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Abstract: For multisensor data fusion, distributed state estimation techniques that enable a local
processing of sensor data are the means of choice in order to minimize storage and communication
costs. In particular, a distributed implementation of the optimal Kalman filter has recently been
developed. A significant disadvantage of this algorithm is that the fusion center needs access to
each node so as to compute a consistent state estimate, which requires full communication each time
an estimate is requested. In this article, different extensions of the optimally distributed Kalman
filter are proposed that employ data-driven transmission schemes in order to reduce communication
expenses. As a first relaxation of the full-rate communication scheme, it can be shown that each
node only has to transmit every second time step without endangering consistency of the fusion
result. Also, two data-driven algorithms are introduced that even allow for lower transmission rates,
and bounds are derived to guarantee consistent fusion results. Simulations demonstrate that the
data-driven distributed filtering schemes can outperform a centralized Kalman filter that requires
each measurement to be sent to the center node.

Keywords: distributed Kalman Filtering; data-driven communication; distributed data fusion;
sensor networks

1. Introduction

The efficient processing of sensor data is a central topic in a wide variety of research areas, which is
underlined by advances in sensor technology and capabilities, e.g., for odor [1] and taste recognition [2]
or by advances in visual information processing [3] as well as by applications in robotics [4] and sensor
networks [5,6]. In particular to process data of multiple sensors, the well-known Kalman filter [7] has
evolved into a key component of data fusion algorithms. Multisensor data can directly be transmitted
to a data sink that employs a centralized Kalman filter to process all the accrued sensor readings. Such a
simple filter design stands in stark contrast to the communication costs expended to transmit the data.
The idea behind distributed Kalman filter implementations is to use local processing power to combine
and condense sensor data locally so that the processing results can be transmitted more efficiently and
less frequently. As the local processing results comprise the information from all past observations,
the results can be sent to the data sink after arbitrarily many time steps without losing information
from the past measurements. As compared to a centralized Kalman filter, distributed implementations
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not only offer the advantage that the communication load in the network can be reduced significantly
but also increase robustness to packet losses and drops. The information in a lost package will
automatically be handed in later through a subsequent data transmission.

Most distributed estimation architectures employ local Kalman filters at the sensor nodes.
Although the local processing can then be deemed to be optimal in terms of the mean squared
estimation error, fusion of the local estimates becomes a challenging task due to correlations between
the estimates to be fused [8–10]. In particular, a naïve or too simplistic fusion method may render
the fusion results inconsistent, i.e., the fusion method reports an estimation error that is too small
to account for the actual error. In general, the correlations required to fuse the local estimates
optimally are difficult to reconstruct [11,12]. In the case of unknown correlations, conservative
fusion algorithms, like Covariance Intersection [13,14] or Ellipsoidal Intersection [15–17] and its further
development Inverse Covariance Intersection [18,19], can be employed to obtain consistent fusion results.
However, these algorithms often provide too conservative assessments of the actual estimation error.

An alternative approach to distributed state estimation has been pursued in [20–23]. Here,
a distributed implementation of a single centralized Kalman filter has been derived. In doing so,
the need to keep track of correlations or to derive conservative bounds can be circumvented. The main
advantage of this approach is its optimality with respect to the mean squared estimation error;
even optimal fusion algorithms, like the Bar-Shalom/Campo fusion rule, cannot achieve the same
estimation quality [11]. Therefore, this approach constitutes an optimally distributed Kalman filter (ODKF).
An important aspect of this filter is that the local estimates are neither consistent nor unbiased, nor does
the error covariance matrix describe the actual estimation error. The local estimates have to be fused in
the data sink to obtain a consistent estimate, which is optimal and equal to the result of a centralized
Kalman filter. Beside this article, several extensions of this filter have been proposed—assumptions
on the available information can be relaxed [24,25], it can be implemented in information form [26],
or combinations with ellipsoidal state estimation are possible [27,28].

Although communication can take place at arbitrary time steps, a critical drawback of the
ODKF is that the data sink requires access to all local estimates in order to compute an estimate,
i.e., all nodes have to transmit their estimates to the center node. This limitation has the following two
severe implications:

1. All nodes have to send their data at the same time, and
2. the central cannot infer any information about the state between the sending times.

Hence, the standard implementation of the ODKF implies transmissions of either all or none of
the nodes. As a further consequence, full-rate communication of the nodes is required if the data sink
needs an estimate at every time step. In this article, extensions of the ODKF are proposed that can
operate under lower communication rates. This is achieved by introducing data-driven transmission
strategies [29,30]. In particular, the local estimates can asynchronously be transmitted to the data sink.
In order to guarantee consistency, bounds on the estimation errors are provided. These bounds are
only required in situations when not every local estimate is available at the data sink; the optimal
estimate as provided by a central Kalman filter is still obtained each time when all local estimate have
been sent to the data sink.

As compared to the standard formulation of the ODKF, the advantage of the proposed extension
is that the data sink can now compute an estimate of the state based on a subset of local estimates.
This article continues the work in [31] by introducing an additional criterion for the data-driven
transmission strategy, providing more details, and extending the evaluation and discussions.

