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Abstract 

This paper presents a literature review of studies that investigate infrastructure needs to support the 

market introduction of plug-in electric vehicles (PEVs). It focuses on literature relating to consumer 

preferences for charging infrastructure, and how consumers interact with and use this infrastructure. 

This includes studies that use questionnaire surveys, interviews, modelling, GPS data from vehicles, 

and data from electric vehicle charging equipment. These studies indicate that the most important 

location for PEV charging is at home, followed by work, and then public locations. Studies have found 

that more effort is needed to ensure consumers have easy access to PEV charging and that charging 

at home, work, or public locations should not be free of cost. Research indicates that PEV charging 

will not impact electricity grids on the short term, however charging may need to be managed when 

the vehicles are deployed in greater numbers. In some areas of study the literature is not sufficiently 

mature to draw any conclusions from. More research is especially needed to determine how much 

infrastructure is needed to support the roll out of PEVs. This paper ends with policy implications and 

suggests avenues of future research.  
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1. Introduction 

Plug-in electric vehicles (PEVs), which include both battery electric vehicles (BEVs) and plug in hybrid 

electric vehicles (PHEVs), are more efficient and less polluting than the majority of internal 

combustion engine vehicles (ICEVs) (Jochem et al., 2015a; Nordelöf et al., 2014; Offer et al., 2011; 

Plötz et al., 2017a; Poullikkas, 2015). They will need to increase market shares to have an impact on 

urban air pollution, energy consumption, and climate change. The success of PEV technology is 

partially reliant on the development of recharging infrastructure, among other constraints (Wolinetz 

and Axsen, 2017). There are currently only a small number of studies published in the academic 

literature that review existing research on the development of PEV recharging infrastructure 

(Broadbent et al., 2017; Hall and Lutsey, 2017). This paper builds on these studies to provide more 

insights to policymakers and academics.  

Whilst PEVs can be recharged from standard plug sockets, these sockets charge PEVs slowly and are 

not always easily accessible by vehicles. Developing dedicated infrastructure can encourage more 

consumers to purchase PEVs and allow them to drive more electric miles (Adepetu et al., 2016; 

Ajanovic and Haas, 2016; Bonges and Lusk, 2016; Caperello et al., 2015; Egbue and Long, 2012; 

Graham-Rowe et al., 2012; Javid and Nejat, 2017; Mersky et al., 2016; Ozaki and Sevastyanova, 2011; 

Plötz et al., 2016; Zhang et al., 2016; Zheng et al., 2012). The development of this infrastructure 

needs to be carefully considered so that the benefits of infrastructure development can be 

maximised. PEV charging infrastructure development can be driven by policymakers, OEMs, utilities, 

workplaces, housing developers, charging infrastructure companies, municipalities, parking 

companies, shopping centres, fuel stations, and any other stakeholders. Infrastructure needs to be 

developed to fit the needs and use patterns of consumers whilst also considering the impact of PEVs 

on local and regional electricity grids. Policymakers have some ability in ensuring the correct 

infrastructure is set up and can regulate how infrastructure is deployed. There are currently few 

studies published in the academic literature that review existing research to provide information on 

the considerations for the development of PEV recharging infrastructure for consumers. This paper 

reviews literature on consumer interactions with electric vehicle charging infrastructure and 

literature on consumer preferences for infrastructure. This includes investigating the impact of when 

consumers use infrastructure on eleĐtƌiĐitǇ gƌids aŶd hoǁ this ĐaŶ ďe ŵaŶaged. This papeƌs͛ 
contribution to the literature is an improved understanding of how infrastructure for PEVs can be 

developed such that it encourages consumers to purchase and use PEVs, whilst also considering how 

to manage charging of PEVs to avoid negative impacts to the power grid.  

This review considers charging for light duty BEVs and PHEVs which can have very different charging 

requirements. BEVs are powered only by a large battery pack (17–100 kWh). These vehicles typically 

have a driving range of between 70 and 120 miles, with some vehicles now having ranges of 200–300 

miles. Once the battery in a BEV is depleted the vehicle needs to be recharged from a charge point or 

electricity outlet. PHEVs have a smaller battery pack (4-17kWh) and an internal combustion engine 

(ICE), they usually have an electric driving range of between 10 and 50 miles. Once a PHEV battery is 

depleted the vehicle can continue driving with the use of its ICE. The battery can be recharged from a 

charge point or electricity outlet. The ICE can also charge the battery or can be used to maintain the 

level of charge in the pack. Due to the differences between PHEVs and BEVs, the vehicles are driven 

and charged differently by consumers. BEVs with lower driving ranges generally have lower vehicle 

miles travelled (VMT) that ICEVs on average, whereas PHEVs tend to have similar VMT. BEVs with 

longer driving ranges (e.g. Tesla BEVs) also have similar VMT as typical ICEVs (Nicholas et al., 2017b; 

Tal et al., 2013).  
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Next, we provide background information on charging modes and levels and then introduce the 

approach to the literature review. Section 2 then summarises the literature, whilst Section 3 

concludes with insights for policymakers and literature gaps. 

1.1. Introduction to charging modes and levels 

This paper considers the importance of charging infrastructure for light-duty passenger vehicles. In 

this section, we further explain the different modes and levels of charging for these vehicles, which is 

current as of the writing of this paper. 

The charge time of a PEV depends primarily on the charge level of the battery. Second, it depends on 

the technology in the car (limited by ability of the battery to accept a high charge rate), the charging 

cable used, and the charging station (Electric Vehicle Supply Equipment, EVSE). The international 

standard IEC 61851 classifies four different charging modes (IEC, 2003) (Table 1). The slowest charge 

is mode 1, which uses no control for communication and consequently does not consider load 

quality, which can lead to grid overload. Mode 2 charging is controlled via a control box in the charge 

cable. This communicates with the car and can contribute towards grid stability. Both mode 1 and 2 

use a domestic plug outlet and a vehicle specific plug (mainly Type 2 (IEC 62196) or Type 1 (SAE 

J1772)) as inlet to the vehicle. These mostly allow a charging power up to about 1.5–3 kW (110–220 

V). Mode 3 charging simplifies the communication between the grid and the car as the cable is 

capable of transferring information (e.g. IEC 15118). Currently mode 3 home and public charging 

stations use either Type 2 or Type 1 outlets. This allows the EVSE to identify the car and to optimally 

schedule the charging process from the grid perspective as well as offering additional services such 

as preconditioning (Ensslen et al., 2016). Finally, mode 4 charging provides DC (direct current) fast 

charging. Here, the cable is connected to the charging station. In Europe CHAdeMO ((JEVS) G105-

1993) is the dominant charge point connector, though Europe and China are now shifting to the 

Combined Charging System (CCS) standard, which uses the Type 2 and an additional DC connector on 

the plug. In the European Union CCS connectors are the standard charge point type and must be 

installed at all charge point locations due to an EU directive. Additional connectors, for example 

CHAdeMO and Tesla connectors, can also be installed in addition to CCS. CCS allows charging rates of 

up to 40 kW, though current charge rates are 40–150 kW. These chargers are typically installed in 

locations where consumers need to recharge their PEV quickly, such as on travel corridors (Jochem et 

al., 2015b).  

