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Abstract 

The multi-component alloy Nb-20Si-23Ti-6Al-3Cr-4Hf was produced by 

powder injection molding or hot isostatic pressing of pre-alloyed, gas-

atomized powder. The resulting microstructure comprises the Nb solid 

solution as well as the α- and γ-modifications of Nb5Si3. Creep is evaluated in 

constant true stress tests at 1000 and 1100 °C. The analysis of the creep 

behavior regarding its dependence on microstructural and testing parameters 

such as grain size, stress, and temperature reveals grain boundary sliding as 

the prevalent deformation mechanism. This is backed up by SEM/EBSD and 

TEM observations in the undeformed and deformed state. This creep 

mechanism was found to be a direct result of the small grain/phase sizes after 

powder metallurgical processing and led to a creep resistance even lower 

than that of a single-phase niobium-based alloy.  
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1 Introduction 

In high temperature applications such as gas turbines, today nickel-base 

superalloys are commonly employed to fulfill the requirements on high 

temperature creep strength as well as oxidation resistance and toughness. A 

further improvement in efficiency of those combustion engines is possible by 

increasing the turbine inlet temperature or by reducing the density [1]. 

Niobium-based silicide composites have been researched for some while now 

to deliver on both of these prospects. Alloys of this class of materials usually 

contain a niobium solid solution for ductility and toughness at lower 

temperatures, or more specifically at room temperature, and an Nb5Si3 

intermetallic phase for high temperature strength. The density of those alloys 

is typically around 7 g·cm-3 which compares favorably with 9 g·cm-3 for state 

of the art nickel-base alloys. The binary system, however, while offering 

sufficient creep strength [2, 3] suffers from insufficient oxidation resistance 

[4]. Alloying elements such as titanium, aluminum, and chromium have been 

added to improve on that [5–8]; hafnium is also oftentimes added for solid 

solution hardening of the niobium phase [7]. A prominent example of this 

alloying scheme was the MASC alloy (metal and silicide composite, Nb-16Si-

25Ti-2Al-2Cr-8Hf, compositions are given in atomic percent throughout this 

paper) introduced by Bewlay et al. in 1996 [9]. Those alloys, typically 

produced via induction skull melting (ISM), arc-melting, or directional 

solidification (DS), show a good balance of creep and oxidation properties. As 

segregations are frequently observed during cast metallurgy of this kind of 

materials [6], castability is often poor, and since near net-shape component 

production is desirable, powder metallurgy (PM) offers the potential to target 

all three of these issues. Besides, PM also allows for composition variations 
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that are inaccessible by cast metallurgy [38]. Therefore, in this work, a MASC-

derived composition (Nb-20Si-23Ti-6Al-3Cr-4Hf) was assessed regarding its 

creep properties and underlying deformation mechanisms after being 

produced via advanced powder metallurgical techniques. 

2 Experimental 

Rods of the nominal composition Nb-20Si-23Ti-6Al-3Cr-4Hf were produced 

by plasma-melting of pure elements. The rods were directly atomized by 

electrode induction-melting gas atomization (EIGA). The resulting powders 

were sieved into different size classes of <25, 25-45, 45-106, 106-225, and >225 

µm [10]. In this work, it will only be reported on properties of the powder 

fraction < 25 µm. Compaction of the powders was done via powder injection 

molding (PIM) or hot isostatic pressing (HIP).  

For PIM, the powders were mixed with a polymer wax-based binder to 

produce a feedstock (powder load of 70 %) and subsequently injection 

molded into small cylinders. After solvent-based debinding with hexane and 

thermal debinding at 600 °C, the samples were sintered at 1500 °C for 3 hours. 

For further details on PIM processing, the reader is referred to [10]. 

HIP was done at 1230 °C for 4 hours at a pressure of 150 MPa, after the 

powder was filled in a mild steel can on a vibrating table and evacuated over 

night before crimping and welding the can shut.  

Additionally, monolithic intermetallic phases of α-Nb5Si3 and γ-Nb5Si3 were 

produced by traditional non-consumable tungsten electrode arc-melting with 

compositions of Nb-36.5Si-13Ti-1Al-4Hf and Nb-36Si-23.5Ti-2.5Al-0.5Cr-

7.5Hf, respectively. These compositions had been determined by EDS on the 

separate phases in the compacted composite. To insure homogeneity, buttons 

were flipped and remelted at least 5 times.  
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Cuboid samples (4×4×8 mm) were extracted via electro discharge machining 

(EDM) from HIP cylinders and arc melted buttons. 