The paper is structured as follows. Section 2 provides a description of the centralized and the
optimally distributed Kalman filter as well as a problem formulation. In Section 3, the first extension
is introduced which enables the data sink to treat missing estimates. In Section 4 and in Section 5,
we describe the second and the third new distributed algorithm, respectively, which implement
data-driven transmission schemes and allow for omitted estimates at the fusion center over multiple
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time steps. The results of an experimental evaluation are discussed in Section 6. Finally, the article is
concluded in Section 7.

2. Centralized and Optimally Distributed Kalman Filtering

We consider a sensor network with N local sensor nodes and a central node, which serves as a
data sink and computes an estimate on the state. The true state of the system at time step k is denoted
by xk, which evolves according to the discrete-time linear dynamic system

xk+1 = Akxk + wk ,

where Ak is the system matrix and wk denotes the process noise, which is assumed to be zero-mean
Gaussian noise, wk ∼ N (0, Cw

k ) with covariance matrix Cw
k . At each time step k, each sensor i ∈

{1, . . . , N} observes the state through the model

zi
k = H i

kxk + vi
k ,

where H i
k is the measurement matrix and vi

k the measurement noise, which is assumed to be Gaussian
noise with zero mean, vk ∼ N (0, Cz,i

k ) with covariance matrix Cz,i
k . The measurement noise terms of

different local sensors are assumed to be mutually uncorrelated. Also, the process and measurement
noise terms for different time steps are uncorrelated.

For the centralized Kalman filter (CKF), each measurement is sent to the data sink, and fused by
means of the formulas

(
Ce,c

k
)−1 x̂e,c

k =
(

Cp,c
k

)−1
x̂p,c

k +
N

∑
i=1

(
H i

k

)T(
Cz,i

k
)−1zi

k ,

(
Ce,c

k
)−1

=
(

Cp,c
k

)−1
+

N

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1H i

k .

(1)

These equations correspond to the information form [32,33] of the measurement update of the
standard Kalman filter. x̂e,c

k and Ce,c
k denote the state estimate and the corresponding error covariance

matrix after the fusion step, respectively. x̂p,c
k and Cp,c

k denote the state estimate and the corresponding
error covariance matrix computed by the prediction step of the Kalman filter. The prediction step is
carried out at the center node by(

Cp,c
k+1

)−1
x̂p,c

k+1 =
(

Cp,c
k+1

)−1
Ak x̂e,c

k ,(
Cp,c

k+1

)−1
=
(

AkCe,c
k AT

k + Cw
k

)−1
,

(2)

where these formulas are also given in the information form [26,32]. Since these equations correspond
to the standard Kalman filter, the CKF is unbiased and optimal with respect to the minimum mean
squared error. In particular, the computed error covariance matrix is equal to the actual estimation
error, i.e.,

Ce,c
k = E

((
x̂e,c

k − xk
) (

x̂e,c
k − xk

)T
)

. (3)

In [20–23], a distributed implementation of the Kalman filter algorithm has been derived, which is
algebraically equivalent to the centralized scheme, i.e., which is also unbiased, minimizes the mean
squared error, and which fulfills (3). This is achieved by defining a local filtering scheme such that the
fusion result is equal to results (1) and (2) of the CKF. We will describe this algorithm—the optimally
distributed Kalman filter (ODKF)—in the following.

The local sensor nodes run modified versions of the Kalman filtering algorithm. They use so
called globalized local states estimates and error covariance matrices (Although, strictly speaking,
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the local estimate and covariance matrix do not represent consistent estimates of the state, we denote
them as local estimates). To initialize the ODKF, the local initial estimates and covariance matrices
(x̂e,i

0 , Ce,i
0 ) at the sensor nodes i ∈ {1, . . ., N}, which are usually identical, have to be replaced by the

globalized estimates

x̄e,i
0 = Ce

0

N

∑
i=1

(
Ce,i

0

)−1
x̂e,i

0 ,

C̄e
0 = N

(
N

∑
i=1

(
Ce,i

0

)−1
)−1

.

Since the globalized error covariance matrix is equal for each sensor, the sensor index i is omitted.
This equality also applies to all future time steps. The local prediction step is replaced by the globalized
prediction equations

x̄p,i
k+1 = Ak x̄e,i

k ,

C̄p
k+1 = AkC̄e

k AT
k + NCw

k .
(4)

The local filtering steps are globalized by

x̄e,i
k = C̄e

k

((
C̄p

k

)−1
x̄p,i

k +
(

H i
k

)T (
Cz,i

k
)−1zi

k

)
,

C̄e
k =

((
C̄p

k

)−1
+

1
N

N

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1H i

k

)−1

.
(5)

The processing steps (4) and (5) are computed locally on each sensor node. Hence, measurements
are not directly transmitted to the central node—instead, the local estimates are sent to the central
node. As the globalized covariance matrix is equal for each node, it can also be computed in the
central node.

In order to compute an estimate at an arbitrary time step k, the central node receives the globalized
estimates (x̄e,i

k , C̄e
k) from each sensor i and fuses them according to

(
Ce,d

k
)−1

=
N

∑
i=1

(C̄e
k)
−1 , (6)

(
Ce,d

k
)−1 x̂e,d

k =
N

∑
i=1

(C̄e
k)
−1 x̄e,i

k . (7)

x̂e,d
k denotes the state estimate after the fusion step at the data sink with corresponding error covariance

matrix Ce,d
k . From Equations (6) and (7), we can easily accept that

Ce,d
k =

1
N

C̄e
k ,

x̂e,d
k =

1
N

N

∑
i=1

x̄e,i
k .

