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Abstract: Objective: This study aimed to compare different methods to determine energy expenditure (EE) on incline 

walking. Approach: The methods tested were a conventional triaxial accelerometer (GT3X), a versatile system (SenseWear), 

both utilizing single regression models, and a device equipped with a triaxial accelerometer and an air pressure sensor (move 

II). Twenty-five healthy participants wore the activity monitors and a portable indirect calorimeter (IC) as reference while 

walking up- and downhill as well as up- and downstairs. The accuracy of the three devices for estimating EE was assessed 

based on Pearson correlation, ICC, and Bland–Altman analysis. Main results: For GT3X and SenseWear the ICCs showed a 

weak correlation (between 0.42 and 0.08) and for move II a strong correlation (between 0.97 and 0.84) between the prediction 

of energy cost and the output from IC, respectively. Overall, the differences absolute to the IC values were 11 to 35 (12 to 30) 

times higher for the GT3X (SenseWear) than for the move II devices. Significance: The study showed that a device equipped 

with an accelerometer and an air pressure sensor had higher accuracy in predicting EE during incline walking than a 

conventional accelerometer or a versatile system. 
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1. Introduction 

Current levels of free-living physical activity, usually 

expressed as the amount of energy expended (EE) can be 

measured using a variety of methods. Those range from 

highly complex and expensive methods, such as the direct 

measurement of heat produced or the amount of oxygen 

inhaled and the carbon dioxide exhaled, to less unobtrusive 

methods with lower precision such as asking people to recall 

their past activities and fill in a questionnaire or a diary [1-3]. 

Accelerometry is the most commonly used objective method 

and has gained increasing importance in medical, sports and 

psychological science research in recent years [4-5]. This 

method enables estimation of different physical activity 

parameters from the type, frequency, duration and intensity 

of the activity. 

Different validation studies using triaxial accelerometer 

(indirect calorimetry (IC) as reference method) have proven 

its validity to assess EE during walking [4-6], running [5], or 

other everyday activities [7-9]. The use of the 

aforementioned devices is restricted by the fact that they 

cannot assess the increase in energy expenditure during 

walking upstairs or uphill as the acceleration pattern remains 

unchanged under these conditions despite increased effort is 

required [4, 6, 10]. Different studies have shown the 

significant and partly heavy underestimation (30-50%) of EE 

of walking upstairs or uphill [5, 7, 11] as well as 

overestimation of walking downhill (up to 50%) [6, 12]. 

According to Hey et al., this non-linear coherence between 

acceleration data and energy expenditure leads to inadequate 

results [13]. 

A solution to this problem is the additional use of 
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barometric sensors, which can determine the atmospheric 

pressure. In combination with an accelerometer, different 

movements can be classified more precisely and the accuracy 

of the EE calculation can be improved [14]. Wang et al. 

found an improvement (70% to 99%) of the activity detection 

by integrating a barometer into the accelerometer. They 

analyzed walking (9 min), walking downstairs and walking 

upstairs (for 1.5 min) in 13 young adults [7]. Furthermore, an 

obvious improvement in the accuracy of the EE calculation 

was also found by other researchers [15, 16]. 

The study of Anastasopoulou et al. using a conventional 

accelerometer and a device equipped with a triaxial 

accelerometer and a barometer confirmed these findings. 

Herein, walking up-/downhill was realized by use of a flat 

bridge (up to 5%), but EEs were not calculated separately 

[17]. The weakness of the above-introduced studies is that 

they employed relatively slight inclines and, most important, 

the undifferentiated view of uphill and downhill movements 

using a triaxial accelerometer and a barometer. For a more 

accurate calculation, the separate consideration of uphill, 

downhill, upstairs, and downstairs walking is absolutely 

necessary to validate different EE estimation algorithms 

during incline walking and to generate revised and more 

precise algorithms. 

Therefore, the purpose of this study was to compare 

different methods to determine the EE on inclines using the 

IC as reference method. The methods tested were a 

conventional accelerometer, a device equipped with a triaxial 

accelerometer and a barometer, and a versatile monitor which 

uses a combination of skin temperature, galvanic skin 

response, heat flux, and a biaxial accelerometer. 