Heat treatments were performed in a Gero tube furnace under high purity 

argon flow at 1300 °C for 100 hours, or 1500 °C for 20 or 100 hours.  

The resulting sample conditions will be denoted by the compaction process 

(HIP or PIM) and the heat treatment state (AC for as-consolidated or HT for 

heat treatment followed by the temperature in centigrade and the duration in 

hours). 

Compressive creep testing was done in a Zwick Z100 electromechanical 

testing machine with attached Maytec vacuum radiation furnace. Load-

deformation feedback control was set up to ensure constant true stress during 

deformation. Additionally, compression tests on select samples were 

performed at constant initial strain rates between 10-4 s-1 to 10-2 s-1. 

Punch faces of compression samples were grinded plan parallel to a finish of 

grit P2500 and covered with a thin layer of h-BN to reduce friction between 

the SiC punches and the samples.  

Microstructural analysis was done with a Zeiss Evo 50 scanning electron 

microscope (SEM) equipped with tungsten filament with energy dispersive X-

ray spectrometer (EDS) and for EBSD mappings a Zeiss Auriga SEM with 

field emission gun was used. X-ray diffraction patterns in this work were 

recorded with a Bruker D2 Phaser diffractometer with Cu-Kα radiation (λ = 

0.15406 nm) and an attached Lynxeye line detector at room temperature to 

identify the phases present. 

3 Results 

3.1 Initial Microstructure 

In all powder metallurgical cases, the microstructure reveals up to four 

phases: niobium solid solution (Nbss), α-Nb5Si3, γ-Nb5Si3, and HfO2. They 
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show up in bright grey, dark grey, medium gray and white contrast in SEM 

backscatter electron micrographs, respectively. One exception is the HT1300-

100 condition, were γ-Nb5Si3 appears brighter than Nbss due to increased 

solubility of hafnium in this silicide at this temperature. Figure 2 shows the 

evolution of microstructure with increase in heat treatment duration and 

temperature. Exemplarily, the diffraction patterns recorded for HIP are given 

in Figure 1, left.  

The arc-melted material is indeed monolithic intermetallic except for a small 

Nbss-peak detectable for γ-Nb5Si3 (Figure 1 right). 

While area fractions of the silicide phases significantly vary depending on 

heat treatment (α-Nb5Si3: 27 – 37 %; γ-Nb5Si3: 17 – 27 %), the Nbss fraction 

stays constant at around 46 % and HfO2 is below 1 %. The grain size of HIP 

and PIM was extracted from EBSD measurements for the HT1300-100 and 

HT1500-100, and HT1300-100, HT1500-20, and HT1500-100 conditions, 

respectively (Table 1). Note here that even after a 1500 °C heat treatment, 

coarsening of the microstructure is rather weak, giving grain/phase sizes of 

less than 10 µm on average. This indicates sluggish diffusion being a typical 

signature of RM-based silicide alloys [11, 12]. 

Table 1 

3.2 Creep 

Usually, the steady-state strain rate 𝜀ṡ of a creep experiment in dependence of 

testing parameters stress 𝜎  and temperature 𝑇 , and the microstructural 

parameter grain size 𝑑g, is given by the following relationship [13, 14] 

𝜀ṡ(𝜎, 𝑇, 𝑑g) =
𝐴 ⋅ 𝐷

𝑑g
𝑝 ⋅ 𝜎𝑛 ⋅ exp (

𝑄c

𝑅𝑇
) (1) 

where 𝐴 is a constant, 𝐷 the diffusion coefficient for the dominant (i.e. “rate 

controlling”) mechanism, 𝑝 the grain size exponent, 𝑛 the stress exponent, 𝑄𝑐 
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the activation energy for creep, and 𝑅 the gas constant. The determination of 

the material parameters 𝑝 , 𝑛 , and 𝑄𝑐  and their implications for creep 

mechanisms active in the analyzed niobium silicide composite are the main 

focus in what follows.  

 

However, we will start with the creep curve itself (Figure 3), as it does not 

show the expected steady-state, i.e. constant, strain rate over a marked 

amount of plastic strain but rather a minimum creep rate 𝜀ṁ. This can stem 

from microstructural changes very early during deformation as it is known 

e.g. for Ni-base superalloys [14], leading to the commencing of the tertiary 

creep before a steady-state strain rate is reached: in the particular case of Ni-

base superalloys the microstructural instability is often called “rafting” [15]. 

