents a certain state at the tail vertex
of an edge [DW09, SL15]. Time-dependent route planning is probably the most well-
known example, where edge costs are travel times that depend on the current point in
time to account for, e. g., peak and off-peak hours [Bat+13, DW09, FHS14]. Generally,
we are given a graph G = (V,E) and a cost function z: E — F, associating with every
edge a function from some function space [, mapping any state at the tail of an edge
to the resulting cost or state after traversing the edge. The shortest profile problem is a
generalization of the SPSP problem that, given a source s € V and target t € V, asks
for an s—t profile, i. e., a functional representation of the distance from s to t for every
initial state at the source (e. g., all possible departure times).

An approach based on Dijkstra’s algorithm to compute an s—t profile from a given
source s € V to all vertices v € V is (label-correcting) profile search [Dea99, OR91]. It is
outlined in Figure 3.7. The algorithm requires two basic operations to generalize edge
relaxation. First, the link operation concatenates two functions f € F and g € F by
computing a third function h € [ that represents, for each state, the result of applying
f and g in this order. For example, if the state is the departure time at the tail of an
edge and functions map this state to the corresponding arrival time at the head, the
link operation yields link(f,g) := g o f. Let us assume that functions reflect costs
of edges, in which case departure time is mapped to travel time on an edge and we
getlink(f,g) := f+go(id +f). Second, the merge operation takes two functions f € F,
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// initialize labels
1 foreachv €V do

2 Lﬁ,(—fm

fse—f
4 Q.insert(s,key(fy))

// run main loop

5 while Q.isNotEmpty () do
6 u «— Q.deleteMin()

7 foreach (u,v) € E do
8
9

w

f « link(fy,z(u,v))

if dx € X: f(x) < fo(x) then

10 L fo «— merge(fo, f)
Q.update(v,key(f,))

Figure 3.7: Pseudocode of label-correcting profile search. It requires a graph G = (V,E), a
cost function z: E — [, and a source vertex s € V. The output is a cost function f,, for every
vertex v € V, which evaluates to the cost of an optimal s—v path for every initial state at s.

g € F and yields the pointwise minimum merge(f,g) := min(f,g), i. e, the result is a
function h € F with h(x) = min{ f(x),g(x)} for arbitrary x within the function domain.
For correctness, the function space F must be closed under linking and merging, i. e.,
linking or merging two functions in [F results in a function that is contained in [F.

In contrast to Dijkstra’s algorithm, the label at a vertex v € V consists of a tentative
function f,, € F in a profile search. The algorithm initializes every label with the
constant function fo, = oo, except for the source label, which is initialized with a
function that always evaluates to 0. The main loop of the search works along the lines
of Dijkstra’s algorithm. When scanning an edge (u,v) € E, instead of adding a scalar
cost value to the current label, the corresponding functions f,, at u and the function
z(u,v) are linked. If the resulting function yields an improvement to the function at v,
both functions are merged and the result is written into the label at v. The key of v in
the priority queue is updated accordingly.

Profile search is label correcting in general, i.e., the label of some vertex is not
necessarily final when it is extracted from the queue. Hence, a vertex may be reinserted
and extracted from the queue more than once, but the algorithm terminates as long
as edge costs are nonnegative (for arbitrary state at their tail). In case that only the
s—t profile for a given target t € V is required, using ™" as key in the priority
queue for an arbitrary f € F yields a relaxed stopping criterion: After extracting
a vertex v € V, we check whether fzﬂnm > " i.e., the minimum of the tentative
function at v exceeds (or equals) the maximum of the function at the target ¢. In this
case, the search can safely terminate [DW09]. To retrieve shortest paths for all different
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initial states, tentative functions can be enriched with parent pointers, assigning the
respective preceding label with each of its (sub)functions. The performance of profile
search heavily depends on the complexity of the cost functions [Dea99, OR91]. The
algorithm is identical to Dijkstra’s algorithm if all functions are constant and the link
operation computes a constant function that equals the sum of its input functions, i. e.,
link(fz, fp) = fa+p for constants a € Ryp and b € R.

3.3.2 Speedup Techniques

Dijkstra’s algorithm has low asymptotic complexity. However, even on modern hard-
ware it may take seconds to compute shortest paths on large, realistic instances. To
enable faster computation for, e. g., interactive applications, speedup techniques intro-
duce a two-phase workflow. Exploiting that the topology of a road network rarely
changes in practice, these techniques distinguish an offline preprocessing phase and an
online query phase. Additional information on the (static) graph G = (V,E) is gathered
during preprocessing. This information is used to speed up shortest path computation
in the query phase. Since the graph is fixed in this scenario, a query is defined solely by
the source and the target. Therefore, we speak of one-to-one or point-to-point queries
when the SPSP problem has to be solved. Similarly, one-to-all queries solve the SSSP
problem, one-fo-many queries ask for distances (or shortest paths) between one source
and multiple targets, and many-to-many queries ask for distances (or shortest paths)
between sets of sources and targets. Below, we review speedup techniques designed
for point-to-point queries, namely, the A* algorithm, Contraction Hierarchies (CH),
and Multilevel Dijkstra (MLD). We also describe adaptations of these techniques to
more complex query scenarios.

A* Search. The A" algorithm [HNR68] is a simple extension of Dijkstra’s algorithm
that attempts to guide the search towards the target. It does so by making use of
a potential function m: V. — R on the vertices [Joh77]. The potential function is
called consistent with respect to a cost function z: E — R if z(u,v) — z(u) + n(v) = 0
for all (u,v) € E. Any consistent potential induces a nonnegative reduced edge cost
function z* after shifting the cost of every edge (u,v) € E by its potential difference,
setting z*(u,v) := z(u,v) — n(u) + 7(v).

The search is similar to Dijkstra’s algorithm, except for one modification: The key
of every vertex (in the priority queue) is increased by its potential. Using consistent
potentials, the label setting property of the algorithm is maintained. This is due to the
fact that running A” search on a graph with cost function z is equivalent to running
Dijkstra’s algorithm on the same graph, but with the reduced cost function z* [Poh71].
An alternative explanation is that consistent potentials ensure that the minimum key
in the priority queue is nondecreasing throughout the search. To see this, observe that
scanning an edge (u,v) € E after extracting the vertex u with the key d(u) + 7 (u) from
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Figure 3.8: Illustration of CH preprocessing and the query phase. (a) The original (undirected)
graph with uniform edge costs. Indicated vertex ranks are assigned to the input graph from
bottom to top, ranging from 1 to 11. (b) The graph augmented with shortcuts (blue edges) after
preprocessing. Labels at shortcut edges correspond to their costs. The shaded area indicates
the overlay graph G’ before contracting the vertex v (red). Contracting this vertex yields a
shortcut candidate {u, w} with cost 4. Observe that it is not inserted, because there is a shorter
path from u to w with length 3 in G’. (c) lllustration of the search graphs after preprocessing.
Shaded areas indicate search spaces for a query from s to ¢. A path of length 5 is found (red),
which equals the distance between s and t in the original graph.

the queue may result in a new label with key d(u) + z(u,v) + 7 (v). Due to potential
consistency, this new key cannot be smaller than the previous minimum d(u) + 7 (u).
The fact that keys of subsequently extracted vertices are nondecreasing implies that
the distance label of some vertex can never be improved after it was extracted from the
queue (as this would mean that its key decreases, too). Hence, the label is final at this
point and equals the distance from the source (plus a constant potential). Therefore,
the algorithm may stop as soon as it settles the target vertex.

To make the search goal directed, the A* algorithm uses consistent potentials that
are lower bounds on the remaining distance from some vertex to the target. Thereby,
vertices close to the target are scanned earlier. For example, if edge costs correspond to
travel time, the Euclidean distance between a vertex and the target divided by maximum
travel speed in the network yields a lower bound on the remaining travel time and
a consistent potential. If coordinates of vertices are given, A* search requires no
preprocessing in this case [GHO05, Poh71, SV86]. On real-world instances, however, the
A* variant ALT [EP13, GH05, GW05] produces better potentials by utilizing distances
to preselected landmark vertices computed during offline preprocessing.

Contraction Hierarchies. In CH [Gei+12b], queries are accelerated by augmenting
the graph with shortcut edges. These shortcuts are computed during a preprocessing
routine that iteratively contracts all vertices of the input graph in a certain (heuristic)
order rank: V — {1,...,n}; see Figure 3.8a. To this end, an overlay graph G’ is main-
tained, initially set to G’ = G. When a vertex v € V is contracted, it is removed from G’
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together with all its incident edges. Shortcut edges are added between its uncontracted
neighbors to preserve distances (with respect to a given cost function z: E — Ry) in
the overlay graph G’, if necessary. Let u € V and w € V be neighbors of v in G’. To
determine whether a shortcut candidate (u,v) is needed, a witness search is run: Before
adding the shortcut (u, w) with cost z(u,v) + z(v, w) to G’, Dijkstra’s algorithm com-
putes the distance dist,(u, w) in G’ (after removing v, but before adding the shortcut).
If dist, (u, w) is at most the cost of the shortcut candidate, the shortcut is not inserted,
as it is not required to preserve distances in G’ after contracting v; see Figure 3.8b.
Eventually, contracting all vertices results in an “empty” graph G’ = (0,0).

The result of the preprocessing phase is the contraction order rank(-) itself and
the set E* of all shortcuts that were inserted into the overlay. They are used to
create search graphs in the query phase; see Figure 3.8c. Given a source s € V and a
target t € V, the query algorithm is bidirectional, with a forward search froms € V
on the graph G' := (V,E"), where E' := {(u,v) € EU E*: rank(u) < rank(v)} is the
set of upward edges with respect to the contraction order. The backward search from
t € V operates on the backward graph G! of G! := (V,E!), where the set of downward
edges is given as E' := {(u,v) € EU E*: rank(u) > rank(v)}. In other words, both
searches follow only paths of increasing rank. One can show that this bidirectional
variant of Dijkstra’s algorithm computes the distance between s and t with respect to
the input graph [Gei+12b]. To retrieve the shortest path itself, shortcut edges store a
pointer to the contracted via vertex that lead to creation of the shortcut. Recursive
path unpacking then provides a shortest path in the input graph [Gei+12b].

Multilevel Dijkstra. The three-phase workflow of CRP [Del+17] separates prepro-
cessing into metric-independent preprocessing and metric-dependent customization.
Upon changes in the cost function due to, e. g., traffic updates or user preferences, only
the customization phase has to be repeated. Delling et al. [Del+17] propose MLD to
implement this generic workflow. The basic idea of this approach is to compute an
overlay induced by a multilevel partition and use shortcuts to skip large parts of the
original graph during queries. Customization is fast, because it only requires that the
costs of these shortcuts are recomputed by local searches.

During (metric-independent) preprocessing, a multilevel partition IT with L € N
levels of the vertices in the input graph is computed. For each level ¢ € {1,...,L},
this induces an overlay graph H that consists of all boundary vertices and boundary
edges in the partition V¢ at level ¢, plus cliques of internal shortcut edges connecting
each pair of boundary vertices that belongs to the same cell at level . The costs of
all shortcuts are computed in the customization phase by running, e. g., Dijkstra’s
algorithm on the respective cell-induced subgraphs. For fast integration of new cost
functions, previously computed low-level overlays are used to compute shortcuts on
higher levels. Finally, to answer s—t queries, Dijkstra’s algorithm is run on the union of
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Figure 3.9: Search graph of an MLD query from s to ¢, induced by the multilevel partition
shown in Figure 3.2. Assuming uniform edge costs of 1 in the original graph, shortcut labels
indicate costs if they are greater than 1. Note that shortcuts with infinite cost may occur if a
cell-induced subgraph is not strongly connected. The shortest path (red) has length 9, as in
the original graph; c.f. Figure 3.2.

the top-level overlay H and the subgraphs of H’~! induced by the cells Vf containing
se€Vort e Voneachlevel £ € {1,...,L}, with H® = G. This yields the correct
distance from s to t with respect to the original graph [Del+17]; see Figure 3.9 for an
example. To retrieve the actual path, shortcuts are unpacked recursively by running
Dijkstra’s algorithm between endpoints of shortcuts on the cell-induced subgraphs at
the level below, until the corresponding subpath in the original graph is found.

Batched Shortest Paths. Given a source vertex s € V, one-to-all and one-to-many
queries ask for distances from s to all v € V or to all t € T from a given subset T C V,
respectively. Both CH and MLD compute distances between pairs of vertices in their
basic form, but can be extended to handle such batched shortest path settings.

PHAST [Del+13b] leverages CH preprocessing for fast one-to-all queries. In addition
to preprocessing of plain CH, it assigns levels £(-) to vertices during preprocessing,
initially set to 0. When contracting a vertex u € V, it sets £(v) = max{{(v),{(u) + 1}
for each uncontracted neighbor v of u. To answer one-to-all queries, the upward phase
runs a forward CH search from the source. Afterwards, the scanning phase processes
vertices in descending order of level and propagates distances by scanning, for each
vertex v € V, its incoming edges (u,v) in E*. The algorithm exploits that vertices
are represented by indices {1,...,n} in practice: Since the instruction flow of the
scanning phase depends solely on the contraction order, vertices are reordered during
preprocessing, such that vertices at higher levels are assigned lower indices. Then, the
scanning phase boils down to a linear scan over a sorted edge array, making PHAST
an order of magnitude faster than Dijkstra’s algorithm.
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Figure 3.10: Input data for our experiments. (a) A driving cycle used by PHEM, representing
a collector road with heavy traffic. The plot shows changes in driving speed and SoC over time
during a ride. Observe that energy is consumed even when the vehicle is not moving (due
to auxiliary consumers) and energy is recuperated when braking. (b) Our main test instance,
representing the road network of Western Europe. Blue dots indicate locations of charging
stations. There are clear differences in the distribution of charging stations, which is very
dense in the Netherlands and Switzerland, whereas Spain, Italy, and Poland contain relatively
few charging stations in our data set.

RPHAST [DGW11] is an extension of PHAST to enable fast one-to-many queries.

To this end, it introduces an additional target selection phase after preprocessing. Given
a target set T C V, target selection extracts a subgraph G# of the original downward

graph G!, namely, the union of the search spaces of all targets t € T. The graph G#
is obtained in a multi-source variant of a breadth-first search (BFS) [Cor+09] from
all t € T in the backward graph of G¥. All vertices visited by the BFS and their incoming
edges are added to G%. Afterwards, RPHAST queries resemble PHAST queries, running
the scanning phase on G# instead of G'.

GRASP [EP14] is an adaptation of MLD to batched query types. In addition to
shortcuts between boundary vertices within the same cell, each level-£ boundary
vertex, with € € {0,...,L — 1}, stores incoming downward shortcuts from all boundary
vertices of its corresponding supercell at level € + 1. (Recall that for € = 0, every vertex
is a boundary vertex.) Customization works similar to MLD, storing downward edges
in a separate downward graph H'. For one-to-all queries, the upward phase runs an
MLD search from the source, i. e, Dijkstra’s algorithm on the union of the top-level
overlay and all subgraphs of overlays induced by cells containing s. After the upward
phase, all vertices settled by the algorithm have correct distance labels. Then, the
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scanning phase processes cells in descending level order, sweeping over downward
edges to propagate distance labels from boundary vertices to those at the level below.
The number of downward edges can be reduced via edge reduction [ETP12], omitting
downward shortcuts (u,v) in a cell Vf atlevel £ € {1,...,L} if the shortest u—v path
within the subgraph of H’~! induced by Vl.f contains another boundary vertex of Vf.

3.4 Experimental Setup

In this section, we describe the experimental setup on which our evaluations in
the subsequent chapters are based. We explain in detail how realistic input data is
obtained for our main benchmark instance, which represents the road network of
Western Europe; see Figure 3.10. For energy consumption, we use highly detailed data
measured from a real production vehicle (Peugeot iOn). Any modifications to the basic
experimental setup described below are mentioned in the respective main chapters.

Methodology. We implemented all evaluated algorithms in C++, using g++ 4.8.5
(flag -O3) as compiler and OpenMP for parallelization. Obtained results were always
checked against reference implementations (typically variants of Dijkstra’s algorithm)
for correctness. Experiments were conducted on two different machines, depending
on whether the considered technique exploits parallelism. Details are given below.

» Experiments involving parallel algorithms were conducted on two 8-core Intel
Xeon E5-2670 clocked at 2.6 Ghz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3
cache, and 256 KiB of L2 cache, hereafter denoted machine-p.

« All other experiments were conducted on a single core of a 4-core Intel Xeon
E5-1630v3 clocked at 3.7 GHz, with 128 GiB of DDR4-2133 RAM, 10 MiB of L3
cache, and 256 KiB of L2 cache, hereafter denoted machine-s.

Main Input. Our main benchmark instance, named Eur-PTV, is based on the road
network of Western Europe, kindly provided by PTV AG.! Road segments have asso-
ciated lengths, average speeds and road categories. Travel times on road segments
were directly extracted from these data. To generate energy consumption along road
segments, their slopes are required, as they affect consumption. We retrieved elevation
information for the vertices from the freely available NASA Shuttle Radar Topography
Mission (SRTM) data set.? It covers large parts of the world with tiles at a resolution
of three arc seconds (approximately 90 meters at the equator). The elevation of a
vertex was obtained by bilinear interpolation from the four corners of the SRTM tile
containing the vertex. Previous studies on the effect of elevation models on data

1http: //wWww.ptvgroup.com
thtp: //srtm.csi.cgiar.org
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Table 3.1: Overview of instances used in our experiments. For each instance, the table shows
the underlying road network, the number of vertices, and the number of edges. Note that OSM
instances have many degree-2 vertices, meant primarily for visualization.

Instance Road Network # Vertices #Edges
Eur-PTV Western Europe 22198628 51088095
Eur-DIMACS  Western Europe 18010173 42188 664
Jap-OSM Japan 25970678 54141580
Ger-OSM Germany 23913390 48239355
Ger-PTV Germany 4692091 10805429
Sgr-OSM Southern Germany 5588146 11711088
Swi-OSM Switzerland 3259674 6488514

quality indicate that bilinear interpolation (among other techniques) yields the most
accurate results [GAP15]. We filled (rarely) missing data samples by interpolating
from neighbors. We removed all vertices from the graph where no elevation data
is available (not even via sensible interpolation), such as large parts of Scandinavia,
where the data ends beyond the 60th circle of latitude.

Our energy consumption data originates from the Passenger Car and Heavy Duty
Emission Model (PHEM), developed by the Graz University of Technology [Hau+09].
PHEM is a micro-scale emission model based on backwards longitudinal dynamics
simulation. Besides other applications, PHEM is used to calculate emissions for pas-
senger cars as well as heavy and light duty vehicles for the Handbook of Emission
Factors for Road Transport (HBEFA) [Hau+09]. The HBEFA driving cycles cover a
large variety of road categories, speed limits, traffic situations, and slopes. These
cycles were calculated using different EV configurations and vehicle types to generate
energy consumption estimates for all available driving situations. Figure 3.10a shows a
driving cycle for a collector road under heavy traffic conditions. We carefully mapped
consumption data obtained from PHEM to our network by a heuristic that measures
the similarity between road segments of the network and the parameters of PHEM.
We deleted edges that cannot be mapped to a PHEM road category (such as private
roads and ferries). Finally, we extracted the largest strongly connected component
from the remaining input. As a consequence, the United Kingdom is not contained in
our instance (as it is only reachable by ferry from continental Europe in our data set).
The resulting graph consists of 22 198 628 vertices and 51 088 095 edges.

In our experiments, we use different instances of the PHEM data. The first is based
on a Peugeot iOn. The second is an artificial EV model [Tie+12]. Unless mentioned
otherwise, we disable auxiliary consumers to get the best possible cruising range.
Besides extending the range, this also increases the amount of road segments where
the vehicle is able to recuperate (making the instances only “harder” for our algorithms):
The resulting amount of edges with negative energy consumption is 11.8 % and 15.2 %
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for the model based on a Peugeot iOn and the artificial model, respectively. Edge
consumption values are stored in mWh, to avoid rounding issues along short-distance
edges. In our experiments, we typically consider two realistic long-range battery
capacities of 16 kWh (the maximum capacity of a Peugeot iOn, corresponding to a
range of 100-150 km) and 85 kWh (similar to that of recent high-end Tesla models
with a range of 400-500 km).

For the evaluation of algorithms involving charging stops, we located charging
stations on ChargeMap.? Each station was mapped to its closest vertex in the network,
except when there was no vertex within a radius of 20 meters around the station (in
which case it was discarded). Figure 3.10b shows our main benchmark instance and the
distribution of the 13 810 remaining charging stations (extracted in April 2015). Aside
from the real-world data from ChargeMap, we also use artificial, random distributions
in our experiments.

Alternative Inputs. For the purpose of comparison with related work, we also
consider a simpler consumption model used in previous studies [EFS11, Sto12a, Sto13].
In this model, energy consumption of an edge e = (u,v) € E is assumed to depend
only on horizontal length £, € R of the edge and vertical heights h, € Ry and
h, € Rsq of the vertices. More precisely, the energy consumption c(e) of e is

o4 A (hy —hy) by —hy >0,
cle) = {" *A-( ) i (3.1)

K-+ p- (hy —hy) otherwise.

In accordance with the previous studies [Sto13], we set k = 0.02, A = 1, and p = 0.25.
Note that when applying this model our main instance Eur-PTV, we observe that the
amount of negative edges drops to 4.4 %.

Besides our main benchmark instance described above, we also consider numerous
other road graphs, which are listed in Table 3.1. This includes another graph based
on the same data set as our main instance, which represents the road network of
Germany (Ger-PTV) and is a subnetwork of Eur-PTV. We also performed experiments
on an alternative instance that represents the European road network (Eur-DIMACS).
Made available for the 9th DIMACS Implementation Challenge [DGJ09], it comes with
travel times measured in seconds for every edge, but no energy consumption. Finally,
we consider several instances extracted from OpenStreetMap (OSM).* For comparison,
we present results on instances used in previous studies, which are OSM exports of the
road networks of Southern Germany (Sgr-OSM) [Sto12a] and Japan (Jap-OSM) [Sto13],
augmented with SRTM data to derive energy consumption on edges. In addition to
that, we work with OSM exports of Germany (Ger-OSM) and Switzerland (Swi-OSM).
Note that instances based on OSM data are notorious for having exceptionally many

3http: //www.chargemap.com
4http: //wWww.openstreetmap.org
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vertices of degree 2 that (only) model geometry. This explains the relatively large size
of these instances (e. g., the graphs representing Japan and Germany contain more
vertices than our main benchmark instance, which corresponds to the road network
of Western Europe).

Implementation Details. We provide details about basic algorithms and data struc-
tures used by the techniques that we evaluate in our experimental studies. In our
implementation, graphs are stored in adjacency arrays [Cor+09], following the dy-
namic data structures of Delling [Del09] for efficient insertion and deletion of shortcuts
during the preprocessing routine of CH. Costs of edges (reflecting length, travel time,
or energy consumption) are stored as 32-bit integers at a reasonably high resolution
(e. g., 1 mWh for energy consumption values). Additional flags indicate edge directions
for bidirectional techniques [Del09]. Our implementation of Dijkstra’s algorithm and
techniques based on it use a 4-heap [Cor+09, Joh75] as priority queue. Unless men-
tioned otherwise, we use timestamps for (re)initialization of distance labels between
subsequent queries in all techniques [Paj13]. Our multicriteria search algorithms
always maintain priority queues of vertices (rather than labels). The key of a vertex in
the queue corresponds to the smallest key of any of its unsettled labels. Note that this
does not alter the order in which labels are scanned by the algorithm, but the number
of entries in the priority queue decreases. More specific implementation details are
mentioned in the respective sections of each main chapter of the thesis.
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Energy-Optimal Routes
for Battery Electric Vehicles

Route planning services explicitly designed for EVs have to address specific aspects,
since EVs usually employ a rather limited cruising range. We study the problem of
computing routes that minimize energy consumption, in order to maximize cruising
range and for drivers to overcome range anxiety. This imposes nontrivial challenges.
First of all, EVs can recuperate energy (e. g., when going downhill), but the battery
capacity limits the amount of recoverable energy [EFS11, Sac+11]. As a result, the
energy-optimal route depends on the initial state of charge (SoC). This dependency
is captured by the notion of (consumption) profiles, which map SoC at the source to
(minimum) energy consumption that is necessary to reach the target [EFS11, SLW14].
Profiles are relevant in many applications where the SoC at the start of a journey is
either unknown or can be decided by the driver, e. g., when charging overnight. More-
over, they are an important ingredient of speedup techniques, where preprocessing is
applied to the input network for faster query times [EFS11].

In addition to the above issues, recharging en route may become inevitable on long-
distance trips. Given that charging stations are scarce, such stops need to be planned in
advance [SF12]. Therefore, we also discuss approaches that explicitly consider stops at
charging stations. Note that, even when optimizing for energy-consumption only, the
integration of charging stations into route planning is a nontrivial task: Recharging to
a full battery at a station can be wasteful if it prevents the battery from recuperating
energy on a downhill ride later on.

Modeling energy consumption precisely is another important aspect in route plan-
ning applications designed for EVs. Energy consumption is strongly influenced by
a number of factors, such as vehicle load, auxiliary consumers, weather condition,
driving style, and traffic conditions [SHS11]. While some factors are static, others,
such as weather conditions and vehicle load, are not. Consequently, any kind of route
planning approach must allow frequent updates of energy consumption data. Speedup
techniques [Bas+16] for route planning in road networks, on the other hand, use a
potentially costly preprocessing phase to accelerate Dijkstra’s algorithm. Most were
developed for static edge costs representing travel times. More recent customizable
techniques, such as CRP introduced by Delling et al. [Del+17], are a notable exception.
Based on multilevel overlay graphs [Del+09, HSW09, JP02, SWW00, SWZ02], CRP
is designed to work with arbitrary cost functions and integrates new cost functions
quickly, making it a promising candidate for our scenario.

In this chapter, we cover different algorithmic problems in the context of energy-
optimal route planning for EVs. It turns out that these problem settings allow efficient
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solutions, not only in theory, but also in practice: Even for the most complex problems
considered, our algorithms compute (empirically) optimal results for long-distance
route queries in well below a second. Furthermore, many insights from this chapter
are of fundamental importance for more involved scenarios, which we consider in
Chapter 5. There, the additional consideration of overall trip time in route optimization
yields significantly more complex problem settings.

Chapter Overview. In Section 4.1, we formally introduce our model of battery
constraints and state two problem variants regarding energy-optimal routing for EVs.
In particular, we examine profiles mapping initial SoC to energy consumption for a
fixed pair of source and target. We recap how such profiles can be modeled as a special
form of piecewise linear functions [EFS11]. As a main result of this section, we then
prove that the number of breakpoints of such functions is linear in the worst case.
Note that this stands in stark contrast to profiles in time-dependent routing, which can
have superpolynomial size [FHS14]. We also derive basic operations to concatenate
and merge profiles.

Using these insights, we investigate approaches based on Dijkstra’s algorithm to
compute energy-optimal routes and profiles in Section 4.2. Aiming at practical solu-
tions, we explore different strategies to handle recuperation (i. e., negative costs). We
also present a polynomial-time algorithm to compute profiles. Thereby, we efficiently
solve a problem that is not only relevant on its own, but is a crucial ingredient of
speedup techniques in our scenario.

Section 4.3 deals with the extended problem setting of energy-optimal routes that
may include charging stops. First, we derive a baseline algorithm based on bicriteria
search [Han80], which does not require any preprocessing. Second, we show that
given the results from Section 4.1, the problem can be solved in polynomial time. Third,
we propose a more practical technique based on a tuned implementation of CH for
EVs [EFS11]. To this end, we carefully integrate battery constraints and profile search
into preprocessing and the query algorithm. Although our practical implementation
formally drops correctness, it always finds the optimal solution in our tests. For further
speedup, we discuss combinations with variants of the A* algorithm.

In Section 4.4, we introduce an approach to optimize energy consumption of EVs that
is designed to be fast both in (metric-dependent) preprocessing of the whole network
as well as in answering queries. For that, we use ingredients from previous sections
and extend the CRP method of Delling et al. [Del+17] to handle battery constraints and
achieve fast (metric-dependent) preprocessing. We propose several query algorithms
to compute energy-optimal routes.

Section 4.5 presents our experimental results. On the road network of Europe, we
evaluate different strategies of the baseline approaches that adapt Dijkstra’s algo-
rithm. For routes including charging stops, we conduct experiments with our different
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approaches, considering various types and distributions of charging stations. We
also evaluate our customizable technique and its query variants. Furthermore, we
present a comparison of several approaches for computing energy-optimal routes
for EVs. Compared to baseline algorithms, our more sophisticated techniques achieve
speedups by three orders of magnitude, clearly outperforming previous approaches.
We conclude this chapter with final remarks in Section 4.6.

4.1 Integrating Battery Constraints

In what follows, we first describe how we model energy consumption in our input.
Further, we formally define two relevant problem settings in the context of energy-
optimal routes for EVs (Section 4.1.1). Given a source and a target, the first asks for an
energy-optimal path subject to a given initial SoC at the source. The second asks for a
profile, i. e., an energy-optimal path for every possible SoC at the source. Afterwards,
we examine the complexity of such profiles (Section 4.1.2). Finally, we show how
profiles can be represented efficiently and introduce necessary operations to obtain a
new profile from the profiles of two consecutive subpaths or two paths between the
same pair of vertices (Section 4.1.3).

4.1.1 Model and Problem Statement

We model the road network as a directed graph G = (V,E). Vertices have associated
elevation values (relevant for energy consumption) given by a function h: V. — R,.
We assume that the slope along an edge is constant—varying slopes can be modeled by
adding intermediate vertices, so this is not a restriction in practice. The actual energy
consumption of an EV when driving along an edge is given by the function c: E — R.
Consumption can be negative to account for recuperation. However, cycles with
negative consumption are physically ruled out. In other words, driving in a cycle
never increases the SoC of an EV.

We assume that the EV is equipped with a battery of limited capacity M € Rx,.
Given the current SoC b, € [0, M] of a vehicle positioned at some vertex u € V in the
network, traversing an edge (u,v) € E typically results in the SoC b, = b, — c(u,v).
However, we must also take battery constraints into account: The SoC b, must neither
exceed the limit M nor drop below a predefined (e. g., user-specific) minimum [Art+10a,
Art+10b, EFS11]. For the sake of simplicity and without loss of generality, we assume
in this work that the minimum SoC is 0 and that c(e) € [-M, M] for all edges e € E of
the input graph. Then, if the consumption c(u,v) of an edge (u,v) € E exceeds the
SoC b, at u, the edge cannot be traversed, as the battery would run empty along the
way. We indicate this case by setting b,, := —co. Conversely, if the battery is (almost)
fully charged, passing an edge with negative consumption cannot increase the SoC
beyond the maximum value M, so we obtain b, = M. Given some initial SoC by at
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a source s € V together with a target t € V, we say that an s—t path P is feasible if
and only if the battery never runs empty, i. e., the SoC b,, obtained at every vertex v
of P after iteratively applying the above constraints is in the interval [0, M]. Let b,
denote the SoC at the last vertex t of the path P. Then the energy consumption on P is
the difference bs — b; between the initial and the final SoC. Recall that this value can
become negative due to recuperation or infinite if P is infeasible. Moreover, note that
a path may be infeasible even if its cost (i. e., the sum of its consumption values) does
not exceed bs: Due to negative edge costs, there might be a prefix of greater total cost
that renders the path infeasible.

In this chapter, we study two query types on the input graph, namely SoC queries
and profile queries. In an SoC query, one is given a source s € V, a target t € V, and an
initial SoC b € [0, M]. It asks for a (single) energy-optimal s—t path when departing at
s with SoC by, i. e., a path that maximizes the SoC b, at t. (In Section 4.3, we slightly
alter the notion of energy-optimal paths to take charging stops into account.) A profile
query does not take bs as input, but asks for an s—t profile, i. e., the optimal value b,
for every initial SoC b, € [0, M]. We will see that not only the maximum SoC at the
target, but also the optimal path itself may vary for different values b of initial SoC.
Hence, a profile corresponds to a set of optimal s—t paths.

Profiles are helpful for deciding how much to charge the battery before departing.
Moreover, they are a preprocessing ingredient to our speedup techniques in subsequent
sections. Thus, we examine the complexity of profiles, before we turn to efficient
algorithms for solving both problem variants. In all algorithmic descriptions given
in this chapter, we focus on computing the optimal SoC at the target, rather than
explicitly constructing the corresponding s—t path. To obtain the actual path, one can
apply backtracking or add parent pointers, as in Dijkstra’s algorithm (see Section 3.3).

4.1.2 On the Complexity of Profiles

Apparently, the energy consumption along a certain s—¢ path may vary for different
values of initial SoC at the source s € V, due to battery constraints. We discuss how
to efficiently compute and represent this correlation between initial SoC and energy
consumption. It turns out that not only the SoC at the target t € V, but also the optimal
path itself depends on the initial SoC at the source s.

Given two vertices s € V and t € V of the input graph, we define the SoC function
f:[0,M]U {—00} — [0, M] U {—00}, also called SoC profile, to represent the s—t pro-
file. The function f maps SoC at the source s to the optimal resulting SoC at the
target t. Recall that —co is a special value to represent insufficient charge, hence we
define f(—o0) := —oo. For some s—t path P, we denote by fp the profile of P, i. e., the
SoC function that maps initial SoC at s to the resulting SoC at ¢ after traversing P.
Given the SoC functions fp and fp of two paths P and Q, we say that fp dominates fo
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Figure 4.1: SoC functions for different edge costs, assuming a battery capacity of M = 4.
(a) The SoC function of an edge with cost 1. (b) The SoC function of an edge with cost —1.

(similarly, P dominates Q) on a certain interval I C [0,M] if fp(b) > fo(b) holds for
all b € I. If the interval is not stated explicitly, we assume I = [0, M].

Below, we examine the SoC function of a given edge and along a fixed path. In both
cases, the function is piecewise linear and can be represented by a constant number
of breakpoints. Afterwards, we consider the general scenario, where multiple paths
may contribute to the same profile. In accordance with Section 3.1, we use a sequence
F =[(x1,11),- - ., (xk,yx)] of breakpoints to define a piecewise linear SoC function f,
such that f(b) = —oo for b < x1, fp(b) = yi for b > xi, and the function is evaluated
by linear interpolation for b € [x1,x).

Profiles Representing Edges. We begin by describing the SoC function f{,, . that
reflects battery constraints for a given edge (u,v) € E. We distinguish two cases. First,
let the cost c(u,v) = a* > 0 of the edge be a nonnegative constant. In this case, the
edge can only be traversed if the SoC at u is at least a*. We obtain the SoC function

Ju,0)(b) = (4.1)

—0 otherwise.

{b—a+ ifb>a",

The function f{, . is represented by the sequence F, .y = [(a*,0),(M,M — a¥)]
consisting of two breakpoints; see Figure 4.1a for an example. Second, if (u,v) has
negative cost, i.e., c(u,v) = a~ < 0, we have to ensure that the SoC at v does not
exceed the battery capacity M. We obtain the profile

b—a ifb—a <M
(b)) = - 4.2
Juo(®) {M otherwise. (42)
Again, the SoC function is represented by a sequence consisting of two breakpoints,
namely F, ) = [(0,—a”),(M + a~,M)]. Figure 4.1b shows an SoC function that
represents a single edge with negative cost.
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Profiles Representing Paths. Eisner et al. [EFS11] show that the number of break-
points of the SoC function fp of a given s—t path P is bounded by a constant. For the
sake of self-containedness, we give an alternative proof of this fundamental insight in
Lemma 4.1. Additionally, Lemma 4.1 provides a general specification of SoC functions
for single paths.

Before proving Lemma 4.1, we begin by defining important subpaths of an s—t path P
that affect the SoC function fp. First, let P} denote the maximum prefix of P, i.e.,
the prefix of P that has maximum cost ¢(P]) among all its prefixes. (Recall that the
cost of a path is defined as the sum of its edge costs, hence, battery constraints do
not apply.) If no prefix of P (including P itself) has positive cost, we obtain Py = [s]
and c(P]) = 0. Similarly, the minimum prefix P; minimizes the cost c¢(P;) among all
prefixes of P. We obtain P, = [s] and ¢(P;) = 0 in case that no prefix of P is negative.
The maximum suffix P} and minimum suffix P; are defined symmetrically. For the sake
of simplicity, we assume in the remainder of this section that P contains no subpath
with cost 0 consisting of more than one vertex (this can be enforced by perturbation
of edge costs). Thus, the above subpaths are uniquely defined. Moreover, observe
that P = P} o P; = P; o P}; see Figure 4.2. The following Lemma 4.1 shows that the
SoC function fp (defined by its breakpoints) of a path P is completely determined by
the costs of its important subpaths.

Lemma 4.1. Given an s—t path P, its SoC function fp is a piecewise linear function. It
is defined by a sequence Fp of breakpoints in the following way.

1. If there exists a subpath of P with cost greater than M, Fp = () and fp = —co.
2. Otherwise, if there is a subpath of P with cost below —M, Fp = [(c(P]),M—c(P}))].
3. If neither such subpath exists, Fp = [(c(P{),—c(P})), (M + c(P5),M — c(P]))].

Proof. To prove the claim, we consider the three cases separately. For each, we examine
certain subpaths of P. A subpath denoted P, ,, starts at the vertex u € V and ends at
the vertex v € V.

Case 1: There exists a subpath P, ,, of P such that ¢(P,, ) > M. Regardless of the
SoC at u, the u—v subpath cannot be traversed. Hence, the path P is infeasible for
arbitrary initial SoC and we obtain the SoC function fp = —co.

Case 2: No subpath of P has cost greater than M, but there exists a subpath P, ,,
such that ¢(P, ,) < —M. Without loss of generality, let P, ,, be the minimum-cost
subpath of P, i. e., any subpath of P has cost at least ¢(P, ). We can separate P into
three subpaths, namely, a prefix P; ,,, the negative subpath P, ., and a suffix P, ;.

We claim that P, is in fact the maximum prefix of P. Assume for contradiction
that the maximum prefix P; ,, ends at some vertex w # u. We distinguish three cases.
First, assume that w lies on the subpath P; ;. Then the subpath P,, ,, from w to u has
negative cost, because the prefix P; ,, o P, , must have lower cost than the maximum
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Figure 4.2: An s—t path together with its SoC function, assuming that the battery capacity
is M = 5. (a) The s—t path with depicted edge costs. The cost of the path is 1 and its important
subpaths are indicated. Relative vertical positions of vertices correspond to costs of subpaths
starting or ending at the respective vertex. (b) The SoC function of the s—t path. The coordinates
of its breakpoints correspond to the costs of certain important subpaths.

prefix Ps ,,. However, this contradicts the fact that P, ,, is the minimum-cost subpath
of P, as P, ,, o P, , yields a subpath of lower cost. Second, assume that w lies on the
subpath P, ,,. This implies that the u—w subpath P,, ,, has positive cost, since the prefix
Ps , has lower cost than the maximum prefix Ps ,,. Again, this contradicts the fact
that P, ,, is the minimum-cost subpath of P, since removing its prefix P, ,, yields a
shorter subpath P,, ,, from w to v. Third, assume w lies on the subpath P, ;. As before,
the u—w subpath P, ,, must have positive cost in this case, since we would obtain
c(Ps,w) < c(Ps,y,) otherwise. Since the cost of P, ,, is less than —M, this means that the
cost of the subpath P, ,, is greater than M, which contradicts our assumption.

By a symmetric argument, P,, ; is the maximum suffix of P. Consequently, if the
initial SoC by € [0, M] at the source s is below the cost ¢(P]) of P} = Ps ,, the path
is infeasible. Otherwise, the SoC is nonnegative at u. The SoC can only increase
when traversing the subpath P, ., since this subpath has no positive prefix (by the
assumption that it is the minimum-cost subpath of P). Moreover, the SoC has reached
the maximum b,, = M at v, independent of b;. We also know that the SoC is always
below b, while traversing the v—t subpath P, ; = P}, since this subpath has no negative
prefix (otherwise, we could use this negative prefix of P/ to find a shorter subpath

than P, ,,, contradicting our assumption that P, ,, is the minimum-cost subpath of P).

Thus, no constraints apply on this subpath and the SoC at t is M — ¢(P}), subtracting
exactly the (positive) cost of the remaining subpath from v to ¢.

Case 3: The cost of every subpath of P is in the interval [-M, M]. This implies that
at any vertex on P, a fully charged battery is sufficient to reach the target, because
the SoC cannot drop below 0 after it reached the maximum M. Therefore, depending
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on the initial SoC bs € [0,M], the path may either be infeasible or recuperation is
disabled at some point because the maximum SoC is reached, but not both. Based on
this observation, we discuss possible SoC values at the target.

First, the path P is infeasible (for some initial SoC b, € [0, M]) if and only if the SoC
value drops below 0 at some vertex v on P. This implies that recuperation is always
possible. Thus, no battery constraints apply at any vertex u on the subpath from s
to v, so the SoC at each such vertex u is bs — ¢(Ps ;). Consequently, v is the first vertex
on P such that this difference becomes negative, i.e., bs — ¢(Ps,,) < 0. Independent of
the initial SoC, this difference is minimized at the last vertex of the maximum prefix.
It follows that fp(bs) = —co if and only if bs < c(P).

Second, if full recuperation is not possible along some edge (u,v) of P, the path is
feasible and the difference between the initial SoC b, and the cost of the s—v subpath
P ., exceeds the battery capacity, i. e., bs — c(Ps.,) > M. For any value bg € [0, M], this
difference is maximized at the last vertex of the minimum prefix, so the constraint
on recuperation applies if and only if by — ¢(P;) > M. If this is the case, the SoC
reaches the maximum value M at the last vertex of the minimum prefix (after applying
battery constraints). Since the remaining maximum suffix P} has nonnegative cost of
at most M and no negative prefix (otherwise, we could use this prefix to extend the
minimum prefix of P), it follows that no battery constraints apply on this subpath and
the SoC at the target is M — ¢(P}) if bs > M + c(Py).

Third, we have argued that if ¢(P]) < b; < M + ¢(P;), no constraints apply.
Therefore, the path is feasible and recuperation is always possible. This implies that
the SoC at the target is exactly b; — ¢(P). It remains to show that this is the result
of evaluating the piecewise linear function defined above. Recall that we have the
equality c¢(P) = ¢(Py)+c(P;) = c(P;) +c(P/). We obtain that the slope of the function
fp on the interval [¢(PY),M + ¢(P;)] is

gy M) +e(P;)
X2 — X1 M+C(P;)—C(P;')

o1 : = 1,
where (x1,7y1) and (x2,y;) denote the two breakpoints of the piecewise linear func-
tion fp according to the lemma. Consequently, the function fp evaluates to

fp(bs) = y1 + 01(bs — x1) = —c(P;) + (bs — c(PY)) = bs — c(P)
for arbitrary bs € [c(P}),M + c¢(P;)], which completes our proof. O

According to Lemma 4.1, the SoC function of a path has a characteristic form: It
consists of a first part with infinite consumption (the path is infeasible for low SoC),
followed by a segment with slope 1 (the consumption is constant, thus SoC at t
increases with SoC at s), and a last segment of constant SoC (for high values of
initial SoC, the battery is fully charged at some point due to recuperation). Each of
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Figure 4.3: The SoC profile of two vertices in a graph. The battery capacity is M = 8. (a) The
graph with indicated source s and target t. There are two different s—t paths with respective
costs 1 and —1. (b) The corresponding SoC function. The dashed segments indicate dominated
parts of SoC functions of either of the two s—t paths. Characteristic segments of contributing
paths follow the gray arrow in increasing order of their total path length (unless they contain
a subpath of cost below —M; c.f. Lemma 4.1).

these three parts may collapse to a single point. The segment with slope 1 is also
called the characteristic segment of the SoC function. An example of a path and its
SoC function is depicted in Figure 4.2.

In summary, at most two breakpoints are necessary to represent the SoC function
of a path. This stands in contrast to profiles in time-dependent route planning, where
profiles map departure time to arrival time in a network with time-dependent edge
costs. Such time-dependent profiles can become significantly more complex, even for
single paths [Bat+13, Bau+16f, DW09].

Unrestricted Profiles. For a fixed pair of vertices s € V and t € V, different paths
may be the optimal choice for different values of initial SoC; see Figure 4.3 for an
example. Consequently, a profile may be composed of multiple paths. A general SoC
function is the upper envelope of a set of SoC functions, each corresponding to a
single path. Note that this upper envelope may contain multiple discontinuities; see
Figure 4.3. Next, we investigate the complexity of such general SoC functions. For the
sake of simplicity, we assume in the remainder of this section that shortest paths (with
respect to the cost function c) between arbitrary pairs of vertices are unique.

We say that an s—t path and its SoC function contribute to the s—t profile if they are
optimal for some initial SoC. First, we bound the number of breakpoints in the SoC
function subject to the number of contributing paths. The following Lemma 4.2 is a
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direct implication of the observations by Atallah [Ata85]. A more direct proof is given
below for the sake of self-containedness. (Note that the number of breakpoints in the
upper envelope of linear functions can be superlinear in general [WS88].)

Lemma 4.2. Given the set P of all contributing paths of an s—t profile, the number of
breakpoints in the corresponding SoC function is linear in |P|.

Proof. Given the set P of contributing paths, we construct a sequence F representing
the SoC function f of the s—t profile in the following way. Starting with an empty
sequence F = (, we iteratively merge F with the breakpoints Fp of the SoC function of
a contributing path P from P, i. e., we replace F by the upper envelope of the functions
defined by F and Fp.

For the sake of simplicity, assume that the SoC function of every contributing path
contains exactly two breakpoints. We select paths in # in decreasing order of their
cost with respect to the function ¢ (inverse to the arrow depicted in Figure 4.3b). Thus,
when a path P € P is chosen, its SoC function fp dominates the function defined by
the current sequence F along its characteristic segment. Hence, the two breakpoints
representing this segment are added to F, creating a discontinuity. Moreover, the flat
segment following the characteristic segment may intersect at most one segment in F,
because F corresponds to an increasing function. Such an intersection requires one
additional breakpoint in F. In total, incorporating fp results in a constant number of
new breakpoints, which implies that the size of F is linear in the cardinality of . It
is straightforward to generalize the procedure to also handle paths with functions
composed of only a single breakpoint. |

Since the number of s—t paths can be exponential in the graph size, Lemma 4.2 does
not yield an immediate polynomial bound on the complexity of the s—t profile. We
now show that the number of breakpoints in any SoC function is in fact linear in the
number of vertices of the input graph in the worst case.

Before we prove the bound, we derive basic properties of contributing SoC functions.
As argued above, certain subpaths of an s—t path P are relevant to determine its profile.
We add the following definitions that are helpful in our further examination. The
bottom vertex v~ is the last vertex of the minimum prefix (and the first vertex of
the maximum suffix) of P. Similarly, the top vertex v* denotes the last vertex of the
maximum prefix (and the first vertex of the minimum suffix) of P. We call v~ and v*
the important vertices of P. We presume that v~ # v*, which always holds except
in the trivial case s = t. The important vertices separate P into three subpaths. (In
case that s or t are important vertices, one or two of these subpaths may consist of
a single vertex.) Moreover, we distinguish two types of s—t paths, depending on the
order of appearance of their important vertices. A path P is called bottom-top path if
v~ appears before v* on P, otherwise it is a top-bottom path.
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We continue with some basic properties of paths and their SoC functions. First,
Lemma 4.3 claims that a path P dominates another path Q if it is shorter (with respect
to the cost function c) and both its maximum prefix and its maximum suffix are shorter
than the respective subpaths of Q. This follows immediately from the structure of SoC
functions according to Lemma 4.1 and is illustrated in Figure 4.4.

Lemma 4.3. Given two verticess € V andt € V, let P and Q be two s—t paths such
that c(P) < ¢(Q), c(Py) < ¢(Qy), and c(P) < c(Qf). Then the SoC function fp of P
dominates the SoC function fo of Q.

The next Lemma 4.4 states that prefixes and suffixes of all contributing paths are
uniquely defined by their corresponding important vertices.

Lemma 4.4. Given two verticess € V andt € V, letv € V be an arbitrary fixed vertex.
All paths of the same type contributing to the s—t profile with v as their first important
vertex share the same s—v subpath. Similarly, all contributing paths of the same type
with v as their second important vertex share the same v—t subpath.

Proof. Assume for contradiction that there are two contributing paths P and Q of the
same type, such that the first important vertex of each path is v, but their respective

s—v subpaths differ. Without loss of generality, let the s—v subpath of P be shorter.

We replace the s—v subpath of Q by the s—v subpath of P, which yields a modified
path Q’. Clearly, the length of Q’ is below the length of Q, i.e., ¢(Q") < ¢(Q). At the
same time, neither the maximum prefix nor the maximum suffix of Q" exceeds the
cost of the respective subpath of Q. By Lemma 4.3, the modified path Q” dominates Q,
contradicting the assumption that Q is a contributing path.

Similarly, we can replace the v—t subpath in one of two paths of the same type that
share the second important vertex v by a shorter v—t subpath. Again, we obtain a new

path that is shorter, while the lengths of its maximum prefix and suffix do not increase.

Hence, at least one of the two paths does not contribute to the profile. O

Using similar arguments, it is straightforward to extend Lemma 4.4 and show that
together with their order in the path, pairs of important vertices uniquely define

Section 4.1

51



Chapter 4

52

Energy-Optimal Routes for Battery Electric Vehicles

contributing paths of the same type. Note that this already implies that there are
at most O(n?) paths contributing to an s—t profile. We formally prove the claim in
Lemma 4.5 below. Afterwards, we use a somewhat more sophisticated argument to
show that the number of breakpoints is at most linear in the number of vertices.

Lemma4.5. Lets € V,t € V,v” € V, and v* € V be four vertices of the input graph.
There is at most one bottom-top path contributing to the s—t profile that has v~ as its
bottom vertex and v™ as its top vertex. Similarly, at most one contributing top-bottom
path has v* as its top vertex and v~ as its bottom vertex.

Proof. Assume for contradiction that there exist two distinct contributing s—¢ paths P
and Q, such that both are bottom-top paths, their bottom vertex is v~, and their top
vertex is v*. By Lemma 4.4, we know that P and Q share the same s—v~ subpath and the
same v* -t path. Hence, their v™-v"* subpaths must differ. Without loss of generality,
let the v™—v™ subpath of P be shorter. Apparently, the total cost of the path P is lower
than the cost of Q, i.e., ¢(P) < ¢(Q). Similarly, the cost of the maximum prefix P;
(suffix P;) of P is less than the cost of the maximum prefix Q7 (suffix Qf) of Q. By
Lemma 4.3, this implies that P dominates Q, contradicting the fact that Q contributes
to the optimal solution. The other case is symmetric, so the claim follows. ]

We are now ready to present the main result of this section. Theorem 4.6 proves
that the number of breakpoints of an arbitrary SoC function is at most linear in the
number of vertices in the input graph. Further, it is easy to construct an example
where the SoC function indeed has a linear number of breakpoints; see Figure 4.5.
Hence, the bound of Theorem 4.6 is tight up to a constant factor and the number of
breakpoints of an SoC function is in ©(n) in the worst case.

Theorem 4.6. Given a sources € V and a targett € V in the input graph, the number
of contributing paths (and breakpoints) in the s—t profile is in O(n).

Proof. We construct an undirected graph G’ consisting of vertices representing impor-
tant vertices in the input graph G = (V,E). Every edge of G’ represents a contributing
path using the corresponding pair of important vertices. We examine the structure
of SoC functions of contributing paths to show that the number of edges in the con-
structed graph is in O(n). Together with Lemma 4.2, this proves our claim.

The graph G’ consists of the union of four sets of vertices V" = {v] | v € V},
Vi ={v] lveV},Vy ={v;, |veV},and V,” = {v] | v € V}. Clearly, the number
of vertices in G’ is linear in the number of vertices in the original graph G. We add
one undirected edge for every s—t path in the original graph that contributes to the
SoC profile: For every contributing bottom-top path with first important vertex u € V
and second important vertex w € V, we add the edge {u],w; }. For every contributing
top-bottom path with first important vertex u € V and second important vertex w € V,
we add the edge {u],w; }. Lemma 4.5 implies that there are no multi-edges in the
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Figure 4.5: An SoC function with ©(n) breakpoints. (a) The input graph with designated
vertices s and t. There are k € N distinct s—t paths and n = 2(k + 1). Edges are labeled
with their costs. (b) A sketch of the s—t profile for an arbitrary battery capacity M > 3k.
Every s—t path in the graph contributes to the profile and adds three breakpoints as well as
a discontinuity (represented by a fourth breakpoint), which results in an SoC function with
2(n — 3) breakpoints in total.

resulting graph. By construction, G’ consists of at least two components and each
component induces a bipartite subgraph. We claim that G’ contains no simple cycles,
i. e., there is no cycle in G’ that uses every edge at most once. This implies that G” has
at most O(n) edges, which proves the theorem.

Assume for contradiction that there is a simple cycle C = [vy,...,v,v1] in the
graph constructed above. There are two possible cases: Either all edges in the cycle
correspond to top-bottom paths and it contains only vertices in V;" U V,, or all edges
correspond to bottom-top paths and all its vertices are in the set V" U V.

Case 1: All edges represent top-bottom paths, and therefore {vy,..., v} C V;F UV, .
Figure 4.6a shows an example. Consider the profile induced by all paths corresponding
to the edges of this cycle. Edges incident to some vertex v; € Vl+, withi € {1,...,k},
correspond to paths with the same top vertex in G. Lemma 4.4 implies that these
paths also share the same maximum prefix with some length x € [0, M]. Therefore,
by Lemma 4.1, every edge incident to v; corresponds to some SoC function whose
first breakpoint has the x-coordinate x. Thus, the leftmost point of the characteris-
tic segment of each of these SoC functions lies on a vertical line defined by x; see
Figure 4.6b. Similarly, edges incident to a bottom vertex v; € V|” represent paths
with the same maximum suffix of length y € [0, M]. The last breakpoint of each SoC
function associated with one of these paths lies on a horizontal line defined by the
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Figure 4.6: [llustration of the proof of Theorem 4.6. (a) A constructed bipartite graph G’ with
copies of top and bottom vertices of the input graph. Edges represent paths connecting certain
important vertices. Vertices have assigned real-valued constants x1,x2, x3, Y4, ys5, ys. Edge labels
indicate the interval in Figure 4.6b where the corresponding characteristic segment is contained
in the upper envelope of all functions. (b) The SoC functions of the edges in the constructed
graph. Characteristic segments connect vertical lines induced by constants x,. . ., xs. Parts of
characteristic segments that lie on the upper envelope are highlighted (dark blue). Adding the
missing characteristic segment that connects the lines induced by x; and x4 (to form a cycle in
the graph) results in at least one dominated SoC function.

y-coordinate y. Hence, each of the k vertices defines either a vertical or a horizontal
line. Every edge in the cycle C corresponds to a characteristic segment that starts at
one of the vertical lines and ends at one of the horizontal lines; see Figure 4.6b.

For a constant y € [0, M] inducing a horizontal line, we consider the leftmost x-
coordinate of any breakpoint of an SoC function (corresponding to an edge in the
cycle C) with the y-coordinate y; see Figure 4.6b. In total, we defined one x-coordinate
for each vertex in C, which we denote by x; € [0,M] for i € {1,...,k}. Without loss
of generality, assume that x; < x; < - -+ < xx holds. Then, we obtain k — 1 intervals
[x;,xi+1] for i € {1,...,k — 1}. By assumption, every edge of C corresponds to a
contributing path. The characteristic segment of the SoC function of each contributing
path is (partially) contained in the upper envelope of the SoC functions of all k paths (or
else it would not contribute to the s—t profile). Given that all characteristic segments
are parallel (with slope 1), this implies that there is a unique segment that is part of
the upper envelope on the interval [x,x;.1], with i € {1,...,k — 1}. However, there
are only k — 1 such intervals for k contributing paths; a contradiction.

Case 2: All edges represent bottom-top paths, and therefore {v,...,vc} C VUV
In this case, edges incident to a bottom vertex v; € V| for some i € {1,...,k}
correspond to paths with the same bottom vertex in G. By Lemma 4.4, these paths
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share the same minimum prefix with length y € [0, M]. Moreover, observe that a
contributing bottom-top path contains no subpath with cost below —M, since the cost
of its maximum prefix must not contain a subpath of length greater than M. It follows
that SoC functions of contributing bottom-top paths are of the form as in Case 3 of
Lemma 4.1. Thus, the leftmost point of the characteristic segment of each SoC function
represented by an edge incident to the bottom vertex v; lies on the horizontal line
defined by y. Similarly, edges incident to top vertices v; € V," for some i € {1,...,k}
correspond to characteristic segments whose rightmost point lies on the same vertical
line defined by a constant x € [0,M]. If we proceed along the lines of the first case,
this yields a contradiction. O

Consumption Profiles.
s € V to the (optimal) resulting SoC at a target vertex ¢ € V. An alternative notion that
is common in the literature [Bau+13a, Bau+15b, EFS11] utilizes consumption functions
c: [0,M] U {—00} — [-M,M] U {oco} of pairs of vertices. A consumption function
maps initial SoC to minimum energy consumption, defined as the difference b — b,
between the SoC at s and ¢, respectively. For arbitrary b € [0,M], we obtain the
relation ¢(b) = b — f(b) between the consumption function ¢ and the SoC function f
with respect to s and t. Figure 4.7 shows the consumption function that corresponds
to the SoC function in Figure 4.3b. Apparently, both notions represent different points
of view for the same problem. Hence, insights about the structure of SoC functions
and bounds on their complexity carry over to consumption functions immediately.

An SoC function f maps initial SoC at a source vertex

4.1.3 Operations on Profiles

Now that we discussed important properties of SoC functions, we introduce basic
operations that enable us to compose and merge SoC functions. These operations are
used in Section 4.2.2 to derive algorithmic approaches for the computation of SoC
profiles between arbitrary pairs of vertices.
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To compute SoC profiles, we require binary link (composition) and merge operations,
defined on the function space F of SoC functions. Given the SoC functions of two
paths P and Q in the input graph, the link operation computes the SoC function of
their concatenation P o Q, i. e., it maps initial SoC to the resulting SoC after traversing
P and Q in this order. Formally, the operation link: F X F — F takes as input two
SoC functions fi, f, and is defined as link(fy, f2) := f2 o fi. Hence, linking f; and f;
yields a new SoC function f, such that f(b) = f2(f1(b)) for every b € [0,M]. The
operation merge: F X F — F computes the pointwise maximum of two functions,
i.e., merging two SoC functions f; and f; yields merge(fi, f2) := max(fi, fz). The
result is a new SoC function f with f(b) = max{f;(b), f2(b)} for every b € [0,M].
Furthermore, our algorithms use dominance tests to identify dominated SoC functions
during a search. Observe that such a test can be implemented by making use of the
merge operation, since an SoC function f; dominates another SoC function f; if and
only if merge(fi, f2) = fi-

The function space [F of SoC functions is closed under the operations link and merge,
i.e., the result of each operation is another SoC function. The SoC function fp of a
path P = [vy,...,v¢] is obtained by iteratively applying the link operation, starting
with the SoC functions f(y, «,,,) of its edges (v;,v;41) for alli € {1,...,k — 1}. Thus,
we get

fp =link(. . . link(. . . ink(f{o,,05)s flon0s)) - - - )> Fop1o0))-

Note that linking is not commutative but associative, so the link operations above can
be applied in arbitrary order.

In the same fashion, link and merge operations can be derived for consumption
functions. Given two consumption functions c¢; and c;, the link operation is defined
aslink(cy,cz) := ¢1+c20(id —c1), whereas we define merging as the pointwise minimum
denoted merge(cy,cz) := min(cy,c2). The remainder of this section deals with efficient
implementations of these operations. While we focus on SoC functions, the link and
merge operation for consumption functions are analogous.

Implementation of Linking and Merging. In general, SoC functions are piece-
wise linear, but not necessarily continuous, with varying degree of complexity. We
propose different representations of SoC functions, depending on their complexity.
For a single edge e € E, the SoC function f, has a simple form: As described in
Section 4.1.2, the SoC function f, is defined only by the constant value c(e). More
generally, SoC functions have simple form (i. e., they are defined by a finite constant
value as described in Section 4.1.2) if and only if they correspond to an s—t path P with
important vertices s and t. In this case, the cost of each important subpath is either 0
or equal to the cost a := ¢(P) of the whole path. Hence, a single constant a € R is
sufficient to represent the SoC function. However, linking two functions of simple form
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does not yield another function of simple form in general: As shown in Section 4.1.2,

battery constraints may impose more complex functions when concatenating edges.

In fact, linking two functions represented by constants a; € R and a; € R yields a
function of simple form if and only if both have the same sign, i. e., either a; > 0 and
az > 0 hold or a; < 0 and a; < 0 hold. Then, the resulting SoC function is represented
by the constant a; +ay, so the link operation boils down to a single addition and a check
testing whether the path is always infeasible (if and only if a; + a; > M). Conversely,
merging two functions of simple form represented by the respective constants a; € R
and a; € R always results in a function that has simple form as well, represented by
the constant min{a;,as}.

As shown in Section 4.1.2, any path P in the graph has an SoC function fp that can be
represented by at most two breakpoints. Note that explicitly storing both breakpoints
is redundant, due to the specific form of such profiles (in particular, their slope is
always 0 or 1). A slightly more compact representation [EFS11] uses only three values
to represent fp, namely, the minimum SoC inp € [0, M] required to traverse P, its
energy consumption costp € [—-M, M] (which can be less than inp due to recuperation),
and the maximum possible SoC after traversing P, denoted outp € [0, M]. The value of
inp is the length of the maximum prefix of P, while outp is the difference between the
battery capacity M and the length of the maximum suffix of P. The value costp equals
the total length of P (unless P contains a subpath with cost below —M; see Lemma 4.1
and Figure 4.8). In other words, inp and costp determine the first breakpoint of the
SoC function, while outp is the y-coordinate of its last breakpoint. Thus, the SoC
function fp of the path evaluates to

—00 ifb < inp,
fp(b) = {outp if b — costp > outp,

b — costp otherwise.

For an edge e € E, the SoC function f, is defined by cost, := c¢(e), in, := max{0,c(e)},
and out, := min{M, M — c(e)}. The SoC profile f{,] of a path [v] consisting of a single
vertex v € V is the identity function, which is represented by cost[, := 0, in[¢) := 0,
and out[y) := M. For two SoC profiles fp and fo of given paths P and Q, we obtain (in
constant time) the linked function fp.¢g := link(fp, fo) by setting

inpop := max{inp,costp +ing},
outp,p := min{outp — costg,outp},
costpop := max{costp + costp,inp —outp},
provided that outp > ing. Otherwise, there exists a subpaths of length greater than the

capacity M and the path is infeasible for arbitrary SoC, which implies fpo,o = —oo (this
function can be represented by setting, e. g., costp,g := 00). An example of two SoC
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Figure 4.8: Two SoC functions and the result after linking them. The battery capacity is M = 4.
(a) The underlying paths P = [s,u,v] and Q = [v,w,t], with indicated edge costs. (b) The SoC
function fp is represented by inp = 2, costp = —1, and outp = 4. (c) The SoC function fj is
given by ing = 1, costp = 1, and outp = 1. (d) Linking the functions fp and fp yields the
function fp.o with inp.g = 2, costpop = 1, and outp,p = 1. Observe that due to a subpath of
length —5 < —M, the value costp,p = 1 is greater than the sum costp + costg = ¢(P o Q) = 0.

functions as well as the result of linking them is shown in Figure 4.8. We can also test
in constant time whether some SoC function fp dominates another SoC function fp,
which is the case if and only if inp < ing, costp < costp, and outp > outp.

We showed in Section 4.1.2 that merging SoC functions of different paths may result
in functions with more than two breakpoints. Thus, we need efficient link and merge
operations for SoC functions of this general form. Both operations can be implemented
as coordinated linear scans, following time-dependent approaches [DW09]. Given two
SoC functions fi and f3, the link operation constructs the new function f := f, o f;
as follows. For each breakpoint (x,y) € R? of fi, a breakpoint (x, f>(y)) is added to f.
For every breakpoint (x,y) € R? of f,, we test whether x is in the image of f;. If this is
the case, we compute x” := min{b € [0,M] | f1(b) = x} and add the breakpoint (x’,y)
to f. Unnecessary breakpoints that do not affect the result of evaluating f (in cases
where several collinear breakpoints exist) are removed on-the-fly during the linear
scan. Similarly, the merge operation takes two SoC functions f; and f, and identifies
all breakpoints on their upper envelope, i. e., any breakpoint (x,y) € R? of f; with
y > f2(x) and vice versa. Additional breakpoints are necessary at intersections of both
functions, while unnecessary collinear points can be removed.

4.2 Basic Algorithms

In this section, we discuss basic algorithms to answer SoC queries (Section 4.2.1) and
profile queries (Section 4.2.2) on a given input graph G = (V,E) with a consumption
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function ¢: E — R. First, note that an SoC function f fulfills the first-in-first-out (FIFO)
property, that is, for arbitrary SoC values b; € [0,M] and b, € [0, M] with b; < by, it
holds that f(b;) < f(b;), because SoC functions are increasing. As a result, starting
with lower SoC never yields higher SoC at the target [EFS11]. This important property
enables label-setting algorithms.

4.2.1 SoC Queries

Given a source s € V, a target f € V, and an initial SoC b; € [0, M] at s, an SoC query
asks for an energy-optimal path, i. e, a path with minimum energy consumption. Our
baseline approach for such queries is a known (label-correcting) variant of Dijkstra’s
algorithm [Art+10a, Art+10b, Joh73], which we refer to as EV Dijkstra (EVD). See
Figure 4.9 for pseudocode. Along the lines of Dijkstra’s algorithm [Dij59], EVD
maintains an SoC label b(v) for each vertex v € V, initially set to —oo, except for b(s),
which is set to bs. A priority queue is initialized with the source vertex s and the
key b(s). In each step, the main loop scans a vertex u € V with maximumkey, extracting
it from the queue. Then, for each outgoing edge e = (u,v) € E, the algorithm evaluates
the SoC function f, at SoC b(u). Since SoC functions of edges have simple form, we
immediately obtain from Equation 4.1 and Equation 4.2 in Section 4.1.2 that

—o0 if b(u) — c(u,v) <0,
fe(b(u)) =M if b(u) — c(u,v) > M,
b(u) — c(u,v) otherwise.

Therefore, scanning an edge requires only a subtraction and two comparisons. If
fe(b(u)) > b(v) holds, the label b(v) is updated accordingly and v is inserted (or
updated) in the priority queue. The algorithm stops as soon as the queue runs empty.
Then, for each vertex v € V, the label b(v) provably holds the maximum possible SoC
b, when reaching v from s with initial SoC bs. The minimum energy consumption
to reach v equals bs — b,,. (Observe that instead of labels with maximum SoC, a more
direct adaptation of Dijkstra’s algorithm could propagate labels with minimum energy
consumption.) Correctness follows from the FIFO property [Dre69] and the fact that
the above variant of Dijkstra’s algorithm correctly handles negative costs [Joh73].

If edges with negative cost exist, the algorithm is label correcting: It may scan
vertices more than once if their labels are improved via subpaths of negative length. It
is well-known that this might trigger (exponentially many) rescans over large parts of
the graph [Joh73]. However, this is only the case if negative shortest paths have a long
positive prefix (in relation to the graph diameter), which is unlikely in our scenario.
Also, recall that our inputs contain no negative cycles due to physical constraints.

