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Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast,
nonunitary transformations, which can involve loss and gain, require a different approach. In this work, we
present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear
transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The
method constructs a transformation that includes the network of interest and accounts for full quantum optical
effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks, it
provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al.
[Experimental Realization of Any Discrete Unitary Operator, Phys. Rev. Lett. 73, 58 (1994)] but applicable to
nonunitary transformations. Applications of the method include the implementation of positive-operator-
valued measures and the design of probabilistic optical quantum information protocols.
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I. INTRODUCTION

Transformations between sets of orthogonal input and
output modes are ubiquitous in optics and quantum
information technology. In particular, linear transforma-
tions between the amplitudes of the input and output modes
are used to perform a variety of tasks, e.g., to operate
single-qubit gates or to model the action of physical
elements such as beam splitters [1]. Mathematically, a
linear transformation can be expressed as a transformation
matrix T relating the mean fields of the m optical input
modes 1 in…m in with those of the n optical output modes
1 out…n out:

0
BB@

hâ1 outi
..
.

hân outi

1
CCA ¼ T

0
BB@

hâ1 ini
..
.

hâm ini

1
CCA: ð1Þ

Among such transformations, unitary optical networks,
for which T is a unitary matrix that also relates the
annihilation operators themselves and not only their expect-
ation values, are routinely used in optical quantum infor-
mation processing. Unitary networks conserve the number
of photons, and their implementation in terms of basic
building blocks, namely, phase shifters acting on individual
modes and beam splitters mixing two modes at a time, is
well understood [2,3]. However, as unitarity imposes
restrictions on the transformation matrix, unitary networks
can be considered as a special case of linear networks.
Relaxing the restrictions unlocks fascinating opportuni-

ties for new transformations, including the options of loss
and gain [4–14]. One noteworthy class of such networks
consists of asymmetric nonunitary beam splitters, which
can allow highly tunable quantum interference [14].
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Among the symmetric beam splitters, an example of a
nonunitary beam splitter that has attracted particular
interest is the 2 × 2 transformation given by the matrix
T ¼ 1

2
ð 1
−1

−1
1
Þ [4,6,8,12,13]. A device with this action can be

thought of as a lossy beam splitter. It exhibits a striking,
apparently nonlinear, behavior when one photon is incident
on each input: Either both photons are lost, or neither of
them is lost.
Even though the initial interest in devices such as this one

was primarily theoretical, the technical capabilities in the
design and fabrication of novel and nanostructured materials
are now making elements with such properties possible
[12,13,15–18]. Nonunitary transformation matrices also
prove useful in modeling the inevitable imperfections of
real optical elements that show a wavelength-dependent
behavior [4]. A further reason for stepping outside the
framework of unitary networks is that transformations
may have an unequal number of input and output modes
of interest, a clear indicator of nonunitarity. Two particularly
simple examples are Y junctions in integrated optics and
absorptive polarizers, which feature two orthogonal input
modes but only one output mode.
For a quantum optical description of such transforma-

tions, the relationship of Eq. (1) does not suffice.
Additionally, a relationship between annihilation and cre-
ation operators is required. It would be tempting to simply
drop the expectation values in Eq. (1), but the modes
associated with nonunitary networks generally would not
fulfill the required bosonic commutation relations. Hence,
from now on, we drop the expectation values and take T to
be a transformation between the annihilation operators of
interest, with the understanding that it is an incomplete
transformation: Ancilla modes need to be introduced in the
mathematical description to faithfully reproduce or predict
the full quantum optical transformation. Although this is
straightforward for the simple examples of Y junctions and
polarizers, a systematic method to deal with larger-scale
problems would be desirable.
In this paper, we investigate whether such a strategy is

possible for all linear transformation matrices, how many
ancilla modes are needed for any given case, and how a full
enlarged quantum optical network can be mathematically
represented and physically realized.
Related problems have previously been studied in a

number of works. In Refs. [9,10], Miller demonstrates
how to construct universal linear transformation machines
in a classical optics picture, where the mean fields are of
interest, so a modulation of field amplitudes is possible
without the need to take into account quantumoptical effects.
The Bloch-Messiah reduction also shows how a decompo-
sition into basic building blocks can be found, and it includes
a rigorous quantum optical description. However, it begins
with the complete transformation matrix respecting bosonic
commutation relations (a linear unitary Bogoliubov trans-
formation) rather than a partial network [19]. Allowing

nonunitary partial networks as an input, He et al. and
Knöll and co-workers presented techniques to find corre-
sponding enlarged transformations, but they do not allow for
transformations that include both loss and gain [5,7,20].
In this article, we put forward a systematic method for

dealing with linear transformation matrices of any size,
allowing for the option of loss and gain. The method
combines a singular value decomposition of the partial
network and the single-mode treatment presented in
Ref. [21] to provide full information about the trans-
formation; therefore, the quantum optical output state
can be calculated for any input state. In addition, as a
generalization of the seminal decomposition in Ref. [2] or
the more recent variant of Ref. [3] to nonunitary networks,
our method shows how to realize transformations in terms
of the basic building blocks of phase shifters, beam
splitters, and parametric amplifiers.
We discuss possible applications of nonunitary net-

works, which include the implementation of positive-
operator-valued measures (POVMs) and probabilistic opti-
cal quantum information protocols. The physical realiza-
tion of small circuits could be achieved with bulk optics,
whereas integrated optics would be naturally suited as a
platform for larger-scale networks. In the appendixes, we
demonstrate the method on several examples, including
the lossy beam splitter with the apparent nonlinear action
described earlier. The lossy beam splitter example illus-
trates how devices made of exotic materials can be replaced
by standard optical circuits.

