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Abstract. Watershed-scale modeling can be a valuable toolgrowth objective functions identified the importance of cul-
to aid in quantification of water quality and yield; however, verts in catchment-wide flow distribution. While this study
several challenges remain. In many watersheds, it is difshows the challenges of applying the SWAT model to com-
ficult to adequately quantify hydrologic partitioning. Data plex terrain and extreme environments; by incorporating an-
scarcity is prevalent, accuracy of spatially distributed meteo-thropogenic features into modeling scenarios, we can en-
rology is difficult to quantify, forest encroachment and land hance our understanding of the hydroecological impact.

use issues are common, and surface water and groundwa-
ter abstractions substantially modify watershed-based pro-
cesses. Our objective is to assess the capability of the Soil
and Water Assessment Tool (SWAT) model to capture eventd
based and long-term monsoonal rainfall-runoff processes in

complex mountainous terrain. To accomplish this, we deve-l‘and use and land cover (LULC) distribution can have a

loped a unique quality-contral, gap-filling algorithm for in- substantial influence on catchment water balance due to lo-

terpolation of high-frequency meteorological data. We usedfallzeddprte%ptl_tatlon, gvaporatlon, _trztam;;:lratlon, ISO'I _mtc_ns-
a novel multi-location, multi-optimization calibration tech- ure redistribution, and crop assoclated temporai varnations

nique to improve estimations of catchment-wide hydrologic'('jq fsurfafet.runolzf. -tr.het effeitgsggf Iand.uslrf chlgn?e, ".f]f.du?mg
partitioning. The interdisciplinary model was calibrated to eforestation (Forti et al., ). agricultural intensification

a unique combination of statistical, hydrologic, and plant (Berka et al., 2001), yearly variations in agricultural land use

growth metrics. Our results indicate scale-dependent sensk!lIman etal., 2002), and consruction of roads, culverts, and

tivity of hydrologic partitioning and substantial influence of Z_edlrr]nent detgntlotn pondl_st (Strauch tet al, 201?) Ion gt;eam
engineered features. The addition of hydrologic and plant IScharge and water quaiity occur at many spatial and tem-
poral scales. Deforestation significantly affects streamflow

Introduction

Published by Copernicus Publications on behalf of the European Geosciences Union.