The same equations apply to the fusion of the predicted estimates and error covariance matrices
in (4). In [20], it has been shown that the results are optimal, i.e.,

x̂e,d
k = x̂e,c

k , (8)

Ce,d
k = Ce,c

k , (9)
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where x̂e,c
k and Ce,c

k are computed by the CKF, i.e., (1) and (2). The disadvantage of the centralized
Kalman filter is that each sensor node has to transmit measurements of each time step to the central
node. For the ODKF, we observe that communication in past time steps does not influence x̂e,d

k and Ce,d
k ,

i.e., the equalities hold independently of the past communication pattern in the distributed network.
As a consequence of (8) and (9), we can see that

Ce,d
k = E

((
x̂e,d

k − xk

) (
x̂e,d

k − xk

)T
)

(10)

is equal to (3)—the ODKF is optimal.
A significant drawback of the ODKF implementation becomes apparent in the following situation.

If only m < N sensors transmit their estimates to the fusion center at time step k, Equations (6)
and (7) become

(
Ce,d

k
)−1

=
m

∑
i=1

(C̄e
k)
−1 , (11)

(
Ce,d

k
)−1 x̂e,d

k =
m

∑
i=1

(C̄e
k)
−1 x̄e,i

k .

The resulting ODKF estimate x̂e,d
k and error covariance matrix Ce,d

k are different from the
centralized estimate x̂e,c

k and the error covariance matrix Ce,c
k , which are

(
Ce,c

k
)−1 x̂e,c

k =
(

Cp,c
k

)−1
x̂p,c

k +
m

∑
i=1

(
H i

k
)T(Cz,i

k
)−1zi

k , (12)

(
Ce,c

k
)−1

=
(

Cp,c
k

)−1
+

m

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1H i

k . (13)

In particular, we notice that the covariance matrix (13) differs from the ODKF covariance matrix
in (11). A consequence of this mismatch is a possible bias in the fused estimate as discussed, e.g.,
in [24]—hence, the ODKF may provide inconsistent estimates in case of missing transmissions.
This issue will be addressed in the following sections. Although the CKF does not suffer from
inconsistency, (12) and (13) unveil a critical downside of the CKF: Missing measurements at time
step k are lost for all future time steps. By contrast, the local estimates of the ODKF incorporate past
measurements, which states the reason why the ODKF may outperform the CKF if we can solve the
inconsistency problem of the ODKF.

In this section, the ODKF has been revisited; it provides the same results as the CKF but offers
the advantage that transmissions can take place at arbitrary instants of time. However, the ODKF
still requires that all nodes send their local estimates at the transmission times to compute (6) and (7).
As a consequence, the data sink typically operates at a lower rate than the local nodes as it is idle
between transmission times. In the following sections, extensions are provided that enable the nodes
to transmit their local estimates asynchronously. The data sink can then operate at the same rate as
the sensor nodes, i.e., it is able to provide an estimate at every time step k. By employing data-driven
strategies, the communication rate of each node can be significantly lower than 1, where the value 1
corresponds to transmissions at every time step k.

In Section 3, we develop a consistent ODKF extension than can cope with situations where sensor
nodes may send their estimates at every second time step. This algorithm still provides results equal to
the CKF. With this algorithm, we are able to reduce the communication rate by half. Sections 4 and 5
introduce a second and third algorithm that can even reach a lower communication rate by applying
bounds on the missing pieces of information.
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3. Distributed Kalman Filtering with Omitted Estimates

We consider the ODKF algorithm as described in the previous section. At time step k,
only sensor nodes 1, . . . , m send their estimates to the fusion center, but the estimates of sensor
nodes m + 1, . . . , N are not. In this section, we assume that the data from the nodes m + 1, . . . , N had
been available in the fusion center at time step k− 1. Thus, the fusion center can compute the predicted
estimates x̄p,m+1

k , . . . , x̄p,N
k for time step k by using (4). In place of the ODKF fusion Equations (6)

and (7), the fusion result is now computed by

(
Ce,d′

k
)−1

=
N

∑
i=1

(C̄e
k)
−1 −

N

∑
i=m+1

(H i
k)

T(Cz,i
k )−1H i

k , (14)

(
Ce,d′

k
)−1 x̂e,d′

k =
m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(C̄p
k )
−1 x̄p,i

k (15)

The resulting estimate x̂e,d
k and the error covariance matrix Ce,d

k are equal to the estimate x̂e,c
k and

the error covariance matrix Ce,c
k computed by a centralized Kalman filter according to (12) and (13).

A proof for the equality is provided in Appendix A.
Since (14) and (15) are equivalent to the CKF, unbiasedness, optimality, and (10) are accordingly

inherited from the CKF. We have generalized the original ODKF algorithm such that full-rate
communication is not required anymore. The novel fusion algorithm merely requires that if a particular
sensor does not communicate with the center at time k, it has sent its data at time k− 1, i.e., each sensor
has to communicate with the center at least every second time step. Hence, the required communication
rate can be reduced by half to 0.5.