II. RESULTS

We begin by outlining the basic structure of the method,
illustrated in Fig. 1. Starting with the partial network T, a
singular value decomposition is performed, which yields
three main components: U, D, and W. The singular value
decomposition is particularly useful as each main

(a) (b)

FIG. 1. The concept of mode transformations. (a) The linear
network T specifies a mapping from m input modes to n output
modes and may be characterized by a nonunitary matrix. (b) The
full network Stotal includes the nominal modes of T, as well as
ancilla modes, which account for any losses and gains in T. The
transformation Stotal consists of three main components, of which
only the second involves a coupling between the nominal modes
and ancilla modes.
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component is well suited to be further decomposed into a
sequence of operations in the form of simple building
blocks. Each of these building blocks corresponds to a
physical operation and has a known complete quantum
optical description.
Importantly, since U and W are unitary, they can

physically be implemented with phase shifters and beam
splitters using the techniques of Ref. [2] or [3]. These two
main components only involve the nominal modes
and can be understood as an initial conversion from the
input modes to another basis, the modulation basis, and a
final conversion from the modulation basis to the output
modes. The modulation takes place in D, the second main
component, and includes interactions with ancilla modes.
Specifically, each operation here corresponds to a singular
value, and each singular value that is different from 1
results in the interaction of a nominal mode with a vacuum
ancilla, either through a beam splitter or a parametric
amplifier.
Combining all of the individual operations provides the

quantum optical description of the overall transformation,
which we denote by Stotal.

A. Preliminaries

As a basis for the detailed description of the method in
Sec. II B, it is useful to first establish some terminology and
a single-mode framework following Ref. [21], i.e., the case
with a single nominal input mode and a single nominal
output mode. In the general multimode treatment put
forward in the present article, we make extensive use of
these basic single-mode tools.

1. Quasiunitarity

A 2N × 2N-dimensional matrix S is quasiunitary if

SGS† ¼ G; ð2Þ

where G is defined as the 2N × 2N diagonal matrix with
the first N diagonal elements equal to 1 and the last N
diagonal elements equal to −1 [21,22].

2. Properties of partial and full transformations

The input of the method is the partial network T, a
complex matrix of any size without any conditions on its
elements. We call T a partial network because, in general, T
on its own is not enough to predict the quantum optical
output for an arbitrary input. For instance, the noise due
to vacuum fluctuations in ancilla modes is neglected, and
this noise impacts quantum properties of light such as the
degree of squeezing. One of the aims of the method is to
construct another network, Stotal, which contains T as its
upper-left block and includes the ancilla modes, such that
it can be used as a quantum optical model of the
transformation T (Fig. 2). The matrix Stotal relates the

input and output creation and annihilation operators in
the following way:

0
BBBBBBBBBBBB@

â1 out

..

.

âN out

â†1 out

..

.

â†N out

1
CCCCCCCCCCCCA

¼ Stotal

0
BBBBBBBBBBBB@

â1 in

..

.

âN in

â†1 in

..

.

â†N in

1
CCCCCCCCCCCCA
: ð3Þ

It is 2N × 2N dimensional, where, in general, N ≥
max ðm; nÞ because of the possible inclusion of ancilla
modes. A requirement on Stotal is that it must fulfill the
quasiunitarity equation (2) so that its modes are bosonic, i.e.,
the creation and annihilation operators fulfill the standard
bosonic commutation relations ½âi; âj�¼0, ½âi; â†j � ¼ δij.
The reason that creation operators are included in the
description is that active elements associated with gain lead
to a coupling of creation and annihilation operators. In fact,
whether the transformation contains only passive elements or
includes active elements can be recognized based on the off-
diagonal blocks of Stotal whenviewed as a 2 × 2 blockmatrix:
A passive transformation has zeros for these blocks.

3. Single-mode loss

A single lossy channel characterized by T ¼ σ, where
σ ∈ R, 0 ≤ σ < 1, can be implemented using a lossless
beam splitter with an ancillamode â2 initialized in its vacuum
state. The transformation of the modes is then generated
by a beam-splitter Hamiltonian Ĥ ¼ iϕðâ†1â2 − â†2â1Þ, with
cosϕ ¼ σ and sinϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
representing the transmis-

sion and reflection amplitudes of the beam splitter,

FIG. 2. The structure of the matrix Stotal. The matrix elements
represent the coupling between the respective input modes
(columns) and output modes (rows). Viewed as a 2 × 2 block
matrix, nonzero elements in the off-diagonal blocks are respon-
sible for active elements in the implementation. The trans-
formation of interest, T, is contained in the upper-left block.
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respectively. The connection between this Hamiltonian and
the corresponding transformation matrix

S ¼

0
BBBBB@

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
0 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
σ 0 0

0 0 σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p

0 0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
σ

1
CCCCCA;

ð4Þ
such that 0

BBBBB@

â1out
â2out
â†1out
â†2out

1
CCCCCA ¼ S

0
BBBBB@

â1in
â2in
â†1in
â†2in

1
CCCCCA; ð5Þ

is described in Ref. [21], pp. 1215–1216 (see also [23]).