540 C. L. Shope et al.: Landscape complexity and ecosystem modeling with the SWAT model

characteristics (Calder, 1992) by increasing erosion and deet al., 2013), conduct dye tracer experiments to estimate
creasing soil moisture and soil nutrient concentrations. Agri-soil structure and variably saturated flow and transport pro-
cultural intensification influences surface runoff by altering cesses (Ruidisch et al., 2013), and examine groundwater and
infiltration, evaporation, and timing of runoff. As agricultural surface water exchange on spatiotemporal fluxes and near-
land use increases, the need for water resources managemestiteam biogeochemistry (Bartsch et al., 2014). To quantify
increases, particularly in complex topography driven by ex-overland runoff, sediment transport, and soil loss from indi-
treme events. vidual crops under specific management practices, it is cri-
The water resources of the Haean catchment in South Kotical to understand sustainable resource allocation and sce-
rea are important to quantify because the catchment repnario implications in this agriculturally productive, complex
resents an important contributor to the Han River and theterrain.
Soyang Lake watershed, which is a major drinking water Coupled hydrological and crop production watershed-
source for major metropolitan areas including the city of scale models are a useful tool to simulate the interactions
Seoul (Jo and Park, 2010). The catchment is also a signifief catchment physical characteristics, agricultural practices,
cant source of sediment and nutrients due to the high agriand weather inputs on the water yield and to evaluate con-
cultural activity and forest encroachment (Jung et al., 2012;servation practices in locations with limited observational
Lee et al., 2014). Small-scale agriculture is the largest ecodata (Cho et al., 2012). Model scenarios can be helpful in
nomic activity within the basin, engaging 85 % of the pop- identifying reasonable measures for assessing environmen-
ulation and up to 44 % of the available land area within thetal ecological status (Lam et al., 2012; Volk et al., 2009).
catchment. Increasing agricultural encroachment into the forGassman et al. (2007) found that the distributed Soil and Wa-
est region imposes a significant risk to water yield and qualityter Assessment Tool (SWAT) model was a promising model
with a reduction in forested area by 37 % over the past 20 yifor predominately agricultural watersheds located through-
(Kim et al., 2011). Furthermore, routing and flow manage- out the world when compared to several other integrated wa-
ment in Haean has significantly increased the erosive powetershed models. SWAT has also been successfully applied in
and decreased infiltration during individual events (Arnhold a wide variety of data-limited studies, particularly in South
et al., 2013). Previous studies have suggested an appreciabkrea (Lee et al., 2012, 2011; Stehr et al., 2008; Mekonnen
decline in aquatic species, attributed in large part to an in-et al., 2009). We use the SWAT model because it is a well-
crease in fine grain sediment erosion and nutrient concentradocumented, efficient model that couples long-term climate,
tions (B. Kim, personal observation, 2010; Jun, 2009). Sincdand use, and management practices to evaluate catchment-
the end of the Korean War in 1953, a variety of ameliora- wide hydrology.
tion measures such as river regulation, installation of catch- This study builds upon multiple research investigations
ment drainage systems, and waste water treatment plandistributed throughout the Soyang Lake watershed by imple-
(WWTPSs) have been implemented in order to enlarge com-menting the SWAT ecohydrologic model within the Haean
munities and increase local agricultural production. Thesecatchment to quantify hydrologic processes and catchment-
measures have led to a change in the catchment-wide wawide flow partitioning. Our objectives are to (1) assess
ter balance, spatiotemporal nutrient dynamics, and floodthe potential of a spatiotemporal algorithm to improve dis-
plain ecology (Jun, 2009). Several conservation projects haveretization of monitored precipitation, (2) characterize the
been implemented within the Haean catchment and throughspatiotemporal river discharge patterns at multiple locations
out South Korea to limit and effectively manage soil ero- throughout the monsoon driven catchment through multi-
sion including retention pond construction, modification of objective optimization, (3) determine the capability of the
riparian channel widths, and channel reinforcement. ConseSWAT model to capture daily monsoonal rainfall-runoff pro-
quently, the landscape has been intensively altered, creatingesses in complex mountainous terrain, and (4) quantify the
a mosaic of ecohydrologic landscape patterns. Surface wasignificance of engineered structures (roads, culverts, sedi-
ter and groundwater abstractions, dam and reservoir opementation ponds) on flow partitioning. To accomplish these
ations, and engineered hydraulic structures (culverts, sediebjectives, we utilized robust and comprehensive, spatiotem-
ment ponds, and roads) have disrupted the natural hydrologporal river discharge estimates at 14 locations throughout the
of the catchment. In higher elevations, surface water flow hasdaean catchment to quantify flow partitioning. We discuss
been observed to be entirely depleted over extended stretchéise construction of the ecohydrologic SWAT model for the
due to domestic and irrigation abstractions for dryland farmsHaean catchment, the selection and sensitivity of model pa-
(Shope et al., 2013). Previous research has indicated thaameters, and the calibration and validation of the model. Fi-
seasonal precipitation, as well as individual events, influ-nally, we evaluate three different river routing systems in-
ences the hydrologic flushing of organic materials from thecluding (1) the surface water drainages; (2) a combination of
land surface (Jung et al., 2012; Lee et al., 2014). The longthe rivers and engineered culverts; and (3) the rivers, culverts,
term interdisciplinary research group TERRECO (Tenhunenand road network, to identify flow partitioning throughout the
et al., 2011), has collected spatiotemporal terrestrial surfaceatchment.
runoff measurements to calculate sediment yield (Arnhold
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outside of Europe and North America. The average catch-
ment discharge at the outletis 4.32 sn1 (1.20-379 s 1)
while the average discharge at the S1 headwater monitoring
location is 0.03rAs ™1 (1.4x 10~4-10.0 n¥ s~ 1). The catch-
ment hydrology is further described in Shope et al. (2013).
The catchment is 56 % forested and 44 % agricultural LULC.
Geologically, the basin is composed of a Precambrian
gneiss complex at the higher elevation mountain ridges and a
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o " Korea 1

iy highly weathered Jurassic biotite granite intrusion that was

A5 5| st subsequently eroded throughout the central portion of the
O e catchment (Kwon et al., 1990). Alluvium generally extends
g Y up to 2m in depth and bedrock is typically observed between

i J-‘ ! Surficial soil texture is typically saprolitic sand and sandy

‘f\ﬁ ’Hf ) "‘akf / 20 and 45m below land surface in the catchment interior.

loam with high infiltration capacity (Arnhold et al., 2013; Jo
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SO T W T and Park, 2010).
B ‘1 o oay 2 The climate in South Korea is humid continental to hu-
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tends from the end of June through the end of July, fol-
lowed by scattered events through early September, with

el — f SKISSD c [ d f 7 up to 70% of the total annual precipitation between the
W70 et LN - months of June and August. The average annual rainfall
S e o ORI SHEWISN - .
e EE 47 over the most recent 12yr of record is 1514 mm (930 to
gl | ( \\66 ‘ 2299 mmyr?l) with a maximum precipitation as high as
vy ' 48.6mmi! or up to 223.2mmd!. The average annual
iy A temperature is 8.6% 0.35°C ranging betweer-26.9°C in
W e 4 EXPLANATION January to 33.4C in August. Ch.oi.et al. (2010) found
Tl . AL —— that the temperature lapse rate within the Haean catchment
\&@ G- 3 ‘Westhier Stitioris ranged betweePrO..56°C 100nt?t jthroiughou.t the spring to
NPy = T — +1°C100nt1 during early morning inversions after many
- Haean Subbasins consecutive sunny days.
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3 Methods and model construction