However, a higher communication rate—and thus, the incorporation of the information contained
in additional measurements—will always result in a lower mean squared error (MSE). Thus, we have
to deal with the trade-off between a low communication rate and a low MSE. Nevertheless, it is
possible to achieve a smaller MSE while keeping the same communication rate by using a data-driven
communication strategy and thus, scheduling the data according to the information contained.
Valuable results have already been achieved using data-driven communication in distributed sensor
networks [34–42]. The idea is that each local sensor evaluates the distance between the predicted
estimate x̄p,i

k and the filtered estimate x̄e,i
k . If the distance is large, the measurement zi

k adds much new
information to the prediction. Only in this case, the sensor should send its current estimate x̄e,i

k to the
center node.

It is important to emphasize that the globalized parameters x̄p,i
k and x̄e,i

k are not unbiased estimates
of the actual state. It can be shown [24] that, in contrast to the difference between the standard Kalman
filter estimates, x̂p,i

k − x̂e,i
k , the difference x̄p,i

k − x̄e,i
k is not zero on average, but may even diverge.

Therefore, in order to evaluate the influence of a measurement zi
k, we study the difference between

the predicted and updated estimates of the standard Kalman filter, which is related to the weighted
difference between the measurement and the prediction, i.e.,

x̂p,i
k − x̂e,i

k = Ki
k

(
zi

k − H i
k x̂p,i

k

)
,

where Ki
k denotes the standard Kalman gain. For this purpose, the standard Kalman filtering algorithm

has to run in parallel to the globalized version of the Kalman filter at each sensor node. The following
data-driven communication strategy can be applied:

If ‖x̂p,i
k − x̂e,i

k ‖ ≤ α (16)

do not send estimate to the fusion center

else
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send estimate to the fusion center,

where α denotes a scalar parameter. We can achieve any communication rate in range [0.5, 1] by
varying the parameter α.

By using this communication strategy we can only evaluate the relevance of the measurement to
the local estimate x̂p,i

k , and not to the fused estimate x̂p,d
k . Still, experiments (see Section 6) will show

that by using the data-driven communication strategy instead of random communication, for a fixed
communication rate an improvement of the MSE of the fused estimate x̂e,d′

k can be achieved. However,
a drawback of the algorithm is the assumption that if a particular sensor does not communicate with
the center at time k, it has communicated at time k− 1, i.e., each sensor communicates with the center
at least every other time step. Thus, communication rates lower than 0.5 cannot be achieved. This will
be addressed by the following extensions.

4. Data-Driven Distributed Kalman Filtering with Omitted Estimates over Multiple Time Steps–
Version 1

If we want to achieve communication rates lower than 0.5 in the sensor network, we have to allow
that a particular sensor does not send its estimates to the fusion center over multiple time steps. In this
case, the fusion center has to perform multiple consecutive predictions. Let us assume that the last
communication of sensor i with the center occurred at time k− l. The predicted estimate for time step
k is computed as shown in the following scheme.

x̄e,i
k−l

Prediction−−−−−→ x̄pp,i
k−l+1

Prediction−−−−−→ . . . Prediction−−−−−→ x̄pp,i
k

Prediction refers to the application of Equation (4). Note that the predicted estimates are now
marked with “pp” instead of “p” to emphasize that possibly multiple prediction steps were applied
consecutively. In case that prediction has been performed only once, we have x̄pp,i

k = x̄p,i
k .

In fusion Equation (15). the predictions x̄pp,i
k are now used for the missing local estimates of the

nodes i = m + 1, . . . , N, i.e.,

(
Ce,d′

k
)−1 x̂e,d′′

k =
m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(C̄p
k )
−1 x̄pp,i

k . (17)

The new estimate x̂e,d′′
k can be expressed in terms of the estimate x̂e,d′

k from (15) as follows:

x̂e,d′′
k = Ce,d′

k

( m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(C̄p
k )
−1 x̄pp,i

k

)

= Ce,d′
k

((
Ce,d′

k
)−1 x̂e,d′

k −
N

∑
i=m+1

(
C̄p

k

)−1
x̄p,i

k

+
N

∑
i=m+1

(C̄p
k )
−1 x̄pp,i

k

)

= x̂e,d′
k − Ce,d′

k

(
C̄p

k

)−1 N

∑
i=m+1

(
x̄pp,i

k − x̄p,i
k

)
.

For the yet to be defined triggering criterion, we consider the distance

di
k := x̄pp,i

k − x̄p,i
k . (18)
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The expected estimation error covariance matrix is then given by

E
((

xk − x̂e,d′′
k

) (
xk − x̂e,d′′

k

)T
)

= E

((
xk − x̂e,d′

k − Ce,d′
k

(
C̄p

k

)−1 N

∑
i=m+1

di
k

)
(

xk − x̂e,d′
k − Ce,d′

k

(
C̄p

k

)−1 N

∑
i=m+1

di
k

)T
)

.