Enabling a Stopping Criterion. When solving the SPSP problem for graphs with
nonnegative cost functions, the performance of Dijkstra’s algorithm can be improved

Section 4.2

59



Chapter 4

60

Energy-Optimal Routes for Battery Electric Vehicles

// initialize labels
1 foreachv €V do
2 | b(v) e— -0

3 b(s) «— by
4 Q.insert(s,by)

// run main loop
5 while Q.isNotEmpty () do
6 u «— Q.deleteMax ()
7 foreach (u,v) € E do
8 b — f(u,v)(b(u))
9 if b > b(v) then
10 b(v) «— b
L Q.update(v,b)

Figure 4.9: Pseudocode of EVD. The algorithm requires a graph G = (V,E), a cost func-
tionc: E — R, asource vertex s € V, a battery capacity M € R, and an initial SoC b € [0, M].
For every vertex v € V, it computes the optimal SoC upon arrival at v.

by making use of the stopping criterion; see Section 3.3. For EVD, since it is label
correcting, this cannot be applied: After the target vertex ¢ was scanned, there may be
vertices (with lower SoC) left in the priority queue. Due to negative costs, it is possible
that some of them can be expanded to s—t paths with higher SoC at t. We discuss
different ways to establish a stopping criterion for EVD.

Given the target t € V, let P; denote the shortest v—t path in G from any vertexv € V,
i. e, the path with cost ¢} := ¢(P}) = min,cy dist.(v,t). We obtain c¢; < 0, because the
t—t path [t] has cost 0, which yields an upper bound on c;. Assume that, at some point
during the execution of EVD, a vertex v € V is scanned such that b(v) — ¢; < b(t). We
claim that at this point, an energy-optimal path was already found, so we can safely
abort the search. This is easy to see, as b(v) is the maximum SoC among any labels left
in the priority queue. Moreover, —c; is an upper bound on the amount of energy that
may possibly be recuperated before reaching t. Hence, the current label b(t) cannot
be improved in the further course of the algorithm.

We precompute the value c; for every possible target t € V to restore the stopping
criterion. During an s—t query, this requires an additional check of the condition
b(v) — ¢; < b(t) each time a vertex v € V is scanned. To save space, one can also
compute ¢ := min;cy ¢; and use only this less accurate bound c¢*. Then, instead of n
values c; for all t € V, only a single value c* has to be stored, but the number of vertex
scans during queries may increase due to the worse quality of the bound c*.

It remains to discuss how the bounds ¢} for all t € V and c* are efficiently computed
during preprocessing. Assume we (temporarily) add a super source s” and edges (s’,v)
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with cost 0 for all v € V to the input graph G. Solving the SSSP problem for s’ on
this modified graph yields, for each v € V, the length of the shortest s’-v path, which
equals the value c;,. To compute these paths, we use Dijkstra’s algorithm algorithm
as described in Section 3.3, which loses its label-setting property in the presence of
edges with negative costs [Joh73]. Although it has exponential worst-case running
time, it outperforms the polynomial-time algorithm of Bellman-Ford-Moore [Bel58,
For56, M0059] on realistic instances [Art+10a, Art+10b]. If ¢* is the desired output, its
value can be computed on-the-fly during the search.

The search described above inserts all vertices of G into the priority queue in the
first iteration of its main loop, since s’ is connected to every vertex in the graph.
As a result, subsequent queue operations become significantly more expensive. We
propose an alternative method that simulates the behavior of the above procedure,
but keeps the number of vertices in the queue much smaller. In practice, it is faster by
a factor of 2-3. It starts by initializing vertex labels with d(v) = 0 for all v € V. This
prevents nonnegative labels from being propagated by the search. Then, we process
all vertices of the graph sequentially, running Dijkstra’s algorithm from each vertex
v € Vif d(v) = 0 (otherwise, we skip the vertex, because it was already visited by a
previous run). We do not reinitialize vertex labels between subsequent runs. Observe
that this method behaves exactly like the original algorithm. Hence, it computes the
same bounds, but has reduced overhead during queue operations.

Potential Shifting. To get rid of negative costs entirely, we also consider three
potential shifting methods, which make EVD label setting. This allows us to apply the
regular stopping criterion, i. e., the search is aborted once the target is scanned. Recall
that vertex labels in EVD represent the SoC at a vertex. As the algorithm extracts a
label with maximum key from the priority queue in each step, keys of labels must
be nonincreasing for the algorithm to become label setting; c.f. Section 3.3.2. Hence,
we subtract potentials from keys when updating labels and a consistent potential
function 7: V. — R must fulfill the condition b — 7(u) > f(,,.)(b) — 7 (v) for all
(u,v) € E and b € [0,M]. For the SoC function f, .) representing an edge (u,v) € E,
we know that f(, .)(b) < b — c(u,v) holds for all b € [0, M] by definition. Therefore,
the potential function & should fulfill the condition c(u,v) — 7 (u) + 7 (v) > 0. In other
words, finding a consistent potential for the consumption function c is sufficient to
make EVD label setting [EFS11].

The first variant, also proposed by Eisner et al. [EFS11], makes use of a vertex-
induced potential function 7,,: V' — R. It takes an arbitrary fixed vertex v € V and
sets 1, (u) := dist. (u,v) for all vertices u € V, 1. e,, the distance from u to v with respect
to the cost function c. Computing these values requires a single run of Dijkstra’s (label-
correcting) algorithm on the backward graph G with cost function ¢. Consistency of
the resulting potential ., follows immediately from the triangle inequality.
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// initialize labels
1 foreachv €V do

2 L Jo — fowo
3 fs e—id
4 Q.insert(s,0)
// run main loop
5 while Q.isNotEmpty () do

6 u «— Q.deleteMin()

7 foreach (u,v) € E do

8 f — link(fu, flu,0))

9 if Ab € [0,M]: f(b) > f,(b) then
10 fo «— merge(fo, f)

11 L Q.update(v,key(f,))

Figure 4.10: Pseudocode of profile search for EVs. The algorithm takes a graph G = (V,E), a
cost function c: E — R, a source vertex s € V, and a battery capacity M € Ry as input. It
computes an s—v profile for every vertex v € V.

The second variant uses of a bound-induced potential function 7, : V — R, where we
simply set 7, (v) := —c}, for all v € V. The bounds c;, are computed by the method de-
scribed above. Again, consistency follows from the triangle inequality. Cherkassky et al.
obtain the same potential function from a multi-source search [Che+10], which pre-
liminary experiments indicated to be slower in our setting.

Finally, we propose a height-induced potential j,: V. — R. Setting 75 (v) := a - h(v)
for each vertex v € V, the potential of a vertex depends solely on its elevation h(v) and
a constant a € R. To obtain a consistent potential function, we must determine a value
a such that c(u,v) + a(h(v) — h(u)) > 0 holds for all edges (u,v) € E. If an underlying
physical consumption model is known, the value « can often be determined directly
from this model [EFS11, Sac+11]. We propose a more general method to compute «,
which also works if the underlying model is unknown because edge costs stem from,
e.g., simulations or real-world measurements. Given an edge e = (u,v) € E, we
denote by A(e) := h(v) — h(u) its ascent. Moreover, we define o, := —c(e)/A(e). It
follows that @ > a, must hold for all uphill edges, i. e., edges with h(u) < h(v). The
uphill edge e € E maximizing . yields a lower bound @ € R on the value of a.
For downhill edges with h(u) > h(v), i.e., edges with negative ascent, we get the
condition a < a,. This induces an upper bound @ € R on «a. If ¢(u,v) > 0 holds for
all edges (u,v) € E with h(u) = h(v) and we also obtain ¢ < @, an arbitrary value
a € [a,a] yields a consistent potential 7;,. Note that the value « is negative for realistic
consumption models. Computing ¢ and & requires only a single linear scan over all
edges of the graph, which is also straightforward to parallelize. Moreover, to enable
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fast integration of new consumption functions in practice, one can improve cache
friendliness by precomputing an array that explicitly stores for every edge e € E the
(metric-independent) difference A(e).

It is easy to construct examples where ¢ > & holds, even in the absence of negative
cycles. Then, there exists no value « € R that allows for a consistent potential
function 7,. However, we argue that a consistent potential is found for realistic
consumption models. Assuming that the velocity is constant along an edge e € E,
its energy consumption c(e) has the form c(e) = € - (4; + sA;3) in common physical
models [Asa+16, FAR16, Lv+16, Sac+11], where A; € Ry and A, € Ry are nonnegative
coefficients, and £ € R and s € R denote the length and the slope of the road segment
represented by e, respectively. Note that s = A(e)/¢. Then, inexistence of a consistent
potential 7, implies that there is an uphill edge e with coefficients A7, A7, length £7,
and positive slope s* as well as a downhill edge e~ with coefficients A7, A7, length {7,
and negative slope s~, such that

c(e’) c(e”)

> - =,
A(e*) A(e™)
AT st A7 sTUA

a2 et = = -za

< Aeh) T M) M) T Ae)
. A
& /1;<s—i+)t;<s—i+/1§</lg.

In other words, the coefficient A; that determines energy gained on a downhill ride is
greater than the coefficient A; that determines loss on an uphill ride. Certainly, such
model parameters are not meaningful, since recuperation efficiency is bounded in
reality. In particular, physical constraints prevent the amount of recoverable energy
on a downbhill ride from outweighing the cost when going uphill on the same slope.
Consequently, we were always able to compute the potential function 7, from realistic
consumption data in our experiments.

4.2.2 Profile Queries

Under some circumstances, e. g., when charging overnight, it is important to know how
much charging is at least required to reach the target. As we have seen in Section 4.1.2,
charging more than that might even enable paths with lower energy consumption (such
as paths of lower overall cost that first go uphill). As charging requires substantial time,
such decisions should be made by the driver. Therefore, we discuss profile search to
compute optimal paths for every possible initial SoC. Profile search is also an important
ingredient of the speedup techniques we introduce in the next sections.

Although computationally more expensive, profile search is conceptually easy, as
we can adapt the label-correcting search described in Section 3.3. For pseudocode
of profile search for EVs, see Figure 4.10. Starting from the source vertex s € V, the
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algorithm maintains, for each vertex v € V, a label f,, that represents an s—v profile
taking the general form of an SoC function; recall Figure 4.3 from Section 4.1.2. The
algorithm initializes f,, = —co for all v € V except s, for which the SoC function f; = id
is the identity function (which corresponds to a consumption of 0 for arbitrary SoC).
The source s is inserted into the priority queue with its key, defined for an SoC function
f as the value minge[o a b — f(b), i. e., its minimum consumption (thereby, following
the order depicted in Figure 4.3b). In each step of the main loop, the algorithm scans a
vertex u € V with minimum key and follows the basic search outlined in Section 3.3.
Incident outgoing edges e = (u,v) € E are scanned by computing f = link(f;, f.) and
possibly updating f;, = merge(f,, f), using the operations introduced in Section 4.1.3.

Target Pruning. As in EVD, negative costs prevent us from using a stopping crite-
rion in the profile search, since labels may be improved via subpaths of negative length.
We can use exactly the same techniques as described in the previous Section 4.2.1 to
remedy this issue. For a given target ¢t € V, a naive adaptation of the stopping criterion
proposed in Section 3.3 then checks whether f'® < fmin holds when scanning some
vertex v € V. However, we typically obtain f™ = —oco, which renders this stopping
criterion useless in most cases. Instead, we apply the following target pruning rule,
which is used in combination with vertex potentials or bounds induced by values c}, for
all v € V, as introduced in Section 4.2.1. Given an SoC function f;, in the label of some
vertex v € V, let b™" € [0, M] U {oo} denote the smallest SoC value for which f,, (b™i)
is finite, i.e., f,,(b) = —co for some b € [0, M] if and only if b < b™™, If no such real
value exists (i. e., f,, = —o0), we define b™" := co. Moreover, let cm*<M ¢ [0, M] U {c0}
denote the maximum finite consumption of f, i.e., the real value that maximizes
the energy consumption ¢, (b) = b — f,,(b) for b € [0,M] (we define cP¥*<M .= oo
if f, = —o0). Then, whenever the algorithm scans a vertex v € V, it checks whether
both pMin > pmin apd cmin > cmax<M hold If that is the case, the algorithm prunes the
search at v, i. e, it does not scan any of its outgoing edges.

Complexity. Even if we use potential shifting, profile search remains label correcting.
However, nonnegative reduced costs together with a slightly modified key function
(for the priority queue) enable us to establish a polynomial bound on its running time.
Recall that in the basic profile search described above, the key of a vertex is defined
as the minimum consumption of its current SoC profile. Instead, we now construct a
key function with the important property that the minimum key in the priority queue
cannot decrease during the search. To this end, we assume that a consistent potential
function 7: V — R is given. We set the key of a vertex v € V to its potential 7 (v) plus
the minimum consumption x — y among all breakpoints (x,y) € R? that were newly
added to the function f,, during some merge operation since v was scanned for the
last time (or all breakpoints of f;, if v has not been scanned so far). This implies that
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the minimum key in the priority queue cannot decrease during the search, because
scanning an edge (u,v) € E can only lead to new breakpoints at v whose (reduced)
consumption value is at least as large as the (reduced) consumption of a corresponding
breakpoint at u that was not propagated to v yet. As a result, each time v is extracted
from the queue, its SoC function contains some new breakpoint that has the smallest
key among any breakpoints that are yet to be propagated by the search. Hence, this
breakpoint must be part of the s—v profile, as it cannot be dominated by any label in
the queue. Therefore, the number of times a vertex v € V can be scanned is bounded
by the number of contributing paths in the s—v profile. This means that the number of
steps in the main loop is bounded by O(n?). Moreover, the modified key of a vertex
is easily determined during the merge operation, by keeping track of the minimum
consumption of all breakpoints that are newly added to a label. Thus, we immediately
get the following Theorem 4.7.

Theorem 4.7. Given a sources € V and a targett € V in the input graph, profile search
computes the s—t profile in polynomial time.

Implementation Details. In order to achieve best performance in practice, an
efficient implementation of piecewise linear functions is crucial. Because of their
specific form (discontinuous; slope is always 0 or 1), we implement SoC functions
by storing a pair of point and slope for each breakpoint. Since, in practice, an SoC
function f consists of few breakpoints on average, it is best to evaluate f(b) for some
b € [0,M] by a linear scan over its breakpoints rather than using more sophisticated
methods like binary search.

As an optimization we use a compressed function representation. It stores a single
32-bit integer for functions that have simple form (explicitly checking for battery
constraints in the algorithm). We implement link and merge by linear scans in general,
as described in Section 4.1.3. However, for compressed functions these operations are
much simpler. Merging reduces to a (scalar) minimum operation. Linking becomes
simpler as well, as it requires only scalar additions and checks for border cases; see
Section 4.1.3. We also provide specialized implementations for the cases where exactly
one of the two functions has simple form. For example, linking essentially reduces to
shifting an SoC function by a constant in this case. Using compressed functions saves
about a factor of 2 in running time of profile search.

To improve spatial locality of the profile search, we store vertex labels as a dynamic
adjacency array. For each label representing a vertex v € V, it uses a flag to indicate
if f,, is a compressed function, storing the (compressed) value directly at the label.
Otherwise, it stores (bit-compressed) indices to a breakpoint array. Note that the
number of breakpoints of f;, may vary during the algorithm. We mark empty slots in
the array in order to make efficient (re)use of space.
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4.3 Energy-Optimal Routes with Charging Stops

In the previous section, we discussed algorithms for finding energy-optimal routes
that take battery constraints into account. However, as battery capacities of EVs are
typically rather small, recharging can be inevitable on long-distance routes. With
the advent of more powerful charging stations, charging stops are also becoming
increasingly appealing to customers. Therefore, we now consider the possibility of
recharging the battery at designated charging stations.

In what follows, we formally describe how we extend our model and define the
problem (Section 4.3.1), before we introduce a basic label-setting algorithm to solve
it (Section 4.3.2). We discuss a conceptually simple polynomial-time approach (Sec-
tion 4.3.3) and propose a framework to implement it efficiently (Section 4.3.4).

4.3.1 Model and Problem Statement

In addition to our previous setting (see Section 4.1.1), we consider stops at charging
stations to recharge the battery. In our model, a subset S C V of the vertices represents
charging stations, where the battery can be charged. To model realistic restrictions,
every charging station v € S has a predefined SoC range R,, = [b™®, b™3] C [0, M] of
possible final SoC. In other words, when charging at v with arrival SoC b € [0,M], we
have to pick a desired departure SoC b’ € [b™",bm3]U {b}. It is always allowed to pick
the arrival SoC b as departure SoC, to account for the possibility of not charging at v.
Otherwise, we only allow the SoC to increase when charging, i.e., we assume b < b’.
Note that this is not a restriction, because due to the FIFO property, voluntarily
decreasing the SoC during a ride never pays off [EFS11]. By making use of SoC ranges
at charging stations, we are able to model restrictions caused by technical features
of charging stations or user preferences. For example, at regular charging stations,
users might wish to recharge only up to a certain percentage of the battery capacity
to save time (typically, charging becomes more time consuming when the SoC is near
the maximum). At swapping stations, on the other hand, we obtain R, = [M, M].
Assume we are given a source s € V, a target t € V, and the initial SoC bs € [0,M].
Observe that simply maximizing the SoC at the target is not meaningful in our new
setting: To obtain an optimal solution, we would essentially need to search for a
charging station that is as close to the target as possible. Instead, we consider the
problem of finding a feasible route (respecting battery constraints) that minimizes
overall energy consumption, defined as the difference bs; — b; between SoC at s and ¢,
plus the total amount r; € Ry of energy recharged at charging stations v € S in order
to reach t. Hence, our objective is to maximize b, — r; among all feasible solutions.
There is no straightforward way to generalize the algorithm described in Section 4.2.1
to this setting, for several reasons. First, it may be wasteful to fully recharge the battery
at a charging station, since this may prevent recuperation of energy on subsequent
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Figure 4.11: Energy-optimal paths with charging stops. The battery capacity is M = bs = 5.
Charging stations are highlighted (red) and their SoC range is [0,5]. (a) The energy-optimal
s—t path [s,u,v, w,u, ] contains a cycle, because a detour to the charging station v is necessary.
Recharging any amount r; € [2,3] at v yields an SoC b, € [0,1] at ¢, which corresponds
to an optimal consumption of 7 and the objective b, — r, = 2. In all other cases, either
energy is wasted or ¢ is not reachable. (b) The optimal s—t path is [s,u,v,t] and ¢ is reached
with a full battery and energy consumption 0 without recharging, i.e., b; = 5and r; = 0.
The consumption along the subpath [s,u,v] is 3 and we get b, — r, = 2. The optimal s—v
path [s,u, w,v] requires recharging of at least one unit at u in order to reach v with optimal
consumption 2 and objective b,, — r,, = 3, where b,, € [4,5] and r,, € [1,2].

road segments. As a result, overall consumption may increase for a full battery; see
Figure 4.11a for an example. Therefore, we do not know the optimal amount of energy
to be charged when a station is scanned. This makes our problem setting significantly
more difficult compared to simpler models, which assume that charging always results
in a full battery [SF12]. Second, in general, an optimal s—t path does not have the
important property that every subpath is an optimal path as well. For example, detours
may be necessary to visit a charging station; see Figure 4.11a. One can even construct
cases where an optimal path that requires no charging contains a subpath that can
be improved via charging; see Figure 4.11b. Below, we propose algorithmic solutions
to deal with these challenges. In particular, we show that despite the issues outlined
above, the problem is solvable in polynomial time.

4.3.2 Baseline Approach

Apparently, making “greedy” choices locally during the search for an optimal path can
lead to suboptimal results. A natural way to deal with this issue is the use of label sets
that model different situations at vertices, similar to multicriteria scenarios [Han80,
Mar84]. We now describe how the multicriteria shortest path algorithm described in
Section 3.3.1 can be adapted to our problem setting.

For a query from a source s € V to a target t € V with initial SoC b € [0,M], a
feasible solution is characterized by the corresponding SoC b; € [0,M] at t and the
total amount r; € R of energy recharged along the way. Recall that the objective is
to maximize b; — r; among all feasible solutions. To reflect this, vertices maintain labels
that store both the current SoC and the amount of recharged energy. However, since
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charging stations may offer continuous SoC ranges, pairs of SoC and the corresponding
amount of recharged energy are not sufficient to represent all possible solutions in
general. Therefore, a label ¢ stores an SoC range [bg‘in,b?‘ax] and a charging range
[r7"", rp**] to reflect different possible choices of recharging at (previous) charging
stations and the resulting SoC at the current vertex. As in the multicriteria scenario,
we can apply Pareto dominance to remove suboptimal labels; see Figure 4.12a. Observe
that explicitly storing all four values br;in, b‘;‘ax, r?‘in, and r}nax is redundant; it actually
suffices to only keep three of them in the label to determine the last one, similar to
SoC functions of paths (c. f. Section 4.1.3).

Using the modified vertex labels, we outline an adaptation of the multicriteria
shortest path algorithm. The algorithm is initialized with a source label containing
the SoC range [bs, bs] and the charging range [0,0]. The label is also inserted into a
priority queue. In each step of the main loop, the algorithm extracts a label £ with SoC
range [b‘;m, by**] and charging range [r?‘in, rp'®*] at some vertex u € V with maximum
key from the priority queue (defined for the label £ as, e. g., the difference by — rp*®*).
It then checks whether u is a charging station. If this is the case, it merges the SoC

range [b™", pM9X] into ¢, which yields the range
(67", 7] U [max{b}"™, by}, max{b}"", b7**}].

Similarly, the charging range is extended by the additional amount of energy that can
be recharged. Formally, we get the new range

[r}nin,r;“ax] U [r?1in + max{b™" — bg‘in,o},r?‘in + max{b** — b‘g‘i“,O}].

Note that this may create discontinuities in both ranges; see Figure 4.12b. We resolve
this issue by generating a new label at u in such cases, so all labels still have constant
complexity. The new label is added to the priority queue, unless it is dominated by
some existing label at u. Afterwards, the outgoing edges of u are scanned (regardless
of whether u is a charging station). Given the energy consumption c(u,v) of an
edge (u,v) € E, we know that it cannot be traversed if b]** — ¢(u,v) < 0, so no new
label is generated in this case. Otherwise, we apply battery constraints and obtain the
new range

[max{b™" — ¢(u,v),0}, min{b™> — c(u,v), M}]

for the new label generated at v. Similarly, battery constraints may affect the charging
range, so we shrink it by dropping values for which the path becomes infeasible or
recuperation is hindered; see Figure 4.12c. We obtain a new label, which is added to
the label set at v and the priority queue if no label at v dominates it.

After termination of the algorithm, the label set at ¢ contains a label with a pair of
SoC b; and charged energy r; that maximizes the objective (unless no feasible solution
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Figure 4.12: Illustration of labels in the baseline approach. They map the amount of charged
energy to the resulting SoC, assuming M = 4 (charging ranges can exceed the value 4 if multiple
charging stops are required). (a) The blue segment shows different configurations of charging
and resulting SoC of a label ¢. Labels are dominated by ¢ if and only if their corresponding
segment is entirely contained in the shaded area. (b) Scanning a charging station u € S adds a
new segment with SoC range [b™", b™2X] to the label, creating a discontinuity. Both segments
are collinear, though. (c) Scanning edges (with costs indicated by the arrows) corresponds
to shifting the segment along the y-axis. Ranges shrink due to battery constraints, because
certain subranges have insufficient charge or waste energy from recuperation.

exists, in which case the label set at t is empty). Correctness follows from the fact that
our search propagates all feasible solutions that are not dominated by others. However,
due to the complex nature of the algorithm, the analysis of its running time is rather
involved [Saul5]. Given that it is based on an exponential-time algorithm, it is not
even clear whether its running time is polynomial. In the next section, we present an
alternative approach that, building upon tools from Section 4.1, is conceptually simpler,
can easily be integrated with known speedup techniques, and runs in polynomial time.

4.3.3 A Polynomial-Time Algorithm

The basic approach described in the previous section uses label sets to model different
choices at charging stations. Instead, we now try to immediately determine the depar-
ture SoC at a charging station, so we only have to maintain a single label per vertex.
To this end, we first analyze relevant properties of charging stations. Afterwards, we
derive an algorithm that maintains one label per vertex on an extended search graph
and show that it runs in polynomial time.

Optimal Paths between Charging Stations. At a charging station u € S, the
amount of energy that needs to be recharged depends on the route from u to the
target t € V, which is not known in advance. Nevertheless, when charging at u, we
have to ensure that the SoC is sufficient to reach ¢ or the next charging station v € S.
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Figure 4.13: Interdependence between initial SoC and the optimal route with charging stops.
Charging stations are highlighted (red) and have a charging range of [0,5], assuming a battery
capacity of M = 5. Independent of the initial SoC bs € [0,M] at the source s, the objective
at v is maximized when traversing the u—v path with cost 0. For b € [0,4), this requires
recharging at u (departure SoC bdP = 4) and yields b, —r, = b. The target ¢ is always reached
with an SoC of b; = 5, so the objective is equivalent to minimizing the amount r; of charged
energy. The optimal choice depends on the value bs: For bs € [0,2), energy is recharged at u
(b4 = 2) and v (b = 1), which yields a total amount r, = 3—bs > 1 of recharged energy; for
bs € [2,3] it is optimal to charge only at v (%P = 1) to get r; = 1; for b € [3,4) energy is only
charged at u (b3 = 4) to get r, = 4 — by < 1; no charging is necessary at all for b € [4,5].

Therefore, we examine an important subproblem, where we are given a charging
station u € S, an (optimal) arrival SoC bi™ € [0, M) before charging at u, the total
amount r,, € Ry of energy recharged so far (at any previous charging stations), and a
vertex v € S U {t}. We want to find a departure SoC b3P > b after charging at u
that maximizes the objective at the target vertex ¢ under the assumption that v is the
next vertex where energy is recharged or v = t is the target itself. If we compute the
u-v profile f,, ., we can greedily optimize the objective on the s—v path by picking an
SoC bdeP > b that maximizes f, o, (b3P) — (r, +r), where r := b3P — b2 is the amount
of energy charged at u. Unfortunately, the s—v path that maximizes this objective does
not extend to the best solution at ¢ in general. The reason for this is that charging too
much energy might prevent the vehicle from recuperating energy on the following
v—-t path. Figure 4.13 shows an example. Assuming a low initial SoC, the objective at
v is maximized in this example when charging to a departure SoC of 4 at the station u.
Note that this enables the use of the path with total consumption 0. However, it also
prevents recuperation of a significant amount of energy on the subsequent v—-t path.
Therefore, the objective at ¢ is maximized after charging only to a departure SoC of 2
at u and taking the more expensive subpath from u to v instead.

Apparently, we need a more sophisticated approach. To this end, we identify
departure SoC values that may possibly lead to an optimal solution. We know by
the FIFO property [EFS11] that for an arbitrary fixed departure SoC b € [0,M], a
u—-v subpath with minimum energy consumption must be an optimal choice (it cannot
be beneficial to pick a more expensive path in order to reach v with a lower SoC).
By Theorem 4.6, there are at most O(n) such u—v paths for all possible values of
departure SoC, namely, those that contribute to the u—v profile f, ,. Moreover, we
claim that for each u—v path P contributing to f,, ,,, we can identify a (unique) canonical
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Figure 4.14: Search graph for energy-optimal routes with charging stops, based on the original
graph depicted in Figure 4.13. Vertices in the charging station graph (shaded area) are labeled
with their departure SoC. Edge labels indicate costs in the original graph, arrival SoC in the
charging station graph, and SoC restrictions for transfer edges.

departure SoC b%ep € [0, M] at u that always optimizes the objective at t under the
assumption that recharging is necessary at v (or v = t). To see this, consider the SoC
function fp of P and let b%™ := ¢(P}) denote the minimum SoC that is necessary to
traverse P. In other words, fp(b) = —oo if and only if b < by"™. Consequently, we
have bf,ep > bgm. We also know that the objective fp(bf,ep )—(ry + bffp — ba™) of the
s—v path can only decrease for bf,ep > bgin, since r, — b2 is constant and the slope of
fp is at most 1 on the interval [bp"", M]. Assuming that we are recharging energy at v
anyway, charging more than b"" will also never turn out to be essential after visiting v:
If necessary, we can simply recharge the missing energy at v. Therefore, given the SoC
range [b™, hMX] of u, we pick the canonical departure SoC b%ep = max{bg‘in,bgﬁn
for P, if this value lies in the SoC range of u. Otherwise, we have b;** < b3, which
implies that charging at u never renders the path P feasible.

In conclusion, although we cannot compute the optimal u—v subpath without further
knowledge about the subsequent v—t path, there is a limited number of candidate paths
and for each, there is a unique canonical departure SoC when leaving the charging
station u. Moreover, observe that once we fix a departure SoC bgep at u, the objectives
of the subpaths from s to u and from u to t are independent of each other: We obtain
an optimal solution via u with departure SoC b3P by concatenating an s-u path
with maximum objective (subject to the constraint b2 < b%P) and a u—t path that
maximizes the objective for an initial SoC b%°P. Based on these observations, we
construct a search graph that serves as input for a modified version of EVD.

Search Graph Construction. Given the original graph G = (V,E) and the target
vertex t € V, we augment G with a charging station (sub)graph G, = (V,,E.), which
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enables efficient search between charging stations; see Figure 4.14 for an example.
The basic idea is to create copies of charging stations for every canonical departure
SoC and insert edges that connect feasible sequences of charging stops. For each
vertex u € S, we create one charging vertex u’ per distinct canonical departure SoC
bgep € [0,M] of any contributing path P from u to another charging station or to
the target. The vertex u’ itself is added to V.. We explicitly store the corresponding
departure SoC b%ep with the vertex u’, i. e., we keep a mapping b%P: V,, — [0, M]U{co}
and set b4P(¢') := bgeP. We also add a dummy target ¢’ to V, with b3¢P(¢’) := co.

Edges in the charging station graph represent energy-optimal paths between charg-
ing stations. Let P be a (contributing) path from a charging station u € S to another
vertex v € S U {t} and fp its SoC function. We add edges (u’,v’) from the (unique)
vertex u’ € V, with b%P(u’) = bf,ep to every charging vertex v’ € V. of v with
fp(b?,ep) < b%P(v’) to E.. At the edge (u’,v’), we also store the SoC upon arrival at v,
i.e., we store a mapping b*": E, — [0,M] and set b*" (u’,v’) := fp(bgep).

The search is run on the union of the input graph G and the charging station
graph G.. To connect both graphs, we add (directed) transfer edges (v,v’) from each
charging station v € S U {t} to all its corresponding departure vertices v’ € V..
Transfer edges have no cost, but may only be traversed if the current SoC is below
the departure SoC b%P(v’) of the respective departure vertex v’, i.e., energy must
be recharged to reach the next charging station (or the target). We can model this
constraint implicitly, by assigning the SoC function f(,, ., defined as

b if b < pdep N,
) :={ ifh < b (@) (43)

—oco otherwise,

to the edge (v,v’). Although this function does not fulfill the FIFO property (as it is not
increasing), correctness is maintained because charging edges only control transfer to
the charging station graph. A path with departure SoC b%¢P(v’) may still be traversed
in the original graph (without recharging at v) if b > b%P(v).

Let E, denote the set of all transfer edges. Our search operates on the augmented
graph, which is defined as G’ := (VU V_,EU E, U E;). Note that its size is polynomial
in the size of G, since the number of dummy vertices of a charging station v € S is
bounded by the number of distinct canonical departure SoC values, which, in turn, is
bounded by the number of paths that contribute to profiles from v to other charging
stations (or the target vertex).

Algorithm Description. Using the augmented graph, we modify the EVD algo-
rithm introduced in Section 4.2.1 to find energy-optimal routes in the presence of
charging stations; see Figure 4.15 for pseudocode. As before, the algorithm takes as
input the source s € V, the target ¢t € V, and the initial SoC bs € [0, M], but it operates
on the augmented graph G’. It maintains a single label £(v) per vertex v € VUV,
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// initialize labels
1 foreachv e VUV, do
L t(v) = (by,ry) «— (=0,0)
3 {(s) < (bs,0)
4 Q.insert(s,bs)

N

// run main loop

5 while Q.isNotEmpty() do

6 u «— Q.deleteMax ()

7 (by,ry) «— €(u)

8 ifu €V then

// scan outgoing edges in the original graph and transfer edges

9 foreach (u,v) € EUE, do
10 b — f(u,v)(bu)
11 (by,ry) «— €(v)
12 ifb-r, > b, —r, then
13 {(v) «— (b,ry,)
14 L Q.update(v,b —ry)
15 else

// scan outgoing edges in the charging station graph
16 foreach (u,v) € E. do
17 b — b*™(u,v)
18 re—ry +b%P(u) - b,
19 (bo,ro) «— £(v)
20 ifb—r>b,—r, then
21 £(v) «— (b,r)
22 L Q.update(v,b —r)

Figure 4.15: Pseudocode of EVD with charging stops. The algorithm expects as input an
(augmented) graph G’ := (VU V,,EUE, UE,.), a cost function c: E — R, a capacity M € Ry,
two mappings b%P: V, — [0, M] U {co} and b**: E. — [0,M], a source s € V, a target t € V,
and an initial SoC b, € [0, M]. It computes, for each vertex v € V, the maximum objective
b, — ry, corresponding to the path that minimizes overall consumption.
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which stores the best values of SoC b,, € [0, M]U{—c0} and recharged energy r,, € R
of all s—v paths encountered so far, i. e., the pair of values that maximizes the objective
by, — ry at v. Initially, it sets b, = —oco and r,, = 0 for all v € V, except for the label
{(s) = (bs,0) at s, which is also inserted into a priority queue. In each iteration of
the main loop, the label £(u) = (b,,r,) of some vertex u € V U V, in the augmented
graph with maximum key b,, — r,, is extracted from the queue. If u is an original vertex,
i.e., u € V, the algorithm proceeds exactly like plain EVD by scanning its outgoing
edges; see lines 9-14 of the algorithm in Figure 4.15. If, additionally, u is a charging
station, i.e., u € S, its corresponding charging vertices u’ € V, are updated in the
priority queue if b, < b%P(u’) and £(u) yields an improvement to the label £(u’). Note
that this is done implicitly in Figure 4.15, by scanning transfer edges and making
use of the artificial SoC functions according to Equation 4.3. Alternatively, ifu € V,
is a charging station, it is handled separately by the algorithm; see lines 16-22 in
Figure 4.15. All outgoing edges (u,v) € E. in G, are scanned, generating for each a
new label (b,r) with b € [0,M] and r € R, as follows. Its SoC is set to the arrival
SoC b = b*™(u,v) at v. To account for recharging at u, the total amount of charged
energy is set to r = r, + b%P(u) — b,,. If the label (b, r) improves the objective of £(v),
the latter is updated accordingly and v is inserted or updated in the queue.

After termination, the label at the dummy target vertex t’, i. e., the unique vertex
t’' € V, with b%P(t') = oo, contains the optimal pair of SoC and recharged energy.
Correctness of the algorithm follows from the construction of the search graph and
the properties of canonical departure SoC discussed above. To retrieve the actual path
description, parent pointers are used as in Dijkstra’s algorithm (see Section 3.3.1).
Underlying paths between vertices u € V. and v € V. in G, can be retrieved by
(pre)computing an energy-optimal path between their corresponding original vertices
with initial SoC b%¢P (u:).

Complexity. Before we analyze the running time of the modified EVD algorithm,
we show that we can make it label setting. We claim that the potential functions
described in Section 4.2.1 carry over to the charging station graph G, by setting the
potential of every vertex in V, to the potential of its corresponding original vertex. To
see this, we define the cost c(u,v) := b%P(u) — b (u,v) of an edge (u,v) € E, as the
difference between the objectives before and after scanning the edge (u,v), respectively.
Observe that, due to battery constraints, c(u,v) is greater or equal to the cost of a
shortest u—v path in the original graph G. Thus, the reduced cost ¢(u,v) -7 (u) + 7 (v) is
nonnegative for vertex potentials induced by a consistent potential function z: V. — R
on the original vertices V. The same holds true for transfer edges, since they have
nonnegative energy consumption. Thus, we can use any consistent potential function
for the original graph to make the algorithm label setting. Note that this also allows
us to establish a stopping criterion for the dummy vertex t’.
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We argue that the label-setting algorithm enables us to solve the problem of finding
energy-optimal routes with charging stops in polynomial time. In summary, it requires
the following steps.

1. Compute a consistent potential function for the input graph.
2. Construct the charging station graph G..
3. Run our modified EVD algorithm to find an optimal solution.

For the first step, we use the polynomial-time algorithm of Bellman-Ford-Moore [Bel58,
For56, Moo59] to compute a vertex-induced potential (see Section 4.2.1). Regarding
the second step, we have argued above that the size of the charging station graph G,
is polynomial in the size of the input graph G. To construct it, we have to compute a
quadratic number of SoC profiles, which can be done in polynomial time using profile
search (see Section 4.2.2). Finally, the third step is solved by the algorithm shown
in Figure 4.15. Using potential shifting, it becomes label setting and the number of
iterations in the main loop is bounded by the size of the search graph. Hence, an
optimal solution is found in polynomial time. Theorem 4.8 summarizes the theoretical
insights of this section.

Theorem 4.8. Given a sources € V and a targett € V in the input graph, together with
an initial SoC bs € [0, M], an energy-optimal s—t path with intermediate charging stops
can be computed in polynomial time.

4.3.4 A Heuristic Implementation

We discuss a practical variant of the EVD algorithm with charging stops, which we
introduced in Section 4.3.3. The construction of the subgraph G, is time consuming on
realistic instances. Luckily, we can move most work to preprocessing, since the paths
between charging stations are independent of source and target. We also propose a
simpler search graph, which can naturally be combined with CH and A* search to
achieve further speedup.

First, we obtain vertex potentials during preprocessing, using the more practical
variants of EVD described in Section 4.2.1 instead of the algorithm of Bellman-Ford-
Moore. Second, we have to construct the charging station graph for a given source
s € V and a given target t € V. In our practical variant, we replace the graph G,
with the overlay Gs = (Vs,Es), where Vs := SU {t} and Es := S X (S U {t}). Every
edge (u,v) € Eg stores as its cost function the u—v profile (with respect to the original
graph). Note that all edges in Es except for those that have t as their head vertex
can be precomputed. Using the overlay Gg instead of G, has several advantages: It is
straightforward to construct Gs using profile search, and the number of vertices in
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// initialize labels as in Figure 4.15

// run main loop
1 while Q.isNotEmpty () do

2 u «— Q.deleteMax ()
3| (bu,ru) e L(u)
4 if u €S then
// scan shortcuts between charging stations

5 foreachv € SU {t} do
6 b e— arg maxy ¢ oy (p,, by, max{b, b3} U by} fw0) (B) = b
7 re—r,+b"—>b,
8 b — f(u,v) (b*)
9 (bo,ro) «— £(v)
10 ifb—r>b,—r, then
11 {(v) «— (b,r)
12 L Q.update(v,b—r)
13 else

L // scan outgoing edges in the original graph as in Figure 4.15

Figure 4.16: A heuristic variant of EVD with charging stops. It takes an input graph G = (V,E),
a cost function c¢: E — R, a source s € V, a target t € V, a battery capacity M € Ry, and the
initial SoC b, € [0, M]. Moreover, it requires a set S C V of charging stations with specified
charging ranges. The algorithm computes an SoC b, € [0,M] U {—co} and a corresponding
amount r, € R of charged energy for eachv € V.

the search graph is significantly smaller. Additionally, integration with CH (described
below) becomes much simpler.

Shortcuts (u,v) € Egs in the overlay Gs are used during the search to greedily
determine the departure SoC at the charging station u € Vs and the arrival SoC at the
vertex v € Vs. This requires a slight modification to the EVD algorithm; see Figure 4.16
for pseudocode. During its main loop, the next vertex u € V with label £(u) = (by,ry)
is determined as before. If u represents a charging station, i.e., u € S, all outgoing
shortcuts (u,v) € Egs are scanned. For each, the departure SoC b* € [0,M] that
maximizes the objective f(,, )(b*) — (r, + b* — b,) at v is picked under the constraint
that b* > b, and b* lies in the charging range of u (the case b* = b, is always allowed,
to account for the possibility of not recharging at u); see line 6 in Figure 4.16. If this
yields an improvement to the label at v, it is updated accordingly. Making use of vertex
potentials, the search becomes label setting and stops as soon as the target vertex is
extracted from the priority queue.

As argued before, picking the SoC at v in this greedy fashion may lead to sub-
optimal results. For example, in Figure 4.13 the upper path between u and v (with
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consumption 0) always maximizes the objective at v, but the bottom path (with con-
sumption 2) is the better choice for low initial SoC, as it requires less charging and
enables recuperation on the subsequent v-t path. On real-world networks, however,
this is very unlikely to occur, as it requires an optimal route with two charging stops
u € Sand v € S, such that the target ¢t can be reached from u via v, but not directly,
whereas charging too much energy at u (to reach v on an optimal s—v path) prevents
recuperation along the v—t path due to a fully charged battery. Consequently, our
heuristic approach always produced optimal solutions in our tests; see Section 4.5.2.

Integration with Contraction Hierarchies. To enable faster queries, we pro-
pose CH [Gei+12b], which have been extended to EV scenarios before [EFS11]. As
in basic CH (see Section 3.3.2), we iteratively contract vertices in increasing order
of (heuristic) importance during preprocessing, maintaining distances between all
remaining vertices by adding shortcut edges, if necessary. Similar to previous ap-
proaches [Sto12a], we do not contract vertices that represent charging stations. Hence,
we contract only some vertices, which form the component. This leaves an uncon-
tracted core, which is an overlay graph that contains all charging stations (and possibly
other vertices). Note that in our scenario, a shortcut (u,v) corresponds to a u-v pro-
file, so shortcuts must store SoC functions. Shortcuts are computed and updated
during vertex contraction, using the general link and merge operation described in
Section 4.1.3. Consequently, SoC functions with multiple breakpoints may emerge
during contraction, which makes preprocessing more expensive. After contraction
has stopped, we run profile searches on the (relatively small) core graph to quickly
compute shortcuts between charging stations and construct the overlay Gg. Shortcuts
are only added to Gg if their corresponding SoC function is finite for some SoC (i.e.,
the head vertex is reachable from the tail).

In a basic approach, witness search of CH preprocessing (c.f. Section 3.3.2) is
replaced by profile search to determine whether a shortcut is necessary. For faster
preprocessing, an alternative variant uses only the maximum finite consumption of
an edge e with SoC function f, in the current overlay graph, i.e., the finite value
c‘fa"SM = maxpeo,M]{b—fe(D) | fe(b) # —oo} that maximizes its energy consumption.
Observe that negative costs are ruled out this way, since consumption must be at least 0
for a fully charged battery. Hence, the witness search operates on a graph with scalar,
nonnegative costs. This reenables Dijkstra’s algorithm, which then computes an upper
bound ¢ € Ry on the energy consumption between a given pair of vertices. A shortcut
candidate is inserted only if its SoC function f consumes less energy for some SoC,
i.e., there exists an SoC b € [0, M] with b — f(b) < ¢. Using these upper bounds, we
may end up inserting unnecessary shortcuts. This does not affect correctness, but may
slow down queries slightly. (Similarly, Eisner et al. use a sampling approach to avoid
costly profile search during preprocessing in their implementation [EFS11].)
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In summary, our preprocessing routine comprises three steps: (1) computation
of a consistent potential function, (2) CH preprocessing, and (3) construction of the
overlay Gs. Afterwards, the query algorithm runs in two phases. The first runs a
profile search from the target t € V on the backward graph of the component and
the core, which contain original edges and shortcuts computed during preprocessing.
In the component, the search scans only upward edges with respect to the vertex
order (c.f. Section 3.3.2). Shortcuts between charging stations in Gg are ignored by
this search. After its termination, SoC profiles from each charging station to the
target are known. We (temporarily) add the target and all corresponding shortcuts to
the overlay graph Gg. Similarly, we include a (temporary) shortcut from any vertex
v € V' \ S visited by the profile search to the target. Then, the second phase runs the
modified variant of EVD sketched in Figure 4.15 from the source s € V with initial
SoC bs € [0,M] on a search graph consisting of upward edges in the component and
all edges in the core (including Gg).

To obtain the full path description, we enable path unpacking by storing via vertices
during contraction, as in plain CH [Gei+12b]. Note, however, that we need one via
vertex per contributing path of an SoC function. Additionally, we have to reconstruct
paths represented by shortcuts between charging stations within the core. This can be
done by precomputing and storing the paths in the core graph explicitly, or by running
an EVD search on the core graph between each consecutive pair of charging stations
in the path. Finally, the paths in the core are unpacked as in plain CH. The amount of
energy that must be recharged at a charging station is easily obtained from the SoC
profiles in the overlay Gg, by picking a departure SoC b € [0, M] for each profile f
that maximizes the objective f(b) — b at the next station.

Incorporating A* Search. On instances with many charging stations, scanning
shortcuts in the dense overlay graph Gs induced by all charging stations becomes the
major bottleneck of the search. To reduce the search space, we combine our approach
with A* search [HNR68]. The basic idea of A* search is to change the order in which
vertices are extracted from the priority queue, such that vertices closer to the target
are extracted first (see Section 3.3.2).

Prior to the forward search of a query, we run Dijkstra’s algorithm from the target
vertex on the backward graph, scanning upward edges in the component and all core
edges, except for shortcuts between charging stations. The algorithm uses minimum
energy consumption as edge costs, defined for an edge e with SoC function f. in the
search graph as ci" = mingepo,a1] b — fe(b). Since energy consumption can become
negative, the search is label correcting unless potential shifting is applied. After its
termination, each vertex label stores a scalar lower bound on the energy consumption
that is necessary to reach the target from this vertex. This yields a vertex-induced

potential for all vertices in the core (c.f. Section 4.2.1).
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The forward search is then split into two phases. The first runs from the source
s € V in the component, using potentials computed during preprocessing. It is pruned
at core vertices, i. e., the algorithm scans no outgoing edges from these vertices. The
second phase runs on the core graph enriched with the overlay Gg, including shortcuts
to the target t € V. The search is initialized with all core vertices scanned in the first
phase, but uses potentials obtained by the backward search. As the potential of each
vertex is a lower bound on energy consumption on the way to ¢, the second phase is
goal directed (vertices closer to the target have smaller keys).

An aggressive variant of A* search achieves further speedup at the cost of suboptimal
results. As before, when a charging station u € S is visited by the forward search, all
outgoing shortcuts (u,v) € Es in Gs are scanned. However, we update the label of at
most one vertex v € S and insert it into priority queue, namely, the tentative label with
maximum key among all vertices that are improved by the scans. The subgraph Gg is
rather dense, so this significantly reduces the number of subsequent vertex scans.

Implementation Details. During contraction, we determine the next vertex that
is contracted using the measures Edge Difference (ED) and Cost of Queries (CQ)
according to Geisberger et al. [Gei+12b]. The rank of a vertex is then set to 4 ED + CQ
(recall that vertices of lower rank are contracted first). To improve query times, we
reorder vertices after preprocessing, such that core vertices are in consecutive memory
for improved locality. During CH queries, the forward EVD search and the backward
profile search are executed alternately, as in plain CH. Thereby, we avoid an exhaustive
run of the costly profile search in cases where the target is close to the source.

4.4 Extending Customizable Route Planning

Energy consumption values in the input graph may vary with, e.g., vehicle load
and changing weather conditions, or due to newly learned consumption data [GM17,
Mas+14]. This makes fast preprocessing particularly important in our context. We
introduce a speedup technique that focuses on fast integration of changes in the cost
function. It extends the CRP approach introduced by Delling et al. [Del+17], which
exploits ideas from MLD [Del+09, HSW09, JP02, SWW00, SWZ02]. The algorithm has
three phases: a (potentially costly) offline metric-independent preprocessing phase, a
customization phase that handles metric-dependent preprocessing, and the (online)
query phase. Its main strength is that customization is very quick: A new cost function
can be incorporated in a few seconds, even on continental networks, while a single
edge cost can be updated in only a few microseconds [Del+17]. In this section, we
tackle the problem setting introduced in Section 4.1.1. Hence, we do not consider stops
at charging stations. In the following, we recap the preprocessing phase (Section 4.4.1)
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and the query phase (Section 4.4.2) of the MLD algorithm, describing our extensions
along the way.

4.4.1 Preprocessing and Customization

The preprocessing phase computes a multilevel overlay [JP02, SWZ02] of the input
graph G = (V,E). It is obtained from a nested multilevel partition IT = (V*,...,VI)
of the vertices of G as follows. For a fixed level ¢ € {1,...,L}, the overlay graph
of level £ contains all edges of G that are boundary edges of V. Moreover, there
is a shortcut edge (u,v) for every pair u € Vl.[ and v € Vl.[ of boundary vertices per
cell Vf € V!. This results in a full clique of edges over a cell’s boundary vertices;
see Section 3.3.2 for details. As preprocessing is metric independent, no changes
have to be made to adapt it to our scenario. Moreover, it only needs to be rerun if
the topology of the input changes (significantly). Since this happens infrequently in
practice, somewhat higher preprocessing times are no issue.

Customization. The customization phase uses the output of the preprocessing
phase to compute the metric! of the overlays, i.e., for each shortcut edge it must
compute its SoC function. It proceeds in a bottom-up fashion, starting with the
lowest level 1. Within a fixed level ¢ € {1,...,L}, each cell Vf e Vlis processed
independently. A cell V/ is processed by running, for each boundary vertex u € V/,
a profile search from u restricted to the subgraph induced by Vf (i.e., it does not
relax any edges pointing outside Vi[). At every boundary vertex v € Vf, this results
in a u-v profile, which is assigned to the clique edge (u,v) of Vf. Note that when
processing a level £ € {2,...,L}, we make use of the already computed overlay
graph of level £ — 1 by running the profile search on this overlay, which improves
customization time significantly.

Parallelization. Customization can be parallelized by distributing different cells
(on the same level) among processors. In contrast to scalar costs in plain CRP, the
complexity of SoC functions is not known in advance. Thus, our overlay uses a single
dynamic adjacency array to store breakpoints of shortcut edges. Note that updates to
this data structure must be synchronized. A common approach is using locks, which
is costly. Instead, each thread locally maintains a log of the SoC functions it has
computed. The logs are merged sequentially after processing each level.

Preliminary experiments indicated that more than 80 % of the functions have simple
form, so they can be compressed to constant size (see Section 4.1.3). Only for the
remaining cases a thread uses its log, while compressed functions are written to the

IFormally, energy consumption does not define a metric on the input graph, due to negative costs and
the lack of symmetry. Nevertheless, we stick to the term as it is commonly used in the literature.
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(preallocated) overlay directly. Unlike the preprocessing phase, customization is much
faster, taking mere seconds in practice when executed in parallel.

Implementation Details. Similar to Delling et al. [Del+17], we use a compact
representation to store the overlays: Instead of keeping separate graphs, we store a
common vertex set for all levels, which is equivalent to the set of boundary vertices
of V1. Only shortcut edges are kept in a separate data structure per level, and they
are organized as matrices of preallocated contiguous memory (note that boundary
edges are already present in the input graph). Each matrix entry comes with a flag to
indicate whether it stores a compressed function or an index in the array containing
the breakpoints of the corresponding SoC function, similar to the dynamic adjacency
array used during profile search (see Section 4.2.2).

As vertices of the input graph G are represented by indices {1,...,n} in our imple-
mentation, we can reorder them such that overlay vertices of higher levels are pushed
to the front, breaking ties by cell index. Non-overlay vertices are ordered by their
level-1 cell indices. This improves spatial locality for both customization and queries,
and simplifies mapping between original and overlay vertices.

When running profile searches during customization, a naive implementation con-
structs a label per vertex of the input graph. Exploiting that search graphs are limited
to cells of the partition, we can save a significant amount of space by reducing the
number of distinct vertex labels. After reordering vertices during preprocessing, we
compute the range of vertex indices per cell and level. During customization, we
can remap the ranges of each level of the current cell to a smaller range of indices.
The length of this range depends on the maximum cell size in any of the overlays,
which is known after preprocessing. The following (mixed) variant worked best in our
experiments: We only remap bottom-level vertex indices of non-boundary vertices (the
majority of vertices), while keeping a distinct vertex label for each boundary vertex of
any cell in the graph. Thereby, we save a significant amount of space and improve
locality, but keep vertex mapping overhead limited during customization. Note that
only customization on the lowest level is affected by remapping in this variant.

To quickly reset labels of overlay vertices between different profile searches, we do
not resort to standard approaches like timestamps, but exploit once more that vertices
are reordered. We explicitly reset the labels of all overlay vertices contained in the
current cell (on the current level). With labels of each level being on a contiguous
range of memory, this can be done efficiently in practice.

Finally, we use clique flags [Bau+16f] to reduce the number of edge scans during
profile searches. For each vertex v € V in the overlay, a flag indicates if for any parent
vertex u € V (i.e., any second to last vertex on a contributing path of the current
profile in the label of v), it holds that (u,v) is a boundary edge. Only if the flag is set,
we relax outgoing clique edges of v when it is scanned. Note that this does not violate
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correctness, as there always exists an optimal path in the overlay that does not contain
two consecutive clique edges. This follows immediately from the triangle inequality
and the fact that we use full cliques in the overlay.

4.4.2 Queries

For a source s € V, a target t € V, and an SoC b; € [0, M], the query operates on
a search graph G’ consisting of (1) the overlay graph of the topmost level L, (2) all
cell-induced subgraphs in the overlays of all levels that contain s or £, and (3) the
subgraphs of the original graph induced by the level-1 cells that contain s or t. Then,
any algorithm described in Section 4.2 can be run on this search graph to get provably
optimal solutions for both query types. Also, potentials computed for the original
graph naturally carry over to the overlays. Therefore, we assume that potentials are
available in the remainder of this section. We refer to EVD running on the search
graph specified above as Unidirectional MLD (Uni-MLD). Similarly, we refer to profile
search as Profile-MLD when run on this search graph. Note that the search graph does
not need to be constructed explicitly. Instead, the level and cell on which Uni-MLD or
Profile-MLD scan edges are determined implicitly from the partition data [Del+17].
Just as in plain MLD, shortcut edges e at level € € {1,...,L} can be unpacked to obtain
the full path description after t was reached, by (recursively) running a local query on
the overlay of level £ — 1, restricted to the level-¢ cell containing e (recall that level 0
corresponds to the original graph).

In what follows, we discuss techniques to accelerate SoC queries based on bidirec-
tional search [Dan63, Del+17]. Basically, bidirectional search simultaneously runs a
forward search from s on G’ and a backward search from t on G’ until a stopping condi-
tion is met. Observe that, given a consistent potential function 7 on G’, we immediately
obtain a consistent potential 7 on the backward graph G’ by setting 7 (v) := —(v)
for all v € V. The algorithm maximizes a tentative SoC value b* € [0,M] U {—oco}
(initialized to —oo) whenever the searches meet at some vertex v € V. After stopping,
the shortest path with target SoC b* is obtained (if it exists) by concatenating the
corresponding s—v path and v-t path found by the searches. Unfortunately, the final
SoC at t is not known in advance, which prevents running a regular backward EVD
search. Instead, we present two approaches that augment the backward search [DW09].
We denote them by Bidirectional Profile-Evaluating MLD (BPE-MLD) and Bidirectional
Distance-Bounding MLD (BDB-MLD). Both use a regular forward EVD search.

Bidirectional Profile-Evaluating MLD. The first approach, BPE-MLD, runs a
backward profile search from t, which does not require an initial SoC value. It computes
SoC functions f,, representing v—t profiles for all v € V as vertex labels. Whenever
the forward or backward search scans an edge toward a vertex v € V that has already
been touched by the opposite search, it evaluates the SoC function f,, (obtained from
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the backward search) for the SoC b := b(v) (obtained from the forward search) and
updates b* = max{b*, f,,(b)}. The algorithm may stop as soon as any path it may still
find has SoC below b*. Recall from Section 4.2.2 that the profile search uses minimum
energy consumption of a vertex label (plus a potential) as key in its priority queue.
Let kr denote the current maximum key in the queue of the forward search and let kp
denote the current minimum key in the queue of the backward search. Then we can
stop the search as soon as the condition kr — kg < max{b*,0} holds.

Bidirectional Distance-Bounding MLD. Unfortunately, running a backward pro-
file search can be costly. Therefore, the second approach, BDB-MLD, runs a cheaper
backward search that bounds the forward search in order to “guide” it toward ¢. (Note
that a similar idea is used by Gutman [Gut04].) However, we have to carefully account
for battery constraints. To do so, the backward search maintains three labels for each
vertex v € V, namely, a lower and an upper bound on the cost of an energy-optimal
path from v to t, denoted ¢(v) and é(v), and an upper bound on the minimum SoC
that is necessary to reach ¢, denoted b(v). We define ¢(v) consistently with b(v):
An SoC of b(v) implies that ¢ can be reached from v with cost at most ¢(v). Labels
are initially set to oo, except at t, for which they are set to c(t) = &(t) = b(t) = 0.
The backward search then runs Dijkstra’s algorithm based on the labels c(-) (we
use potential shifting to ensure that the search is label setting). When scanning an
edge e = (u,v) in the backward graph G’, it uses its minimum energy consumption
g‘in = mingepo,m) b — fe(b) as edge cost. During the same edge scan, ¢ and b are
computed as follows. Let b € [0,M] denote the minimum SoC that is necessary
to traverse e, i. e., the smallest SoC value for which f, is finite. Then the bound on
the minimum SoC b(v) to travel from v to t (via u) is determined by the maximum
of b1 itself and the sum of the cost ¢, (b™") = pTi" — £, (b™i") of traversing e with
SoC b™im plus b(u), the minimum SoC to get from u to t. On the other hand, the maxi-
mum cost ¢(v) at v is determined by ¢(u) + c™*=M where ¢P*=M is the maximum
finite consumption of the edge, i. e., the finite value that maximizes c.(b) = b — f.(b)
for b € [0,M]. Summarizing, whenever the algorithm scans some edge e = (u,v)
in the backward search graph, it checks whether max{b™", ¢, (b™") + b(u)} < b(v)
and ¢(u) + cM*<M < ¢(v), updating b(v) and ¢(v) if necessary.

C

The tentative SoC value b* is now maintained by the forward search and corresponds
to a lower bound on the target SoC of the energy-optimal s—t path, initialized to —oo.
Whenever it scans a vertex v € V with SoC label b(v) that was already visited by
the backward search, it checks if b(v) > b(v). Only in this case, it tries to update b*
by setting b* = max{b*,b(v) — ¢(v)}. Moreover, given the current keys kr and kp
of the forward and backward search, respectively, the following test is performed
(independently of the previous check). The search is pruned at v (i. e., edges outgoing
from v are not scanned), if either v was already settled by the backward search
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and b(v) — c(v) < max{b*,0}, or v was not settled by the backward search and
b(v) — kp < max{b*,0} holds. The algorithm stops when the forward search reaches t
and determines the SoC b(t). We stop the backward search early if kg — kg < 0 holds.

Parallelization. To get additional speedup, we propose parallelizing the search in a
multi-core scenario. We assign different processors to the forward and backward search,
where they run independently. To update the tentative SoC value b* € [0, M] U {—c0},
each search must access vertex labels of the opposite search, potentially involving a
race condition. However, as long as reads to vertex labels are atomic, race conditions
can safely be ignored: The correct value b* will always be determined by the opposite
search at a later point. Unfortunately, the backward search of BPE-MLD maintains non-
atomic functions as vertex labels. Updating b* is therefore restricted to the backward
search (accesses to labels of the forward search are still atomic). To ensure correctness,
the forward search checks, whenever it scans a vertex v € V, if v has already been
touched by the backward search (which is an atomic read). If so, it adds v to a list. At
the end, this list is processed sequentially, checking if any vertex labels improve b*.
Note that this list is small in practice.

Reachability Flags. If the target vertex is not reachable from the source (with the
given initial SoC), the forward search simply visits all reachable vertices, while the
backward search visits all vertices from which the target can be reached with at least
some initial SoC. To quickly identify and accelerate long-distance queries for which
the target is unreachable, we can additionally precompute reachability flags: For the
topmost level L of the partition, we keep a bit matrix, whose entry (i, ) is set if the
cell VjL is reachable from any vertex in cell V! (with a full battery). To set the matrix
entries during customization, we run, for each cell Vl.L at level L (in parallel), a multi-
source variant of Dijkstra’s algorithm on the level-L overlay from all boundary vertices
of the cell V. (One could also interpret the search as Dijkstra’s algorithm running
from a super source that is added to the overlay together with edges to all boundary
vertices with energy consumption 0.) It uses lower bounds ming (o, a1 b — fe(b) on
consumption as cost of a given edge e in the overlay. We set all flags (i, ) of the matrix
for which there exists a boundary vertex of cell VjL at distance at most M. In practice,
storing these bits requires little additional space. During a query, we first check the
flag for the pair of cells containing s and ¢. If it is not set, we may stop immediately.

Implementation Details. We reuse several techniques from the customization to
further improve queries. In particular, we exploit again that vertices are represented
by indices {1,...,n} and reordered during preprocessing. Recall that we precompute
and store the corresponding range of vertex indices for each cell and level. After a
query, we reset only the labels of the (at most two) cells per level containing s and ¢,
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along with all labels of vertices on the level-L overlay. We also use clique flags during
queries. Note that this becomes even simpler for SoC queries compared to profile
search, since parent vertices are always unique in this case (c. f. Section 4.4.1).

Additionally, we save space by storing cell indices (for each level) only at the
boundary vertices of a cell. Before running the actual query algorithm, indices of the
source and target cell (which are required to implicitly construct the search graph) are
retrieved at negligible overhead by running a depth-first search (DFS) [Cor+09] from
both the source and the target, until each encounter a boundary vertex.

4.5 Experiments

We evaluate all our approaches on our main benchmark instance Eur-PTV. We use
two different EV models. The first, denoted PG-16, is based on the PHEM model of a
Peugeot iOn and has a battery capacity of 16 kWh. The second, EV-85, is based on the
artificial PHEM model, for which we assume a larger battery capacity of 85 kWh (as
in high-end Tesla models). See Section 3.4 for details on input data and methodology.
Below, we evaluate our basic algorithms (Section 4.5.1), approaches for routes with
charging stops (Section 4.5.2), and our customizable technique (Section 4.5.3). Finally,
we also compare our new algorithms to previous approaches (Section 4.5.4). Unless
noted otherwise, we ran our implementation sequentially on machine-s. All reported
query times are average values of 1000 queries. SoC queries assume a full battery, i. e.,
bs = M at the vertex source s € V. Note that a lower initial SoC would only result in
faster query times.

4.5.1 Basic Algorithms

We evaluate the variants of EVD and profile search discussed in Section 4.2. Since
the range of the vehicle models PG-16 and EV-85 is restricted, evaluating random
queries (as it is common) would not be meaningful: For most queries, the target vertex
would be unreachable. Further, in most cases we can easily identify such out-of-range
queries with little effort, e. g., by utilizing reachability flags; recall Section 4.4.2. Instead,
we generate in-range queries by first picking a random source vertex s € V uniformly
at random, from which we run a preliminary search with initial SoC by = M. The
target vertex t € V is picked uniformly at random from its search space (i.e., all
vertices within the vehicle’s range).

Evaluating Queries. Table 4.1 reports figures for our basic algorithms and 1 000
random in-range queries. In addition to basic EVD, we ran the same queries after
establishing a global stopping criterion (denoted sc-g, using the minimum cost ¢* of
any path in the graph for the stopping criterion) and a local stopping criterion (sc-¢,

Section 4.5

85



Chapter 4

86

Energy-Optimal Routes for Battery Electric Vehicles

Table 4.1: Evaluation of basic algorithms on Eur-PTV for both vehicle models. For different
variants of the EVD algorithm (employing different stopping criteria) and for each vehicle
model, we report space consumption in bytes per vertex (B/n), customization time, as well as
the average number of vertex scans and running time of queries.

PG-16 EV-85
Custom. Query Custom. Query

Space Time #Vertex Time Space Time #Vertex Time
Algorithm [B/n] [s] Scans [ms] [B/n] [s] Scans [ms]
EVD - — 388817 49.6 — — 4392002 636.5
EVD-sc-g 0.0 2.61 321728  40.8 0.0 344 2823076 402.8
EVD-sc-¢ 4.0 2.61 196704  24.6 4.0 344 2284079 3235
EVD-r, 4.0 343 184322 183 40 348 2089126 219.6
EVD-m;, 40 261 184164  23.0 40 344 2137157 295.0
EVD-mp, 4.0 037 184523 219 4.0 037 2137282 292.2
Profile-mp, 4.0 037 192559  31.0 4.0 037 2212806 410.6

storing the value c;, for every v € V). We also tested the different potential functions
(7o, 7y, and 7). See Section 4.2.1 for details on the different stopping criteria. Except
for the basic variant, metric-dependent preprocessing is required if edge costs change.
For EVD-sc-g and EVD-sc-£, customization times indicate the time to compute the
values ¢}, for each v € V. For all other variants, we show the time required to compute
the potential function. The space overhead is exactly four bytes (one integer) per
vertex for all variants with a stopping criterion, except EVD-sc-g (which only keeps
one integer in total).

Regarding queries, we report the number of vertex (re)scans and query times. It is
not surprising that the basic label-correcting approach is the slowest for both models,
although the number of vertex rescans is comparatively low (less than 10 % of all vertex
scans are rescans of vertices that were already scanned before; not shown in the table).
With EVD-sc-g, we achieve a first speedup, but the rather weak stopping criterion
still results in a large search space size. Nevertheless, observe that computing the
offset ¢* already amortizes after 15 queries on average for EV-85, while producing
virtually no space overhead. The local stopping criterion (EVD-sc-{) yields another
improvement in running time at the cost of higher space consumption. The different
variants of vertex potentials allow for even better query times by making EVD label
setting. Somewhat surprisingly, EVD-x,, yields the best times, however, with higher
variance (available from Figure 4.17). Since EVD-x;, is more robust and provides the
best customization time by far, we use height-induced potentials for profile search
and all algorithms tested in the remainder of this chapter. Finally, we see that—in
contrast to time-dependent route planning [Bat+13, Del11, DW09]—profile queries
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Figure 4.17: Running times of basic algorithms subject to Dijkstra rank (EV-85). Low ranks
indicate local queries. Battery capacity is increased to the point where range is not constrained.

admit practical running times in our scenario: We observe a slowdown by a factor of
less than 2 compared to EVD.

Evaluating Scalability. We analyze the scalability of our basic algorithms for the
EV-85 model, following the Dijkstra rank method [Bas+16, SS05]. Given two vertices
s € Vand t € V, the Dijkstra rank with respect to s and t is the number of vertex
scans performed by Dijkstra’s algorithm in an s—t query, presuming that the algorithm
stops as soon as ¢t is scanned. Thus, higher ranks reflect harder queries. Given that
costs can be negative in our scenario, the label-correcting variants of EVD may scan
vertices multiple times, while vertex potentials strongly influence the order in which
vertices are scanned. Hence, we use a slightly altered definition of Dijkstra rank in
this chapter: We order the vertices by the time they were last extracted from the
priority queue when running label-correcting EVD and determine ranks from this
order. As in regular Dijkstra ranks, the maximum rank is bounded by the graph
size. For each rank in {2!,... ,2lognly e generated 1000 queries this way from
sources chosen uniformly at random. To get meaningful results, we increased the
battery capacity from 85 kWh to 1000 kWh, which corresponds to a cruising range of
roughly 5000 km—enough to make the target reachable in all queries.