In the present case, the creep rate increase is not linked to microstructural 

changes as shown later, but rather to damaging. During deformation, phase 

boundaries fail and cracks propagate along them and into adjacent grains as 

shown in Figure 3 (right). Equation (1) applies accordingly for the minimum 

strain rate 𝜀ṁ. 

3.3 Stress dependence 

Using isothermal creep tests at varying stresses, the stress exponent 𝑛 can be 

determined for each sample condition as the slope of a double-logarithmic 

plot of minimum strain rate over stress (Figure 4 and Figure 5). In Figure 4, 

also the goal for creep resistance is given as dashed horizontal line 

(corresponding to < 1 % deformation in 100 – 125 h) as proposed by several 

researchers familiar with the requirements for aircraft turbines [5, 6, 16, 17]. 

However, this goal was postulated for temperatures of more than 1200 °C and 

stresses on the order of 150 MPa. For the present material, this goal is not met 

even for 1000 °C and 50 MPa. Another pre-requisite, a plastic deformation of 

less than 0.5 % during primary creep [5] is not met either.  
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Independent of sample condition or testing temperature, a stress exponent 𝑛 

of about 2 is apparent. This is in a range often observed when grain boundary 

sliding is the predominant creep mechanism, e.g. in fine-grained (< 10 µm) 

multi-phase materials [14, p. 411]. 

3.4 Temperature dependence 

By changing the testing temperature at constant stress, the activation energy 

𝑄c  is determined as the slope of a ln(𝜀ṁ) over 1/𝑅𝑇  plot according to the 

transformation of equation (1) for constant stress and constant grain size 

(Figure 6).  

ln(𝜀ṁ) = ln(𝐴2) − 𝑄c ⋅
1

𝑅𝑇
 (2) 

𝐴2: constant  

As the strain rate is constant only in a small strain regime, testing temperature 

was changed back to the starting temperature after each measuring 

temperature for HIP HT1500-100. The control strain rate stayed constant 

within a standard deviation of 6.4 %, which corresponds to a deviation of 

26 kJ·mol-1 from the average 𝑄c value. All measured activation energies lie 

well in this range of scatter around 400 kJ·mol-1.  

3.5 Grain size dependence 

During “pure” dislocation creep, the deformation is controlled by a dynamic 

equilibrium between the formation and annihilation of dislocations in the 

sub-grains, which limit their mean free path. Even in small grains, dislocation 

interaction is assumed to mainly take place in the three-dimensional 

dislocation network. Usually, the observed increase in strain rate for 

decreasing grain size is a result of grain boundary sliding becoming non-

negligible anymore [13].  

Another mechanism that will lead to a grain size dependence of creep is the 

presence of diffusional creep. Nabarro and Herring [18, 19], and Coble [20] 
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proposed dislocation independent high temperature deformation based on 

diffusional flow of vacancies through the volume or along the grain 

boundaries, respectively. This would lead to a grain size exponent 𝑝 of 2 or 3, 

respectively, combined with a stress exponent 𝑛  close to unity (compare 

equation (1)).  

Similar to the so called Norton plots, Figure 4 and Figure 5, the logarithmic 

strain rate can be plotted over the grain size of different heat treatment 

conditions to obtain 𝑝  as the slope (Figure 7). For different testing 

temperatures and stresses a mean value of the grain size exponent of 4.4 is 

observed. 

4 Discussion 

4.1 Microstructural changes 

To fully rationalize the deformation mechanisms operating in these 

multicomponent multiphase materials, changes in microstructural features 

during deformation such as grain morphology and texture have to be 

analyzed as well. For that purpose, a heat-treated sample (PIM HT1300-100) 

was deformed in compression to a true plastic strain of 𝜀t = 1  (1100 °C, 

50 MPa, corresponding to a height reduction by 63 %). The aspect ratio 𝑆 of 

the grains is in this case defined as the phase size perpendicular to the loading 

direction divided by the one parallel to it, as measured by the linear intersect 

method on optical micrographs. The increase in 𝑆 due to the deformation 

compared to the undeformed state is from unity to 1.23 and, thus, hardly 

significant (Table 2). This is also depicted in EBSD phase maps before and 

after the deformation (Figure 8).  