Obviously, the expected estimation error cannot be computed exactly at the fusion center, since the
difference di

k is not available. Nevertheless, it is possible to obtain an upper bound on the estimation
error, if we alter the communication test (16). We ensure that in case of communication the matrix
di

k
(
di

k
)T is bounded by B. The communication strategy becomes

If ‖x̂pp,i
k − x̂e,i

k ‖ ≤ α and di
k

(
di

k

)T
≤ B (19)

do not send estimate to the fusion center

else

send estimate to the fusion center,

where x̂pp,i
k denotes the estimate which has been computed by applying the Kalman filtering prediction

step multiple times and B denotes a user-defined symmetric positive definite matrix. For any square
matrices X and Y , X ≤ Y denotes that Y − X is positive semi-definite.

For the bound, the relationship

di
k

(
di

k

)T
≤ B ⇐⇒

(
di

k

)T
B−1di

k ≤ 1 (20)

holds. Thus, the communication criterion di
k
(
di

k
)T ≤ B can be replaced by

(
di

k
)T B−1di

k ≤ 1,
which reduces the computational cost. Assuming that di

k is an n-dimensional vector and B
an n × n-matrix, the cost for computing the product di

k(d
i
k)

T is in O(n2). The computation of the

difference B− di
k
(
di

k
)T is also in O(n2). The computational cost for computing the eigenvalues of the

n× n-matrix B− di
k
(
di

k
)T is inO(n3). All in all, the computational cost for the decision if di

k
(
di

k
)T ≤ B

is in O(n3 + n2). Since the inverse matrix B−1 has to be computed only once beforehand, the cost for
computing the product

(
di

k
)T B−1di

k is in O(n2). Therefore, testing if
(
di

k
)T B−1di

k ≤ 1 only requires

O(n2) computations. Since ‖x̂pp,i
k − x̂e,i

k ‖ ≤ α only requires the computation of the Euclidean norm,
which is in O(n), the computational cost of the communication test (19) is in O(n2). The employed
relationship (20) is proven in Appendix B.

As in the previous communication strategy, we have to take into consideration that the globalized
estimates x̄pp,i

k and x̄p,i
k are biased and thus, the difference di

k may diverge. As a consequence, the matrix

di
k
(
di

k
)T may also diverge. In contrast to the previous fusion algorithm, using the standard Kalman

filtering estimates x̂pp,i
k , x̂p,i

k is not a reasonable solution, since the communication strategy is used to
get an upper bound on di

k. An alternative possibility to avoid the divergence of the difference is to
debias the local globalized estimates. A strategy to debias the estimates using debiasing matrices has been
proposed in [24,25]. In each prediction and filtering step, each local node computes a new debiasing
matrix. This matrix is initialized by ∆p,i

0 = I. In the filtering step, the debiasing matrix is computed by

∆e,i
k = C̄e,i

k (C̄p,i
k )−1∆p,i

k + C̄e,i
k

(
H i

k

)T
(Cz,i

k )−1H i
k .
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In the prediction step, the debiasing matrix is computed by

∆p,i
k = Ak∆e,i

k A−1
k . (21)

∆pp,i
k is computed by applying Equation (21) multiple times, until the next communication with the

center node occurs. By multiplying the inverse of the debiasing matrix with the globalized estimates,
we can debias the estimates [24,25], i.e.,

E
((

∆e,i
k
)−1 x̄e,i

k

)
= E (xk) ,

E
((

∆p,i
k
)−1 x̄p,i

k

)
= E (xk) .

It can be easily shown that the same applies to the predicted estimate over multiple time steps, i.e.,

E
((

∆pp,i
k
)−1 x̄pp,i

k

)
= E (xk+n) .

We new define

x̃pp,i
k := ∆p,i

k (∆pp,i
k )−1 x̄pp,i

k

and then have

E
(

x̃pp,i
k − x̄p,i

k

)
= E

(
∆p,i

k (∆pp,i
k )−1 x̄pp,i

k − x̄p,i
k

)
= ∆p,i

k E
(
(∆pp,i

k )−1 x̄pp,i
k −

(
∆p,i

k
)−1 x̄p,i

k

)
= ∆p,i

k E (xk+n − xk) .

Thus, in general the difference x̃pp,i
k − x̄p,i

k does not diverge. With this result, we adapt (18),
and use

d̃i
k := x̃pp,i

k − x̄p,i
k

to replace the second inequality in (19) by

d̃i
k
(
d̃i

k
)T ≤ B .

We can now define the new fusion equations as

Ce,d′′
k = Ce,d′

k

+ (N −m− l)2Ce,d′
k

(
C̄p

k

)−1
B
(

C̄p
k

)−1 (
Ce,d′

k
)T

x̂e,d′′
k = Ce,d′

k

( m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(C̄p
k )
−1 x̃pp,i

k

)
,

where m is the number of sensors which communicate with the center at time k and l is the number
of sensors which do not communicate with the center at time k, but for which x̃pp,i

k − x̄p,i
k = 0 hold.

Note that the fusion formulas are equal to (14) and (15) for N = m + l, i.e., for the case that each sensor
sends its estimate to the center at least every other time step. The resulting estimate is consistent, i.e.,

E
((

xk − x̂e,d′′
k

) (
xk − x̂e,d′′

k

)T
)
≤ Ce,d′′

k . (22)

A proof for the consistency condition (22) is provided in Appendix C.
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The drawback of the presented algorithm is that it needs two parameters B and α to perform
the communication test. Both parameters influence the communication rate. Thus, it is difficult to
find the parameters which ensure the desired balance between a small communication rate and a
small estimation error. Experiments using the particular dynamic system are needed to find the best
combination of both parameters. Thus, we will now present another algorithm which only uses one
parameter B for the communication strategy.