Figure 4.17 shows resulting query times for EVD and profile search with different
potential functions in a box-and-whisker plot. Interestingly, EVD-x,, has much higher
variance compared to EVD-7;, and EVD-7;,. Moreover, query times of EVD-x,, are
lower for long-distance queries, but significantly worse for local queries of low rank.
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Recall that the potential function 7, is induced by distances from a single vertex, which
results in a highly distorted search space. Apparently, the lower average query time
of EVD-x,, reported in Table 4.1 is mostly induced by long-distance queries, whereas
more local queries are typically rather costly. For the highest ranks, median running
times of all approaches are above two seconds. Profile search is consistently slower
than EVD (except EVD-x,, for low ranks) by a factor of at most 2-3.

Remarks. Inconclusion, only alabel-correcting variant of EVD that does not employ
a stopping criterion can be used without preprocessing effort. Using a global value for
the stopping criterion (EVD-sc-g) offers mild speedup at negligible space consumption.
All other methods require an additional integer value to be stored with each vertex.
Potential functions offer polynomial guarantees on running time and are slightly faster
in practice. Fastest average query times are achieved by EVD-rx,, after a few seconds
of customization. An alternative variant, EVD-xp, yields more robust query times and
slightly faster customization. Finally, the potential function 7, requires that elevation
data of the network is available and consistent with consumption data. Yet, it offers
the lowest customization time (less than 0.5 seconds) and robust query times that
compete with the other techniques. Furthermore, note that we include space overhead
of four bytes per vertex for storing the height-induced potential 7;,(v) = a - h(v) at
each vertex v € V. If height values are already available as part of the input, we may as
well just store the single value @ € R, and compute 75 (v) on demand in the algorithm.
This reduces space overhead to a single integer value (similar to EVD-sc-g).

4.5.2 Routes with Charging Stops

To analyze our algorithms that allow intermediate stops at charging stations, we con-
ducted experiments on Eur-PTV and the subnetwork Ger-PTV representing Germany.
Unless mentioned otherwise, we use the 13 810 charging stations (1966 of them in
Germany) located on ChargeMap (see Section 3.4). All charging stations have the SoC
range [0, M]. As before, the initial SoC in each query is by = M. Reported query times
are average values of 1000 queries, with source and target vertices picked uniformly
at random. All algorithms use height-induced potential functions.

Evaluating Queries. Table 4.2 evaluates performance of CH for different core sizes.
In this experiment, vertex contraction on Ger-PTV was stopped as soon as the average
degree of vertices in the core reached a given threshold. Although it is possible to
contract all vertices except for charging stations at moderate preprocessing effort (less
than 15 minutes), we observe that aborting contraction earlier actually improves query
times. This is due to the fact that the number of shortcuts (and hence, the number of
edge scans during queries) is much smaller when using a larger but also sparser core
graph. Consequently, query times of CH are fastest for an average core degree of 48,
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Table 4.2: Impact of core size on performance (Ger-PTV, PG-16). Vertex contraction stopped
once the average degree in the core reached a given threshold (@ Deg.), or only charging
stations were left in the core. We report resulting core size (# Vertices), preprocessing time,
and average query times for CH as well as CH combined with A* search.

Core size Prepr. Query [ms]
@ Deg. #Vertices T [s] CH CH+A*
0 - 176.8  526.3 1681.8
16 31063 (0.66 %) 257.5 16.3 16.9
32 5904 (0.13 %) 416.7 12.0 4.9
48 3472 (0.07 %) 548.5 11.2 4.2
64 2701 (0.06 %) 633.7 11.8 4.1
128 2029 (0.04 %) 786.8 12.6 6.4
0o 1966 (0.04 %) 832.7 12.4 8.9

while CH combined with A* search achieves best results for an average degree of 64.
Compared to a variant that does not contract any vertices and only computes the
charging station graph Ggs (first row of Table 4.2), this results in a speedup by a factor
of almost 45 for CH and 410 for CH combined with A" search. Note that A* search does
not pay off for large core sizes, as the backward profile search becomes a bottleneck.
In all following experiments that involve CH, we stop contraction on Ger-PTV at
an average core degree of 48. On Eur-PTV, we set this threshold to 32 (obtained in
preliminary experiments).

Table 4.3 compares different approaches to compute energy-optimal routes with
charging stops on our main test instance (Eur-PTV), for both vehicle models. Applied
techniques are indicated by the four leftmost columns. The first row (no speedup
technique enabled) shows our exact baseline approach introduced in Section 4.3.2.
It requires no preprocessing, but takes 20-30 seconds to answer queries, which is
rather impractical. Simply plugging in the charging station graph Gs and using the
modified EVD (see Section 4.3.4) already reduces query times significantly. However,
scalability of this approach is limited, because increasing the vehicle range affects both
preprocessing (longer paths between charging stations must be precomputed) and
queries (the search in the uncontracted network dominates running times). Integrating
CH clearly pays off, as it further reduces the number of vertex scans and query time
after a moderate preprocessing effort of less than an hour. Query times of CH are
dominated by the search in Gs. A* search helps reducing the effort spent searching in
Gs and makes our approach rather practical, with running times of less than 300 ms
for the artificial model. Even though we use a formally inexact implementation, the
optimal solution is found in all queries.

The aggressive variant of A* search further reduces query times at the cost of inexact
results, even in practice. The average relative error (not reported in the table) is 0.7 %
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Table 4.3: Performance of approaches taking charging stops into account (Eur-PTV).
Columns Gg, CH, A*, and Ag. (Aggressive A¥) indicate whether a technique is enabled (o) or
not (o). For each approach and model, we report preprocessing time, the number of vertex
scans during queries (# V. Sc.), and query times.

Techniques PG-16 EV-85
Gs CH A" Ag.  Prepr.[s] #V.Sc. T [ms] Prepr. [s] #V.Sc. T.[ms]
o o o o — 8895038 20160.9 — 11033760 32928.8
. o o o 1487 759951 710.0 15062 7753601 6285.7
. ° o o 2860 8433 309.6 3246 19616 12815
. ° ° o 2860 3563 128.2 3246 10418 297.5
. ° ° . 2860 1599 41.0 3246 9579 157.8

for PG-16 and less than 0.01 % for the artificial EV-85 model. This discrepancy in
relative error can be explained by the fact that a larger battery allows the EV to stick
to energy-optimal paths (fewer detours are necessary), so the quality of the bounds
used in A* search increases. Consequently, outliers for PG-16 exceed 10 % in relative
error in about 1 % of the cases, while even the maximum error is below 0.5 % for EV-85.
For all techniques, queries for EV-85 are harder to solve. This is mostly due to the
dense charging station graph (in case of the baseline approach, more labels created
per vertex), since more charging stations are reachable from each station.

Evaluating Scalability. Running times of all approaches are dominated by the
search in the charging station graph. Hence, we analyze the effect of different types
of charging stations, the total number of stations, and vehicle range on overall per-
formance. In Table 4.4, we evaluate the performance of our fastest empirically exact
approach (CH combined with A* search) under varying types and distributions of
charging stations. We consider five different scenarios.

The first scenario (reg-cm) uses stations from ChargeMap with default SoC ranges
R, = [0, M] for all charging stations v € S. The second (mix-cm) uses the same stations,
but assigns to each vertex v € S the charging range of a regular station (R, = [0, M]),
a supercharger that quickly charges to 80 % SoC (R, = [0,0.8M]), or a swapping
station (R, = [M,M]), with equal probability. The results indicate that SoC ranges
have little effect on performance. This is not surprising, since restricting the departure
SoC can only reduce the search space (the effect is negligible, though).

Furthermore, we consider random distributions of charging stations (reg-r0.01,
reg-r0.1, reg-r1.0) with default SoC ranges, where we pick 0.01 %, 0.1 %, and 1.0%
of the vertices in V as charging stations, respectively, chosen uniformly at random.
We observe that the number of charging stations has a more significant impact on
algorithm performance. Given that the number of edges in G5 grows quadratically
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Table 4.4: Performance for varying distributions of charging stations (Ger-PTV, PG-16). We
investigate our fastest empirically exact approach (CH+A*). Besides timings for preprocessing
and queries, we report the number of charging stations (|S|), edges in Gs (|Es|), as well as the
average number of vertex scans (# V. Sc.) and edge scans (#E. Sc.).

Prepr. Queries
Scenario |S| T. [s] |Es| #V.Sc. #E.Sc. T.[ms]
reg-cm 1966 548.5 539 145 4592 125535 4.22
mix-cm 1966 548.1 539145 4592 125381 4.19
reg-r0.01 469 487.2 22231 2234 50070 1.30
reg-r0.1 4692 582.7 2263310 8904 223779 7.97
reg-r1.0 46920 965.0 227514459 60527 1828581 73.46

in the number of charging stations, preprocessing and queries slow down for very
dense charging networks. This limits scalability, but our approach handles realistic
distributions of charging stations (note that for the scenario reg-1.0, the number of
charging stations is larger than the current number of gas stations in Germany).
Figure 4.18 shows running times of our algorithms for different battery capacities.
We use the PG-16 model, but vary its battery capacity as indicated in the plot. Without
A* search, running times roughly double with battery capacity, because Gs becomes
denser and hence, the number of reachable charging stations increases. Adding
A* search, scalability improves significantly, since vertex potentials quickly guide the
search towards the target and decrease the search space in the dense subgraph Gg.

4.5.3 Customizable Energy-Optimal Routes

Since our implementation of MLD exploits parallelism in both metric-dependent prepro-
cessing and queries, experiments in this section were conducted on machine-p. As par-
titioning tool we used PUNCH (Partitioning Using Natural Cut Heuristics) [Del+11b],
which is explicitly developed for road networks and aims at minimizing the number
of boundary edges. Given a bound k € N, it partitions the vertices of the input graph
G into cells with at most k vertices each. We proceed by first partitioning the topmost
level. Lower levels are computed by recursively running PUNCH on each cell-induced
subgraph (of a higher level) independently. For Europe, we use a 4-level partition with
maximum cell sizes 2°, 21°, 214, and 218, respectively (values determined in preliminary
experiments). Computing the partition took 24 minutes. Considering that the road
topology rarely changes (the partition needs to be updated only when roads are built
or closed), this is sufficiently fast in practice.

Evaluating Queries. Table 4.1 reports figures for our MLD algorithms on the main
test instance Eur-PTV, using the models PG-16 and EV-85 and the same set of 1000

Section 4.5

91



Chapter 4

92

Energy-Optimal Routes for Battery Electric Vehicles

2000 T
CH
1500 | —-o— CH+A* .

g -o—CH+Ag. A" | ¢
o 1000 - .
g Figure 4.18: Running times subject to
&= ® cruising range (Eur-PTV, PG-16). Each
500 - ./ /. | point in the plot corresponds to the me-
& a9 dian running time of 1000 queries for
0 16 32 6‘4 158 one of the different approaches (CH, CH

. with A*, CH with aggressive A*) and vary-
Battery capacity [kWh] ing battery capacities.

queries as in Section 4.5.1. Recall that the target is always reachable in these queries.
Customization times include both metric customization and potential computation
(we do not use reachability flags). For comparison, we also show results for EVD. All
algorithms use height-induced potentials. We also parallelize the computation of the
potential function, although the achieved speedup is moderate (factor of 3-4).

Regarding MLD, we see that customization takes less than four seconds when
parallelized, enabling frequent metric updates for the whole network. When executed
sequentially, customization takes 34.8 seconds (respective 40.4 seconds) for the PG-16
(EV-85) model (not reported in the table). Thus, parallelization on 16 cores yields a
very good speedup factor of about 11 in both cases. Customization of a single cell,
e.g., when only local updates are required, is much faster and takes about 100 ms
(not shown in the table). In all cases, customization times for EV-85 are higher than
for PG-16. We attribute this to the larger number of negative edges in the former
instance (see Section 3.4).

Space consumption is dominated by breakpoints of profiles, which are piecewise
linear functions. Most profiles (about 80 %) have compressed form, so they are stored
as a single 32-bit integer. Of the remaining profiles, the majority (more than 90 %)
consist of at most two breakpoints. For both models, there are only very few (below
2000 out of over 30 million) shortcuts with profiles containing 10 or more breakpoints.
As a result, overhead in space consumption is moderate, requiring only a few bytes per
vertex. One can further reduce it by removing the lowest level of the partition for the
query phase, keeping it only to accelerate customization [Del+17]: For both models,
this saves space by a factor of 2, while queries are slowed down by only about 10 % on
average (not reported in the table). Furthermore, note that for all variants, we include
space overhead for storing the height-induced potential at each vertex. As mentioned
in Section 4.5.1, we can save space by just keeping a single value o € R for the whole
graph. Altogether, taking these measures can reduce customization space to about
four bytes per vertex for each model.
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Table 4.5: Evaluation of MLD approaches for both vehicle models (Eur-PTV). We report figures
as in Table 4.1, for the same set of 1000 queries.

PG-16 EV-85
Custom. Query Custom. Query
Space Time # Vertex Time Space Time #Vertex Time
Algorithm [B/n] [s] Scans [ms] [B/n] [s] Scans  [ms]
EVD 4.0 0.19 184523 27.48 4.0 0.19 2137282 369.19
Uni-MLD 13.6  3.20 900  0.37 145  3.67 2305 1.24
BPE-MLD 13.6  3.20 891  0.30 145  3.67 2194 0.92
BDB-MLD 13.6  3.20 1120 0.25 145  3.67 2754 0.67
Pr-MLD 13.6  3.20 1068  0.75 145  3.67 2763 3.60

All MLD query variants provide SoC query times of below 2 ms, for both vehicle
models. Compared to EVD, this improves query times by more than two orders of
magnitude. Bidirectional search also clearly outperforms Uni-MLD. We observe that
BDB-MLD is faster than BPE-MLD by about 20-30 % on average. Note, however, that
depending on the application, bidirectional search might not pay off: It is run on two
cores, but the speedup achieved is (slightly) less than 2. Finally, our approach also en-
ables profile queries within a few milliseconds (Pr.-MLD). Compared to unidirectional
SoC queries, we observe a slowdown by a factor of 2-3 on average.

Evaluating Scalability. Figure 4.19 shows scalability of our MLD algorithms, using
the Dijkstra rank method as explained in Section 4.5.1. For the same set of 1000
random queries per rank, we report results for Uni-MLD, BPE-MLD, BDB-MLD, and
profile search (Pr.-MLD). As before, we use the EV-85 model, but set battery capacity
to 1000 kWh. We observe that except for very local queries (below rank 2!?), bidi-
rectional search always pays off. Moreover, our most sophisticated method for SoC
queries, BDB-MLD, is consistently the fastest approach for all ranks. Using BDB-MLD,
we achieve maximum query times of under 4.0 ms for the highest ranks, while Uni-
MLD stays below 6.4 ms. Profile search, on the other hand, is slightly slower for all
ranks and produces most outliers. This can be explained by the fact that running
times vary with the number of breakpoints necessary to represent profiles. Thus,
times may increase for mountainous areas, where profiles are likely to consist of more
breakpoints and shortcut scans become particularly expensive. As a result, we obtain
maximum profile query times of over 70 ms. Nevertheless, using MLD yields a speedup
of more than two orders of magnitude compared to plain profile search.

Figure 4.20 shows running times subject to Dijkstra rank for the PG-16 model. Again,
we use the same set of queries as in Figure 4.17. However, in contrast to Figure 4.19, we
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Figure 4.19: Running times of MLD subject to Dijkstra rank. We use the same vehicle model
and queries as in Figure 4.17. Battery capacity is increased such that range is not constrained.

enable reachability flags and keep battery capacity at 16 kWh. Hence, the plot shows
the effect of reachability flags on long-distance queries for different MLD variants.
Starting with rank 2!8, query times drop gradually. Beyond rank 222, the target is almost
never reachable, which results in median query times of under 0.01 ms for Uni-MLD.
Differences in query times between the techniques for high ranks are explained by
initialization overhead, which is more expensive for variants that employ profile search
(because dynamic data structures have to be cleared). Similar to Figure 4.19, BDB-MLD
is consistently the fastest approach except for very high ranks, where queries are
always aborted after initialization, while profile search is the slowest algorithm. The
topmost level of our partition contains 99 cells, hence, reachability flags require 992
bits (less than 10 kb) of space in total. Computing them in parallel took less than 5 ms.

4.5.4 Comparison of Approaches

We compare the performance of different approaches that compute routes for EVs
(without charging stops). First, we consider the fastest previous speedup technique
to solve the problem and the new approaches presented in this work. Second, we
examine energy consumption on paths that minimize travel time or distance.

Comparison of Speedup Techniques. At the time of writing, the fastest available
approach that computes energy-optimal routes for EVs is based on CH [EFS11, Sto13].
The authors adapt plain CH [Gei+12b] to the scenario of optimizing energy consump-
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Figure 4.20: Running times of the PG-16 model subject to Dijkstra rank, with reachability
flags enabled. As in Figure 4.17, lower ranks indicate more local queries.

tion in the following way: To avoid costly profile computation in witness searches
during preprocessing, they acquire upper bounds on witness paths by sampling. This
simplifies preprocessing, but may result in a larger number of shortcuts. For the
bidirectional CH query, they extract the whole backward search graph with a BFS
instead of running a profile search.

To compare our MLD algorithms and our own implementation of CH for EVs with
the existing method, we ran experiments on the largest instance used in the previous
works, Jap-OSM [Sto13], which was kindly given to us by the authors. The instance
is based on an OSM export of the road network of Japan, augmented with SRTM
data. It has 26 million vertices and 54 million edges; see Table 3.1 in Section 3.4.
Note that these figures are slightly higher than for our main instance (Eur-PTV),
however, OSM networks are notorious for having exceptionally many vertices of
low degree that only model geometry. Taking this into account, our MLD approach
uses a 4-level partition with increased maximum cell sizes of 27, 2!, 21°, and 2%
vertices, respectively. Using PUNCH [Del+11b], computing the partition took less
than half an hour. Eisner et al. [EFS11, Sto13] use the simple consumption model
stated in Equation 3.1 in Section 3.4, which is based on the geographical distance
and height difference of edges. Note that a height-induced potential follows from the
model (we set « := —p). Therefore, computing the potential function does not require
any customization time. Similar to Eisner et al. [EFS11, Sto13], we assume a very large
battery capacity. As a result, the target is always in range and reachability flags are
disabled in our algorithm.
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Table 4.6: Comparison of speedup techniques for SoC queries (Jap-OSM). For different variants
and implementations of EVD, CH, and MLD, we report space consumption (in bytes per vertex)
and time for preprocessing. For queries, we report the average number of vertex scans and
timings. For figures taken from existing work [Sto13], we also report scaled timings.

Custom. Query

Space Time # Vertex Time
Algorithm [B/n] [s] Scans [ms]
EVD [Sto13] 4.0 — 14431809 6492.58
EVD [our] 4.0 — 12661423 2044.63
CH [Sto13] 23.0 14329.87 10024 44.93
CH (scal.) [Sto13] 230 7188.77 10024 1415
CH [our] 44.8  1076.74 252 0.88
Uni-MLD 7.7 1.83 2196 0.67
BPE-MLD 7.7 1.83 2252 0.62
BDB-MLD 7.7 1.83 2650 0.46

Table 4.6 reports results on Jap-OSM for our implementation of CH following
the description in Section 4.3.4, but contracting all vertices in the graph because
there are no charging stations (S = 0), as well as different variants of MLD. The
experiments were conducted on machine-p. Additionally, the table shows figures
for existing implementations of EVD and CH [Sto13]. Since they were obtained on
slower machines, we report scaled timings. There are two established approaches
to scale running times between machines: (1) Using running times of a common
baseline algorithm, (2) having access to the same hardware for scaling experiments.
Eisner et al. [EFS11, Sto13] use two machines (an AMD Opteron 6172 with 2.1 GHz
for preprocessing, an Intel i3-2310M with 2.1 GHz for queries), so we resort to both
scaling approaches. For query times of CH, we obtain a scaling factor based on the
EVD implementations, maintaining their speedup factor of about 145. Since we have
an Opteron 6172 available, scaling of preprocessing time is done by our own scaling
experiment. Although not specifically mentioned, we infer that the existing EVD
implementation [EFS11, Sto13] uses a stopping criterion: The reported search space is
about 56 % of the graph size.

At first glance, Jap-OSM seems to be harder than Eur-PTV: Our EVD variant scans
more vertices and has higher query times on Jap-OSM, due to the larger graph size and
unlimited range. However, we observe that all MLD variants perform better on Jap-
OSM than on Eur-PTV. Observe that the modeling overhead in OSM has an impact only
on the lowest level of the partition. Regarding CH, our implementation is significantly
faster in both preprocessing and queries, but has higher space consumption compared
to the existing variant [EFS11, Sto13]. The latter can be explained by the fact that,
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Table 4.7: Comparison of energy-optimal routes to other metrics. For routes that minimize
travel time or distance, respectively, we report the percentage of routes that become infeasi-
ble (Unr.), the additional amount of energy spent, and the loss in the respective metric (travel
time or distance) when using an energy-optimal path.

Travel Time Distance
Extra Extra Extra Extra
Instance Unr. Energy Time Unr. Energy Dist.

Eur-PTV (PG-16) 56 % 41% 47% 23 % 11% 5%
Eur-PTV (EV-85)  62%  61% 62%  28% 16% 4%
Jap-OSM — — — 0% 25% 11%

unlike Eisner et al., we contract all vertices of the graph and maintain via vertices for
every breakpoint of profiles (which is simple but also redundant). However, contracting
all vertices clearly pays off in terms of query performance: The average search space is
smaller by a factor of 40 compared to the existing implementation. Interestingly, MLD
provides the best query times. At the same time, its (metric-dependent) preprocessing
is faster than CH by more than a factor of 500 and requires a fraction of the space.
Even when run on a single core, customization of MLD still only requires 19.6 seconds
and is more than 50 times as fast as CH preprocessing. Our findings add to previous
observations that, compared to CH, separator-based approaches are more robust
towards metrics other than (unconstrained) travel time [Bau+16f, Del+17, DSW16].
Moreover, CH suffers from its bidirectional nature, since the backward profile search
becomes the major bottleneck of SoC queries. Consequently, CH outperforms MLD
when answering profile queries (not reported in the table). In this case, average query
times of CH are only slightly higher (0.98 ms), while MLD is slowed down by a factor
of 3 (1.83 ms). Thereby, our techniques also outperform a previous implementation
of profile search based on CH by Schonfelder et al. [SLW14] (they report an average
query time of 19 ms on a much smaller graph and mention that their implementation
is not finely tuned).

Comparison of Metrics. We also compare energy-optimal routes to those that
minimize travel time and covered distance, respectively. Table 4.7 shows results for
Eur-PTV and Jap-OSM. We use the same 1000 queries as in Table 4.1 for Eur-PTV
and Table 4.6 for Jap-OSM, respectively. For each metric, we report the percentage of
queries where the target becomes unreachable when optimizing travel time or distance.
For cases where the target is reachable, we show the average amount of extra energy
spent on the quickest or shortest route (instead of the energy-optimal one) and the
extra time or distance required on the energy-optimal route. Travel times were not
available for Jap-OSM, so we only evaluate the distance metric on this instance.
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As driving speed has a huge impact on energy consumption, minimizing the travel
time greatly reduces range. Consequently, more than half of the targets that are
reachable on an energy-optimal route become unreachable when taking the quickest
route instead. Even if the target is reachable on both routes, optimizing one criterion
greatly increases the other. This effect becomes less significant when comparing energy
consumption to distance. This indicates that there is a strong correlation between
energy consumption and covered distance. However, since there are many other
factors—such as road type and slope—that influence energy consumption, minimizing
travel distance still fails to retain reachability of the target in more than 20 % of the
cases on Eur-PTV. In conclusion, explicitly optimizing for energy consumption clearly
pays off and increases the range of an EV significantly.

4.6 Final Remarks

We studied the computation of energy-optimal routes for EVs. Key challenges included
negative costs to model recuperation and battery capacity constraints. We examined
SoC profiles that capture these constraints and proved that their complexity is at
most linear in the graph size. Furthermore, we derived basic algorithms to solve
two relevant query types, namely, SoC queries and profile queries. We investigated
different strategies to establish stopping criteria and developed a polynomial-time
algorithm for profile queries.

We also discussed energy-optimal routes with charging stops and showed how
profile search can be utilized to solve the problem in polynomial time. The problem
setting can be seen as a transition between (efficiently solvable) energy-optimal routes
without charging stops [EFS11, Sac+11] and N'#-hard time-constrained variants that
include charging stops [SMS17] (which generalize the problem setting considered
in this chapter). Our findings prove that it is indeed the addition of a second opti-
mization criterion (travel time) that makes the latter settings N P-hard, rather than
the incorporation of charging stations in combination with battery constraints; see
also Section 5.2. We also proposed a practical variant, which (empirically) computes
optimal results in well below a second on realistic, large-scale networks.

Finally, we presented algorithms based on the CRP approach, which in addition
to the above challenges, handle frequently changing metrics in a sound manner. We
integrated profile search into customization and discussed a nontrivial adaptation of
bidirectional search. On the continental network of Europe, our approach incorporates
new metrics within seconds and answers queries in less than a millisecond—making it
the fastest available technique for energy-optimal routing of EVs.

Future Work. Next steps include the integration of turn costs (in terms of energy
consumption), where recuperation due to braking must be taken into account [Har12].
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Realistic models of turn costs are important to produce meaningful results in practice, as
energy-optimal routes often resort to minor roads comprising many turns. Regarding
routes with charging stops, interesting lines of future work include reducing the
number of edges in the overlay of charging stations for better performance and
scalability of CH [Del+17, HSW09, SWZ02] or integration with CCH [DSW16] for
faster preprocessing. It might also be worthwhile to extend the proposed A* search
to an adaptation of ALT [GHO05, GWO05] to enable faster queries. Additionally, one
could consider a profile variant of this problem setting, i. e., ask for an SoC profile
with intermediate charging stops. We are also interested in including further ideas
on tuning the CRP approach [Del+17, DW13]. Moreover, note that as described in
this chapter, customization has to be rerun whenever the battery capacity of a vehicle
changes. However, custom capacities may be desirable in many situations, e. g., when
modeling battery aging or user constraints on minimum SoC during a ride. Therefore,
one could make use of a more flexible representation of profiles that is independent of
the capacity M € Ry (e. g., by explicitly storing lengths of certain important subpaths
of contributing paths; see the characterization of SoC profiles given by Lemma 4.1 in
Section 4.1.2). Then, the parameter M could be part of the query input.
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In Chapter 4, we developed algorithms to compute routes for EVs that minimize
energy consumption. It turned out that all considered problem variants allow efficient
solutions, both in theory and in practice. However, our evaluation also revealed
that—compared to fastest routes—routes that solely optimize for energy consumption
typically come with a great increase in travel time and vise versa; recall Table 4.7 in
Section 4.5. The reason for this is that driving slowly reduces aerodynamic drag, which
has a major impact on energy consumption [Bed+16, FAR16, HF14, LL12]. As a result,
energy-optimal routes often contain disproportionate detours using slow roads, which
users may only be willing to accept in some cases, e. g., when the battery is nearly
depleted. Most of the time, however, users are interested in routes that keep energy
consumption low, but still allow the driver to reach the target within a reasonable time
frame. Trading travel time for energy consumption inherently results in a bicriteria
problem, on which we set our focus in this chapter.

We consider variants of the N'#-hard Constrained Shortest Path (CSP) problem that
capture specific requirements of EVs. We show that fastest routes subject to battery
constraints can be computed by a straightforward adaptation of the (exponential-
time) multicriteria shortest path algorithm. Based on this insight, we consider two
nontrivial extensions of the basic problem. First, we incorporate stops at charging
stations. We take into account that the charging process is nonlinear and can be
interrupted to reach the target earlier. Using realistic and flexible models of charging
stations, our approach allows different types of charging stations to be present in the
network, such as stations with varying charging power or battery swapping stations.
Second, we take into account that in reality, travel time and energy consumption
are not only affected by the choice of the route itself, but also by driving behavior.
Hence, it might pay off to save energy by deliberately driving below posted speed
limits, especially along high-speed roads. Careful speed planning becomes even more
relevant with the advent of autonomous vehicles, where driving speeds can be planned
in advance to ensure that the target is reached [Flo+15]. We discuss different ways to
model such adaptive speeds and propose algorithmic solutions to solve the extended
problem setting. Since all problem variants considered in this chapter are N#-hard,
we do not guarantee polynomial running times of our exact algorithms. Instead, we
demonstrate their practicality on realistic input in an extensive evaluation. We also
propose heuristic variants, the fastest of which compute high-quality solutions within
tens of milliseconds on large-scale networks, as our experimental study reveals.
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Chapter Overview. In Section 5.1, we state the basic problem setting, which is
an extension of the well-known N#-hard CSP problem. We also describe a baseline
algorithm that solves it in exponential time, by adapting the multicriteria shortest
path algorithm [Han80, Mar84] presented in Section 3.3.1.

In Section 5.2, we extend the basic problem to planning routes that, while respecting
battery constraints, minimize overall trip time, including time spent at charging sta-
tions. Our solution handles all types of charging stations accurately: battery swapping
stations, regular charging stations with varying charging power, as well as super-
chargers that quickly charge to a certain fraction of the maximum SoC. In particular,
charging times are not independent of the SoC when arriving at a charging station in
our model. Additionally, the charging process can be interrupted as soon as further
charging would delay the arrival at the target. We first show how the basic algorithm
can be extended to handle charging stops. Carefully incorporating recharging models
in speedup techniques based on A" search and CH, we are able to solve the problem
optimally within reasonable time on realistic instances. For faster queries, we propose
heuristic approaches that offer high (empirical) quality.

In Section 5.3, we study a generalization of the CSP problem that takes adaptive
speeds into account. Using realistic consumption models, we obtain a function for
each road segment that maps driving time to energy consumption. This results in a
challenging problem, which as a first step, we solve with an extension of the basic
algorithm. To reduce practical running times, we incorporate techniques based on
A” search and CH, which can be combined for further speedup. One of the most
challenging aspects in this setting is the computation of shortcuts, which represent
bivariate functions in our model. We also discuss heuristic variants.

Section 5.4 presents our comprehensive experimental study on detailed and realistic
data. For both considered problem settings, it demonstrates that we can compute
optimal solutions within seconds and below for realistic query scenarios and within
minutes or less for long-distance queries, on par or faster than previous heuristic
algorithms. Thereby, our approaches outperform the state-of-the-art, even though
they are designed to solve more complex problems. Using our heuristic variants, we
achieve query times that are fast enough for interactive applications, while providing
high-quality solutions. We conclude this chapter in Section 5.5 with a summary and
an outlook on interesting future work.

5.1 Basic Problem Setting

In the basic variant of our problem, we are given a graph G = (V,E) together with
two cost functions d: E — Ryg and c: E — R representing driving time and energy
consumption on an edge, respectively. As before, consumption values can become
negative to model recuperation, but the battery capacity M € R, imposes constraints
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// initialize label sets
1 foreachv €V do

2 | L(v) 0

3 L(s) «— {(0,bs)}
4 Q.insert ((0,by),s,0)

// run main loop

5 while Q.isNotEmpty () do

6 (¢ = (x,b),u) «<— Q.minElement ()
7 foreach (u,v) € E do
8
9

x' — x +d(u,v)
b’ «— min{M,b — c(u,v)}
10 if b’ > 0 then
11 ' — (x',b")
12 if L(v) does not dominate ¢’ then
13 L(v).deleteLabelsDominatedBy ({’)
14 L(v).insert ({")
15 Q.update({’,v,x")

Figure 5.1: Pseudocode of the label-setting BSP algorithm for EVs. It takes as input a graph
G = (V,E) with cost functions d: E - Rypand c: E - R, asources € V, a targett € V,
a battery capacity M € Ry, and an initial SoC by € [0,M]. It computes the minimum
(constrained) driving time from s to ¢ for the initial SoC b;.

on the feasibility of paths; see Section 4.1.1. For a query consisting of a source s € V,
a target t € V, and an initial SoC bs € [0,M], we seek to compute a path that is
feasible and minimizes driving time. If all consumption values are nonnegative, this
problem is equivalent to the well-known N #-hard CSP problem [HZ80], which (in
the terminology of our setting) asks for a path with minimum driving time such that
energy consumption does not exceed the threshold M. Consequently, our problem at
hand is NP-hard as well.

To solve the problem, we can adapt the (exponential-time) multicriteria shortest
path algorithm [Han80, Mar84] from Section 3.3.1 in a straightforward manner. See
Figure 5.1 for pseudocode of the resulting bicriteria shortest path (BSP) algorithm for EVs.
It maintains label sets, in our case containing tuples (x,b) of driving time x € R
and SoC b € R. A label (x,b) dominates another label (x’,b’) if x < x" and b > b’.
Initially, all label sets are empty, except for the label (0, b;) at the source s, which is also
inserted into the priority queue. In each step, the algorithm extracts the label £ = (x,b)
with minimum driving time x € Ry, assigned to some vertex u € V. We also say
that £ is settled at this point. The algorithm then scans all edges (u,v) € E outgoing
from u. If the new label ¢’ := (x + d(u,v),b — ¢(u,v)) is not dominated by any label
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in L(v), it is added to L(v) and the queue, removing labels dominated by ¢’ from L(v).
Battery constraints can be incorporated on-the-fly by additional checks during the
algorithm as follows. When scanning an edge (u,v) € E, we set the SoC of the new
label ¢’ to min{M, b — c(u,v)}. If this results in negative SoC, we discard the label ¢’.
Using driving time as key of tuples in the priority queue (breaking ties by SoC, i.e.,
giving preference to the label with highest SoC if two or more labels have the same
driving time), the algorithm is label setting, i. e., extracted labels are never dominated
afterwards. An optimal (constrained) solution is then found once the first label at the
target ¢ is settled. As in the basic algorithm from Section 3.3.1, parent pointers can be
added to labels to retrieve the optimal path itself.

Note that, while we focus on the problem of computing fastest feasible paths, it is
not hard to adapt all algorithms introduced in this chapter to closely related problem
settings, such as

« computing a path with minimum driving time such that the target is reached
with at least a certain minimum SoC;

« computing a path with minimum driving time such that the SoC does not fall
below a certain threshold at any point during a journey;

« computing the energy-optimal path that does not exceed a certain travel time;

« computing the full Pareto set of nondominated solutions at the target (with
respect to driving time and energy consumption).

In the remainder of this chapter, we generalize the CSP problem to complex, realistic
problem settings in the context of route planning for EVs. In particular, we consider
stops at charging stations and adaptive speeds.

5.2 Integrating Charging Stops

Besides a limited cruising range, a major difference between traveling with EVs and
their conventional counterparts running on combustion engines is that charging
stations are still much rarer than gas stations and recharging is time consuming. Thus,
routes can become infeasible without intermediate charging stops (the battery runs
empty) and fast routes may be less favorable when taking longer recharging times into
account. In this section, we aim to find the overall fastest route, considering battery
constraints and charging stops when necessary. For that, our model has to integrate
different kinds of charging stations in a sound manner, such as battery swapping
stations and stations with varying charging power. Moreover, charging time depends
on the SoC when arriving at a charging station. The charging process can also be
interrupted as soon as further charging would delay the arrival at the target. Note
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that this stands in contrast to the problem considered in Section 4.5.2, where we only
optimized energy consumption and ignored travel time.

In what follows, we formally specify our model and the problem (Section 5.2.1).
Afterwards, we derive a basic approach, which extends the (exponential-time) BSP
algorithm (Section 5.2.2). It turns out that as its most crucial ingredient, new labels
must be generated at charging stations to model battery charging. We discuss how a
limited number of labels can be constructed to ensure termination and correctness of
the approach (Section 5.2.3). To improve practical performance of our exponential-
time algorithm, we propose tuning based on A* search (Section 5.2.4) and the speedup
technique CH (Section 5.2.5). We also discuss how both techniques can be combined to
further reduce practical running times (Section 5.2.6). Finally, we introduce heuristic
approaches, which drop correctness for additional speedup (Section 5.2.7).

5.2.1 Model and Problem Statement

As in the basic problem setting (see Section 5.1), we assume that we are given a graph
G = (V,E) with two edge cost functions d: E —» Ry and c: E — R representing
driving time and energy consumption, respectively. Additionally, a subset S € V
of the vertices represents charging stations. We allow stops at charging stations to
recharge the battery while spending charging time. Each vertex v € S has a designated
charging function cf,: [0,M] X Rs¢ — [0, M], which maps arrival SoC and the spent
charging time to the resulting departure SoC. We presume that charging functions are
continuous and monotonically increasing with respect to charging time (i. e., charging
for a longer time never decreases the SoC). Further, we assume that for arbitrary
charging times x; € Ry, x2 € Ry¢ and SoC values b € [0,M], the shifting property
cfy(cfy (b, x1),x2) = cf,(b,x1 + x2) holds. Hence, charging speed only depends on
the current SoC, but not on the arrival SoC. These conditions are met by realistic
physical models of charging stations [Mon+17, Pel+17, Uhr+15]. Moreover, exploiting
the shifting property, it is possible to represent the (bivariate) charging function cf,,
using a univariate function cf,: R — [0, M] with cf(x) := cf,(0,x); see Figure 5.2
and our explanation further below.

Given a vertex v € S with a charging function cf,, that has the above properties, we
further presume there is a finite value x5** € R, such that cf, (b,x) = cf, (b, x5 **) for
allb € [0,M] and x > x5'®*. In other words, some maximum SoC is reached after a finite
charging time (the charging function does not converge to some SoC without reaching
it eventually). Then, the minimum SoC value b7 := min,c., cf,(0,x) = cf,(0,0)
and the maximum SoC value b7®* := maxyep.,, cf+(0,x) = cf,(0,x5%*) of a charging
function induce a range [b™", b™3] of possible SoC values after charging at v. We
allow the cases b™" > 0 and b™* < M to model certain restrictions of charging
stations. For example, we include swapping stations by setting cf,,(x,b) = M for all
values x € Rsg and b € [0,M]. Hence, we obtain b™" = pM8 = M. Our notion
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6 1cfy(x)

> bdep

41 . L . L.
parr Figure 5.?: A un{varlate char'gmg fupctlon cfy,

3 of a charging station v € S with minimum SoC

5 value 0 and maximum SoC value 6. Reaching v

with an arrival SoC of b*" = 3 and spending a
11 GF(3) Xehar charging time of Xcharge = 2 yields a departure
o 'v | enaree x SoC bder = cf, (b, Xcharge), Which we obtain

1 2 3 4 5 6 7 8 by evaluating cf,, (cf,, (b*™) + Xcharge) = 5.

of charging functions generalizes the definition given in Section 4.3.1 and is flexible
enough to capture features of realistic charging stations. Finally, we assign to every
charging station v € S a constant initialization time xiyit(v) that is spent when charging
at v. Thereby, we model time overhead at a charging station for, e. g., parking the car
or swapping the battery.

As mentioned above, we represent the bivariate charging function cf, of a vertex
v € S with a univariate function cf,, as follows. Consider the inverse function cf,
mapping a desired departure SoC b € [b™",b13) to the required charging time
x € R when the arrival SoC is 0, i. ., cf,(b) = x implies that cf,(x) = cf,(0,x) = b.
Since cf, is strictly increasing on the interval [bg‘in,bgm) by definition, the function
cf) is well-defined on the domain [p™®, b™3%), Given the minimum charging time
x5 € Ry required to charge to an SoC b;** at v from an arrival SoC of 0, we define
the expanded inverse function cf: [0,M] — R, by setting

0 if b < pmin,
(D) = { XM if p > pmax,

cf,(b) otherwise.

This yields the equivalence cf, (b,x) = cf,(cf, (b) + x) for b € [0,M] with b < bax
and x € R; see Figure 5.2. Further, we denote by cf},(by,b) := cf,,(by) — cf,(by) the
time to charge the battery from some arrival SoC b; € [0, M] to a desired departure
SoC b, € [0,M] with b; < b,.

Existing models of charging functions use linear, polynomial, and exponential func-
tions, or piecewise combinations thereof [Mon+17, Pel+17, SDK17]. Typically, these
functions are also concave with respect to charging time (i. e., charging speed only
decreases as the battery’s SoC increases). However, charging functions in our model
are not limited to such functions per se. Section 5.2.3 discusses necessary conditions
for charging functions besides those mentioned above (continuity, monotonicity, and
the shifting property) to ensure that our algorithms terminate. For the sake of sim-



Integrating Charging Stops

plicity and motivated by data input in our experimental evaluation (see Section 5.4.1),
examples in subsequent sections use piecewise linear, concave charging functions.
We consider the following objective: For a given source s € V, a target t € V, and
an initial SoC bs € [0, M], we want to find a feasible s—t path that minimizes overall
trip time, i. e., the sum of driving time and total time spent at charging stations. Note
that if the input graph contains no charging stations (S = 0), we have an instance of
the basic problem from Section 5.1, hence the considered problem is N'¥-hard, too.

5.2.2 Basic Approach

Since charging functions are continuous, there is no straightforward way to apply
the bicriteria algorithm described in Section 5.1 to our setting: This might require
an infinite number of nondominated labels after settling a charging station with a
continuous charging function. In this section, we show how the algorithm can be to
generalized to our setting. The charging function propagating (CFP) algorithm extends
labels to maintain infinite, continuous sets of solutions. The core idea is that a label
represents all possible tradeoffs between charging time and resulting SoC induced by
the last visited charging station (if it exists). First, we show how to represent paths
containing charging stations with labels of constant size. Afterwards, we describe the
CFP algorithm itself. In the following Section 5.2.3, we discuss the implementation of
a crucial part, namely, generating new labels at charging stations.

Labels and SoC Functions. Assume we are given a path P from the source s € V
to some vertex v € V, such that P contains a charging station u € S and the arrival
SoC at u is b, € [0,M]. Every possible charging time Xcharge € [0,cf, (b, b12)]
at u results in a certain trip time and an SoC at v. In general, this yields infinitely
many feasible, nondominated pairs of trip time and corresponding SoC for the path.
We implicitly represent these pairs in one label by storing the charging station u in
the label. However, this no longer allows us to apply battery constraints on-the-fly:
For vertices visited after u, labels have no fixed SoC, as it depends on how much
energy is charged at u. Hence, we compute the SoC profile f[,, ... of the subpath
from u to v; see Section 4.1.2. The label £ = (xuip, by, u, flu,...,o]) at the vertex v then
consists of the trip time xyi, € R of the path from s to v (including charging time
on every previous charging station except u on the path from s to u), the SoC b,
when reaching u, the last visited charging station u, and the SoC profile f,, ... . of the
subpath from u to v. Recall that this SoC profile can be represented by three values;
see Section 4.1.3. Consequently, even though charging functions can have arbitrary
descriptive complexity, we propagate them using labels of constant size. The trip
time xi, excludes charging at u, but includes its initialization time xjn;t(#). Thus, we
can think of xy;, as the least trip time to reach v if we stop at u (and ignore battery
constraints on the u—v path).
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Figure 5.3: Constructing the SoC function f(£) of a given label £ = (xuip, by, u, flu,...0])
with xui, = 3 and b, = 0.5. (a) The function cf,. Assume that the initialization time at u
is Xinit () = 0. (b) The SoC profile fi,,.. o] of the u-v subpath. Note that the path has negative
consumption (the SoC increases as indicated by the arrow). (c) The SoC function f(¢). The
function cfy, (by,x — Xyip) (red) reflects pairs of trip time and SoC when charging at u, but
ignores consumption on the u—v subpath. It is equivalent to the function obtained after shifting
cfy to the right by xuip = 3 minus cf,;(0,b,) = 0.25. We apply battery constraints with respect
to the u—v subpath to this function and obtain the depicted SoC function f(€) (blue). Its
minimum feasible trip time is xpin (€) = 3.25, because we must spend a charging time of at
least 0.25 at u. Moreover, we obtain f(£)(x) = 3 for x > 3.75 (charging beyond an SoC of 2 at
u never pays off, as it wastes energy gains from recuperation).

Accordingly, we define the SoC function f(£) of a label £, to represent all feasible
pairs of trip time and SoC associated with the label £ = (xuip, by, U, flu,...,o])- The SoC
function f(£): Ry — [0,M] U {—oco} mapping trip time to SoC is given as

. {f[u,...,v](Cfu(bu’x - xtrip)) ifx > Xtrip»
—00

F(O(x) = (5.1)

otherwise.

To obtain the value f(£)(x), i.e., the (arrival) SoC at v for a trip time of x > Xiip,
Equation 5.1 first evaluates the SoC cf, (by, x — xyip) after charging at u for a total time
of X — Xuip with an arrival SoC of b,. Afterwards, the SoC profile fj,, ... . is applied,
which takes account of energy consumption (respecting battery constraints) on the
path from the charging station u to the current vertex v. This yields the desired SoC
at v. Note that f(£) can evaluate to —oco for values greater than xy;p, due to battery
constraints applied by the SoC profile f{,,... ). We denote by

Xmin (f(€)) := min{x € Ry | f(£)(x) # —co}

the smallest value for which f({) is greater than —oo, i.e., the minimum trip time
required for the path represented by ¢ to be feasible. Figure 5.3 shows an example of an
SoC function of a label. The definition of SoC functions reflects the interpretation of
our labels, which represent all possible tradeoffs between charging time and resulting
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SoC on the considered path, induced by the charging function cf, that belongs to the
last charging station u.

Algorithm Description. We are now ready to describe the actual CFP algorithm,
which is outlined in Figure 5.4. It propagates labels that are quadruples as defined
above. Given two labels ¢ and ¢’, we say that £ dominates ¢’ if f(€)(x) > f{£')(x)
holds for all x € Ry. The key of a label ¢, denoted key(£) := xyin(f{£)), is defined
as its minimum feasible trip time. Note that this value does not have to be stored
explicitly in the label, but can be computed on-the-fly by evaluating the inverse of the
charging function of the previous station at the minimum SoC for which the subpath
from this station to the current vertex becomes feasible.

The algorithm stores two sets Lget(v) and Lyns(v) for each vertex v € V, containing
settled (i. e., extracted) and unsettled labels, respectively. Sets Lyns(+) are organized as
priority queues (implemented as binary heaps), allowing efficient extraction of the

unsettled label with minimum key (breaking ties by the corresponding SoC of a label).

We maintain the invariant that for each v € V, Lyys(v) is empty or the minimum

label ¢ (with respect to its key) in Lyns(v) is not dominated by any label in Lge(v).

Every time the minimum element of the heap changes, because an element is removed
or added, we check whether the new minimum is dominated by a label in Ly (v) and
remove it in this case (as it cannot lead to an optimal solution). For piecewise-defined
SoC functions, a dominance test requires a linear scan over the subfunctions of both
SoC functions. By using heaps for unsettled labels, we avoid unnecessary dominance
checks for labels that are never settled. (A more straightforward variant could follow
the basic algorithm outlined in Section 5.1 to identify dominated labels, but this lead
to slower running times in our tests.)

Given a source s € V, a target t € V, and the initial SoC b € [0, M], the algorithm
is initialized in lines 1-8 of Figure 5.4 with a single label (0, bs,v*,id) at the source s,
while all other label sets are empty. Note that v* is a special vertex that is (temporarily)
added to the graph as a charging station with the charging function cf,+« = bs. Thereby,
we avoid explicit handling of special cases when reaching the first actual charging
station. The SoC profile stored in the label is initialized with the identity function
(i. e., the SoC is not affected when applying this function). The source vertex is also
inserted into a priority queue. The key of a vertex v € V in the priority queue is the
key of the minimum element in L;ns(v), i. €., the minimum feasible trip time among
the SoC functions of all unsettled labels.

The algorithm then proceeds along the lines of the BSP algorithm. In each step
of the main loop, it first extracts a vertex v € V with minimum key (breaking ties
by SoC) from the priority queue and settles it; see lines 10-12 of Figure 5.4. Note that
at this point, the key of the corresponding label ¢ = (xuip, bu,u, flu,...,o]) extracted
from Lyns(v) is not greater than that of any label that has not been settled yet.
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// initialize label sets
1 foreachv €V do
L Lset(v) —0

Luns(v) «<— 0

w N

v* «— dummy vertex that is (temporarily) added to V
S «— SuU{v*}

cfor e [(0,b5)]

Luns(s) «— {(0,b5,0",id)}

Q.insert(s,0)

0 N G e

// run main loop
9 while Q.isNotEmpty () do

10 v «— Q.minElement ()

11 € = (Xtrip» bu, U, fu,....0]) ¢— Luns(v).deleteMin()
12 Lset(v).insert (£)

13 ifv=tthen

14 L return xXmin(f())

// handle charging stations; see Section 5.2.3
15 ifveS\{u} then

16 foreach Xcharge € X(O’fld,O'lfew) \ {o0} do
17 L Lyns(v).insert ( (xtrip + Xcharge t xinit(v),f<€>(xtrip + xcharge)» v,id))
// update priority queue

18 if Lyps(v).isNotEmpty() then
19 ¢’ «— Lyns(v).minElement ()
20 Q.update (v, key(’))
21 else
22 L Q.deleteMin()
// scan outgoing edges
23 foreach (v,w) € E do
24 f[u,...,w] — link(f[u,...,v],f(v,w))
25 if flu,.. ,w(b]*) # —co then
26 U — (xtrip + d(vsw)’bu’u,f[u,...,w])
27 Luns(w).insert (£)
28 if ¢’ = Lyps(w).minElement () then
29 L Q.update (w,key(£))

Figure 5.4: Pseudocode of the CFP algorithm. It requires an input graph G = (V, E) with cost
functions d: E - Rypand c: E — R, aset S C V of charging stations, a charging function
cf, for each v € S, a source s € V, a target t € V, a battery capacity M € R, and an initial
SoC bs € [0,M]. The output of the algorithm is the minimum trip time from s to ¢.
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Next, we check whether v is a charging station that differs from the one stored
in the current label ¢, i.e., v € S\ {u}. If this is the case, we create new labels to
incorporate possible recharging at v; see lines 15-17. This means that we have to
spawn new labels ¢’ that replace the previous charging station u with v. We can do so
by fixing a charging time xcharge € R at u. For the resulting SoC at u, we evaluate
the SoC profile f[,, .. ] of the u~v path to determine the SoC at v. We update the trip
time accordingly by adding the charging time X parge at u and the initialization time
xinit (v) at the new charging station v. We obtain the new label

U= (xtrip + Xcharge + xinit(v)’f[u,...,v] (Cfu(bmxcharge)),'(),id)
= (xtrip + Xcharge + xinit(v)af<€>(xtrip + xcharge)’v’id)- (5.2)

However, we still face the problem that in general, there are infinitely many possible
charging times Xcharge at the previous charging station u held in £. In Section 5.2.3, we
show that for realistic models of charging stations, we only have to consider a small
(finite) number of relevant charging times at u when charging at v. Thus, spawning a
limited number of new labels, each fixing a certain charging time at u and setting the
last charging station to v, is sufficient to represent all nondominated solutions. Note
that the original label ¢ is not discarded, to reflect the possibility of not stopping at
the charging station v.

In lines 18-22 of Figure 5.4, the key of v in the priority queue is updated. Since the
label £ was settled and new labels may have spawned in case v is a charging station, we
update the key of v to the new smallest key of an unsettled label, if it exists. Otherwise,
v is removed from the queue.

Afterwards, we scan all outgoing edges (v,w) € E; see lines 23-29. Given the
current label £ = (Xiip, by, U, flu,...,0]), traversing the edge (v, w) means to increase
trip time by d(v,w) and apply the (constant-time) link operation to the SoC profile
flu,...,v] of € and the SoC profile fi,, ., induced by the energy consumption c(v, w);
see Section 4.1.3. We compute ff,, .. w := link(f[u,... o], f(0,w)) and construct the label

fl = (xtrip + d(v’w)vbuau’ﬁu,...,w])'

Unless the SoC profile f,,.. . of ¢’ indicates that the u—w subpath is infeasible,
the new label ¢’ is added to the label set at the vertex w. Note that we perform no
dominance checks at this point (unless the minimum element in the label set Ly,s(w)
changes), exploiting the fact that labels are organized in two sets per vertex.

When extracting a label ¢ at the target vertex t for the first time, we pick the least
charging time at the last station such that ¢ can be reached, i. e., the minimum feasible

trip time xpin (f(£€)) of f(£), and the algorithm terminates; see line 14 in Figure 5.4.

Correctness of the CFP algorithm follows from Lemma 5.1 shown in Section 5.2.3
below and the fact that the first extracted label £ at t minimizes the feasible trip time
(recall that the algorithm is label setting and minimum feasible trip time is used as
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key in the priority queue). Theorem 5.2 at the end of Section 5.2.3 summarizes these
insights. The asymptotic running time of the algorithm is exponential in the input
graph in the worst case (for reasonable charging models; see Section 5.2.3).

For path unpacking, we add two pointers to each label, storing its parent vertex and
parent label. For a charging station v € S, the vertex v can be its own parent. Two
consecutive identical parents then imply the use of a (previous) charging station u € S,
which is stored in the former label. The according charging time is the difference
between the trip times of both labels.

5.2.3 Spawning Labels at Charging Stations

As mentioned in Section 5.2.2, the CFP algorithm constructs new labels at charging
stations to represent all nondominated solutions. We now prove that for reasonable
models of charging functions, it suffices to spawn a small number of labels that
replace the previous charging station with the new one. The key idea is that we
only require labels that correspond to charging at the station that offers the better
charging speed at a certain (relative) point in time. We define switching sequences for
pairs of functions, containing points at which the charging speed of the new function
surpasses the old one. Lemma 5.1 proves that spawning one label per element of the
switching sequence suffices. Moreover, switching sequences are finite (and linear in
the descriptive complexity) for typical models of charging functions, which implies
that the CFP algorithm terminates. Before proving Lemma 5.1, we introduce helpful
tools. We also formalize switching sequences and the slope of an SoC function.

Consider a label £ = (xuip, by, u, flu,...,0]) extracted at some charging station v € S.
We want to create new labels that reflect charging at v. This requires us to fix a
charging time Xcharge € R at the previous station u, so that we can set v as the
last visited charging station of a new label ¢’; see Equation 5.2 and Figure 5.5. We
denote the resulting label by (xcharge — €) := ¢’ as it is obtained after setting the
charging time in € to Xcparge. Recall that in the label xcharge — €, we replace the old
charging station u with the new station v. Moreover, we set Xiip + Xcharge + Xinit(v)
as its overall trip time and f(£)(Xuip + Xcharge) s the corresponding arrival SoC at v.
The SoC function f(Xcharge — ) represents all tradeoffs between charging time at
the new charging station v and resulting SoC. If the label xcharge — € is not feasible,
ie, Xtrip T Xcharge < xmin(f<£>), we obtain f<xcharge — () = —oo0.

Not every charging time Xcharge € R0 at u yields a reasonable solution. In par-
ticular, if we can find a charging time xéharge € Ry such that f (xéharge — {) dom-
inates f(Xcharge — €), We know that a charging time of Xcharge is never beneficial.
Intuitively, if the new charging station v allows fast charging, it could pay off to
charge less energy at the previous station u and spend more time at v instead, so
f{Xcharge — € = €) dominates f(Xcharge — €) for some £ > 0. Similarly, if the charging
station u offers better charging speed, a charging time xcharge + € might be the better
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6 - X1 X2
Figure 5.5: Spawning a label at a charging
station. Given the SoC function f({) of a 51
label £ = (xtip, by, U, flu,...,0]) at a charging 4
station v € S, we can spawn a new label :
Xcharge — € by picking a charging time Xcharge 37 f{Xcharge = 0)(x)
at the station u. We compare the slopes of 5 | / Xinit ()
f<€> at X1 = Xirip + Xcharge and f(xcharge - {)
at Xp = Xirip + Xcharge + Xinit (V) to determine 1 1 A
which one represents the better choice. Note 0 <_.m,p <_Cil ey x
that xyip is smaller than xpin (f(£)), due to 1 2 3 4 5 ¢ 7 8
battery constraints. —00 +——0——0

choice. In other words, the best choice of the value xcharge depends on the slopes of
the two SoC functions f(£) and f{xcharge = )

Recall that we define the slope of a given function f at some x” € Ry as the
corresponding right derivative (0 f (x)/dx)(x") to ensure that the slope is well-defined
also for piecewise-defined SoC functions and at the minimum feasible trip time of
an SoC function. As before, let £ = (Xuip,bu,u, flu,...,0]) be a label at a charging
station v € S. We introduce a function ofld: Rso = Rsg U {o0} that describes
the slope of the SoC function f(£) at Xiip + Xcharge as a function of the charging
time Xcharge € R 0. Formally, we define

¢ _ {6](;{,)(()0 (xtrip + xcharge) if Xtrip T Xcharge 2 xmin(f<€>)a
Gold(xcharge) = .
00 otherwise.

Note that the slope afl 4 (Xcharge) of the SoC function f(€) at Xuip + Xcharge is equivalent
to the slope of the charging function cf,, of the vertex u for the arrival SoC b, and the
charging time Xcharge. Hence, we obtain ofl d(xcharge) = (0 cfy(by,x)/0x)(Xcharge) for
all xXcharge € R0, unless battery constraints on the u-v path render a charging time of
Xcharge infeasible or unprofitable (in which case the slope ofl FRE either oo or 0). Thus,
crfl 4(*charge) can be interpreted as the charging speed when continuing to charge the
battery at u after a charging time of Xcharge-

Alternatively, one could interrupt charging at u after a charging time of Xcharge.
continue the journey, and switch to the new charging station upon arrival at v. The
charging speed that can be achieved in this case is given by the slope of the SoC
function f(Xcharge = €)(x) at X = Xirip + Xcharge + Xinit(v); see Figure 5.5. Similar to cr(ﬁ &

we define the function o, ,: R5p — R U {c0} as

Af (x —L)(x) .
¢ ‘_ Cha+ (xtrip + Xcharge * Xinit (v)) if Xtrip + Xcharge = Xmin (f<6),
Onew (x charge ) =
00

otherwise.
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It maps total charging time Xcharge at u to the slope of the SoC function f(xcharge = €)
at the time Xirip + Xcharge + Xinit (v) that corresponds to arrival at v and starting to charge
the battery. Hence, the value of 6., (Xcharge) is equivalent to the slope of the new
charging function cf,, of v for the arrival SoC f{(£)(xuip + Xcharge) and the charging
time 0. Formally, we have alfew(xcharge) = (0 cfo (f{€)(Xuip + Xcharge)>x)/0x)(0) if
Xtrip + Xcharge 18 at least xmin (f(£)) and Urfew(xcharge) = oo otherwise.

Given the two functions Gfl 4 and ol.., defined above, we are interested in points
¢ ¢

surpasses o, because at such points it may pay off to interrupt
charging at u to benefit from a better charging rate at v later on. Additionally, the
minimum charging time Xmin (f{£)) — Xuip necessary to reach the new charging station
v may be relevant in cases where the charging function of v has low slope but a large
minimum SoC value (e. g., if v is a swapping station). We define the switching sequence

of a[ld and of._, denoted
0.

new?

in time where oy,

£ £
X (04145 Onew) = [Xmin (f(€)) — Xuip = X1, %2, . ., X1, X = 00],

as the sequence of all candidate points in time to interrupt charging at the old sta-
tion u, arranged in ascending order. (The value x; = oo is only included to avoid
additional case distinctions in the proof of Lemma 5.1 below.) Formally, we demand
for X(a(ﬂd,afew) that x; = Xmin (f(€)) — Xuip, Xk = 00, x; < xj41 fori € {1,...,k -1},
and foralli € {2,...,k — 1} there exists a value ¢ > 0 such that for all 0 < § < ¢ it
holds that 05 Jxi—=98) = ol (xi — 8) and aoﬁ Jxi+6) < ol (xi + &). Moreover, we
assume the sequence X (af1 & afew) to be maximal, i. e., it contains all values with the
above property. In general, pairs of functions do not necessarily have a switching
sequence of finite length k € N. At the end of this section, we argue that the length
of a switching sequence is linear in the descriptive complexity (and thus, finite) for
reasonable charging models.

We now prove Lemma 5.1, stating that we only have to spawn a bounded number
of new labels at charging stations. In particular, it suffices to add at most one label per
element in the switching sequence induced by the last visited charging station in the
current label and the new station.

Lemma 5.1. For a vertexv € S and a label € = (xyip, by, u, flu,....0]) at v, let the (finite)
switching sequence ofafld and o, be given as X(a(ﬁd, oley) = [x1,%2,. . ., Xk_1,xt]. For
every charging time Xcharge € R >0, there exists ani € {1,...,k — 1} such that the SoC
functions f(€) and f{x; — {) together dominate the SoC function f{Xcharge = €, i. €., for

all x € Rg we have max{f(0)(x), f(xi = O)(x)} > f(Xcharge = O)(x).

Proof. Consider an arbitrary charging time Xcparge € R0 at the previous charging
station u and the induced label Xcharge = €. If Xurip + Xcharge < Xmin(f(£)), the SoC
function f(xcharge = €) = —o0 is dominated by f(£). Hence, we assume in what follows
that Xcharge = X1 = Xmin (f(€)) —Xtrip. Then there exists a unique index i € {1,...,k—1},
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Figure 5.6: lllustration of dominated SoC functions at a charging station v € S. For simplicity,
we assume that xpn;(v) = 0. Dashed segments indicate the (shifted) charging function cf,, of v.
Note that a function dominates the area beneath it. (a) The slope of the SoC function f(£)
is lower than the slope of f{xcharge = €) at Xirip + Xcharge = 5. Hence, it pays off to decrease
charging time at the previous station to x; = 3 and charge more energy at v instead. (b) The
slope of f(f) is greater than the slope of f(xcharge = ) for Xuip + Xcharge = 4. Therefore,
charging more energy at the previous charging station pays off and the SoC functions f(£)
and f(x;4; — {) together dominate the function f{xcharge — £)-

such that x; < Xcharge < X;i4+1 holds. We distinguish two cases, depending on the slopes
afl d and O'few at Xcharge and show that, together with f(¢), the function f(x; — ) or
the function f(x;1; — ¢) dominates f{xcharge = ¢)-

Case 1: afl d(xcharge) < alfew(xcharge). Intuitively, this means that the new charging
station v provides a better charging speed than the old station u for the considered
charging time Xcharge.- Hence, leaving u earlier to charge more energy at v and benefit
from faster charging pays off. Consequently, f(x; — ) dominates f{xcharge = ¢),
since the charging speed of v is better (or equally good) for all x € [x;, Xcharge]; se€€
Figure 5.6a for an example. Since x; < Xcharge and a charging time of x; is sufficient to
reach v, we have xmin(f(x; = €)) < Xmin(f{Xcharge = €)). In other words, if the SoC
function induced by Xcharge is finite for some x € R, so is the function induced by x;.
Further, recall that the vertex v is reached with an arrival SoC of f(£)(xyip + x;) or
F{O) (Xtrip + Xcharge) When the charging time at u is set to x; or Xcharge, respectively. By
assumption, the slope ofew(xcharge) is strictly positive, which means that energy can

still be charged at v after the SoC has reached f(£)(xtip + Xcharge), 0 it must hold
that f(£)(xtip + Xcharge) < by™*. Hence, we can define the value

Acharge = Cf;)l(f<€>(xtrip + xi)’f<€>(xtrip + xcharge))
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that corresponds to the time to recharge the gap in arrival SoC between f(x; — €) and
f{Xcharge = €) at the new station v. For arbitrary values x > Xuin (f(Xcharge = €)), We
exploit the shifting property to obtain

f(xi - [>(x) Cf’u(f<€>(xtrip + xi)’x = Xi — Xtrip — xinit(v))
cfy (f<[>(xtrip + xcharge)’x — Xi — Xtrip — Xinit (V) — Acharge)

f(xcharge - O)(x + Xcharge — Xi — Acharge)-

We claim that Ayip := Xcharge = Xi — Acharge = 0 holds. This follows immediately from
the fact that crfew(x) > aoﬂ 4(x) holds for all x € [x;,Xcharge]. Thus, the time Acharge
spent at v cannot take longer than Xcharge — X, the time to charge the same amount
of energy at u. Consequently, we obtain Ay, > 0. This, in turn, implies that for

all x > Xmin (f(Xcharge = €)), we have

flxi— O)(x) = f<xcharge - O)(x + Atrip)
= f<xcharge - €>(X)

Case 2: aoﬁ 4 (Xcharge) > O}few(xcharge)' In this case, the charging station u offers a

more (or equally) favorable charging speed, so it pays off to spend more time charging
at u. Recall that f(£)(xtip + Xcharge) = f{Xcharge = €)(Xtrip + Xcharge + Xinit(v)) holds by
definition. Given that the slope O'(i d of f(€) is greater or equal for all x € [Xcharge,Xi+1),
it follows that f(£)(xtip + X) > f{Xcharge = €)(Xtrip + X + Xinit(v)) holds for arbitrary
values x € [Xcharge,Xi+1). For real-valued x > x;;; (which only exist if i + 1 < k),
we proceed along the lines of the first case to obtain a nonnegative value Ay, > 0
that equals the difference between the time to charge from f{£)(xuip + Xcharge) to
f{O) (xuip+xi41) at u and v, respectively. Since u offers a charging speed at least as high
as the one at v in the whole interval [Xcharge, Xi+1], this difference, and therefore Ayyp,
is again nonnegative. Thus, we can show (similar to Case 1) that

fxiv1— O)(x) = f<xcharge — O)(x + Atrip)
> f<xcharge - f)(x)

holds for arbitrary real-valued x > x;1; see Figure 5.6b for an illustration. Altogether,
we obtain that max{f(£)(x), f{xi+1— €)(x)} > f{(Xcharge = €)(x) holds for x € Ry,
which completes the proof of the second case. ]

Given the label £ = (Xyip, by, u, flu,...,0]) at the charging station v € S, we spawn one
new label x — ¢ for each (finite) element x € X (af1 & ol..,) in the switching sequence. If
the label is not dominated, it is added to the label set at v; see lines 16-17 in Figure 5.4.
For instance, in the special case that u or v is a swapping station, the switching
sequence [Xmin(f(£f)) — Xiip, 0] consists of two values and exactly one new label is

spawned at v (which corresponds to spending the minimum amount of charging time
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at u such that v can be reached). Recall that the original label ¢ is not thrown away,
reflecting the possibility of not using the charging station v. Furthermore, Lemma 5.1
implies that all nondominated solutions that extend ¢ by charging at v are computed
by the algorithm. By induction, correctness is also maintained for routes with two or
more charging stops. Therefore, we obtain Theorem 5.2 given below.

Theorem 5.2. Ifthe switching sequences induced by arbitrary pairs of charging functions
have finite length, the CFP algorithm terminates and finds the shortest feasible path
between a given pair of verticess € V andt € V for a given initial SoC bs € [0, M].

Computing Switching Sequences. In a practical implementation of the CFP al-
gorithm, we need to be able to efficiently compute the switching sequences for given
labels and charging functions; c.f. line 16 in Figure 5.4. If certain properties of the
available charging functions are known, a reasonable approach is to derive the switch-
ing sequences for such functions analytically beforehand and provide a specialized
implementation for them.