Table 2 

For previously equiaxed grains the expected aspect ratio can be easily 

estimated for pure dislocation-based deformation (only change in grain shape 
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without rearrangement of the grains). Under the boundary conditions of 

constant volume and isotropic strain perpendicular to the loading axis the 

resulting aspect ratio is given by equation (3), where 𝜀t is the final true strain. 

In case of 𝜀t = 1 a value for 𝑆 of 4.5 is expected. 

 

𝑆 = exp (−
3

2
𝜀t) (3) 

Additionally, EBSD measurements on the same cross-section reveal no 

significant texture, especially in case of the Nbss, which would be expected to 

show the strongest deformation texture due to its ease of deformability under 

the chosen conditions (Table 3). To the contrary, the highest multiple of 

uniform distribution (MUD) is reduced for the intermetallic phases. During 

compression, for the bcc solid solution (Nbss) the formation of a 〈111〉/〈001〉 

fiber texture parallel to the compression axis is expected [21, p. 192]. This was 

previously shown by several researchers for pure niobium [22–24]. 

Vishwanadh et al. [22] found for a similar amount of thickness reduction 

(60 %) an MUD value above 3 in 〈111〉.  

Table 3 

At the same time, the bulk intermetallic phases (α-Nb5Si3 and γ-Nb5Si3 

produced by arc melting) yield creep rates more than three orders of 

magnitude lower – at higher stresses – than the composite (Table 4). This is 

well in line with results obtained for binary and multi-component Nb-based 

silicides, where γ-Nb5Si3 demonstrated to have lower creep strength than α-

Nb5Si3 [25–28]. This suggests that deformation of the intermetallic compound 

itself cannot be the rate-controlling factor in the composite’s high creep rates.  

Table 4 

As the grains do not deform, strain has to be obtained by rearrangement of 

grains, i.e. grain boundary sliding. Another feature of grain boundary sliding, 
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the coalescence of phases during deformation [29, 30] is found as well (Figure 

8). The sliding will induce misfit stresses in the grain boundary triple 

junctions that have to be accommodated by dislocation or diffusional creep. 

When those accommodation processes cannot keep up, void formation and 

eventually cracking of the grain boundaries as shown earlier will occur. The 

activation energy for creep in this study was found to be 400 ± 26 kJ·mol-1, 

which reflects the activation energy for the rate controlling accommodation 

mechanism. This value is in good agreement with the activation energy for 

niobium self diffusion of 349–440 kJ·mol-1 [31–34] and that for diffusion of 

titanium in niobium 364 kJ·mol-1 [35]. Diffusion in Nb5Si3, however, requires 

significantly lower activation energies (201–271 kJ·mol-1 [36–38]). TEM 

investigations have shown the presence of dislocations in the Nbss after 

deformation (Figure 9) and the lack thereof before it. Hence, most likely, 

dislocation movement in the niobium solid solution is the dominant 

accommodation mechanism. This explains also the observed coalescence of 

phases, as Nbss has to participate in the grain displacement with the silicides 

not being able to accommodate triple junction stresses at the given 

temperatures. Similar behavior was found by Jéhanno et al. [11, 39] in 

molybdenum-based silicide composites. In this case, the grain size exponent 𝑝 

was close to unity, though, confirming accommodation by dislocations [40, 

41]. The grain size exponent found in the present work (4.4) is out of range 

even for grain boundary diffusion as main accommodation mechanism (𝑝 ≈

3), which can be excluded based on the activation energy.  

4.2 Critical grain size 

Grain boundary sliding will become the dominant creep mechanism, when 

the stress dependent sub-grain size 𝑑sg that forms during the primary stage of 

creep becomes larger than the grain size 𝑑g [13, p. 225] and the necessary 
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dislocation interactions cannot take place anymore in the sub-grain 

boundaries. 

𝑑sg ~ 
𝐺𝑏

𝜎
 (4) 

𝐺: shear modulus 

𝑏: Burgers vector 

Hence, a transition stress 𝜎trans  can be defined for 𝑑sg = 𝑑g  at which the 

deformation mode changes from dislocation creep (high stresses) to grain 

boundary sliding dominated creep (low stresses). To explore the former 

regime, constant strain rate tests have been performed where the maximum 

true stress corresponds to the creep stress that would have to be applied to 

achieve this strain rate as 𝜀𝑚̇  in a constant stress experiment. However, at 

those strain rates, a constant strain rate compression test is better to control. In 

Figure 10 the 1000 °C creep data is accompanied by the results of those tests. 