4. Single-mode gain

Similarly, for a single channel with gain given by T ¼ σ,
where σ ∈ R, σ > 1, we introduce an ancilla mode â2,
initially in vacuum. Gain can be realized with a parametric
amplifier with a Hamiltonian Ĥ ¼ iξðâ†1â†2 − â1â2Þ, where
cosh ξ ¼ σ. The corresponding enlarged transformation

S ¼

0
BBB@

σ 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

0 σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
σ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p

0 0 σ

1
CCCA ð6Þ

can be constructed as described in Ref. [21], p. 1217.

5. Single-mode phase shift

Complex transformations involve phase shifts T ¼ eiφ

(φ ∈ R) for which no ancilla mode is required. The
Hamiltonian is Ĥ ¼ −φâ†1â1, and the transformation takes
the simple form of ðâ1 out

â†
1 out

Þ ¼ Sðâ1 in
â†
1 in
Þ, with

S ¼
�
eiφ 0

0 e−iφ

�
: ð7Þ

B. Method

The method consists of the steps illustrated in Fig. 3 and
described below:
(a) Step 1, singular value decomposition of T: A singular

value decomposition provides the main components

T ¼ UDW; ð8Þ
whereU andW are unitary matrices andD is a diagonal
matrix with non-negative real diagonal elements.

(b) Step 1b, if T is not square: The method can be applied to
transformations of arbitrary dimensionality, including
those given by nonsquare matrices. Such transforma-
tions apparently correspond to unequal numbers of input
and output modes, which is an incomplete description in
quantum mechanics as it can neglect necessary sources
of quantum noise. For this reason, nonsquare trans-
formations definitely require either ancilla input modes
or ancilla output modes so that the number of inputs
matches the outputs. In addition, both square and non-
square transformations may require what we refer to as
full ancilla modes, which will be discussed later.
A singular value decomposition of a nonsquaren ×m

matrix provides a square n × n matrix U, a diagonal
n ×m matrix D, and another square m ×m matrix W.
The impact of the missing input or output modes can be
naturally taken into account through augmentation of the
matrices U, D, and W to the max ðm; nÞ × max ðm; nÞ
size, by padding them with the corresponding elements
of the identitymatrix as the last rows andcolumns,where
required. The following steps 2–5 should be applied to
the augmented matrices, which we still callU,D,W for
simplicity.
An example of an application of the method to a

nonsquare matrix is shown in Appendix C 1.
(c) Step 2, subdecomposition of all three matrices: We

further decompose the two unitary matrices U and W
by the established methods of Ref. [2] or [3], and
thereby write the main components as the products
U ¼ Q

iUi and W ¼ Q
kWk, respectively. All of the

matrices Ui and Wk correspond to simple physical
operations of phase shifters and beam splitters. The
diagonal matrix D can be decomposed into a product
of matrices D ¼ Q

jDj, where each Dj is the identity
matrix with element ðj; jÞ replaced by Dj;j. Overall,
we obtain T ¼ Q

ijkUiDjWk.

FIG. 3. Overview of the method. Starting with T, a singular
value decomposition, followed by a padding with identity matrix
elements to make all components the same size, provides the
main componentsU,D, andW. In step 2, a further decomposition
of U and W into simple blocks is found through the technique in
Ref. [2] or [3], and D is written as a product of single-mode
modulations. For each of these, a corresponding enlarged trans-
formation is determined in steps 3 and 4. Finally, the overall
transformation Stotal is obtained as the product of all the
individual transformations.
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(d) Step 3, determining the dimensionality of the enlarged
system and assigning modes: The dimensionality of
the enlarged matrices is 2N × 2N, with N given by
N ≡ nN þ nA, where nN ≡max ðm; nÞ is the number
of nominal modes, i.e., the number of modes explicitly
included in T, and nA is the number of singular values
of T not equal to 1. Modes 1 to nN are associated with
the nominal modes, while modes nN þ 1 to N are
associated with full ancilla modes, by which we
denote those modes that are added throughout the
whole transformation, not just as inputs or outputs to
match the number of input and output modes, as
described in step 1b. Each nominal mode j has its own
corresponding ancilla mode mAj if the jth singular
value of T differs from 1.

(e) Step 4, finding associated quasiunitary matrices: We
construct amatrixSUi for eachUi and, similarly, amatrix
SWk for each Wk. Here, SUi and SWk are defined as

SUi ≡

0
BBB@

Ui 0 0 0

0 InA 0 0

0 0 U�
i 0

0 0 0 InA

1
CCCA ð9Þ

and

SWk ≡

0
BBB@

Wk 0 0 0

0 InA 0 0

0 0 W�
k 0

0 0 0 InA

1
CCCA; ð10Þ

respectively,withUi andWk being thenN × nN matrices
from step 2, InA being the nA × nA identity matrix, and
the 0s being matrices of the appropriate size filled with
zeros. In addition, we construct amatrixSDj for eachDj.
For the special case in which the jth singular value
σj ¼ 1, SDj is the N × N identity matrix and therefore
not needed. Otherwise, if σj ≠ 1, the matrix SDj is the
N × N identity matrix with the elements corresponding
to the intersection of rows and columns j, mAj, jþ N,
mAj þ N replaced by

0
BBBBBBBB@

σj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2j

q
0 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2j

q
σj 0 0

0 0 σj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2j

q

0 0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2j

q
σj

1
CCCCCCCCA
ð11Þ

if σj < 1, and

0
BBBBBBBB@

σj 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2j − 1

q

0 σj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2j − 1

q
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2j − 1

q
σj 0ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2j − 1
q

0 0 σj

1
CCCCCCCCA

ð12Þ

ifσj > 1.This alsoallowsus todealwith transformations
that combine loss in some modes with gain in others,
which previously proposed methods did not accommo-
date. An example can be found in Appendix B 2.