Fig. 1. Haean study area within the Lake Soyang watershed is3 1 Model description
located in northeastern South Korea along the demilitarized zone ™

(DMZ) border with North Korea. The regional KMA weather sta- The SWAT model is a continuous, physically based, dis-
tion and local meteorological stations are denoted with white circles, ' '

and (WS). River discharge monitoring locations are denoted by (S)mbUted moqel originally developed to predict the Ipng—term
and the yellow squares. |mpac§ of cllmate and land use managemgnt pr.actlcgs on hy-
drologic, sediment, and agricultural chemical yields in large,

complex basins (Arnold et al., 1998). Essentially, SWAT uses
the water balance approach to simulate watershed hydrologic
partitioning as described by Neitsch et al. (2010). Catch-
ments are divided, typically on a topographic basis, into spa-
The Haean catchment study area (38.239-38.829 tially linked subbasins and the subbasins are segregated into
128.083-128.17F) is located in the Gangwon Province of unique hydrological response units (HRUs) by integrating
the northeastern portion of South Korea along the demilita-the combination of LULC, soil type, and slope to describe
rized zone (DMZ) between South and North Korea (Fig. 1).the system physical heterogeneity. The modeled hydrolog-
The 62.7 km catchment has a unique bowl-shaped physio-ical components include surface runoff, percolation, lateral
graphic characteristic with elevation ranging between 339 toflow, groundwater flow, evapotranspiration (ET), and trans-
1321 ma.s.l., which drastically alters the local meteorologi-mission losses. The simulation of watershed hydrology with
cal conditions. The catchment drainage is the Mandae RiveBWAT is split into the land phase and the channel or routing
with a maximum length of 8.6 km. Limited historical obser- phase of the hydrologic cycle, which controls the amount of
vations are available, although this is typical for most areaswater, sediment, and nutrients into the main channel in each

2 Catchment characteristics
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subbasin and through the channel network to the watershed is the total number of consecutive missing data,is the
outlet (Neitsch et al., 2011). Incoming precipitation is par- observed precipitation (mmy, is the total number of obser-
titioned into canopy storage, infiltration, and surface runoff vational meteorological stationg,is the cumulative number
through either the SCS (Soil Conservation Service) curveof stations, the “e” and “0” subscripts are the estimated and
number (CN) method (U.S.D.A., 1972) or the Green—Ampt observed location values; is the weighting factor, ana
(Green and Ampt, 1912) method. Daily runoff volume from andy subscripts are the first and second most proximal loca-
the SCS retention parameter can be calculated through thigons to the estimation location, respectively. Locally based
shallow soil water content or through accumulated plant ET.relative humidity was modified by accounting for the tem-
The SCS curve number method with calculated plant evapperature dependent local dew point. The SWAT model does
otranspiration was selected for the Haean catchment simuaot explicitly interpolate spatial meteorological conditions
lations. The hydrologic condition of the vegetation is im- but instead, prescribes the nearest weather station parameters
portant in determining CN for individual HRUs (U.S.D.A., to the centroid of each subbasin (Neitsch et al., 2011). Due
1972). Therefore, the distributed CN was further modified to the large variation in topographical complexity throughout
within individual HRUs through time-variable LULC char- the catchment, precipitation volume, soil moisture, and plant
acterization and crop growth. The model uses the modifiedgrowth were impacted when SWAT assigned the meteoro-
Rational Method to estimate peak flow (Neitsch et al., 2011).logical data to each subbasin. We tested several interpolation
Runoff in SWAT is aggregated from the HRU level into the methods to grid the measured meteorology results through-
subbasin level and then routed through the stream networkout the catchment (inverse distance weighted (IDW), spline,
The Manning equation is used to estimate the flow rate andhearest neighbor, and kriging). The IDW method performed
velocity through the channels. Flow routing is based on eitheoptimally and was used to grid the measured meteorological
the variable storage or the Muskingum routing method; andresults throughout the catchment and the virtual weather cor-
for this study, we chose the variable storage method (Neitscliesponding to each subbasin centroid was prescribed. Prin-

etal., 2011). ciple data sources used for the Haean catchment ecohydro-
_ logic model are provided in Table 1. Choi et al. (2010) found
3.2 Model inputs highly variable temperature lapse rates, implying that stag-

nant East Asian monsoon high pressure systems can signifi-
cantly vary climatic conditions on a local scale. A tempera-
ture lapse rate 0£-0.52°C 100 nT! was incorporated into

he continuous spatial interpolation for temperature.