Tabel 1  

Different modes of charging (and the associated levels in North America), the power associated with 

these levels, typical locations and the time to charge 100 miles of range. 

Mode [IEC 

61851] 

Power [kW] Possibility to 

control 

charging 

Typical 

location 

Socket system 

[Outlet|Inlet] 

Time to 

charge 100 

miles 

Mode 1 (Level 

1) 

1–3 No Home Domestic 

plug|Type 1/2 

>10 h 

Mode 2 (Level 

2) 

1–7 Yes Home, Work Domestic 

plug|Type 1/2 

2–12 h 

Mode 3 (Level 

3) 

Up to 43.5 Yes Work, Public Type 

1/2|Type 1/2 

0.5–1.5 h 

Mode 4 (Level 

4) 

Currently 50–
150 

(< 4 0 0) 

Yes Corridor CCS 

(CHAdeMO) 

<15 min 
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In North America chargers are classified depending on the charge level. The slowest charge is from 

level 1 chargers. Using standard plug sockets these charge PEVs with 100 miles of range in around 24 

h and are mostly used for overnight charging at home. Level 2 (208–240 V) charging has a wide range 

of charging speeds based on the charging equipment used and the vehicle capability. Level 2 

infrastructure can charge a PEV with 100 miles of range in 4–12 h. Dedicated charge points are 

typically needed for level 2 chargers in USA. In Europe, Australia, most of Asia, and most of South 

America, level 2 charging is the standard level from domestic plug sockets. Level 2 chargers are often 

installed at homes, workplaces, and in public locations. DC fast chargers charge PEVs in the fastest 

possible time. They are also considerably more expensive than level 2 chargers (sometimes ten times 

more) (Idaho National Laboratory, 2015). They have very high power demands, due to the high kW 

power outputs of the charge points. 

1.2. Research approach 

This study concentrates on topics relevant to the development of PEV recharging for consumers. The 

aim is understanding how infrastructure could be developed to ensure the successful market 

introduction of PEVs based on how consumers use PEV infrastructure, that is, among current users 

and potential future users. The review focuses less on issues associated with PEV grid integration or 

technical aspects associated with PEV recharging. The topics in this review were determined by the 

authors of the paper as being topics relevant to PEV charging infrastructure and consumers. The five 

topics in this paper emerged as important to this area of research in two workshops with the authors 

of this paper in June 2017 and another in October 2017. These topics were identified as ones that 

need to be addressed to achieve a smooth roll out of PEVs and are all areas where academic 

literature currently exists. Five topics were identified; search terms were used to find literature 

relevant to the topics by the title of the study. Once these studies were identified their abstracts 

were screened to ensure they were relevant to the review. Irrelevant studies were not included in 

the review based on their lack of fit with the topics of interest. Relevant studies were reviewed and 

their key findings extracted for use in this paper. The papers reviewed included ones that use 

questionnaire surveys, interviews, GPS data from ICEVs and PEVs, data from on-board vehicle 

loggers, and data from electric vehicle supply equipment (EVSE), and from studies that construct 

models based on national or regional travel surveys (e.g. California Household Travel Survey). 

2. Literature review 

2.1. Introduction to literature topics and methods used 

In the following sections studies on charge point location, charge point access and payment, cost to 

charge, the required number of charging stations including considerations for households without off 

street parking, and when charging occurs and how to manage this are reviewed. Table 2 shows the 

authors, year of publication, location of study, methods used, and key findings of the reviewed 

studies. The table shows whether studies investigate BEVs, PHEVs, or whether they consider both 

types of PEVs (PHEVs and BEVs). Most studies consider both PHEVs and BEVs, with some only 

considering BEVs or PHEVs. Some studies investigate PEVs in general, without distinguishing between 

BEVs and PHEVs. 

Some of the earliest papers in this review use data from general travel surveys, for example the US 

National Household Travel Survey or California Household Travel Survey. These studies model how 

PEVs might be used based on ICEV travel data; they therefore may not be representative of which 

consumers are likely to buy PEVs, or how consumers may adapt their travel patterns after buying a 

PEV. Questionnaire surveys have been used to gather information specific to PEVs. These surveys 

have been administered to members of the general population, new vehicle buyers in general, 
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consumers who have trialled a BEV or PHEV, or consumers who own a BEV. Studies that survey 

members of the general or new-vehicle-buying population often use stated response methods, 

including choice experiments and design space exercises to understand how consumer might use 

PEVs. These studies are not representative of actual behaviours. Surveying consumers who have 

trialled a PEV for a limited amount of time may reveal more stable information about how consumers 

perceive or use a PEVs (Jensen et al., 2013) but these studies will still not be representative of how 

PEVs will be used in the real world. Survey data that are most representative of actual PEV travel 

behaviour will come from consumers who own a PEV. However, this data is inherently biased in that 

PEV owners are a self-selecting group, representing only 1–2% of new vehicle buyers in most 

countries—reseaƌĐh shoǁs that suĐh ͞PioŶeeƌs͟ teŶd to haǀe sigŶifiĐaŶtlǇ diffeƌeŶt ĐhaƌaĐteƌistiĐs, 
including demographics, and purchase motivations (Axsen et al., 2016), though they may have similar 

travel patterns as the majority of consumers. Further, self-reported PEV usage data can still contain 

errors, where studies using GPS data will have fewer response errors. GPS studies have been done on 

ICEVs and on PEVs. Studies that focus on ICEV data will show how consumers travel in general, which 

may not reveal nuances in the way these consumers use PEVs. GPS data from PEVs shows how 

consumers use their vehicles and can reveal how, where, and when those consumers charge their 

vehicles. Finally, studies that monitor how consumers use EVSE reveal information on real world 

usage of infrastructure. Some of these studies identify when charging occurs, whilst some studies can 

identify the location of the vehicle that is charging. One limitation of EVSE-based data is that it often 

does not include vehicle-specific data, which complicates analysis of vehicle usage patterns. 
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Table 2 

Studies used in this paper by author, year, location, methods used, vehicles studied, and the key findings of the publication. 

Author(s)  Citation Year of 

Publication 

Location of 

study 

Methods Vehicles 

Studied  

Key findings 

Axsen and 

Kurani 

Axsen and Kurani 

(2013) 

2013 USA Questionnaire 

Survey 

PHEV & BEV Developing more infrastructure may alleviate 

buyer concerns about PEV driving range.  

Axsen et al. Axsen et al. (2011) 2011 USA Questionnaire 

Survey 

PHEV Most PHEV recharging could occur at peak 

times. In some locations constraining charging 

to off peak times will result in deeper GHG 

emission eductions. 

Axsen and 

Kurani 

Axsen and Kurani 

(2012) 

2012 USA Questionnaire 

Survey 

 Around 50% of the US population has easy 

access to level 2 charging from home. 

Asxen et al. Axsen et al. (2017) 2017 Canada Interviews BEVs and PHEVs Current knowledge and awareness of 

charging for PEVs is low amongst mainstream  

consumers 

Azadfar et al. Azadfar et al. 

(2015) 

2015 Europe Literature Review PHEV & BEV Uncontrolled charging will lead to increased 

peak loads. Lower cost off peak charging 

could prevent this. 

