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ABSTRACT

In this paper an algorithm is presented how the current
slopes of the freewheeling switching states of an VSI-
driven 3-phase isotropic synchronous machine can be
obtained by only evaluating the measured current slopes
during the two applied active switching states. This
enables the identification of the freewheeling current
slopes in operating conditions where the freewheeling
switching states are too short for a direct measurement.
Notably, the use of the "Direct Adaptive Current Control"
in the overmodulation range is made possible with the
proposed technique.

I. INTRODUCTION

In recent years many advanced current control strategies
have been investigated and published. Besides excellent
control quality and high dynamics, the goals are an ideal
setting of the control parameters, increasing robustness,
to be able to replace the mechanical speed and torque
sensors or simply to reduce the time and effort during
initial implementation of a new drive system setup [1].
Especially model predictive control (MPC) [2] offers
great possibilities since even complex physical side-
effects that are often neglected can be controlled. This
is done by online calculation of a detailed model, that
includes for example saturation effects [3] or even cross-
coupling effects [4] of permanent magnet synchronous
machines. The drawbacks of many predictive control
schemes on the other hand are versatile and often
combined. One of them is the dependency on control
path parameters that may vary during operation, leading
to a suboptimal and sometimes fragile control setup.
Another is the use of complex mathematical models,
which increases the required computing time and can
collide with the hard real time demands of a high-
dynamic drive control system.

In contrary to model predictive control, "Direct Adap-
tive Current Control" (DACC) is a one-step predictive
current control scheme that predicts the behavior of
the controlled machine currents without a model, only
by evaluating the current slopes. It was first presented

in [5] for the control of a DC/DC-converter and for
single phase applications [6]. Later it was adapted
for the current control of magnetic isotropic 3-phase
synchronous machines (with Ld = Lq) [7], magnetic
anisotropic synchronous machines (Ld 6= Lq) [8] and for
3-phase induction motors [9] as well. It shows excellent
control quality and high dynamics. At the same time it
does not need any control path parameters, no complex
model, no test pulses, no offline calculations or cost
functions and the computational effort is comparatively
little.
It is based on the detection of the current slopes during
each switching state of the utilized inverter within one
period. To enable the measurement of the current slopes
during each switching state, a certain minimum on-time
of the switching states is necessary. In normal SPVM
operating mode this is usually no problem, since every
relevant switching state is applied more or less regularly.
But in overmodulation mode, the zero switching state
is never applied [10] and the current slopes during
freewheeling condition can not be measured. However,
the knowledge of them is essential for the DACC-
control algorithm. For this reason a defined minimum
on-time for the zero switching state of about 10% of the
duty cycle was suggested and implemented in previous
publications. This indeed solves the problem but leads
to a significantly reduced modulation index.
In this paper a new algorithm is presented, how the
current slopes of the freewheeling switching states can
be obtained only by evaluating the current slopes of the
active switching states. The zero switching states are not
necessary at all, which enables an implementation of the
DACC without a minimum on-time of the zero switching
state. Hence the use of it in the overmodulation range is
made possible.
After a brief introduction to the DACC control scheme
in section II, the new algorithm to identify the current
slopes of the freewheeling switching state is developed
and presented in section III. In section IV simulation
results are presented.
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Figure 1. Basic working principle of the DACC, illustrated with a
one-phase RL-load

II. WORKING PRINCIPLE OF THE DIRECT ADAPTIVE

CURRENT CONTROL

A. DACC with a one-phase RL-load

The basic working principle of the DACC control
scheme is best explained with a one-phase RL-load as
depicted in Figure 1. By operating the switch with the
duty cycle a = TON/TP, the voltage UDC is applied to
the RL-load. Given that the switching frequency is high
enough, the current will rise and fall linearly in straight
line segments. The current slopes for each switching
state of period k, which is (di/dt)ON,k and (di/dt)OFF,k
can be assumed to be the same in period k+1 if the
applied voltage, the inductance and the resistance are
approximately constant for two consecutive periods. This
usually is given due to the relatively high switching
frequency.
Once the current slopes of period k are known for every
switching state, the necessary duty cycle for a given
current setpoint iE,k+1 that should be reached at the end
of the next period k+1 can be calculated easily with a
linear equation. The knowledge of the absolute voltage,
the inductance and the resistance is not needed.

B. DACC in three-phase applications

For three phase applications the very same principle can
be applied as shown in [6]. Again, the basis for the
DACC [8] and the preceding control schemes [6], [7],
[11] is the fast detection of the stator current slopes
during each switching state Sn with n ∈ {1..8} of the
utilized voltage source inverter (VSI). This can be done
in many different ways, such as sensing the current
slopes directly with analog differentiator circuits [12],
fast oversampling of the current and implementing a
least-squares-estimator algorithm to filter the noise [6],
[8], [9] or newer undersampling methods [13].