To give an example, we discuss the case where all charging functions in the network
(and hence, all SoC functions) are piecewise linear and concave, as is the case in our
experimental study (see Section 5.4.1). We show how a superset of the switching
sequence is easily determined in this case. Given a label £ = (xtip, by, U, flu,...,0]) at a
charging station v € §, let its piecewise linear SoC function f(£) be given as a sequence
F = [(x1,b1),...,(xk,bx)] of breakpoints. In other words, we have f({)(x) = —oo
for x < x1, f{€)(x) = by for x > x, and for values x; < x < x;41, withi € {1,...,k—1},
we evaluate the function by linear interpolation between the breakpoints (x;,b;)
and (x;4+1,bi+1); see Section 3.1 for details. Observe that we have x; = xyin(f(€)). The
following Lemma 5.3 shows that the switching sequence of the slopes induced by f(£)
and the charging function cf, of v must be a subsequence of [x; —Xirip, . . . » Xk —Xtzip, 0]
Note that in particular, the switching sequence does not depend on the charging
function cf,, at v.

Lemma 5.3. Given a label € at a vertex v € S, let its piecewise linear and concave
SoC function f(€) be defined by the sequence F = [(x1,b;),. .., (xk,bk)] of breakpoints.
Similarly, let the charging function cf,, of v be piecewise linear and concave. The switching

14 14 ; (-t 14 —
sequence X (0, Opey) is a subsequence of X (0, Opey,) = [X1 = Xtrips - - - s Xk = Xtrip, 0],

s f)'

[of

i.e, X(c,,0l.,) contains only values that are also contained in X (c*, ,,cl.,,

old’ old’

Proof. Since both f{(¢) and cf, are piecewise linear, their corresponding slope func-

tions o4 and 0., are piecewise constant functions, namely, 04 = (biy1=bi)/ (xip1—x;)

holds in the interval [x; — Xip, Xi+1 — Xuip) for arbitrary i € {1,...,k -1}, and an anal-

ogous statement holds for o,,. This implies that each value of the switching sequence

must correspond to a breakpoint of crfl 4 0r ol.,,» because both functions are constant

between these breakpoints. Moreover, since f{¢) and cf, are both concave on their
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subdomain with finite image, the functions cr(fl gand ol.., are decreasing. Consequently,
the slope o’,,, can surpass o*fl 4 only at the breakpoints of crfl & 1€, at points where the
latter function decreases. The x-coordinates of these breakpoints are exactly the finite
values of X (04, 0ey)- O

Lemma 5.3 implies that simply spawning one new label for each breakpoint of f(¢)
is sufficient to maintain correctness. Unnecessary labels are detected implicitly during
dominance checks. Considering the more general case where charging functions are
piecewise linear (but not necessarily concave), it is not hard to see that the length of
the switching sequence must be linear in the number of breakpoints of both considered
functions. Similar observations can be made for other realistic models of charging
functions based on, e. g., exponential functions or piecewise combinations of linear
and exponential functions.

5.2.4 A* Search

To accelerate the CFP algorithm, we present techniques that extend A* search [HNR68,
MP10]. The basic idea of A* search is to use vertex potentials that guide the search
towards the target, in order to reduce the search space. The potential of a vertex is
added to the key of a label when updating the priority queue in line 20 or line 29 of
the algorithm in Figure 5.4. Thereby, vertices that are closer to the target get smaller
keys. Below, we first generalize the notion of potential consistency to our setting by
incorporating the SoC at a vertex, before we introduce different consistent potential
functions. They attempt to improve known potential functions by estimating the
remaining charging time that is required to reach the target.

Consistency of Potentials. We aim at potential functions that are based on back-
ward searches from the target vertex ¢t € V, providing lower bounds on the trip
time from any vertex to ¢. A consistent potential function is easily obtained from a
single-criterion backward search as follows. It runs Dijkstra’s algorithm [Dij59] on
the backward graph G from ¢, using the cost function d, which represents driving time
on edges. This yields, for each vertex v € V, its minimum (unconstrained) driving
time to reach t. These lower bounds on the remaining trip time induce a consistent
potential function on the vertices [DMS08, TC92].

We can do better, by exploiting that the trip time from v to t depends on the SoC
of a label. (Observe that both the charging time as well as the route and hence, the
driving time, of an optimal solution can change for different SoC values.) We propose
a potential function 7: V X [0,M] U {—00} — R5¢ U {0} taking the current SoC
into account, such that 7 (v,b) yields a lower bound on the trip time from v to ¢ if
the SoC at vis b € [0,M] U {—oc0}. We define 7 (v,—0) := co. We now discuss how
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correctness of our approach can be maintained in the presence of a potential function
that incorporates the SoC.

First, we generalize the notion of consistency of a potential function. We say that
a potential function 7z: V X [0,M] U {—c0} — R U {oo} is consistent if it results in
nonnegative reduced driving times, i. e., we get

d((u,v),b) :=d(u,v) — m(u,b) + 7 (v, flu,0)(b)) = 0

for all edges (u,v) € E and values b € [0, M], where f,, ) is the SoC profile of (u,v).
Second, for the SoC function f(£) representing a label £ = (xtip, by, u, flu,...0]) at a
vertex v € V, we define its consistent key (to be used in the priority queue of CFP)
as key* () := minyep,, x + 7 (v, f(€)(x)). We claim that consecutive consistent keys of
labels generated after edge scans are increasing if the potential function 7 is consistent.
To see this, consider a label £ at a vertex u € V and the label ¢’ that is created after
scanning an edge (u,v) € E. Recall that f(£")(x + d(u,v)) = f(u,0)(f{£)(x)) holds by
construction of ¢/, so we can substitute x” := x + d(u,v) below to get

key*(£) = min x + 7 (u, f(€)(x))

xeR5o

< min x +d(u,v) + (v, flu,0) (f{E)(x)))

x€eR5o

= min x + (v, f{{')(x))

xeR5o

= key™ ({').

Similarly, we have to ensure that labels spawned at charging stations never have a
smaller consistent key than the original label. Consider the charging function cf,, of a
vertex v € S. We denote by cfy.x(v) the maximum slope of the charging function cf,,
which typically equals cf},, (v) := maxyer., 0 cf,(x)/0x. (As before, we use the right
derivative to ensure that slope is well-defined for piecewise-defined functions.) In the
special case that cf,,(0) # 0, we incorporate initialization time to obtain a finite slope
b;“in /xinit(v) for the initial SoC gain, presuming that x;j,;(v) # 0. In total, we obtain
the maximum slope cf yax(v) := max{cf} . (v),b™" /xi;(v)} of v. For instance, we
get cfiax (V) = M/xini(v) if v is a swapping station. To ensure that labels spawned at
the vertex v do not result in decreasing keys, we demand for the slope of the potential
m(v,b) at v that

orwh) 1
ob B Cfmax(v).

We say that the potential 7 overestimates charging speed at v in this case. Observe that
overestimation of charging speed implies that the term x + 7 (v, cf(x)) is increasing
for x € R, so charging at v does not decrease the potential.
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Finally, we demand that the potential at the target is 7(¢,b) = 0 for arbitrary
SoC b € [0, M]. In summary, when using consistent keys, there are the following three
requirements to a potential function 7.

1. The potential function 7 is consistent.
2. Potentials at charging stations overestimate charging speed.
3. The target vertex has a potential of 0 (for any finite SoC).

Then, the algorithm is label setting and the correct result is obtained as soon as t is
reached (since the key at ¢ equals trip time, so any label extracted at a later point
must have a higher trip time). As a simple example, consider the plain CFP algorithm
described in Section 5.2.2, which uses no potential function. This is equivalent to a
potential function that evaluates to 0 at all vertices for arbitrary SoC. Clearly, the
smallest feasible trip time of f(£) is in fact the consistent key of a label £. Moreover,
observe that the potential function 7 = 0 is consistent, overestimates charging speed,
and equals 0 at the target. In what follows, we derive more sophisticated potential
functions, which make the search goal directed. For each potential function, we show
that the requirements listed above are fulfilled.

Potentials Based on Single-Criterion Search. We introduce our first consistent
potential function. To obtain a lower bound on the necessary charging time on the
path from some vertex v € V to the target, let cfax := max,es cfmax(v) denote the
maximum slope of any charging function in S, i. e., the maximum charging speed
available in the network. We define a new cost function w: E — R, which is given
as w(e) := d(e) + (c(e)/ cfimax) for an edge e € E. This function adds to the driving
time of every edge a lower bound on the time that is required for charging the energy
consumed along the edge. Note that the bound can become negative for some edges,
due to negative consumption values.

Given the target vertex t € V, prior to running CFP, we perform three (single-
criterion) runs of Dijkstra’s algorithm from ¢ on the backward graph G, each using
one of the cost functions d, ¢, and w, respectively. Thereby, we obtain, for every
vertex v € V, the distances disty(v,t), dist.(v,t), and dist,,(v,t) from v to t with
respect to the cost functions d, ¢, and w. Note that the computation of dist.(v,t)
and dist, (v,t) is label correcting, due to negative costs. We can apply potential
shifting [Joh77] to remedy this issue (c.f. Section 4.2.1), but the effect on overall
running time is negligible in practice. Using the obtained distances, the potential
function 7, : V X [0,M] U {—o0} — R U {co} is defined by

disty(v,t) if b > dist.(v,t),

dist,, (v,t) — ch, otherwise,

7T, (v,b) = { (5.3)
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for all v € V and for arbitrary b € [0, M]. It uses the minimum (unrestricted) driving
time as a lower bound on the remaining trip time in case that the current SoC is greater
or equal to the minimum energy required to reach the target without recharging.
Otherwise, we know that we have to spend some additional time for charging on the
way to the target, so we use a bound induced by the weight function w. Note that
we can discard labels whose consumption exceeds M in the search that computes
dist. (v, t) for all v € V to save some time in practice. Lemma 5.4 formally proves that
the potential function r,, defined above is consistent.

Lemma 5.4. The potential function m,, is consistent.

Proof. To prove the claim, we show that the reduced costs d(-, ) are always nonnega-
tive, i. e., the inequality

d((u’v)’b) = d(u’v) - ﬂw(u’b) + ”w(v’f(u,v)(b)) >0

holds for all (u,v) € E and b € [0,M]. Consider an arbitrary edge (u,v) € E and
assume that the SoC at u is b € [0, M]. We distinguish four cases.

Case 1: b < distc(u,t) and f(, 0)(b) < distc(v,t). The claim follows after a few
simple substitutions. We can make use of the fact that b — c(u,v) > f(4,)(b) holds
for all b € [0, M]. Consistency then follows directly from the triangle inequality, after
performing the simple steps

d((u,v),b) = d(u,v) — 7, (u,b) + 76, (v, f(u,0) (b))

u,0) (b
= d(u,v) — dist,, (u,1) + + dist, (o.1) - L0 ®)

CImax Cfmax
> d(u,v) + C(fu,v) — dist,, (u,t) + dist,, (v, )

max
= w(u,v) — dist,, (u,t) + dist, (v, t)
> 0.

Case 2: b < dist.(u,t) and f(,, ) (b) > dist.(v,t). We make use of both preconditions
together with the fact that b — c(u,v) > f(4,)(b) holds for all b € [0,M] to obtain the
inequalities

b > flu,0)(b) + c(u,v) > distc(v,t) + c(u,v) > distc(u,t) > b,

which yield a contradiction. Hence, this case cannot occur.

Case 3: b > dist.(u,t) and f,, ) (b) < dist.(v,t). We know that, due to the triangle
inequality, d(u,v) + distg(v,t) > distg(u,t) holds. Moreover, dist.(v,t) — f(u,0)(b) > 0
holds by assumption. We can further exploit that dist,,(v,t) is at least the sum of
disty(v,t) and dist, (v, )/ cfmax (note that it is possibly greater if the shortest u—¢ paths
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in the graph with respect to the cost functions d and c differ). After some substitutions,
we thus get

d((u,0),b) = d(u,v) = 7, (u,b) + 76 (v, flu,0) (b))

u,v b
= d(u,v) — distg(u,t) + dist,, (v,t) — w
C max
i t(_‘ at u,v b
> d(u,v) — distg(u, t) + distg(v,t) + dlsf(v ) [ f )(b)
ClImax CImax

> 0.

Case 4: b > distc(u,t) and fi,, )(b) > dist.(v,t). This case is trivial; feasibility
follows directly from the triangle inequality. O

Observe that the potential function ,, always evaluates to 0 at the target and
overestimates charging speed by construction. Regarding the consistent key, defined
for a label € as key”(£) = minyep,, x + 7 (v, f(€)(x)), observe that the corresponding
terms x + disty(v,t) and x + dist, (v,t) — (f{€)(x)/ cfimax) in Equation 5.3 increase
with x (the term f{€)(x)/ cfpax increases with a slope of at most 1). Thus, we obtain
the consistent key for the label ¢ by computing the value of x + 7, (v, f(€)(x)) at the
minimum feasible trip time x; := Xyin (f(€)) of f(£) and at the minimum trip time x,
with f(€)(xz) > dist.(v,t), if it exists. The minimum of both values yields a consistent
key, given as key”*(€) = {x1,x2}. Together with Lemma 5.4, this implies correctness of
CFP when applying potential shifting with the function x,,.

Potentials Based on Bound Function Propagation. Even though the potential
function 7, incorporates SoC, lower bounds may be too conservative in that they
presume recharging is possible at any time and with the best charging rate. We
attempt to be more precise, while keeping computational effort limited, by explicitly
constructing lower bound functions.

Again, we run (at query time) a label-correcting search from the given target t € V
on the backward graph G, but this time computing for each vertex v € V a piecewise
linear function ¢: R — R3¢ U {oo} mapping SoC to a lower bound on the trip time
from v to t. Along the lines of Section 3.1, piecewise linear functions are represented
by sequences ® = [(b1,X1),. . ., (br,xx)] of breakpoints such that ¢(b) = co for b < by
and ¢(b) = xi for b > by. For arbitrary values b; < b < b;1q, withi € {1,...,k—1}, we
evaluate the function by linear interpolation as usual. If the sequence ® of breakpoints
is empty, denoted @ = (), we obtain ¢ = co. During the backward search, each vertex
stores a single label consisting of such a piecewise linear function. To simplify the
search, we ignore battery constraints. Hence, domains of bounds are not restricted
to [0, M] and we compute (possibly negative) lower bounds on the SoC necessary to
reach t. However, we maintain the invariant that all functions are decreasing and convex
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// initialize labels
1 foreachv €V do

2 Lgov<—(b

3 @r < [(0,0)]
4 Q.insert(t,0)

// run main loop

5 while Q.isNotEmpty () do

6 u «— Q.deleteMin()

7 ifu €S then

8 L ¢u «— extend(py,, cf,)

9 foreach (u,v) € E do

10 ¢ «— shift(py, [(c(u,v),d(u,v))])
11 if dx € R: ¢(x) < ¢p(x) then
12 @ «— merge(¢,,0)

13 Q.update (v,key(¢,))

Figure 5.7: Pseudocode of the function propagating potential search for CFP. The algorithm
takes as input a (backward) graph G = (V, E) with cost functions d: E — Rypandc: E - R, a
set S C V of charging stations, a charging function cf,, for each v € S, and a target vertex ¢t € V.
It computes, for each v € V, a piecewise linear function ¢,: R — Ry U {oo} that maps SoC
to a lower bound on trip time from v to t.

on the interval [b;, 00). This greatly simplifies label updates and the computation of
functions, which we describe in detail below.

The algorithm resembles (label-correcting) profile search (see Section 3.3.1) and
is outlined in Figure 5.7. It is initialized in lines 1-4 with a function ¢;, represented
by a single breakpoint ®; = [(0,0)] at the target vertex ¢, i.e., ¢;(b) evaluates to 0
for arbitrary values b € R(. All other labels are empty, so their functions always
evaluate to co. Each step of the algorithm’s main loop (lines 5-13) scans a vertex with
minimum key (following the generic profile search from Section 3.3.1, the key of a
vertex v € V is the minimum function value miny g ¢, (b) of its label ¢,).

Whenever the search reaches a charging station u € S, we have to ensure that the
possibility of recharging is reflected in the label of u and that the function overestimates
charging speed. Thus, we extend the (tentative) lower bound function ¢, with the
charging function cf,,. This results in a new (tentative) lower bound on trip time that
incorporates recharging at u and has a slope of at least —1/ cfy,.x (1) (on its subdomain
with finite image). Assume we are given a piecewise linear, convex function ¢, at u with
breakpoints &, = [(b1,x1),. .., (bk,xx)] that maps SoC to trip time without recharging
at u. We obtain the result ¢ of extending ¢, with cf, as follows; see Figure 5.8
for an example. In accordance with our requirements for the potential at u, we
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Figure 5.8: Extending functions in the function propagating backward search. (a) The (ex-
panded) inverse charging function cf;, of a charging station u € S maps SoC to charging
time. The dashed line indicates its (inverse) maximum slope, which we use to approximate the
(inverse) charging function with a single segment. (b) The lower bound function ¢, (dashed)
and the result ¢ of extending it with the charging function cf,, (dark blue)

approximate cf, with a lower bound given by a single segment with slope 1/ cf yax (1);
see Figure 5.8a. Distributing (lower bounds on) charging time among cf,, and stations
represented by ¢,, then corresponds to shifting this segment along the y-axis such that
it intersects ¢,,; see Figure 5.8b. To find a lower bound on the best possible distribution,
leti e {2,...,k — 1} be the unique index (if it exists) such that

Xi — Xi—1 1 Xiy1 — Xi

bi —bi1 — cfmax(u) < biv1—bi’

i. e., the (negative, inverse) maximum slope of cf,, is at least the slope of the segment
from b;_; to b;, but lower than the slopes of all subsequent segments. We set i := 1 if
the maximum slope of cf,, is below the slope of the first segment (from b; to b,), and
i := k if the maximum slope of cf,, is at least the slope of the last segment (from by_;
to by). Then, if b; < 0, the function ¢, remains unchanged, i. e., ¢ = ¢, as charging
at u cannot decrease the lower bound in this case. Otherwise, ¢ is defined by the
sequence @ := [(0,x; + b;/ cfmax (1)), (bi,xi),. .., (br,xk)]; see Figure 5.8b. The first
segment of this function corresponds to an estimate of the time to charge to an SoC of
b; plus the remaining trip time to t. By construction, ¢ is convex and overestimates
charging speed (provided that the same holds for ¢,,).

Since we ignore battery constraints, scanning an outgoing edge (u,v) € E of
u boils down to shifting all breakpoints of the current function ¢, by c(u,v) and
d(u,v) on the x- and y-axis, respectively. More formally, given the breakpoints
O, = [(b1,x1),...,(bg,xx)] of ¢y, we compute a function ¢ with

@ := [(by + c(u,v),x1 + d(u,0)),..., (b + c(u,v),xx + d(u,v))].
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Then, we check whether the function ¢ is smaller than the function ¢, in the label
of v for at least one b € R. If this is the case, we merge ¢ and ¢,, i. e., we compute
the function defined as their pointwise minimum min{¢,, (b),¢(b)} for all b € R.
This operation requires a linear-time scan over the breakpoints of both involved
functions, similar to the label-correcting profile searches described in Section 3.3.1 and
Section 4.2.2. The resulting function ¢,, is again piecewise linear, but may no longer
be convex. Therefore, we compute, during each merge operation, the convex lower hull
of the result using Graham’s scan [Gra72]. While (slightly) deteriorating the quality of
the bound, this reduces the number of breakpoints and simplifies handling of charging
stations. We obtain a convex function, which is stored in the label of v. The vertex v
is also updated in the priority queue.

It is easy to see that the potential function 7,: V X [0,M] U {-00} — Ry U {eo} is
consistent when using the computed bounds by setting 7, (v,b) := ¢, (b) forv € V
and b € [0, M]. Lemma 5.5 proves this formally. The consistent key of a label £ at some
vertex v € V, with key”™(£) = minycp,, x + 7, (v, f(£)(x)), is computed in a linear scan
over f(f) and the breakpoints of the piecewise linear function ¢,,.

Lemma 5.5. The potential function n, is consistent.

Proof. For an arbitrary edge (u,v) € E, consider the piecewise linear functions ¢,
and ¢, at u and v, respectively, after the backward search has terminated. We show
that the reduced costs d((u,v),b) are nonnegative for all b € [0, M]. We know that
¢y is upper bounded by the result of shifting ¢,, by the costs c¢(u,v) and d(u,v) of the
edge (u,v) traversed in backward direction, since this function was merged with ¢,
during the search. This implies that 7, (v,b — c¢(u,v)) + d(u,v) > 7m,(u,b) holds for
arbitrary b € [0,M]. Moreover, f(,,.)(b) is a lower bound on b — ¢(u,v), so we have
7p(v,b—c(u,v)) < 7y (v, f(u,0)(b)) because 7, decreases with increasing SoC. Plugging
this into the above inequality, we obtain d(u,v) — 7, (u,b) + 7, (v, f(u,) (b)) = 0 for
all b € [0, M], which proves the claim. |

Potential Search on Demand. Computing the potential function for every vertex
in the graph is wasteful for short-range queries. To speed up such queries, we run
the backward searches that compute vertex potentials on demand: Whenever the
CFP search requires the potential of some vertex v € V that was not scanned by the
backward search yet, the backward search is executed until v is reached. It is then
suspended and only resumed if the potential of another vertex is required that the
backward search has not visited. This procedure yields consistent potentials if the
backward search is label setting (otherwise, there is no guarantee that a lower bound
was computed when a vertex is scanned for the first time). In case of the potential
function 7,,, this can be ensured by applying Johnson’s shifting technique [Joh77] to its
backward searches. For the potential function 7, however, the function-propagating
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search is label correcting, so computing 7, on demand becomes more involved. We
describe modifications to the search and the lower bounds to ensure that 7, is indeed
a consistent potential, even if the search is suspended before it terminates.

First, we can ensure that the minimum key in the priority queue of the backward
search is nondecreasing during the course of the algorithm (c. f. Section 4.2.2). After
scanning an edge (u,v) € E, consider two functions ¢ and ¢, corresponding to the
result of scanning the edge (u,v) and the current label at v, respectively, before merging
these two functions (see line 12 in Figure 5.7). Let ¢}, denote the result after merging.
Since ¢;, is the convex lower hull of the minimum of ¢ and ¢, every breakpoint in
¢;, must also be contained in ¢ or ¢,. Let (b,x) be the breakpoint with minimum
trip time x € R contained in the corresponding sequence @}, of ¢}, but not in the
sequence ®,, of ¢, i.e., (b,x) € O} and (b,x) ¢ D,. If the result of merging improves
the label at v, such a point must exist. We set the key of v in the priority queue to
the minimum of x and its current key. Since driving time is nonnegative, scanning
an edge may only increase the driving time of newly added breakpoints. As a result,
propagating breakpoints never decreases the minimum key in the priority queue (see
also Section 4.2.2).

Assume that the backward search is suspended at some point and let x* € Ry, be
current minimum key of the priority queue. For each vertex v € V, consider its current
label ¢,,. Let ¢}, denote the function obtained after applying Graham’s scan to the result
of merging ¢,, and the function induced by the single breakpoint [(0,x*)]. We claim that
the potential function 7, : V x[0,M]U{-00} — R U{oeo} with 7 (v,b) := ¢7,(b) for
allv € Vand b € [0, M] is consistent. To see this, consider a (multi-)graph G’ = (V,E’)
constructed from the input graph G by adding, for every v € V, an edge (v,t) with
driving time d(v,t) := x* and consumption c¢(v,t) := 0. It is easy to verify that the
potential function 7, on G is equivalent to the potential function 7, on G’. Hence,
7, is a consistent potential function for G’. Observe that this implies that 7, is also
consistent on G, since reduced edge costs must be nonnegative for the subset E C E’.
Lemma 5.6 follows immediately from this observation and Lemma 5.5.

Lemma 5.6. The potential function r,, is consistent.

Note that we have to keep the original function ¢,, after suspending the backward
search, in case it is resumed later. Hence, we do not store Jr;; explicitly, but perform
the necessary merge operation and Graham’s scan on demand when the potential is
requested. Given that keys of labels are consistent and by Lemma 5.4, Lemma 5.5, and
Lemma 5.6, we obtain Theorem 5.7, which summarizes our findings on A* Search.

Theorem 5.7. The CFP algorithm computes the correct output when using either of the
potential functions r,, 1,, or 71;‘,.

Implementation Details. When using potentials on demand, we can suspend the
backward search at any time and derive lower bounds for CFP. However, bound quality
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*

», may deteriorate if the search is suspended too early, as it depends on the current
minimum key in the priority queue of the backward search. Therefore, we do not abort
the search immediately when a vertex v € V in question is scanned for the first time,
but continue until the minimum key x* in the priority queue is significantly greater
than the key induced by the first breakpoint (b;,x1) of ¢, (in our experiments, we
suspend the search if x* > min{2x1,x; + 3 600}, where time is measured in seconds).

of

5.2.5 Contraction Hierarchies

Using an offline preprocessing step, CH [Gei+12b] iteratively contract the vertices of
the input graph and add shortcuts in the remaining graph to retain correct distances.
These shortcuts then help reducing the search space in online queries (see Section 3.3.2
for details). When adapting CH to our scenario, vertex contraction becomes more
expensive, as each shortcut represents a pair consisting of driving time and an SoC
profile. Moreover, we need a shortcut for every nondominated path. Hence, the
resulting search graph may contain multi-edges.

We compute a partial CH, i. e., we contract only some vertices (the component), leav-
ing an uncontracted core graph—a common approach in complex scenarios [DPW15b,
Kle+17, Sto12a]. As in Section 4.3.4, we keep all charging stations in the graph uncon-
tracted. Thus, complexity induced by charging stations only is contained within the
core (simplifying the search in the component). Shortcuts store the driving time and
the SoC profile (represented by three values as described in Section 4.1.3) of the path
that they represent.

Witness Search. During preprocessing, we perform witness searches when contract-
ing a vertex, to test whether all shortcut candidates are necessary to maintain distances
in the current overlay. Given a shortcut candidate (u,v) withu € V and v € V, we run
a variant of the BSP algorithm that propagates labels consisting of the driving time
and the SoC profile of a path (represented by three values), starting from u. A label
dominates another label in this search if its driving time is smaller or equal to the driv-
ing time of the other label and its SoC profile dominates that of the other label. Keys
in the priority queue follow a lexicographic order of the labels. The witness search
stops if either the shortcut candidate is dominated by a label at v or the minimum key
in the priority queue exceeds the key induced by the shortcut candidate.

In order to reduce preprocessing time, we simplify the witness search as follows.
First, we only search for single witnesses that dominate a shortcut candidate. In
other words, we only perform pairwise comparisons between labels at the head of a
shortcut candidate and the candidate itself. Thereby, we might insert an unnecessary
shortcut whose SoC profile is dominated by the upper envelope of multiple SoC profiles
corresponding to labels with lower driving time. Second, during the witness search,
we limit the number of labels per vertex to a small constant (10 in our experiments).
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Whenever this size is exceeded, we identify (in a linear scan over the sorted labels) the
pair of labels that has the minimum difference in terms of driving time. Of these two
labels, we remove the one with smaller difference to its next closest label (in order
to keep the gap between the remaining labels small). Finally, we prune the search
after a fixed hop limit [Gei+12b] (20 in our experiments). Taking these measures, we
may possibly insert unnecessary shortcuts. Thus, queries may slow down slightly, but
correctness is not affected.

Queries. Since we compute a partial CH, the query algorithm consists of two phases.
Given a source s € V, a target t € V, and the initial SoC b € [0, M], the first phase
runs a backward CH search from ¢, scanning only upward edges with respect to the
vertex order. This search operates on the component, so it is pruned at core vertices
(i. e., outgoing edges of core vertices are not scanned). As the component contains
no charging stations, a basic variant of the BSP algorithm suffices. Note, however,
that the SoC at ¢ is yet unknown and therefore, the search algorithm computes SoC
profiles instead of SoC values (as in witness search). For every nondominated label at
any vertex visited by the search, we add a (temporary) shortcut from this vertex to
the target. The second phase runs CFP from s and is restricted to upward edges, core
edges, and the temporary edges added by the backward search.

Implementation Details. During preprocessing of CH, the next vertex in the con-
traction order is determined from the measures Edge Difference (ED), Deleted Neigh-
bors (DN), and Cost of Queries (CQ) [Gei+12b]. The priority of a vertex (higher priority
corresponds to a higher rank; see Section 3.3.2) is then set to 64 ED + DN + CQ. To
reduce the number of witness searches, we cache shortcuts computed during the com-
putation of ED. This requires a simulated contraction; see Geisberger et al. [Gei+12b].
Whenever witness searches for multiple shortcuts with the same source are required
during contraction of some vertex, we run a single multi-target search instead. Further,
to improve query times, we reorder vertices after preprocessing, such that core vertices
are in consecutive memory.

5.2.6 CHArge

Combining CH and A* search (restricting A* search to the core), we obtain our fastest
exact algorithm, CHArge (CH, A”, Charging Stops). The query algorithm consists of
three phases, namely, a unidirectional (backward) phase from the target ¢ € V in the
component to add temporary shortcuts, a backward search in the (much smaller) core
enriched with temporary shortcuts to compute a potential function (either 7, or ),
and a forward phase running CFP (augmented with A" search) from the source s € V,
which is restricted to upward edges, core edges, and temporary edges. Potentials

of component vertices are set to 0 for this search. Observe that consistency of the
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Figure 5.9: Linking piecewise linear lower bound functions. Linear segments between indi-
cated breakpoints show the (finite) values of two functions and the result of linking them.
(a) The function ¢, is defined by three breakpoints. (b) The function ¢, is defined by two
breakpoints. (c) Linking ¢; and ¢, yields the function ¢. It is the lower envelope of the shaded
area, which corresponds to (finite) values of ¢; (b*) + @2 (b — b*) for different choices of b* € R.

resulting potential function is not violated, since there are no edges pointing from the
core into the component. As described in Section 5.2.4, potentials in the core can be
computed on demand, in which case the second and third phase are interweaved and
their searches are executed alternately.

Computing Potentials in the Core. To decrease running time of the second phase,
we precompute lower bounds of core shortcuts for the potential function 7z, i.e., for
each (ordered) pair u € V and v € V of vertices connected by at least one shortcut,
we compute a decreasing and convex piecewise linear function that yields a lower
bound on driving time from u to v for a given SoC. To this end, we perform Graham’s
scan [Gra72] on all pairs [(b,x)] of minimum required SoC b € [0,M] and driving
time x € R corresponding to some shortcut edge between u and v (recall that the
component may contain multi-edges). However, this also requires us to adapt the
function-propagating search in the second phase, since scanning an edge no longer
consists of simply shifting a function by two constant values (c. f. line 10 of Figure 5.7
in Section 5.2.4). Instead, piecewise linear functions of labels have to be linked with
shortcut edges, which are represented by piecewise linear functions as well. In what
follows, we describe how this can be done in linear time in the number of breakpoints
of both functions.

Consider piecewise linear functions ¢1: R = Ro U {co} and ¢2: R — Ry U {0}
mapping SoC to lower bounds on the trip time along two paths in the graph, such
that both are decreasing and convex on their subdomain with finite image. Let the
two functions be given by their respective sequences ®; = [(bll,xll),. o (bf,x{‘)] and
D, = [(by,%3),. . -, (bg,xg)] of breakpoints. The link operation takes the functions ¢,
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and ¢, as input and computes a function ¢ that reflects the concatenation of both
paths. Hence, given an arbitrary SoC b € [0, M], the value ¢(b) is a lower bound on
the trip time when traversing the paths represented by ¢; and ¢,, such that overall
consumption does not exceed the SoC b. To this end, the link operation identifies
values b; € R and b, € R, such that b; + b, = b and ¢1(by) + ¢2(b2) is minimized.
Hence, we seek to compute the function ¢: R — Rsq U {c0} with

o(b) = min ¢1(6) + 926~ "), (5.4

which yields the desired lower bound on the trip time for traversing ¢; and ¢,. Fig-

ure 5.9 shows an example. Below, we describe an algorithm that computes a sequence
® of breakpoints to represent this function ¢. Afterwards, we prove its correctness.

Starting with an empty sequence ® = 0, the link operation iteratively appends

breakpoints to ®, each of which is the sum of two breakpoints from ®; and ®,. For

b = b} +b, there exists exactly one value b* = b; in Equation 5.4 that yields a finite trip

time. We obtain ¢(b! +b}) = x! +x, and the first breakpoint of ® is (b +b],x] +x; ). For

subsequent breakpoints, the basic idea is to follow the function that offers the better

(i- e., lower) slope. Assume that the previous breakpoint added to & is (bi + bé,x{ +xj)

for some i € {1,...,k} and j € {1,...,£}. Consider the slope

bitl-pl ..

) 4—L ifi<k,

o =1%

0 otherwise,

of the next segment of the function ¢;. Let the slope ¢ be defined symmetrically. Then
the next breakpoint is (b!*! +bJ, xI*! +x)) if 6] < o and (b} +b)*, x! +x*1) if o] > 0.
In other words, we pick the next breakpoint of the currently steeper function (keeping
the same point as before for the other function). In the special case o} = o we obtain
three collinear points, so the next breakpoint is (bi*! + bJ*!,xI*! + xJ*!). The scan is
stopped as soon as the last point (b{C + bg,x{‘ + xg) is reached and added to ®.

Clearly, the scan described above runs in linear time in the number k + ¢ of break-
points of ¢; and @,. Moreover, as segments are appended in increasing order of original
slope, the resulting function ¢ is also decreasing and convex. Lemma 5.8 formally
proves that the link operation in fact computes the correct result.

Lemma5.8. Letg;: R = RyoU{co} and ¢y: R — RyoU{oo} be piecewise linear func-
tions defined by sequences @1 = [(b},x]),. .. ,(bf,xf)] and ®; = [(by,x3),. .. ,(bg,xg ]
of breakpoints, respectively, such that both functions are decreasing and convex on their
subdomains [by,0) and [b,,c0) with finite image. The link operation described above
computes a sequence O of breakpoints that corresponds to a function ¢: R — RyoU {oo}
with (b) = mingcr ¢1(b*) + @2(b — b*) forallb € R.
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Proof. For b < b} + b,, there exists no value b* € R such that ¢;(b*) and ¢, (b — b*)
are both finite, so the result of linking equals co. For b = b] + b, there is exactly one
such value b* € R that yields a finite trip time and we obtain ¢(b]} + b;) = x| + x;,,
which corresponds to the first breakpoint of .

Let (bi + bg,x{' + xg) with i € {1,...,k} and j € {1,...,£} denote the last point
that was added to ®. Without loss of generality, assume that the next segment of the
function ¢ is at least as steep as the next segment of ¢, i.e., 0! < oJ. Hence, our
algorithm sets (b!*! + bJ,x!*! + xJ) as the next breakpoint of ® (or adds a segment
that contains this point in the special case o/ = ¢J). Thus, the slope of ¢ is o} for
all b € [b! + bJ,bi*! + b]]. To prove the claim, we show that

o(b) = x! +x) + ol (b — bl — b)) < 1 (b") + ¢y (b — b¥)

holds for all b € [b{ + bg,b{“ +bJ] and b* € (—o0,b]. Since both ¢; and ¢, are convex,
we know that ¢;(b) > x! + o!(b — b!) and ¢,(b) > x} + oJ(b — b)) hold for all b € R.
This immediately yields
P1(b*) + @2(b = b*) = x! + gl (b = bi) + %) + o) (b - b* — b))
> x! + ol (b* = bl) + x) + ol (b - b* — b))
=x! +x + ol (b-bl - b))
o(b).

Since ¢(b) > ming-cr @1(b*) + 2 (b — b*) must hold for all b € R by construction, this
completes our proof. O

5.2.7 Heuristic Approaches

With an N'P-hard problem at hand, we propose heuristic approaches based on CHArge,
which drop optimality to reduce query times. Their basic idea is as follows. During the
third phase of CHArge (running the CFP algorithm on the core graph), whenever the
search scans multiple shortcuts (u,v) between two vertices u € V and v € V, at most
one new label is added to Ly,s(v). This saves time for dominance checks and label
insertion in the label set Ly,s(v). We use the potential at v to determine a shortcut
that minimizes the key of the new label (i. e., the trip time from the source s € V to v
plus a lower bound on the trip time from v to the target ¢t € V), and add only this label
to Lyns(v). Recall that the potential depends on the SoC at v, hence scanning different
shortcuts may result in different potentials at v.

Our first heuristic, denoted CHArge-H,, uses the potential function 7, to determine
the best shortcut. Given a label £ at some vertex u € V, scanning an outgoing
shortcut (u,v) to a vertex v € V results in some label ¢’ at v. We compute its key,
which minimizes the sum x + 7, (v, f(£')(x)) for arbitrary x € R, (as described in
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Section 5.2.4). However, the label is only added to Ly,s(v) if this key is minimal among
all labels at v constructed within the current vertex scan.

The idea of our second heuristic, denoted CHArge-H,,, is to use the potential
function 7, instead of 7. Additionally, when identifying the only label to be inserted
into the set Lyys(v) of a vertex v € V, we ignore battery constraints and presume
that we are not close to the target, i.e., that we are in the case b < dist.(v,t) of
Equation 5.3 for arbitrary SoC b € [0, M]. Then the best shortcut (u,v) does not depend
on the SoC at v, but only on the distance dist,, (v, t). Hence, we can precompute the
optimal shortcut for each pair of neighbors u € V and v € V, namely, the one that
minimizes w(u,v). During a query, instead of scanning all shortcuts, we always use
the precomputed shortcut for each neighbor v of u.

A third, even more aggressive variant, which we denote by CHArge-H2, uses the
same idea as in CHArge-H,, already during vertex contraction for CH, keeping only
the optimal shortcut with respect to the cost function w for each pair of vertices. Thus,
we no longer allow the creation of multi-edges during preprocessing. This significantly
reduces the total number of shortcuts in the core graph, allowing the contraction of
further vertices. While the resulting search graph can no longer be used for exact
queries, CHArge-H2 is capable of answering heuristic queries much faster. The query
algorithm of CHArge-H? is identical to CHArge-H,,, however, solutions may differ as
it operates on a sparser graph.

Despite their heuristic nature, it is actually possible to formally grasp under which
circumstances the heuristics CHArge-H,, and CHArge-H? use an optimal short-
cut [Zun14]. Basically, we know that if charging is inevitable and charging at a
rate of cfiay is possible when needed, then dist,(:,-) yields a tight bound on the
remaining trip time. The following Proposition 5.9 formalizes this insight. Recall that
when computing shortcut edges (u,v) for two vertices u € V and v € V, the only
possible charging stations on the underlying u—v path are u and v (see Section 5.2.5).

Proposition 5.9. Given two verticesu € V andv € V, a u—v path P that contains
no charging stations (except possibly u and v) and minimizes the cost o(P) among all
u—-v paths is a subpath of a fastest feasible s—t path from a given sources € V to a given
target t € V if the following conditions are met.

1. The fastest feasible s—t path contains u and v in this order, but no charging station
on the subpath from u to v (except u and v).

2. The SoC at u is not sufficient to reach t without recharging.

3. The SoC never reaches the capacity M (such that battery constraints need to be
applied) on the path from u to the next charging station that is used.

4. There is a charging station available on the subpath from v to t before the battery
runs out and the uniform charging speed at this station is cf .
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5.3 Integrating Adaptive Speeds

So far, all algorithms discussed in this chapter find the fastest route subject to battery
constraints. Yet in reality, travel time and energy consumption are not only affected
by the choice of the route itself, but also by driving behavior. Assuming a single, fixed
speed per road segment neglects solutions that may save energy by reducing driving
speed when necessary. Allowing multiple driving speeds (and consumption values) per
road segment, one could, e. g., save energy on the motorway by driving at reasonable
speeds below the posted speed limits. In this section, we consider continuous, adaptive
speeds, i. e., we allow the EV to adjust its speed within reasonable limits to reach the
destination as fast as possible and with sufficient SoC. Hence, in addition to the actual
route from the source to the target, we also have to specify (optimal) driving speeds
along that route. In practice, these can be passed to the driver as recommendations or
directly to a cruise control unit. With the advent of autonomous vehicles, the output of
our algorithms can also be used for speed planning of self-driving EVs, either directly
or after further refinement [Flo+15].

In our extended problem setting, the same road segment can be passed at differ-
ent speeds (we omit stops at charging stations in this section, though). A straight-
forward way to model these options is to sample reasonable speeds for each road
segment [Bau+14, GP14, HF14, SMS17]. Then, one can add parallel edges in the under-
lying graph representation, which correspond to alternative driving speeds (inducing
certain values of driving time and energy consumption); see Figure 5.10. The major
benefit of this approach is its simplicity: We can immediately apply the basic BSP
algorithm described in Section 5.1 to solve the extended problem. However, it also
comes with several drawbacks. First of all, parallel edges greatly increase running
time, due to a larger number of nondominated solutions. In fact, the number of non-
dominated (i. e., Pareto-optimal) solutions can be exponential even on a single route;
see Figure 5.10a. Consequently, only heuristic algorithms achieve practical running
times [Bau+14, GP14, HF14]. By discretizing a continuous range of tradeoffs, parallel
edges that model alternative speeds have other undesirable effects, such as producing
many insignificant, yet nondominated solutions. Figure 5.10a shows such an example,
where some nondominated solutions at the target vertex ¢ provide rather unattractive
tradeoffs, namely, spending ten extra units of time to save only one unit of energy.
Adding another sample (indicated by the dashed edge), on the other hand, results
in a new label at ¢ that dominates one of these less favorable solutions. In other
words, the number of samples influences both running time and result quality: More
samples increase running time, but fewer samples reduce quality. Similarly, adding
or contracting degree-two vertices in the graph, which are commonly included for
visualization purposes, affects the solution space even if distances are maintained; see
Figure 5.10b. This is clearly not desirable, since such modeling decisions should not
have any impact on the optimal solution.
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Figure 5.10: Adaptive speeds modeled as parallel edges. Edge labels indicate tuples of driving
time and energy consumption. We also show the label sets of vertices as computed by the
BSP algorithm in an s—t query (ignoring dashed edges). (a) The initial SoC is 10. Adding the
dashed edge (s,v) results in a new label (20,6) at v and a label (21,4) at ¢, which dominates the
label (21,2) in the current set. (b) The initial SoC is 5. Contraction of v results in the dashed
edges. Although distances are maintained, the algorithm no longer computes the label (3,2)
on the modified input.

To remedy the above issues, we propose a more sophisticated model, which uses
continuous functions to model the tradeoffs on edges [HF14]. Using realistic consump-
tion models, we obtain a nonlinear function for each road segment, mapping driving
time to energy consumption (Section 5.3.1). Then, we derive operations to compute
tradeoff functions representing paths instead of single road segments (Section 5.3.2).
Using these basic operations, we describe a generalization of the (exponential-time)
BSP algorithm to our problem setting and discuss improvements for better running
times (Section 5.3.3). To further reduce query times, we incorporate techniques based
on A* search (Section 5.3.4) and CH (Section 5.3.5). Both approaches can be combined
to achieve best performance in practice.

5.3.1 Model and Problem Statement

Instead of single scalar values d(e) and c(e) for driving time and energy consumption
of an edge e € E in the input graph G = (V,E), we assume that there is a tradeoff
function g.: Ry — R based on a physical consumption model, mapping the desired
driving time x € R along the edge e to the resulting energy consumption g, (x).
In reality, the driving time on a road segment cannot be chosen arbitrarily. Lower
bounds are induced by speed limits and the maximum speed of the vehicle. On
the other hand, driving slower than a reasonable minimum speed would mean to
become an obstacle for other drivers. Additionally, there is a certain point at which
driving slower will no longer pay off in terms of energy consumption. This yields
(positive) minimum and maximum driving times 7, € R and 7, € R, respectively,
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for the function g., with 7, < 7,. We incorporate these bounds into a consumption
function c.: Ryg — R U {co}, which is given as

00 if x < 7,
Ce(x) :=19e(Te) ifx > 7, (5.5)

ge(x)  otherwise.

Thus, driving times below 7, are infeasible (modeled as infinite consumption) and
driving times above 7, become unprofitable. A driving time x € Ry is also called
admissible if x € [z,,7.], i.e., it lies in the relevant subdomain of ¢,. In the special
(degenerate) case 7, = 7., the function c, represents a constant pair (7., ce(ze)) of fixed
driving time and energy consumption. We call ¢, constant in this case, as the edge e
allows no speed adaptation.

As before, we assume that the EV is equipped with a battery that has a certain
capacity M € Ry and that its SoC must not drop below 0 nor exceed M. When
incorporating these constraints into our setting, we obtain a bivariate SoC function
fe: Ry X [0,M] U {—00} — [0,M] U {—0c0} for every edge e = (u,v) € E, mapping
the SoC at u to the resulting SoC at v when traversing e with a specific driving time.
The function f, is given by

-0 if b —ce(x) <0,
fe(x,b) =M if b—ce(x) > M, (5.6)

b —c.(x) otherwise,

where an SoC of —co denotes an empty battery. Hence, fe(x,b) = —co implies that the
edge cannot be traversed at the corresponding speed (as it would cause the battery
to run empty). Note that we obtain the SoC function f, by pointwise application of
battery constraints (see Section 4.1.1) to the consumption function ¢, of e.

Given the SoC bs € [0, M] at a source s € V, we can determine a corresponding SoC
by € [0,M]U{—o0} at atargett € V if we compute an s—t path [s = vq,...,vx = t] and
pick driving times x; € Ry for all edges (v;,v;4+1) of the path, with i € {1,...,k —1}.
Starting at the source s = vy, the SoC at vy = t is obtained after iteratively evaluating
the SoC function f(y,,o,,,) at x; and the SoC at the previous vertex v;. Formally, we
then get

b = flow sty (k-1 o poe ) (- - flson) (X1, 65) - )

Note that b; = —oo holds if the path is infeasible (for the given driving times). Due to
physical constraints, we presume that for cycles this procedure never raises the SoC
at s = t. In other words, minimum values c.(Z.) of consumption functions c, of edges
e € E must not induce cycles with negative energy consumption in the graph.
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Figure 5.11: Consumption functions in a simplistic model. (a) Consumption function c(,, )
of an edge (u,v) with minimum driving time 7, ) = 1 and maximum driving time 7(, ) = 3.
(b) Consumption function c(,, ) of an edge (v, w) with minimum driving time 7., = 1 and
maximum driving time 7(,,,) = 2. (c) The consumption function cp of the path P = [u,v, w].
The shaded area indicates possible pairs of driving time and consumption along the path.

Given a source vertex s € V, a target vertex t € V, and an initial SoC bs € [0, M],
we seek an s—t path P = [s = v1,v;...,0% = t] together with driving times x; for
every edge (vj,vi41) of P, where i € {1,...,k — 1}, such that battery constraints are
respected and the overall driving time x := Zf:_ll x; is minimized. An instance of our
problem where all functions are degenerate constant tuples is also an input instance
to the N'P-hard problem introduced in Section 5.1. Hence, the extended problem we
consider in this section is N'P-hard as well.

To gain insights about the structure of optimal solutions, we now derive consumption
functions and (bivariate) SoC functions for given paths instead of edges. We illustrate
such functions in an example using simplistic but vivid tradeoff functions. Afterwards,
we propose a more realistic model, which is used in the remainder of this section.

A Simplified Model. We illustrate consumption functions and SoC functions and
examine their complexity for a rather simplistic consumption model. For now, assume
that the tradeoff function g. of every edge e € E is decreasing and linear, i.e., we
have g.(x) = ax + f for all x € Ry, where « € Ry and f € R are constant
coefficients. The values « and f may differ between edges, though, to reflect different
road types or other relevant factors [BE05, Yao+13]. Figure 5.11a and Figure 5.11b show
corresponding consumption functions (plugging in limits 7(,, ) and 7(,, . on driving
time) for two edges (u,v) and (v, w). We are interested in the consumption function
of the path P = [u,v,w], i. e., a function cp that maps driving time x € R spent on
the u—w path to the minimum energy consumption cp(x) on the path. Formally, to
get the value of cp(x) for some driving time x € R, we have to pick (nonnegative)
values x; € Ry and x; € Ry, such that x = x; + x2 and ¢y, ) (x1) + c(o,w)(x2) is
minimized. The shaded area in Figure 5.11c indicates possible distributions of driving
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Figure 5.12: The bivariate SoC function of the path P from Figure 5.11, assuming a battery
capacity of M = 4. (a) The SoC fp(x,b) at w, subject to driving time x € R on P for different
fixed values b € {1,2,3,4} of initial SoC. (b) The SoC fp(x,b) at w, subject to initial SoC
b € [0,M] for different fixed driving times x € {2,3,4,5}.

times x; and x, among the two edges and the resulting energy consumption. The lower
envelope of this area yields the desired function cp; see Lemma 5.8 in Section 5.2.6
for a formal proof. Intuitively, we want to spend as much of the available extra time
(exceeding the minimum 2) as possible on the edge that provides the best tradeoff,
i. e., the consumption function with the steeper slope (where spending additional time
saves most energy). As a result, the consumption function of a path is always convex on
the subdomain where its image is finite; see Figure 5.11c. Observe that, while tradeoff
functions of single edges e € E are linear on the interval [z.,7.] of admissible driving
times, the tradeoff function of a path is piecewise linear on the interval induced by its
minimum and maximum driving time. The number of linear subfunctions defining
the function cp is bounded by the number of edges in the path [And15].

The situation becomes more involved if we also take battery constraints into account.
Then, energy consumption not only depends on the driving time we are willing to
spend along a path, but also on the initial SoC. Hence, we obtain a bivariate function fp,
which maps driving time and initial SoC at u to the SoC at w. Note that consumption
is positive on the first edge (u,v) and negative on the second edge (v, w) in Figure 5.11.
As before, the edge (v, w) provides the better tradeoff. However, for low initial SoC,
we have to ensure that the first edge (u,v) can be traversed. Hence, spending some
additional time on this edge may be inevitable to obtain a feasible solution. In contrast,
high SoC values may prevent recuperation along the second edge (v, w), so driving
slower no longer pays off at some point. Figure 5.12 sketches the resulting bivariate
SoC function for specific values of initial SoC and driving time. For a given initial
SoC b € [0,M] at u, we see how spending more time on the path can increase the SoC
at w (Figure 5.12a). When fixing the driving time x € R, (Figure 5.12b), the optimal
amount of time spent on each edge varies with the initial SoC at u. Consequently, the
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SoC function of a path P no longer has the specific form as in the case of scalar edge
costs, even if we fix the total driving time spent on the path (c.f. Lemma 4.1).

Below, we propose more realistic (nonlinear) tradeoff functions, which we use in the
remainder of this section. Although these realistic functions require a more technical
analysis, many observations made for our simplistic (linear) model carry over to the
more realistic (nonlinear) tradeoff functions.

A Realistic Model. Both considered metrics, driving time and energy consumption,
depend on the vehicle’s speed. In accordance with realistic physical models established
in the literature [Agr+16, Asa+16, Bed+16, FAR16, HF14, LL12, Lv+16], we assume that
energy consumption on a certain road segment e € E can be expressed by a function
he: Ry — R given as

hg(’U) = /111)2 + /123@ + A3, (57)

where v € R is the (constant) vehicle speed, s, € R is the (constant) slope of the road
segment, and A; € Ry, A; € Ry, and A3 € R are constant nonnegative coefficients
of the consumption model. (The term A;v? is caused by aerodynamic drag, which
increases with driving speed in a superlinear fashion.) Note that energy consumption
can become negative for downhill segments with s, < 0. The parameters A;, A, and A3
may vary for different edges due to, e. g., different road types or other factors affecting
energy consumption [BE05, SHS11, Yao+13]. Assuming constant speed and slope per
edge is not a restriction, since we can add intermediate vertices in the graph to model
changing conditions. Furthermore, one can show that deliberately varying the speed
along a single road segment (with constant slope and speed limit) never pays off in
our model [HF14, Corollary 1].

Since we are interested in functions mapping driving time x € R, to energy
consumption g, (x), we substitute v = €, /x in Equation 5.7, where £, € R, denotes
the length of the road segment. As slope and length of an edge are fixed, we simplify
this below by setting a := ;€% and y := 1,5, +13. Observe that @ € R is nonnegative,
while y € R may have negative values (for downhill edges). We introduce a third
constant f € Ry, which we will need later to shift functions along the time axis.
Altogether, we obtain the tradeoff function g.: Ry — R mapping driving time to
energy consumption, which is defined as

a
Ge(x) = m +vy. (5.8)
For single edges, we always obtain f = 0 and assume driving time x to be strictly
positive. Thus, the denominator x — f is strictly positive and g.(x) is a finite real
value. Furthermore, note that g, is decreasing and convex on its domain R in this
case. Tradeoff functions of paths may require values 0 < < x to reflect additional
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Figure 5.13: A consumption function, de-
fined by a single tradeoff function with para-
meters @ = 3, f = 1, and y = 1. The indicated
subdomain borders induced by its minimum
and maximum driving time, respectively, are
T=2and T = 6.

time spent on previous edges. In the simplistic model discussed before, we have seen
that tradeoff functions of paths may be piecewise linear. Similarly, we allow tradeoff
functions in the realistic model to be defined as piecewise functions, so they may
consist of multiple subfunctions of the form of Equation 5.8.

Given a tradeoff function g: R.¢ — R, we plug in the minimum and maximum
driving time 7 € R and 7 € R, respectively, to obtain the corresponding con-
sumption function ¢c: R>g — R U {co}; see Figure 5.13 for an example. In general, we
require consumption functions to be continuous in the interval [z, o), but not neces-
sarily differentiable. In particular, we demand that f < x holds for all subfunctions
of the form of Equation 5.8 within their respective subdomain of [z,7]. Hence, the
denominator x — f is always strictly positive. Together with the assumption a > 0,
this implies that consumption functions are either constant (if « = 0, in which case we
further assume 7 = 7) or strictly decreasing on the interval [7,7], i.e., c(x;) < c(x2)
holds for all x; € [z,7] and x; € [z7,7] with x; > x;. At certain points below, we also
make use of the inverse function c™': [c¢(7),c(r)] = Rxo of a consumption function c.
Observe that it is well-defined on the specified domain.

5.3.2 Linking Consumption Functions

If we want to generalize the BSP algorithm to propagation of consumption functions,
we need operations that compute functions for (best) tradeoffs of paths instead of
edges. In the previous section, we sketched how such consumption functions can be
obtained for a simplistic model based on piecewise linear functions. Now, we describe
how consumption functions are computed in the realistic model.

We define a link operation link: F X F — [ on the function space F of consumption
functions as specified above. Given two consumption functions ¢; and ¢, representing
energy consumption on two paths P; and P,, respectively, linking ¢; and ¢, results in
a consumption function ¢ := link(cy, c;) that maps driving time spent when traversing
the path P := P; o P, to the minimum possible energy consumption (bar battery
constraints). Let 7; € R and 7; € R, denote the minimum and maximum driving
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Figure 5.14: Linking two consumption functions. (a) The consumption function ¢;, defined
by the parameters a; = 4, f; = 1,y; = —1, 11 = 2, and 7; = 4. (b) The consumption function cj,

defined by the parameters a; = 0.5, f = 1,y = 1, 7 = 2, and 7, = 5. (c) The consumption
function ¢ = link(cy,cz), with c(x) = c1(Agpt(x)) + c2(x — Agpt(x)) on the interval [4,9]. It is
defined by three subfunctions with indicated subdomains [4,5], [5,6.5], and [6.5,9]. The figure
also shows the functions Agpe and x — Agp (red), indicating the share of ¢; and c,.

time of ¢y, respectively. Similarly, let 7, € R and 7, € R denote the corresponding
driving times of c,. Clearly, ¢(x) = oo holds for all x < 77 + 12 and ¢(x) = ¢1(71) + c2(72)
holds for all x > 7; + 7,. For any remaining value x € [7; + 12,71 + T2], we have to
determine times x; € [71,71] and x, € [12,72] on P; and P,, respectively, that sum up
to x1 + x, = x and minimize overall consumption (as in the simple model discussed in
Section 5.3.1). We set A := x; below, which yields

c(x) = min  ¢;(A) + c(x = A) (5.9)
Ae[n, 7]
A€[x—T,x~1]

for all x € [y + 2,71 + T2]. In other words, to minimize the energy consumption
for a given time x € [r; + 13,71 + T»], we have to divide the amount of time that
exceeds the minimum possible total driving time 7; + 7, among the two paths, such
that consumption is minimized. As in the simple example in Section 5.3.1, we would
like to spend any additional time on the path corresponding to the function with
steeper slope, since it provides the better tradeoff (we save more energy per additional
unit of time spent on the corresponding edge). This is illustrated in Figure 5.14. In
what follows, we formally derive the link operation and argue that the result is indeed
a consumption function, i. e., a function that has the general form as in Equation 5.5,
is continuous and decreasing on the interval [7; + 72,00), and whose tradeoff function
is defined by subfunctions of the form as in Equation 5.8. Moreover, we show that the
link operation can operate in linear time in the number of edges of P; and P,.



Integrating Adaptive Speeds

Linking Functions Defined by Single Tradeoff Functions. For now, assume
that each of the given functions ¢; and c; is defined by a single tradeoff subfunction,
rather than multiple ones. For example, this is the case if both paths P; and P, consist

of single edges, i.e., P; = [u,v] and P; = [v,w] for some (u,v) € E and (v,w) € E.

The result ¢ := link(cy,¢;) of linking ¢; and ¢, is a piecewise-defined consumption
function, which may consist of multiple subfunctions of the form as in Equation 5.8;
see Figure 5.14 for an example. Intuitively, the first subfunction of ¢ represents a
shifted part of the steeper input function for small values of x. It is followed by a
combination of both functions and a subfunction that corresponds to the input function
that is gentler for large values of x. Any of these parts may collapse (for example,
the combined part only exists if one can pick admissible driving times such that both
functions have identical negative slopes).

We now show how ¢ = link(c;,c;) can be computed in constant time. Apparently,
the best choice of A in Equation 5.9 depends on the value x € [7]+ 13,7 + 72]. Therefore,
we consider the A-function Aqpi: [11 + 72,71 + T2] — R that maps every admissible
value of x to the optimal choice of A. Given this function, we immediately get for
arbitrary x € Ry that

00 if x <11+ 1,
C(X) = (,‘1(1._'1) + Cz(l_'z) if x > 71 + Ty, (510)
c1(Aopt(x)) + ca(x — Agpi(x))  otherwise.

Hence, we essentially need to compute Ay to obtain the desired function c. To this
end, consider an arbitrary fixed driving time x € [y + 12,71 +T2]. To identify the optimal
value Aypi(x), we examine the derivative c} of the term ¢, (A) := ¢;(A) + ca(x — A). It
evaluates to

20{1 + 20(2
(Br=D0)  (x=A=p2)*
where a1, f1, @, and B, are the corresponding coefficients in the tradeoff functions
of ¢; and c¢;. We assume that a; > 0 and a; > 0 are positive (the other cases a; = 0
or a; = 0 are trivial). Then, we obtain a unique zero A} for this derivative under the

assumption that f; < A and A < x — f3,. This holds true for valid choices of A, because
A > 1 > prand A < x—1, < x— f; always holds; see Equation 5.9. Therefore, solving

the term c7.(A) = 0 for A yields
X — ﬂg + ﬂl ‘3’ Z—f

3/ %2
1+ o

c(A) =

A*

X

The value A} minimizes energy consumption for an unrestricted distribution of driving
times which sum up to x. However, from Equation 5.9 we get the additional constraints
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Aopt(x) > max{r;,x — 7o} and Agpe(x) < min{7;,x — 12}. Since A} is the unique zero
of ¢} in the open interval (f;,x — f2), monotonicity of ¢y in the intervals (f;,A%}] and
[A%,x — f;) follows. Thus, we get

max{7,x — 72} if A} <max{r,x - %},
Aopt(x) = ¢min{7,x — p}  if AL > min{7,x — 12}, (5.11)
A*

. otherwise.

Equation 5.10 and Equation 5.11 together are sufficient to specify the desired function c.
Since we want to explicitly represent ¢ using tradeoff functions, we now derive the
actual subfunctions that define ¢, depending on the value A}.

First, solving the conditions A} < max{r;,x — 72} and A} > min{%,x — 5} in
Equation 5.11 for x yields four equivalencies in total, namely

. [a
AL <m 54 x<t=n+pf+(m -5y =, (5.12)
x

a
A; <X-—1 =4 X>f2* =T +ﬁ1+(’f2—ﬁ2) ’ —1, (513)
\

o
AL > 7 s x> =+ P+ (7 - 1) 2= (5.14)
4]

S
|

(24
A>x—1 & x<1, i =n+p+(n-p 3/ 2L 5.15
X

az

Note that we obtain similar statements when solving for equality, e. g., we have A} = 13
if and only if x = 7. Consequently, we also get A} > 7; if and only if x > 7 (and
analogous results for Equations 5.13-5.15). To obtain the actual function c and its
subfunctions, we use the following Lemma 5.10.

Lemma 5.10. Let ¢y and c; be two consumption functions, such that each is defined by
a single tradeoff function g, and g, respectively. Moreover, let 11, T1, T2, and 7, denote
their respective minimum and maximum driving times. Then the following statements
hold for their derivatives g; and g, (even if we replace all occurrences of the relation “<”

«__»

with “="in the equivalencies below).
Lg(m)<gn)er <n+n <1,
2. g/(t1) < g,(T2) © 7] < T +Tp < T,
3. gi(f1) < g5(r2) © 7 <13,

4 9{(n) < g3(%) & 17 < 7.
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Proof. All equivalencies follow after simple rearrangements. As an example, we show
the first part of the first statement, namely, g;(71) < g;(z2) if and only if 7" < 71 + 75.
For i € {1,2}, let @; and B; denote the coeflicients of the tradeoff function g; as in
Equation 5.8. We exploit that a; > 0, @y > 0, 7y > f;, and 7, > f, must hold to get

g1(11) < g3(2)

o _ 20{1 <_ 20(2
(11— ﬁ1)3 T (- ,52)3
© (- p2)° > ?(_ﬁ - p)?
x

a 3k
< Z'1+Z'2221+,32+13,a_2(l'1_,31):_{~
1

All other statements follow from similar rearrangements. O

Together with Equations 5.12-5.15, Lemma 5.10 enables us to construct the desired
function ¢ = link(cy,¢;), depending on the slopes (i. e., the derivatives) of ¢; and ¢
at their respective subdomain borders. Exploiting that 7; < 7; and 7, < 7, hold
by definition, we obtain the function c after the following case distinction. As in
Lemma 5.10, let g; denote the (unique) tradeoff function defining ¢; and similarly, let g,
be the tradeoff function defining c,. We consider the slopes of these tradeoff functions
at certain subdomain borders of ¢; and c;. Without loss of generality, assume that
9;(71) < g,(12) holds (the other case is symmetric). This leaves us with only three

possible cases, which are presented below.

1. gi(r1) < g;(12) < g{(T1) < g;(%2): Consider the relevant subdomain borders
71 + 12 and 7; + 7, corresponding to the minimum and maximum driving time of
the function c obtained after linking c¢; and c,. By the first, second, and third
statement of Lemma 5.10, we know that

N <n+0 <1, < <0+ <1,

For arbitrary values x € [1; + 72,7, ), we use the fact x > 7] and Equation 5.12

to infer the inequality A} > 7;. Similarly, the fact x < 7, and Equation 5.13

yield A} > x — 7,. Hence, we have A} > max{z;,x — 7,} and the first case of

Equation 5.11 does not apply. On the other hand, we know that both x < 7" and

x < 7, hold, so by Equation 5.14 and Equation 5.15 we get x — 7, < A} < 7.

This means that we are in the second case of Equation 5.11 and therefore,

Aopt(x) = min{7;,x — 72} = x — 73 is the optimal choice for any x € [7; + 13,7;).

Making similar observations for the cases x € [7;,7]) and x € [T],T; + T,), we
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obtain corresponding values Aqpi(x) = A} and Agy(x) = 73, respectively. This
yields the desired function ¢ = link(c;, c;), which is given by

00 ifx <m+1,
ax—m)+e(n) ifn+n<x<zg),

c(x) = {e1(Ay) +eo(x = AY) ifry <x <7,
c1(T1) + c2(x — 7y) 7 <x <7 +7p,
c1(71) + c2(%2) otherwise.

2. g1(r1) < g{(71) £ g5(72) < g,(72): In this case, we know by the four statements
in Lemma 5.10 that the order 7;' < 7 < 11 + 7 < 7; + T < 7; < 7, must hold.
Equations 5.12-5.15 yield A} > max{z;,x — %} and A} > min{%,x — 5} in the
whole subdomain [7; + 12,71 + 7). Consequently, we obtain the optimal value
Aopt(x) = min{7;,x — 72} and the function ¢ = link(cy,c;) is defined as

00 ifx <1 +1,

(x) ci(fy) +ex—7) i+ <x <7+,

c(x) =
ci(x —m) +exr) T +1 <x <7+,

c1(71) + c2(%2) otherwise.

3. g91(11) < g;(12) < g5(%2) < g{(71): Along the lines of the first case, Lemma 5.10
and Equations 5.12-5.15 yield that the function ¢ = link(c;, ¢;) evaluates to

00 if x <11+ 19,
a(x—m)+e(n) fn+n<x<z),

Ay) +ce(x—Ay) ifr) <x <7,

c(x) =1¢ x

(=)

(
(

1(x—‘[_'2)+02(l_'2) Ifl_'z* <x <17+ 7Ty,
(

c1(T1) + co(2) otherwise.

Due to convexity of both ¢g; and g,, no other cases remain. Hence, the function ¢
constructed above is defined by at most five subfunctions (two of which are constant).
In each expression, we can expand the functions c; and c; to obtain a term that has the
general form of a tradeoff function as in Equation 5.8. In particular, the denominator in
the tradeoff functions of both ¢; and c; is (strictly) positive in all cases, i. e., we always
have x > 8. Moreover, it is easy to verify that ¢ is continuous and decreasing on the
interval [7; + 73,00), by inspecting the corresponding limits at the endpoints of each
subdomain of c. In conclusion, the link operation requires constant time in the special
case where both input functions are defined by a single tradeoff function. Degenerate
cases are possible, too. For example, if ¢; or c; is constant, the link operation becomes
a simple shift on the x-axis and y-axis. Lemma 5.11 summarizes our results.
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Lemma 5.11. Given two consumption functions c; and c,, each defined by a single
tradeoff subfunction, the link operation link(cy, c;) requires constant time and its result is
a consumption function that is uniquely described by at most three tradeoff subfunctions.

Linking General Consumption Functions. We tackle the general case, where we
are given two consumption functions ¢, and c;, each possibly consisting of multiple
tradeoff subfunctions with the general form as in Equation 5.8, and want to com-
pute the function ¢ := link(cy,c;). Consider a tradeoff subfunction g of ¢; and its
subdomain [z,,7,). The subfunction g itself induces a consumption function ¢, with
minimum driving time 7, and maximum driving time 7,; see Equation 5.5. By the
fact that c; is decreasing and by construction of the consumption function ¢y, we get
cg(x) = ci(x) for all x € Ry and c4(x) = c¢;(x) for all x € [z4,7,). Since the same
argument can be made for subfunctions of c;, it follows directly from Equation 5.9 that
we obtain c after applying the constant-time link operation to all pairs of consumption
functions induced by subfunctions of ¢; and c¢;. The lower envelope of all resulting
candidate subfunctions yields the desired function c.

Obviously, the function c is again a piecewise function. Moreover, as the lower
envelope of functions that are decreasing on a common domain must be decreasing
on this domain as well, the function c is decreasing. Finally, we claim that c is also
continuous on the interval [z,00), where 7 € R.( denotes the minimum driving time
of ¢. By construction of ¢, a discontinuity in the interval [z, 00) corresponds to a
discontinuity of some candidate subfunction c*. Further, we know that ¢* has exactly
one discontinuity at its minimum driving time 7* € R. . By continuity of ¢; and ¢,
there must be another candidate subfunction whose maximum driving time is z* and
whose function value coincides with ¢* at this point, unless 7* = 7. The claim follows
and therefore, the function space of consumption functions is indeed closed under the
link operation. Also, note that the link operation is commutative and associative.