(f) Step 5, multiplication of quasiunitary matrices to
obtain the overall transformation: We obtain the
overall enlarged transformation as

Stotal ¼
Y
ijk

SUiSDjSWk: ð13Þ

A proof that Stotal fulfills the quasiunitarity equation (2)
and contains T as its upper-left block can be found in
Appendix A, and an example decomposition is shown
in Appendix B 1.

(g) Implementation of the decomposition in terms of
simple building blocks: The full decomposition
Stotal ¼

Q
ijkSUiSDjSWk provides a recipe for an im-

plementation in terms of the simple building blocks of
phase shifters, beam splitters, and parametric ampli-
fiers, as each of the matrices in the decomposition
directly corresponds to such a building block. The
factors SUi and SWk correspond to beam splitters and
phase shifters involving the nominal modes, i.e., the
first nN modes. The factors SDj that differ from the
identity correspond to beam splitters and parametric
amplifiers, each involving one of the nominal modes
and one of the full ancilla modes.

III. DISCUSSION

Section II has shown how a full enlarged quantum
optical network can be mathematically represented and
physically realized. Now, we are also in a position to
answer the remaining questions from the Introduction.
Contrary to conclusions of earlier works devoted to setups
with either loss or gain alone, any transformation is
available. The decomposition works for all linear networks
as an input since a singular value decomposition can be
performed for any complex matrix. This means that, in
principle, any transformation can be realized, even if the
practical implementation of arbitrary two-mode squeezing
is technically challenging [24].
The number of required ancilla modes is tied to the

dimensionality of T if it is not square, as well as to its
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singular values. A nonsquare n ×m transformation T leads
to (m − n) output ancilla modes if m > n, or to (n −m)
input ancilla modes if n > m. In addition to these input or
output ancilla modes, full ancilla modes are introduced, and
their number is equal to the number of singular values of T
that are not equal to 1. Each singular value below (above) 1
entails a beam-splitter operation (parametric amplification)
with such an ancilla mode. For the special case in which T
is square and all of its singular values are equal to 1, no
ancilla modes are needed because T is unitary, and then
the method can be reduced to the known unitary decom-
positions (Ref. [2] or [3]). Upper bounds on the number
of elemental building blocks required when using the
scheme depend on the dimensionality of T in the following
way: The maximum number of variable beam splitters
needed to implement the unitary blocks U and W is
nðn − 1Þ=2þmðm − 1Þ=2, while the maximum number
of phase shifters is nðnþ1Þ=2þmðmþ1Þ=2. Additionally,
up to minðm; nÞ elements are required to implementD; these
elements are either beam splitters or parametric amplifiers.
Hence, the number of parametric amplifiers only scales
linearly with the size of the transformation matrix.
A unitary network followed by photon detection in the

different modes can be used to implement a projective
measurement in a Hilbert space with a dimensionality
matching the unitary network. In the context of generalized
measurements, it is possible for a POVM to have a number
of measurement outcomes that is larger than the dimen-
sionality of the system. The Naimark dilation theorem
guarantees that such a POVM can be implemented as a
projective measurement in an enlarged Hilbert space [25].
Our method can be used to find a Naimark extension, which
provides a suitable enlarged unitary transformation for this
projective measurement (see Appendix C 1).
Another possible application of the method lies in the

construction of probabilistic optical quantum information
protocols. Starting with a general transformation matrix, by
formulating the action of the protocol as a mapping from a
given set of input states to a set of desired output states, a
system of possibly nonlinear equations for the elements of
T can be constructed. A solution of the system of equations
defines a network that performs the protocol, and the
method can then be used to find an implementation of that
network (for an example, see Appendix C 2).
Although the decomposition always provides a full

quantum optical transformation with the dependence of
the mean output fields on the mean input fields as specified
by the partial network T, the implementation is not unique.
This is already evident from the simplest nonunitary
“network,” a single channel with loss or gain. As discussed
in Ref. [21], the same mean field could be achieved by
including excess gain and loss that compensate each other’s
effect on the mean field, at the expense of a reduction in the
purity of the state. Given that this leaves the first moment of
the field invariant but changes higher-order moments, it

presents an opportunity to tailor the higher-order moments.
It is an interesting question (beyond the scope of the present
article) whether the multimode control over first moments
of the field provided by the method could be extended to
higher-order moments.

IV. CONCLUSION

In summary, we have presented a way to describe and
implement an arbitrary linear optical transformation,
which can have any size and does not need to be complete
in the sense that its modes fulfill bosonic commutation
relations. This is achieved by finding a transformation in
an enlarged space that includes the network of interest.
The ancilla modes included in the description enable
rigorous quantum optical modeling of the gains and losses
in the network. In addition, a decomposition into the basic
building blocks of beam splitters, phase shifters, and
parametric amplifiers is obtained. This shows a way to
implement the network that could physically be realized
with integrated optics. We have discussed the role that the
singular values of the transformation matrix play with
respect to the number and type of ancilla modes. The
method could prove useful for the implementation of
POVMs, the design of probabilistic optical quantum
information protocols, and, more generally, in any appli-
cation that involves nonunitary networks.
We provide a MATLAB code for numerically imple-

menting the full decomposition on GitHub [34].
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APPENDIX A: PROOF THAT THE PRODUCT
Stotal =