However, the current slopes d
dt ia,n,k and d

dt if,k of period k
are used to define the so called "current gradient vectors"
∆ia,n,k and ∆if,k [6]:

∆if,k =
d
dt

if,k ·Tp (1)

∆ia,n,k =
(

d
dt

ia,n,k−
d
dt

if,k

)
·Tp (2)

The index a stands for an active switching state, where
the machine is connected to the DC link voltage. The
index f indicates the freewheeling switching states re-
spectively. The index n denotes which one of the six
possible switching states S1 to S6 is applied. The index
k is the period-counter.
The current gradient vectors ∆ia,n,k describe the current
variation that would occur, if only the voltage corre-
sponding to the active switching state with the index
n would be applied to the machine for the whole period
(Tp) with the index k. Similarly ∆if,k depicts the current
variation that would occur, if only a freewheeling switch-
ing state would be applied to the machine for the whole
period k. In three phase systems this can be represented
as vectors in the stator-oriented complex αβ-plane [7]
(see Figure 2(a)).
This information about the current variation depending
on the switching states can be used to calculate the
necessary duty cycles for the next period to reach a
desired setpoint value directly. The green vector diagram
in Figure 2(a) depicts this essential algorithm of the
DACC:
The last value of the stator current at the end of the
actual period k is represented by the red current space
vector ie,k. The inner voltage of the machine is effective
during the whole period in any switching state, so its
influence ∆if,k to the current variation can be added to
ie,k directly. The resulting vector if,k+1 now represents the
origin of the hexagon spanned by the current gradient
vectors for the active switching states ia,n,k. Since the
control algorithm in the FPGA is started shortly before
the end of the current period k, the necessary value
ie,k for this equation can not be measured, but can be
calculated by extrapolation of the just measured current
slopes and the knowledge of the applied duty cycles in
period k. With if,k+1 as starting point, the necessary duty
cycles to reach a given current setpoint value ie,k+1 at
the end of the next period k+1 can be obtained by the
projection of the vector ia,k+1 to the adjacent switching
state vectors Sn (see the green vector diagram in Figure
2(a)).

ia,k+1 = ie,k+1− if,k+1 = ie,k+1− ie,k−∆if,k (3)
!
= ia,3,k+1 + ia,4,k+1 (4)

This is done by using the same geometrical computation
formulas as with the well known space vector modula-
tion. It is not necessary to know the absolute voltage that
is applied to the machine or its inductance and resistance.
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(a) Current gradient vectors ∆ia,n,k (black vectors) and ∆if,k
(blue vectors), switching state vectors Sn (blue), area
of possible current variation in one pulse period k (gray
hexagon) and the vector diagram of the stator current
variation during pulse period k+1 (green)
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(b) Proposed algorithm to obtain ∆if,k (blue) by rotating
the measured current slopes d
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lelogram)

Figure 2. Working principle of the Direct Adaptive Current Control 2(a) and the proposed algorithm to obtain ∆if,k by evaluating the
measured current slopes of the active switching states 2(b)

The only assumption that has to be valid is, that the
current gradient vectors are approximately constant for
two consecutive periods, so that ∆ia,n,k ≈ ∆ia,n,k+1 and
∆if,k ≈ ∆if,k+1 is given.

III. NEW ALGORITHM TO IDENTIFY THE CURRENT

SLOPES OF THE FREEWHEELING SWITCHING STATES

IN THE OVERMODULATION RANGE

A. Derivation of the proposed algorithm

As can be seen in figure 2(a), the current gradient
vectors ∆ia,n,k for the active switching states are all of
the same length and are located on their corresponding
switching state axis Sn. This is valid for magnetic
isotropic synchronous machines (with Ld = Lq) as well
as induction motors [7], [9]. Hence, the two adjacent
current gradient vectors of one sector just differ by 60◦
in their angle (see the black vectors in figure 2(a)). To
describe this independent from the absolute switching
state, the relative indexes L for the left and R for the
right active switching state of one sector of the switching
state hexagon are introduced.

∆ia,L,k = ∆ia,R,k · e j π

3 (5)

In one period only the two adjacent (left and right)
active switching states of the actual sector are used.
Their corresponding current slopes d

dt ia,L,k and d
dt ia,R,k

are measured and used for the calculation of the left
and right current gradient vectors (see equation (2)):

∆ia,L,k =
(

d
dt

ia,L,k−
d
dt

if,k

)
·Tp

=
d
dt

ia,L,k ·Tp−∆if,k (6)

∆ia,R,k =
(

d
dt

ia,R,k−
d
dt

if,k

)
·Tp

=
d
dt

ia,R,k ·Tp−∆if,k (7)

Together with the relation expressed by equation 5, this
is a set of three linear equations with the three unknown
variables ∆ia,L,k, ∆ia,R,k and ∆if,k which can be solved:
Rearranging equation (6) for ∆if,k, then substitution of
∆ia,L,k with the relation of equation (5) and inserting the
result in equation (7) leads to the following calculation
rule:

∆if,k =
(

d
dt

ia,L,k · e+ j π

3 +
d
dt

ia,R,k · e− j π

3

)
·Tp (8)

The geometrical interpretation of this algorithm is shown
in Figure 2(b). The orange vectors are the measured
current slopes of the recent period. The left one is rotated
by +60◦ and the right one by −60◦. This is drawn as the
purple vectors. The vector sum of those purple vectors
is illustrated with the purple dotted lines and results in
the current gradient vector of the freewheeling switching
state ∆if,k.
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B. Limitations of the proposed algorithm