The running time of the naive link operation described above is quadratic in the
number of subfunctions of ¢; and c,. In what follows, we show how the complexity
of the link operation for general consumption functions can be reduced to linear
time. In our experiments, the number of subfunctions per consumption function was
relatively small on average, so the speedup provided by the more sophisticated linear-
time method was limited (less than 10 %). Hence, the algorithm described below may
rather be considered to be of theoretical interest. It exploits the fact that consumption
functions are convex in the general case as well, which we now prove formally.

In what follows, we say that a consumption function ¢ with minimum driving time
7 € R is convex if ¢ convex on the interval [z,00). Note that this holds true for
consumption functions of single edges; see Section 5.3.1. Consider the A-function Aqpt
of ¢ = link(cy,c,), defined as the optimal choice of A in Equation 5.9. (We did not
formally prove that the value A is distinct in the general case, but we may as well pick
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the minimum value A that fulfills Equation 5.9 to ensure that Ayp; is well-defined.)
Presuming that ¢; and c; are convex, the following Lemma 5.12 shows that both Agp;
and the value x — Ay (x) increase with respect to x € [1 + 7,71 + T2].

Lemma 5.12. Let Ayt : [11+ 12,71 +72] — Ry denote the A-function that corresponds to
two convex consumption functions c; and c; with corresponding minimum and maximum
driving times 11, 71, T2, and T>. Moreover, let Aopt(x) = X — Aqpi(x) be defined on the
domain of Aopt. Then both Agpy and Aopt are continuous and increasing.

Proof. We begin by showing that Ay is increasing. Assume for contradiction that
this is not the case, i. e., for some value x in the domain of Ay, there are values £ > 0
and 6 > 0 such that A = Agpi(x) > Agpe(x +¢) = A — 6. First of all, note that the
inequality c¢1(A) + c2(x — A) < ¢1(A =) + c2(x — A + §) must hold, since A minimizes
this term by definition of Ayy. Further, A = Agpi(x) is the smallest among all values
that minimize the term by definition, so plugging in A —§ < A actually yields a strictly
greater result. Analogously, we have ¢;(A—=8) +cy(x +e—A+9) < c1(A) +ca(x+e—A),
as this term is minimized by A — §. Therefore, we obtain

ci(A=98)—c1(A) <cox+e—A)—c2(x+e—A+9)
<c(x—A)—c(x—A+9)
< c1(A=6) — (D),

which is a contradiction. Here, we exploit the fact that ¢, is convex and decreasing
and hence, c;(x — A) — c2(x — A + §) must be decreasing with respect to x for fixed
values A and § (the gap between two function values with constant difference on the
x-axis must decrease if x increases).

Regarding Aoy, monotonicity follows from a very similar argument. As before,
assume for contradiction that Agp(x) > Aopt(x + €) for some ¢ > 0, so the inequality
X —Aogpt(x) > x+£=Agpi(x+¢) holds. We plugin A = Agpi(x) and A+6 = Agpi(x+e¢) to
obtain § > ¢ > 0. As in the first case, we get ¢1 (A) +c2(x—A) < c1(A+5) +ca(x—A-9)
and ¢;(A+6) +cz(x+e—A=6) < ci(A) +cz(x +¢e—A) by the definition of Agp. Along
the lines of the first case, this yields a contradiction. Finally, the fact that both Ay (x)
and x — Aypt(x) increase with respect to x implies that Aqp(x) must be continuous. O

The following Lemma 5.13 proves that linking two convex consumption functions
indeed yields a decreasing and convex function. Consequently, Lemma 5.12 applies to
all consumption functions of the general form.

Lemma 5.13. Given two consumption functions c¢; and c; that are convex on their
subdomains [1y,7;] and [z, 2] of admissible driving times, the function ¢ := link(cy, ;)
is convex on the interval [T) + 72,71 + T2).
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Proof. Assume for the sake of contradiction that ¢ = link(cy, ¢;) is not convex on the
indicated interval. We use the previous Lemma 5.12, which implies that the A-function
with respect to ¢; and c; is increasing. Moreover, both (right) derivatives c; and c;
are increasing on their respective subdomains [77,7;) and [1,,7;) by assumption, as ¢
and c; are decreasing and convex. Given that c is not convex, its (right) derivative ¢’
must be decreasing on some subinterval of [7; + 73,71 + T2). Thus, there exist values
x € [fy + 1,71 + T») and € > 0 such that x + ¢ < 71 + T, and we get

c(x) > c'(x +¢)
= ¢ (Agpt(x + €)) + cy(x + & = Agpi(x + €))
= C{(Aopt(x)) + cé(x - Aopt(x)>

=c'(x),
which is a contradiction. This completes the proof. O

Given that the functions Ay, and Aopt (as defined in Lemma 5.12) of an arbitrary
pair of consumption functions are continuous and increasing, we are able to perform
the link operation in a single coordinated linear scan, where we keep track of Ay
and Ao For two piecewise functions ¢; and ¢, let gl,...,gF and g},...,g{ denote
their defining tradeoff functions, given in increasing order of their subdomains. For
some subfunction g{ withi € {1,2} andj € {1,...,k} orj € {1,...,{}, respectively,
we denote by [7/,7/) its subdomain and by ¢/ its induced consumption function. The
linear-time link operation proceeds as follows. First, it links the consumption functions
¢ and ¢; induced by the two tradeoff functions g; and g, with least admissible driving
times. This results in a new convex consumption function link(cj, ), which is defined
by at most three tradeoff functions. Let Aqp; and Aopt be the A-functions associated
with this link operation. We determine the next pair of consumption functions that are
linked. To this end, we consider the points x! := Ag;t(fll) and x, := Ag;t(le) at which
the induced consumption functions ¢] and ¢, reach their maximum driving time in
the linked function. If x{ < x,, we continue with link(c?,c}), so Aoyt can take values
greater than 7. Similarly, if x] > x; holds, we compute link(c], ¢c5) next, so that Aqp
may exceed 7,. Finally, in the special case x] = x, we proceed with link(c?,c2).

We continue this procedure until we reach the maximum driving time and link
the consumption functions induced by gf and gf . The lower envelope of the (linear
number of) computed consumption functions yields the desired result link(cy, cz).
Obviously, the running time of this procedure is in O(k + ¢).

5.3.3 Basic Approach

In what follows, we describe our tradeoff function propagating (TFP) algorithm, which
generalizes the (exponential-time) BSP algorithm for the basic problem given in Sec-
tion 5.1. For a source s € V, a target t € V, and an initial SoC b € [0, M], it computes
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the fastest s—t path and optimal driving times such that battery constraints are re-
spected. The basic idea of the algorithm is to propagate consumption functions (defined
by sequences of tradeoff subfunctions) and apply battery constraints on-the-fly. Hence,
it does not need to explicitly maintain bivariate SoC functions.

Figure 5.15 shows pseudocode of TFP. To keep the number of label comparisons
small, we use the same method as in Section 5.2.2, where each vertex v € V maintains
a set Lget(v) and a heap Lyns(v) containing settled (i. e., extracted) and unsettled labels,
respectively. Each label is a (piecewise) consumption function, mapping the driving
time on a certain s—v path to energy consumption. We say that a label ¢; dominates
another label c; if ¢;(x) < cz(x) holds for all x € Ry(. Moreover, the key of a label ¢ is
defined as key(c) := 7., i. e., its minimum driving time. The corresponding maximum
energy consumption c(z.) is used to break ties. As in Section 5.2.2, we maintain the
invariant that for each v € V, Ly,s(v) is empty or the unsettled label in Ly,s(v) with
minimum key is not dominated by any settled label in L (v). New labels are pushed
into Lyns(v). Whenever the minimum element of Ly,s(v) changes (because an element
is added or extracted), we check whether the new minimum element is dominated by
some settled label in L¢(v) and discard it in this case.

Label sets and the priority queue are initialized in lines 1-5 of the algorithm depicted
in Figure 5.15. Initially, all label sets are empty, except for the constant function
cs = M — b, at the source s. It is represented by the pair (0,M — bs). The source
vertex is also added to the priority queue, which uses the minimum key among any
unsettled labels of a vertex as its key. In each step of its main loop, the algorithm
extracts some vertex u € V with minimum key from the priority queue and settles the
corresponding label ¢, by taking it from the set Ly,s(¢) and inserting it into Lget(u)
(lines 7-9 in Figure 5.15). Afterwards, the priority queue and the set Lyns(u) are
updated accordingly (lines 12-16). Finally, outgoing edges are scanned (lines 17-24).
For every edge (u,v) € E, the function ¢ := link(cy,¢(4,0)) is computed. Note that ¢
may violate battery constraints, so we set ¢(x) = oo for all driving times x € Ry with
c(x) > M inline 19 and ¢(x) = 0 for all x € Ry with ¢(x) < 0 in line 20 of Figure 5.15.
To identify such violations efficiently, we first check whether 0 or M are in the domain
of the inverse ¢! of c. If this is the case, we set the minimum driving time of ¢ to
¢~1(M) or the maximum driving time to ¢~!(0), respectively. If the resulting function
yields finite consumption for some driving time, it is added to Lyns(v) and the key of
v in the priority queue is updated, if necessary. Note that the algorithm is label setting,
i.e., labels extracted from the queue are never dominated later on. Thus, an optimal
(constrained) path is found as soon as a label at t is extracted. The minimum driving
time of this label is the optimal driving time; see line 11 of Figure 5.15.

Dominance Tests. To efficiently test whether a consumption function ¢; dominates
another consumption function c,, we inspect their respective subfunctions g;,. . ., gf
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N
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23
24

// initialize label sets
foreach v € V do
Lset(v) — 0
Luns(v) —0
Luns(s) — {(O’M - bs)}
Q.insert(s,0)

// run main loop
while Q.isNotEmpty() do

// extract next vertex
u «— Q.minElement ()
¢y «— Lyps(u).deleteMin()
Lset(u).insert (cy,)
if u =1t then
L return key(cy)

// update priority queue
if Luyps(t).isNotEmpty () then
¢ «— Lyps(v).minElement ()
Q.update (u,key(c))
else
| Q.deleteMin()

// scan outgoing edges
foreach (u,v) € E do
¢ «— link(cy, c(u,0))
7. «— min{x € R U {c0} | x = 00 V ¢(x) < M}
7, «— max{x € Ry U {0} | x = 7, V ¢(x) > 0}
if ¢ # oo then

Luns(v).insert (¢)

if ¢ = Lyps(v).minElement () then

L Q.update (v,key(c))

Figure 5.15: Pseudocode of the TFP algorithm. It takes as input a graph G = (V,E) with a
function C: E — [ that assigns a consumption function c, to every edge e € E, as well as a
source s € V, a target t € V, a battery capacity M € Ry, and an initial SoC b € [0,M]. It
computes the minimum driving time from s to ¢ such that the SoC at ¢ is nonnegative.
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Figure 5.16: Dominance of consumption functions. The consumption function c (blue) of an
unsettled label is compared to functions corresponding to a set of settled labels (red). Shaded
areas indicate function values that are dominated by settled labels. (a) The consumption
function c is not dominated by any label alone, but by the lower envelope of their two functions.
In other words, for each x € Ry, one of the two settled labels yields lower consumption.
Hence, the label ¢ can be discarded. (b) The consumption function c is partially dominated by
the settled label, so its minimum driving time can be increased from z to z*.

and g;,. .. ,gg. For some i € {1,...,k} andj € {1,...,{}, consider the pair gi and
g} of subfunctions (which have the form of Equation 5.8) and let [z/,7/) and [¢],7])
denote their respective subdomains. Observe that if the subdomains do not overlap,
dominance can be checked easily by inspecting function values at the endpoints of
these subdomains. Instead, let us assume now that their intersection is not empty,
ie, [z, zh)Nn [_r%,f{) # 0. We can test in constant time whether g! (x) < g} (x) holds
for all x € [max{r/,7J},min{z/,7]}] as follows. The subfunction g; dominates the
subfunction g} in this interval if and only if g!(x) < g}(x) holds for the two values
x = max{g’li, _Tg }and x = min{'fli, 1"{ } at the borders of their subdomain intersection,
as well as the unique extreme point x of g} — g} (if it falls within the considered
intersection of their subdomains). Since we only have to compare subfunctions whose
subdomains intersect, we can test whether ¢; dominates ¢, in a single linear scan
(comparing subfunctions in increasing order of driving time). Hence, the running time
of a dominance test is linear in the number of subfunctions of ¢; and cs.

In our basic variant, the TFP algorithm implements dominance tests as follows.
For a consumption function ¢ with minimum driving time 7 € R, and maximum
driving time 7 € R in the set Lyys(v) of some vertex v € V, it performs a pairwise
comparisons with each function in Lget(v) to determine whether ¢ is dominated by one
of them. In doing so, the algorithm may miss that c is partially dominated or dominated
only by a set of other labels; see Figure 5.16. In other words, even if ¢ is not dominated
by any settled label alone, it is possible that for some (or even all) admissible driving
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times x € [r,7] of ¢, there is a label ¢* € Lyt (v) with ¢*(x) < c¢(x). Although keeping
¢ and eventually moving it to the set of settled labels does not affect correctness,
it increases the label set size and may lead to unnecessary vertex scans. Instead of
pairwise dominance checks, we may therefore try to identify dominated parts of the
function ¢ in question. We then compute a value * € [z, 7] such that for all x € [r,77],
there is at least one function ¢* contained in the set Lgi(v) with ¢*(x) < ¢(x). This
value 7* can be computed in a single (coordinated) linear scan over the subfunctions
of ¢ and all subfunctions of labels in Lgt(v). If we obtain the value z* = 7 in this
scan, ¢ is dominated for all x € Rsg, so we remove it from Ly,s(v). Otherwise, we
set T = r*. Analogously, we then compute a value 7* € [z, 7] such that ¢ is dominated
for all x € [7%,7] and set T = 7". Afterwards, we discard any subfunction of ¢ whose
subdomain does not intersect [7*,7*].

Using the improved dominance check greatly reduces the number of labels in
practice, at the cost of (little) additional overhead per dominance test. In particular,
testing dominance now requires a coordinated scan over multiple subfunctions. We use
the same test as described above to identify subfunctions that dominate a subfunction
of ¢ in the whole intersection of their respective subdomains. Note that we do not
necessarily find the optimal values for 7* and 7* that way, and there may still exist
values x € [r*,7"] with ¢*(x) < c(x) for some function ¢* € Lgt(v). However, we
avoid expensive and error-prone intersection tests.

Path Retrieval. To obtain the actual s—t path, each label maintains two pointers
to its corresponding parent label and vertex. To retrieve the optimal driving time
(and speed) per edge, we explicitly store with each label ¢ the function A, given
as Agpt(x) = x — Agpt(x), with respect to the previous link operation that lead to the
creation of c. It is defined on the domain [z, 7] induced by the minimum driving time
7 € R and the maximum driving time 7 € R of c¢. Note that Aopt is a piecewise
function, with subfunctions that have the general form

X —K

R

Aopt(x) =X-

with nonnegative coeflicients k € Ry, A € R, and g € Ry; c.f. Equation 5.11
in Section 5.3.2. After the search has found the target t, the following backtracking
routine yields the path itself and driving times on all edges. We start backtracking
from ¢. Let x; denote the minimum driving of the label ¢ extracted at t and letv € V
be the parent vertex of c. Then the driving time on the edge (v,1) is Agpt(x;), where

Aqpt is the corresponding function stored with the label c. We continue this procedure

recursively at its parent label with the driving time value x; — Aqpt(x;), until the source
vertex s is reached.
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A Polynomial-Time Heuristic. Even with improved dominance checks, TFP has
exponential running time. However, the algorithm can easily be extended to a more
efficient heuristic search, at the cost of inexact results. We propose a polynomial-time
approach that is based on e-dominance [Bat+11]. During the search, when performing
the dominance test for alabel ¢ € Ly,s(v) in the unsettled label set of some vertexv € V,
it is kept in Lyys(v) only if it yields an improvement over settled labels in Lgt(v) by
at least a certain fraction eM, with ¢ € (0,1], for some driving time. Thus, when
identifying dominated parts of ¢, we test for each driving time x € Ry( whether
c*(x) < c(x) + eM holds for some settled label ¢* € Lg(v). Observe that this implies
that the number of settled labels per label set can become at most [1/¢]. Given that the
algorithm is label setting, each of these labels is extracted from the priority queue and
added to Lgt(+) at most once, so this yields polynomial running time in n and [1/¢].

Remarks. The heuristic variant of the TFP algorithm described above remains
impractical for realistic ranges and reasonable values of ¢, despite its polynomial
running time. Therefore, we propose speedup techniques for TFP and its heuristic
variant in the next sections, which are based on A* search and CH. Combining both
techniques, we obtain our fastest algorithm, CHAsp (CH, A", Adaptive Speeds). The
proposed speedup techniques do not alter the output of the algorithm, so correctness
is maintained when using them with plain TFP. Although running time remains
exponential in the worst case, we observe significant speedups in practice. Moreover,
CHAsp can be combined with our polynomial-time heuristic in just the same way.

5.3.4 A* Search

A well-known approach to reduce (practical) running times in multicriteria scenarios
is the adaptation of A* search [HNR68, MP10]. We propose two variants that compute
a consistent potential function at query time, prior to running TFP. The potential of a
vertex v € V is then added to the keys of all labels of v in TFP.

Potentials Based on Single-Criterion Search. We make use of two cost functions
d: E —> Rsqwithd(e) :=r. foralle € Eandc¢: E — R with c(e) := c.(7.) forall e € E,
representing minimum driving time and minimum energy consumption on an edge,
respectively. Similar to the approach by Tung and Chew [TC92], we aim at directing
the search towards the target by preferring edges on (unrestricted) fastest paths. Before
running TFP, we execute a single backward search (i. e., Dijkstra’s algorithm running
on the backward input graph G) from the target t € V, using the cost function d. This
yields, for each vertex v € V, the distance disty(v, ), which is a lower bound on the
(constrained) driving time from v to the . We obtain a consistent potential function
n5: V. — Ry by setting 75(v) := distg(v,t). By the triangle inequality, the potential
function s fulfills the condition x — 7s(u) + 75(v) > 0 for all edges (u,v) € E and all
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admissible driving times x € [z,,7.]. Thus, TFP is label setting when using x5, which
implies that correctness of the algorithm is maintained.

To compute 75, the backward search described above visits all vertices in the
(backward) graph. This can be wasteful, especially for small vehicle ranges. To
avoid scans of unreachable vertices, we first run a backward search on G using the
cost function ¢ to compute, for all v € V, lower bounds dist.(v,t) on the energy
consumption required to reach the target t from v. This can be done by a label-
correcting variant of Dijkstra’s algorithm (as some edge costs may be negative); c.f.
Section 5.2.4. We prune this search, i. e., we do not relax any outgoing edges, whenever
the distance label of some scanned vertex exceeds the battery capacity M. Then, we
run Dijkstra’s algorithm on G to compute 75(v) as before, but restrict the search to
vertices whose lower bound on energy consumption is below M. Afterwards, we
restrict the TFP search to the same set of vertices.

Moreover, we use lower bounds dist.(-,-) for pruning in TFP: Before adding a new
label ¢ to the label set of some vertex v € V, we first set c¢(x) = oo for all driving times
x € Ryo with ¢(x) + dist.(v,t) > M. To do so, we first check (in a linear scan over
the subfunctions defining ¢~') whether M — dist.(v,t) is in the domain of the inverse
function ¢! and set the minimum driving time of ¢ to ¢~ (M — dist, (v, t)) if this is the
case. Otherwise, we either obtain ¢ = o or the function ¢ remains unaffected.

Potentials Based on Bound Function Propagation. The potential function ;s
works well for common vehicle ranges, but may be too conservative if the consumption
on the fastest path is very high. In such cases, it pays off to adapt the potential
function 7,: V X [0,M] U {—c0} — Ry U {co} introduced in Section 5.2.4 to our
scenario. Recall that the potential function 7, incorporates the current SoC at some
vertex to provide more accurate bounds. For each vertex v € V, it uses a convex,
piecewise linear function ¢,: R — Ry¢ U {co} that maps the current SoC at v to a
lower bound on the remaining driving time from v to the target t € V. As higher
SoC allows the EV to drive faster, ¢, is also decreasing with respect to SoC. Along the
lines of Section 5.2.4, we say that the potential function 7, is consistent if we obtain
x =1y (u,b) + 7y (V, flu,0)(x,b)) = 0 forall (u,v) € E, x € [T(u,0) T(u,0)], and b € [0,M].
Here, f(4,.) denotes the SoC function of an edge (u,v) € E with minimum driving time
T(u,0) and maximum driving time 7(, ), so the reduced cost must be nonnegative for
any admissible parameter choice for f(, ). We define 7, (1, —c0) := co. Together with
the requirement that the potential 7, (¢,b) at the target t € V equals 0 for all b € [0, M],
consistent potentials maintain correctness of TFP; c.f. Section 5.2.4.

The functions representing the potentials 7, (-, ) are determined in a label-correcting
backward search from ¢, similar to the search presented in Section 5.2.4. Figure 5.17
shows pseudocode of the search algorithm. It operates on the backward graph G of
the input graph and maintains a piecewise linear function ¢,: R — R U {0} for
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// initialize labels
1 foreachv €V do

2 L(pv<—®

3 ¢r «— [(0,0)]
4 Q.insert(t,0)

// run main loop

5 while Q.isNotEmpty () do

6 u «— Q.deleteMin()

7 foreach (u,v) € E do

8 @(u,0) < convert(c(,,q))
9 @ «— link(Qu, p(u,0))

10 if dx € R: ¢(x) < ¢, (x) then
11 o < merge(¢y, )
12 Q.update (v,key(¢y))

Figure 5.17: Pseudocode of the function propagating potential search for TFP. It requires an
input graph G = (V,E) with a function ¢: E — F assigning consumption functions c, to its
edges e € E and a target t € V. For each v € V, the algorithm computes a piecewise linear
function ¢, : R — R U {c0}, which maps SoC to a lower bound on driving time from v to .

each v € V, represented by a sequence &, = [(b1,x1),...,(bk,xx)] of breakpoints,
such that b; < bj for i < j, ¢, (b) = oo for b < by, and ¢, (b) = xi for b > br. We
ignore battery constraints in the search, so we obtain lower bounds on SoC values,
which can also become negative.

Each vertex stores a single label consisting of its (tentative) lower bound func-
tion. The search is initialized in lines 1-4 of Figure 5.17 with a function ¢, at the
target t € V that evaluates to 0 for arbitrary nonnegative SoC, represented by the
single breakpoint (0,0). In the main loop, scanning an outgoing edge (u,v) € E of
some vertex u € V corresponds to linking the two lower bounds representing the label
at u and the edge (u,v). To this end, we first convert the consumption function c(,, )
mapping driving time to energy consumption to a piecewise linear function ¢, )
mapping SoC to a lower bound on driving time (line 8 of Figure 5.17). Let 7 € R
and 7 € R, denote the minimum and maximum driving time of ¢(, ), respectively.
If ¢(y,0) is constant (i.e., 7 = 7), we immediately obtain the lower bound defined
by @) = [(c(u,0)(7),7)]. Otherwise, we consider two geometric lines £; and £,
defined as follows; see also Figure 5.18. The first line ¢; passes through the point
P = (c(u,0)(T), ) with slope equal to the (right) derivative of the inverse c‘ul’v) of c(y,v)
at c(4,0)(7). The second line £, goes through g = (c(4,0)(7),7) and its slope equals
the (left) derivative of c(_ul’v) at c(y,) (7). Since r # T and c(_ul’v) is convex on its do-

main [¢(y,0) (%), ¢(u,0) (7)], the lines ¢; and ¢, intersect in a unique point r € R?. Then, a
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Figure 5.18: Constructing the lower
bound function ¢y, +). It is defined by
the endpoints p and q of the inverse of
the consumption function c(,, ) with
7 =2 and T = 6, and the intersection
of the lines ¢; and ¢,. The value ¢
indicates the maximum error of the 6 C(u,0) (%)
lower bound. Recursion starts at r’. 1 2 3 4 5 6 7 8 9 10

N W A Ul

convex lower bound ¢, ) is defined by the breakpoints [p,r,q]. To increase accuracy
of the lower bound, we may repeat this operation recursively for initial points p or
q together with the unique point r’ € R? on the inverse of c(, . that has the same
x-coordinate as r; see Figure 5.18. Recursion stops as soon as the maximum difference
between c(_ul’v) and the function ¢, ) induced by the current sequence of points falls
below a predefined threshold ¢ > 0. Note that this difference is obtained in constant
time, since it always occurs in the latest point r that was added to ¢, o).

We link the function ¢, at u with the resulting lower bound ¢, ) by computing,
for any SoC value b € R, an optimal distribution of the available amount b of energy
among the corresponding u—t path and the edge (u,v). Formally, the resulting function
¢ = link(¢y,Q(u,0)) evaluates to

(P(b) = min (Pu(b*) + @(u,v)(b - b*)
b*eR

for all b € R. This function can be computed in a linear scan over the breakpoints of
both functions; see Section 5.2.6. To improve running times in practice, we can discard
the label ¢ at this point if ¢(b) > M for all b € R.

After scanning the edge, we merge the resulting function ¢ with the function ¢,, in
the label of v, 1. e., we compute the pointwise minimum ¢,, = merge(¢,,¢) in a linear
scan over the breakpoints of ¢, and ¢. To ensure that the resulting function is again
convex, we apply Graham’s scan [Gra72] as in Section 5.2.4.

We define 7,(v,b) := ¢, (b) for all v € V and b € [0,M] once the search has
terminated. The following Lemma 5.14 uses similar arguments as in the proof of
Lemma 5.5 in Section 5.2.4 to prove that 7, is indeed a consistent potential function.

Lemma 5.14. The potential function r, is consistent.

Proof. For some edge (u,v) € E, let ¢, and ¢,, be the piecewise linear functions at u
and v, respectively, after the backward search has terminated. Let ¢(,, ) denote the
lower bound function of (u,v). We know that ¢, is upper bounded by the function
computed by link(¢o, @(u,0)), since the latter was merged into ¢,, at some point during
the backward search. For an arbitrary driving time x € R, let b* := ¢(,, o) (x) denote
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the corresponding energy consumption on the edge (u,v). Then, we immediately
obtain for all b € [0, M] that

X+ ﬂtp(vvf(u,v)(x’b)) =X+ (pv(f(u,v)(xyb))
2 X+ (pv(b - C(u,v)(x))
= Clpy (b)) + 9o (b= bY)

(u,0)
> Pu,0) (D7) + @ (b —b)

> . * _ *
> min P(u,0) (D7) + @u(b - b7)

> 7, (u,b),

which implies that the reduced cost x — 7, (u,b) + 7, (v, f(u,)(x,b)) is nonnegative.
This completes the proof. ]

As soon as the backward search has terminated, we start the actual TFP search.
During this search, we obtain the key of a label ¢ at some vertex v € V by setting it
tokey(c) := minyep,, X+, (v, M—c(x)). Thus, labels closer to ¢ (for the available SoC)
get smaller keys. Computing the key requires a linear scan over the subfunctions
defining ¢ and the lower bound function ¢,, at v. In each step of the scan, we update the
minimum by evaluating the term x+¢, (M—c(x)) at up to three values x € R, namely,
the boundaries of the intersection of the subdomains of the considered subfunctions
of ¢ and ¢,, and at the unique extreme point of their sum (if it falls within the current
intersection of subdomains).

Implementation Details. When computing the potential function 7, the number
of breakpoints of lower bounds can become quite large. Therefore, we reduce it
as follows (while slightly deteriorating the quality of the bounds). Before applying
Graham’s scan, we replace consecutive pairs of breakpoints in the piecewise linear
function with a single one if they are close to each other, i. e., their difference with
respect to driving time or SoC is below a certain threshold Ay € Ry or Ay € R,
respectively. Two such points p = (by,x,) and q = (by,x,) are then replaced by the
point r := (min{b,, by}, min{x,,x4}). Furthermore, if two consecutive segments pq
and gr with p = (by,x,), ¢ = (bg,x4), and r = (b,,x,) have similar slopes syq ~ sqr
(i.e., the difference |spq — sqr| is below some threshold A € R ), we replace them
by a single segment from (b,,x,) to (b*,x,) with slope min{s,,sq-}, which uniquely
defines the value b* € R. Clearly, the modified function remains a lower bound.
Moreover, consistency of the potential is maintained, as function values can only
decrease and changes in the function are propagated by the search. Thus, all steps in
the proof of Lemma 5.14 still apply.

Graham’s scan and the breakpoint reduction step are performed on-the-fly during
the merge operation. Moreover, we convert consumption functions c, of all edges e € E
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to their corresponding lower bounds ¢, during preprocessing for faster query times.
The thresholds ¢ to determine lower bound errors, A, and Ay, for close points, and A for
similar slopes are tuning parameters. Smaller thresholds increase accuracy of bounds,
but also slow down the backward search. Therefore, we set the above thresholds
to 20~UesM! in our experiments, where § € N is a constant and M is the battery
capacity (assumed to be given in kWh). Hence, bounds are more accurate for higher
capacities (where the forward search becomes more expensive). The value of § is again
a tuning parameter. In our experiments, we use § = 10 for A, (the resulting threshold
is measured in seconds), § = 17 for Ay, and § = 15 for ¢ (both measured in Wh).
For example, a battery capacity of 16 kWh yields A, = 64 (seconds), A, = 2!* (Wh),
and ¢ = 2! (Wh). The value A; = 27* is constant and chosen independently of M (all
parameters were determined in preliminary experiments).

5.3.5 Contraction Hierarchies and CHAsp

We propose an adaptation of CH to our scenario, which adds a preprocessing step to
TFP for faster queries. As in plain CH [Gei+12b], vertices are contracted iteratively
during preprocessing and shortcut edges are inserted to maintain distances. Similar to
the approach from Section 5.2.5, we contract only a subset of the vertices, leaving an
uncontracted core graph.

Since the SoC at a vertex is only known at query time in our setting, any shortcut has
to store a bivariate SoC function. Figure 5.19 given further below shows an example
of how the initial SoC influences energy consumption in our model. Their bivariate

nature makes explicit construction and comparison of SoC functions rather involved.

We say that an SoC function f; dominates another SoC function f; if fi(x,b) > fa(x,b)
holds for all x € Ry and b € [0,M]. Below, we examine simple representations

of SoC functions in certain special cases that also enable efficient dominance tests.

Afterwards, we describe how CH can utilize these simple SoC functions.

Simple SoC Functions. Consider the consumption functions cy,...,ck-; of the
edges of a path P = [vy,...,vr] in G. Assume that c;(x) > 0 holds for all driving
times x € Ryp and i € {1,...,k — 1}, i.e,, all function values are nonnegative. In this
case, battery constraints can render driving at high speed infeasible. On the other
hand, recuperation never occurs on P. Therefore, the best speed on an edge depends
solely on the slope of its consumption function, but not on the position of the edge
in the path (in contrast to the situation discussed in Section 5.3.1 and sketched in
Figure 5.11, where the order of edges clearly matters). Consequently, it is sufficient to

first link the consumption functions and apply battery constraints only once afterwards.

Lemma 5.15 proves this formally and specifies the resulting bivariate SoC function,
which is represented by a single univariate (consumption) function.
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Lemma 5.15. Let P = [vy,...,vx] be a path in G and let ¢; denote the consumption
function of the edge (vi,vit+1) fori € {1,...,k — 1}. If all consumption functions are
nonnegative, i. e, c;(x) = 0 holds forallx € Ry¢ andi € {1,...,k—1}, the SoC function
of P evaluates to

- ifb < c(x),

b —c(x) otherwise,

fx.b) = {
where ¢ := link(. ..link(...link(c1,cz),...),ck—1) denotes the function obtained after
iteratively linking the functions cy,...,Ck-1.

Proof. First, consider the SoC function f; of the consumption function ¢; of an individ-
ual edge (v;,v;i41) withi € {1,...,k — 1}. It equals

—o0 ifb < c;(x),

fi(x,b) ={

b —ci(x) otherwise,

since ¢; has only nonnegative values by assumption, so the SoC at v;,; never exceeds M.

We prove the lemma by induction. Assume that for some i € {1,...,k — 2}, we are
given the result ¢;_; := link(...link(...link(cs,cz),...),c;) of linking all edges in
[v1,...,0i41] and the corresponding SoC function is

—00 1fb < Cl,...,i(x)’

fl,...,i(x9b) = {

b—cy,. . i(x) otherwise.

We construct the SoC function fi ;41 usingcy, . j+1 := link(ey, . j,¢i41). Since cj11(x)
is nonnegative for all x € Ry, we obtain ¢;,__;(x) < ¢i,.._i+1(x) for arbitrary driving
times x € Ry(. Hence, the path is infeasible for a pair of driving time x € Ry and
initial SoC b € [0,M] if and only if b < max{c;,  _;(x),c1, . i+1(x)} = c1,._i+1(%).
Otherwise, the function ¢, _;+; minimizes consumption on the path by definition of
the link operation (still, no recuperation is possible). We obtain the function

—00 ifth <cq. iv1(x),

ﬁ,...,i+1(X,b) = {

b—ci,. . .i+1(x) otherwise,
which completes the proof. O

Note that the functions cy,. . .,cx_; can actually be linked in arbitrary order, since
the link operation is both commutative and associative. Thus, we can easily construct
a shortcut for P by iteratively contracting its internal vertices vy, . . .,vk_; in any given
order, each time linking the consumption functions of both incident (shortcut) edges
to compute a new shortcut. A symmetric argument holds for paths consisting only of
nonpositive consumption functions.
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Consequently, we allow contraction of a vertex if all (finite) values of consumption
functions assigned to any of its incident edges have the same sign. Shortcuts inserted
after contraction then have the simple form given in Lemma 5.15, so they can be
computed efficiently. Furthermore, we can reuse dominance tests introduced in Sec-
tion 5.3.3 to identify unnecessary shortcuts (we simply compare the two corresponding
consumption functions). On real-world instances, where the majority of consumption
values is positive, this approach already allows contraction of large parts of the graph
(more than 50 % of the vertices in our tests). Nevertheless, the size of the resulting
core graph is still too large to achieve significant speedups.

Discharging Paths. We discuss simple representations of SoC functions in more
general cases, exploiting that most consumption values are positive in realistic in-
stances. We say that a path P is discharging if the SoC on P never exceeds the (arbitrary)
initial SoC, i.e., there exists no prefix of P that has negative consumption for any
driving time. Subpaths with negative consumption are allowed, though. Note that it is
not necessary to explicitly check whether the SoC exceeds M on a discharging path.
We show how the SoC function of a discharging path can be represented by at most
two consumption functions.

Clearly, a path consisting solely of edges with nonnegative consumption values (for
arbitrary driving times) is discharging. We also showed how it can be represented by
a single consumption function. As a more intricate example, assume we are given a
path P = P; o P, consisting of two subpaths P; and P, that can be represented by two
consumption functions ¢; and c;. Let 7y, 71, 72, and 7, denote the respective minimum
and maximum driving times of ¢; and ¢,. Moreover, assume that the consumption
c1(x) > 0is positive for all x € Ry, while c;(x) < 0 is nonpositive for all x € [13,00).
Finally, assume that |c1(71)| > [c2(%2)], i.e., the cost of P; is higher than the gain
of P, for any driving time, so P is discharging. We derive the SoC function of P,
represented by a positive part ¢* with ¢*(x) := ¢1(x — 2) and a negative part c¢”(x)
with ¢7(x) := cz(x + 72). The original functions are shifted along the x-axis to simplify
the analysis (note that the minimum driving time of ¢ is 0). Given some initial
SoC b € [0, M], the positive part ¢*, and the negative part ¢~, we define the constrained
positive part C; : Ryg = R5g U {00} as the function that evaluates to

¢ ) = {oo if b < c(x),

c"(x) otherwise.

The function applies battery constraints along P; for the initial SoC b; see Figure 5.19.
Then, the SoC function f of the path P evaluates to f(x,b) = b — link(c;,c™)(x) for
arbitrary x € Ry, and b € [0, M]. Given some initial SoC, the function f first applies
battery constraints on the positive part ¢* and links the resulting function ¢ with the

b
negative part ¢”. Since the underlying path P is discharging, we know that no further
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2l =5 tep(x) 0
5

(@) (b) (c)

Figure 5.19: Construction of a consumption function depending on initial SoC. (a) The con-
sumption function ¢; of a path P; with positive consumption. (b) The consumption func-
tion c; of a path P, with negative consumption. (c) Deriving the consumption function of
the path P := P; o P,. Due to battery constraints, the minimum driving time of ¢* is 5 for an
initial SoC b = 5. This yields the consumption function ¢ := link(c;",¢™) for the path P (the
function ¢~, which corresponds to ¢, being shifted to the left, is not shown). The shaded area
indicates possible images of consumption functions for different values of initial SoC.

constraints need to be checked for ¢7, so the function computed by link(c; ,¢”) yields
minimum energy consumption subject to driving time for the initial SoC b.

During preprocessing of CH, we iteratively construct new shortcuts from two
existing (shortcut) edges in the current overlay graph. Hence, we have to be able to
compute SoC functions representing general discharging paths from two given SoC
functions of discharging paths. Assume we are given a discharging path P; whose
SoC function is defined by two consumption functions ¢{ and ¢, as described above.
Similarly, we are given a discharging path P, with respective consumption functions
c; and c;. Observe that the path P := P; o P, must be discharging as well. We now
construct the SoC function for P. Apparently, if we know the initial SoC, we can
compute energy consumption on P by computing link(link(link(c], ¢} ),c;),c;) and
applying battery constraints before each link operation, like in the TFP algorithm (see
Section 5.3.3). However, we want to represent P with only two consumption functions
¢t and ¢”. Recall that the only constraint we have to check for discharging paths is
whether the SoC drops below 0. We identify a new positive part ¢* as follows. Since
both ¢] and ¢, are nonpositive for all admissible driving times, the constraint needs
only to be checked for ¢ and c; (i. e., before the first and third link operation). To
integrate these checks into a single positive part ¢*, we first compute the consumption
function h := link(c,c;). Clearly, the battery can only run empty on P, if this
consumption function is positive for some admissible driving time (otherwise, we
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always gain more energy with c; than is lost on c; ). To distinguish, we split h into a
positive part h*: R5o — R U {oo} with h*(x) := max{h(x),0} and a negative part
h™: RZO i RSO U {OO} with

B (x) = {oo if x < 7 and h(x) > 0,

min{h(x),0} otherwise,

where 7 € R+ denotes the maximum driving time of h. Since h is a valid consumption
function, so are both A* and ™. Observe that in case h yields nonnegative (nonpositive)
energy consumption for all admissible driving times, the function A~ (h*) always
evaluates to 0 on its subdomain with finite image. We derive the positive part ¢* of
P by setting ¢*(x) := link(c],h")(x) for all x € R and the negative part ¢~ of P by
setting ¢ (x) := link(h™,c; ) (x + r) for all x € R, where r € R is the minimum
driving time of h~ (we shift the function to ensure that its minimum driving time is 0).
The SoC function of P is obtained from ¢ and ¢~ as described above. Our way of
splitting the function h ensures that battery constraints are only applied to prefixes of
P with positive energy consumption.

Vertex Contraction. We use our insights about discharging paths to establish a
preprocessing routine for CH. For the sake of simplicity, we assume that for each
edge in the graph, the energy consumption is either nonnegative for all admissible
driving times or nonpositive for all admissible driving times. Note that we can always
enforce this by splitting an edge e € E with c.(z.) > 0 and c.(7.) < 0 into two
consecutive edges corresponding to the positive part and the (shifted) negative part
of c,, respectively.

During preprocessing, we make sure that we only construct shortcuts with simple
SoC functions. We say that a shortcut is discharging if it represents a discharging
path. It is called nonpositive if it represents a path consisting solely of edges whose
energy consumption is nonpositive for all admissible driving times. We only allow a
vertex v € V to be contracted if all new shortcuts created as part of its contraction
are discharging or nonpositive. We call v active in this case. Note that the number of
active vertices grows as contraction proceeds, since this results in longer shortcuts,
which are more likely to consist of significant positive parts. It remains to show how
to decide efficiently whether a vertex is active during preprocessing and construct the
necessary shortcuts if it is indeed contracted.

Assume that at some point during preprocessing, we want to contract a vertexv € V
incident to two (shortcut) edges (u,v) and (v, w) in the current overlay graph. We have
to determine whether a shortcut (u, w) can be constructed from (u,v) and (v, w) that
is either discharging or nonpositive. Clearly, a nonpositive shortcut can be constructed
if and only if both (u,v) and (v, w) are nonpositive. Otherwise, we want to know
whether we can construct a discharging shortcut. Let P; be the underlying path in
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the original graph represented by (u,v) and let P, be the path represented by (v, w).
(We get Py = [u,v] if (u,v) € E is an original edge and P, = [v,w] if (v,w) € E is
an original edge.) We have to decide whether P = P; o P, is a discharging path, i. e.,
energy consumption is nonnegative on every prefix of P, regardless of the driving
time. Apparently, this can only be the case if P; is a discharging path itself. For P, we
distinguish two cases. First, if P, is discharging as well, so is P and the discharging
shortcut (u, w) can be constructed as described above. Second, if P, is not a discharging
path, it must consist solely of edges whose energy consumption is nonpositive for
arbitrary (admissible) driving times, since a shortcut (v,w) would not have been
created otherwise. Hence, P, is represented by a single consumption function ¢, with
minimum and maximum driving time 7, € R. and 7, € R+, respectively, such that
c2(x) < 0 for all x € [13,00). To test whether a discharging shortcut (u, w) can be
constructed in this case, consider the positive part ¢ and the negative part ¢; of P
with corresponding maximum driving times 7, and 7. Then P is discharging if and
only if ¢ (7)) + ¢] (7]) + c2(T2) > 0, as these driving times minimize consumption
on P (or any prefix of P that ends at a vertex of P;). Moreover, we immediately
obtain the positive part ¢c* and the negative part ¢~ of the discharging path P, with
¢™(x) = ¢ (x — 1) and ¢™ (x) = link(c],c2)(x + 72) for all x € Ry.

Comparing Shortcut Candidates. In a bicriteria scenario, vertex contraction may
result in multi-edges between the neighbors of a contracted vertex. In such cases, we
only want to keep shortcuts whose SoC functions are not dominated by SoC functions
of parallel edges. Hence, after the contraction of a vertex, we want to delete (parts of)
SoC functions of shortcut candidates that are dominated by existing functions between
the same pair of vertices (and vice versa). To this end, we require efficient dominance
checks for SoC functions that are either discharging, i.e., represent a discharging path,
or have nonpositive energy consumption for all admissible driving times.

Assume we are given two SoC functions f; and f> defined by the respective con-
sumption functions ¢}, ¢], ¢;, and ¢, (we assume that the positive part evaluates
to 0 for all admissible driving times if consumption is always nonpositive). Further,
assume that our goal is to remove dominated parts of f5, i. e., we want to identify
intervals I C Ry where fi(x,b) > fa(x,b) holds for all driving times x € I and all
values b € [0, M] of initial SoC. If both SoC functions have nonpositive consumption,
each is represented by a single consumption function and we can immediately apply
the dominance tests described in Section 5.3.3. For the remaining cases, note that a
discharging SoC function cannot dominate a function with nonpositive consumption
for all possible values of initial SoC. Thus, we consider the case where at least f; is
discharging. We propose a method that may miss dominated parts of SoC functions,
but requires only a linear scan over the consumption functions that define the SoC
functions f; and f,. Thereby, correctness is maintained, but unnecessary shortcuts
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may be inserted. Let ¢ > 0 denote the smallest nonnegative real value such that
c; (x) < ¢;(x) + £ holds for all x € Ry,. This value can be computed in a linear
scan over the subfunctions of ¢] and ¢, similar to a dominance test. The following
Lemma 5.16 shows that if ¢ (x) + ¢ < ¢, (x) holds for some x € Ry, choosing a

driving time of x for the positive part c; always results in a solution that is dominated
by fi, regardless of the initial SoC.

Lemma 5.16. Given a nonpositive or discharging SoC function fi and a discharging SoC
function f,, such that their respective consumption functions are cf, ], c;, and c;, let the
value e > 0 be defined as described above. Ifc] (x*)+¢ < c; (x™) holds for somex™ € R,
any solution where x™ is the (optimal) amount of time spent for c; is dominated by fy, i. e,
we obtain either c; (x*) = co or fi(x* +x7,b) > fo(x* +x7,b) = b—(c; (x*) +¢; (x7))
forallx™ € Ryy and b € [0,M].

Proof. Assume for the sake of contradiction that there exists some value x* € R
such that ¢ (x™) + £ < ¢; (x) and for some time x~ € R, and SoC b € [0,M], the
value b —(c; (x™) +c; (x7)) is a feasible solution that is not dominated by f; (x* +x7,b).
Since ¢ > 0, we know that ¢ (x") < ¢ (x™) holds. This implies that ¢} (x) + ¢ (x7)
is a feasible solution for an SoC of b (recall that the minimum driving time of ¢| is 0).
Finally, we know that ¢ (x*) < ¢; (x")—e¢ holds by assumption and ¢ (x7) < ¢, (x7)+¢
holds by the definition of ¢. This yields

Al +x7b) 2 b= (f () + 67 (x7))
>b- (c;(er) —e+c,(x7)+ 5),
which contradicts our assumption and completes the proof. O

After creating a new shortcut (u,v) with positive part ¢*, we compare it to existing
shortcuts between u € V and v € V as follows. First, we compute the value ¢ defined
above with respect to each existing shortcut. Then, we determine parts of ¢* that are
dominated by existing positive parts (after we increase their consumption by ¢) and
set ¢ (x) = oo for such values x € Rs(. We do this in a coordinated linear scan over
¢* and the positive parts of consumption functions of all existing shortcuts, as in our
basic dominance tests (see Section 5.3.3). If ¢* = oo holds afterwards, we remove the
shortcut. Analogously, we identify parts of SoC functions of each existing shortcut
that are dominated by the SoC function of the new shortcut candidate.

Witness Search. Consider a discharging shortcut candidate (u,v) fromu € V to
v € V that is neither dominated by any existing parallel shortcut (from u to v) nor
dominates an existing parallel shortcut itself. Before adding (u,v) to the graph, we run
a witness search to test if the shortcut is necessary to maintain distances in the current
overlay graph G’ (for some values of driving times and SoC). An exact approach would
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Figure 5.20: Bound functions computed by the
41 witness search for the SoC function depicted in
Figure 5.19c. The shaded area indicates possi-

ble values taken by this SoC function depending

i \ on driving time and SoC. It is upper bounded
\ (x-2)? by the function ¢* (red) computed by the wit-
171 ness search. The lower bound (blue) is used to
LT— - X identify dominated parts of the SoC function if

4 5 6 7 8 9 10 it represents a shortcut candidate.

compute bivariate SoC functions representing u—v paths in G’ to identify dominated
parts of the shortcut candidate. Like before, this is difficult and potentially expensive
due to the lack of efficient operations for construction and comparison of such SoC
functions. Instead, we only compute univariate upper bounds on energy consumption
during witness search.

As a key idea, the search drops negative parts from SoC functions entirely, so labels
in the search consist only of the positive parts. Clearly, these labels are upper bounds
on energy consumption. Our witness search runs the basic TFP algorithm from u on G’,
but ignores battery constraints and links labels only with positive parts of overlay
edges (as before, we assume that the positive part evaluates to 0 for all admissible
driving times if consumption on the corresponding edge is always nonpositive). As
a result, each label stores an upper bound on overall (finite) consumption that is
independent of initial SoC and represented by a single consumption function c*; see
Figure 5.20. Moreover, since the majority of edges have positive consumption in
realistic instances, the upper bounds have relatively small error in most cases.

Whenever a label ¢* at the head vertex v of the shortcut candidate e = (u,v) is
extracted during the witness search, we compare the label ¢* to the SoC function fi, .,
of the shortcut candidate as follows. Let ¢} and ¢, denote the consumption functions
defining f(,, ). Moreover, let ¢, (77) be the minimum consumption of c,. We know that
cs is dominated for a driving time x € Ry if ¢*(x) < ¢f (x) + ¢, (77), i. e., the upper
bound ¢* dominates a lower bound on the consumption of fi, .; see Figure 5.20. We
proceed along the lines of the dominance tests described in Section 5.3.3 to identify
such values x € R and remove them from the subdomain of admissible driving times
of ¢;. If ¢, = co holds afterwards, the shortcut is not required. Otherwise, the witness
search stops once the minimum key of a scanned label exceeds the maximum driving
time of the shortcut candidate. Note that during the search, we can discard labels if
their minimum consumption exceeds the maximum consumption ¢} (z*) + ¢, (77) of
the lower bound of the shortcut candidate.
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Going even further, we replace upper bounds defined by multiple subfunctions that
are computed during the witness search with single (less accurate) tradeoff functions.
Then, witness search propagates labels of constant size, enabling faster operations and
better locality. Moreover, we use lightweight dominance tests that employ pairwise
label comparison (see Section 5.3.3), which are faster in this simplified scenario. Below,
we describe how good bounds of constant descriptive complexity are computed.

Consider a piecewise-defined consumption function ¢ with minimum and maximum
driving time 7 € R, and 7 € R, respectively, that is defined by several tradeoff
subfunctions gy,...,gx. We seek a tradeoff function g that has the general form
g(x) = a/(x — B)? + y (see Equation 5.8) for all x € [z, 7] in the interval of admissible
driving times. Further, we demand that g(x) > c(x) holds for all x € [z,7]. To achieve
this, we first set f := min; ¢y, k) i, where f; denotes the coefficient of the tradeoff
subfunction g; of ¢ (see Equation 5.8). Then, we can fix the function values g(z) := ¢(z)
and g(7) := ¢(7) at its domain borders to uniquely define the two remaining coefficients
a and y from Equation 5.8. In particular, we obtain

_ B0 -c@(B-1)°
B-7)>=(f-1)°

Lemma 5.17 shows that the resulting function is in fact an upper bound on ¢. Upper
bounds are also robust towards incremental linking in the sense that the error does not
increase if we recompute the upper bound whenever linking several bound functions
results in a bound consisting of multiple subfunctions. This is due to the fact that the
bounds are uniquely defined by their (minimum) coefficient f and the domain borders
of the original functions, which remain unchanged in the upper bound.

During witness search, whenever linking two bound functions results in a function
defined by more than one tradeoff subfunction, we compute and store the upper bound
instead. Note that we do not even have to link functions explicitly, but simply compute
the new coeflicient f in a linear scan that simulates the link operation.

and  a=(c0)-Pc-p> (516

Lemma 5.17. The function g defined above is an upper bound on the original consump-
tion function ¢ within the interval [7,7], i.e., §(x) > c(x) holds for all x € [z,7].

Proof. Let g1,...,gx denote the tradeoff subfunctions defining ¢ and without loss of
generality, assume that these subfunctions are given in increasing order of their ad-
missible driving times. First, we argue that it is sufficient to prove the lemma for the
case k = 2. To show this, we define an operation bound: F X F — F that takes as
input two consumption functions, each defined by a single tradeoff subfunction, and
computes an upper bound as described above. For i € {1,...,k — 1}, consider two
consumption functions ¢; and c;41 induced by two consecutive tradeoff functions g;
and g;;1 (see Section 5.3.2 for the definition of induced consumption functions). Let
their corresponding minimum and maximum driving times be z;, 7; = 7,41, and Ti1.
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The bound operation computes the consumption function ¢; ;11 := bound(c;, ¢;+1) with
minimum driving time 7;, maximum driving time 7;;;, and a single tradeoff subfunc-
tion g; ;1. According to Equation 5.16, the coefficients of this tradeoff function depend
only on the values f = min{f;, fi+1}, the driving times z; and 7;41, as well as the con-
sumption values ¢;(7;) = §i.i+1(z;) and c;41(Ti+1) = §i.i+1(%i+1) at the domain borders
of g; ;j+1. Linking the consumption function ¢; ;41 with another consecutive (induced)
consumption function yields a new function defined by the same corresponding values.
Consequently, the result bound(. . . bound(. . . bound(cy,cz),. . . ),ck) of iteratively ap-
plying the bound operation to the k induced consumption functions of c is the function
that is defined by the coefficient f = min;¢g,.._x} Bi, the minimum driving time 7 = 7y,
the maximum driving time 7 = 7§, the maximum consumption ¢(z) = ¢;(z1), and the
minimum consumption ¢(7) = ¢k (7x). This is exactly the function g defined above.
Thus, we can construct g by iteratively applying the bound operation to consumption
functions induced by the tradeoff subfunctions of ¢. To prove the lemma, we now
show that each function constructed by the bound operation is in fact an upper bound
on its two input functions. Observe that this implies that g is an upper bound on ¢
within the interval [z, 7].

In the remainder of the proof, let ¢ be a consumption function defined by two
tradeoff subfunctions ¢; and g,, which induce two consumption functions ¢; and c;.
We prove that the function §: Ry — R computed by bound(c;,c;) yields an upper
bound on ¢ on the interval [z,7]. Let the subdomains of g; and g, be [z,7) and [7,7),
respectively. By continuity of ¢ on the interval [z,7] and by continuity of both ¢;
and g, on R, we know that g;(r) = ¢g»(r). To prove the lemma, we make use of the
following three claims.

1. The inequality g(z) > ¢1(7) = g2(7) holds.

2. The slopes (i. e., the derivatives) of g and g; are equal at 7 ifand only if § = g1 = g,.
Otherwise, the slope of g is greater at this point.

3. The slopes of g and g, are equal at 7 if and only if § = g; = g,. Otherwise, the
slope of g is smaller at this point.

Then, g(r) > g:1(r) holds by our first claim, § and g; intersect at 7 by construction,
and g(z + ¢€) > g1(z + ¢) holds for € > 0 in the neighborhood of 7 by our second claim.
This implies that § must be an upper bound on g; on the interval [z, 7], because the
functions g and g; can intersect at most twice in this interval unless § = g;. This
is easy to verify by computing the number of zeros of § — g; within the considered
interval [z,7]. A similar argument holds for § and g, on the interval [z,7]. Hence,
the lemma follows after proving the three claims made above. We detail the rather
technical proofs of these claims below.

Assume that the functions g; and g, are given as g;(x) = a;/(x — B;)* + y; for all
x € Ry and for i € {1,2}. For the sake of simplicity and without loss of generality,
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we presume that min{f;, f} = 0. Note that we can always enforce this property by
shifting both functions (and their subdomains) along the x-axis. Afterwards, we obtain
the same function g on the shifted subdomains. By a similar argument, we presume
that y; = 0 holds. Below, we consider the case f; = 0 and f; > 0. The case ff; > 0
and S, = 0 is analogous. Since y; € R is allowed to become negative, no further case
distinction is necessary.

To prove the first claim, we have to show that g(r) > ¢1(r) = g2(7) holds. For the
sake of contradiction, assume §(r) < g;(r). As mentioned before, continuity of the
consumption function ¢ on the interval [r,7] implies that g;(7) = ¢2(7), i. e,

% = (T_a# + ¥o. (517)
Furthermore, we know that c is a convex function (see Lemma 5.13), so when evaluating
the derivatives of g; and g, at 7, we get the inequality

L

T (t- )

Finally, we know that the inequalities 0 < 7 < 7 < 7, 2 0,1 > 0, a2 > 0,

and 7 > f, hold by definition for consumption functions composed of multiple tradeoff

subfunctions. We now show that altogether, these inequalities yield a contradiction.

First, we plug the values of @ € R and y € R from Equation 5.16 into g(r) = a/7%+y.

Afterwards, we replace y, = a;/7%— a2/ (t — f2)? according to Equation 5.17 and exploit
that the inequality a; > a;7%/(t — f2)® > 0 holds by Equation 5.18 to obtain

(5.18)

_ (@7 =) + (D) - 1)

g_(T) - Tz(fz _ Tz) < gl(T)
® g1 (D747 = %) = () 7* (7° = 1°) + g (DT (e* - %) < 0
e (2~ 1’2)(0(1(1_'2 — (T = B) (1 = Bo)’ + T’ P ((r - Bo)* — (7 - ﬁz)z)) <0
= T“f;z (v = )@ = B2 + 725 = B) (0 = o) - (= o)) ) < 0
& Bo(7% = T3) (27T = 2T Po + T2 — 1) < O
s 27T — 27fo + T2 — 1Py <.

This yields a contradiction, because we know that 0 < 8, < 7 < 7 holds. Thus, both
277 — 273, and 7% — 73, are positive terms and their sum cannot be negative.

For the second claim, we examine the slopes of g; and g at the domain border 7. Let
the parameter & € Ry of g be defined as in Equation 5.16. Plugging in the coefficient
B = 0 and the value of y € R according to Equation 5.16, we obtain

(91(0) - ga(7)) 22

1—-2_2-2
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As before, we use y, = a1 /1% — a2/ (1 — B2)? and the inequality a; > ap73/(7 — f2)* > 0.
For the difference between the derivatives g’ and g; at 7, this yields

_) , _ 20(1 2a
g'(r) —gi(r) = i
2 (gz(T)fz_Tz - 0511'2)
- (72 - 1?)

(- ,32)2(7 - ,52)2
(1= B2)* = (T = o)’ v (f—z - ))
ey ey A LR cy St P
B 2000 P12 (7 — 7)%(27T — 2T P2 + T2 — T0)

T @G- R by

As in the proof of the first claim, we observe that each term in the product of the nu-
merator is nonnegative, while each term in the product of the denominator is positive.
Moreover, the numerator is equal to 0 if and only if 8, = 0 holds. Using Equation 5.17,
it is easy to verify that this implies a; = @, and y, = 0, which corresponds to the case
where the three functions g, ¢;, and g, are equivalent.

Finally, we deal with the slopes of g; and g at 7 to prove the third claim. Below, we
first replace the values a, a2, and y; as in our proof of the second claim. Afterwards, we
exploit the fact that (73 —x)(7—f,)*— (73 —x)(r— ) decreases with increasing x € R,
since its derivative with respect to x is (t — ;)® — (T — f2)® < 0. After some further
rearrangements, we obtain

= 2_—7—2 (flzfz (r = B2)* = (2 = Bo)* + o (f_z - 1))

D70 =5 - s
§ 20 (73 = 22B2) (7 = B2)° — (7° = T2B2) ( — fo)?)
B 272 = 2)(7 - B2)* (7 = f)?
§ 20, (7% = T2o)(T = Bo)* — (22 = T2B) (7 — fo)?)

T(72 = ) (T = B2)*(r = fo)?
200 Bo(7 — T)2(FT = TPo + TT — TPo + 72 — T3)
(72— 12)(7 = B2)*(r — B2)?
Again, we end up with products for which all factors are nonnegative (and strictly

positive in case of the denominator). As before, the numerator equals 0 if and only
if g = g1 = g». Hence, all three claims hold and the proof is complete. m|

CHAsp Queries. To answer queries, plain CH use a bidirectional search, which
scans only upward edges in the input graph enriched with shortcuts obtained during
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preprocessing. In our case, however, the SoC at the target vertex ¢t € V is not known
at query time. This makes backward search difficult, since it would require us to
propagate bivariate SoC functions. Instead, we first run (at query time) a BFS from ¢t on
the backward graph (including shortcuts from preprocessing), scanning and marking
only edges to vertices of higher rank. Afterwards, we execute the TFP algorithm,
starting from the source vertex s € V and scanning upward edges, core edges, and
marked downward edges in the graph. For faster queries, we enhance TFP with one of
the variants of A* search described in Section 5.3.4. We only compute potentials for
vertices contained in the search graph of the query. We refer to the combination of
CH and A* search for TFP as CHAsp (CH, A*, Adaptive Speeds).

Implementation Details. During preprocessing, we determine the next vertex to
be contracted using the measures Edge Difference (ED) and Cost of Queries (CQ)
according to Geisberger et al. [Gei+12b]. To reflect the complexity of SoC functions,
we add another term Shortcut Complexity (SC), which is defined as |c*| + k|c™| for the
SoC function of a given shortcut candidate, where |c*| and |¢”| denote the number of
tradeoff subfunctions that define the positive and negative part of a shortcut, respec-
tively, and k € N is a tuning parameter. Using penalized weights for negative parts,
we favor earlier contraction of SoC functions without a negative part (we use k = 4 in
our experiments). The priority of a vertex is then set to 64 ED + CQ + SC.

To reduce the running time of witness searches, we also employ a settled node
limit [Gei+12b] of 128, which limits the maximum number of queue extractions per
witness search. If multiple shortcut candidates with the same tail vertex u € V are
constructed during contraction of a vertex, we save time by running only a single
multi-target witness search from u. Finally, to improve performance of the backward
searches during a query (BFS and potential computation), we explicitly construct
and store their more lightweight search graphs from the input graph (enriched with
shortcuts, but storing less complex cost functions) during preprocessing.

5.4 Experiments

We evaluate the algorithms for both problem settings examined in this chapter on
our main test instance, Eur-PTV, and its subnetwork, Ger-PTV. Unless mentioned
otherwise, we derive energy consumption from the PHEM model of a Peugeot iOn.
All experiments reported in this section were conducted on machine-s. For details on
input data and the machine specification, see Section 3.4. Given that most algorithms
considered in this section have exponential running time in the worst case, we aborted
queries if no solution was found after an hour of computation time in all experiments.
Below, we present our results regarding algorithms for routes with charging stops
(Section 5.4.1) and adaptive speeds (Section 5.4.2) in turn.
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Table 5.1: Impact of core size on performance (CHArge, Ger-PTV, 16 kWh). We stopped
contraction if the average degree in the core graph exceeded a certain threshold (@ Deg.). We
report the core size (# Vertices), preprocessing time, and average query times of 1000 random
queries answered by CHArge-H,,, using BSS and mixed charging stations, respectively.

Core size Prepr. Query [ms]
@ Deg. #Vertices [h:m:s]  Only BSS  Mixed CS
8 344066 (7.33%) 2:58 1474.1 47979.9
16 116 917 (2.49%) 4:01 536.5 1669.0
32 65375 (1.39%) 5:03 436.1 1356.8
64 43036 (0.91%) 7:07 449.8 1408.8
128 30526 (0.65%) 11:16 509.6 1585.4
256 22592 (0.48%) 20:22 647.5 2098.5
512 17 431 (0.37%) 37:11 880.7 2739.9
1024 13942 (0.29%) 1:05:51 1264.6 3934.2
2048 11542 (0.24%) 2:00:27 1822.6 5670.1

5.4.1 Charging Stops

To evaluate our algorithms CFP and CHArge, which integrate charging stops, we
use locations of charging stations extracted from ChargeMap (see Section 3.4). We
collected 13 810 charging stations for Eur-PTV and 1966 (a subset) for Ger-PTV. We
construct different charging functions to model certain types of stations, namely, bat-
tery swapping stations (BSS), superchargers (charging an empty battery to 50 % SoC
in 20 minutes and a maximum of 80 % in 40 minutes), as well as regular stations with
fast (44 kW), medium (22 kW), or slow (11 kW) charging. For the three latter types
of functions, we use the physical model of Uhrig et al. [Uhr+15] and approximate
the corresponding charging functions with a piecewise linear function (using six
breakpoints at 0 %, 80 %, 85 %, 90 %, 95 %, and 100 % SoC). We set initialization time to
three minutes for BSS and one minute for all other types of charging stations. If not
stated otherwise, queries are always generated by picking source and target vertices
uniformly at random and an initial SoC of by = M

Evaluating Queries. We discuss preprocessing and query performance of our al-
gorithms. We only report the fastest exact method (CHArge with the potential r,,)
and our heuristic approaches—for results on plain CFP see below. We consider two
different scenarios. In the first, all charging stations are BSS, whereas the second uses
a mixed composition of chargers (randomly picking 10 % of all stations as BSS, 20 % as
superchargers, 30 % as fast chargers, and 40 % as slow chargers). The latter composition
is fixed, i. e., all queries are run for the same assignment of charging station types. We
use ChargeMap locations and the Peugeot iOn model.
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Table 5.2: Preprocessing and query performance for different instances, charging station
types (CS), and battery capacities (M). We report regular preprocessing times for CHArge
(which also applies to the heuristics CHArge-H,, and CHArge-H,,) and preprocessing times
for CHArge-H2, the percentage of feasible queries, as well as exact and heuristic query times.

Pr. [m:s] Query [ms]

Ins. CS M Reg. Hﬁ}) Feas. Exact H, H, Hg
> BSS 16kWh 5:03 4:33 100 % 1398.0 994.5 436.1 20.9
E Mix. 16kWh 5:03 4:33 100 % 8 628.7 1495.2 1356.8 155.2
é BSS 85kWh  4:59 5:31 100 % 1012.9 974.9 47.8 28.2
O Mix. 8kWh 4:59 5:31 100 % 2614.3 1894.1 342.9 34.1

BSS 16kWh 30:32 28:38 63% 10785.8  7566.7 9943.3 207.4
Mix. 16kWh 30:32 28:38 63% 24147.6 10039.3 176303 2694.0
BSS 85kWh 30:16 29:47 100% 47921.0 350604 1021.7 41.1
Mix. 85kWh 30:16 29:47 100% 86192.5 48243.2 26866.8 599.6

Eur-PTV

Table 5.1 shows details on preprocessing effort and query performance for different
core sizes on Ger-PTV (for a battery capacity of 16 kWh). In this experiment, vertex
contraction during preprocessing was stopped as soon as the average vertex degree
in the core graph reached the threshold shown in the first column of the table. We
report resulting core graph sizes, preprocessing times, and query times of CHArge-H,,
(the fastest query variant that uses the same core as CHArge) for the BSS and mixed
station composition, respectively.

Apparently, preprocessing effort increases with decreasing core size. We achieve
best query performance at an average core degree of 32. At higher degrees, the rather
dense core causes query times to increase. Therefore, we use a core degree of 32
as threshold to stop vertex contraction in all further experiments. This results in
relative core sizes of 1.3-1.7 % on Ger-PTV and Eur-PTV. Regarding query times, we
observe that the mixed composition is harder to solve, because vertex potentials are
less accurate in this case.

Table 5.2 shows detailed timings on performance for 1 000 queries on each considered
instance. We evaluate two scenarios (only BSS and mixed composition of charging
stations) on our instances Ger-PTV and Eur-PTV, for typical battery capacities (16 kWh
and 85 kWh). Preprocessing times are quite practical, considering the problem at hand,
ranging from about 5-30 minutes. As before, the mixed scenario is harder to solve. On
the other hand, increasing the maximum battery capacity leads to faster queries. This
can be explained by the fact that less charging is required, so goal direction is more
helpful. A notable exception is the capacity of 16 kWh on Eur-PTV. In this setting, the
number of feasible queries drops significantly, due to a highly non-uniform distribution
of charging stations (sparse in parts of Southern and Eastern Europe; see Figure 3.10b
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Table 5.3: Detailed query performance of CHArge (Ger-PTV, 85 kWh) for mixed and realistic
charging stations (CS). For exact CHArge (Ex.) and the different heuristics (H,, H,,, and H2),
we report the number of settled labels (# Labels) and pairwise dominance checks (# Dom.)
during the forward search, and the average running times. For the resulting trips, we report
the percentage of feasible and optimal paths, as well as average and maximum increase in trip
time compared to an optimal solution.

Query Result Quality

@)
wn

Algo. #Labels #Dom. Time [ms] Feas. Opt. Avg. Max.