Q
ijkSUiSDjSWk RESULTS IN A

QUASIUNITARY MATRIX WITH T AS ITS
UPPER-LEFT BLOCK

First, it should be noted that the individual S matrices
(SUi, SDj, and SWk) fulfill Eq. (2). The product of two
matrices that fulfill Eq. (2) is another quasiunitary matrix,
which can be seen as follows.
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Let A and B fulfill Eq. (2). Then,

M ¼ AB;

MGM† ¼ ðABÞGðABÞ† ¼ AðBGB†ÞA† ¼ AGA† ¼ G:

Therefore, Stotal is quasiunitary.
The second part of the proof is that the product of the

individual S matrices has T as its upper-left block.
We have T ¼ UDW ¼ Q

ijkUiDjWk, and Stotal ¼Q
ijkSUiSDjSWk. Because of the block structure of the

matrices SUi and SWk,

Y
i

SUi ¼

0
BBBBBB@

Q
i
Ui 0 0 0

0 InA 0 0

0 0
Q
i0
U�

i0 0

0 0 0 InA

1
CCCCCCA
;

and similarly,

Y
k

SWk ¼

0
BBBBBB@

Q
k
Wk 0 0 0

0 InA 0 0

0 0
Q
k0
W�

k0 0

0 0 0 InA

1
CCCCCCA
:

The components SDj corresponding to Dj generally do
not have the same structure. The matrix SDj is the identity
matrix if the jth singular value of T, σj ¼ 1. Otherwise, if
σj ≠ 1, j and mAj are the mode numbers corresponding to
the nominal mode and ancilla mode, respectively, of the jth
singular value. Then, each matrix SDj is the identity matrix
with the elements corresponding to the intersection of rows
and columns j, mAj, jþ N, mAj þ N replaced as given by
expressions (11) and (12).
The fact that Stotal ¼

Q
ijkSUiSDjSWk has T ¼Q

ijkUiDjWk as its upper-left block can be shown by
observing the structure of the matrix as the multiplication is
carried out. Let us consider the multiplication by starting
from the rightmost matrix, sequentially multiplying from
the left by the other matrices as specified, and denoting the
product after x steps as Sx. The rows of Sx that deviate from
those of the identity matrix are of interest at different stages
of the multiplication, i.e., for different x. Let x1 equal the
number of matrices in the decomposition of W. For
Sx1 ¼

Q
kSWk, we have already seen that the upper-left

block of Sx1 is the product of the upper-left blocks of the
components and that the only elements that deviate from

the identity matrix are contained in the blocks
ð1∶nN; 1∶nNÞ and ð1þ N∶nN þ N; 1þ N∶nN þ NÞ [26].
Now, as each SDj is multiplied from the left, there are
at most two new rows of the resulting matrix that
can deviate from the identity: rows mAj and ðmAj þ NÞ
when σj ≠ 1. Let x2 lie between x1 and the number of
matrices in the decomposition of DW. After each step,
the upper-left block of Sx2 is the product of the upper-
left blocks of the components because the elements
ðmAj; 1∶nNÞ and ðmAj þ N; 1∶nNÞ of Sx2−1 are zero.
This is essentially due to the fact that a unique ancilla
mode is assigned to each singular value that is different
from 1. After having multiplied through the individual S
matrices corresponding to DW, for

Q
iSUi we again have

the block structure that guarantees that the upper-left block
of Stotal is T.

APPENDIX B: EXAMPLES

We demonstrate the method using two examples. First,
we discuss how the lossy beam splitter with apparent
nonlinearity can be constructed with standard optical
elements. We then apply the method to an arbitrary 2×2
transformation, which may combine loss and gain in
different modes, to obtain an analytic decomposition.

1. Lossy beam splitter with apparent
nonlinear action

Here, the method is applied to decompose the 2 × 2

transformation T ¼ 1
2
ð 1
−1

−1
1
Þ into simple building blocks.

We begin with a singular value decomposition of
T¼UDW, which gives U¼ð1= ffiffiffi

2
p Þð−1

1
1
1
Þ, D¼ð1

0
0
0
Þ,

and W ¼ ð1= ffiffiffi
2

p Þð−1−1 1
−1Þ. Since T is square, no augmenta-

tion of U, D, or W is required. Further decomposition

provides U ¼ ð−1
0

0
1
Þ
� 1ffiffi

2
p
1ffiffi
2

p
− 1ffiffi

2
p
1ffiffi
2

p

�
, while W is already a beam

splitter, one of the basic building blocks. The matrix D
does not need to be decomposed further because of its simple
form: The diagonal element 0 in D represents a complete
attenuation of amode and constitutes the only singular value
different from 1. One can thus proceed to identify the
number of ancilla modes nA ¼ 1, so that N ¼ 3 and the
dimensionality of the corresponding S matrix is 6 × 6,

0
BBBBBBBBBB@

â1out
â2out
â3out

â†1out
â†2out
â†3out

1
CCCCCCCCCCA

¼ S

0
BBBBBBBBBB@

â1in
â2in
â3in

â†1in
â†2in
â†3in

1
CCCCCCCCCCA
;

with the nominal modes â1 and â2, and the ancilla mode â3.
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We continue to identify the SU, SD, and SW matrices
corresponding to individual operations based on
Eqs. (9)–(11):