Babrowski, et al. Babrowski et al. 

(2014) 

2014 Europe Modelling BEV Uncontrolled charging could put strain on the 

grid. Controlled charging could be beneficial. 

Bailey and 

Axsen 

Bailey and Axsen 

(2015) 

2015 Canada Questionnaire 

Survey 

PEVs Controlled charging has the potential to align 

charging with the availability of intermittent 

energy resources. Some respondents 

expressed concern about loss of control of 

charging, though on average acceptance rates 

are high. 

Bailey et al. Bailey et al. (2015) 2015 Canada Questionnaire 

Survey 

 Awareness of PEV charging is low amongst 

the general population. If consumers are 

aware of charging infrastructure they may be 

more likely to purchase a PEV. 

Bjornsson and 

Karlsson 

Bjornsson and 

Karlsson 

(2015) 

2015 Sweden GPS Data (ICEVs) PHEV Optimal battery size differs depending on use 

pattern. Workplace charging is an important 

public infrastructure. 
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Author(s)  Citation Year of 

Publication 

Location of 

study 

Methods Vehicles 

Studied  

Key findings 

Burnham et al. Burnham et al. 

(2017) 

2017 USA Literature Review BEV Charge management is needed to avoid peak 

power demand issues. Stations should be 

interoperable and compatible with all PEVs. 

California Air 

Resources 

Board 

California Air 

Resources 

Board (2017) 

2017 USA EVSE Data PHEV & BEV Most charging occurs at home, followed by 

work, then DC fast and public locations 

Caperello and 

Kurani 

Caperello et al. 

(2015) 

2013 USA Interviews PEV (Not 

defined) 

Away from home charging is needed to grow 

PEV markets. Drivers need to be made aware 

of infrastructure. Rules or pricing is needed to 

prevent charge point congestion. 

Dong et al. Dong et al. (2014) 2014 USA GPS Data (ICEVs) BEV eVMT can be increased by public 

infrastructure. In most locations level 1 

infrastructure is preferable due to its low 

costs. DC will be needed on travel corridors. 

Dunckley and 

Tal 

Dunckley and Tal 

(2016) 

2016 USA Questionnaire 

Survey 

PHEV & BEV Most PEV drivers charge only at home, with 

some charging at home and work. Drivers 

who have ToU tariffs use delayed charging to 

charge their PEVs. 

Ensslen et al. Ensslen et al. 

(2017) 

2017 Germany 

and 

France 

EVSE Data and 

PEV data 

loggers 

BEV Indirect CO2 emissions from BEV differ 

significantly between countries but depend 

also on charging times. Smart charging could 

be used to reduce emissions from PEV 

charging. 

Figenbaum Figenbaum (2017) 2016 Norway Questionnaire 

Survey 

PHEV & BEV 75% of households have private parking and 

charging. BEV charging only adds 15% to 

household energy use. 

Figenbaum and 

Kolbenstvedt 

Figenbaum and 

Kolbenstvedt 

(2016) 

2016 Norway Questionnaire 

Survey 

PHEV & BEV BEV owners use ICEVs for longer journeys. 

Workplace charging encourages consumers to 

purchase PEVs. DC fast chargers are needed 

on travel corridors. Level 2 chargers are 

needed at public locations. 
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Author(s)  Citation Year of 

Publication 

Location of 

study 

Methods Vehicles 

Studied  

Key findings 

Franke and 

Krems 

Franke and Krems 

(2013) 

2013 Germany GPS Data (PEVs) BEV Drivers plugin on average 3 times per week 

and drive on average 

38 km per day. Home charging accounts for 

83.7% of charging events. Public charging is 

indispensable for PEV drivers. 

Funke and Plötz Plötz and Funke 

(2017) 

2017 Germany Modelling BEV 500 optimally located fast chargers could 

support 500,000 PEVs in 

Germany. 

Garcia-

Villalobos at al. 

Garcia-Villalobos et 

al. 

(2014) 

2014  Literature Review PEV (Not 

defined) 

Uncontrolled charging will put strain on the 

grid due to charging occurring at existing 

peaks. Off peak or time of use charging is 

preferential but could create a peak at the 

beginning of the off-peak time. Smart 

charging is the most effective way to control 

charging. 

Gnann et al. Gnann et al. (2016) 2016 Germany Modelling data 

from Driving 

Diaries 

PHEV & BEV 10 fast chargers are needed for every 1000 

PEVs in Germany. Most 

DC fast charging will occur from 4 pm to 7 pm 

which is during the evening peak demand. 

This could cause local grid issues. 

Goebel Goebel (2013) 2013 USA Questionnaire 

Survey 

PHEV Smart charging voids the problems of 

charging PEVs during evening peak. 

Graham-Rowe 

et al. 

Graham-Rowe et 

al. 

(2012) 

2012 UK Questionnaire 

Survey 

PHEV & BEV Infrastructure investment is needed to 

convince consumers to purchase PEVs. 

He et al. He et al. (2016) 2016 China Modelling PEV Charging stations should as convenient to 

access as possible. 

Heinrichs and 

Jochem 

Heinrichs and 

Jochem 

(2016) 

2016 Germany Modelling PEV The impact from charging stations on higher 

grid levels is negligible. Low voltage grid levels 

might be affected. Controlling the time of 

charging can prevent this from being an issue. 
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Author(s)  Citation Year of 

Publication 

Location of 

study 

Methods Vehicles 

Studied  

Key findings 

Idaho National 

Laboratory 

Idaho National 

Laboratory (2015) 

2015 USA EVSE Data EVSE Data Most charging occurs at home. Away from 

home charging can increase eVMT. TOU 

tariffs are effective in shifting charge time to 

off peak hours. 

Jakobsson et al. Jakobsson et al. 

(2016b) 

2016 Sweden GPS Data (PEVs) BEV GPS measurements on households trialling a 

BEV for three months show very low changes 

in average daily driving distances compared to 

pre-trial measurements. 

Jakobsson et al. Jakobsson et al. 

(2016a) 

2016 Germany 

and 

Sweden 

GPS Data (ICEVs) BEV Two car households may be better suited to 

BEV adoption as the second car has lower 

variance in daily driving distance, thus fitting 

specific range limitations better. 

Ji et al. Ji et al. (2015) 2015  USA Modelling BEV Low range BEV charging demand is mainly 

within the region and metro areas. Long 

range BEVs would shift charging to long 

distance travel corridors. 

Jochem et al. Jochem et al. 

(2015a) 

2015 Germany Modelling BEV 77 optimally located charging stations could 

cover 3569 km of autobahn for 100 km range 

BEVs 

Kelly et al. Kelly et al. (2012) 2012 USA Questionnaire 

Survey 

PHEV Charging events may occur at times that are 

already times of peak power demand. This 

could have negative impacts on the grid. 

Kullingsjo et al. Kullingsjo et al. 

(2013) 

2013 Sweden GPS Data (ICEVs) PHEV OEMs should introduce BEVs and PHEVs with 

several different battery sizes. PHEVs should 

be promoted before grids are decarbonized, 

BEVs should be promoted when grids are 

decarbonized. 
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Author(s)  Citation Year of 

Publication 

Location of 

study 

Methods Vehicles 

Studied  

Key findings 

Morrissey et al. Morrissey et al. 