5. Data-Driven Distributed Kalman Filtering with Omitted Estimates over Multiple Time
Steps–Version 2

For the second data-driven algorithm, fusion Equation (15) is now generalized by

(
Ce,d′

k
)−1 x̂e,d′′

k =
m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(C̄e
k)
−1 x̄pp,i

k .

The difference to the previous Equation (17) is the covariance matrix (C̄e
k)
−1 in the second sum.

The new estimate x̂e,d′′
k can be expressed in terms of the estimate x̂e,d′

k from (15) as follows:

x̂e,d′′
k = Ce,d′

k

( m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(C̄e
k)
−1 x̄pp,i

k

)

= Ce,d′
k

( N

∑
i=1

(C̄e
k)
−1 x̄e,i

k −
N

∑
i=m+1

(C̄e
k)
−1 x̄e,i

k

+
N

∑
i=m+1

(C̄e
k)
−1 x̄pp,i

k

)

= Ce,d′
k

N

∑
i=1

(C̄e
k)
−1 x̄e,i

k + Ce,d′
k (C̄e

k)
−1

N

∑
i=m+1

(
x̄pp,i

k − x̄e,i
k

)
= x̂e,d′

k +
1
N

N

∑
i=m+1

(x̄pp,i
k − x̄e,i

k ) .

In order to define a communication strategy, we consider the difference

di
k = x̄pp,i

k − x̄e,i
k ,

which is compared against the matrix B by

If di
k

(
di

k

)T
≤ B

do not send estimate to the fusion center

else

send estimate to the fusion center.

B denotes a user-defined symmetric positive definite matrix. This time we do not need the Euclidean
distance ‖x̂pp,i

k − x̂e,i
k ‖ ≤ α since the distance between predicted and filtered estimate is included in di

k.
We can now define the new fusion equations as

Ce,d′′
k = Ce,d′

k +
1

N2 (N −m)2B

x̂e,d′′
k = Ce,d′

k

( m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(C̄e
k)
−1 x̄pp,i

k

)
,
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where m is the number of sensors which communicate with the center at time k. With the same
arguments as in Section 4 it can be shown that the resulting estimate is consistent, i.e.,

E
((

xk − x̂e,d′′
k

) (
xk − x̂e,d′′

k

)T
)
≤ Ce,d′′

k .

In the experimental evaluation of the algorithms we will see that although this version of fusing
the estimates has the advantage that only one parameter has to be chosen, the estimate of the fused
error covariance matrix is not as good as as in the previous version.

6. Simulations and Evaluation

We apply the CKF algorithm as well as the three data-driven ODKF algorithms to a single-target
tracking problem. The system state xk is a six-dimensional vector with two dimensions for the position,
two dimensions for the velocity, and two dimensions for the acceleration. A near-constant acceleration
model is used. The system matrix is given by

Ak =


1 ∆ ∆2/2 0 0 0
0 1 ∆ 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆ ∆2/2
0 0 0 0 1 ∆
0 0 0 0 0 1

 .

with the sampling interval ∆ = 0.25 s. The process noise covariance matrix is given by

Cw
k =


∆5/20 ∆4/8 ∆3/6 0 0 0
∆4/8 ∆3/3 ∆2/2 0 0 0
∆3/6 ∆2/2 ∆ 0 0 0

0 0 0 ∆5/20 ∆4/8 ∆3/6
0 0 0 ∆4/8 ∆3/3 ∆2/2
0 0 0 ∆3/6 ∆2/2 ∆

 .

We have a sensor network consisting of six sensor nodes and one fusion node. Two sensors
measure the position, two sensors measure the velocity and two sensors measure the acceleration.
The measurement noise covariance matrices are given by

Cz,i
k =

(
1 0
0 1

)
for i ∈ 1, . . . , 6 .

Monte Carlo simulations with 500 independent runs over 100 time steps are performed.
Since (Ak, Cw

k ) is stable and (Ak, Hk) is detectable the error covariance matrix and the MSE converge
to a unique values [43]. Based on the simulation, actual error covariance matrices and MSE values
are computed for each algorithm. Monte Carlo simulations are performed for different average
communication rates for each of the three algorithms. For the CKF, communication is performed
randomly, but with different average rates. Note that only current measurements are communicated.
If the measurement zi

k is not sent to the fusion center at time k, the information will not be available at
the center at any future time.

The first ODKF algorithm (Algorithm 1) from Section 3 is performed with random communication
as well as with data-driven communication. In the latter case, the parameter α is varied to
achieve different rates. The second algorithm (Algorithm 2) from Section 4 and the third algorithm
(Algorithm 3) from Section 5 are performed with data-driven communication. For Algorithm 2 both
parameters α and B are varied, for Algorithm 3 the parameter B is varied. The compared methods are:

Algorithm 1: ODKF algorithm from Section 3 with random and data-driven communication.
Algorithm 2: ODKF algorithm from Section 4 with data-driven communication and parameters α, B.
Algorithm 3: ODKF algorithm from Section 5 with data-driven communication and parameter B.
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The simulation results are shown in Figure 1. The MSEs and the traces of the error covariance
matrices are depicted relative to the average communication rate in the network. Since for Algorithm 2
different parameter combinations lead to different results, we have only included the results with the
smallest error covariance matrices in the plot.