2. Methods 

Twenty-five healthy participants volunteered to participate 

in the study. The study was approved from full ethics review 

by the institutional review board and was conducted in 

accordance with the Declaration of Helsinki [18]. All 

participants gave their written informed consent before 

participation. In order to have a sample that corresponds to 

the general adult population, participants with different ages, 

body characteristics, and physical condition of both sexes 

were chosen for the study. Exclusion criteria were chronic 

diseases, body impairments, and medication intake that could 

have a confounding effect to the implementation of the study. 

Descriptive data of the participants can be found in Table 1. 

Table 1. Participant characteristics. 

 

Men (N = 14) Women (N = 11) All (N = 25) 

Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Age [years] 29.9 6.8 23.0 50.0 31.3 9.1 22.0 54.0 30.5 7.9 22.0 54.0 

Height [cm] 177.6 6.6 169.0 190.0 168.1 5.3 162.0 178.0 173.4 7.7 162.0 190.0 

Mass [kg] 75.2 7.7 60.0 88.0 61.9 7.0 53.0 76.0 69.4 9.9 53.0 88.0 

BMI [kg/m2] 23.8 2.2 19.4 27.4 21.9 1.6 19.7 24.9 23.0 2.2 19.4 27.4 

 

To compare the different activity monitors, the study 

design required the participants to wear all devices 

simultaneously, which were the move II (movisens GmbH, 

Karlsruhe, Germany), the GT3X (ActiGraph Manufacturing 

Technology Inc., Pensacola, FL, USA), and the SenseWear 

(BodyMedia, Inc., Pittsburgh, PA, USA). The move II 

activity sensor consists of a triaxial acceleration sensor 

(adxl345, Analog Devices; range: ±8 g; sampling rate: 64 Hz; 

resolution: 12 bit) and an air pressure sensor (BMP085, 

Bosch GmbH; resolution: 0.03 hPa; sampling rate: 8 Hz). 

The GT3X activity sensor consists of a triaxial acceleration 

sensor (adxl335, Analog Devices, Boston, USA; range: ±3 g; 

sampling rate: 30 Hz; resolution: 12 bit). It is the most 

verified and widely used activity monitor and was therefore 

used as comparison for a conventional accelerometer [19]. 

The SenseWear armband device uses a combination of 

skin temperature, galvanic skin response, heat flux, and a 

biaxial accelerometer to estimate EE, physical activity 

duration and levels, and other parameters. 

The activity sensors were attached to the participants’ 

bodies according to the manufacturer’s recommendations; 

that is right hip for move II and GT3X, and left upper arm on 

the top of the biceps for SenseWear, respectively. 

Additionally, a portable IC, MetaMax 3B (Cortex Biophysik, 

Leipzig, Germany), was worn as reference measure of the 

EE, and heart rate was monitored using a Polar Activity 

Watch (Polar Electro Oy, Kempele, Finland). The portable IC 

consists of a face mask, a measurement and a battery module 

that were attached to the chest of the test participant using a 

harness. The device (breath-by-breath analysis) measures the 

oxygen consumption and carbon dioxide production to 

calculate the EE in one-second intervals. The validity and 

reliability of the MetaMax 3B is reported: both percentage 

errors and percentage technical error of measurements 

amount <2% [20]. Prior to using, the system was turned on 

for at least 30 min and was then calibrated prior to every test 

according to the manufacturer’s recommendations. 

Thereafter, all devices were initialized and synchronized 

using the respective software. 

The data collection took place on a hill with both a 

walking path (approximately 0.75 km long and with 14% 

incline on average; incline varies from 5 to 20%) and stairs 

(530 steps) that directly lead to the highest point of the hill, 

which is 103 m above the minimum point of the hill. 

Participants were asked to ascend/descend the stairs one step 

at a time, whereat no handrail was available. Activities were 

performed by all participants for both uphill/downhill and 

upstairs/downstairs walking at self-selected pace. 