(2016) 

2016 Ireland EVSE Data PEV (not 

defined) 

Most consumers prefer to charge at home 

during the exiting peak period. Car parks and 

parking garages were the most popular public 

charging locations. Fast chargers received the 

highest use frequencies. 

Neaimeh et al. Neaimeh et al. 

(2015) 

2015 UK EVSE Data PEVs (not 

defined) 

Having an extensive network of PEV charging 

locations can alleviate grid impacts by 

ensuring PEV charging is spatially and 

temporally diverse. 

Neaimeh et al. Neaimeh et al. 

(2017) 

2017 UK EVSE Data & GPS 

Data (PEVs) 

BEVs Fast chargers can increase BEV VMT and can 

help consumers overcome perceptions of BEV 

range. 

Nicholas et al. Nicholas et al. 

(2017a) 

2017 USA EVSE Data BEV DC Fast charging occurs closer to home than 

previously expected, especially when it is free. 

Free DC fast charging may shift charging from 

home to DC fast hargers. DC fast charging 

should be paid. 

Nicholas et al. Nicholas et al. 

(2011) 

2011 California GPS Data (ICEVs) BEV Public infrastructure will be needed for 3.4–
8.3% of PEV journeys. This represent between 

30% and 45% of VMT though, due to these 

being long distance trips. 

Nicholas et al. Nicholas et al. 

(2017b) 

2016 California GPS Data (PEVs) PHEV & BEV PHEVs with c. 40 miles of range achieve 

similar eVMT as Nissan Leafs. For all PEVs 

most charging events occur at home for all. 

Level 2 public charging is also needed. Most 

charging occurs at 5 pm–12 am without TOU. 

TOU tariffs shift this from 12 am–8 am. 

Nicholas et al. Nicholas et al. 

(2013) 

2013 California Questionnaire 

Survey 

BEV 300 mile range BEVs can complete almost all 

travel. 100 mile BEVs will need local 

infrastructure. 200 mile BEVs will need inter 

urban charging. 
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Author(s)  Citation Year of 

Publication 

Location of 

study 

Methods Vehicles 

Studied  

Key findings 

Nicholas et al. Nicholas and Tal 

(2014) 

2014 California Questionnaire 

Survey 

PHEV & BEV Free charging at work can result in 

unnecessary charging and charge point 

congestion. This can have a negative impact 

on purchase intentions. Work charging should 

be paid. 

Nicholas et al. Nicholas and Tal 

(2017) 

2017 USA GPS Data (PEVs) PHEV & BEV Nissan Leaf drivers don't do long trips (over 

the range of their vehicle) away from home. 

Tesla drivers do long trips away from home. 

More public DC fast charging is needed. 

Pearre et al. Pearre et al. (2011) 2011 USA GPS Data (ICEVs) BEV Increased electricity demand is less 

problematic to grids than previously thought. 

This is due to drivers gradually plugging-in in 

the evening between 5 pm and 12 am. 

However smart charging is preferable as it 

would shift charging to off peak time. 

Plötz and Funke Plötz and Funke 

(2017) 

2017 Germany Questionnaire 

Survey 

PHEV & BEV Development of public charging infrastructure 

can increase eVMT of PHEVs and BEVs. With 

home charging and public infrastructure fleet 

eVMT could be 95%. 

Plötz et al. Plötz et al. (2017b) 2017 Germany, 

Sweden, 

and Canada 

GPS Data (ICEVs) 

and 

Questionnaire 

Surveys 

PHEV & BEV The Ŷuŵber of days’ drivers travel ŵore thaŶ 
100 km is lower than the general perception. 

Plötz et al. Plötz et al. (2017a) 2017 Germany 

and USA 

GPS data, vehicle 

logger data 

PHEV PHEVs with c. 40 miles of range can achieve 

similar eVMT as BEVs with c. 100 miles of 

range 

Santini et al. Santini et al. (2014) 2014 USA GPS Data (ICEVs) PHEV & BEV Infrastructure at home and workplaces should 

be developed first. DC fast charging should 

follow this. Intercity fast charging may be 

needed but it would be underutilised by short 

range BEVs. 

https://doi.org/10.1016/j.trd.2018.04.002


Postprint of article in Transportation research Part D: Transport and Environment, Volume 62, 508 - 523. doi:10.1016/j.trd.2018.04.002  

 

 

Author(s)  Citation Year of 

Publication 

Location of 

study 

Methods Vehicles 

Studied  

Key findings 

Schäuble et al. Schäuble et al. 

(2016) 

2016 Europe Questionnaire 

Survey 

PHEV & BEV Consumers respond positively to 

interoperability. Consumers are particularly 

interested in being able to access all DC fact 

charging stations. 

Schäuble et al. Schäuble et al. 

(2017) 

2017 Germany GPS Data (PEVs) PEV (not 

defined) 

Uncontrolled PEV charging could cause an 

early morning peak (7 

am–8 am), late morning peak (10 am–11 am), 

afternoon peak (1pm–2 pm), and an evening 

peak (5–6 pm). 

Schey et al. Schey et al. (2012) 2012 USA EVSE Data PHEV & BEV TOU tariffs are effecting in changing charging 

behaviour. 

Shahraki et al. Shahraki et al. 

(2015) 

2015 China GPS Data (ICEVs) PHEV Optimal location selection of charging points 

can increase fleet eVMT by 88%. 

Skippon and 

Garwood 

Skippon and 

Garwood 

(2011) 

2011 UK Questionnaire 

Survey 

BEV More charging infrastructure would make 

consumers more willing to purchase a PEV. 

After home charging workplace charging was 

ranked the most likely to influence purchase 

decisions. 

Stark et al. Stark et al. (2018) 2017 Germany Interdisciplinary 

Modelling 

PHEV & BEV Interdisciplinary collaboration and holistic 

research approaches are necessary for 

allocating charging stations on city-level 

efficiently. Charging facilities at workplace are 

fit well with vehicle usage patterns. 

Tal et al. Tal et al. (2014) 2014 California Questionnaire 

Survey 

PHEV & BEV Low range PHEVs achieve less eVMT due to 

the short range and because drivers do not 

plugin. Addition of work charging can have 

significant impact on eVMT. 

Tal et al. Tal et al. (2013) 2013 California Questionnaire 

Survey 

PHEV & BEV BEVs drive lower miles per year than ICEVs. A 

reason for this is because of the lack of DC 

Fast charging infrastructure 
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Weiller Weiller (2011) 2011 USA Modelling PHEV PHEV charging will only put modest pressure 

on grids. Charging away from home is needed 

to increase the eVMT of PHEVs. This may 

include having to charge PHEVs during peak 

times. 

Xydas et al. Xydas et al. (2016) 2016 UK EVSE Data PEVs (not 

defined) 

Most charging occurs between 9 am and 3 pm 

at the stations 

considered in the study 

Yang et al. Yang et al. (2015) 2015 China Questionnaire 

Survey 

BEV Charging station location and charge time 

have a significant impact on consumer 

decision processes. Consumers select stations 

with the shortest charge time than are close 

to their origin and along the route of travel. 