Ex. 482712 36527376 2614.3 100% 100% 1.0000 1.0000

T H, 443 134 139897 1894.1 100% 85% 1.0010 1.0725
g H, 190955 5578309 341.9 100% 80% 1.0004 1.0213

H/{}) 11309 29695 34.1 100% 52% 1.0200 1.2387
o Ex. 395841 48611726 2457.0 100% 100% 1.0000 1.0000
*5 H, 359150 117083 1542.0 100% 82% 1.0007 1.0323
TB H, 169618 3680130 245.9 100% 70% 1.0009 1.0481
R Hﬁz 12330 26435 34.1 100% 61% 1.0128 1.1299

in Section 3.4). This benefits approaches based on the potential function 7, as we
can often detect infeasibility already during potential computation (the lower bound
on trip time evaluates to c0). On the other hand, infeasible queries deteriorate the
performance in many cases when using the potential function 7,,: Because the target
is never reached, large parts of the graph are explored until the queue runs empty.

All in all, running times of the exact algorithm are below 10 seconds on average
on Ger-PTV and below 90 seconds on Eur-PTV, which is quite notable given that we
could not even run a single long-distance CFP query on this instance in several hours.
Note that the mixed composition is a rather difficult configuration for our algorithms
(we also tested other configurations, e. g., without BSS). When using the potential
function 7, for CHArge (not reported in the table), running times increase by up
to an order of magnitude, depending on the scenario. Hence, plugging in the more
sophisticated potential function 7, pays off. For heuristic approaches, we see that—in
contrast to CHArge—those based on the potential function 7, are faster (except for
instances with many infeasible queries).

Table 5.3 reports detailed figures on Ger-PTV (for the same set of queries as in
Table 5.2), using a battery capacity of 85kWh. We argue that this results in the
most sensible queries: Due to a reasonably dense distribution of charging stations
in Germany (see Figure 3.10b in Section 3.4), all queries are feasible and the target is
always reachable with a small number of charging stops. Consequently, we obtain
an average trip time of 3h 26 min and an average charging time of two minutes on
Ger-PTV for the mixed composition of charging stations. In contrast to that, harder
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Figure 5.21: Running times of CHArge subject to Dijkstra rank. Each point in the plot
corresponds to the median running time of 100 random queries on Eur-PTV with a 85 kWh
battery and the mixed composition of charging stations.

queries across Europe on Eur-PTV (which we analyze rather to show scalability of
our algorithms) yield an average trip time of over ten hours. We also add figures
for a (currently) more realistic scenario, containing no BSS, 20 % superchargers, and
40 % of each fast and medium regular stations (which yields an average trip time of
3h 39 min and an average charging time of 11 minutes). We see that the number of
settled labels is a good indicator of the running time. Moreover, all approaches are
quite practical. Computing optimal routes takes only a few seconds. The heuristic
CHArge-H,, provides a good trade-off between running times (some 300 ms) and
resulting errors (below 0.1 % on average, below 5 % in the worst case). Our aggressive
approach CHArge-H2 allows query times of 34 ms on average, which is fast enough
even for interactive applications. However, we see that solution quality is up to 24 %
off the optimum in the worst case. Still, the average error of all heuristics is very low,
and the optimal solution is found in more than half of the cases.

Evaluating Scalability. Figure 5.21 shows median running times on our hardest
instance (Eur-PTV with mixed charging stations) distributed by their Dijkstra rank,
which equals the number of queue extractions when running Dijkstra’s algorithm
from the source to the target with unconstrained driving time as edge costs [Bas+16,
SS05]. We ran 100 queries per rank. Query times for CFP are only reported up to
a rank of 2!, because for higher ranks at least one query did not terminate within
the predefined limit of one hour. Given a relatively large battery capacity of 85 kWh,
charging stops are only necessary for queries of the highest Dijkstra ranks, starting
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Table 5.4: Comparison of CHArge with existing work [Sto12a]. For different distributions
of charging stations (CS) and ranges (M), we report preprocessing times of the existing
approach [Sto12a], CHArge, and the heuristic CHArge-H” on Sgr-OSM. Regarding queries,
we show the percentage of feasible paths, as well as exact and heuristic query times. Results
from our competitor [Stol2a] are reported as is from a Core i3-2310M, 2.1 GHz.

Prepr. [m:s] Query [ms]
CS M [Stol2a] CHArge HJ  Feas. [Stol2a] CHArge H, H, HS}

w

r1000 100 km 51:41 11:37  2:30 100 % 539.0 122.1 937 38.1 27
r100 150km 16:21 11:10 2:15 99%  1150.0 206.0 116.5 269 1.4

c643 100 km - 11:21 2:32 98 % — 326.3 282.6 483 3.3
c643  150km - 11:28  2:29 99 % — 308.3 270.0 22.7 2.9
from (roughly) 2%2. Consequently, running times of our faster approaches increase

significantly at this rank. It also becomes evident that all approaches have exponential
running times, with timings of CHArge in the order of minutes for the highest ranks.
Nevertheless, performance remains practical for ranks beyond 2%°. Running times of
our fastest heuristic (CHArge-H2) are well below a second for the highest ranks.

Comparison with Related Work. We also consider the largest instance used to
evaluate the fastest approach for routes with charging stops in the literature [Sto12a],
kindly provided by the author. It is based on OSM data of Southern Germany (see the
instance Sgr-OSM in Table 3.1 in Section 3.4) and elevation data from SRTM. Energy
consumption is computed from the basic physical consumption model given by Equa-
tion 3.1 in Section 3.4. All charging stations in the original work [Sto12a] are BSS,
picked uniformly at random from all vertices of the input graph. Table 5.4 shows
detailed figures, using 100-1 000 randomly placed charging stations (r100, r1000) and
battery capacities that translate to a certain range in the physical model. Query times
are average values of 1000 random queries. For completeness, we also run tests on
ChargeMap stations (only BSS), 643 of which are included in the considered road net-
work. As before, query times are average values of 1000 random queries. We observe
that our approach is faster with respect to both preprocessing and queries, even when
taking differences in hardware into account. At the same time, CHArge is more general
and not inherently restricted to BSS. Furthermore, note that a denser distribution of
random charging stations enables faster query times: Although preprocessing effort
increases slightly (more charging stations are kept in the core), the potential func-
tions more often rightly assume that a station will be available close to the remaining
path. We see that using charging station locations from ChargeMap (c643) results in a
slightly harder instance. In conclusion, we are able to solve instances that are harder
than those evaluated in the literature.
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Table 5.5: Benefits of our approach (Eur-PG, 2kWh). For TFP and TFP-dom. (improved
dominance tests), we report the number of settled labels (# Labels), number of label compar-
isons (# Dom.), average and maximum running times, and relative driving time savings over
the constrained paths found by the BSP algorithm on discretized speeds.

Query Path Savings
Algo. # Labels #Dom. Avg. [ms] Max.[ms] Avg.[%] Max.[%]
BSP 30990276 21300657522 47755 779756 — —
TFP 103119 4399002 444 14347 2.7% 9.4 %
TFP-dom. 46 228 700 546 103 3851 2.7% 9.4 %

5.4.2 Adaptive Speeds

To enable adaptive speeds on our input instances, we require a function of the form
given in Equation 5.7 in Section 5.3.1 for each road segment, together with a reasonable
interval of admissible driving speeds. We derived functions from two consumption
models based on PHEM. The first is the same vehicle model as in the previous section,
which is calibrated to a Peugeot iOn. The second is an artificial model [Tie+12] that, in
contrast to the first, takes power demand of auxiliary consumers (e. g., air conditioning)
into account. We extracted functions following Equation 5.7 from given samples of
speed and energy consumption via regression. Combining reasonable minimum speeds
for different road types (e. g., 80 km/h on motorways and 30 km/h in residential areas)
with the posted speed limits (if higher), we get intervals of admissible speeds per road
segment. As a result, 25% and 38 % of the edges are nonconstant for the network
of Germany and Europe, respectively. We denote the resulting instances by Ger-PG
and Eur-PG when using the consumption model based on a Peugeot iOn. Similarly,
Ger-AX and Eur-AX denote the respective instances based on the artificial model
that takes auxiliary consumers into account. The amount of edges with negative
consumption (for at least some travel times) is 7.8 % on Ger-AX, 12.2 % on Ger-PG,
9.6 % on Eur-AX, and 12.9 % on Eur-PG.

Unless mentioned otherwise, our study evaluates random in-range queries, i. e., we
pick a source vertex s € V uniformly at random. Among all vertices in range from s
with an initial SoC by = M, we pick the target ¢t € V uniformly at random (as in
Section 4.5.1). Since unreachable targets can be detected by backward search phases
of A* search or by any algorithm for computing energy-optimal routes (see Chapter 4),
this results in more difficult and interesting queries (recall that we do not consider
charging stops in this section).

Model Validation. We have argued that an approach based fully on consumption
functions unlocks both better tractability and improved solution quality compared
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Table 5.6: Impact of core size on performance (CHAsp, Ger-PG, 16 kWh). Vertex contrac-
tion stopped when the average degree of active vertices in the core reached a given thresh-
old (@ Deg.). We report the resulting core size (# Vertices), preprocessing time, and average
query times for 1000 queries using CHAsp with potential functions 75 and x,,, respectively.

Core size Prepr. Query [ms]
@ Deg. #Vertices [himis] CHAsp-rs  CHAsp-7,
0 - — 3326.0 4861.5
8 720514 (15.36 %) 5:07 737.2 798.3
16 400174 (8.53%) 13:25 496.2 485.0
24 333819 (7.11%) 22:28 456.2 442.6
32 305301 (6.51%) 31:44 451.8 434.0
48 279943 (5.97 %) 51:06 475.1 451.0
64 268436 (5.72%) 1:11:13 505.5 473.1
128 251410 (5.36 %) 2:37:23 649.1 586.1
256 242817 (5.18%)  6:15:58 930.7 802.3

to discrete speeds and the BSP algorithm described in Section 5.1. To demonstrate
this, we also consider instances with multi-edges to model speed adaptation—as was
best practice in previous approaches [Bau+14, GP14, HF14]. We generate multi-edges
in a rather conservative way, by sampling consumption functions at velocity steps
of 10 km/h. Optimal paths (with respect to to the simple model) are then computed by
the BSP algorithm. Indeed, we observe a significant speedup by simply switching to
our more realistic model, as Table 5.5 indicates. It shows average figures for 100 queries
with a rather small range (2 kWh). We see that TFP is up to two orders of magnitudes
faster than BSP and finds paths that are up to 9.4 % quicker (within battery constraints),
since it evaluates speed-consumption tradeoffs more fine-granularly while maintaining
less query state (labels of continuous functions expressed by few parameters instead of
large, discrete Pareto sets). This is interesting, as sampling was expressly considered
to manage tractability [Bau+14, Bau+16e, GP14, HF14, SMS17]. In fact, even though
atomic operations (linking and comparing labels) are more expensive for TFP, a drastic
reduction in the number of vertex scans explains the speedup.

Evaluating Queries. In what follows, we focus on different variants of our fastest
approach, CHAsp, since our basic algorithms are too slow for reasonable ranges (query
times exceed our predefined threshold of one hour). For a comparison of CHAsp and
basic algorithms, see Figure 5.23 discussed further below.

Table 5.6 shows details on CH preprocessing effort and its impact on query perfor-
mance subject to different core sizes on Ger-PG, assuming a battery capacity of 16 kWh.
Vertex contraction was stopped as soon as the average degree of active (i.e., con-
tractable) vertices in the core reached a certain threshold. We report the resulting core
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Table 5.7: Preprocessing and query performance (16 kWh). For each considered instance, we
provide CH preprocessing times and query times of exact CHAsp, using the potential functions
75 and 1, respectively. Reported query times are average values of 1000 in-range queries, for
a battery capacity of 16 kWh. We also show the number of settled labels (# Labels) and label
comparisons during the forward search (# Dom.).

Inst. Pr.[h:m:s]  Algo. # Labels #Dom. Time [ms]
Ger-AX 30:33 gﬁﬁzgﬁz N s 70
GerPG s P IR
BeAX 31043 AT M2
Eur-PG 3:09:22 gﬁﬁzgzz 22 223 g 2(2);1 igg ii?;

sizes and preprocessing times, as well as query times of our fastest exact algorithms.
We see that contraction becomes much slower beyond a core degree of 32, which
is explained by the small number of remaining active vertices. For instance, only
58796 out of the reported 305301 vertices in the core are active when the average
degree reaches 32. This also explains why the speedup compared to the baseline (a
threshold of 0 for the average degree of active core vertices yields plain TFP combined
with A* search) is much smaller than in plain, single-criterion CH with scalar edge
costs [Gei+12b]. Similar deteriorations in speedup were observed in other complex
scenarios, such as time-dependent profile computation [Bat+13], time-dependent air-
craft flight planning [Bla+16], and multicriteria routing [FS13]. Nevertheless, CH still
yields an improvement by up to an order of magnitude in our case. In all experiments
below, we pick an average core degree of 32 as stopping criterion of CH preprocessing.
The resulting core size depends on different parameters, including vehicle range and
error thresholds (of heuristic variants). Relative core sizes thus vary between 2.8 %
for Ger-AX and 8.5 % for Eur-PG, which is explained by the difference in the amount
of edges with negative consumption. Recall that this has a significant impact on the
number of active vertices and the contraction order (see Section 5.3.5).

Table 5.7 shows the performance of CHAsp on all four considered instances for an
EV with a battery capacity of 16 kWh. Note that we report vertex scans and dominance
tests of the forward search only, excluding search spaces of the A* backward search
(query times include both the forward and the backward search, though). In all cases,
the optimal solution is found in well below a second on average. However, queries are
significantly faster for the artificial model, where we achieve quite practical times in
the order of milliseconds. This gap in running time is explained by the difference in the
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Table 5.8: Preprocessing and query performance (85 kWh). We provide the same measures for
the same instances and models as in Table 5.7, only this time running 1000 random in-range
queries with a higher battery capacity of 85 kWh.

Inst. Pr.[h:m:s]  Algo. # Labels #Dom. Time [ms]
on o Gl e
e Gk s s
poa o S T e
Eur-PG 3.13:01  CLASPTTs - - -

CHAsp-m, 105792 44986 403 34617.4

number of edges with negative cost, induced by the underlying consumption models.
One could even argue that the instances Ger-PG and Eur-PG are rather excessive in
this regard, by not accounting for any auxiliary consumers at all. As a result, these
instances are significantly more difficult to solve for our algorithms. Regarding the
potential functions 75 and 7, the search space is consistently smaller when using 7,
but the backward search is more expensive. In fact, it becomes the major bottleneck
for the considered battery capacity of 16 kWh on the easier instances. Consequently,
query times are slowed down by about a factor of 4 in this case.

We also provide results for a larger battery capacity of 85 kWh, shown in Table 5.8.
As before, the model with auxiliary consumers is much easier to solve. We obtain
optimal results for long-range queries in less than a second on these instances. For the
harder instances (no auxiliary consumers), the potential function 7, provides better
results due to its better scalability. Note that at least one query exceeded the maximum
computation time of one hour on Eur-PG when using the potential function 7, hence
no timings are reported. In summary, we can solve the problem examined in Section 5.3
optimally in less than a second on average for typical ranges, even on hard instances.
For long ranges, our algorithm computes the optimal solution in well below a minute on
the most difficult instance when using the potential function 7, despite its exponential
worst-case running time.

In Table 5.9, we evaluate our heuristic approach on the difficult instances for different
choices of the parameter ¢ (in % of total battery capacity; see Section 5.3.3). During
preprocessing of CHAsp, new shortcuts are included only if they significantly improve
on the existing ones. Thus, preprocessing becomes faster and core sizes (not reported
in the table) decrease down to around 70 % of their original size. Query times also drop
significantly: We achieve a considerable speedup by an order of magnitude. Regarding
result quality, the choice of ¢ clearly matters. For ¢ = 0.01, the decrease in quality is
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Table 5.9: Performance of the heuristic variant of CHAsp-xs, for different choices of the
parameter ¢ (see Section 5.3.3) on Ger-PG and Eur-PG. We show figures on query performance
for the same 1000 random queries as in Table 5.7. Additionally, we report the percentage of
feasible and optimal results, as well as the average and maximum relative error of all queries
where a feasible solution was found.

Query Result Quality

Ins. Pr.[him:is] ¢  #Labels #Dom. T.[ms] Feas. Opt. Avg. Max.

31:43 0.00 32773 6352488 451.8 100.0% 100.0% 1.0000 1.0000

g? 30:41 0.01 19922 1949458 225.6 100.0% 89.4% 1.0001 1.0047
8 25:49 0.10 6891 208058 756  989% 62.8% 1.0013 1.0502
17:48 1.00 1742 11149 307 951% 47.6% 1.0144 1.2294

3:09:22  0.00 23304 5024403 346.1 100.0% 100.0% 1.0000 1.0000

%12 3:04:48 0.01 12803 1132685 151.6 100.0% 82.8% 1.0001 1.0145
E 2:47:09 0.10 5045 126 662 60.9 995% 57.5% 1.0020 1.0418

2:14:03 1.00 1428 7 641 282  927% 458% 1.0203 1.3960

negligible, but speedup (about a factor of 2) is moderate. For ¢ = 0.1, on the other hand,
the optimal solution is still found in many cases. The average error is roughly 0.2 %,
while the overall maximum is 5 %, which is acceptable in practice. Finally, for ¢ = 1.0,
both the average and maximum error increase significantly. Given that speedup is
limited compared to the case ¢ = 0.1, we conclude that the latter provides the best
tradeoff in terms of quality and query performance. Providing high-quality solutions,
it enables query times of well below 100 ms, which is fast enough even for interactive
applications. Moreover, note that in cases where no path is found (about 1 % of all
queries for £ = 0.1), a simple fallback solution could return the energy-optimal path,
which can be computed quickly; see Chapter 4. For the easier instances Ger-AX
and Eur-AX (not reported in the table), we generally observe smaller errors, but also
less speedup. This can be explained by the fact that the A* backward search often
becomes the bottleneck in the easier scenario when combined with a heuristic variant
of TFP. In particular, using the more sophisticated potential function 7, does not pay
off in this case.

Evaluating Scalability. We evaluate our fastest exact algorithms following the
methodology of Dijkstra ranks, defined for a query as the number of vertex scans
when running Dijkstra’s algorithm with costs representing unconstrained driving
time [Bas+16, SS05]. Thus, higher ranks correspond to harder queries.

Figure 5.22 shows results for our fastest exact approaches on Eur-PG, assuming
a battery capacity of 16 kWh. We ran 1000 random queries per Dijkstra rank (note
that these are not necessarily in-range queries). It turns out that median running
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Figure 5.22: Running times of CHAsp subject to Dijkstra rank. We show results for both
potential functions 75 and 7. For each rank, we consider 1000 random queries on Eur-PG,
assuming a battery capacity of 16 kWh.

times of CHAsp-rs and CHAsp-r,, are quite robust towards varying Dijkstra ranks.
We obtain the most expensive queries at ranks 2!7-21. (Note that random in-range
queries are likely to be among these most difficult ranks.) For higher ranks, the target
is often unreachable. In most cases, this is detected by the backward searches for
potential computation, as lower bounds on consumption exceed the battery capacity
(see Section 5.3.4). Note that we could achieve further speedup for high ranks, by
implementing reachability flags or running any technique that quickly computes
energy-optimal routes to detect unreachable targets (see Chapter 4). For lower ranks
(i. e., more local queries), the target is likely to be reachable on an unconstrained
shortest path, so goal direction of the potential functions works very well. In such
cases, the backward phase of A* search becomes the major bottleneck of the query,
which explains why the lightweight potential 75 yields better query times.

Although the median running time of CHAsp-7, is consistently higher than the
median of CHAsp-rs, the former is also more robust in that it produces fewer outliers.
Its more sophisticated potential function pays off especially for harder queries. Nev-
ertheless, as worst-case running time is exponential, we observe a few outliers that
exceed the median by several orders of magnitude.

While query times are relatively stable for different Dijkstra ranks, the vehicle range
has a major influence on query performance. Therefore, we evaluate our approaches
for different battery limits in Figure 5.23. For every considered battery capacity, we
ran 100 random in-range queries. We report the median running time if each of the
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Figure 5.23: Running times for different battery capacities. For each considered capacity
(ranging from 0.25 kWh to 1024 kWh), the plot shows the median running time of 100 random
in-range queries, provided that no query exceeded an hour of computation time. We evaluate
the BSP algorithm using multi-edges corresponding to speed samples, the TFP algorithm using
pairwise dominance tests, TFP with improved dominance tests (TFP-dom.), and our proposed
speedup techniques (A*-75, CHAsp-7s, and CHAsp-7,). We also show our heuristic approach
with parameter choice ¢ = 0.1, denoted CHAsp-¢-75.

100 queries terminated within one hour. For small capacities, this enables our basic
approaches, which are shown in the plot as well. We also evaluate the BSP algorithm,
using multi-edges to model speed adaptation.

As before, we observe a considerable speedup by simply switching to our more
realistic model, which is based on consumption functions. As discussed before, a vast
reduction in the number of vertex scans more than makes up for the more expensive
basic operations when using TFP. It achieves a speedup of up to two orders of magni-
tude over BSP. Plugging in the improved dominance checks described in Section 5.3.3
pays off as well, as it yields further speedup for battery capacities beyond 1 kWh.
Adding A” search, we achieve reasonable median running times of about a second for
capacities of up to 32 kWh, without any preprocessing. Our technique CHAsp-7s adds
preprocessing to provide further speedup by about an order of magnitude. Matching
our previous observations, median running times of CHAsp-r,, are slower for all
ranges up to 32 kWh. However, this algorithm is more robust against outliers and is
the only exact method that terminates within an hour for all queries at 64 kWh and up.
As a result, we are able to compute provably optimal results for (hypothetical) ranges
of up to 512kWh (around 3 000 km) in less than an hour. Finally, our heuristic variant
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scales rather well with vehicle range. Query times actually bottom out for large battery
capacities, as the vehicle range gets close to the graph diameter (for 1024 kWh, the
whole graph is always reachable).

5.5 Final Remarks

In this chapter, we proposed novel approaches for EV route planning that compute
constrained shortest paths based on realistic models of energy consumption and
charging stations. First, we introduced the CFP algorithm, which computes shortest
feasible paths with charging stops, minimizing overall trip time. Second, our TFP
algorithm respects battery constraints and takes adaptive speeds into account. Both
approaches can be improved by nontrivial combination with vertex contraction and
goal-directed search. Our resulting speedup techniques, CHArge and CHAsp, solve
the underlying N'#-hard problems optimally and with practical performance, even on
large, realistic inputs. For typical EV ranges, they find optimal solutions within seconds
and below, making our techniques the first practical exact approaches—with running
times similar to previous methods that are inexact or use less accurate models [Bau+14,
GP14, HF14, Stol2a]. We also proposed heuristic variants that enable even faster
queries, while offering high-quality solutions.

Future Work. An obvious next step would be the combination of both problem
settings discussed in this chapter (and the algorithmic approaches to solve them) to
finding routes with charging stops that allow for adaptive speeds [Bau+16e, Nik17].
Moreover, we are interested in more detailed models of energy consumption on turns.
In preliminary experiments, we modified our input instances in accordance with a
known edge-based approach for integrating turns [GV11]. Using a simple model that
takes consumption overhead for acceleration and deceleration along turns (or when
speed limits change) into account, we observed that preprocessing took slightly longer
but also resulted in smaller cores, while query times remained nearly the same. This
can be explained by the fact that the graph size increases when it is enriched with turn
costs, but the number of nondominated solutions decreases at the same time (minor
detours no longer allow energy savings). This indicates that our techniques can be
readily extended to handle turn costs and turn restrictions.

For integration of historic and live traffic, the adaptation of customizable techniques
appears to be a natural extension of our approaches. While preliminary experiments
showed that our techniques based on CH perform equally fast on vertex orders required
by CCH [DSW16], a major challenge is the design of fast customization algorithms
that can handle the dynamic data structures required by label sets in our approach.
On the other hand, preprocessing time for CHArge is already in the order of minutes
and can even be reduced by increasing the core size at the cost of higher query times;
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see Table 5.1 in Section 5.4.1. Similarly, preprocessing time of CHAsp can be reduced
to about an hour on continental road networks; see Table 5.6 in Section 5.4.2. This is
fast enough for many applications that require frequent updates of the graph.

We are also interested in extending our algorithms to more complex settings, e. g.,
by taking into account that charging stations might currently be in use by other
customers [SDK17]. In such a scenario, some charging stations could also be reserved
in advance to keep waiting times low [Mog15, QZ11]. Recall that CHArge keeps
all charging stations in the core graph, so dynamic reservation systems could be
integrated without any effect on the preprocessing routine.

From a practical point of view, it might be interesting to consider adaptive speeds
only on the fastest roads (e. g., motorways), where going below the speed limit really
pays off the most. Then, the majority of edge costs in the graph become constant,
so contracting vertices incident to only constant edges in CH might be a promising
approach. Given that vertices corresponding to motorways correlate with vertices of
high CH rank in a natural way, this could yield quite practical running times.

To enable faster heuristic variants, it would also be useful to precompute potentials
for A* search, as in ALT [GH05, GW05]. From a more theoretical perspective, ap-
proximability of both problem settings considered in this chapter is an open question.
Recent results by Strehler et al. [SMS17] include an FPTAS for a very similar problem
concerning routes with both adaptive speeds and charging stops, which might extend
to our setting. Regarding adaptive speeds, efficient representation and comparison of
(general) bivariate SoC functions is an open issue. Similar to profile queries discussed
in Chapter 4, one could also extend both problem settings considered in this chapter
by asking for an optimal solution for every initial SoC with respect to a given source
and a given target.
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of Isocontours in Road Networks

How far can I drive my EV, given my position and the current SoC? This question
expresses range anxiety (the fear of getting stranded) caused by limited battery ca-
pacities and a sparse charging infrastructure. An answer in the form of a map that
visualizes the reachable region helps to find charging stations in range and to overcome
range anxiety. This reachable region is bounded by curves that represent points of
constant energy consumption; such curves are usually called isocontours (or isolines).
Isocontours are typically considered in the context of functions f: R*> — R, e.g., if f
describes the altitude in a landscape, then the terrain can be visualized by showing
several isocontours (each representing points of constant altitude). In our setting, f
would describe the energy necessary to reach a certain point in the Euclidean plane.
However, f is actually defined only for a discrete set of points, namely for the vertices
of the road network. Thus, we have to fill the gaps by deciding how the isocontour
should pass through regions between the roads. The fact that the quality of the result-
ing visualization heavily depends on these decisions makes computing isocontours in
road networks an interesting algorithmic problem.

Somewhat more formally, we assume the road network to be given as a directed
graph G = (V,E), along with vertex positions in the plane and two cost functions
d: E - Rypandc: E — Rrepresenting length (or distance) and resource consumption,
respectively. For a source vertex s € V and a range r € R, a vertex v € V belongs to
the reachable subgraph if the shortest path from s to v has a total resource consumption
of at most r. Note that shortest paths are computed according to the length, while
reachability is determined by the consumption. Coming back to our initial question
concerning the range of an EV, the source vertex is the initial position, the range is
the current SoC, the length corresponds to driving time, and energy is the resource
consumed on edges. We allow negative resource consumption to take recuperation into
account. For the sake of simplicity, we consider the cost function d to be nonnegative
in this chapter. Nevertheless, all algorithms described below can also be adapted to
range visualization subject to driving on energy-optimal routes by the same means as
described in Chapter 4.

Note that our setting is sufficiently general to also allow for other applications. By
setting the length as well as the resource consumption of edges to the correspond-
ing driving time (i.e., d = c), one obtains the special case of isochrones. There is a
wide range of applications for isochrones, including reachability analyses [Bau+08,
Gam+11, GBI12, OMS00], geomarketing [Efe+13b], and environmental and social
sciences [IBG13]. Known approaches focus on isochrones of small or medium range.
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(a) (b)

Figure 6.1: Real-world example of isocontours in a mountainous area (near Bern, Switzerland).
Both figures visualize the range of an EV positioned at the black disk with an SoC of 2 kWh.
Note that the polygons representing the isocontour contain holes, due to unreachable high-
ground areas. (a) An isocontour with over 10 000 segments computed by the approach described
in Section 6.5.1, which resembles state-of-the-art techniques [MG10]. (b) The result of one of
our new approaches, presented in Section 6.5.3, using 416 segments.

But isochrones can be useful in more challenging scenarios, for example, to visualize
the area reachable by a truck driver within a day of work. Similarly, the range of an EV
is beyond the scale of isocontours considered by previous approaches. This motivates
our work on fast isocontour visualization.

We propose isocontours in road networks that are represented by polygons. Our
algorithms for computing the isocontours are guided by three major objectives: (1) Iso-
contours must be exact in the sense that they correctly separate the reachable subgraph
from the remaining unreachable subgraph; (2) the isocontours should be polygons of
low complexity (i. e., consist of few segments, enabling efficient rendering and a clear,
uncluttered visualization); and (3) algorithms should be fast enough in practice for
interactive applications, even on realistic inputs of continental scale.

Figure 6.1 shows an example of isocontours visualizing the range of an EV. Fig-
ure 6.1a depicts a polygon that closely resembles the output of isocontour algorithms
considered state-of-the-art in recent works [Efe+13a, Efe+13b, GBI12, MG10]. Unfor-
tunately, the number of segments becomes quite large even in this medium-range
example (more than 10000 segments). In this chapter, we propose algorithms for
efficiently computing polygons with fewer segments to represent isocontours in road
networks. All approaches compute isocontours that are exact, i. e., they contain ex-
actly the subgraph that is reachable within the given resource limit, while having low
descriptive complexity. Figure 6.1b shows the result of our approach presented in
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Section 6.5.3, which represents the same reachable subgraph as in Figure 6.1a, but uses
only 416 segments in total.

Chapter Overview. In Section 6.1, we formalize the notion of reachable and un-
reachable subgraphs. Moreover, we state the precise problem and outline our algo-
rithmic approach to solve it. It requires multiple steps, which are covered by the
subsequent Sections 6.2-6.5.

First, Section 6.2 tackles the important subproblem of computing the reachable
subgraph from a given source. We show how it can be solved by a variant of Dijkstra’s
algorithm. For better query performance, we propose several speedup techniques that
enable fast computation of a compact representation of the reachable subgraph and
are easy to parallelize. We describe a new algorithm based on CRP [Del+17] and a
faster variant of isoGRASP [EP14]. Furthermore, we introduce novel approaches that
combine graph partitions with variants of PHAST [Del+13b, DGW11].

Given the reachable and unreachable subgraph computed by any of the techniques
listed above, Section 6.3 attacks the subproblem of computing border regions, i.e.,
polygons that represent the geometric boundaries of the reachable and unreachable
subgraph. An isocontour must separate these boundaries.

In Section 6.4, we consider the special case of separating two hole-free polygons by a
polygon with minimum number of segments. This problem can be solved in O(nlog n)
time [Wan91], where n is the total number of segments of both input polygons. We
propose a simpler algorithm that uses at most two additional segments, runs in linear
time, and requires a single run of a minimum-link path algorithm. We also propose a
minimum-link path algorithm that is simpler than previous approaches [Sur86].

Section 6.5 extends these results to the general case, where border regions may have
holes. Since the complexity of the resulting problem is unknown, we focus on efficient
heuristics that work well in practice, but do not give guarantees on the complexity of
the resulting isocontours.

Section 6.6 contains our extensive experimental evaluation on our main test in-
stance and other large, realistic inputs. It demonstrates that all approaches are fast
enough even for use in interactive applications, computing isocontours within a few
milliseconds. We close with final remarks in Section 6.7.

6.1 Problem Statement and General Approach

Let G = (V,E) be a graph, which we consider as a geometric network where vertices
have a fixed position in the Euclidean plane and edges are represented by straight-line
segments between their endpoints. As before, we assume that G is strongly connected.
A source vertex s € V and a range r € R together partition the network into two
parts, one that is within range r from s, and the part that is not. An isocontour separates
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Figure 6.2: Graph with reachable (white) and un-
reachable (dark gray) vertices for a source s and
range 2, assuming uniform edges costs of 1 (for length
and consumption). Edges drawn solid are passable (un-
reachable) if both endpoints are reachable (unreach-
able). Dashed edges are border edges if they have an
unreachable endpoint and accessible otherwise. Note
that the blue polygon is in fact a range polygon.

these two parts. We are interested in visualizing such isocontours efficiently. Below, we
give a precise definition of the (un)reachable parts of the network and formally define
range polygons, which we use to represent isocontours (Section 6.1.1). Afterwards, we
outline a generic approach to compute such an isocontour (Section 6.1.2).

6.1.1 Range Polygons

A path P, in G starting at the source s € V is passable if the consumption of Ps o, i.e.,
the sum of its edge consumption values, is at most r. A vertex v € V is reachable (with
respect to the range r € R) if the shortest s—v path is passable. A vertex that is not
reachable is unreachable. For edges the situation is somewhat more complicated. We
partition the edges into four types, namely unreachable edges, border edges, accessible
edges, and passable edges. Figure 6.2 shows an example of the different edge types in
a small graph. If both endpoints of an edge (u,v) € E are unreachable, then the edge
(u,v) is also unreachable. If exactly one endpoint is reachable, then (u,v) is not part of
the reachable network and we call it border edge. However, the fact that both u and v
are reachable does not necessarily imply that (u,v) is part of the reachable network.
Let Ps , and P; . denote the shortest paths from s to u and v, respectively. If their
resource consumptions do not allow traversal of the edge (u,v) in either direction, i. e.,
¢(Ps,u) + c(u,v) > r and c(Ps,») + c(v,u) > r in case (v,u) € E, we do not consider
(u,v) as reachable. Since we can reach both endpoints of (u,v), we call it accessible.
Otherwise, the edge can be traversed in at least one direction, so it is passable.

Let V, be the set of reachable vertices and let V,, = V \ V, be the set of unreachable
vertices of G. Similarly, let E,,, Ep, E,, and E, denote the set of unreachable edges, border
edges, accessible edges, and passable edges, respectively. Note that for arbitrary pairs
of edges (u,v) € E and (v,u) € E, both edges belong to the same set. The reachable
part of the network is G, = (V;.,E,), and the unreachable part is G, = (V,,E,). A
range polygon is a plane (not necessarily simple) polygon P separating G, and G, in
the sense that its interior contains G, and has empty intersection with G,. Note that
every range polygon P intersects each border edge an odd number of times and each
accessible edge an even number of times. In particular, an accessible edge may be
totally or partially contained in the interior of a range polygon.
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Figure 6.3: Different cases of crossing edges. (a) Intersection of a passable and an unreachable
edge. The dummy vertex (center) is reachable. The unreachable edge is split into two border
edges. (b) Intersection of an accessible and an unreachable edge. The dummy vertex is
unreachable, dashed edges indicate new border edges. (c) Intersection of an unreachable edge
and a border edge, creating unreachable edges and a new border edge. (d) An intersection of
accessible edges creates an unreachable vertex and four new border edges.

If the input graph G is planar, one can construct a range polygon by first slightly
growing the outer face of the subgraph induced by all reachable vertices. Then, shrink-
ing the inner faces and making each shrunk face a hole results in a valid range polygon,
though it may contain many holes; see the range polygon in Figure 6.2. However, if G
is not planar, a range polygon may not even exist: If a passable edge crosses an unreach-
able edge, the requirements of including the passable and excluding the unreachable
edge obviously contradict. To resolve this issue, we consider the planarization G, of G,
which is obtained from G by considering each intersection point p € R? as a dummy
vertex that subdivides all edges of G containing p. We transfer the above partition of
G into reachable and unreachable parts to G, as follows. A dummy vertex is reachable
if and only if it subdivides at least one passable edge of the original graph. As before,
an edge of G,, is unreachable if both endpoints are unreachable, and it is a border edge
if exactly one endpoint is reachable. If both endpoints are reachable, it is accessible
(passable) if and only if the edge in G containing it is accessible (passable). Clearly,
after the planarization, a range polygon always exists. Figure 6.3 shows different
cases of crossing edges. Note that this way of handling crossings ensures that a range
polygon for G, contains the reachable vertices of G and excludes the unreachable
vertices of G. However, unreachable edges of G may be partially contained in the
range polygon if they cross passable edges.

Finally, to avoid explicit handling of special cases, we add a bounding box of dummy
vertices and edges to G,, connecting each vertex in the bounding box to its closest
vertex in G, with an edge of infinite length. Thereby, we ensure that neither the
reachable nor the unreachable subgraph is empty, as the reachable (unreachable)
subgraph contains at least the source (bounding box).

6.1.2 General Approach

We seek to compute a range polygon with respect to the planarized graph G, that has
the minimum number of holes, and among these we seek to minimize the complexity
of the range polygon, i. e., its number of segments. Note that using G, instead of G
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Figure 6.4: Removing unnecessary holes of a range polygon. (a) A hole that contains no
unreachable vertices can always be removed. (b) The resulting interior (shaded area) of the
range polygon. (c) Two holes that can be merged into one as they lie in the same border region.
(d) The resulting range polygon. (e) These two holes cannot be merged, as they are separated
by a passable edge.

may increase the number of holes (see the case depicted in Figure 6.3d), but guarantees
the existence of a solution.

Consider the graph G’ consisting of the union of the reachable graph G, and the
unreachable graph G,. Clearly, all segments of the range polygon lie in faces of G’.
A face of G’ that is incident to both reachable and unreachable components is called
border region. Since a range polygon separates the reachable and unreachable parts,
each border region contains at least one connected component of a range polygon.
Thus, the number of border regions is a lower bound on the number of holes. On
the other hand, components in faces that are not border regions can be removed and
multiple connected components in the same border region can always be merged,
potentially at the cost of increasing complexity; see Figure 6.4. Hence, a range polygon
with minimum number of holes (with respect to G,) can be computed as follows.

1. Compute the reachable and unreachable parts of the input graph G.

2. Planarize the graph G, compute the reachable and unreachable parts of its
planarization G,.

3. Compute the border regions in G,.

4. For each border region B, compute a simple polygon of minimum complexity
that is contained in B and separates the unreachable components incident to B
from the reachable component.

In the following sections, we discuss several alternative implementations for these
steps. The first step is handled in Section 6.2. It is solved by a variant of Dijkstra’s
algorithm. We adapt speedup techniques to achieve faster queries in practice. Steps 2
and 3 are described together in Section 6.3. Section 6.4 and Section 6.5 are concerned
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Figure 6.5: A border region B (shaded), defined by
the set R = {r} with the reachable boundary (blue)
and a set U = {uy,uy,u3} of unreachable bound-
aries (red). The reachable boundary corresponds to
the part that is reachable from the indicated source s
with a range of 2, assuming uniform edge costs of 1
(with respect to both length and consumption).

with Step 4. Each connected component of the boundary of a border region is a
hole-free, non-crossing polygon. Recall from Section 3.2 that such a polygon may
contain the same segment twice in different directions or consist of a single vertex;
see Figure 6.5. Each border region is defined by two sets R and U of hole-free, non-
crossing polygons, where R contains the boundaries of the reachable components and
U contains the boundaries of the unreachable components. We seek a simple polygon
with the minimum number of segments that separates U from R. This problem has
been previously studied. Guibas et al. [Gui+93] showed that it is N'P-hard in general.
In our case, however, |R| = 1 always holds since the reachable part of the network is
connected by definition. Guibas et al. left this case as an open problem and, to the best
of our knowledge, it has not been resolved since.

In Section 6.4, we first consider border regions that are incident to only one unreach-
able component, i.e., [R| = |U| = 1. In this case, a polygon with the minimum number
of segments that separates R and U can be found in O(n log n) time (where n is the total
number of segments in the border region) using the algorithm of Wang [Wan91]. This
algorithm is rather involved, but it contains a linear-time subroutine that computes
an OPT + 1 approximation and is based on the computation of two minimum-link
paths. Instead, we propose a simpler algorithm that uses at most two more segments
than the optimum, runs in linear time, and relies on a single run of a minimum-link
path algorithm. Clearly, spending an additional segment to save about a factor of 2 in
running time is a favorable tradeoff in practice. Furthermore, we give a new linear-
time minimum-link path algorithm that is simpler than previous algorithms for this
problem [Sur86]. In Section 6.5, we consider the general case of our setting, where a
border region may be incident to more than one unreachable component. We discuss
several algorithms for this problem. As its complexity is unknown, we present heuristic
approaches with (almost) linear running time that perform well in practice, but have
no provable guarantees on the number of segments in the output.

6.2 Computing the Reachable Subgraph

We deal with the first important subproblem that we identified in our generic approach
described in the previous section. It concerns the computation of the reachable and
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unreachable part of the input graph G = (V,E). Interestingly, there is no canonical
definition of a graph-based representation of isocontours in the literature. A unifying
property, however, is the consideration of a range limit (time or some other limited
resource), given only a source location for the query and no specific target. As a basic
approach, we show that a pruned variant of Dijkstra’s algorithm [Dij59] can be used
to compute distances to all reachable vertices (Section 6.2.1). Newer approaches in
the literature [EP14, Gam+11, GBI12] subscribe to the same model of computing the
distances to reachable vertices. However, for our application it suffices to identify only
the set of reachable vertices and edges, but no distances. In fact, it serves to just find
the vertices and edges on the boundary of the range. Exploiting these observations,
we derive new approaches for faster computation of isocontours.

We propose speedup techniques that employ offline preprocessing on the input
graph G to quickly answer online queries consisting of a source vertex s € V and a
range r € R(. We distinguish metric-independent preprocessing (must be run when
the input graph changes) and metric-dependent customization (only the length function
and the consumption function change). We introduce techniques based on CRP
(Section 6.2.2) and a faster implementation of isoGRASP (Section 6.2.3). Moreover, we
introduce approaches that extend PHAST (Section 6.2.4). To simplify their description,
we focus on the scenario of isochrones (d = ¢) in Sections 6.2.1-6.2.4. Afterwards, we
discuss how the algorithms can be modified to compute the necessary information in
our more general scenario and serve output definitions from other applications that
require, e. g., the set of reachable vertices (Section 6.2.5).

6.2.1 IsoDijkstra

As mentioned above, we consider the case d = ¢ for now. In other words, we assume
that length equals consumption on every edge, as is the case when computing, e. g.,
isochrones. Additionally, we focus on the computation of only the set E;, of border
edges. Note that this set separates the reachable and the unreachable part, so it can
be seen as a compact representation of these subgraphs. In Section 6.2.5, we describe
how other information required for isocontour visualization is retrieved efficiently,
such as the set of accessible edges. We also discuss then what has to be changed in the
more general scenario, where distance and consumption of an edge may differ.

To distinguish, we call a border edge (u,v) € Ep, outward if c(s,u) < r and c(s,v) > r.
Conversely, we call (u,v) inward if c¢(s,u) > r and ¢(s,v) < r hold. Our isoDijkstra
algorithm works along the lines of Dijkstra’s algorithm (see Section 3.3.1). It maintains
and propagates consumption labels consisting of (tentative) values ¢(-) for resource
consumption, all initially set to oo, except for c¢(s) = 0 at the source s € V. In each
iteration, it extracts and settles a vertex u € V with minimum label ¢(u) from a priority
queue (initialized with s). It then scans all edges (u,v) € E: If c(u) + c(u,v) < c(v), it
updates c(v) accordingly and adds (or updates) v in the queue. Note that we can also
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adapt EVD in a similar fashion to deal with consumption values that represent energy
consumption of an EV (see Section 4.2.1).

In our simplified problem setting (assuming d = c), we can apply the following
stopping criterion: The search may stop once the consumption label of the minimum
element in the queue exceeds the range r € R(. After its termination, we know the
resource consumption of every settled vertex v € V. Since consumption labels of
unsettled vertices are upper bounds, v is reachable if and only if ¢(v) < r. Moreover,
outward border edges are easily determined: We scan all vertices left in the queue,
which must be unreachable, and add incident edges to Ej, where the other endpoint
is reachable. Inward border edges can be determined during the same scan over the
queue if we apply the following modification to the isoDijkstra search. When settling
a vertex u € V, we also scan incoming edges (v,u) € E. If ¢c(v) = co, we insert v into
the queue with a key of co. Thereby, we guarantee that for both types of border edges,
the unreachable endpoint is contained in the queue when the search terminates.

6.2.2 IsoCRP

The three-phase workflow of CRP [Del+17] distinguishes preprocessing and metric
customization. Building upon MLD [Del+09, HSW09, JP02, SWW00, SWZ02], the
preprocessing phase finds a (multilevel) vertex partition of the road network with
L € N levels. For each level ¢ € {1,...,L} of the partition, it induces an overlay
graph H’ containing all boundary vertices and boundary edges with respect to the
partition V¢ at level £, as well as cliques of shortcut edges between pairs of boundary
vertices that belong to the same cell Vf € V! see Section 3.3.2 for details. Metric
customization computes the lengths of all shortcuts.

The basic idea of isoCRP is to run isoDijkstra on the overlay graphs during queries.
We use shortcuts to skip cells that are entirely reachable, but descend into lower levels
in cells that intersect the isocontour to determine border edges in G. There are two
major challenges in determining such cells, which are illustrated in Figure 6.6. First,
descending only into cells where traversing a shortcut exceeds the range r € Ry is
not sufficient: We may miss border edges that are part of no shortcut, but belong to
shortest paths leading into the cell; see Figure 6.6a. We have to precompute additional
information during customization to efficiently identify such cells in a query. Second,
descents into cells must be consistent for all boundary vertices (i. e., we have to descend
at all vertices). In particular, it is not sufficient to descend only at boundary vertices
where a shortcut cannot be traversed; see Figure 6.6b. This motivates our two-phase
approach, which ensures that we descend at either all or none of the boundary vertices
of each cell. Below, we describe customization and the query phase of our approach.

Customization. Along the lines of plain MLD, we obtain shortcut lengths by run-
ning Dijkstra’s algorithm from each boundary vertex, restricted to the respective cell.

Section 6.2

193



Chapter 6

194

Fast Exact Visualization of Isocontours in Road Networks

0—2—% @
Rl e, 3
o \@/
(@) (b)

Figure 6.6: Determining active cells. Gray lines indicate cell boundaries of the partition.
Dashed edges correspond to shortcuts. (a) The only shortcut of the cell has length 2. Thus,
reaching either boundary vertex with a (remaining) range of r > 2 implies that the shortcut
can be traversed, even if not all internal vertices are reachable. (b) Using the overlay, the search
graph for a query from the source s consists of the (undirected) edges {s,u}, {s,v}, and {u,v}.
An initial range of r = 4 is surpassed for the fist time after v is settled with consumption label 3,
since the edge {u,v} cannot be traversed from v without exceeding the range. Descending
to the original graph only at v would lead isoDijkstra to erroneously report {v, w} as border
edge. The s—w path via u that makes w reachable and {v, w} passable would not be found.

Additionally, we make use of the same searches to compute eccentricities for all bound-
ary vertices. Eccentricities are used during queries to determine cells that may contain
isocontour edges. Given a boundary vertex u in a cell Vf, its (level-£) eccentricity,
denoted eccy(u) for € € {1,...,L}, is the maximum finite resource consumption neces-
sary to reach some vertex v € Vif from u in the subgraph induced by Vi‘?. This subgraph
is not strongly connected in general, i. e., there may exist vertices in V that cannot be
reached from u without leaving the cell Vf. However, restricting eccentricities to cells
is sufficient to maintain correctness of our approach and enables faster customization.
Recall that the shortcuts of each cell form a clique, which is represented as a square
matrix in contiguous memory for better cache efficiency. Storing eccentricities adds a
single column to each matrix.

We compute eccentricities as follows. At the lowest level, the eccentricity of a
boundary vertex u € V equals the consumption label of the last vertex that is scanned
in the search from u, provided that no stopping criterion is applied (recall that the
search is restricted to the level-1 cell V;' containing u). On higher levels, previously
computed overlays are used to obtain shortcuts for faster customization. We compute
upper bounds on eccentricities for these levels. During the search from a boundary
vertex u € Vf on the current level £ € {2,...,L}, we maintain a label eccy(u). Initially,
it is set to 0. When scanning a vertex v € Vf, we check if the sum of the consumption
label ¢(v) and the eccentricity ecce—1(v) of v exceeds the current bound on ecce(u) and
update it, if necessary. Observe that after the search has terminated, eccy(u) is indeed
an upper bound on the level-£ eccentricity of u. It is not necessarily tight, however,
since eccentricities of lower levels are restricted to their (lower-level) cells, whereas
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a shorter path from u to the corresponding endpoint may exist in the remaining
graph. Upper bounds may lead to unnecessary descents into cells during queries, but
they do not violate correctness and the overhead for computing the bounds during
customization is negligible.

To improve data locality and simplify index mapping, vertices (which are represented
by indices {1,...,n} in practice) are reordered in descending order of level during
preprocessing, breaking ties by cell (see also Section 4.4.1).

Queries. Given a source vertex s € V and a range r € Ry, queries work in two
phases. We say that a cell of the partition at some level is active if its induced subgraph
contains at least one border edge. The first phase determines active cells, while the
second phase descends into active cells to determine border edges. We allow the
algorithm to falsely mark cells as active, which does not affect correctness (though
the second phase may become more expensive).

The upward phase runs isoDijkstra on the search graph consisting of the union of
the top-level overlay and, for each level of the multilevel partition, the subgraph of
the overlay induced by the cell containing the source s. To determine active cells, we
maintain two flags in(-) and out(:) per cell on each level, to indicate whether a cell
contains at least one vertex that is reachable (in range) or unreachable (out of range),
respectively. Initially, we set in(Vif ) to false and out(Vf) to true for each cell Vf of
every level £ € {1,...,L}. During the search, flags are updated as follows. When
scanning some vertex u € Vif atlevel £ € {1,...,L} (i.e, £ > 1 is the lowest level
such that u is contained in the subgraph of H’ that belongs to the search graph), we
set in(Vf ) to true if c(u) < r. Next, we check whether c(u)+eccg(u) < r holds. Observe
that this condition is not sufficient to unset out(Vf), because eccy(u) was computed on
the subgraph induced by Vf. If this subgraph is not strongly connected, c(u) + eccg(u)
is not an upper bound on the resource consumption to any vertex in Vl.'f in general:
A higher resource consumption may be necessary to reach vertices in Vf that are
not contained in the same strongly connected component as u in the cell-induced
subgraph. However, we know that due to the matrix representation, vertices in different
components are connected to u via a shortcut of length co. Therefore, when scanning
an outgoing shortcut (u,v) with length oo, we also check whether ¢(v) + ecce(v) < r.
If the condition holds for u and all boundary vertices v € Vf that are not in the same
strongly connected component as u in the cell-induced subgraph of Vif, we can safely
unset out(Vf). Toggled flags are final, so we no longer need to perform any checks
for them. After the upward phase finished, exactly the cells Vf that have both in(Vf)
and out(V,’) set to true are considered active, since border edges are only contained in
cells that contain both reachable and unreachable vertices.

The downward phase consists of L subphases. In descending order of level, and for
every active cell Vf at the current level € € {1,...,L}, each subphase runs isoDijkstra
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on the subgraph of the overlay H/~! induced by V (recall that H’ = G denotes the
input graph). Initially, all boundary vertices of Vi‘) at level ¢ are inserted into the
priority queue with their consumption labels according to the previous phase as key.
For ¢ > 2, we check eccentricities on-the-fly as before to mark active cells at level £ — 1
for the next subphase. Each isoDijkstra search (including the upward phase) uses the
stopping criterion from Section 6.2.1. Border edges are determined and added to the
output at the end of each search, as described in Section 6.2.1. On higher levels, only
boundary edges of the partition are added to E;, (in contrast to shortcuts, which do
not belong to the input graph).

Parallelization. For faster customization, the cells of each level are processed in
parallel [Del+17]. During queries, the (much more expensive) downward phase is
parallelized in a natural way, as cells at the same level can be handled independently.
We assign cells to threads and synchronize results between subphases (because each
cell needs to be processed after its corresponding supercell). To reduce synchronization
overhead, we process cells on lower levels in a top-down fashion within the same
thread. This requires no synchronization constructs at all and false sharing (i. e.,
concurrent access to the same cache line) upon access of consumption labels becomes
highly unlikely. Preliminary experiments showed that this strategy pays off for all but
the topmost level, where the number of cells is small and hence, parallelism cannot be
exploited well if all subcells of a top-level cell are assigned to the same thread.

Implementation Details. We make use of clique flags [Bau+16f] during queries, to
reduce running time of the isoDijkstra searches on the overlays; c.f. Section 4.4.1. We
store a flag for every boundary vertex v € V to indicate whether it was reached via a
shortcut edge (as opposed to a boundary edge). When extracting v, we neither scan
outgoing shortcut edges nor mark its cell as active if v was reached via a shortcut.
This does not violate correctness, since scanning shortcut edges cannot improve any
consumption labels in this case and the check for marking the cell was done before.

6.2.3 Faster IsoGRASP

The GRASP approach [EP14] extends MLD to batched query scenarios by storing for
every level-£ boundary vertex, with € € {0,...,L—1}, its incoming downward shortcuts
from boundary vertices of its corresponding supercell at level £+ 1 (recall that at level 0,
every vertex is a boundary vertex). Customization follows MLD, collecting downward
shortcuts in a separate downward graph H*. During queries, original isoGRASP [EP14]
runs Dijkstra’s algorithm on the overlays (as in MLD), marks all reachable top-level
cells, and propagates distances in marked cells from boundary vertices to those at
the levels below in a linear scan over the corresponding downward shortcuts. In this
section, we accelerate isoOGRASP significantly by making use of eccentricities.
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Customization. Metric customization of our variant of isoGRASP works similar
to isoCRP, computing shortcuts and eccentricities with Dijkstra’s algorithm as de-
scribed in Section 6.2.2. We obtain costs of downward shortcuts during the same
searches. We apply edge reduction (removing shortcuts via boundary vertices) [EP14]
to downward shortcuts, but stick to the matrix representation for overlay shortcuts.

Queries. As in isoCRP, queries run in two phases, with the upward phase being
identical to the one described in Section 6.2.2. Afterwards, the scanning phase handles
levels from top to bottom in L subphases to process active cells. Instead of running
isoDijkstra on cell-induced overlays, each subphase performs a linear scan over the
downward edges within each active cell on the current level. Given some active level-¢
cell Vf, with € € {1,...,L}, we sweep over its internal vertices, i. e., all vertices of the
overlay H'™! that lie in V{ and are no level-¢ boundary vertices. For each internal
vertex v € Vf, its incoming downward shortcuts are scanned to obtain the resource
consumption that is necessary to reach v.

To determine active cells for the next subphase (in case ¢ > 2), we maintain flags
in(-) and out(-) as in isoCRP. When scanning some vertex u € Vf‘l, we set in(Vf‘l)
to true if c(u) < r holds. To unset out(Vf_l), we check whether c(u) + eccy—1(u) <r
and c¢(v) + ecce—1(v) < r hold for all boundary vertices v € Vi‘) ~1 that are not in the
same strongly connected component as u in the cell-induced subgraph of Vf‘l in the
overlay H’~!. We achieve some speedup by precomputing these vertices for each
boundary vertex on each level and storing them in a separate adjacency array. After
we updated the consumption labels of the internal vertices of Vl.‘), we also sweep over
all level-£ boundary vertices once more to update the flags of their corresponding cells
at level £ — 1. Thereby, we make sure that we set flags correctly in cases where, e. g.,
the only reachable vertex in some cell at level £ — 1 is a boundary vertex with respect
to level ¢ (and not an internal vertex).

Similar to isoCRP, the upward phase reports all (original) border edges contained
in its search graph. For the remaining border edges, we sweep over internal vertices
a second time after processing a cell in the scanning phase. Note that at this point,
reachability of these vertices is known. Hence, we scan incident (incoming and
outgoing) edges of each internal vertex in the original graph G to determine missing
border edges. To avoid duplicates and to ensure that endpoints of examined edges
have correct consumption labels, we skip edges leading to vertices with higher indices.
Since vertices are reordered during preprocessing, this automatically prevents us from
checking edges leading to vertices on lower levels, where the consumption label might
not be final yet. Moreover, edges on the same level are reported at most once, so we
do not have to check for duplicates explicitly. In summary, an edge visited during this
sweep is reported if it is present in the original graph, leads to a vertex with lower
index, and reachability of both incident vertices differs.
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Parallelization. Both customization and queries are parallelized in the same fashion
as iSoCRP. To avoid concurrent memory access requiring expensive locking mecha-
nisms when customizing isoGRASP, we maintain thread-local containers for downward
edges. The downward graph is built after customization is completed, by merging the
edge sets of all threads.

6.2.4 1soPHAST

Preprocessing of PHAST [Del+13b] contracts vertices in increasing order of (heuristic)
importance, as in CH [Gei+12b]. Vertices are also assigned levels £(-), initially set
to 0. When contracting a vertex u € V, we set £(v) = max{{(v),f(u) + 1} for each
uncontracted neighbor v € V. Preprocessing results in two edge sets ET and E*
consisting of upward and downward edges, each composed of original edges and
shortcuts. PHAST handles one-to-all queries from a source s € V by running a forward
CH search from s on G1 = (V,ET), followed by a downward phase consisting of a linear
scan over all vertices in the graph in descending order of level. For each vertex, its
incoming edges in G! are scanned to update consumption labels. RPHAST [DGW11]
is tailored to one-to-many queries with target sets T C V. It first extracts the relevant
subgraph G% of G = (V,E') with respect to T. Then, it runs the linear scan on Gi;
see Section 3.3.2 for details.

Our isoPHAST algorithm builds on PHAST and RPHAST to compute the reachable
subgraph. Since the target set is not part of the input, we use graph partitions to restrict
the subgraph that is examined for border edges. Queries work in three phases, in
which we (1) run a forward CH search, (2) determine active cells, and (3) perform linear
scans over all active cells as in PHAST. Below, we describe preprocessing of isoPHAST,
before proposing different strategies to determine active cells.

Preprocessing. First, we find a (single-level) partition V = {Vj,...,Vi} of the
vertices of the input graph and reorder vertices, such that boundary vertices are pushed
to the front, breaking ties by cell (providing the same benefits as in MLD). Afterwards,
we use CH to contract all cell-induced subgraphs, but leave boundary vertices of the
partition uncontracted. This results in a core graph, which is an overlay graph consisting
of all boundary vertices, all boundary edges, and shortcuts between boundary vertices
obtained during contraction. Non-core vertices inside cells (i. e., vertices that were
contracted) are reordered according to their CH levels to enable cache-efficient linear
downward scans. Our CH preprocessing routine follows Geisberger et al. [Gei+12b],
but takes priority terms and hop limits from Delling et al. [Del+13b]. Preprocessing
also results in an upward graph G' = (V,E'), containing edges of each cell leading to
vertices of higher level, added shortcuts between core vertices, and boundary edges
of the partition V. We also obtain a downward graph G* = (V,E!) that stores for
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each non-core vertex its incoming edges from vertices of higher level. Further steps of
preprocessing depend on the query strategy and are described below.

IsoPHAST-CD. Our first strategy, denoted CD (Core-Dijkstra), performs isoDijkstra
on the core graph to find active cells. As in isoCRP, we require eccentricities for core
vertices to determine active cells. They are obtained during preprocessing as follows.
To compute the eccentricity ecc(u) of a boundary vertex u € V; in some cell V; € V,
we run (as last step of preprocessing) Dijkstra’s algorithm on the subgraph of G’
induced by all core vertices in the cell V; of u, followed by a linear scan over the
internal vertices of V; to obtain their resource consumption, as in PHAST. When
processing a vertex v € V; during this scan, we update the eccentricity of u by setting
it to ecc(u) = max{ecc(u),c(v)}.

Queries start by running isoDijkstra from the source in G'. Within the source cell,
this corresponds to a forward CH search, since G' stores only upward edges. Note
that for all other cells, only core vertices (i. e., boundary vertices of the partition) are
visited. At core vertices, we maintain flags in(-) and out(-) to determine active cells,
as described in Section 6.2.2. We use an adjacency array to store core neighbors in
different cell-induced strongly connected components, as in Section 6.2.3. If the core is
not reached, only the source cell is set active. Once the search has terminated, reachable
core vertices have correct consumption labels. Next, we perform a linear PHAST scan
over the internal vertices of each active cell, obtaining resource consumption from
the source vertex to all vertices in active cells that are reachable (due to the stopping
criterion used in the first phase, we only get upper bounds for unreachable vertices,
which suffices for border edge detection).

Border edges crossing cell boundaries are added to the output set E; during the
isoDijkstra search, whereas border edges incident to at least one non-core vertex
are obtained during the linear scans as follows. When scanning incident edges of a
vertex v € V, neighbors at higher levels have final consumption labels. Moreover, the
label of v is final after scanning its incoming edges (u,v) € E'. Thus, looping through
the incoming original edges a second time suffices to find the remaining border edges.
Since original outgoing edges (v,w) € E to vertices w € V at higher levels are not
contained in E' in general, we add dummy edges of length oo to E' to ensure that
neighbors in G are also adjacent in G'. Finally, we indicate with an additional flag
whether an edge is a shortcut or an original edge to ensure that only original edges
are added to Ep.

IsoPHAST-CP. Instead of running isoDijkstra, our second strategy CP (Core-PHAST)
performs a linear scan over the core to find active cells. Eccentricities are precomputed
after the generic preprocessing routine as described for isoPHAST-CD. Next, we use
CH preprocessing to contract all remaining vertices in the core and reorder core
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vertices according to their levels (vertices with higher levels are pushed to the front).
Finally, we add the shortcuts computed during core contraction to GT and G*.
Queries strictly follow the three-phase pattern discussed above. We first run a
forward CH search in G (until the queue runs empty). Then, we determine active cells
and compute resource consumption for all core vertices in a linear PHAST scan over
the core, scanning edges in G' to propagate consumption values to vertices with lower
level. As before, we maintain flags in(-) and out(-) for core vertices (c.f. Section 6.2.2)
and use an adjacency array storing core neighbors in different cell-induced strongly
connected components (c. f. Section 6.2.3). To find border edges between core vertices,
we insert dummy edges into the core to preserve adjacency with respect to the original
graph G. The third phase (linear scans over active cells) is identical to isoPHAST-CD.

IsoPHAST-DT. Both strategies described before require a relatively expensive sec-
ond phase (determining active cells). Our third strategy DT (Distance Table) uses a
distance (bounds) table to accelerate this phase. Working with such tables instead of a
dedicated core search benefits from edge partitions, since the unique assignment of
edges to cells simplifies border edge retrieval (recall that previous strategies had to col-
lect border edges during both the second and the third phase of the algorithm). Given a
partition & = {Eq,...,Er} of the set E of edges in the input graph, the table stores for
each pair E;, E; of cells, with i € {1,...,k} and j € {1,...,k}, alower bound ¢(E;, E;)
and an upper bound ¢(E;, E;) on the resource consumption from E; to Ej, i. e., it holds
that ¢(E;,E;) < distc(u,v) < ¢(E;,E;) for all vertices u € E; and v € E; (we abuse
notation, saying that u € E; if the vertex u is an endpoint of at least one edge e € E;).
During a query, given a source s € E; for some i € {1,...,k} (if s is ambiguous with
respect to &, we pick any cell containing s) and a range r € Ry, all cells E; with
j€{1,...,k} and ¢(E;,E;) < r < ¢(E;,E;) are set active.

Preprocessing first follows isoPHAST-CP, with three differences: (1) We use an edge
partition instead of a vertex partition; (2) unrestricted eccentricities are computed on
the backward graph of the core, with searches that are not restricted to cells but stop
when all boundary vertices of the current cell are reached (these eccentricities are used
below to obtain distance bounds during queries); (3) after computing eccentricities,
we recontract the whole graph using a regular CH order (i. e., contraction of core
vertices is not delayed), leading to sparser graphs G' and G'. Afterwards, to quickly
compute (not necessarily tight) consumption bounds for the tables, we run for each
cell E; € & a (multi-source) forward CH search in G' from all boundary vertices
of E;. Then, we perform a linear PHAST scan over G, keeping track of the minimum
and maximum consumption label per target cell. This yields, for alli € {1,...,k}
and j € {1,...,k}, lower bounds ¢(E;, E;) on the resource consumption from E; to Ej,
as well as upper bounds on the resource consumption from boundary vertices of
E; to E;. To obtain the desired bound ¢(E;, E;), we increase the latter value by the
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maximum consumption when going from any vertex in E; to a boundary vertex of E;.
This maximum consumption of E; equals the maximum unrestricted eccentricity of
all boundary vertices of E; on the backward graph (which we computed before). As
last step of preprocessing, we extract and store the relevant search graph Gil for each
cell E; € &. This requires a target selection phase as in RPHAST for each cell E;, using
all (i. e., both distinct and ambiguous) vertices of E; as input.

Queries start with a forward CH search in G'. Active cells are determined inde-
pendently in a scan over one row of the distance table (corresponding to the source
cell). Let E; € & be the cell containing the source vertex s € V (if s is ambiguous, we
can pick an arbitrary cell containing s). We mark a cell E; € & as active if and only
if ¢(E;,Ej) < r < ¢(E;,Ej). The third phase performs a linear RPHAST scan over Gl.l
for each active cell E; € &, obtaining resource consumption values for all its vertices.
Note that, although vertices can be contained in multiple search graphs, consumption
labels do not need to be reinitialized between different scans, since the source remains
unchanged. To output border edges, we proceed as before, looping through incoming
downward edges twice (again, we add dummy edges to Gl.l for correctness). To avoid

duplicates (due to vertices that are contained in multiple search graphs), edges in Gil
have an additional flag to indicate whether the edge belongs to E;. Border edges are
reported only if this flag is set and they are contained in the original graph (which is
indicated by another flag).

As mentioned above, search graphs Gil, with i € {1,...,k}, may share vertices,
which increases memory consumption and slows down queries. For example, the
vertex with maximum level is contained in every search graph. For better performance
in practice, we use search graph compression, where we store the topmost vertices
of the hierarchy (and their incoming edges) in a separate graph G! = (V.,E}) and
remove them from all graphs Gil. During queries, we first perform a linear scan over Gi
(obtaining resource consumption for all vertices v € V), before processing search
graphs of active cells. The size of Glisa tuning parameter.

Parallelization. Independent of the strategy, the first preprocessing steps are exe-
cuted in parallel in a natural way by assigning cells of the partition to different threads,
namely, extracting the cell-induced subgraphs for efficient (thread-local) contraction,
contracting the non-core vertices, inserting dummy edges, and reordering non-core
vertices by level. Afterwards, threads are synchronized and the search graphs G' and
G are built sequentially. Eccentricities are again computed in parallel (one thread
per cell). For isoPHAST-CD and isoPHAST-CP, threads operate on distinct vertex
sets. Consequently, there are no concurrent accesses to consumption labels and we
can share labels among threads. However, each thread needs its own priority queue.
For isoPHAST-DT, searches for unrestricted eccentricities are not limited to their cells.
Therefore, every thread operates on its own set of consumption labels to avoid concur-
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rent accesses. Our CH preprocessing is sequential, thus the core graph is contracted in
a single thread (if needed). Computation of distance bounds is parallelized (one thread
per cell, if needed).

Considering queries, the first two phases are run sequentially. Both isoDijkstra and
the forward CH search are rather difficult to parallelize. Executing PHAST on the core
in parallel does not pay off (the core is rather dense, resulting in many levels and thus,
limited potential for parallelization). Distance table operations, on the other hand, are
very fast and parallelization is not necessary. In the third phase, however, active cells
can be assigned to different threads. Again, we share distance labels among threads,
except for isoPHAST-DT, where search spaces may overlap and each thread uses its
own distance labels to prevent concurrent accesses. Moreover, each thread runs its
own forward CH search to initialize its labels in isoPHAST-DT.