Only for the centralized Kalman filter and for the Algorithm 2 and 3, communication rates lower
than 0.5 are given. We can observe that for Algorithm 1 data-driven communication leads to an
improved estimate compared to random communication. However, it also leads to a larger trace of the
error covariance matrix and thus, to a larger uncertainty reported with the estimate.

We also can observe that for communication rates in range [0.5, 1] the results of Algorithms 2 and 3
with data-driven communication are almost equal. This can be explained by the fact that Algorithm 2
extends Algorithm 3 share a common triggering criterion, and the fusion formulas for both algorithms
are equal if each sensor communicates with the center at least every other time step.

Figure 1. MSEs and traces of the error covariance matrices are plotted relative to the communication
rate. Each communication rate corresponds to one Monte Carlo simulation with 500 runs over 100 time
steps. MSEs are shown as solid lines, traces are shown as dashed lines.

Figure 1 shows that for each of the algorithms the MSE is always smaller than or equal to the trace
of the error covariance matrix. This illustrates that the estimators provide consistent results. The traces
are good estimates of the MSEs except for low communication rates in Algorithm 3 and very low
communication rates in Algorithm 2. Thus, the trace of the error covariance matrices—the uncertainty
reported by the estimators—is not significantly larger than the actual uncertainty in most of the cases.
Each of the distributed fusion algorithms performs better in terms of the MSE as compared to the
centralized algorithm. This can be explained by the fact that in the distributed network the fused
estimates contain the information of all past measurements, while in the centralized network only the
current measurements are fused.

7. Conclusions

In this article, the optimally distributed Kalman filter (ODKF) has been extended by data-driven
communication strategies in order to bypass the need for full communication that is usually required
by the ODKF to compute an estimate. Since the ODKF may provide inconsistent results if data
transmissions are omitted, the missing estimates are replaced by predictions from previous time steps
and consistent bounds on the error covariance matrix are computed. The first proposed technique
allows for communication rates in the range [0.5, 1] while the second and the third algorithm allow for
any communication rate in range [0, 1]. In a centralized Kalman filter (CKF), where measurements are
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directly sent to the central node, missing or lost transmissions to the center node need to be repeated
in order to avoid loss of measurement data. In this regard, the proposed extensions of the ODKF can
significantly outperform the CKF: The local estimates of each sensor node comprise the entire history
of local measurements and hence, suspended transmissions do not lead to a loss of information in
the network.

Acknowledgments: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
NO. 1133/1-1. We acknowledge the support by Deutsche Forschungsgemeinschaft and Open Access Publishing
Fund of Karlsruhe Institute of Technology.

Author Contributions: Katharina Dormann designed and perfomed the simulations and analyses. Benjamin
Noack and Uwe D. Hanebeck proposed the bounds for the data-driven communication strategy and supervised
all the tasks related to the work. Katharina Dormann and Benjamin Noack prepared the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We will now show that the resulting estimate x̂e,d
k and the error covariance matrix Ce,d

k are equal to
the estimate x̂e,c

k and the error covariance matrix Ce,c
k computed by the CKF according to (12) and (13).

Proof: Ce,d′
k = Ce,c

k holds due to

(
Ce,d′

k
)−1

=
N

∑
i=1

(C̄e
k)
−1−

N

∑
i=m+1

(
H i

k

)T (
Cz,i

k
)−1H i

k

= N
(
(C̄e

k)
−1 − 1

N

N

∑
i=m+1

(
H i

k

)T (
Cz,i

k
)−1H i

k

)

= N
((

C̄p
k

)−1
+

1
N

N

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1H i

k

− 1
N

N

∑
i=m+1

(
H i

k

)T (
Cz,i

k
)−1H i

k

)
= N

((
C̄p

k

)−1
+

1
N

m

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1H i

k

)
= N

(
C̄p

k

)−1
+

m

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1H i

k

=
(

Cp,c
k

)−1
+

m

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1H i

k =
(
Ce,c

k
)−1 .

Accordingly, x̂e,d′
k = x̂e,c

k holds due to

(
Ce,d′

k
)−1 x̂e,d′

k =
m

∑
i=1

(C̄e
k)
−1 x̄e,i

k +
N

∑
i=m+1

(
C̄p

k

)−1
x̄p,i

k

=
m

∑
i=1

((
C̄p

k

)−1
x̄p,i

k +
(

H i
k

)T (
Cz,i

k
)−1zi

k

)
+

N

∑
i=m+1

(
C̄p

k

)−1
x̄p,i

k

=
m

∑
i=1

(
C̄p

k

)−1
x̄p,i

k +
N

∑
i=m+1

(
C̄p

k

)−1
x̄p,i

k +
m

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1zi

k

= N
(

C̄p
k

)−1 1
N

N

∑
i=1

x̄p,i
k +

m

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1zi

k

=
(

Cp,c
k

)−1
x̂p,c

k +
m

∑
i=1

(
H i

k

)T (
Cz,i

k
)−1zi

k
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=
(
Ce,c

k
)−1 x̂e,c

k =
(
Ce,d′

k
)−1 x̂e,c

k .