Zhang et al. Zhang et al. (2011) 2011 USA Questionnaire 

Survey 

PHEV Home charging could result in a peak 6 pm–9 

pm. PEV charging should be delayed to off 

peak times. 
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2.2. Charge point activity and locations 

ChaƌgiŶg oppoƌtuŶities aƌe deƌiǀed fƌoŵ PEV oǁŶeƌs͛ tƌaǀel patteƌŶs. Theƌe aƌe fouƌ ŵaiŶ loĐatioŶs 
at which charging occurs; (1) at or near home (usually overnight), (2) at workplaces or commute 

locations (e.g. a transit hub), (3) at publicly accessible locations other than work (e.g. grocery stores, 

shopping malls), and (4) on travel corridors where drivers stop between the trip origin and 

destination during long-distance travel (Idaho National Laboratory, 2015; Ji et al., 2015; Nicholas et 

al., 2017b; Nicholas and Tal, 2014).  

Based on the average number of charging events around 50–80% of all events for BEVs and PHEVs 

occur at home (California Air Resources Board, 2017; Franke and Krems, 2013). Several questionnaire 

survey studies have found that having access to charging at home is the most influential location in 

encouraging consumers to purchase PEVs (Bailey et al., 2015; Dunckley and Tal, 2016; Nicholas and 

Tal, 2017; Plötz and Funke, 2017; Skippon and Garwood, 2011). Home location charging can include 

private charge points and public charging infrastructure in residential areas. After home charging 

work or commute location charging is the most frequently used infrastructure according to data from 

questionnaire surveys with consumers who own PEVs or who have driven them in trials (Bjornsson 

and Karlsson, 2015; Figenbaum and Kolbenstvedt, 2016; Nicholas and Tal, 2014; Skippon and 

Garwood, 2011). When BEV owners commute in their vehicle on average 15–25% of charging events 

occur at work. PHEVs tend to charge at work less, though work charging has been shown to increase 

eVMT (electric vehicle miles travelled), which is the number of miles that are driven on electricity 

rather than with the ICE (Nicholas and Tal, 2014). Public and corridor charging stations are the least 

used infrastructure type. Single digit percentages (around 5%) of charging events occur at these 

locations. However, these charging events can still be important for longer journeys and can be 

perceived as a safety net for other charging options (Dong et al., 2014; Morrissey et al., 2016; 

Nicholas et al., 2017a; Plötz and Funke, 2017; Tal et al., 2014). These locations are used more 

frequently by BEVs compared to PHEVs. For PHEVs, the number of times the vehicle is plugged into 

charge is inversely proportional to its electric driving range according to data from California Air 

Resources Board (2017). 

DC fast chargers are being rolled out in many regions as public charging stations. Placement of these 

chargers is dependent on which vehicles use the infrastructure. According to data from PEV drivers in 

the USA (Nicholas et al., 2017b) and Norway (Figenbaum and Kolbenstvedt, 2016) short range BEVs 

are unlikely to undertake long distance travel, but longer ranges BEVs are. For short range BEVs DC 

fast charge points are used mostly at intra urban locations. For longer range BEVs charge points may 

be used mostly at inter urban locations (Ji et al., 2015; Nicholas et al., 2013; Yang et al., 2015). A UK 

study analysed data from EVSE and from GPS tracked BEVs, finding that fast charging infrastructure 

can increase the VMT in BEVs. This was partly because the infrastructure helped overcome actual 

range issues allowing drivers to complete more journeys beyond the range of their vehicles. Drivers 

were also more willing to travel longer distances within the driving range of their vehicles as the 

charging infrastructure acted as a safety net they could use in the event they might need to charge 

due to unforeseen circumstances (Neaimeh et al., 2017). There is significant uncertainty in efforts to 

determine the optimal location of DC fast chargers, data can be taken from several sources including 

GPS travel behaviour data (Dong et al., 2014; Santini et al., 2014), questionnaire survey data 

(Dunckley and Tal, 2016; Weiller, 2011), and from use data from DC fast chargers (Ji et al., 2015). 

Depending on the source of data different results for infrastructure planning may emerge. Fig. 1 from 

Nicholas et al. (2017a) shows how the desired location of DC fast chargers, as measured by distance 

from PEV drivers home, can vary depending on the data used. The study analysed data from GPS 

tracked ICEVs, surveys of PEV buyers, and from EVSE. The study shows that desired locations from 

survey data are the furthest from home, optimal locations based on GPS data are slightly closer to 
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home, and actual use data from DC fast chargers indicates charging occurs far closer to home than is 

optimal or desired. This suggests that consumers anticipate that they will charge further away from 

home than they do in reality. 

 

Fig. 1: Data from Nicholas et al. (2017a) showing differences in the desired, modelled, and actual location of DC fast 

charging events. DC fast charging occurs closer to home that where consumers desire or the optimal based on modelling of 

100 mile BEVs. 

One final issue associated with PEV charging was first identified by Tal et al. (2013). Their analysis of 

GPS tracked PEVs in California found that some adopters of PHEVs do not plug-in their vehicles at all. 

Drivers of PHEV with around 10 miles of driving range typically plugged their vehicles in less. Whilst 

the vehicles can be driven without being charged this causes the vehicles to have lower than 

expected efficiencies and a low proportion of eVMT. A Norwegian study also reported that only 16% 

of PHEV drivers plug their vehicle in every day (Figenbaum and Kolbenstvedt, 2016). However, a 

recent, broader analysis of PEV usage data estimates that PHEVs have tended to be substantially 

powered by grid electricity rather than gasoline (Plötz et al., 2017a). Results from this study which 

contains several data sets totalling more than 70,000 PHEVs with around 40 miles of driving range 

found that they can achieve similar eVMT as BEVs with 100 miles of range. 

2.3. Pricing and interoperability 

Consumers typically need to use a membership card to access public charging stations. Currently 

there are several different charging infrastructure providers, sometimes more than 20 different 

providers in a region. If consumers wish to access all stations, they may be required to hold a 

membership card for each company. This situation can cause difficulties for consumers and can be a 

barrier to them purchasing a PEV (Living Lab Smart Charging, 2017). To reduce complexity 

policymakers and charging infrastructure companies are finding ways to ensure PEV owners can 

access any charging station, regardless of membership status (He et al., 2016). This has been done in 

the Netherlands and Portugal, is a requisite for public charging in Germany, and has been proposed 

as a legislation in the UK. 

Empirical data investigating consumers and interoperability is limited. The first study to investigate 

this issue was the CROME project in Germany and France which began in 2011 with a trial of 100 
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BEVs. These vehicles could be charged at fully interoperable charging stations in the region of the 

trial (Schäuble et al., 2016). Results indicated that consumer respond positively to interoperability. 

The most important consideration for respondents was the possibility to access fast charging at 

public locations. In Norway, the Norwegian EV Association has issued RFID cards to their members 

that can be registered with the main charging infrastructure providers and used at any location. 

Lorentzen et al. (2017) found that 61% of PEV owners preferred this method of payment. Consumers 

believed this was an easier than other solutions. An earlier study that surveyed PEV drivers also 

found this to be the case (Figenbaum and Kolbenstvedt, 2016). Charge points are also being 

developed with phone identification (e.g. Android Pay, Apple Pay, Google Wallet) credit/debit card 

readers, or via using SMS payments (Burnham et al., 2017). 