Y2
i¼1

SUi ¼

0
BBBBBBBBB@

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCA

×

0
BBBBBBBBBB@

1ffiffi
2

p −1ffiffi
2

p 0 0 0 0

1ffiffi
2

p 1ffiffi
2

p 0 0 0 0

0 0 1 0 0 0

0 0 0 1ffiffi
2

p −1ffiffi
2

p 0

0 0 0 1ffiffi
2

p 1ffiffi
2

p 0

0 0 0 0 0 1

1
CCCCCCCCCCA
;

SW ¼

0
BBBBBBBBBB@

−1ffiffi
2

p 1ffiffi
2

p 0 0 0 0

−1ffiffi
2

p −1ffiffi
2

p 0 0 0 0

0 0 1 0 0 0

0 0 0 −1ffiffi
2

p 1ffiffi
2

p 0

0 0 0 −1ffiffi
2

p −1ffiffi
2

p 0

0 0 0 0 0 1

1
CCCCCCCCCCA
;

SD ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

1
CCCCCCCCCA
:

The total transformation matrix

Stotal ¼
Y
i

SUiSDSW ¼

0
BBBBBBBBBBBB@

1
2

−1
2

1ffiffi
2

p 0 0 0

−1
2

1
2

1ffiffi
2

p 0 0 0

1ffiffi
2

p 1ffiffi
2

p 0 0 0 0

0 0 0 1
2

−1
2

1ffiffi
2

p

0 0 0 −1
2

1
2

1ffiffi
2

p

0 0 0 1ffiffi
2

p 1ffiffi
2

p 0

1
CCCCCCCCCCCCA

indeed contains T as its upper-left block and is consistent
with the scattering matrix given in Ref. [12]. Figure 4(b)
shows the setup after simplifications, such as rewriting the

beam splitter between modes 2 and 3 from SD in terms
of a swap operation, which means an exchange between
the labels of the two modes. The setup reveals that the
apparent nonlinear loss is simply the result of photon
bunching due to two-photon quantum interference at the
first beam splitter; one of the output ports of the beam
splitter is discarded, which leads to either both or neither
of the two photons emerging in the nominal output
modes 1 and 2.

2. General 2 × 2 linear transformation

We now turn to a more general case of an arbitrary 2 × 2

linear transformation matrix T ¼ ðt11t21
t12
t22
Þ, with complex

elements tij ¼ jtijjeiφij , φij ∈ R. Although the method
always provides an easy way to obtain a decomposition
numerically, in this low-dimensional case, an analytical
solution, depicted in Fig. 5, can also be found. We represent
the solution in terms of the following matrices: rotations by
a beam splitter of real coefficients

BSðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�

and single-mode phase shifts

(a) (b)

FIG. 4. Implementation of the lossy beam splitter with apparent
nonlinear loss. (a) One approach would be to implement the
transformation directly by a single device. The special trans-
formation coefficients may be achieved with a novel material,
e.g., a metamaterial. (b) The decomposition reveals a much
simpler implementation consisting of two 50∶50 beam splitters
(along with single-mode phase shifts omitted from the diagram)
and elucidates the simple role quantum interference plays with
respect to the “nonlinear loss."

FIG. 5. Implementation of an arbitrary 2 × 2 transformation.
The two green rectangles represent the unitary components W
and U of the singular value decomposition. The diagonal part D,
marked in yellow, corresponds to single-mode modulations by σj,
which are realized by coupling to ancilla modes.

N. TISCHLER, C. ROCKSTUHL, and K. SŁOWIK PHYS. REV. X 8, 021017 (2018)

021017-8



PS1ðθÞ ¼
�
eiθ 0

0 1

�
; PS2ðθÞ ¼

�
1 0

0 eiθ

�
:

To solve this case analytically, one can transform the T
matrix to a real form Tre through the following sequence of
operations:
(1) Cancel phases in the left column

T → T1 ¼ PS1ð−φ11Þ:PS2ð−φ21Þ:T

¼
� jt11j jt12jeiðφ12−φ11Þ

jt21j jt22jeiðφ22−φ21Þ

�
;

where matrix multiplication is indicated by “.” for
clarity.

(2) Rotate the matrix to make the bottom-left compo-
nent zero

T1 → T2 ¼ BSðϑÞ:T1 ¼
�
t̃11 t̃12
0 t̃22

�
;

where ϑ ¼ arctan ½ðjt21jÞ=ðjt11jÞ� and

t̃11 ¼ jt11j cos ϑþ jt21j sin ϑ;
t̃12 ¼ jt12j cos ϑeiðφ12−φ11Þ þ jt22j sin ϑeiðφ22−φ21Þ;

t̃22 ¼ −jt12j sin ϑeiðφ12−φ11Þ þ jt22j cos ϑeiðφ22−φ21Þ:

Note that t̃11 is real and non-negative, which we
emphasize below by explicitly writing t̃11 ¼ jt̃11j.