Running the third phase in parallel can make the second phase of isoPHAST-CP
a bottleneck. Therefore, we alter the way of computing flags in(-) and out(-) for this
variant as follows. Initially, both flags of every vertex are set to false. After scanning
a vertex v € V; in some cell V; € V, we now set in(V;) if c¢(v) < r and out(V;)
if c(v) + ecc(v) > r. These checks are less accurate (more flags are toggled), but we no
longer have to check boundary vertices in different strongly connected components
induced by cells. Correctness of isoPHAST-CP is maintained, as no stopping criterion is
applied and max,cy, ¢(v) +ecc(v) is a valid upper bound on the resource consumption
from the source to each vertex in V;. Hence, no active cells are missed.

To further accelerate the linear scans of isoPHAST-CD and isoPHAST-CP, we take
the computer architecture of modern machines into consideration. Nowadays, most
multi-socket systems have more than one NUMA (Non-Uniform Memory Access)
node. Processors in such systems can access memory assigned to their NUMA node
faster than memory assigned to different NUMA nodes. To exploit such computer
architectures, we store the downward graph G! once on each NUMA node. During
queries, each core uses the copy on the NUMA node its processor is assigned to.

6.2.5 Alternative Outputs

In this section, we describe modifications to deal with the general case of our problem
setting, where length and resource consumption of edges may differ. Moreover, we
presume in all subsequent sections of this chapter that we know

« for each vertex v € V, whether v is reachable from the source s € V;
« the set Ey := E, U E, of all border edges and accessible edges;
« for every edge (u,v) € E \ E, whether (u,v) is passable or unreachable.

Therefore, we describe a variant of isoDijkstra that computes the set E, instead of E;,
and handles the more general case mentioned above. Afterwards, we discuss necessary
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changes to our speedup techniques to cover the general case and the modified output.
For the sake of simplicity, we assume that shortest paths are unique (with respect to
the length function d). Thereby, we avoid the special case of two paths with equal
distance but different consumption, which requires additional tie breaking and slight
modifications to our data structures when computing the range of an EV [Buc15].

Generalizing IsoDijkstra. For a given source vertex s € V and a range r € Ry,
the general variant of isoDijkstra maintains vertex labels consisting of (tentative)
values d(-) for distance and c(-) for resource consumption, both initially set to 0 for s
and oo for all other vertices. The algorithm uses a priority queue of vertices, initially
containing s. In each step, it extracts the vertex u € V with minimum distance from
the queue. Then, all outgoing edges (u,v) € E are scanned, checking for each whether
d(u) + d(u,v) < d(v) holds. If this is the case, the labels at v are updated accordingly
to d(v) = d(u) + d(u,v) and c(v) = c(u) + c(u,v). Also, v is inserted into the queue if
it is not contained already. Correctness follows directly from the fact that we simply
sum up consumption values along shortest paths.

The set E, of border edges and accessible edges can be computed on-the-fly as
follows. Consider an arbitrary edge (u,v) € E. We know whether (u,v) belongs to
E as soon as both u and v were settled (and thus have final labels). Therefore, after
extracting a vertex u € V from the queue, we check all incoming and outgoing edges
and add them to E, if the respective neighbor was settled and one of the following
conditions holds: Either, exactly one endpoint of the edge is currently reachable, or both
endpoints are reachable but the edge is not passable, i.e., c(u) + c(u,v) > rif (u,v) € E
and c(v) +c(v,u) > rif (v,u) € E. After termination, an edge (u,v) € E\ E is passable
if u (and thus, also v) is reachable, and it is unreachable otherwise. Moreover, we know
that a vertex v € V is reachable if and only if ¢(v) < r holds.

Stopping Criterion. Note that the stopping criterion described in Section 6.2.1 no
longer applies, since vertices are scanned in increasing order of distance rather than
resource consumption. In general, simply pruning the search at unreachable vertices
does not preserve correctness either. To see this, assume that we prune the search
by not scanning any outgoing edges of an unreachable vertex u € V at some point
during the search. Consider another unreachable vertex v € V, such that the shortest
s—v path contains u (and in particular, one of its outgoing edges). There might exist
some (non-shortest) path from s to v with lower resource consumption that is found
by the algorithm instead. Then, the vertex v is falsely identified as reachable.
Nevertheless, we can safely abort the search as soon as no reachable vertex is left in
the priority queue, since no reachable vertex can be found from an unreachable vertex.
(In case of negative consumption values, we presume that battery constraints apply;
see Section 4.1.1.) To efficiently check whether this stopping criterion is fulfilled, we
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simply maintain a counter to keep track of the number of reachable vertices in the
queue. As soon as it reaches 0, we abort the search. As in the simpler case discussed
in Section 6.2.1, we scan vertices left in the queue after the search has terminated to
determine any remaining border edges.

Adapting Speedup Techniques. We make the following modifications to maintain
correctness of our speedup techniques in the general scenario. First of all, we slightly
alter the definition of the eccentricity eccy(v) of a vertex v € V atlevel € € {1,...,L},
to the maximum finite resource consumption on any shortest path (with respect to the
distance function d) from v to to any vertex inside the subgraph induced by the cell
containing v at level £.

As before, we maintain two flags in(Vf) and out(Vf) for each cell Vf at every
level £ € {1,...,L}. The flag in(Vf) is set permanently as soon as a vertex v € Vf is
settled and c¢(v) < r holds. However, updating the flag out(Vf) is more involved in the
general scenario: We may unset it if the condition ¢(v) + eccy(v) < r holds for v and
all vertices in other cell-induced strongly connected components, but since vertices are
no longer scanned in increasing order of resource consumption by isoDijkstra, the flag
is not final until all boundary vertices of the cell were settled. For techniques based
on isoDijkstra searches, we check the condition during each vertex scan as before and
update the flag accordingly, i. e., the flag out(Vf) is set to false if ¢(v) + ecce(v) < r
holds for the settled vertex v € V! as well as all vertices in the remaining cell-
induced components, otherwise it is set to true. Consequently, the flag may be toggled
multiple times throughout the search. To maintain correctness, we have to ensure
that all boundary vertices that are (temporarily) considered as reachable (possibly via
non-shortest paths) are settled eventually; see Figure 6.7. To this end, we relax the
stopping criterion of isoDijkstra as follows. We maintain an upper bound d € Ry,
on the distance from s to any vertex that is currently reachable, initially set to d = 0.
Whenever we update the consumption label of a vertex v € V to some value c(v) < r
after scanning an edge with head vertex v, we update the bound to d = max{d,d(v)}.
We stop the search as soon as (1) no reachable vertex is left in the queue and (2) the
minimum key in the priority queue exceeds d.

Outputs. After running the query algorithm of any proposed speedup technique,
we can check in constant time (more precisely, linear time in the constant L) if a vertex
is reachable as follows. Consider the (top-level) cell VI.L of avertexv e V. If in(Vl.L) is
not set, the cell contains no reachable vertices and v must be unreachable. Similarly, if
out(Vl.L ) is not set, the cell contains no unreachable vertices, and thus v is reachable. If
both flags are set, we recursively proceed with the same check for the cell containing
v on the level below. If both flags are set for the cell on level 1 containing v, we check
if the consumption label of v exceeds the range. In the same manner, we determine
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Figure 6.7: Finding active cells in the general
scenario. Edge labels show their length and con-

sumption (in this order). In an isoCRP query 11 @\1, 1,
from s with range r = 2, all vertices in the cell e ' 5 O—
of u are considered reachable when it is settled. =841 \ 1 1/
Next, v is settled and w is updated as unreach- \2 5 \@/ ’

able. At this point, no reachable vertices are left ’ \ 11 7

in the queue, so isoCRP misses the border edge Ol

(w,x) unless we adapt the stopping criterion.

whether an edge e € E \ E, is passable or unreachable by inspecting reachability of
its endpoints. Finally, to output the set E, instead of Ej;, we modify the definition
of consumption-based eccentricities slightly, to the maximum finite sum of resource
consumption of any vertex on a shortest path (from a given boundary vertex) and the
resource consumption of an outgoing edge of this vertex. Thereby, we ensure that we
also descend into cells that contain accessible edges but no border edge. Then, the set
E, is retrieved in a similar way as the set Ej.

Note that we represent the set of reachable vertices and all edge sets except Ey
implicitly. This suits the problem considered in this chapter, but may be insufficient
in other applications. However, all speedup techniques presented in this section can
easily be adapted to produce a variety of other outputs, without increasing their
running times significantly. As an example, we can modify our algorithms to output a
list of all reachable vertices. A straightforward approach performs a linear scan over
all vertices and determines the reachable ones as described above. We can do better
by collecting reachable vertices on-the-fly: During isoDijkstra searches and when
scanning active cells, we output each settled vertex that is reachable. In the scanning
phase, we also add all internal vertices of cells Vf for which out(Vf) is not set.

6.3 Computing the Border Regions

Given the reachable and unreachable part of the input graph, we describe the pla-
narization of these parts and the extraction of all border regions. First, we map the
information about the reachable and unreachable part computed by isoDijkstra (or a
speedup technique) to the planarized graph G, in O(m) time (Section 6.3.1). We then
extract border regions by traversing all faces of the planar graph that contain border
edges (Section 6.3.2). This requires linear time in the size of all border regions.

6.3.1 Planarization of the Input Graph

We planarize G = (V, E) during the preprocessing stage to obtain G, = (V,,E,). Since
edge costs and directions are irrelevant for all subsequent steps of our algorithms, we
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Figure 6.8: Visited edges (blue) when extracting a reachable boundary. (a) Starting at the
border edge {u,v}, the face f; is traversed first until the border edge {x,y} is encountered.
Afterwards, the faces f, f3, fa, f3, f5 are visited in this order until the edge {u,v} is reached
again. (b) Starting at the accessible edge {u,v}, the face f; is traversed until the edge {u,v} is
reached again (on the same side). Then, the faces f2, f3, f1, fs, f2 are processed before the other
side of the edge {u,v} is reached.

consider G, to be undirected and do not store any cost functions with it to reduce space
consumption. Our implementation uses the well-known sweep line algorithm [Ber+08,
BO79] to compute G,,. It runs in O((n + k) log n) time, where k is the number of edge
crossings. More involved algorithms with better asymptotic running times exist [Bal95,
EGS10]. However, the value of k is usually small for road networks and somewhat
higher (metric-independent) preprocessing effort is not an issue in our scenario. With
each vertex in G, we store its original vertex in G (if it exists). In practice, where
vertices are represented by indices {1,...,n}, this mapping can be done implicitly,
since V}, is a superset of V.

During a query, after computing the reachable subgraph of the original graph G as
described in Section 6.2, we compute reachability of dummy vertices and the set E,
of border edges and accessible edges in G, as follows. First, we have to ensure that
border edges and accessible edges returned by isoDijkstra are actually contained in G,,.
We add a flag to each edge in G during preprocessing that indicates whether an edge
e € Eis also contained in G,. We modify isoDijkstra (and the speedup techniques)
described in Section 6.2, such that edges are added to E only if this flag is set.

After isoDijkstra terminates, we check for each dummy vertex v € Vj, whether it
is reachable, by checking passability of all original edges in E that contain v. To this
end, we precompute an array of all original edges that were split during planarization,
and for each split edge a list of dummy vertices it contains (an original edge may
intersect multiple other edges). In a query, we scan the array of edges and mark for
each passable edge its dummy vertices as reachable. Finally, we perform a linear scan
over all edges in G, that have at least one dummy vertex as endpoint to determine
any missing edges in E. To test whether some edge in G, is accessible, we store
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pointers to the original edges containing it. Note that these scans produce limited
overhead in practice, since the number of dummy vertices in graphs representing
road networks is typically small (large parts of the input are planar to begin with).
Afterwards, a vertex in V), is reachable if it is a dummy vertex marked as reachable, or
its corresponding original vertex is reachable. Otherwise, it is unreachable. For edges
contained in E, \ Ey, we check reachability of their endpoints to determine whether
they are passable or unreachable.

An alternative approach modifies isoDijkstra to work directly on a (directed) planar
graph G, to avoid additional linear scans. However, this produces overhead during the
search (e. g., case distinctions for dummy vertices). Consequently, such approaches did
not provide significant speedup in preliminary experiments. Moreover, determining
the reachable subgraph of G, in a separate step simplifies the integration with speedup
techniques discussed in the previous section.

6.3.2 Extracting Border Regions

Given the set E, of border edges and accessible edges in G,,, we describe how the actual
border regions are computed (i. e., the polygons describing R and U). We traverse all
faces of G, that contain edges in E, and collect the segments that form boundaries of
the border regions. Clearly, all passable edges in these faces are part of some reachable
boundary, while all unreachable edges belong to an unreachable boundary. Moreover,
since G, is connected, all faces contained in a border region must contain an edge
in E,. Thus, traversing these faces is sufficient to obtain all border regions.

In somewhat more detail, we maintain two flags for every edge {u, v} in E, indicating
whether u or v has been visited, respectively, each initially set to false. Let {u,v} be
the first edge of E, that is considered, and without loss of generality, let u be reachable.
We compute the (unique) reachable component Ry, .} of the border region By, .}
containing {u,v}; see Figure 6.8. We mark u as visited and traverse the face to the left
of {u,v}, following the unique neighbor w of u in this face that is not v. Every edge
that we traverse is added to Ry, .}. As soon as we encounter an edge {x,y} € Ey, we
continue by traversing the twin face of {x,y}, i. e., the unique face of G, that contains
the other side of {x,y}. The edge {x,y} itself is not added to Ry, .}, but we mark the
reachable endpoint x that was added to Ry, .} in the previous step as visited. The
current extraction step is finished as soon as the other side of {u,v} is reached; see
Figure 6.8. If v is unreachable, {u,v} is a border edge. Thus, we continue with the
extraction of the unreachable component Uy, ., containing v in the same manner and
assign it to By o3.

We loop over the remaining edges in E, and extract boundaries corresponding to
vertices not visited before. By extracting reachable components first, we ensure that
the corresponding reachable boundary of some unreachable component is always
known before extraction, namely, the boundary containing the reachable endpoint of
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the considered edge in E,. Therefore, the unreachable component is assigned to the
unique border region that contains this reachable boundary. To make sure that we
only compute actual border regions (in contrast to regions containing only accessible
edges but no border edges), we can either check for border edges explicitly during
traversal of the faces or disallow the traversal to start from an accessible edge.

Implementation Details. To extract the components of all border regions, we have
to traverse faces of the planar input graph. This can be done using established data
structures, such as doubly connected edge lists [Ber+08]. Instead, we propose a more
cache-friendly data structure to represent the faces, which stores adjacent vertices of
a face in contiguous memory. We use a single array that holds all faces of the graph.
For each face, we store the sequence of vertices as they are found traversing the face
in clockwise order starting at an arbitrary vertex. At the beginning and at the end of
this sequence, we store sentinels that hold the index of the last and first entry of a
vertex of the corresponding face, respectively. Traversing the face in either direction
requires only a single scan along the array, jumping at most once to the beginning or
end of the face. For consecutive vertices u € V,, and v € V,, in this array, we store at v
its index in the corresponding twin face of the edge {u,v}. Finally, we store for every
edge {u,v} in the graph the two indices of the head vertex v in this data structure, i. .,
its occurrence in the faces to the left and right of this edge.

To efficiently decide whether an edge is contained in Ex or if an edge in E, was
marked as visited, we store the set E, as an array and sort it (e. g., by the index of the
head vertex) before extracting the reachable components. Then, we can quickly retrieve
an edge in E, using binary search (we also tried using hash sets as an alternative
approach, but this turned out to be slightly slower in preliminary experiments).

6.4 Range Polygons in Border Regions without Holes

Given a border region B with a reachable component R and a single unreachable
component U, we present an algorithm for computing a polygon that separates R
and U. In Section 6.5, we generalize our approach to the case |U| > 1.

Our approach adds an arbitrary border edge e € E, to B, which connects both
components R and U. Since we presume that G is strongly connected, such a border
edge always exists. In the resulting hole-free, non-crossing polygon B’, we compute a
polygonal path with minimum number of segments that connects both sides of e. The
algorithm of Suri [Sur86] computes such a minimum-link path 7’ in linear time. We
obtain a separating polygon S’ by connecting the endpoints of 7’ along e. It is easy to
see that this yields a polygon with at most two additional segments compared to an
optimal solution, as shown by Lemma 6.1 and illustrated in Figure 6.9.
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Figure 6.9: Separating polygons in a (shaded) border region. (a) The polygon S (blue) separat-
ing R and U with OPT = 3 links induces a path with four segments connecting both sides of e.
(b) The polygon S’ (blue) induced by a minimum-link path from e has OPT + 2 = 5 segments.

Lemma 6.1. Let S be a polygon that separates R and U with minimum number of
segments, and let OPT denote this number. Then S’ has at most OPT + 2 segments.

Proof. We can split S at e into a path 7 connecting both sides of e. Clearly, & has at
most OPT + 1 links (if a segment of S crosses e, we split it into two segments with
endpoints in e to obtain a path with OPT + 1 links). Since 7 is a minimum-link path,
we have |7’| < |z| = OPT + 1. Moreover, S’ is obtained by adding a single subsegment
of e to 7/, so its complexity is bounded by OPT + 2. O

We now address the subproblem of computing a minimum-link path between
two edges of a simple polygon. The linear-time algorithm of Suri [Sur86] starts by
triangulating the input polygon. To save running time for queries in our scenario,
we triangulate all faces of the planar graph G, during preprocessing. Afterwards,
in each step of Suri’s algorithm, a window (which we formally define in a moment)
is computed. To obtain the windows in linear time, it relies on several calls to a
subroutine computing visibility polygons. While this is sufficient to prove linear
running time, it seems wasteful from a practical point of view. In the following, we
establish important properties of windows (Section 6.4.1). Based on these, we present
an alternative algorithm for computing the windows that also results in linear running
time, but is much simpler (Section 6.4.2). It can be seen as a generalization of an
algorithm by Imai and Iri [II87] for approximating piecewise linear functions.

In all what follows, when we consider the dual graph of a triangulation of a border
region, we presume that vertices in the dual graph are connected by an edge if and
only if their corresponding faces share an edge of the triangulation (as opposed to an
edge of the border region). Moreover, we assume for the sake of simplicity that all
points are in general position, i. e., there is no line that contains more than two points
of a given set. Nevertheless, we also mention how our implementation handles such
cases (which can occur in real-world instances).
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Figure 6.10: Important triangles, visibility, and shortest paths. (a) The (shaded) important
triangles of a polygon with respect to the indicated edges a and b. (b) The window w(a) is the
dotted edge of the (shaded) visibility polygon. (c) The left and right shortest path (red) do not
intersect for i = 6. (d) The shortest paths (red) have an intersection for i = 8.

6.4.1 Windows and Visibility

Let P be a simple polygon and let a and b be two edges of P. We want to compute a
minimum-link polygonal path starting at a and ending at b that lies inside P. Let T be a
graph obtained by arbitrarily triangulating P. Let t, and ¢, be the triangles containing
a and b, respectively. As T is outerplanar, its (weak) dual graph has a unique path
tq = ti,t,. . . tg—1,tx = tp from t, to tp; see Figure 6.10a. We call the triangles on this
path important and their positions in the path their indices.

The wvisibility polygon V(a) of the edge a in P is the polygon that contains all points
that are visible from a. More formally, V(a) contains a point p € R? in its interior
if and only if there is a point q on a such that the line segment pq lies inside P. Let
i € {1,...,k — 1} be the highest index such that the intersection of the triangle ¢; with
the visibility polygon V(a) is not empty. The window w(a) is the edge of V(a) that
intersects ¢; closest (with respect to minimum Euclidean distance) to the edge between
t; and t;4;; see Figure 6.10b. Note that w(a) separates the polygon P into two parts.
Let P’ be the part containing the edge b that we want to reach. A minimum-link path
from a to b in P is then obtained by adding an edge from a to w(a) to a minimum-link
path from w(a) to b in P’. Thus, the next window is computed in P’ starting with the
previous window «w(a). In what follows, we show how w(a) can be computed.

For some i € {1,...,k — 1}, let T; be the subgraph of T induced by the triangles
ti,...,t; and let P; be the polygon bounding the outer face of T;. The polygon P;
has two special edges, namely a and the edge shared by t; and ¢;41, which we call ;.
Let £(a), r(a), €(b;), and r(b;) be the endpoints of a and b;, respectively, such that
their clockwise order is r(a), £(a), £(b;), and r(b;) (think of £(-) and r(-) as being the
respective left and right endpoints); see Figure 6.10c. We define the left shortest path Jrf
to be the shortest polygonal path (shortest in terms of Euclidean length) that connects
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Figure 6.11: The visibility cone of an hourglass. (a) The shortest path (yellow) from r(a) to
£(b;) consists of a prefix of 7], the segment xy, and a suffix of ﬂf . (b) The two visibility lines
)Lf and A7 (blue) spanning the (shaded) visibility cone. (c) A degenerate case, in which the
visibility cone collapses to a line (as points are not in general position).

{(a) with £(b;) and lies inside or on the boundary of P;. The right shortest path ] is
defined analogously for r(a) and r(b;); see Figure 6.10c.

Assume that the edge b; is visible from g, i. e, there exists a line segment in the
interior of P; that starts at a and ends at b;. Such a line segment separates the polygon
into a left and a right part. Observe that it follows from the triangle inequality that
the left shortest path #{ and the right shortest path 77 lie inside the left and right
part, respectively. Thus, these two paths do not intersect. Moreover, the two shortest
paths are outward convex in the sense that the left shortest path ﬂf has only left bends
when traversing it from £(a) to £(b;); see Figure 6.10c. The symmetric property holds
for 7. We note that the outward convex paths are sometimes also called inward
convex and the polygon consisting of the two outward convex paths together with the
edges a and b; is also called hourglass [GH89]. The following lemma, which is similar
to a statement shown by Guibas et al. [Gui+87, Lemma 3.1], summarizes the above
observation. On the other hand, shortest paths that intersect are not outward convex
in general; see Figure 6.10d.

Lemma 6.2. If the triangle t; is visible from the edge a (i. e., there is a line segment in
the interior of P; that starts at a and ends at a point in t;), then the left and right shortest
path in P;_y have empty intersection. Moreover, if in fact these paths do not intersect,
they are outward convex.

Guibas et al. [Gui+87] argue that the converse of the first statement is also true,

i.e., if the two paths have empty intersection, then the triangle ¢; is visible from a.

Their main arguments go as follows. The shortest path (with respect to Euclidean
length) in the hourglass that connects r(a) with €(b;) is the concatenation of a prefix
of 7], a line segment from a vertex x of 7] to a vertex y of 7'[1.[ , and a suffix of Jrf ; see
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Figure 6.11a. We call the straight line through x and y the left visibility line and denote
it by Af. We assume )Lf to be oriented from x to y and call the vertices x and y the
source and target of ¢, respectively. Analogously, one can define the right visibility
line A7; see Figure 6.11b. We call the intersection of the half-plane to the right of Af
with the half-plane to the left of A} the visibility cone. It follows that the intersection
of the visibility cone with the edge b; is not empty and a point on the edge b; is visible
from a if and only if it lies in this intersection [Gui+87]. This directly extends to the
following lemma.

Lemma 6.3. If the left and right shortest path in P;_y have empty intersection, t; is
visible from a. A point in t; is visible from a if and only if it lies in the visibility cone.

If 7] and nif are both outward convex and intersect, the visibility cone degenerates
to a line; see Figure 6.11c. As mentioned above, we presume that all points are in
general position, which prevents this special case. (In practice, it is handled implicitly
by the implementation of line 7 in Figure 6.12 in the next section.)

The above observations justify the following approach for computing a window.
We iteratively increase i € {1,...,k} until the left and the right shortest path of the
polygon P; intersect. We then know that the triangle ¢;,1 (or the edge b in case i = k)
is no longer visible; see Lemma 6.2. Moreover, as the shortest paths did not intersect
in P;_y, the triangle #; is visible from a; see Lemma 6.3. To find the window, we have
to determine the edge of the visibility polygon V(a) that intersects ¢; closest to the
edge between t; and t;.;. By the second statement of Lemma 6.3, the window must be
a segment of one of the two visibility lines. Below, we discuss our algorithm in detail.

6.4.2 Fast Computation of Minimum-Link Paths

We describe our new algorithm to compute minimum-link paths, which we refer to
as FMLP (Fast Minimum-Link Paths). In particular, we detail the computation of the
first window sketched in the previous section and describe what has to be done in
later steps, when we start at a window instead of an edge. Furthermore, we argue that
the algorithm runs in overall linear time. As before, we assume that we are given a
polygon P, two edges a and b of P, and a triangulation T of P. The algorithm starts by
computing the (unique) sequence t, = ty,t3,...,tk_1,tk = tp of triangles connecting
the triangles t, and t; containing a and b, respectively. Afterwards, it maintains
shortest paths and visibility lines as defined in Section 6.4.1.

Computing the First Window. The algorithm starts from the edge a; see also
Figure 6.12. Assume that the triangle t;, with i € {1,...,k — 1}, is still visible from a,
ie, Jrf_l and 7;_, do not intersect. Assume further that we have computed the left and
right shortest path n'f_l and 7], as well as the corresponding visibility lines Af_l and
Al_, in a previous step. Assume without loss of generality that the three corners of the
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// initial paths (as one-vertex sequences) and visibility lines
1 78— [€(a)]
2 1" «— [r(a)]
3 Al «— line(r(a),£(a))
4 A"« line(€(a),r(a))

// run main loop
5 forie—1tokdo
6 if r(bi) = r(bi_l) then

// if b; is not visible, return window

7 if €(b;) lies to the right of A" then
8 x «— first intersection of A" with P after target(A")
9 return segment(target(1”),x)

// extend left path ¢ like in Graham’s scan

10 append £(b;) to ¢
11 while last bend of n is a right bend do
12 L remove second to last element from ¢

// if €(b;) lies in visibility cone, update left visibility line A¢

13 if £(b;) lies to the right of A’ then

14 target(AY) «— £(b;)

15 while A% is not a tangent of 1" at source(A?) do
16 L source(A¢) «— successor of source(A¢) in 7"
17 else

L // case €(b;) = €(b;-1) is symmetric to the case r(b;) = r(b;_1)

Figure 6.12: Pseudocode of FMLP (computation of the first window). Given a polygon P, an
edge a in P, and a triangulation T of P, the algorithm computes the window w(a).

triangle ¢; are €(b;—1), €(b;), and r(b;) = r(b;—1). There are three possibilities as shown
in Figure 6.13, i. e., the new vertex £(b;) lies either in the visibility cone spanned by
Af_l and A_, (Figure 6.13a), to the left of the left visibility line )Lf_l (Figure 6.13c), or
to the right of the right visibility line A]_, (Figure 6.13e).

By Lemma 6.3, a point in #; is visible from a if and only if it lies inside the visibility
cone. Thus, the edge b; between t; and t;,; is no longer visible if and only if the new
vertex £(b;) lies to the right of A]_,; see Figure 6.13e. In this case, we can stop and the
desired window w(a) is the segment of A]_, starting at its touching point with 7] _,
and ending at its first intersection with an edge of P; see lines 7-9 of Figure 6.12 and
Figure 6.13f. In the other two cases (Figure 6.13a and Figure 6.13c), we have to compute
the new left and right shortest path n'f and 7], as well as the new visibility lines /lf
and A} (Figure 6.13b and Figure 6.13d). Note that the old and new right shortest path
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Figure 6.13: Visiting a new triangle. (a) The new vertex €(b;) lies in the visibility cone. (b) The
updated left shortest path nf and left visibility line /lf. (c) The vertex €(b;) lies to the left
of Af_l. (d) The left shortest path has to be updated, the left visibility line remains unchanged.
(e) The vertex £(b;) lies to the right of A]_,, i.e., ;41 is not visible from a. (f) The dotted window
w(a) is a segment of A7_,.

n;_, and 7] connect the same endpoints r(a) and r(b;-1) = r(b;). As the path cannot
become shorter by going through the new triangle t;, we have 7] = ;. The same
argument shows that A} = A7_, (recall that the visibility lines were defined using a
shortest path from €(a) to r(b;—1) = r(b;)).

We compute the new left shortest path ﬂf as follows; see lines 10-12 in Figure 6.12.
Let x be the latest vertex on Jrf_l such that the prefix of nf_l ending at x concatenated
with the segment from x to €(b;) is outward convex. We claim that ﬂf is the path
obtained by this concatenation, i. e., this path lies inside P; and there exists no shorter
path lying inside P;. It follows by the outward convexity that there cannot be a shorter
path inside P; from £(a) to £(b;). Moreover, by the assumption that nf_l was the
correct left shortest path in P;_1, the subpath from £(a) to x lies inside P;. Assume for
the sake of contradiction that the new segment from x to £(b;) does not lie entirely
inside P;. Then it has to intersect the right shortest path and it follows that the right
shortest path and the correct left shortest path have non-empty intersection, which is
not true by Lemma 6.2.

To get the new left visibility line Af, we have to consider the shortest path in P; that
connects r(a) with £(b;). Let x and y be the source and target of )Lf_l, respectively, i. e.,
the shortest path from r(a) to €(b;_1) is as shown in Figure 6.14a. If the new vertex
{(b;) lies to the left of )Lf_l (Figure 6.14b), then the shortest path from r(a) to £(b;) also
includes the segment from x to y. Thus, A’ = A{_| holds in this case. Assume the new
vertex £(b;) lies to the right of Af_l (Figure 6.14c). Let x’ be the latest vertex on the
path 7] such that the concatenation of the subpath from r(a) to x” with the segment
from x’ to the new vertex £(b;) is outward convex in the sense that it has only right
bends; see Figure 6.14c. We claim that this path lies inside P; and that there is no

shorter path inside P;. Moreover, we claim that x” is either a successor of x in 7,
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Figure 6.14: Updating the visibility line. (a) The shortest path from r(a) to £(b;_1) (yellow)
defining the left visibility line /lf_l. (b) The visibility line does not change if £(b;) lies to the
left of Af_l. (c) Nlustration of how the visibility line changes if £(b;) lies to the right of Af_l.

(b) (©

or x” = x. Clearly, the concatenation of the path from r(a) to x with the segment from
x to £(b;) is outward convex, thus the latter claim follows. It follows that the segment
from x’ to €(b;) lies to the right of the old visibility line )Lf_l. Thus, it cannot intersect
the path Jrf (except in its endpoint £(b;)), as ﬁf_l lies to the left of Af_l. Moreover, as
we chose x’ to be the last vertex on z]_, with the above property, this new segment

does not intersect ] (except in x’). Hence, the segment from x” to £(b;) lies inside P;.

As before, it follows from the convexity that there is no shorter path inside P;. Thus,

/1'; is the line through x” and £(b;), i. e., x” is the new source and €(b;) is the new target.

Hence, lines 13-16 correctly compute the new left visibility line. Lemma 6.4 proves
that w(a) is also computed in linear time.

Lemma 6.4. Let ty be the triangle with the highest index h € {1,...,k} that is visible
from a. Then FMLP computes the first window w(a) in O(h) time.

Proof. We already argued that FMLP correctly computes the first window. To show
that it runs in O(h) time, first note that the polygon Py has linear size in h. Thus,
it suffices to argue that the running time is linear in the size of Py. In each step i,
with i € {1,...,k}, we first check whether the next triangle is still visible by testing
whether the new vertex £(b;) (or r(b;)) lies to the right of the visibility line A7_, (or
to the left of Af_l). This takes only constant time. When updating the left and right
shortest path, we have to iteratively remove the last vertex of the previous path until
the resulting path is outward convex. This takes linear time in the number of vertices
we remove. However, a vertex removed in this way can never be part of a left or right
shortest path again. Thus, the number of these removal operations over all h steps
is bounded by the size of P,. When updating the visibility lines, the only operation
potentially consuming more than constant time is finding the new source x’. As x”’ is
a successor of the previous source x (or x” = x), we never visit a vertex of P twice in
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(d)

Figure 6.15: Initializing computation of the second window. (a) The polygon P’ we are
interested in after computing the first window a’. The initial part P; is shaded. (b) Initial left
and right shortest path Jrg and 7; (red) with corresponding visibility lines Ag and Aj (blue).
(c) The sequence vy,. ..,vs we use for Graham’s scan. Triangles of P intersected by a’ are
shaded. (d) Computing the shortest path from €(a’’) = €(a’) to £(by) in the subdivided polygon
(shaded) using the algorithm from Figure 6.12 actually applies Graham’s scan to vy, . . . ,vs.

this type of operation. Thus, the total running time of finding these successors over
all h steps is again linear in the size of Pp,. ]

Initialization for Subsequent Windows. As mentioned before, the first window
w(a) we compute separates P into two smaller polygons. Let P’ be the part including
the edge b (and not a). In the following, we denote w(a) by a’. To get the next
window w(a’), we have to apply the above procedure to P’ starting with a’. However,
this would require us to partially retriangulate the polygon P’. More precisely, let
ty be the triangle with the highest index h € {1,...,k — 1} that is visible from a
and let by be the edge between f;, and tj.1; see Figure 6.15a. Then b, separates P’
into an initial part P (the shaded part in Figure 6.15a) and the rest (having b on its
boundary). The latter part is properly triangulated, however, the initial part P; is not.
The conceptually simplest solution is to retriangulate P;. However, this would require
an efficient subroutine for triangulation (and dynamic data structures that allow us to
update P and T, which produces overhead in practice). Instead, we propose a much
simpler method for computing the next window.

The general idea is to compute the shortest paths in P from £(a’) to £(by) and from
r(a’) to r(by); see Figure 6.15b. We denote these paths by ﬂg and 7], respectively.
Moreover, we want to compute the corresponding visibility lines )Lg and Aj. Afterwards,
we can continue with the correctly triangulated part as in Figure 6.12.

Concerning the shortest paths, we assume as before that the window w(a) = a’
is a segment of the right visibility line A} ; the other case is symmetric. First, note
that the right shortest path 7 is a suffix of the previous right shortest path, which
we already know. For the left shortest path 71'0[ , consider the polygon induced by the
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// initialization
1 @’ «— previous window
2l
3 n7 «— right shortest path computed in the previous step

4 7y «— suffix of #” starting with r(a’)

— 0

// apply Graham’s scan to the sequence v1,...,v,
5 fori«—1togdo
6 append v; to 7}
7 while last bend Ofﬂ'g is a right bend do

8 L remove second to last element from 7r0[

9 Ag «— tangent of 7; through £(by,)
10 Aj «— tangent of ﬂ:(f through r(by)

¢ _r 10 gr
1 return (7,1, A5, A7)

Figure 6.16: Pseudocode of FMLP (initialization of subsequent windows). After computing
the previous window a’, this step computes the new initial left and right shortest paths with
corresponding visibility lines.

triangles that are intersected by a’; see Figure 6.15c. Let [vy,. . .,v,4] be the path on the
outer face of this polygon (in clockwise direction) from £(a’) = v; to £(by,) = v4. We
obtain ﬂg using Graham’s scan [Gra72] on the sequence vy, .. .,7y, i. ., starting with
an empty path, we iteratively append the next vertex of the sequence vy, .. .,v, while
maintaining the path’s outward convexity by successively removing the second to last
vertex if necessary; see Figure 6.16 for pseudocode. Note that applying Graham’s scan
to arbitrary sequences of vertices may result in self-intersecting paths [Byk78]. Below,
Lemma 6.5 proves that this does not happen in our case.

It remains to compute the visibility lines Ag and A§ corresponding to the hourglass
consisting of a’, by, and the shortest paths ﬂg and r]. Note that the whole edge by, is
visible from a’, since a’ intersects the triangle t. Thus, the visibility lines go through
the endpoints of by,. It follows that )Lg is the line that goes through £(b;) and the
unique vertex on 7] such that it is tangent to 7]; see Figure 6.15b. Clearly, this can be
found in linear time in the length of 7. The same holds for the right visibility line.

Lemma 6.5. The FMLP algorithm computes the initial left and right shortest paths ﬂ(f
and iy, as well as the corresponding visibility lines /15 and Ay in O(|P;) time.

Proof. We mainly have to prove that the path z{ obtained after applying Graham’s scan
on the sequence vy, . . .,v, actually is the shortest path from £(a) to £(by) in P; (which
includes that it is not self-intersecting). This can be seen by using arguments we made
for computing the first window. To this end, we reuse the triangulation we have for P
by placing new vertices where a’ crosses triangulation edges; see Figure 6.15d. Note
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Figure 6.17: Identifying the next important triangle. (a) The next important triangle #;,4
shares with ¢; the unique edge vw that is not uv and has exactly one reachable endpoint.
(b) The next important triangle #;,; contains the edge uw.

that the resulting polygon, which we denote by P,’, is almost triangulated, namely,
each face is a triangle or a quadrangle. Thus, we can triangulate P;’ by adding one
new edge in each quadrangle as in Figure 6.15d. Note that a’ is separated into several
edges in P;’; let a”” be the topmost of these edges (i. e., the last one in clockwise order).
Assume we want to compute the minimum-link path from a” to by, in P’. First, note
that the triangle t; is visible from a”’. Thus, our algorithm for computing the first
window computes the shortest path from €(a’) = €(a”’) to €(by). Note further that
the vertices visited in lines 10-12 of the algorithm outlined in Figure 6.12 are the
vertices vy,. ..,y in this order. Thus, the algorithm shown in Figure 6.12 actually
constructs the left shortest path by using Graham’s scan on the sequence vy,. . .,v,.
It follows that directly applying Graham’s scan to the sequence vy,. . .,v4 correctly
computes the left shortest path in Pj from ¢(a’) to £(by,). Furthermore, the running
time of the algorithm in Figure 6.16 is linear in the size of P;. m]

We compute subsequent windows as described above, until the last edge b is found.
The actual minimum-link path 7’ is obtained by connecting each window w(a) to
its corresponding first edge a with a straight line [Sur86]. Linear running time of
the algorithm follows immediately from Lemma 6.4 and Lemma 6.5. Theorem 6.6
summarizes our findings.

Theorem 6.6. Given two edges a and b of a simple polygon P, the FMLP algorithm
computes a minimum-link path from a to b contained in P in linear time.

Implementation Details. To obtain the desired polygon that separates R and U,
we can connect the first and last segment of 7’ along the initial border edge e € E,, as
described above. However, to potentially save a segment and for aesthetic reasons, we
first test whether the last window can be extended to intersect the first segment of
the path without intersecting the boundary of R or U (observe that this is the case in
Figure 6.9b). Thus, we continue the computation of the last window from ¢, after the
edge b was found.
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We do not construct P and its triangulation T explicitly, but work directly on the
triangulated input graph. The next important triangle is then computed on-the-fly as
follows. Consider an important triangle ¢t; = uow, where i € {1,...,k — 1}, and let uv
be the edge shared by t; and ¢;,1; see Figure 6.17. Clearly, exactly one endpoint of uv
is part of the reachable boundary, so without loss of generality let u be this endpoint.
Then the next important triangle is the triangle sharing vw with ¢t; if w is reachable,
and the triangle sharing uw with t; otherwise. In other words, the next triangle is
determined by the unique edge that has exactly one reachable endpoint. Faces of
the triangulated graph are stored in a single array, similar to the data structure for
the planar graph described in Section 6.3.1 (we do not use sentinels, though, since
triangular faces have constant size). Our implementation of FMLP operates on this
data structure to determine the important triangles.

6.5 Heuristic Approaches for General Border Regions

A border region B may consist of multiple unreachable components, i.e., we may
have |U| > 1, whereas |R| = 1 always holds. In this general case, it is not clear whether
one can compute a range polygon of minimum complexity (without self-crossings)
that separates R and U in polynomial time [Gui+93]. Even for the simpler subproblem
of computing a minimum-link path in a polygon with several components (without
assigning them to the reachable or unreachable boundary), the fastest known algorithm
has quadratic running time [Kos+16, MRW92]. This is impractical for large instances.
In fact, the problem was recently shown to be 3SUM-hard [MPS14], so algorithms with
subquadratic running time may not even exist [GO95]. Therefore, we propose four
heuristic approaches with (almost) linear running time (in the size of B) that are simple
and fast in practice. Figure 6.18 shows example outputs of the different heuristics.
Given a border region B, the first approach (Section 6.5.1) simply computes and
returns the reachable boundary R; see Figure 6.18a. This results in a polygon that
resembles the output of known algorithms for isochrones [MG10]. Since the complexity
of the range polygons can become quite high, we propose more sophisticated heuristics.
Our second approach (Section 6.5.2) uses the triangulation of the input graph to
subdivide B using edges for which either both endpoints are in R or both endpoints
are in U. The modified instances consist of single unreachable components, which
are separated from the reachable component by the algorithm from Section 6.4; see
also Figure 6.18b. The third algorithm (Section 6.5.3) inserts new edges into B in
order to connect the components of U and thereby create an instance with |U| = 1.
Afterwards, we compute a minimum-link path in the resulting border region as in
Section 6.4; see also Figure 6.18c. Our fourth heuristic (Section 6.5.4) modifies the
FMLP algorithm to compute a possibly self-intersecting minimum-link path separating
R and U with minimum number of segments; see Figure 6.18d. Consequently, the
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(a)

Figure 6.18: Example output of different heuristic approaches, for a (shaded) border region
with two unreachable components. Minimum-link paths are computed from indicated border
edges. (a) Output of the approach presented in Section 6.5.1, which returns the reachable
boundary. (b) The approach in Section 6.5.2 subdivides border regions into smaller subinstances.
(c) The approach in Section 6.5.3 connects unreachable components to obtain a simpler instance.
(d) Our last approach in Section 6.5.4 computes a polygon whose edges may cross each other.

resulting polygon has at most two more segments than an optimal solution. We
rearrange it at points where its edges cross each other to obtain a new range polygon
without self-intersections.

6.5.1 Extracting the Reachable Component

Given a border region B, the first approach returns the reachable boundary R. This
results in a range polygon that is similar to known approaches, which essentially
consist of extracting the reachable subgraph [GBI12, MG10]. Note that this approach
does not have to compute the unreachable boundary explicitly. Thus, we can improve
performance by modifying the extraction of border regions described in Section 6.3.2,
such that only the reachable part of the boundary is traversed. In a sense, this extraction
algorithm can be seen as an efficient implementation of previous approaches [GBI12,
MG10]. Its linear running time (in the size of B) follows from the fact that we traverse
every edge of R once, and every boundary edge or accessible edge of the planar
graph G, contained in B a constant number of times. Clearly, the number of these
edges is linear in the size of B.

6.5.2 Separating Border Regions along their Triangulation

The idea of this approach is as follows. For each border region B, we add all edges of
its triangulation that either connect two reachable vertices or two unreachable vertices
of G, to B, possibly splitting B into multiple regions B’ (see edges separating the border
region in Figure 6.18b). For each region B’, we obtain an unreachable boundary U’
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with |U’| < 1, since any pair of components in U must be connected by an edge of
the triangulation or separated by an edge with two endpoints in R. Thus, we run the
algorithm presented in Section 6.4 on each instance B’ with |U’| = 1 to get the range
polygon. Linear running time follows, as we run the linear-time FMLP algorithm on
disjoint subregions of B. Clearly, the number of edges we add to B is not minimal,
i.e., in general we could omit some edges and still obtain |U’| < 1 for each region B’.
On the other hand, computing the set of separating edges described above is trivial,
making our approach very simple.

We describe how the heuristic is implemented without explicitly constructing the
border region B. Instead, we use the set E, to identify the border regions that need to
be handled (recall that E, contains the border edges and accessible edges of all border
regions). We loop over all edges in this set and check for each border edge {u,v} € E,
whether it was already visited. If this is not the case, we run FMLP from the triangle to
the left of this edge (accessible edges in E, are skipped by this loop, since they connect
two reachable vertices and are thus considered part of the boundary). The sequence of
important triangles is computed on-the-fly, as described in Section 6.4.2. Whenever
the algorithm passes a border edge, it is marked as visited.

The heuristic can be seen as a simple but effective way of producing border regions
with a single unreachable component. It is very easy to implement and even simplifies
aspects of FMLP, because modified border regions contain only important triangles
(all other triangles are removed from modified border regions). Thus, computational
effort for finding the second endpoint of a new window and the initial visibility lines
is restricted to a single triangle, enabling the use of simpler data structures. On the
other hand, the output of the algorithm heavily depends on the triangulation of the
input graph. In addition to that, the number of modified regions B’ can become quite
large (see Section 6.6.2). Therefore, we propose a more sophisticated way to obtain
regions with a single unreachable component in Section 6.5.3.

6.5.3 Connecting Unreachable Components

Our next heuristic adds new edges to border regions with more than one unreachable
component, such that they connect all unreachable components without intersect-
ing the reachable boundary; see Figure 6.18c for an example. We obtain a modified
instance B’ with a single unreachable component and apply the algorithm from Sec-
tion 6.4. Note that in general, unreachable components cannot be connected by straight
lines; see Figure 6.19b. For a similar (more general) scenario, Guibas et al. [Gui+93]
propose an approach to compute a subdivision that requires O(h) more segments than
an optimal solution (where h is the number of components in the input region). We
propose a heuristic approach without any nontrivial guarantee. However, it is easy to
implement and provides high-quality solutions in practice (see Section 6.6.2).
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(a) (b)

Figure 6.19: A border region with two unreachable components u; and u;. (a) The indicated
components u; and u; are connected by a single edge (blue) of the triangulation. (b) The
unreachable components u; and u; are connected by two connecting edges (dark blue) and
several bridging edges (light blue), which use the inserted dummy vertices (blue).

Given a border region B whose unreachable boundaries U consist of multiple com-
ponents, our algorithm runs a BFS on the dual graph of the triangulation of B to find
paths that connect the unreachable components. Then, we add new edges that connect
the components and retriangulate the modified border region.

We distinguish two cases for connecting two unreachable components u; and u;
in U. First, u; and u, may be connected by a single edge of the triangulation, i. e., an
edge that has an endpoint in each component. Then, we can simply add this edge to
B to connect u; and u,; see Figure 6.19a. Second, we have to deal with components
that are not connected by such an edge. In this case, there exists at least one edge e in
the triangulation of B such that both endpoints of e are on the reachable boundary,
hence e separates B into two subregions containing u; and u,, respectively. Thus,
any path connecting u; and u, in B crosses e. Our goal is to find a short path in the
dual graph of the triangulation that connects u; and u,. Then, we add new edges to
the corresponding sequence of triangles to connect u; and u;, in B; see Figure 6.19b.
Afterwards, we locally retriangulate the modified part of B.

Connecting Components. Our algorithm starts by checking for each pair of com-
ponents whether they are connected by a single edge in the triangulation of B. This can
be done in a linear scan over the vertices of every unreachable component, checking
for each vertex its outgoing edges in the triangulation. Whenever an edge is found
that connects two unreachable components, we merge these components and consider
them as the same component in the further course of the algorithm (making use of a
union-find data structure [MS08]).

To connect all remaining unreachable components after this first step, we proceed
as follows. Consider the (weak) dual graph of the triangulation of B. Since no pair of
remaining unreachable components can be connected by a single edge in the primal
graph, each triangle intersects at most one unreachable component. We assign a
component to each vertex in the dual graph, namely, the reachable component if the
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Figure 6.20: The dual graph (red) of a border
region, with indicated super sources s; and s.
Shaded triangles are assigned to one of the two
unreachable components.

corresponding triangle contains only reachable vertices, and the unique unreachable
component this triangle intersects otherwise. For each unreachable component, we
add a super source to the dual graph that is connected to all vertices assigned to this
component; see Figure 6.20. Our goal is to find a tree of minimum total length in this
graph that connects all super sources, i. e., a minimum Steiner tree. Since this poses
an N'P-hard problem in general [G]79], we use the approach of Kou et al. [KMB81],
which achieves an approximation ratio below 2. Its basic idea is to iteratively add
shortest paths between two sources that are not connected yet in a greedy fashion.
A search proposed by Wu et al. [WWW86] computes these paths in a graph with a
given cost function. (Faster algorithms exist for this weighted case [Meh88, Wid87].)
Since the (dual) graph has no edge costs in our case, the algorithm by Wu et al. boils
down to a multi-source variant of a BFS, which we now describe in more detail.

Given an undirected graph G = (V,E) and k € {1,...,n} source vertices, our search
keeps vertex labels £(v) for each v € V to mark visited vertices and store their parents
in the search together with the corresponding source vertex of a path that reached the
vertex. We use a union-find data structure (with k elements) to maintain connectivity
of sources. Initially, we mark all sources as visited and set each as its own source.
Moreover, all source vertices are inserted into a FIFO queue. Then, the main loop
runs until all sources are connected. In each step, the search extracts the next vertex
u € V from the queue and checks all incident edges {u,v} € E. If v was not visited,
the algorithm marks its label as visited and sets its source as the source of the label
of u. Additionally, v is inserted into the queue. On the other hand, if v was already
visited, we found a path that connects two sources. We check whether the sources of
the labels £(u) and £(v) are not connected yet. If this is the case, we found the first
path that connects them, so we unify the sources (i. e., they are considered equal in
the further course of the algorithm). The actual path can be retrieved by backtracking
from u and v, respectively, following parent pointers until the source is reached. The
concatenation of both paths yields a path that connects two source vertices. The
algorithm stops when all sources are connected.

After the search has terminated, we split some triangles by adding new vertices and
edges to B in the following manner (see also Figure 6.19b). Consider a path in the dual
graph of B connecting the super sources representing two components u; and u,. We
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remove the first and last vertex of this path (because these are previously added super
sources). For the remaining path, consider the corresponding sequence of triangles
in B. Clearly, all but the first and last triangle of this sequence only have endpoints
in the reachable component (otherwise, backtracking would have started or stopped
earlier). For every edge shared by two triangles in the path, we add a bridging vertex
at the center of this edge. Thus, a bridging vertex is always contained in an edge with
two reachable endpoints. Between any pair of bridging vertices contained in the same
triangle, we add a bridging edge connecting them. Finally, at the first and last triangle
of the path, we add a connecting edge from the bridging vertex to the unique endpoint
that belongs to an unreachable component. Assigning all added vertices and edges
to the unreachable boundary, the resulting border region B’ contains a connected
unreachable component U’ 2 {uy,u,}.

Finally, we add new edges (if necessary) to any created quadrangles to maintain the
triangulation. Thus, the resulting modified border region B’ is triangulated and its
unreachable boundary consists of a single component. We run the algorithm described
in Section 6.4 to obtain the desired range polygon.

For correctness, we need to show that the union of all edges added according to
the computed Steiner tree creates no crossings. First, note that bridging edges in a
triangle never cross each other. Second, we claim that if a connecting edge is inserted
in some triangle, no other edge is added to that triangle. Since a connecting edge has
an endpoint in some unreachable component, at most one edge of the triangle has two
reachable endpoints. Hence, it contains at most one bridging vertex and no bridging
edge. Moreover, the triangle contains at least one bridging vertex (the other endpoint
of the connecting edge). Thus, it has exactly two reachable endpoints and cannot
contain more than one connecting edge.

Complexity. The BES described above visits each vertex of the dual graph at most
once. In each step, a constant number of calls to the union-find data structure is made
to check whether sources of two given labels are connected and unify them if necessary
(vertex degree is constant except at super sources, where no checks are performed).
All other operations require constant time. Using path compression for the union-find
data structure [Tar75], this yields a running time of O (na(n)) of the BFS, where n
is the number of vertices in the dual graph (which is linear in the size of B) and «
the inverse Ackermann function. Since the remaining steps of the heuristic (adding
vertices and edges to triangles, computing a minimum-link path) require linear time,
the overall running time is almost linear.

Improvements. In practice, the performance of the BFS is dominated by the number
of visited vertices. We propose tuning options that reduce this number significantly,
without affecting correctness of the approach (but the output may change slightly).
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One crucial observation is that realistic instances of border regions often have
an unreachable boundary consisting of one large component (the major part of the
unreachable subgraph), and many tiny components (e. g., unreachable dead ends in the
road network), similar to Figure 6.5 in Section 6.1.2. Then, the search from the large
component dominates running time. Instead, we can run the BFS starting from all but
the largest component. This requires only negligible overhead (we identify the largest
component in an additional linear scan), but searches from small components are likely
to quickly converge to the large component. In preliminary experiments, this reduced
running time significantly. Furthermore, after extracting the next vertex from the
queue, we first check whether its source was connected to the largest component in the
meantime. If this is the case, we prune the search at this vertex (i. e, we do not check
its incident edges), because it now represents the search from the largest component.
Similarly, before running the BFS, we omit vertices of the largest component when
checking for edges in the triangulation that connect two components.

Going even further, we always expand the search from the component that is
currently the smallest. In its basic variant, the BFS uses a queue to process vertices in
FIFO order. For better (empirical) performance, we replace it with a priority queue
whose elements are components (represented by source vertices). Additionally, we
maintain a queue for each component, storing and extracting vertices in FIFO order.
In the priority queue, each component uses its complexity (i. e., its number of edges)
as key. In each step of the BFS, we check for the component with the smallest key in
the priority queue and extract the next vertex from the queue of this component. If it
has run empty, we remove the component from the priority queue. New vertices are
always added to the queue that corresponds to the component of their source label.
Whenever two components are unified, we also update them in the priority queue
by removing one of the two involved components, attaching its queue to the other
component, and updating the key accordingly. If components in the priority queue are
implemented as lists of queues, new queues can be removed and reattached in constant
time. In total, the use of a priority queue then increases the asymptotic running time
of the BFS by a logarithmic factor, but we observe a significant speedup in practice.

Data Structures and Implementation Details. When running a BFS on the dual
graph of a border region B, we implicitly represent the search graph using the triangu-
lation of the planar input graph G,. To determine incident edges of a vertex in the
dual graph, we check the edges of its triangle in the primal graph. If such an edge is
not present in G, (i. e., it was added during triangulation) or contained in Ey, there is
an edge in the dual graph connecting the triangle to the twin triangle of this edge.
In the improved variant that makes use of a priority queue, our implementation
actually keeps a single queue per component, rather than a list of queues. Whenever
some components are unified, the keys of affected components in the priority queue

Section 6.5

225



Chapter 6

226

Fast Exact Visualization of Isocontours in Road Networks

are updated in a scan over all elements it contains. This increases asymptotic running
time of the BFS by another linear factor (in the number of components, which can be
linear in the size of the border region). However, the number of components is usually
small in practice and we avoid overhead for maintaining dynamic lists of queues.

To avoid costly reinitialization of vertex labels between queries, we make use of
timestamps [Paj13], implicitly encoded within the component indices of labels to
save space. After every search, the global timestamp is increased by the number of
unreachable components in the border region. Before storing a component index in a
label, the index is increased by the global timestamp. A stored label is invalid if its
index is below the global timestamp. Otherwise, we subtract the global timestamp to
retrieve the actual index of the valid label.

Backtracking runs on-the-fly during the BFS and stops whenever we reach a previ-
ously split triangle, since this means we have reached a previously computed path. We
maintain flags at each triangle, to determine whether a bridging edge or a connecting
edge should be inserted (and if so, between which pair of endpoints). We also build
a list of all split triangles, for fast (sequential) access to all triangles that were split,
in order to add the corresponding vertices and edges in the triangulation after the
BFS has terminated. These additional edges and vertices are stored as temporary
modifications in the triangulation of G,, where we make use of the following data
structures. Edges of the triangulation that are added to U’ (to connect two unreachable
components) are explicitly stored in a list. To quickly check whether some edge of the
triangulation was added to U’, we sort this list (e. g., by head vertex index) after the
BFS terminated to enable binary search. In our setting (some 1000 inserted edges for
the hardest queries), this turned out to be slightly faster than using hash sets. To store
bridging edges and connecting edges, we temporarily modify the triangulation. To
this end, we add an invalidation flag and a temporary index to the vertices of every
triangle in the triangulation of G,. Moreover, we maintain a list of temporary triangles.
Each vertex in a split triangle is marked as invalid and its temporary index is set to
the corresponding entry in this list. Before retrieving a triangle vertex, we first check
whether it is invalid and redirect to the temporary vertex if this is the case. For faster
reinitialization, we replace invalidation flags by timestamps, similar to component
timestamps described above.

Finally, when splitting triangles, we have to set the twins of all new edges. If the
twin triangle was not created yet, we store the pending edge in a list. This list is
searched for existing twins whenever a new triangle is added. If a twin is found, we
set twins for both affected edges, and remove them from the set.

6.5.4 Computing Self-Intersecting Minimum-Link Paths

Our last approach computes a minimum-link path in B that separates the reachable
boundary from the unreachable boundaries. While the resulting polygon has at
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most OPT + 2 segments, it may intersect itself; see Figure 6.18d. To obtain a range
polygon from a self-intersecting polygon, we rearrange it accordingly at crossings.
We describe how minimum-link paths are computed in border regions with multi-
ple unreachable components, by making modifications to the FMLP algorithm from
Section 6.4. First, note that the (weak) dual graph of the triangulation of B is not
outerplanar if |[U| > 1. Consequently, paths between vertices in the dual graph are no
longer unique. In fact, vertices may now occur multiple times in the path traversed
by FMLP; see the corresponding sequence of triangles crossed by the polygon in
Figure 6.18d. In what follows, we first show how the sequence of important triangles
is obtained in this general case. Then, we describe modifications that are necessary to
retain correctness of FMLP when running on this sequence of important triangles.

Computing Important Triangles. Given a border edge e of a border region B, we
are interested in a minimum-link path that connects both sides of e and separates the
reachable boundary from all unreachable boundaries. We compute a sequence t1,. . ., i
of triangles such that any minimum-link path with the above property must pass the
sequence in this order. Our approach runs in two phases. The first phase traverses the
reachable boundary of B and lists all encountered border edges with respect to the
triangulation, i. e., all edges with one endpoint in each R and U, even if they are not
present in the input graph G,,. Clearly, the minimum-link path must intersect exactly
these border edges in the same order to ensure that all unreachable vertices are on the
same side of the path. By construction, any pair of consecutive border edges a and b in
this list is connected by a path P in the dual graph that contains no border edge besides
a and b (where an edge in the dual graph is called border edge if it corresponds to a
border edge of the primal graph). In fact, observe that P is actually unique, since any
cycle in the dual graph contains at least one border edge. The second phase computes
this unique path P for each pair of consecutive border edges. The concatenation of all
these paths yields the actual sequence of important triangles. It serves as input for a
modified FMLP algorithm that computes a minimum-link path connecting both sides
of the border edge e in B.

During the first phase, we exploit the fact that the reachable boundary of B is
always connected. We assign indices to all edges in the triangulation that are contained
in the border region and intersect the reachable boundary, according to the order
in which they are traversed starting from e. In doing so, we distinguish both sides
of edges; see Figure 6.21. For consistency, sides of edges that are not traversed get
the index co. Clearly, this information can be retrieved in a single traversal of the
reachable boundary, similar to the procedure described in Section 6.5.1, but running
on the triangulation of the border region. During this traversal, we also collect an
ordered list of indices corresponding to border edges. Observe that every border edge
in B is traversed exactly once.
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Figure 6.21: Border region with edge indices after starting traversal at the indicated edge e.
Note that edges have two indices (one for each direction of traversal). Indices are o if not
specified. Indices of border edges are also stored in an array [1,4,5,6,7,8,9,10,11,16,17].
(a) The third visited triangle in the second phase (shaded blue) has two possible next triangles
tuw and t,,, (shaded red). The next triangle is #,,,, because the index of the edge vw with
greater index (13) exceeds the next border edge index (4). (b) The next triangle in this example
is t1y. The index of the next border edge is updated from 16 to 17.

The second phase runs on the dual graph of the triangulation and retrieves the
desired sequence of triangles. A key observation is that this sequence must pass all
border edges exactly once and in increasing order of their indices. Therefore, we can
compute the sequence of important triangles as follows. We maintain the index of
the next border edge that was not traversed yet, initialized to the first element of the
list. Starting at the triangle #; containing the first border edge e, we add triangles to
the sequence of important triangles until e is reached again. Let ¢; = uvw denote the
previous triangle that was appended to this sequence. We determine the next triangle
ti+1 as follows; see Figure 6.21. Let uv be the unique edge shared by t; and t;_; (in
the case of i = 1, we obtain uv = e). To determine the next triangle, we consider the
two possible triangles t,,, containing the edge uw and t,,,, containing vw. Without
loss of generality, let the index of uw be smaller than the index of vw and thus, finite.
This implies that uw is not contained in the boundary of B (otherwise, it would have
index oo0). If both u and w are part of the reachable boundary, we know that uw
separates B into two subregions; see Figure 6.21a. Thus, t,,, is the next triangle if
and only if the subregion containing t,,, contains a border edge that was not passed
yet. Therefore, we continue with t,,, if and only if the index of the other edge vw is
greater than the index of the next border edge. If either u or w is part of an unreachable
boundary, uw is the next border edge; see Figure 6.21b. We update the index of the
next border edge to the next element in the according list.

We continue until the first edge e is reached again. Note that the second phase
(traversing the dual graph) can be performed on-the-fly during minimum-link path
computation (i. e., the sequence of triangles does not have to be built explicitly).
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(b)

Figure 6.22: Shortest paths in general border regions. Assume that vertices in the center
of the polygon are not connected to the remaining unreachable boundary (bottom). (a) The
shortest path 7} from the right endpoint of the previous window w(a) to the right endpoint
of b3 intersects itself. (b) The shortest path 7] from the right endpoint of w(a) to the right
endpoint of b, contains a left bend after passing an unreachable vertex that is not connected
to the unreachable boundary.

Computing Minimum-Link Paths. Given a sequence t4,. . ., t of important trian-
gles in a border region B computed as described above, we discuss how a minimum-link
path between both sides of e is computed. In particular, we show which modifications
to FMLP are necessary to preserve correctness.

Consider the computation of a window from an arbitrary initial edge shared by
two triangles in t1,. . .,t; as described in Section 6.4.2. Clearly, the subsequence of
triangles that is visited until a window is found does not contain multiple occurrences
of the same triangle, since this would imply that a straight visibility line intersects it at
least twice. Consequently, the fact that triangles may appear several times in ty,. ..,
does not affect window computation starting at an edge. A similar argument applies
when initializing the computation of a subsequent window. Recall that in this step,
the visibility cone from the last window to the next initial edge is computed. All
triangles considered in this step are intersected by the last window in a certain order
(see Section 6.4.2) and because windows are straight lines, we cannot encounter the
same triangle twice.

However, the computation of the next window after the initialization step requires
some modification, since triangles visited during initialization may reoccur when
computing the window from the next initial edge. As a result, the subpaths computed
during initialization and when starting from this edge may cross each other; see
Figure 6.22a. In this example, the subpath of the right shortest path 7] starting at the
initial edge b, intersects the segment from the right endpoint of the previous window
w(a) to the right endpoint of by. Self-intersections would not pose a problem per se
if we generalized the definition of shortest paths to polygons with self-intersections.
However, without modifications, FMLP may produce wrong results in certain special
cases. Figure 6.22b shows such an example. Although the shortest path from the right
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endpoint of w(a) to the right endpoint of b, does not contain crossing edges in this
case, its second segment lies in the half plane to the left of the first segment. Hence, the
algorithm shown in Figure 6.12 in Section 6.4.2 will falsely remove the last segment.
The resulting incorrect path consists of the single segment from the right endpoint of
w(a) to r(by). Clearly, this leads to the construction of an incorrect visibility cone. We
say that the last segments of the right shortest paths shown in Figure 6.22 are visibility-
intersecting, as they reach into the area that is visible from w(a). Formally, a segment
is visibility-intersecting if it intersects the interior of the hourglass Hy bounded by
the previous window a’ := w(a), the next initial edge by, and the initial left and right
shortest path 77.'0[ and 7; see the shaded area in Figure 6.22a. Visibility-intersecting
segments can only occur in the shortest path that corresponds to the unreachable
boundary, since the reachable boundary consists of a single component.

In what follows, we show how we can avoid visibility-intersecting segments that
may spoil the FMLP algorithm. As argued above, visibility-intersecting segments
only occur if a triangle visited during the initialization phase is visited again when
computing the next window from a border edge. A conceptually easy way to resolve
this issue is to retriangulate parts of the border region, namely, the part called P in
Section 6.4.2. Instead, we present an approach that avoids retriangulation by making
use of a few simple checks instead (in a sense, it simulates the situation after such
a retriangulation). We first show how we can easily detect visibility-intersecting
segments. Afterwards, we show that we can simply omit such segments from the
corresponding shortest path. As a result, our adaptation is very easy to implement
and produces negligible overhead in practice.

Lemma 6.7 claims that for i € {1,...,k}, a segment that is appended to the shortest
path 7] is visibility-intersecting if and only if it intersects the previous window a’
and is not an endpoint a’. As before, we assume general position. Thus, the window
a’ and the path 7] share no common segment. In practice, such a segment is easily
detected and removed from both the path and the window during initialization of 7.

Lemma 6.7. Given the previous window a’, let by be the next initial edge in B. Let t;,
withi € {1,...,k}, be an important triangle such that the shortest path x]_, contains
no visibility-intersecting segments and the edge b; shared by t; and t;,; is (partially)
visible from a’ (we set b; := b in the case i = k). The next segment s appended to nr]_, is
visibility-intersecting if and only if s intersects the open line segment a’.

Proof. Note that we consider the previous window a’ to be an open line segment, since
its right endpoint coincides with an endpoint of the first segment of 7;_,,
clearly not visibility-intersecting.

First, assume the segment s = pq is visibility-intersecting and assume for the sake of
contradiction that s does not intersect a’. Since s is visibility-intersecting, it intersects
the interior of the hourglass H, enclosed by a’, by, 75, and ﬂ(f . Since the interior of H,
contains no vertices (in particular, neither p nor g), the edge s of t; must intersect the

which is
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boundary of Hy at least twice. However, s does not intersect the interior of the edge by,
since both s and b, are edges of triangles. As s does not intersect a’ by assumption, it
intersects 7] or ﬂ(f . Moreover, since both paths are concave in Hy, s must intersect
both paths. (If it intersects any path twice at two points p” and ¢’, the subsegment that
connects p’ and ¢’ does not intersect the interior of Hy, so s has at least one additional
intersection with the boundary of Hy.) But s does not intersect ﬁg , because this would
imply that the paths 7] and ﬂ(f have non-empty intersection, contradicting the fact
that b; is visible from a’.

Second, assume that s intersects the open segment a’. Since a’ contains no endpoint
of s, we know that s intersects the interior of Hy. Hence, the segment s must be

visibility-intersecting. O

Next, we show that visibility-intersecting segments can safely be omitted from the
shortest path computed by FMLP. Let ¢;,...,t; with 1 < i < j < k be a subsequence
of important triangles, such that the edge of t; appended to 7], by the algorithm is
visibility-intersecting, and ¢; is the first triangle (i. e., with lowest index j > i) such
that the edge b; shared by ¢; and t;,; does not intersect the open segment a’; see the
sequence of shaded triangles in Figure 6.22b. Thus, all edges b;,...,b;_; intersect a’.
Moreover, ], and b; lie on the same side of a’ (otherwise, the window a” would cross
the reachable boundary of B). We distinguish two cases, depending on whether b; is
visible from a’. We show that in both cases, we can skip the right endpoints of all
edges b;,...,bj_; when updating the path 7], to obtain the correct window.