To assess the exact EE for each activity and to make sure 

that the participant had recovered from the physical effort 

needed for the previous activity, each activity was followed 

by a break. Since the body needs different recovery times for 
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different activities and different intensities, the break was 

defined as time until the participant reached its resting heart 

rate or maximum 20% above its resting heart rate. The 

minimum time limit for the break was set to 5 min. 

The measured IC data were transferred to a laptop via 

wireless transmission and were analyzed using the associated 

software MetaSoft (Cortex Biophysik, Leipzig, Germany). 

The IC was used for both to collect the reference data for the 

EE and to set the start- and stop-markers for the different 

activities. 

For the analysis of the move II data, the DataAnalyzer 

software was used. Based on the shared use of accelerometric 

and barometric data, new activity classes can be defined 

(walking uphill, upstairs, downhill or downstairs) and 

therefore separate algorithms were selected to calculate the 

EE. After entering the participant’s physical characteristics 

(age, height, mass and sex) the software can estimate EE. The 

output sampling rate was set to 1 sec [21]. 

For the analysis of the GT3X data, the software ActiLife 

5.0 was used. By using the participant’s mass, the activity 

energy expenditure (AEE) per second can be calculated. For 

the calculation of the AEE the “vector magnitude” algorithm 

was selected. Further information on the estimation of the 

AEE can be found in Sasaki et al [22]. 

For the analysis of the SenseWear data, the software 

SenseWear Professional 6.1 was used. To estimate EE, 

different participant characteristics must be entered in the 

software. Those include body height, mass, date of birth, 

gender, and whether the participant is a smoker or not. The 

output interval was pre-set to one minute. 

Before evaluating and comparing the outputs of the 

different software, some pre-processing was necessary. First, 

the four outputs (output of the software plus reference) were 

synchronized based on the absolute time of the measurement 

and the markers from the IC were used to annotate the 

regions for the different activities. Since both the 

DataAnalyzer and the SenseWear Professional output the 

energy cost in total energy expenditure (TEE), whereas 

ActiLife provide the AEE, the Basal Metabolic Rate (BMR) 

was added to the output from ActiLife. BMR was estimated 

using the WHO formulas [23]. Finally, to compare the actual 

energy cost for each activity, steady state EE (based on IC) 

was identified, and the corresponding EE values were 

averaged and used for subsequent analyses using MS Excel 

(Microsoft Corporation, Redmond, USA). 

All statistical analyses were performed using SPSS version 

19.0 (SPSS Inc., Chicago, IL, USA). To investigate the 

agreement of the different estimation algorithms with respect 

to the criterion measure, a descriptive and a Bland–Altman 

analysis were performed. In the descriptive analysis, the bias 

with respect to criterion measure (both as absolute and as 

percent values) were computed. The Bland–Altman plots for 

each algorithm and each activity were calculated and the 

measurement errors of both devices were plotted against their 

mean. A zero bias represents that no difference exists 

between actual and estimated EE, a negative bias (IC EE - 

predicted EE) indicates an underestimation of EE by the 

estimation algorithm, whereas a positive bias corresponds to 

an overestimation of EE by the estimation algorithm. The 

95% limits of agreement were calculated as mean ± 1.96*SD. 

The smaller the range between these two limits the more 

accurate the algorithm is. Additionally, Pearson and intra-

class correlations for absolute agreement (ICC) were 

calculated. P-values <0.05 were considered to indicate 

statistical significance. All data followed a normal 

distribution. 

3. Results 

 

Figure 1. Mean EE for the 3 devices and the IC during the different activities. 

Figure 1 shows the mean EE for each device and the IC for the different activities. The results for the move II follow the 
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ones of the IC; the results for the other two devices differ with respect to the IC but have similar results when compared to one 

another. 

Table 2. Comparison of EE in kcal/min for the different activities [mean (SD)]. 