(3) Cancel phases in the right column,

T2 → T3 ¼ PS1ð−ξ1Þ:PS2ð−ξ2Þ:T2

¼
� jt̃11je−iξ1 jt̃12j

0 jt̃22j

�
;

with ξj ¼ arg t̃j2.
(4) Cancel the remaining phase in the left column,

T3 → Tre ¼ T3:PS1ðξ1Þ ¼
� jt̃11j jt̃12j

0 jt̃22j

�
:

Finally, the transformed real matrix reads

Tre ¼ PS1ð−ξ1Þ:PS2ð−ξ2Þ:BSðϑÞ
× PS1ð−φ11Þ:PS2ð−φ21Þ:T:PS1ðξ1Þ: ðB1Þ

A singular value decomposition of the resulting real 2 × 2
matrix is especially simple, with the unitary components
given as two beam-splitter rotations. In this particular case,
we make use of the fact that one of the components is 0 and
obtain

Tre ¼ BSðθ1Þ:D:BSðθ2Þ; ðB2Þ

where

θj ¼
ð−1Þj
2

arg ðqj þ 2pjiÞ;
pj ¼ jt̃1;3−jt̃3−j;2j;
qj ¼ jt̃11j2 − jt̃22j2 þ ð−1Þj−1jt̃12j2:

The matrix of singular values determines the required
degree of attenuation or amplification,

D ¼
�
σ1 0

0 σ2

�
;

σj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ ð−1Þj−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2j þ 4p2

j

q
2

vuut
;

s ¼ jt̃11j2 þ jt̃22j2 þ jt̃12j2:

Finally, a combination of Eqs. (B1) and (B2) yields the
decomposition of the original matrix T,

T ¼ PS2ðφ21Þ:PS1ðφ11Þ:BSð−ϑÞ:PS2ðξ2Þ:PS1ðξ1Þ:BSðθ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

×D:BSðθ2Þ:PS1ð−ξ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

:

Note that the matrix U can be further simplified to

U ¼ PS1

0
B@φ11 þ ξ1 þ

αþ β

2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
α1

1
CA:PS2

0
B@φ21 þ ξ2 −

αþ β

2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
α2

1
CA

× BSðγÞ:PS1

0
B@α − β

2|ffl{zffl}
β1

1
CA:PS2

0
B@β − α

2|ffl{zffl}
β2

1
CA;

α ¼ arg ðcosϑ cos θ1 þ sinϑ sin θ1eiðξ2−ξ1ÞÞ;
β ¼ arg ðcosϑ sin θ1 − sinϑ cos θ1eiðξ2−ξ1ÞÞ;
γ ¼ arccos ðj cos ϑ cos θ1 þ sinϑ sin θ1eiðξ2−ξ1ÞjÞ:

The construction of the S network depends on the singular
values σ1;2 and can be obtained from Eqs. (9)–(12). The
dimensionality of S is at most 8 × 8 since there is one ancilla
mode per singular value that is not equal to 1. For a particular
example, the case of a transformation combining loss
in mode 1 (σ1 < 1) with gain in mode 2 (σ2 > 1), the
submatrices read
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SU ¼ SPS2ðα2ÞSPS1ðα1ÞSBSðγÞSPS2ðβ2ÞSPS1ðβ1Þ

¼

0
BBBBBBBBBBBBB@

eiðα1þβ1Þ cos γ eiðα1þβ2Þ sin γ 0 0

−eiðα2þβ1Þ sin γ eiðα2þβ2Þ cos γ 0 0

0 0 1 0

0 0 0 1

e−iðα1þβ1Þ cos γ e−iðα1þβ2Þ sin γ 0 0

−e−iðα2þβ1Þ sin γ e−iðα2þβ2Þ cos γ 0 0

0 0 1 0

0 0 0 1

1
CCCCCCCCCCCCCA

;

SD1 ¼

0
BBBBBBBBBBBBB@

σ1 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ21

p
0

0 1 0 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ21

p
0 σ1 0

0 0 0 1

σ1 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ21

p
0

0 1 0 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ21

p
0 σ1 0

0 0 0 1

1
CCCCCCCCCCCCCA

;

SD2 ¼

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 σ2 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 − 1

p
0 0 1 0 0 0 0 0

0 0 0 σ2 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 − 1

p
0 0

0 0 0 0 1 0 0 0

0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 − 1

p
0 σ2 0 0

0 0 0 0 0 0 1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ22 − 1

p
0 0 0 0 0 σ2

1
CCCCCCCCCCCCCA

;

SW ¼ SBSðθ2ÞSPS1ð−ξ1Þ

¼

0
BBBBBBBBBBBBB@

e−iξ1 cos θ2 sin θ2 0 0

−e−iξ1 sin θ2 cos θ2 0 0

0 0 1 0

0 0 0 1

eiξ1 cos θ2 sin θ2 0 0

−eiξ1 sin θ2 cos θ2 0 0

0 0 1 0

0 0 0 1

1
CCCCCCCCCCCCCA

;

where the empty blocks should be filled with zeros.

APPENDIX C: APPLICATIONS

In this appendix, we outline two applications in which the method can be used: finding Naimark extensions for POVMs
and the design of probabilistic optical quantum information protocols.
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1. POVMs

A POVM is determined by a set of positive semidefinite
operators fEigmi¼1, which sum to identity

P
m
i¼1 Ei ¼ In and

represent generalized measurements in an n-dimensional
Hilbert space [27]. Here, In denotes the n-dimensional
identity matrix. An active field of research has been focused
on the physical implementation of POVMs [28–32]. One of
the strategies is based on Naimark’s dilation theorem.
According to the theorem, any POVM can be realized as
a projective measurement in an enlarged Hilbert space
H [25]. However, the theorem does not itself provide a
general recipe to find the extension to H, called Naimark
extension.
To see how our method can be exploited to find Naimark

extensions, let us focus on the important case of rank-one
POVMs. The operators forming rank-one POVMs corre-
spond to projectors Ei ¼ jϕðiÞihϕðiÞj on, in general, non-
orthogonal vectors jϕðiÞi in the original Hilbert space. A
Naimark extension can be found by augmenting the vectors
jϕðiÞi to sizem so that they become orthogonal inH. For this
purpose, let us define a rectangular n ×m matrix with
columns given by the n-dimensional vectors jϕðiÞi:

T ¼

0
BB@

ϕð1Þ
1 … ϕðmÞ

1

..