Another potential barrier for consumers is the lack of clear information on how payments work 

(Kurani et al., 2016). Payments for charging usually include one or more components: a onetime 

connection fee, charge time based payments, kWh based payments, or charging cost based on 

parking cost. This is significantly different from refuelling a conventional vehicle where consumers 

are aware of exactly what they are paying, and how much each unit of fuel costs. 

2.4. Cost to charge 

Previous studies have shown that a common purchase motivation and benefit of owning a PEV is low 

operating costs compared to ICEVs (Bühler et al., 2014; Dumortier et al., 2015; Hardman et al., 2016; 

Hardman and Tal, 2016; Hidrue et al., 2011; Peters and Dütschke, 2014; Rezvani et al., 2015). For 

PEVs to retain this benefit the cost to charge a PEV, or cost per mile to drive a PEV, should be lower 

than that of an ICEV. Time of use (TOU) and smart charging tariffs can be used to further lower the 

cost to charge a PEV (explored in 2.6). In many cases free charging is offered to consumers, whilst 

this can be an incentive to purchase the vehicles (Hardman, 2017), it can have negative 

consequences, including charge point congestion (Nicholas and Tal, 2014). Typically the only BEV and 

PHEV drivers that use this free infrastructure are ones who can complete their days driving without 

recharging (Nicholas et al., 2013; Nicholas and Tal, 2014). BEV owners who would need to charge to 

complete their daily travel may not risk driving their PEV if they perceive charge point congestion to 

be an issue or if they think charge points could be inoperable. These two studies indicate that most 

cases of low dependability are due to congestion at the chargers, rather than from missing 

infrastructure or low technical reliability. Investing in more infrastructure to eliminate charge point 

congestion can be costly and may not be practical especially with level 2 or DC Fast chargers. The 

authors suggest that pricing and policies that limit shifting of home charging to public charging could 

be part of the solution. 

Nicholas et al. (2017a, 2017b) found that free DC fast charging may encourage consumers to charge 

when they do not need to. Consumers may substitute overnight home charging for free DC fast 

charging at peak power demand times. This can also be problematic for PEV driers who need to use 

the fast chargers as they cannot access charging when they need it most. 

2.5. Number of public charging stations 

Fig. 2 shows PEV stock, number of slow chargers, and number of DC fast chargers in the top 10 PEV 

nations, where the global average is 153 chargers per 1000 PEVs: 97 slow chargers per 1000 PEVs, 

and 56 fast chargers. In Norway, a nation where most consumers have home charging, there are 61 

chargers per 1000 PEVs. The United States has a similar number of consumers with off street parking, 

and has 72 chargers per 1000 PEVs. In China and the Netherlands most consumers do not have home 

charging access. In China, there are 217 charge points per 1000 PEVs and in the Netherlands, there 

are 239 charger points per 1000 PEVs. 
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Fig. 2: Fig. 2. Number of public slow (level 1–2) and DC fast chargers, and number of PEVs registered in the top 10 PEV 

markets. The number of charging stations differs between regions, and is related to the number of PEVs, travel patterns, 

housing type and other factors associated with local market conditions (International Energy Agency, 2017). 

Few studies have worked towards understanding how many charging locations are needed to 

support PEV roll out. The optimal number of public charging locations may depend upon factors such 

as the number of workplace chargers, access to home charging (often dictated by housing type), 

travel patterns, and the market share of PHEVs and BEVs. Three studies from Germany have made 

suggestions on how many charging locations are needed. Jochem et al. (2015b) modelled travel data 

in Baden-Württemberg and Bavaria in Germany to determine charging station needs for the 

autobahn network in that region. They found that 77 optimally located chargers could cover the 3569 

km of roads in that region for BEVs with 100 miles of range. Gnann et al. (2016) developed a model 

to determine public charging infrastructure needs in Germany, form their model they found that 10 

chargers may be sufficient for every 1000 PEVs. Finally Funke and Plötz (2017) used data from 6339 

travel diaries to determine the number of DC fast chargers needed in Germany. Their results 

indicated that just 500 chargers could support 500,000 PEVs. 

In some regions, most households have their own dedicated off-street parking space on a driveway 

or in a garage. This is the case in Norway where 75% of households have their own dedicated parking 

(Figenbaum, 2017) and in California where over 80% of new car buyers can park their car in their 

garage or driveway (Kurani et al., 2016; Tal et al., 2013). Another study found that more than half of 

new vehicle-buyers in the US park their vehicle within 25 feet of a level 1 charging opportunity 

(Axsen and Kurani, 2012). However, in many other regions (e.g. China or Netherlands), a higher 

proportion of drivers are unable to do this: they park their vehicles on the street, in off street public 

parking lots, or in private parking lots. Consumers in these regions may not have easy access to home 

charging, this can be a barrier to them purchasing the vehicles. According to several studies 

consumers perceive a lack of charging at home as a one of the greatest barriers to them purchasing a 

PEV (Ajanovic and Haas, 2016; Axsen et al., 2015; Axsen and Kurani, 2013; Figenbaum and 

Kolbenstvedt, 2016; Nilsson and Nykvist, 2015). 

2.6. Temporal distribution of charging and charge management 
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Studies using GPS data from ICEVs and data from EVSE have found that due to the initial low 

numbers of PEVs in most regions, charging is unlikely to have negative impacts on the grid for some 

time (Babrowski et al., 2014; Pearre et al., 2011; Schey et al., 2012). However, with greater numbers 

of PEVs large numbers of vehicles charging at the same time in the same area could impact the low-

voltage grid (Gnann et al., 2016; Schey et al., 2012). On a regional scale charging many PEVs at the 

same time could cause peak power demand events (Azadfar et al., 2015; Kelly et al., 2012; Morrissey 

et al., 2016; Schäuble et al., 2017). The current literature suggests that with uncontrolled charging 

consumers are likely to charge their PEVs when they arrive at work, in pubic locations in the evening, 

and when they arrive home in the evening or night-time. Questionnaire surveys have also found that 

consumers are likely to charge their vehicles at a similar time as one another, and that this time may 

corresponded to an existing demand peak (Axsen et al., 2011; Schäuble et al., 2017; Zhang et al., 

2011). These findings suggest that when PEVs are deployed in large numbers they could cause a 

demand spike at several times throughout the day particularly in the morning and evening. It has 

been suggested that charging could be managed to prevent this, especially as vehicles have 

significant flexibility in when they charge as they parked for long periods of time (particularly 

overnight) (Sadeghianpourhamami et al., 2018). 

A method of controlling home charging, and something that is being used at present in California, 

USA, is TOU domestic electricity tariffs (PG&E, 2017; SMUD, 2015). At off-peak hours (often at night), 

consumers pay a lower electricity rate. During peak times (often in the day), they pay a higher 

electricity rate. Households are incentivised to charge their vehicles at night. In some cases, 

additional metering equipment is required for consumers to have TOU tariffs. A study in California 

administered a questionnaire survey to owners of PEVs to understand their charging behaviour, and 

whether they have and use TOU rates. The study found that consumers who had TOU rates chose to 

charge their vehicles in the lower priced off peak time (Dunckley and Tal, 2016). In the UK, a time of 

use type tariff has been in use since 1978 for domestic electricity. This system is known as economy 

7, which provides 7 h of off-peak electricity (British Gas, 2017). The off-peak rates are usually around 

50% of the peak rate. According to Hamidi et al. (2009) these tariffs, which 16% of UK consumers 

subscribe to, have also been effective in shifting demand to the off-peak time. These studies indicate 

that pricing mechanisms may be effective in managing when consumers use electricity. 