While the grain size dependence does not completely disappear for high 

stresses where dislocation creep appears to be rate controlling (𝑛 = 5), it is 

much less pronounced than in the GBS regime. Even though constant strain 

rate tests were performed only on AC and HT1500-100 material, transition 

stresses can be estimated as 230, 190, and 145 MPa for HT1300-100, HT1500-

20, and HT1500-100 heat treatment conditions, respectively. If plotted over 

the inverse grain size, the linear relationship seen in Figure 11 is expected. For 

the above-mentioned application stress of 150 MPa some coarsening would be 

necessary to lie well within the dislocation creep regime. A further increase in 

temperature, e.g. to the postulated 1200 °C and above would require even 

more pronounced coarsening. Given that a heat treatment of 1500 °C for 100 h 

barely doubled the grain size and that coarsening is proportional to the 

square root of time, this would likely be not feasible.   



 12 

5 Conclusions 

A multi-component Nb-Si composite (Nb-20Si-23Ti-6Al-3Cr-4Hf) has been 

produced by powder metallurgical means, i.e. powder injection molding or 

hot isostatic pressing of pre-alloyed gas-atomized powders. The processing 

led to a fine-grained microstructure that could be coarsened by heat 

treatments as high as 1500 °C to a grain/phase size of ≈10 µm.  

In general, creep performance was not sufficient to be a viable alternative for 

current turbine solutions. The main reason being that the creep behavior is 

characterized by grain boundary sliding over the whole range of stresses and 

temperatures applied. Based on the activation energy of 400 kJ·mol-1 and the 

observation of dislocations inside the solid solution grains after high 

temperature deformation, deformation accommodation in grain boundary 

triple junctions by dislocations is likely to be dominant (compared to 

accommodation by diffusional creep). Only for very high strain rates (≥ 10-3 s-

1) a transition to a dislocation-controlled creep deformation could be observed 

( 𝑛 = 5 ). By determining a transition stress for different grain sizes, a 

minimum grain size could be deduced, where dislocation creep would be 

active at 1000 °C and in a stress regime which is closer to application ≈ 

100 MPa. This critical grain size should exceed 20 µm, which is, however, not 

achievable economically by heat treatment coarsening for the present 

material. 
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Figure 1: XRD pattern for HIP AC and heat-treated conditions (left) and arc-

melted monolithic intermetallics α-Nb5Si3 and γ-Nb5Si3 (right). 

Figure 2: Backscatter electron micrographs (SEM) of AC and heat-treated 

conditions of HIP (top) and PIM (bottom) samples. 

Table 1: Phase and grain sizes of undeformed HIP and PIM samples for 

different heat treatment conditions on a cross-section determined by EBSD. 

Figure 3: Typical creep curve for the investigated material (left), TEM 

micrographs (scanning) showing phase boundary cracking after 15 % of 

plastic deformation (right). 

Figure 4: Plot of minimum strain rate over applied true stress at testing 

temperature of 1000 °C for material produced by HIP or PIM from gas-

atomized powders in the AC and heat-treated conditions; the dashed line 

indicates the creep goal for 1200 °C and stresses of 150 MPa. 

Figure 5: Plot of minimum strain rate over applied true stress at testing 

temperature of 1100 °C for material produced by HIP or PIM from gas-

atomized powders in the AC and heat-treated conditions, respectively. 

Figure 6: Temperature dependence of strain rate for select sample conditions 

to determine activation energy for creep. 

Figure 7: Double logarithmic plot of creep rate over grain size for PIM ; grain 

sizes of 4.7, 6.0, and 8.9 µm correspond to the heat treatments HT1300-100, 

HT1500-20, and HT1500-100, respectively. 

Table 2: Phase sizes of deformed and undeformed PIM HT1300-100 on a 

cross-section determined by the linear intersect method. 

Table 3: Inverse pole figures for the three main phases of undeformed and 

deformed PIM HT1300-100; colors indicate multiples of the uniform 

distribution (MUD) parallel to the compression direction. 

Table 4: Minimum creep rates obtained for monolithic silicides α-Nb5Si3 and 

γ-Nb5Si3 at 200 MPa in s-1. 
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Figure 8: EBSD phase map of PIM HT1300-100 before (left) and after (right) 

deformation to 𝜀𝑡 = 1, Nbss in red, α-Nb5Si3 in blue, γ-Nb5Si3 in green; low 

angle grain boundaries (2 – 15°) in grey, high angle grain boundaries (> 15°) in 

black; image width 80 µm, each 

Figure 9: TEM micrographs (dark field) of solid solution grains showing 

dislocations after 15 % of deformation. 