�

Appendix B

In the following, relationship (20) is proven.

Proof. As a symmetric positive definite matrix, B can be written as a product B = AAT , where A is
a lower triangular matrix with positive diagonal entries, using the Cholesky decomposition. AT is
then an upper triangular matrix with positive diagonal entries. As triangular matrices with positive
diagonal entries, the matrices A and AT are invertible. We define b := A−1di

k. We have then

di
k(d

i
k)

T ≤ B ⇐⇒ B− di
k(d

i
k)

T ≥ 0 ⇐⇒ AAT − di
k(d

i
k)

T ≥ 0

⇐⇒ A
(

I − A−1di
k(d

i
k)

T(AT)−1
)

AT ≥ 0 ⇐⇒ I − A−1di
k(d

i
k)

T(AT)−1 ≥ 0

⇐⇒ I − bbT ≥ 0 ⇐⇒ bbT ≤ I .

We also have

(di
k)

T B−1di
k ≤ 1 ⇐⇒ (di

k)
T(AT)−1 A−1di

k ≤ 1 ⇐⇒ bTb ≤ 1 ⇐⇒ 1− bTb ≥ 0 .

We still have to show that

I − bbT ≥ 0 ⇐⇒ 1− bTb ≥ 0 .

First, we will show “⇒”.
From I − bbT ≥ 0 we have aTa− aTbbTa = aT

(
I − bbT

)
a ≥ 0 ∀a 6= 0. With a = b we have

bTb− bTbbTb ≥ 0. Dividing by bTb gives 1− bTb ≥ 0 .
We will now show “⇐”.
From bTb ≤ 1 we have aTb ≤ ‖a‖‖b‖ ≤ ‖a‖ and bTa ≤ ‖a‖‖b‖ ≤ ‖a‖ ∀a. We have then

aTbbTa ≤ aTa ∀a. It follows aT
(

I − bbT
)

a = aTa− aTbbTa ≥ 0 ∀a 6= 0 and thus, I − bbT ≥ 0 .

Appendix C

We will now show that the resulting estimate is consistent, i.e., relationship (22) holds.

Proof. We have

x̂e,d′′
k = x̂e,d′

k − Ce,d′
k

(
C̄p

k

)−1 N

∑
i=m+1

d̃i
k .

The expected estimation error is then given by

E
((

xk − x̂e,d′′
k
)(

xk − x̂e,d′′
k
)T
)

(A1)

= E
((

xk − x̂e,d′
k

) (
xk − x̂e,d′

k

)T
)

− E
((

xk − x̂e,d′
k

)(
Ce,d′

k
(
C̄p

k
)−1

N

∑
i=m+1

d̃i
k

)T
)
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− E
((

Ce,d′
k
(
C̄p

k
)−1

N

∑
i=m+1

d̃i
k

)(
xk − x̂e,d′

k

)T
)

+ E
((

Ce,d′
k
(
C̄p

k
)−1

N

∑
i=m+1

d̃i
k

)
·

(
Ce,d′

k

(
C̄p

k

)−1 N

∑
i=m+1

d̃i
k

)T
)

.

Due to the orthogonality principle [44] we have

E
((

xk − x̂e,d′
k

)(
Ce,d′

k
(
C̄p

k
)−1

N

∑
i=m+1

d̃i
k

)T
)
= 0 ,

and

E
((

Ce,d′
k
(
C̄p

k
)−1

N

∑
i=m+1

d̃i
k

)(
xk − x̂e,d′

k

)T
)
= 0 .

We can now write (A1) as

Ce,d′
k +Ce,d′

k
(
C̄p

k
)−1E

( N

∑
i=m+1

N

∑
j=m+1

d̃i
k
(
d̃j

k
)T
)
·

(
C̄p

k

)−1 (
Ce,d′

k
)T .

To complete the proof we still have to show that

E

(
N

∑
i=m+1

N

∑
j=m+1

d̃i
k
(
d̃j

k
)T
)
≤ (N −m− l)2B .

For i = j and i, j ∈ {m + 1, . . . , N} we have

d̃i
k
(
d̃j

k
)T ≤ B ,

since no communication was performed from sensor i to the center at time k. For i 6= j and i, j ∈
{m + 1, . . . , N}, we have

0 ≤
(

d̃i
k − d̃j

k

) (
d̃i

k − d̃j
k

)T

= d̃i
k

(
d̃i

k

)T
− d̃i

k

(
d̃j

k

)T
− d̃j

k

(
d̃i

k

)T
+ d̃j

k

(
d̃j

k

)T
.

We have then

d̃i
k

(
d̃j

k

)T
+ d̃j

k

(
d̃i

k

)T
≤ d̃i

k

(
d̃i

k

)T
+ d̃j

k

(
d̃j

k

)T
≤ 2B .

The number of summands different from zero in the sum ∑N
i=m+1 ∑N

j=m+1 d̃i
k
(
d̃j

k
)T is (N−m− l)2.

Thus, we have

N

∑
i=m+1

N

∑
j=m+1

d̃i
k
(
d̃j

k
)T ≤ (N −m− l)2B .
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It follows that

E

(
N

∑
i=m+1

N

∑
j=m+1

di
k
(
dj

k
)T
)
≤ (N −m− l)2B .
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