First, assume that b; is (partially) visible from a’. We claim that no right endpoint of
an edge b;,...,b;_; is contained in the shortest path 7. To see this, let u denote the
last vertex of z7]_, and w the right endpoint of b;. Clearly, a’ separates u and w from
all right endpoints of b;,...,b;_;. Since b; is visible, this implies that the segment uw
crosses all edges b;,...,bj_. Therefore, it does not intersect the boundary of B and
there can be no shorter path from u to w.

Second, assume that b; is not visible from a’. We claim that no right endpoint v of an
edge b;,...,bj_1 is contained in the visibility cone of a’. Assume for contradiction that
such an endpoint v is visible from a’. We know that v and the edge b;_ lie on opposite
sides of a’. Since v is visible from a’, there exists a straight line that crosses a’, b;_;
and v in this order. Consequently, it must cross a’ twice, contradicting the fact that it
is a straight line. Since v is not part of the visibility cone from a’, it is not relevant for
the computation of the next window w(a’).

In both cases, we can safely ignore right endpoints of all edges b;,...,b;_;. We
adapt our algorithm as follows. Before adding a segment to the shortest path that
corresponds to the unreachable boundary, we check whether it intersects the previous
window a’. If this is the case, we do not add it to the path.

Finally, applying these modifications, we have to clear one last issue to enable correct
initialization of the computation of the next window in FMLP. Recall that during this
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Figure 6.23: Computing initial shortest paths. Assume we want to compute a minimum-link
path from a to b, such that the (unreachable) vertex in the center is to the right of this path.
(a) The window a”” = w(a’) computed after the first window a’, with final shortest paths (red).
(b) The initial shortest paths 7r05 and 7] connecting the endpoints of @’ and the next initial
edge b” when computing the next window w(a”’). To obtain 7], we compute another shortest
path from the right endpoint of b’, which equals 7] when a” is found.

initialization, one shortest path becomes the suffix of a previous path; see Section 6.4.2.
Figure 6.23 illustrates a case where this suffix is not available in the modified algorithm.
In this example, we are interested in a minimum-link path between the indicated edges
a and b. Figure 6.23a shows the first window a’ = w(a). Starting from a’, the shortest
paths 77 and 7¢ are computed to obtain the next window a’’ = w(a’) (note that the
right endpoint of a”’ is an unreachable component consisting of a single vertex). To
compute the next window w(a’’) from w(a’), we first have to compute the initial
paths n(f and ], as shown in Figure 6.23b. However, 7 consists of a segment that is
not present in the previous right shortest path, because it is visibility-intersecting for
this path; see the path 7" in Figure 6.23a.

To resolve this problem, we maintain another shortest path z’ that starts at the
unreachable endpoint of the previous initial edge b’, i. e., segments are added as in
original FMLP. As argued before, this path does not contain self-intersections. Then,
the initial shortest path is a suffix of 7, since the only segments omitted from s’ are on
the shortest path from the previous window a’ = w(a) to the previous initial edge b’.
Clearly, these segments cannot be part of the next initial shortest path, since b’ is fully
visible from a’. Hence, the first endpoint of the window w(a’) must be a point in 7’

Remarks. In summary, our algorithm consists of two major steps. The first step
traverses the reachable boundary in the triangulation of B. The second step runs a
modified version of FMLP, keeping track of the next border edge index to compute the
sequence of important triangles on-the-fly. Both steps are modifications of previous
algorithms, which maintain their linear running time. While the resulting polygon P
may intersect itself, it has at most OPT + 2 segments. To obtain a range polygon
P’ without self-intersections, we can split P into several non-crossing polygons at
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intersections. From the resulting smaller polygons, we discard those that contain no
vertices of G, or are fully contained in another polygon. To ensure that P’ consists of
a single component, according to our primary optimization criterion in Section 6.1,
we can also reuse (partial) segments of P to connect the non-crossing components
of P’. The number of additional segments is linear in the number of self-intersections,
which is small in practice (see Section 6.6.2).

6.6 Experiments

Our experimental study is divided into two main parts. First, we evaluate techniques
that compute the reachable subgraph for a source vertex and a range (Section 6.6.1).
Second, we consider the computation of the actual range polygon based on the reach-
able and unreachable part of the network (Section 6.6.2). We also present and analyze
typical outputs of our algorithms on real-world road networks (Section 6.6.3).

6.6.1 Computing the Reachable Subgraph

In line with the algorithm descriptions in Section 6.2, we focus on the computation
of isochrones. Consequently, we use the instance Eur-DIMACS in most experiments,
which provides travel times for all edges in the graph. Nevertheless, we also present
results for the EV scenario (using the PHEM model of a Peugeot iOn). Unless mentioned
otherwise, all experiments discussed in this section were conducted on machine-p. We
always show parallel customization times, but we provide both sequential and parallel
query times. Parallel execution uses all available cores. As usual, customization times
exclude partitioning, since it is metric-independent. For queries, reported figures are
averages of 1000 queries (per individual range r € R ), with source vertices picked
uniformly at random. For more details about the experimental setup, see Section 3.4.

Tuning Parameters. We generated multilevel partitions for isoCRP and isoGRASP
with PUNCH [Del+11b], whereas we used Buffoon [SS12] to find single-level partitions
for isoPHAST. Buffoon works similar to PUNCH, but takes the maximum number
k € N of cells in the desired partition as input, rather than the maximum cell size; c.f.
Section 4.5.3. If necessary, edge partitions were computed from the resulting (vertex)
partitions with the approach of Pothen et al. [PSL90, Sch13]. We conducted preliminary
studies to obtain reasonable parameters for partitions and search graph compression.
For isoCRP and isoGRASP, we use the 4-level partition of Delling et al. [Del+11a],
obtained from PUNCH with respective maximum cell sizes of 28 212 916 and 220,
Although Efentakis and Pfoser [EP14] use 16 levels, resorting to a 4-level partition
had only minor effects in preliminary experiments (similar observations are made
by Efentakis et al. in a subsequent work [EPV15]). For sequential isoPHAST-CD
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Table 6.1: Sequential computation of isochrone border edges (Eur-DIMACS). We report parallel
customization time and space consumption (space per additional metric is given in brackets, if
it differs). The table also shows the average number of vertex scans (# V. Sc.) and running time
of sequential queries, using the ranges r = 100 and r = 500 (in minutes).

Custom. r = 100 min r = 500 min
Algorithm T.[s] Space[MiB] #V.Sc. T.[ms] #V.Sc. T.[ms]
isoDijkstra — 646 460103 68.32 7041260 1184.06
isoCRP 1.70 900 (138) 100789 15.44 354 291 60.67
isoGRASP 2.50 1856 (1094) 120327 10.06 387053 37.77
isoPHAST-CD 26.11 785 440 487 6.09 1501455 31.63
isoPHAST-CP 1221.84 781 626 387 15.02 2028703 31.00
isoPHAST-DT 1079.11 2935 581472 9.96 1813 690 24.80

queries, a partition with k = 2!2 cells yields best query times. For isoPHAST-CP, we
achieve best timings with k = 2'! cells. For fewer cells (i. e., coarser partitions), the
third query phase scans a large portion of the graph and becomes the bottleneck in
both variants. Using more fine-grained partitions, on the other hand, results in a
larger core graph, slowing down the second query phase. Consequently, fewer cells
(k = 256) become favorable for both isoPHAST-CD and isoPHAST-CP when queries
are executed in parallel (as only the third phase is parallelized and thus becomes faster).
For isoPHAST-DT, we observe similar effects for different values of k. Moreover,
search graph compression has a major effect on query times and space consumption.
If the number of vertices added to the compressed graph G is small, vertices at high
levels occur in search graphs of multiple cells, but a large graph Gi causes unnecessary
vertex scans. Choosing k = 2!* and |V,| = 2! yields fastest sequential queries, whereas
the parameter values k = 2!2 and |V, | = 2!3 provide the fastest parallel queries.

Evaluating Queries. Table 6.1 summarizes the performance of all algorithms dis-
cussed in Section 6.2 when computing isochrones on Eur-DIMACS. It shows figures
for customization and queries, which are defined by a source vertex together with an
indicated range and ask for all corresponding border edges. We report query times
for medium (r = 100) and long ranges (r = 500, this is the hardest range for most
approaches, as it results in the largest number of isocontour edges on average). As
expected, techniques based on multilevel overlays provide better customization times,
while isoPHAST achieves the lowest query times (the best strategy is CD for the
medium range and DT for the long range, respectively). Regarding customization, we
observe that times provided by isoCRP and isoGRASP are very practical (below three
seconds). The lightweight preprocessing of isoPHAST-CD pays off as well, allowing
customization in less than 30 seconds. The comparatively high preprocessing times
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Table 6.2: Parallel computation of isochrone border edges (Eur-DIMACS). We report figures
as in Table 6.1 for the same set of queries, only this time executed in parallel.

Custom. r = 100 min r = 500 min
Algorithm T.[s] Space [MiB] #V.Sc. T.[ms] #V.Sc. T.[ms]
isoCRP 1.70 900 (138) 100789 2.73 354291 7.86
isoGRASP 2.50 1856 (1094) 120327 2.35 387053 5.93
isoPHAST-CD 38.07 769 917 695 1.61 4577 630 8.22
isoPHAST-CP 1432.39 766 943 543 4.47 5460207 7.86
isoPHAST-DT 865.50 1066 913771 1.74 2978899 3.80

of isoPHAST-CP and isoPHAST-DT are mainly due to expensive core contraction.
Still, metric-dependent preprocessing is far below half an hour, which is suitable
for applications that do not require real-time metric updates. Compared to isoCRP,
iSoGRASP requires almost an order of magnitude of additional space per metric for
the downward graph (which contains about 110 million edges).

Executed sequentially, all speedup techniques take well below 100 ms to answer
queries, which is is significantly faster than isoDijkstra. Compared to the multilevel
overlay techniques, the number of vertex scans is considerably larger for isoPHAST,
yet data access is more cache efficient. As a result, isoPHAST provides faster queries
for both limits, with the exception of isoPHAST-CP for small and medium ranges
(because the whole core graph is scanned). The performance of isoPHAST-CD is quite
notable, providing the fastest queries for medium ranges and decent query times for
the higher range. Finally, query times of isoPHAST-DT show best scaling behavior,
providing the lowest running times of all approaches for the hardest queries.

Table 6.2 reports parallel times for the same set of random queries. Note that
preprocessing times of isoPHAST change due to different parameter choices. Most
approaches scale very well with the number of threads, providing a speedup of roughly
8 when using 16 threads. Note that factors (according to Table 6.1 and Table 6.2) are
much lower for isoPHAST, since we use tailored partitions for sequential queries. In
fact, isoPHAST-DT scales best when run on the same preprocessed data (speedup of 11,
not reported in the table), since its sequential workflow (forward CH search, table scan)
is very fast. Considering techniques based on multilevel overlays, isoGRASP scales
worse than isoCRP (speedup of 6.5 compared to 7.7), probably because it is limited by
the memory bandwidth, whereas isoCRP comes with more computational overhead.
Consequently, isoGRASP benefits greatly from storing a copy of the downward graph
on each NUMA node. As one may expect, speedups are slightly lower for medium-
range queries, as there are fewer active cells on average. The isoPHAST approaches
yield best query times, which are below 2 ms for medium-range queries and below
4ms for the long range. To summarize, all algorithms enable queries that are fast
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Table 6.3: Computation of border edges with respect to range of an EV (Eur-PTV). As before,
customization is run in parallel, while both sequential and parallel queries are reported. Besides
the number of threads used in queries (# Th.), we report figures as in Table 6.1.

Custom. r = 16 kWh r = 85kWh
Algorithm #Th. T.[s] Space [MiB] #V.Sc. T.[ms] #V.Sc. T.[ms]
isoDijkstra 1 — 1558 399772 63.99 3931822 705.28
isoCRP 1 172 2192 (550) 33602 8.91 114 380 29.56
isoGRASP 1 335 4678 (3036) 32620 5.69 107 529 17.30
isoCRP 16  1.72 2192 (550) 33602 4.16 114380 8.70
isoGRASP 16  3.35 4678 (3036) 32620 3.46 107 529 7.55

enough for practical applications, with speedups of more than two orders of magnitude
compared to the baseline approach, isoDijkstra.

Finally, we discuss performance of isoCRP and isoGRASP when computing the range
of an EV. We focus on these two techniques, because they provide best customization
times. As argued in Section 4.4, fast customization is of particular relevance in the
context of route planning for EVs. In Table 6.3, we report average sequential and parallel
running times of 1000 random queries on Eur-PTV. Even though the considered graph
is largely similar to Eur-DIMACS, we observe significantly faster query times compared
to isochrones. This is due to the fact that reachable subgraphs induced by the chosen
ranges are smaller (see search spaces reported in the tables). Additionally, we observe
that the number of border edges tends to be smaller when computing the range of
an EV (even if the reachable subgraph has similar size). A possible explanation for this
are differences in the shape of isochrones and isocontours representing the range of
an EV: While isochrones reach further on fast routes (e. g., motorways), isocontours
representing the range of EVs typically have a more circular shape (motorways allow
to move faster, but also consume more energy). Hence, the number of active cells as
well as the number of border edges in the output is typically much smaller (by up
to a factor of 3) when computing the range of an EV. As a result, speedup decreases
when executing our algorithms in parallel (because there are fewer active cells to be
processed). Furthermore, we observe that customization effort and space consumption
increase. This is only partially explained by the fact that we are dealing with a larger
instance. More importantly, two metrics need to be stored in contrast to a single one
in the isochrone scenario. Shortcuts also have to store SoC profiles represented by
three integers; see Section 4.1.3. Still, customization is very practical, integrating new
cost functions within less than four seconds.

Evaluating Scalability. In Figure 6.24, we examine how sequential query times
scale with the range. The plot shows running times of random queries asking for
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Figure 6.24: Sequential query times of our techniques for various ranges between 10 and
5000 minutes (which roughly equals the diameter of our input graph, Eur-DIMACS). Each
sample corresponds to the average running time of 1000 queries for the respective range.

isochrones on Eur-DIMACS with indicated ranges. For comparability, we also re-
port sequential query times of original isoGRASP as introduced by Efentakis and
Pfoser [EP14], which computes distances to all reachable vertices, but no border edges.
Running times of all algorithms except isoDijkstra and original isoGRASP follow a
characteristic curve: Timings first increase with the range r € R (the isochrone fron-
tier is extended, intersecting more active cells), before dropping again once r exceeds
500 minutes (the isochrone reaches the boundary of the network, so the number of
active cells decreases). For ranges that exceed 4 800 minutes, all vertices are reachable.
Thus, queries become very fast, as there are no active cells. For small values of r,
the techniques using multilevel overlays and isoPHAST-CD are the fastest. For these
ranges, iSoOPHAST-CP is slowed down by the linear scan over the core graph (taking
about 6 ms, independent of ), while isoPHAST-DT suffers from distance bounds that
are not tight. However, since isoDijkstra (run on the core graph) quickly becomes a
bottleneck if the range increases, isoPHAST-CD is the slowest of our novel approaches
for large values of r, whereas the other strategies based on isoPHAST benefit from
good scaling behavior. Considering approaches that use multilevel overlays, our new
variant of iSoGRASP is up to almost twice as fast as iSoCRP, providing a decent trade-
off between customization effort and query times. Note that, although isoDijkstra
is fast enough for some realistic ranges (below 100 minutes), it is not robust to user
inputs on large instances.

Figure 6.25 shows query times subject to different ranges when our query algorithms
are executed in parallel. Running times generally follow the same characteristic curve
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Figure 6.25: Parallel query times of our techniques for various ranges, each given as the
average running time for the same set of queries as in Figure 6.24.

as in the sequential scenario. We observe that the linear scan in the second phase of
iSoOPHAST-CP becomes slightly faster (below 4 ms), because the core graph is smaller
(due to a different underlying partition). Also, the performance gap between isoCRP
and isoGRASP is slightly smaller when using multiple threads. Again, isoPHAST-CD is
the best technique for medium-range queries. However, as before, query performance
of isoPHAST-CD gets worse if the range increases and isoPHAST-DT becomes the
fastest approach for ranges beyond 100 minutes.

Alternative Outputs. Table 6.4 compares query times when computing different
outputs, namely, a list of all border edges or a list of all reachable vertices. For medium
ranges (r = 100 minutes), both sequential and parallel query times increase by less than
10 % when computing the set of reachable vertices instead of border edges. For long
ranges (r = 500 minutes), where roughly half of the vertices are reachable, sequential
and parallel queries slow down by a factor of about 1.5 when computing vertex sets,
but they are still significantly faster than the original isoGRASP algorithm. Only
when considering the graph diameter as range (» = 5000 minutes), sequential query
times for computing all reachable vertices are significantly slower, since the variants
reporting only border edges already terminate after the (very fast) upward phase.

Comparison with Related Work. Since we are not aware of any work solving our
compact problem formulation (computing only border edges or reachable vertices),
we cannot compare our algorithms directly to competitors. Hence, to validate the
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Table 6.4: Impact of different output formats on performance of isoCRP, isoGRASP, and
iSoOPHAST using the CP strategy (Eur-DIMACS). We report average sequential (Seq.) and
parallel (Par.) times for 1000 random queries, as well as output size (# Out.) when computing
sets containing all border edges and reachable vertices, respectively.

Range Border edges Reachable vertices

Algorithm  [min] #0ut. Seq.[ms] Par.[ms] #0ut. Seq.[ms] Par.[ms]
100 5937 15.44 2.73 460103 15.83 2.77

isoCRP 500 14718 60.67 7.86 7041 260 76.35 9.26
5000 0 3.42 3.17 18010173 46.64 6.64

100 5937 10.06 2.35 460103 11.07 2.50

isoGRASP 500 14718 37.77 5.93 7 041 260 56.83 7.57
5000 0 3.08 3.10 18010173 46.09 6.44

100 5937 15.02 4.47 460103 16.40 4.70

isoPHAST 500 14718 31.00 7.86 7 041 260 49.57 9.67
5000 0 7.96 3.61 18010173 50.86 7.03

efficiency of our code, we compare our implementations of basic building blocks to
the original publications. Table 6.5 reports running times of our implementations
of Dijkstra’s algorithm, GRASP, PHAST, and RPHAST on one core of machine-s
(chosen as it most closely resembles the machines used in the respective original
publications [DGW11, EPV15]). For comparison, we report running times (as is)
from Delling et al. [DGW11] and Efentakis et al. [EPV15]. One-to-all query times
for Dijkstra’s algorithm, PHAST, and GRASP are averages of 1000 random queries
on Eur-DIMACS. For the one-to-many scenario (Dijkstra’s algorithm and RPHAST),
we adopt the methodology of Delling et al. [DGW11]. To determine queries, they pick
a center vertex ¢ € V at random and run Dijkstra’s algorithm from c until |T| vertices
were scanned, making all scanned vertices the target set T. In a query, distances
from a random source s € T to all vertices in T are requested. In our experiment, we
set |T| = 2!* (of the scenarios considered by Delling et al. [DGW11], queries of this
type most closely resemble the structure of searches in cell-induced subgraphs made
by isoPHAST). For RPHAST, we report both target selection and query time.

Even when taking hardware differences into account, we observe that running
times of our implementations are similar to the original publications. Note that target
selection of RPHAST is even slightly faster.

6.6.2 Computing Range Polygons

We evaluate the algorithms proposed in Sections 6.3-6.5. Given a compact repre-
sentation of the reachable subgraph, they compute a range polygon that represents
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Table 6.5: Running times (in milliseconds) of

Algorithm [our] [orig.]

basic building blocks for one-to-all and one-to-
Dij. (1-to-all) 2653.18 - many queries (Eur-DIMACS). We compare our
PHAST 144.16 136.92 implementation of each technique with the re-
GRASP 171.11 169.00 spective original publication [DGW11, EPV15].
Dij. (1-to-many) 7.34 7.43
RPHAST (select) 1.29 1.80
RPHAST (query) 0.16 0.17

the actual isocontour. These algorithms do not exploit parallelism, so we conducted
our experiments on machine-s. We report experiments on our main benchmark in-
stance, Eur-PTV. To improve spatial locality of the input data, we reorder the vertices
of the input graph according to a vertex partition of the graph obtained from PUNCH
(using a single level with maximum cell size 2°).

The planar graph used in our implementation is directed, but stores no cost functions.
As mentioned in Section 6.1.1, we add four bounding box vertices in each corner of
the embedding, along with eight edges connecting each vertex to the closest vertex
of the input graph and the two closest bounding box vertices. During planarization,
293 741 vertices are added and 654 765 edges are split. Note that a dummy vertex may
intersect more than two original edges, which explains why the number of split edges
is more than twice the number of dummy vertices. They are replaced by 1591914
dummy edges (creating 6 294 multi-edges due to overlapping original edges in the
given embedding). After planarization, the resulting graph has 22 492 373 vertices and
52025261 edges. After triangulating all faces, it has 131 977 245 edges in total.

In what follows, we denote by RP-RC (Range Polygon from Reachable Extracted
Component) the approach presented in Section 6.5.1, by RP-TS (Range Polygon from
Triangular Separators) the algorithm from Section 6.5.2, by RP-CU (Range Polygon
from Connected Unreachable Components) the approach from Section 6.5.3, and by
RP-SI (Range Polygon with Self-Intersections) the algorithm from Section 6.5.4. We only
evaluate Steps 2—4 of the generic method outlined in Section 6.1.2, as the first step
(computation of the reachable parts of the graph) was already covered in Section 6.6.1.

Evaluating Queries. We evaluate query scenarios for range visualization of an EV,
as well as isochrones. We compare the results provided by the algorithms proposed in
Section 6.5. Each algorithm was tested on the same set of 1000 queries from source
vertices picked uniformly at random.

Regarding our primary application, range visualization of EVs, Table 6.6 shows an
overview of the results of all heuristics, organized in two blocks. The first consid-
ers the medium-range scenario (16 kWh), while the second shows results for long
ranges (85 kWh). For RP-SI, the number of components and the complexity are re-
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Table 6.6: Running times of range polygon computation for an EV (Eur-PTV). We report, for
each algorithm and range, the number of components in the resulting range polygon (Cp.),
the complexity of the range polygon (Seg.), the number of self-intersections (Int.), as well as
running time of the algorithm. Figures are average values of 1000 random queries.

r =16 kWh r = 85kWh
Algorithm  Cp. Seg. Int. T.[ms] Cp. Seg.  Int. T.[ms]

RP-RC 41 19396 - 4.50 131 92554 - 9.46
RP-TS 69 610 - 4.30 219 1973 - 7.78
RP-CU 41 561 - 10.15 131 1820 — 25.11
RP-SI 41 549 4.79 7.52 131 1781 15.06 22.25

ported as is after running the modified FMLP algorithm described in Section 6.5.4
(i. e., resulting polygons have the number of self-intersections reported in the table).
Thus, figures slightly change after resolving the intersections (both the number of
components and the complexity may increase).

All algorithms perform very well in practice, with timings of 25 ms and below even
for large battery capacities. The simpler algorithms, RP-RC and RP-TS are faster by
a factor of 2-3 compared to the more sophisticated approaches. On the other hand,
we see that range polygons generated by RP-RC have a much higher complexity,
exceeding the optimum by more than an order of magnitude. The heuristic RP-TS
provides much better results in terms of complexity, but is still outperformed by the
other two approaches in this regard. Moreover, the triangular separation increases the
number of components by almost a factor of 1.7 (all other approaches in fact compute
the minimum number of holes). Regarding the two more involved approaches, RP-CU
and RP-SI, we see that the additional effort pays off: Both approaches compute range
polygons with the optimal number of components, while keeping the complexity
close to the optimum. In fact, we know that each component in the possibly self-
intersecting polygon computed by RP-SI requires at most two additional segments
compared to an optimal solution (see Section 6.5.4). Taking into account that many
small components are triangles (which have optimal complexity), we derive lower
bounds on the optimal average complexity of 529 (16 kWh) and 1 720 (85 kWh) for
a range polygon with minimum number of components. The average relative error
of RP-CU (upper bounded by 6 %) and RP-SI (upper bounded by 4 %) obtained in our
experiments is negligible in practice. The number of intersections produced by RP-SI
is also rather low, but the majority of computed range polygons contains at least
one self-intersection (97.2 % of all range polygons have self-intersections for a range
of 85 kWh, not reported in the table).

In Table 6.7, we provide according figures for isochrones, considering a medium
range (60 minutes) and the most difficult range from Section 6.6.1 (500 minutes). Again,
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Table 6.7: Running times of range polygon computation for isochrones, subject to the indicated
ranges. Reported figures are as in Table 6.6. They were obtained by running 1000 random
queries from the same set of source vertices.

r = 60 min r = 500 min

Algorithm Cp. Seg. Int. T.[ms] Cp. Seg. Int. T [ms]

RP-RC 53 22458 - 4.75 231 238123 — 20.25
RP-TS 151 1076 - 4.65 694 4981 — 14.96
RP-CU 53 913 - 12.11 231 4208 — 65.09
RP-SI 53 881 9.95 8.70 231 4055 45.80 51.94

these queries are among the hardest in our setting (for longer ranges, the border
of the network is reached by many queries). Despite an increase in running time
and solution size compared to range visualization for EVs, all approaches still show
great performance with average running times of 65 ms and below. As before, the
average complexity of range polygons computed by RP-RC is larger compared to
other heuristics by about a factor of 50, with range polygons consisting of more than
200 000 segments on average for the long range. This clearly justifies the use of our
new algorithms, since a significant decrease of this number is beneficial when efficient
rendering or transmission over mobile networks is an issue. Moreover, a smaller
number of segments arguably leads to a more appealing visualization for ranges of
this order (see Figure 6.28 in Section 6.6.3). For RP-TS, the number of components now
exceeds the optimum by about a factor of 3. The approaches RP-CU and RP-SI yield
best results, with average relative errors bounded by 7 % and 3 %, respectively.

For the hardest scenario (isochrones, 500 minutes), Table 6.8 reports more detailed
information on running times of the different phases of all algorithms. Note that
the total running time slightly differs from the sum of all subphases, since it was
determined independently. The planarization phase (TP) consists of the linear scans
described in Section 6.3.1. Since the same work needs to be done for all approaches,
the running time is identical in all cases (bar measurement noise). Of course, the
relative effort spent in this step differs per algorithm. For example, it requires more
than half of the total running time in case of RP-TS. The time to extract the border
regions (BE) applies to all algorithms except RP-TS, where this is done implicitly by
checking reachability of vertices while running FMLP. Since RP-RC extracts only the
reachable boundary, this phase takes less than half the time compared to RP-CU (the
unreachable boundary is typically larger). Finally, RP-SI spends most time in this
step, as it runs the extraction on the triangulated graph, which is significantly denser.
Recall that RP-SI in fact only extracts the reachable border, similar to RP-RC, so this
phase is slower by more than a factor of 2.5. A phase for connecting unreachable
components (CC) is only required by RP-CU and takes less time than the extraction of
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Table 6.8: Running times of different phases of the algorithms (where applicable) for
isochrones (500 minutes). For each algorithm, we report the total running time composed of
the running time for transferring the input to the planar graph (TP), extracting the border
regions (BE), connecting components (CC), the range polygon computation with minimum-link
paths (RP), and the test for self-intersections (SI). Timings are in milliseconds.

Algorithm TP BE CC RP SI Total

RP-RC 821 12.01 — — — 20.25
RP-TS 8.22 — — 645 — 14.96
RP-CU 8.23 26.66 2299 7381 — 65.09
RP-SI 8.20 31.79 — 953 234 5194

border regions. Computing the actual range polygon takes a similar amount of time for
all approaches that run this phase (6-10 ms). For RP-TS, it is slightly faster, since the
algorithm works only on important triangles, reducing the number of visited triangles
and simplifying the algorithm. On the other hand, RP-SI is the slowest approach in
this phase. This can be explained by the additional overhead caused by modifications
described in Section 6.5.4. Moreover, in contrast to RP-TS and RP-CU, there are no
artificial edges in the border regions. Hence, windows computed by RP-SI are longer
on average, increasing the number of triangles visited by the algorithm.

In summary, we see that extracting the border region takes a major fraction of the
total effort for all approaches that construct the border region B explicitly. Despite the
algorithmic simplicity of this phase, the size of the border region (more than 500 000
segments on average, not reported in the table) requires a significant amount of work
to be done. On the other hand, only a fraction of all triangles in the border regions are
actually visited by the FMLP algorithm.

Evaluating Scalability. Figure 6.26 analyzes the scalability of our algorithms, fol-
lowing the methodology of Dijkstra ranks [Bas+16, SS05]. Recall that the Dijkstra rank
of a shortest-path query is the number of queue extractions performed by Dijkstra’s
algorithm, presuming that the algorithm stops once the target is found. Thus, higher
ranks reflect harder queries. To obtain queries of different ranks, we executed 1000
runs of isoDijkstra, with infinite range and from sources chosen uniformly at random.
For a search from some source s € V, consider the resource consumption c(v) of the
corresponding vertex v € V that is extracted from the queue in step 2’ of the algorithm.
We consider a query from s with range c(v) as a query of rank 2’ (the maximum rank
is bounded by the graph size). For each rank in {2!,...,2 Llogn1} e evaluate the 1000
queries generated this way.

Query times of all approaches increase with the Dijkstra rank, which correlates well
with the complexity of the border region. Moreover, scaling behavior is similar for
all approaches. In accordance with our theoretical findings, our experiment suggests
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Figure 6.26: Running times of our approaches subject to Dijkstra rank (Eur-PTV). Lower
ranks indicate queries of shorter range.

that it increases linearly in the size of the border region for queries beyond a rank
of 2'2. For queries of lower rank, transferring the input to the planar graph dominates
running time, as it is linear in the graph size and thus, independent of the rank. The
approach RP-TS is consistently the fastest approach on average for all ranks beyond 21°.
Except for a few outliers, our algorithms answer all queries in well below 100 ms. For
more local queries (i. e., smaller ranges), query times are much faster (20 ms and below
if the rank is at most 22, corresponding to about a million vertices visited by Dijkstra’s
algorithm). The more expensive approaches have a higher variance and produce
more outliers, which is explained by their more complex phases. For example, the
performance of the BFS used in RP-CU heavily depends on how close unreachable
components of the border region are in the dual graph.

Evaluating the Computation of Minimum-Link Paths. We take a closer look at
the performance of the FMLP algorithm for computing minimum-link paths introduced
in Section 6.4. To properly evaluate the algorithm in the context of our experimental
setting, we proceed as follows. For a query (defined by source and range), we consider
the largest corresponding border region (with respect to the number of segments). To
obtain a polygon without holes, as required by the algorithm, we first run our heuristic
to connect all unreachable components described in Section 6.5.3. Then, we add an
arbitrary border edge to the modified border region and compute a minimum-link path
that connects both sides of this edge. Results are shown in Table 6.9. Each scenario is
based on the respective sets of random queries used in Table 6.6 and Table 6.7.
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Table 6.9: Performance of different minimum-link path algorithms. For each considered
scenario, we report the number of segments in the input polygon (|P|) and the minimum
number of links in the resulting path (Seg.). For Suri’s algorithm [Sur86], we show the number
of visibility polygon computations (V.Pol.), the total number of segments in the input of
these computations (Pol. Seg.), and the total number of visible triangles in these inputs (Trng.).
For FMLP, the table provides the number of triangles visited by the algorithm (Trng.) and
the running time in milliseconds. Figures are average values of 1000 queries. Running times
exclude the time for triangulating the input polygon, which is part of preprocessing.

Suri [Sur86] FMLP
Range |P| Seg. V.Pol. Pol.Seg.  Trng. Trng. T.[ms]
16 kWh (EV) 134049 415 2010 307583 48762 8901 0.74
60 min (Iso) 135112 700 3413 320244 57549 11250 1.05
85kWh (EV) 357335 1328 6442 850293 178574 31657 3.17
500 min (Iso) 637224 3203 15655 1547962 359969 66163 6.67

We also compare the performance of FMLP to Suri’s algorithm [Sur86], which finds
the next window starting from an arbitrary window (or edge) a by computing several
visibility polygons as follows. It starts by computing the visibility polygon of a in
the polygon bounding all important triangles (as defined in Section 6.4.1) intersected
by a. Afterwards, the algorithm iteratively computes new visibility polygons, each
time doubling the number of important triangles in the input polygon, until there is
an important triangle that is invisible from a. To obtain the actual window, a final
visibility polygon is computed for a polygon bounding the same set of important
triangles together with all non-important triangles whose closest important triangle
(with respect to distance in the dual graph) belongs to this set. Then, the next window
is an edge of this visibility polygon.

Clearly, a practical implementation of Suri’s algorithm requires a fast subroutine
to compute visibility polygons. Moreover, it needs to fill certain degrees of freedom,
e.g., generating the input for its subroutine that computes visibility polygons, or
determining the window from the resulting visibility polygon. A fair experimental
comparison of running times requires a tuned implementation of Suri’s algorithm
that efficiently fills these degrees of freedom, which is beyond the scope of our work.
Instead, Table 6.9 provides measures that are independent of both the machine and
the implementation, such as the number of calls to the subroutine and the total
number of segments in the generated input polygons. A recent experimental study
on visibility polygon computation [Bun+14] proposes a linear-time algorithm for
hole-free polygons that is based on a triangulation of the input. It outperforms other
approaches in their evaluation because it processes only visible triangles. For our
purposes, this approach would have to be generalized to compute visibility from
windows (rather than just single points). Nevertheless, it is a good candidate for
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Table 6.10: Results of our algorithms on different instances (Swi-OSM, Ger-OSM), computing
isochrones for a range of 60 minutes. We report figures as in Table 6.6. They were obtained by
running 1000 queries with sources picked uniformly at random, as before.

Switzerland Germany

Algorithm Cp. Seg. Int. T.[ms] Cp. Seg. Int. T.[ms]

RP-RC 142 258816 — 15.15 332 223039 - 16.85
RP-TS 422 2419 — 8.05 924 5073 - 13.39
RP-CU 142 1957 — 65.10 332 4070 - 68.76
RP-SI 142 1832 47.05 59.55 332 3833 95.16 68.53

a practical implementation of Suri’s algorithm. Therefore, we also report the total
number of visible triangles in all polygons constructed by Suri’s algorithm.

For all considered scenarios, Suri’s algorithm requires several thousand calls to
the subroutine for visibility polygons. The total number of segments in all polygons
computed by Suri’s algorithm is over 1.5 million for the hardest scenario (500 min),
which even rules out explicit construction of these polygons for practical applications.
In addition to that, the total number of triangles visited by Suri’s algorithm (presuming
that it uses the practical visibility polygon algorithm mentioned above) exceeds the
number of triangles visited by FMLP by about a factor of 5-6. For FMLP, the workload
per visited triangle is very small (updating visibility lines and shortest paths). On the
other hand, the visibility polygon algorithm proposed for Suri’s algorithm is recur-
sive [Bun+14] and therefore, possibly less cache efficient. Given that Suri’s algorithm
requires additional overhead for constructing input polygons and determining the
actual windows from visibility polygons, we conclude that FMLP is much more suitable
for practical use.

Comparing the different scenarios evaluated in Table 6.9, each represents a certain
level of difficulty, with the average complexity of the input polygons ranging from some
100 000 to 600 000 segments. Apparently, the number of visited triangles, the number
of segments of the resulting path, and the running time increase with the complexity of
the input. However, we also see in Table 6.9 that FMLP performs excellently in practice.
Even for input polygons consisting of more than half a million vertices, it computes
minimum-link paths in less than 7 ms. Somewhat surprisingly, the isochrone scenario
(60 min) is slightly harder to solve for the algorithm than the range scenario (16 kWh),
despite a similar input complexity of the input polygons. This can be explained by
the different shapes of the respective border regions. Isochrones in road networks
reach further on motorways and other fast roads, leading to spike-like shapes in the
resulting border regions; see also Figure 6.28 below. Consequently, range polygons for
isochrones contain more border edges (c. f. Section 6.6.1), require more segments, and
yield the more challenging scenario.
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Figure 6.27: Isochrones in a small-scale example in the city of Vienna, Austria. The black disk
in the center is the source vertex and the range is set to a few minutes. Black range polygons
represent the isocontours. The corresponding border regions are shaded red. (a) The result
of RP-RC. (b) The result of RP-TS. (c) The result of RP-CU. (d) The result of RP-SIL.

Other Instances. Finally, we also present experiments for instances extracted from
openly available OSM data. We consider the instance Swi-OSM representing the road
network of Switzerland, with 3 269 666 vertices and 6 518 469 edges after planarization,
and the instance Ger-OSM representing the road network of Germany, with 23 966 527
vertices and 48 398 283 edges after planarization. Recall that these instances have many
degree-2 vertices for detailed representation of road curvatures. This explains the
relatively large size of the instances (e. g., the graph Ger-OSM contains more vertices
than our main benchmark instance Eur-PTV).

Table 6.10 shows results for 1000 queries on each instance for a medium range of
60 minutes and source vertices picked uniformly at random. (We omit longer ranges,
where, particularly for Swi-OSM, major parts of the graph become reachable in every
query.) The larger graph sizes are reflected in the average solution sizes and running
times. Compared to previous experiments, the decrease in the number of segments of
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(a) (b)

Figure 6.28: Real-world example of a long-range isochrone. It shows the area reachable within
five hours from KIT in Karlsruhe, Germany (black disk in the center). (a) The result of RP-RC,
with 295 015 segments. (b) The result of RP-CU, with 6 606 segments.

our sophisticated approaches is even more significant. For Swi-OSM, the average result
size drops by a factor of more than 100 when using any of the approaches based on
minimum-link paths. This is explained by both the large number of degree-2 vertices
and the fact that the Swi-OSM instance contains many large faces (representing lakes
or mountains). This allows the heuristic to produce long segments; see also Figure 6.28.
Lower bounds on the optimal complexity yield similar error bounds as before (at most
7 % on average for our sophisticated techniques). For longer ranges (not reported in the
table), running times increase as border region extraction becomes rather expensive
due to the graph size. However, even for Ger-OSM, timings were always below 200 ms
on average for all tested ranges.

6.6.3 Case Study

To briefly discuss visualization quality, we present outputs of our algorithms for isocon-
tour visualization on Eur-PTV. Figure 6.27 compares results of all four approaches in a
small-scale example. The three algorithms based on minimum-link paths produce very
similar results, though the resulting polygon contains more holes when using RP-TS.
Note that the result of RP-SI contains self-intersections on its left side.

Figure 6.28 shows an isochrone that corresponds to a range of five hours, using the
simple RP-RC (Figure 6.28a) and our more sophisticated RP-CU (Figure 6.28b). Com-
paring the visualization of both approaches, we see that major parts of the isocontours
look very similar. However, the number of segments in the range polygon computed
by RP-RC and shown in Figure 6.28a is significantly larger, making the isocontour
appear more cluttered. At certain points, though, the isocontours differ: The polygon
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computed by RP-CU contains a long segment at the top left border (covering large
parts of the coast of Belgium and the Netherlands), while the isocontour computed
by RP-RC stays closer to the shore. This difference is explained by the fact that the sea
corresponds to a single huge face in our planar embedding of the input network, which
allows the minimum-link path to cover long distances with a single segment. Similar
observations can be made at the southern boundary of the reachable area, where
many mountains and lakes correspond to large faces in the embedding. Besides long
segments, such faces can produce undesirable artifacts, such as spikes. To prevent this,
one could add further constraints, e. g., forcing the range polygon to stay reasonably
close to the reachable boundary. Such constraints can be implemented by, e. g., slightly
shrinking faces (during preprocessing) if their area exceeds a certain threshold. The
resulting dummy faces would then be assigned to the unreachable boundary.

6.7 Final Remarks

In this chapter, we proposed several approaches for computing isocontours in large-
scale road networks. We identified two major subproblems to achieve this goal:
first, the efficient computation of the reachable subgraph and second, the geometric
subproblem of computing a polygon that separates the reachable and unreachable
parts of the network.

For the first subproblem, we proposed a compact representation of the reachable
subgraph based on border edges. We introduced a portfolio of speedup techniques for
the resulting problem of computing all border edges. While no single approach turned
out to be the best in all considered criteria (preprocessing effort, space consumption,
query time, simplicity), the right choice depends on the application. If user-dependent
metrics are needed, the fast and lightweight customization of isoCRP is favorable. Fast
queries subject to frequent metric updates (e. g., due to real-time traffic) are enabled
by our new isoGRASP variant. If customization time below a minute is acceptable and
ranges are low, isoPHAST-CD provides even faster query times. The other isoPHAST
variants show best scaling behavior, making them suitable for long-range isochrones,
or if customizability is not required. Regarding our primary application, range visual-
ization for EVs, we identified isoCRP and isoGRASP as the most suitable candidates,
as they provide the best customization times.

Given the subgraph that is reachable from a source within a certain resource limit,
the second subproblem boils down to computing a geometric representation of its cor-
responding border region. We introduced range polygons, following the three major
objectives of exact results (reachable and unreachable parts are correctly separated),
low complexity (range polygons consist of few segments), and practical performance.
We presented three novel algorithms to compute near-optimal solutions in (almost)
linear time. Their key ingredient is a new linear-time algorithm for minimum-link
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paths in simple polygons—the first practical approach to a problem well-studied in
theory [Kos+16, MPS14, MRW92, Sur86]. Our experimental evaluation reveals that all
approaches compute range polygons within tens of milliseconds on large inputs. Plug-
ging in our speedup techniques for computing the reachable subgraph, our approaches
enable isocontour visualization in less than 100 ms in total on our benchmark instance.
Thereby, we enable interactive applications even on road networks of continental
scale, while metric updates can be integrated within seconds.

Future Work. There are several interesting open issues and room for further im-
provements. Regarding our proposed speedup techniques, we are interested in integrat-
ing the computation of eccentricities into microcode [Del+17, DW13], an optimization
technique to accelerate customization of CRP. For isoPHAST, we want to further
separate metric-independent preprocessing and metric customization (exploiting, e. g.,
CCH [DSW16]). We also explore approaches that do not (explicitly) require a partition
of the road network. Another direction of research is the speedup of network Voronoi
diagram computation [Erw00, Oka+08], where multiple isocontours are grown simul-
taneously from a set of Voronoi generators. We are also interested in extending our
speedup techniques to more involved scenarios, such as multimodal networks.

Considering range polygons, our techniques exploit the fact that the reachable
boundary of a border region is always connected, i. e., |[R| = 1. This might not be the
case in related scenarios, such as multi-source isocontours or in multimodal networks,
where one can disembark from public transit vehicles only at certain points [Gam+11].
Thus, it would be interesting to know whether our approaches can be extended to
the case of |R| > 1. Moreover, Gamper et al. [Gam+11] consider the extent to which
reachable edges can be passed in their definition of isochrones. This is relevant
particularly for short ranges, or if the graph contains very long edges. Hence, we could
modify our approaches to handle this slightly different model.

For aesthetic reasons, one could seek to avoid long straight segments or spikes
in the range polygon, which are likely to occur in faces encompassing large areas
corresponding to, e. g., big lakes or mountains. As discussed in Section 6.6.3, such
constraints could be integrated by adding (during preprocessing) artificial boundaries
to faces whose area exceeds a certain threshold. On the other hand, one could also aim
at further line simplification, at the cost of inexact results. However, such methods
should avoid intersections between different components of the range polygon (i. e.,
maintain its topology) and error measures should consider the resource consumption at
parts of the network that are incorrectly classified by the range polygon (vertices that
are close in terms of Euclidean distance may be connected by a much longer shortest
path in the graph). Reusing ideas from known line simplification algorithms [BKS98,
DP73, Fun+17] could be a promising approach. One could also aim at exact approaches
based on such line simplification techniques, by incorporating additional constraints



Final Remarks

that maintain exactness of the resulting range polygon. Finally, another interesting
open problem is the consideration of continuous range visualization for a moving
vehicle. Instead of computing the isocontours from scratch, one could try to reuse
previously computed information.

Section 6.7
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Conclusion

In this thesis, we designed, analyzed, and evaluated novel algorithmic approaches
for route planning that explicitly take requirements of EVs into account. Bearing in
mind their restricted range and other specific characteristics, such as the ability to
recuperate energy while driving, we followed the paradigm of Algorithm Engineering
to derive solutions with good performance, both in theory and in practice. We focused
on three important aspects in the context of navigation for EVs, which are briefly
recapped below in Section 7.1. Afterwards, we highlight interesting directions of
future work in Section 7.2.

7.1 Summary

First, we examined energy-optimal routes to maximize the range of an EV. We discussed
relevant query types and developed different algorithms to answer them. This included
profile queries, asking for energy-optimal routes for every possible initial SoC, and
routes via charging stations. On the theoretical side, we showed that these problems
can be solved in polynomial time. In particular, profiles mapping SoC at a source
vertex to consumption on an energy-optimal path have linear complexity in the input
size, which makes efficient profile search possible. In practice, the careful adaptation
of speedup techniques enabled fast queries, with running times of well below a second
or even within milliseconds on our main test instance, depending on the problem
setting. Moreover, we introduced a customizable technique that can incorporate global
changes in the cost function in only a few seconds.

Second, we dealt with more complex time-constrained problems, where both travel
time and energy consumption of a route are considered in optimization. We proposed
two realistic problem settings, namely, computing shortest feasible routes including
intermediate charging stops and shortest feasible routes allowing adaptive speeds.
Both settings extend an N #-hard problem and it turned out that even the construction
of basic exponential-time algorithms is nontrivial. We suggested speedup techniques
based on A" search and CH to improve (empirical) running times of our approaches.
Additionally, we presented heuristic variants, which drop correctness for faster queries.
Our techniques compute optimal results in less than two minutes on our benchmark
instance and within seconds for sensible queries, while heuristics retain high-quality
solutions at query times below 100 ms.

Third, we considered the problem of quickly and accurately visualizing the remaining
cruising range of an EV. Also taking account of efficient rendering, we proposed

253



Chapter 7

254

Conclusion

isocontours represented by range polygons of low descriptive complexity. We identified
two important subproblems: computing the subgraph that is reachable from a given
position and computing the range polygon for this subgraph. Regarding the former
problem, we introduced a plethora of speedup techniques, providing different tradeoffs
in terms of customization overhead, space consumption, and query performance. For
the latter, geometric subproblem, we examined a linear-time approximation algorithm
for an important special case. Engineering its main component, the computation of a
minimum-link path in a simple polygon, we developed a novel algorithm that runs
in linear time and is fast in practice. We also used this algorithm as key ingredient
of practical heuristics in the general setting. Our evaluation revealed that, altogether,
our toolchain enables the computation of long-range isocontours in less than 100 ms,
while keeping their descriptive complexity near the optimum.

To summarize, we investigated three important problem settings in the context
of route planning for EVs and derived algorithmic methods to solve them. Besides a
thorough theoretical analysis of our algorithms, we demonstrated practicality of all
approaches in a challenging experimental setting. It turned out that our techniques
are able to provide high-quality solutions for all considered problems, with response
times that are fast enough even for interactive applications.

Even though algorithmic approaches towards route planning for EVs were our
primary motivation, techniques and insights from this thesis may be reused in several
related applications. For instance, energy-efficient or consumption-constrained routes
are also important for conventional vehicles running on combustion engines, in order
to save (monetary) fuel costs [ELB06, KMM11, Neu10]. Finding routes via charg-
ing stations to recharge a limited resource is related to problem settings in aircraft
routing and crew scheduling [Cor+01, SBW12], as well as route planning for truck
drivers [Kle+17]. In such scenarios, maintenance or break periods must be planned
in advance to comply with, e. g., government regulations. Finally, our algorithms for
range visualization can be readily extended to other applications that require isocon-
tours in transportation networks, e. g., for visualizing the reachable area of a vehicle
within a certain time frame.

7.2 Outlook

There are numerous relevant directions of future work that may exploit or build upon
the results of this thesis. An obvious next step would be the combination of different
presented algorithmic solutions to a single, holistic route planning application. For
example, this would require the integration of adaptive speeds and charging stops into
a single search [Nik17]. Given that the resulting problem setting is rather complex,
one could also further explore heuristic techniques that quickly compute results of
near-optimal (empirical) quality.
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Another important aspect is the adaptation of realistic models of turn costs (in terms
of energy consumption), which may result in more sensible algorithm outputs in
practice. In particular, taking energy consumption on turns into account can prevent
solutions with minor detours that save negligible amounts of energy if turn costs are
ignored. Preliminary experiments indicate that established algorithmic techniques for
turn costs [Del+17, GV11] can be integrated into our approaches without significant
drops in performance. In fact, the solution space may even decrease if minor roads
become less attractive due to turn costs.

Further, we assumed in all chapters that travel time and energy consumption are inde-
pendent of the current time of day. In contrast, time-dependent route planning [Bat+13,
DWO09, FHS14] takes historic knowledge about traffic patterns into account and de-
rives edge costs that vary with time to reflect, e.g., peak hours. The integration
with time-dependent costs (with respect to both travel time and energy consumption)
would render most problems considered in this work much more difficult, but efficient
approximation algorithms or heuristics could achieve practical running times in this
challenging setting.

One could consider other broader scenarios, such as integrated multimodal route
planning [Del+13a, DPW15b]. For instance, in a park-and-ride setting, a user might
be willing to travel with an EV on the first leg of a journey. Parking and recharging it
at a suitable location, the user can continue the journey using other means of (public)
transportation. By the choice of a parking lot, a (multimodal) route planning algorithm
should then ensure that the return trip is feasible after recharging without long waiting
time. Similarly, it would be interesting to extend our methods for fast computation of
isocontours to multimodal networks.

Another relevant field considers alternative but closely related vehicle types in route
planning, such as plug-in hybrid electric vehicles [SMS17, SZ16] or pedelecs [Hrn+17,
Sto12b]. In contrast to EVs, these vehicles can fall back on an alternative power
source (namely, a combustion engine or pedaling) in case the battery nears depletion.
Hence, one could investigate problems where battery constraints are softened, such
that battery depletion is still avoided (e. g., by penalizing corresponding routes), but
resorting to alternative power sources is acceptable if the target cannot be reached
otherwise (or only when taking a significant detour).

Finally, we assumed throughout this thesis that SoC is the only state of a battery
that affects energy consumption. However, in reality, other factors that depend on the
state of the battery, such as its current temperature, influence consumption. Therefore,
it would also be worthwhile to consider more complex battery models and propagate
their state in search algorithms to model, e. g., a cold start at the beginning of a journey.
Although the impact of such a process on overall consumption is presumably small, it
would be interesting to compare the results to our (simpler) model.

Section 7.2
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Deutsche Zusammenfassung

In den vergangenen Jahren wurde eine Vielzahl von Verfahren zur Routenplanung
in Transportnetzwerken entwickelt, die die Berechnung optimaler Routen innerhalb
kiirzester Zeit ermdglichen. Im klassischen Anwendungsfall sind Nutzer dabei an
schnellsten Verbindungen interessiert. Das typische (und zumeist einzige) Optimie-
rungskriterium auf Straflennetzwerken ist daher die Fahrzeit auf einer Route. Der
bekannte Algorithmus von Dijkstra 16st das resultierende Problem optimal und in
polynomieller Laufzeit, jedoch benétigt die Berechnung der Losung selbst mit moder-
ner Hardware oftmals mehrere Sekunden auf grofien, realistischen Eingabeinstanzen.
Um beispielsweise interaktive Anwendungen fiir die Routenplanung zu ermoglichen,
verwenden Beschleunigungstechniken daher einen Vorberechnungsschritt auf den sta-
tischen Eingabedaten. Mit Hilfe der vorberechneten Informationen lassen sich dann
meist beweisbar optimale Routen in der Praxis effizient (beispielsweise innerhalb
weniger Millisekunden) berechnen. Die Techniken unterscheiden sich dabei in den
Kriterien Vorberechnungsaufwand, Speicherbedarf, durchschnittliche Rechenzeit pro
Anfrage, sowie Einfachheit der Implementierung.

Mit einem zunehmenden Anteil rein elektrisch betriebener Fahrzeuge dndern sich
jedoch auch Anforderungen an Verfahren fiir die Routenplanung. Ein entscheidendes
Kriterium ist hierbei die eingeschrankte Reichweite von Elektrofahrzeugen. Bedingt
durch begrenzte Kapazititen der Akkumulatoren, derzeit noch nicht flichendeckend
verfiigbare Ladestationen, sowie verhéltnismafig lange Ladezeiten wurde der Begriff
der Reichweitenangst gepragt: Nutzer von Elektrofahrzeugen meiden lingere Strecken
aus Angst, ihr Ziel nicht erreichen zu kénnen. Neben offensichtlichen Ansitzen zur
Entschérfung dieser Situation, etwa der Verbesserung der Ladeinfrastruktur, bietet
dieses verdnderte Szenario eine Reihe von Herausforderungen und Moglichkeiten fiir
Anwendungen im Bereich der Routenplanung.

Die vorliegende Arbeit befasst sich mit der Entwicklung effizienter Algorithmen zur
Routenplanung von Elektrofahrzeugen, unter Beriicksichtigung der oben genannten
Aspekte. Sie folgt dem Paradigma des Algorithm Engineering, welches neben dem
Entwurf und der theoretischen Analyse auch die Implementierung und experimentelle
Evaluation der Verfahren in den Vordergrund stellt. Erkenntnisse aus der Evaluation
stoflen dabei gegebenenfalls den Entwurf von Anpassungen an, sodass die vier Schritte
zyklisch durchlaufen werden.

Die Arbeit ist in drei thematische Abschnitte gegliedert. Der erste Teil beschaf-
tigt sich mit Algorithmen zur Berechnung von Routen, die den Energieverbrauch
minimieren. Eine Besonderheit ist die Beriicksichtigung von Rekuperation, also des
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Wiederaufladens des Akkumulators wiahrend der Fahrt durch elektrisches Bremsen.
Im zweiten Teil werden Erweiterungen des klassischen Problems Constrained Shortest
Path betrachtet. Hierbei soll eine moglichst schnelle Route gefunden und gleichzeitig
sichergestellt werden, dass das Ziel mit dem aktuellen Ladestand auch erreicht werden
kann. Zusétzlich planen die vorgestellten Erweiterungen gegebenenfalls notwendige
Ladestopps ein oder erhéhen die Reichweite durch Geschwindigkeitsanpassung. Im
letzten Teil wird die Visualisierung der aktuellen Restreichweite auf einer Stralenkarte
thematisiert. In der Arbeit werden effiziente und gleichzeitig prézise algorithmische
Verfahren prasentiert. Diese berechnen zunéchst den erreichbaren Teil des Netzwerks
und anschlielend eine geeignete Visualisierung der Reichweite.

Alle vorgestellten Verfahren werden auf realistischen Eingabedaten evaluiert, um
ihre praktische Eignung zu demonstrieren. Die grofite verwendete Instanz reprasentiert
beispielsweise das Stralennetzwerk von Westeuropa mit etwa 20 Mio. Knoten und
50 Mio. Kanten. Im Folgenden werden die einzelnen Themen genauer beleuchtet.

Energieoptimale Routen. Der erste Abschnitt befasst sich mit der Berechnung
von Routen, die den Energieverbrauch minimieren. Dadurch soll die Reichweite er-
hoht und gleichzeitig der Reichweitenangst entgegengewirkt werden. Gegeniiber der
klassischen Routenplanung, in der Straflennetzwerke als Graphen mit nichtnegativen
Kantengewichten modelliert werden, ergeben sich dabei verschiedene neue Herausfor-
derungen. Die Moglichkeit zur Rekuperation etwa fithrt zu negativen Kantengewichten.
Eine Variante von Dijkstras Algorithmus findet dann zwar nach wie vor die optima-
le Losung, benétigt jedoch im schlimmsten Fall exponentielle Laufzeit. Zusatzlich
missen Battery Constraints berticksichtigt werden: Der Akkumulator darf zu keinem
Zeitpunkt vollstdndig entladen werden und kann durch Rekuperation héchstens bis
zur gegebenen Kapazitit aufgeladen werden. Auflerdem hangt der Energieverbrauch
des Fahrzeugs in der Realitit von einer Vielzahl von Parametern ab, wie etwa der
Fahrweise, den aktuellen Wetterbedingungen und der Verkehrslage. Beschleunigungs-
techniken sollten daher benutzerspezifische Verbrauchsprofile erlauben und zudem
deren regelmafige Aktualisierung ermoglichen.

Verschiedene Ansitze zur effizienten Handhabung von negativen Verbrauchswer-
ten werden vorgestellt und miteinander verglichen. Ein wesentlicher Bestandteil
von Losungsverfahren fiir die oben genannte Problemstellung ist die Berechnung
von Verbrauchsfunktionen, die den Energieverbrauch auf einer Route als Funktion
des Ladestands am Startknoten abbilden, um Battery Constraints zu modellieren. In
dieser Arbeit wird gezeigt, dass die Beschreibungskomplexitit solcher Funktionen
linear in der Eingabegrofle beschriankt ist. Mit Hilfe dieser Erkenntnis lassen sich
Polynomialzeitverfahren fiir verschiedene erweiterte Problemstellungen ableiten, et-
wa die Berechnung von optimalen Routen fiir jeden méglichen Ladestand oder von
verbrauchsminimalen Routen mit Ladestopps.



Zudem werden in der Arbeit verschiedene praktische Implementierungen der theo-
retisch untersuchten Verfahren vorgestellt und evaluiert. Insbesondere werden Ansétze
vorgestellt, die mit Hilfe geeigneter Vorberechnung energieoptimale Routen innerhalb
weniger Millisekunden berechnen. Um gleichzeitig die schnelle Integration neuer Ver-
brauchsfunktionen zu erméglichen, wird eine auf dem bekannten Verfahren Multilevel
Dijkstra basierende Technik vorgeschlagen, die um die oben genannten Funktionalita-
ten erweitert wird. Die praktische Eignung des resultierenden Verfahrens wird auf
realistischen Eingabedaten demonstriert. Hierzu werden Verbrauchsdaten mit Hilfe
eines detaillierten Fahrzeugmodells generiert. Es zeigt sich, dass das neue Verfahren
bestehende Ansitze in der Laufzeit um mindestens eine Grolenordnung verbessert
und damit beispielsweise interaktive Anwendungen erméglicht. Auch auf der grofiten
Instanz (Westeuropa) liegen Rechenzeiten selbst fiir schwierige Anfragen im einstelli-
gen Millisekundenbereich. Zudem lassen sich aktualisierte Verbrauchsfunktionen fiir
das vollstandige Netzwerk innerhalb weniger Sekunden integrieren.

Schnellstmogliche durchfiihrbare Routen. Da eine sehr energiesparende Fahr-
weise meist mit signifikantem Zeitverlust einhergeht, liegt der Fokus im zweiten
Teil der Arbeit auf der Berechnung klassischer schnellster Routen. Gleichzeitig soll
jedoch die Durchfithrbarkeit der Route sichergestellt sein. Der Ladestand muss also
ausreichen, um das Ziel auf der vorgeschlagenen Route zu erreichen. Es werden
zwei Verallgemeinerungen des aus der Literatur bekannten N #-schweren Problems
Constrained Shortest Path betrachtet.

Kann das Ziel auf der schnellsten Route wegen eines zu hohen Energieverbrauchs
nicht erreicht werden, kann die Reichweite nicht nur durch Ausweichen auf eine
alternative Route, sondern auch durch Anpassung der Fahrweise erhoht werden —
indem zum Beispiel auf schnellen Strecken die Geschwindigkeit bewusst reduziert
wird. Im zugrunde liegenden Modell ergibt sich damit fiir einzelne Streckensegmente
statt skalarer Kantengewichte ein funktionaler Zusammenhang zwischen Reisezeit
und Energieverbrauch. Es wird gezeigt, dass sich Verfahren zur Losung von Constrai-
ned Shortest Path auf das Propagieren derartiger Funktionen erweitern lassen. Die
Anpassung von Beschleunigungstechniken auf dieses Problem gestaltet sich dagegen
besonders schwierig: Da der Energieverbrauch auf einer Route sowohl von der gew#hl-
ten Geschwindigkeit als auch vom Ladestand abhéngig ist, miissen diese Techniken
beide Dimensionen auf den Energieverbrauch abbilden. In der Arbeit wird ein Ansatz
basierend auf der Technik Contraction Hierarchies vorgestellt, der diese Abhangig-
keit mit Hilfe univariater Funktionen modelliert. In Verbindung mit Varianten des
A*-Algorithmus lassen sich damit fiir typische Reichweiten (bis zu mehreren hundert
Kilometern) optimale Losungen in der Praxis schnell berechnen.

Ein weiterer wichtiger Aspekt bei der Routenplanung ist die Beriicksichtigung von
Ladestopps. Auch dieses Szenario ist in der Realitat sehr komplex, denn die Ladedauer
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beeinflusst sowohl die verfiigbare Restreichweite als auch die Gesamtreisezeit. Der
Ladevorgang ist zudem je nach Ladestationstyp unterschiedlich und typischerweise
nichtlinear (der Ladestrom sinkt mit zunehmendem Ladestand, somit steigt die Lade-
dauer). Ein Losungsverfahren muss all diese Bedingungen berticksichtigen, um in der
Praxis verwendbare Ergebnisse zu liefern. Auch fiir diese Problemstellung wird gezeigt,
dass es durch Erweiterung grundlegender Algorithmen fiir bikriterielle Suche in Expo-
nentialzeit optimal geldst werden kann. Zudem werden Beschleunigungstechniken
basierend auf Contraction Hierarchies und A*-Suche prisentiert.

Alle vorgestellten Verfahren werden einer umfangreichen experimentellen Aus-
wertung unterzogen. Fiir beide betrachtete Problemstellungen zeigt sich, dass mit
Hilfe der vorgestellten Beschleunigungstechniken trotz theoretisch exponentieller
Laufzeit optimale Losungen fiir realistische Anfrageszenarien innerhalb von Sekun-
den berechnet werden kénnen. Mit Hilfe heuristischer Erweiterungen kénnen zudem
Losungen mit kleinem Fehler bei gleichzeitig wesentlich geringerem Rechenaufwand
ermittelt werden, wodurch Laufzeiten im zweistelligen Millisekundenbereich und
somit interaktive Anwendungen ermdglicht werden.

Visualisierung der Restreichweite. Der letzte Abschnitt der Arbeit beschaftigt
sich mit der Visualisierung der aktuellen Restreichweite, einem weiteren wichtigen
Aspekt zur Minderung der Reichweitenangst. Ein entsprechendes Verfahren muss zwei
Teilprobleme moglichst effizient 16sen: Zunachst muss der mit aktuellem Ladestand
erreichbare Teil des Stralennetzwerks identifiziert werden, anschlief3end ist dieser
geeignet visuell darzustellen. Beide Schritte sollen in der Praxis schnell genug sein,
um interaktive Anwendungen zu unterstiitzen.

Das erste Teilproblem ist somit die effiziente Berechnung des erreichbaren Sub-
netzwerks. Hierzu wird zunéchst eine kompakte Reprasentation dieses Subnetzwerks
vorgeschlagen. Diese l4sst sich mit einer Variante von Dijkstra’s Algorithmus in Poly-
nomialzeit berechnen, die aber verhaltnisméflig rechenintensiv ist. Fiir praktikablere
Laufzeiten werden verschiedene Beschleunigungstechniken auf die gegebene Pro-
blemstellung erweitert. Die verschiedenen Techniken unterscheiden sich dabei in den
Kriterien Vorberechnungsaufwand, Speicherbedarf und Anfragezeit. Somit ergibt sich
ein Portfolio an Verfahren, die sich fiir unterschiedliche Anwendungsfille eignen. Alle
Verfahren ermoglichen Anfragezeiten von weniger als 100 ms (Westeuropa), selbst fiir
hohe Reichweiten. Zudem lassen sich die Ansétze parallelisieren, wodurch Laufzeiten
von deutlich unter 10 ms erreicht werden kénnen.

Der zweite Schritt beinhaltet die eigentliche Darstellung der Reichweite durch
ein Polygon, das den erreichbaren Teil des Straflennetzwerks vom restlichen, uner-
reichbaren Teil trennt. Neben praktikabler Laufzeit sind die wesentlichen Ziele bei
dieser Problemstellung die Exaktheit der Losung (erreichbare und unerreichbare Teile
des Netzwerks sollen korrekt separiert werden), sowie die Minimierung der Anzahl



der Segmente des berechneten Polygons (um beispielsweise effizientes Rendering zu
ermoglichen). Es ist nicht bekannt, ob das resultierende Problem in Polynomialzeit
16sbar ist. Zudem hat selbst fiir eine vereinfachte Variante der beste bekannte Algorith-
mus quadratische Laufzeit. In dieser Arbeit werden stattdessen Linearzeitalgorithmen
vorgestellt, die die Exaktheit der Losung garantieren und die Anzahl der Segmente
heuristisch minimieren. Ein wichtiger Bestandteil aller Ansétze ist ein neuer Algo-
rithmus zur Berechnung von Minimum Link Paths in einfachen Polygonen, also von
Polygonziigen innerhalb gegebener Polygone mit minimaler Anzahl Segmente. Fir
dieses in der Theorie gut untersuchte Problem wird ein neuer Linearzeitalgorithmus
vorgestellt, der wesentlich einfacher ist als bestehende Verfahren. Damit lassen sich fiir
den zweiten Schritt exakte und in der Anzahl verwendeter Segmente nahezu optimale
Lésungen in deutlich weniger als 100 ms (Westeuropa) berechnen.

317



	Introduction
	Main Contributions
	Thesis Outline

	Literature Overview
	Speedup Techniques
	Route Planning for Battery Electric Vehicles

	Fundamentals
	Graph Theory
	Geometry
	The Shortest Path Problem
	Dijkstra's Algorithm and Generalizations
	Speedup Techniques

	Experimental Setup

	Energy-Optimal Routes for Battery Electric Vehicles
	Integrating Battery Constraints
	Model and Problem Statement
	On the Complexity of Profiles
	Operations on Profiles

	Basic Algorithms
	SoC Queries
	Profile Queries

	Energy-Optimal Routes with Charging Stops
	Model and Problem Statement
	Baseline Approach
	A Polynomial-Time Algorithm
	A Heuristic Implementation

	Extending Customizable Route Planning
	Preprocessing and Customization
	Queries

	Experiments
	Basic Algorithms
	Routes with Charging Stops
	Customizable Energy-Optimal Routes
	Comparison of Approaches

	Final Remarks

	Shortest Feasible Paths for Battery Electric Vehicles
	Basic Problem Setting
	Integrating Charging Stops
	Model and Problem Statement
	Basic Approach
	Spawning Labels at Charging Stations
	A* Search
	Contraction Hierarchies
	CHArge
	Heuristic Approaches

	Integrating Adaptive Speeds
	Model and Problem Statement
	Linking Consumption Functions
	Basic Approach
	A* Search
	Contraction Hierarchies and CHAsp

	Experiments
	Charging Stops
	Adaptive Speeds

	Final Remarks

	Fast Exact Visualization of Isocontours in Road Networks
	Problem Statement and General Approach
	Range Polygons
	General Approach

	Computing the Reachable Subgraph
	IsoDijkstra
	IsoCRP
	Faster IsoGRASP
	IsoPHAST
	Alternative Outputs

	Computing the Border Regions
	Planarization of the Input Graph
	Extracting Border Regions

	Range Polygons in Border Regions without Holes
	Windows and Visibility
	Fast Computation of Minimum-Link Paths

	Heuristic Approaches for General Border Regions
	Extracting the Reachable Component
	Separating Border Regions along their Triangulation
	Connecting Unreachable Components
	Computing Self-Intersecting Minimum-Link Paths

	Experiments
	Computing the Reachable Subgraph
	Computing Range Polygons
	Case Study

	Final Remarks

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms
	Curriculum Vitæ
	List of Publications
	Deutsche Zusammenfassung