Figure 10: Creep data from Figure 4 with constant strain rate results (dotted 

symbols) for a testing temperature of 1000 °C. 

Figure 11: Inverse grain size over transition stress for grain boundary sliding. 
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Figure 1: XRD pattern for HIP AC and heat-treated conditions (left) and arc-

melted monolithic intermetallics α-Nb5Si3 and γ-Nb5Si3 (right). 

Black and white in print 
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Figure 2: Evolution of microstructure from as-compacted (AC) to different 

heat-treated conditions for HIP (top) and PIM (bottom) samples (backscatter 

electron contrast (SEM). 

Black and white in print 
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Table 1: Phase and grain sizes of undeformed HIP and PIM samples for 

different heat treatment conditions on a cross-section determined by EBSD. 

 

HIP PIM 

HT1300-

100 

HT1500-

100  

HT1300-

100 
HT1500-20 

HT1500-

100 

mean grain 

size 𝒅𝒈 / µm 
3.6 ± 1.4 8.8 ± 3.9 4.7 ± 1.7 6.2 ± 2.1 8.9 ± 3.0 
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Figure 3: Typical creep curve for the investigated material (left), TEM 

micrographs (scanning) showing phase boundary cracking after 15 % of 

plastic deformation (right). 

Black and white in print 
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Figure 4: Plot of minimum strain rate over applied true stress at testing 

temperature of 1000 °C for material produced by HIP or PIM from gas-

atomized powders in the AC and heat-treated conditions; the dashed line 

indicates the creep goal for 1200 °C and stresses of 150 MPa. 

Black and white in print 
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Figure 5: Plot of minimum strain rate over applied true stress at testing 

temperature of 1100 °C for material produced by HIP or PIM from gas-

atomized powders in the AC and heat-treated conditions, respectively. 

Black and white in print 

  



 27 

 

Figure 6: Temperature dependence of strain rate for select sample conditions 

to determine activation energy for creep. 

Black and white in print 
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Figure 7: Double logarithmic plot of creep rate over grain size for PIM ; grain 

sizes of 4.7, 6.0, and 8.9 µm correspond to the heat treatments HT1300-100, 

HT1500-20, and HT1500-100, respectively. 

Black and white in print 

  



 29 

Table 2: Phase sizes of deformed and undeformed PIM HT1300-100 on a 

cross-section determined by the linear intersect method. 

phase size / µm 𝜺𝐭 = 𝟎 𝜺𝐭 = 𝟏 

∥ to loading axis 4.01 ± 0.13 3.59 ± 0.16 

⊥ to loading axis 3.94 ± 0.05 4.39 ± 0.33 

aspect ratio S 1.00 ± 0.03 1.23 ± 0.15 
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Figure 8: EBSD phase map of PIM HT1300-100 before (left) and after (right) 

deformation to εt = 1, compression direction parallel to vertical edge. Nbss in 

red, α-Nb5Si3 in blue, γ-Nb5Si3 in green; low angle grain boundaries (2 – 15°) 

in grey, high angle grain boundaries (> 15°) in black; image width 80 µm, 

each. For colors please refer to the online version. 

Black and white in print 
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Table 3: Inverse pole figures for the three main phases of undeformed and 

deformed PIM HT1300-100; colors indicate multiples of the uniform 

distribution (MUD) parallel to the compression direction. 

 𝜺𝐭 = 𝟎 𝜺𝐭 = 𝟏 MUD 

Nbss 

  

 

α-Nb5Si3 

  

γ-Nb5Si3 
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Table 4: Minimum creep rates 𝜀ṁ obtained for monolithic silicides α-Nb5Si3 

and γ-Nb5Si3 at 200 MPa in s-1. 

temperature / °C α-Nb5Si3 γ-Nb5Si3 

1100 < 1·10-9 < 1·10-9 

1200 — 2.3·10-9 

1300 — 1.4·10-8 
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Figure 9: TEM micrograph (dark field) of solid solution grain showing 

dislocations after 15 % of deformation. 

Black and white in print 
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Figure 10: Creep data from Figure 4 with constant strain rate results (dotted 

symbols) for a testing temperature of 1000 °C. 

Black and white in print 
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Figure 11: Inverse grain size over transition stress for grain boundary sliding. 

Black and white in print 

 