Smart charging is a more advanced system of managing charging. This involves managing PEV 

charging based on current electricity supply, electricity demand, and driver needs. According to 

Garcia-Villalobos et al. (2014) and Goebel (2013) smart charging could be an effective system in 

preventing peaking events from occurring. Smart charging can be implemented at home, public, and 

work charging locations. At DC fast chargers it may not always be possible to utilise smart charging, 

due to some PEV drivers wanting to charge their vehicles quickly. According to data from the 

Netherlands, where smart charging is being implemented, the system can allow existing electricity 

grids to support ten times more PEVs compared to uncontrolled charging (GreenFlux, 2017; Living 

Lab Smart Charging, 2017). The system in the Netherlands limits charging through communication 

between the charge point and back of office software. When charging needs to be reduced the 

current (amps) delivered to the vehicle is reduced. On the other hand, during periods of low demand 

and high supply, PEVs can charge freely. Smart charging has been found to be beneficial to the grid 

and most consumers have been willing to accept this method of charge management in the 

Netherlands (Living Lab Smart Charging, 2017). A study using surveys and interviews with 

mainstream car buyers found that they are less willing to accept smart charging (Bailey and Axsen, 

2015). The study did find that some consumers were willing to enrol in smart charging schemes 

including ones that utilise renewable energy. Interviewees expressed concern over having less 

control over the how their vehicle is charged though (Axsen et al., 2017). 
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Neaimeh et al. (2015) found that having more charging locations increases the spatial and temporal 

distribution of PEV charging. They suggest increasing the amount of infrastructure as a demand 

management strategy. Recent literature reviews of controlled charging suggest that more research is 

needed to understand mainstream consumer acceptance of such programs (Sovacool and Axsen, 

2017). 

2.7. Information, education, and outreach 

AĐĐoƌdiŶg to ƋuestioŶŶaiƌe suƌǀeǇs aŶd iŶteƌǀieǁs ŵaiŶstƌeaŵ Đaƌ ďuǇeƌs͛ kŶoǁledge aŶd 
awareness of PEV recharging infrastructures is currently low (Axsen et al., 2017; Bailey et al., 2015; 

Kurani et al., 2016). The only consumers who have a high awareness of charging infrastructure are 

consumers who have purchased a PEV or ones interested in purchasing one. Members of the general 

population who have not purchased a PEV are less knowledgeable about their potential charging 

options. According to Bailey et al. (2015) only 18% of mainstream car buyers had seen a public EV 

charger. Questionnaire survey data from California found that between 2013 and 2017, despite a 

doubling the number of charging stations deployed, no more consumer claimed to have seen a single 

PEV charger (Kurani, 2017). 

Studies have found that low awareness is correlated with low intentions to purchase a PEV. However, 

it is unclear if increased awareness of charging infrastructure will increase intent to purchase a PEV—
statistical analysis indicates a weak or non-existent relationship (Bailey et al., 2015). In other studies, 

increasing knowledge of infrastructure amongst PEV adopters led to increased use of charge points, 

which increases the overall electric miles driven by the vehicles (Caperello et al., 2015; Kurani, 2017; 

Kurani et al., 2016). 

3. Summary & conclusion 

This review provides an overview of different types of methods and sources of data, each of which 

have different strengths and weaknesses. Here we work to glean several insights from the reviewed 

studies, whilst acknowledging that there is significant uncertainty in even present trends and usage, 

and even more uncertainty in understanding future usage patterns and relationships among 

variables (e.g. charging availability and PEV uptake). This paper provides 5 key insights relating to; (1) 

the importance of infrastructure at home, work, and public locations, (2) consumers access to 

charging infrastructure, (3) the cost to charge a PEV, (4) how many charge points are needed to 

support the introduction of PEVs, and (5) the impact of charging on power grids and management of 

this. These insights are outlined in more detail below.  

First according to existing evidence home location charging is the most important piece of 

infrastructure in convincing consumers to purchase a PEV and is the most frequently used charging 

location (Bailey et al., 2015; Dunckley and Tal, 2016; Franke and Krems, 2013; Nicholas and Tal, 2017; 

Plötz and Funke, 2017). Workplace charging has been found to be the second most influential 

charging location in convincing consumers to purchase a PEV it is also the second most frequently 

used charging location (Bjornsson and Karlsson, 2015; Figenbaum and Kolbenstvedt, 2016; Nicholas 

and Tal, 2014; Skippon and Garwood, 2011). Public charging stations appear to be the least 

frequently used locations but are still important in encouraging consumers to purchase PEVs (Dong 

et al., 2014; Morrissey et al., 2016; Neaimeh et al., 2017; Nicholas et al., 2017a; Plötz and Funke, 

2017; Tal et al., 2014). 

Second, at present, consumers may have difficulties in charging their vehicle at all locations due to 

the lack of compatibility with all infrastructure. Research indicates that increasing interoperability of 

charge points is perceived positively from the perspective of consumers (Figenbaum and 
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Kolbenstvedt, 2016; Lorentzen et al., 2017; Schäuble et al., 2016). Increasing interoperability may 

lead to increased PEV sales and increase the VMT of PEVs. 

Third a key purchase motivator for the buyers of PEVs is their low running costs (Bühler et al., 2014; 

Dumortier et al., 2015; Hardman et al., 2016; Hardman and Tal, 2016; Hidrue et al., 2011; Peters and 

Dütschke, 2014; Rezvani et al., 2015). The low running costs of PEVs are due to low maintenance 

costs and low charging costs. The cost to charge a PEV should be lower than the refueling cost of 

conventional vehicles if PEVs are to retain the benefit of low running costs. Free charging has been 

implemented in some regions, especially at workplaces. Studies have shown that this can incentivise 

consumers to purchase the vehicles but may have unwanted consequences (Hardman et al., 2017; 

Nicholas and Tal, 2014). Free charging may lead to BEV and PHEV drivers charging their vehicles 

unnecessarily which can cause all charge points to become occupied which is especially problematic 

for BEVs. 

Fourth research into how many charge points are needed to serve consumers is currently limited to a 

small number of studies in Germany (Funke and Plötz, 2017; Gnann et al., 2016; Jochem et al., 

2015b). These have found that around 10 fast charges for every 1000 PEVs may be sufficient. Wide 

conclusions on the number of charging stations needed cannot be drawn from those studies alone 

meaning the number of charging locations needed is currently unknown. 