. ..
.

ϕð1Þ
n … ϕðmÞ

n

1
CCA;

such that TT† ¼ I. Here, ϕðiÞ
j stand for elements of jϕðiÞi. A

singular value decomposition of T ¼ UDW provides a
unitary n × n matrix U, an n ×m matrix D, and a unitary
m ×m matrix W. Note that since TT† ¼ I, all the singular
values of T are equal to 1. This means that the dimension-
ality of the Naimark extension found with this method is m,
and the number of ancilla output modes is m − n. Next, let
us pad the matrices of smaller dimensionalities with ele-
ments of the identity matrix, in accordance with step 1b of
the method. As a result, we obtain the enlarged m ×m
matrices:

U →

�
U 0

0 Im−n

�
; D → Im;

and W does not require any modification. The product
UDW ¼ UW is unitary and becomes an m-dimensional
Naimark extension of T, which can be directly decomposed
into building blocks with the methods of Reck et al. [2] or
Clements et al. [3]. This procedure allows us to design a
network for an arbitrary rank-one POVM.

2. Design of probabilistic protocols

Here, we demonstrate how the method can be used in the
design of probabilistic optical quantum logic gates. We

illustrate the design on the example of a two-qubit con-
trolled-Z gate and show a systematic way to find the setup
presented in Ref. [33]. A two-qubit controlled-Z gate can
be implemented with two photons and four optical modes.
The control qubit is encoded by one photon within the first
two modes (called the control modes), while the target
qubit is encoded by another photon in the last two modes
(the target modes). The goal is to construct a transformation
using passive optical elements, such that it implements a
controlled phase flip, given that both the input and output
states fulfill the condition that there is one photon in the
control modes and one photon in the target modes.
Our starting point is the desired effect on two-photon

states: For the four different input states below and only
considering outputs according to the postselection con-
dition of having one photon in a control mode and the other
photon in a target mode, we want the circuit to output the
following states:

âcHinâtHin → −kâcHoutâtHout;

âcHinâtVin → kâcHoutâtVout;

âcVinâtHin → kâcVoutâtHout;

âcVinâtVin → kâcVoutâtVout; ðC1Þ

where the four modes are denoted cH, cV, tH, tV, after
horizontal and vertical polarization in the control and target
modes. The real constant k ∈ ð0; 1� allows for the possibility
of the protocol being probabilistic, with a success rate of k2.
The above transformations involve four input and output
modes, so the transformation we seek has the general form

T ¼

0
BBB@

t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

1
CCCA:

Since we assume that the setup will be passive, we know that
Stotal will be block diagonal and can be written as

Stotal ¼
�
A 0

0 A�

�
;

where A is a unitary matrix that contains T as its upper-left
block, relating annihilation operators as follows:

0
BBBBBBBB@

âcHout

âcVout
âtHout

âtVout

..

.

1
CCCCCCCCA

¼
�

T A12

A21 A22

�
0
BBBBBBBB@

âcHin

âcVin
âtHin

âtVin

..

.

1
CCCCCCCCA
:
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Based on the constraints of Eq. (C1), the elements of T
need to be determined. To do this, it is useful to write the
annihilation operators of the input modes in terms of those
of the output modes. The unitary matrix A can simply be
inverted to write the input modes in terms of the output
modes, and we obtain

0
BBBBBBBB@

âcHin

âcVin
âtHin

âtVin

..

.

1
CCCCCCCCA

¼
�

T† A†
21

A†
12 A†

22

�
0
BBBBBBBB@

âcHout

âcVout
âtHout

âtVout

..

.

1
CCCCCCCCA
: ðC2Þ

Using Eq. (C1) together with Eq. (C2), we obtain a set of
nonlinear equations, of which one solution is

T ¼

0
BBBBB@

t11 0 t13 0

0 t11 0 0

t31 0 − t13t31
2t11

0

0 0 0 − t13t31
2t11

1
CCCCCA; k ¼ −

1

2
t13t31:

There are three free parameters, t11, t13, t31, and the success
probability of the protocol, k2, depends on two of these
parameters. Moreover, the singular values of T depend on
the parameters. We need all the singular values to be less
than or equal to 1 so that the circuit is a passive network, but
we would like as many of the values as possible to be 1 so
that the number of ancilla modes is minimized. A suitable

choice of parameters is t11 ¼
ffiffi
1
3

q
, t13 ¼ t31 ¼

ffiffi
2
3

q
. This

choice results in the success probability of the protocol

k2 ¼ 1
9
and the singular values ð1; 1;

ffiffi
1
3

q
;

ffiffi
1
3

q
Þ, which show

that two ancilla modes are required. From here, the
decomposition method can be used to find the physical
realization of the matrix

T ¼

0
BBBBBBBBB@

ffiffi
1
3

q
0

ffiffi
2
3

q
0

0
ffiffi
1
3

q
0 0ffiffi

2
3

q
0 −

ffiffi
1
3

q
0

0 0 0 −
ffiffi
1
3

q

1
CCCCCCCCCA
;

which finally provides the scheme of Ref. [33].
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