Activity Time[sec] 

Averaged velocity [m/sec] 
IC [kcal/min] Device 

measure 

[kcal/min] 
bias [kcal/min] bias [%] r1 ICC2 

Walking upstairs 

458 (66) 

1.16 (0.17) 

11.89 (2.73) 

move II 12.18 (2.70) 0.29 (0.56) 2.7 (4.6) 0.98* 0.97* 

GT3X 5.82 (1.59) -6.07 (1.85) -50.7 (8.2) 0.76* 0.14* 

SenseWear 5.98 (1.12) -5.91 (2.06) -48.5 (9.2) 0.72* 0.11* 

Walking downstairs 

362 (64) 

1.47 (0.29) 

4.97 (1.32) 

move II 5.04 (1.10) 0.07 (0.44) 3.0 (9.5) 0.95* 0.94* 

GT3X 6.87 (1.13) 1.91 (1.16) 44.1 (28.5) 0.58* 0.27* 

SenseWear 7.01 (1.45) 2.05 (0.76) 44.8 (22.5) 0.86* 0.42* 

Walking uphill 

602 (62) 

1.23 (0.12) 

9.63 (1.77) 

move II 9.34 (1.74) -0.29 (0.45) -2.9 (4.6) 0.97* 0.96* 

GT3X 6.44 (1.61) -3.19 (1.47) -32.8 (12.1) 0.63* 0.23* 

SenseWear 6.12 (1.15) -3.51 (1.16) -35.9 (8.6) 0.76* 0.19* 

Walking downhill 

491 (34) 

1.51 (0.11) 

3.98 (0.77) 

move II 3.87 (0.59) -0.12 (0.38) -1.9 (8.3) 0.88* 0.84* 

GT3X 8.18 (1.61) 4.20 (1.24) 107.2 (27.8) 0.66* 0.08* 

SenseWear 6.93 (1.15) 2.94 (0.60) 75.7 (17.2) 0.84* 0.14* 

1: Pearson correlation coefficient between the device (move II, GT3X, SenseWear) and the reference IC. 
2: Intra class correlation coefficient (absolute agreement) for the device and the reference IC. 

*: statistical significant at.05 

Table 2 shows the descriptive statistics for EE as measured from the IC, the move II, the GT3X, and the SenseWear as well 

as the mean and percent differences between the criterion measure and the three monitoring devices for each activity, 

respectively. Furthermore, the Pearson correlation and the agreement between the predicted values and the IC (ICC) are 

presented. 

 

Figure 2. Bland–Altman plots for move II. The solid lines represent the mean bias between actual and calculated EE, and the dashed lines represent the limits 

of agreement (± 1.96 SDs). 
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Figure 3. Bland–Altman plots for GT3X. The solid lines represent the mean bias between actual and calculated EE, and the dashed lines represent the limits of 

agreement (± 1.96 SDs). 
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Figure 4. Bland–Altman plots for SenseWear. The solid lines represent the mean bias between actual and calculated EE, and the dashed lines represent the 

limits of agreement (± 1.96 SDs). 

The Bland–Altman plots for the GT3X, the move II, and 

the SenseWear are shown in Figures 2-4. Overall, the 

differences absolute to the IC values were 11 to 35 and 12 to 

30 times higher for the GT3X and SenseWear than for the 

move II devices, respectively. 

4. Discussion 

The aim of this study was to compare different methods 

for estimating EE on inclines against the IC. Two devices 

(GT3X, SenseWear) use the commonly used single 

regression model for estimating EE, and the other device 

(move II) first detects the type of the activity and then uses 

the respective regression model for estimating EE. 

Furthermore, the move II uses data of acceleration and 

pressure for estimating EE. The latter approach was found to 

be more accurate for estimating EE on inclines, which is in 

agreement with previous studies [7, 16, 17]. 

In general, both the GT3X and the SenseWear 

underestimated EE while walking upstairs and uphill, and 

overestimated EE while walking downstairs and downhill. 

Those findings are in line with previous results [6, 11, 12] 

where solely accelerometry was proven insufficient for 

estimating EE while walking on inclines. Additionally, both 

devices showed similar results for all investigated activities, 

thus, leading to the suggestion that a versatile monitor, which 

uses a combination of skin temperature, galvanic skin 

response, heat flux, and a biaxial accelerometer provides no 

significant improvement in the EE estimation – at least not 

for the tested activities. 