Finally the early market introduction of PEVs appears unlikely to impact electricity grids due to the 

comparatively low number of vehicles deployed (Babrowski et al., 2014; Pearre et al., 2011; Schey et 

al., 2012). However large numbers of PEVs may cause disruption to the local grid (Gnann et al., 2016; 

Schey et al., 2012) and cause power demand increases on a regional scale (Azadfar et al., 2015; Kelly 

et al., 2012; Morrissey et al., 2016; Schäuble et al., 2017). Using pricing mechanisms such as TOU 

tariffs and smart charging to manage when consumers charge has been found to prevent these 

issues from occurring (Dunckley and Tal, 2016; Garcia- Villalobos et al., 2014; Goebel, 2013). 

Evidence relating to how consumers interact with smart charging is still limited, with one study 

indicating consumer may respond negatively to losing control of when their vehicle is charged (Axsen 

et al., 2017). 

3.1. Policy implications 

The development of charging infrastructure should be a part of a more general policy of promoting 

electric vehicles. Developing infrastructure alone will not be sufficient to ensure the market entry 

success of PEVs. Policymakers could seek to introduce incentives to lower the purchase price of PEVs 

which may encourage consumers to purchase the vehicles (Hardman et al., 2017; Mersky et al., 2016; 

Sierzchula et al., 2014; Vergis and Chen, 2015; Zhou et al., 2016). Increasing consumer awareness of 

PEVs may also increase their likelihood of purchasing a PEV (Bailey et al., 2015; Bühler et al., 2014; 

Krause et al., 2013; Turrentine et al., 2011). It is also possible to introduce policies that encourage 

automotive OEMs to supply PEVs to regions, for example with the use of a mandate as is the case in 

California (Sperling and Eggert, 2014; Vergis and Mehta, 2010). 

The findings of this review can be used to inform policymakers, as well as charging infrastructure 

providers, OEMs, and any stakeholders involved with the transition to PEVs. Infrastructure 

development is important for increasing PEV sales and encouraging and facilitating consumers to use 

PEVs more frequently. As home location chargers appear to be the most important piece of 

infrastructure in encouraging consumers to purchase PEVs (Bailey et al., 2015; Dunckley and Tal, 

2016; Nicholas and Tal, 2017; Plötz and Funke, 2017; Skippon and Garwood, 2011) publicly accessible 

home location infrastructure may need to be developed in regions with households that do not 

typically have off street parking. This will include on street charging and charging in off street car 
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parks such as those in apartment complexes. In addition to workplace chargers, chargers in public 

locations, and DC fast chargers may be needed to encourage the purchase and use of PEVs, especially 

BEVs (Dong et al., 2014; Morrissey et al., 2016; Nicholas et al., 2017a; Plötz and Funke, 2017; Tal et 

al., 2014). Access and payment to this charging infrastructure should be as simple as possible and 

could be harmonised across regions to increase the interoperability of infrastructure for consumers 

(Figenbaum and Kolbenstvedt, 2016; Lorentzen et al., 2017; Schäuble et al., 2016). This infrastructure 

should not be free to use as this can cause unnecessary charge point congestion which can lead to 

consumers being less likely to purchase and use PEVs (Nicholas and Tal, 2014). Ensuring there is a 

cost to charge can prevent PEV drivers from charging unnecessarily thus benefitting BEV drivers who 

need to charge. Finally, the time that PEV drivers charge could be managed to prevent negative 

impacts to the grid. Existing evidence suggests that pricing strategies can shift charging to the off 

peak period and consumers are willing to use these tariffs (Dunckley and Tal, 2016; Hamidi et al., 

2009). A more advanced and technically complex method to control charging is via smart charging. 

Smart charging may be able to shift more charging events to off peak times than TOU tariffs (Garcia-

Villalobos et al., 2014; Goebel, 2013). Consumers may be willing to use smart charging, however 

there is uncertainty on how consumers will respond to this system (Bailey and Axsen, 2015). 

3.2. Limitations and further research needs 

This paper only focuses on charging infrastructure from a consumer perceptive rather than a 

technical (e.g. charge point design) or environmental perspective (e.g. emissions from the electricity 

generated for PEV charging). It also does not consider other aspects associated with a transition to 

PEVs. The benefit of focusing on one topic is an in-depth look at one important issue. This review 

does not consider the impact of V2G (bi-directional smart charging), this is due to literature in that 

area currently lacking empirical data on how consumers respond to this technology, how they use it, 

or whether they would use it (Sovacool et al., 2017). The study does not consider how electrified 

autonomous vehicles might use charging infrastructure nor does it consider the recharging of shared 

vehicles or vehicles in transit network companies (e.g. Uber or Lyft). The paper also does not consider 

the needs of traditional transit or of taxi fleets due to the different use cases of these vehicles. 

Understanding the infrastructure needs of transit network companies, transit companies, and taxi 

fleets is an important area of future research. Helping policymakers and transit companies 

understand the charging needs of their vehicles may bring about increased electrification in the 

transit sector. 

Currently most literature on PEV recharging is based on studies of BEVs with around 100 miles of 

driving range. As the transition to PEVs continues more vehicles with 200 miles of range will be 

delivered to consumers. Future studies need to assess infrastructure needs of these vehicles as it 

may differ to the needs of the current stock of BEVs. On one hand 200 mile BEVs may be even more 

reliant on home location charging which could reduce the need for work and public charging. On the 

other hand, BEVs with 200 miles of range could travel longer distances and require more public 

infrastructure. Early data from (Nicholas et al., 2017b) shows that the travel behaviour of BEVs with 

more than 200 miles of range may be similar that of conventional vehicles. This suggest that 200 mile 

BEVs may travel more thus needing more DC fast charging infrastructure. Funke and Plötz (2017) 

though found that DC fast charging infrastructure needs will reduce as BEV range increases. More 

studies of this nature are needed so that an understanding of what infrastructure is needed to 

support the transition to longer range BEVs into the future. One of the most severe limitations of the 

literature is that the number of charging stations needed is currently unknown. This research needs 

to be conducted in many different regions including Europe, North America, and Asia to understand 

how much infrastructure is needed. There are currently few studies on the impact of interoperability 
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or lack of it. Studies could investigate the extent to which this is an issue for consumers, and what 

positive impacts increased interoperability could have on purchase intentions and eVMT. 

A present DC fast chargers mostly have charge rates of around 40–120 kW. Ultra-fast DC fast 

chargers with outputs of 150–350 kW have been installed by some charge point companies (EVgo, 

2017). At present these can only charge vehicles up to 150 kW, but have the potential to charge at 

350 kW when vehicle and battery technology can take this level of power. Some OEMs have 

suggested that future vehicles will be able to charge at 350 kW (Porsche, 2018). Research could be 

undertaken to understand how this infrastructure would be used by consumers. This could include 

payment for charging, location of charging, at what time charging occurs, and any impacts these 

ultra-fast charges may have on electricity grids. 

The market introduction of PEVs is currently restricted to around 1–2% of buyers in most nations. 

Even in Norway, where PEVs have reached more than one third of new car sales, most buyers are still 

typical early adopters (Figenbaum, 2017). These consumers are known to behave differently (Rogers, 

2003), it is unlikely that these consumers have vastly different infrastructure needs as most car 

buyers have similar travel patterns. However, research into how mainstream consumers will use 

PEVs is still needed. 

It is the hope of the authors that addressing the areas of future research suggested above will work 

towards gathering the information needed to ensure the transition to more electrified transportation 

is successful. 
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