The necessary vector rotation by the two constant an-
gles of ±60◦ as well as the vector sum can easily be
implemented in a control hardware, such as a DSP or
FPGA, since the computational effort is very little. The
one major necessity for this algorithm though is, that
the measurement values of the two current slopes of
the adjacent active switching states are valid. This is
given, if the on-time of the two active switching states
is greater than a certain minimum, and depends on the
utilized power semiconductor switching devices, gate-
drivers, time requirements, measurement technique and
noise. The resulting areas in the space vector hexagon
in which the algorithm will work are depicted in figure
3 as the green areas. In the red areas in figure 3, one of
the two adjacent active switching states is too short to
obtain valid measurement results of the current slopes.
Here, the proposed algorithm of equation (8) will not
deliver valid results.

To overcome this restriction, the inertial nature of ∆if
comes in handy. Since its angular frequency depends on
the mechanical speed of the controlled motor, it can be
assumed that it will not change significantly during the
time in which the current space vector rotates through
the red areas ( d

dt arg(∆if) ≈ const.). The same is also a
valid assumption for the length of ∆if ( d

dt |∆if| ≈ const.).
With this in mind, ∆if can be determined in the red areas,
by just rotating the last valid value of ∆if each period
by the same angle differential than the one that occured
in the green areas. This is a linear extrapolation of the
absolute value and the angle of ∆if. As soon as the next
operation point in a green area is reached, the value of
∆if as well as the angle differential can be updated on a
measured basis.

If the space vector modulation is not in overmodulation
mode, freewheeling switching states applied and are
always longer in the corners of the hexagon than on
the sides of it. This makes the discussed restriction less
critical, since ∆if can be measured directly.

IV. SIMULATION RESULTS

The presented algorithm has been implemented in a
Matlab/Simulink-simulation to develop and proof the
theory. An isotropic three-phase permanent magnet syn-
chronous machine was simulated together with an VSI
with a PWM switching frequency of 8kHz and a rota-
tional speed of 1000rpm. The DC-link-voltage was set
to 50V to test the algorithm at moderate duty cycles as
well for the freewheeling as also for the active switching
states. The measurement of the current slopes was im-
plemented as fast oversampling with 6MHz and filtering
with a least-squares-estimator. This was done in a very
detailed manner even to the point of simulation of the
planned FPGA with its clock of 120MHz. This was done,
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Figure 3. Limitations of the proposed algorithm
Green areas: The two adjacent active switching states are both long
enough, so that the proposed algorithm delivers good results.
Red areas: not suited for the proposed algorithm without extrapolation
(see section III-B)

since the now available simulink-model of the slope-
detection shall serve as basis for automated VHDL-
Code-generation for different target hardware setups in
the near future.

The results of this simulation are shown in Figure 4 and
in figure 5. The vector diagram in Figure 4 is directly
comparable to figure 2(b). However, in figure 4 several
periods of the simulation are drawn, whereas in figure
2(b) just the dependencies during one period are shown.
The blue vectors, that are arranged around the origin are
the ideal values of ∆if and are hardly to see, because
the calculated ∆if,calc are overlaying very close, which
approves that the proposed algorithm works. The red
and the green vectors are the measured current slopes
of the right and the left active switching state ∆ia,R and
∆ia,L. The orange and gray vectors are the rotated current
gradient vectors ∆ia,R · e− j60◦ and ∆ia,L · e+ j60◦ . Also a
change of the active sector from sector 5 to sector 6 is
visible by the marked invalid vectors. During this phase
∆if,calc,extrapolated is extrapolated as discussed in section
III-B.

In figure 5 the timeline of a complete electrical period
is shown. In the top chart, the three motor currents
are drawn. The second graph shows the current slopes
of the active switching states. It is clearly visible, that
they each have three times during this period in which
they are zero. This is just the time, when a change
of sector takes place, so their on-time is too short
to get valid measurement results. In those time slots,
the directly calculated ∆if,calc without any extrapolation,
can not deliver valid results. This is obviously visible,
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Figure 4. Simulation results of the proposed algorithm as vector diagram (see also figure 2(b))

when looking at the green signals in the two bottom
charts: In those, the ideal, the directly calculated and the
extrapolated value of ∆if are compared. The false results
of the directly calculated ∆if,calc during the time slots in
the red areas is obvious.
However, the ideal (blue signal) and the extrapolated
(purple and dashed signal) value are almost identical and
proof the theory.

V. CONCLUSION

This paper describes a new algorithm to identify the
current slopes and the derived current gradient vector
of the freewheeling switching states of a VSI-driven 3-
phase synchronous machine. This is done by evaluation
of the measured current slopes of the applied active
switching states.

The proposed algorithm advances the art by enabling the
use of the DACC-control scheme without the restriction
of a minimum on-time of the zero switching state, which
is up to now the state-of-the-art workaround in DACC
implementations. As result, a significantly higher mod-
ulation index is possible, which means higher efficiency
and reduced cost for the utilized inverter.
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