The largest errors (107%) in estimating EE were observed 

during walking downhill with the GT3X (76% with 

SenseWear). With the exception of one participant, the 

estimated EE by GT3X and SenseWear of any participant 

during walking uphill/upstairs (downhill/downstairs) was 

underestimated (overestimated). For GT3X and SenseWear, 

the ICCs showed a weak correlation (0.42 to 0.08) between 

the prediction of energy cost and the output of the indirect 

calorimeter. 

The above-discussed is an existing limitation of the 

acceleration-based activity monitors [6]. They are not able to 

assess the increase in energy cost of walking upstairs or 

uphill because the acceleration pattern remains very similar 

to that for normal walking despite an increased effort is 

required to elevate the body’s center of mass. As a result, 

they tend to underestimate the EE for these activities. In 

contrast, for descending stairs or walking downhill the 

acceleration magnitude is greater although the effort remains 

almost the same. This results in an overestimation of the EE. 

This may be due to the fact that there is no linear relationship 

between the acceleration and the EE across all different types 

of activities, since different types of activities include the use 

of different muscles. Because of the even surface by walking 

downstairs, the increase of the acceleration data was only 

slight and, in turn, also the overestimation of the EE. In 

contrast, the overestimation during walking downhill could 

be substantially higher due to the enormous increase of the 

acceleration data (sloping surface). The increased values 

measured lead to a misinterpretation of the data and, 

therefore, to an incorrect estimation of EE. 

The move II was more accurate in estimating EE for 

walking uphill/upstairs and downhill/downstairs. The ICCs 

showed a strong correlation (between 0.97 and 0.84) between 

the prediction of energy cost and the output of the indirect 

calorimeter. This finding is supported by the results of 

Bland–Altman analysis. The relative bias was very slight and 

lay between -3% and 3%. No clear trend to an over- or 

underestimation of the EE in any of the activities could be 

recognized. By comparing the results with previous studies 

using devices without a barometer, an increased accuracy for 

estimating EE was found [7, 15, 16]. 

Although we recruited participants with different body 

characteristics, the final test sample included only young to 

middle aged participants (22 to 54 years) and, therefore, the 

results cannot be generalized for other population groups 

(e.g. elderly people, children, obese). 
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Moreover, the BMR was calculated using the WHO 

formulas instead of measuring it using the indirect 

calorimeter [23]. The formula shows a high validity as well 

as a good coincidence with IC [24]. Besides, the BMR plays 

only a small role in relation to the EE during the activities 

studied. The error rate should therefore be very low. 

It was not possible to unambiguously clarify whether the 

minimum break of 5 minutes between the different activities 

was sufficient. Different researchers found that the oxygen 

consumption after an intense exercise will return from 

elevated levels of expenditure to normal values within a few 

minutes. Anyway, nobody could indicate the exact number of 

minutes required [25]. Due to the fact that the actual heart 

rate in relation to the resting heart rate was considered, the 

length of the break should be enough to recover [25]. 

Moreover, as we used the same schedule for every participant 

there should be no falsifying influence. A further limitation of 

the current study is that no different inclinations in terms of 

steepness where investigated. However, the inclines vary 

from 5% to 20% and therefore reflect a wide range of 

inclinations occurring during walking activities. 

5. Conclusion 

We conclude that EE predictions from single use of 

accelerometry should be considered with caution when 

investigating inclined walking or walking on uneven terrain. 

Using more comprehensive EE prediction models depending 

on the type of activity being performed and expanding 

accelerometry with air pressure data (barometers) improve 

the EE estimation. The technology of the move II not only 

utilizes activity-based prediction models but also comprises a 

barometer, and hence accounts for the differences in center of 

mass elevation. This approach results in smaller errors in 

estimating EE for walking up- and downstairs (up- and 

downhill) compared to those of the GT3X and the SenseWear 

device. Consequently, for activities involving elevation gain 

or loss, the additional use of barometer data for estimating 

EE seems to be appropriate. 
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