3.2.1 Climate data

Hourly climate data for the period from 1998 to 2011 were
measured and collected from several regional stations o%
the Korean Meteorological Agency (KMA) (Fig. 1). Precip-
itation and minimum/maximum temperature were obtained3.2.2 Discharge and evapotranspiration estimates
from the Haean KMA station (38.28 N, 128.148E). Rel-
ative humidity, temperature, and wind speed were obtaine
from the Inje KMA station in the adjacent Yanggu County
(38.207 N, 128.017 E). Solar radiation was collected from
the Chuncheon KMA station (37.908l, 127.749 E). Dis-
tributed climate data were also collected from 15 micro-
meteorological stations (Delta-T Devices, Ltd.) throughout
the catchment (Fig. 1) between 2009 and 2011. Sub-hourl
data was aggregated into hourly precipitatiah0(2 mm),
minimum/maximum air temperature-0.2° C), wind speed

qEvent—based and baseflow surface water discharge measure-
ments were collected at up to 14 locations throughout the
catchment between 2003 and 2011 (Fig. 1) through multi-
ple methods as described by Shope et al. (2013). Observed
streamflow at interior locations within the catchment (S1, S4,
S5, and S6) and the catchment outlet (S7) were utilized for
¥:iai|y and monthly model calibration to better parameterize
spatial variability in hydrologic partitioning. These monitor-
(£0.1msY), solar radiation £5Wm2), and relative hu- ing Iocatu_)ns are c_hstnbgte_d throughout the catchment along

. . an elevation gradient with increasing drainage area and pro-
midity (£2 %). Each parameter was quality controlled by re- ~. . . A

vide regional representation of model parameterization. In

moving erron nd then filling from imilar - . . .
oving erro eous'data and t en gap g from a simifa addition, the unique punchbowl! shape enabled the calibration
station using a weighted algorithm based on elevation, sta-

! o . parameters to be correlated to other ungauged subcatchments
tion proximity, and aspect. The algorithm, as formulated forWith similar slope. elevation. and aspect
precipitation, is presented as Pe, ' pect.

Spatiotemporal aquifer contributions were investigated by
[4_1 (Po[minimize/_, (ge — ¢o) |) w3] + ... quantifying the relative baseflow from the hydrograph using
Po(z,d, ) = I:(?:ll:<ﬁ)'|Px_Py|]+Px> w2]+... ) sgveral baseflow separation techniqu.es includir_lg differential
2 T discharge measurements and recession analysis (Shope et al.,
[i=1 (Po[minimize_; (ze — z0)]) wi] 2013). For estimate consistency between each of the monitor-
The variableP. is the estimated precipitation (mm)js the  ing locations, we applied a recursive digital filter to separate
elevation (m)4 is the distance to the observation point (m), the low-frequency baseflow signal from the high-frequency
¢ is the observation point aspect (ded.)s the time step, runoff in the formulation described by Eckhardt (2005).
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Table 1. Principle input data sets for the construction of the Haean catchment SWAT model.

Data set Agency Data set type Scale

(a) Spatial data sets

General boundaries GADM Bathymetry, coastline, roads, lakes, rivers, counties, watersheds 1:10000
Watershed DEM NGR Clipped DEM from Soyang Lake contour map 1:25000
Stream channels TERRECO Hydrologically corrected high-density flow network 1:10000
Soils RDAC Clipped from Soyang Lake surficial soils map 1:25000
Soils TERRECG@ From 2009-2011 field based shallow soil (1.2) m observations 1:10000
Land cover TERRECD Agriculture and Forest field validated LULC 1:5000

(b) Temporal data sets

Precipitation, temperature KMA Haean Cooperative Network weather station (1998-2009) Point
Relative humidity, wind speed ~ KM® Yanguu Cooperative Network weather station (1998—2009) Point
Solar radiation KMA Chuncheon Cooperative Network weather station (1998-2009)  Point
Local meteorology TERRECD TERRECO stations, 15 in catchment (2009-2011) Point
WWTP point sources YCOD Wastewater treatment statistics at 5 plants (2002—2010) Point
Discharge and loads TERRECO Field-based, discharge measurements (2003—-2011) Point

Agricultural management data TERREEO Farmer, county, administrative interviews and field-based plots

a GADM — Global Administrative Area® NGII — National Geographic Information Institufe TERRECO - Field-based TERRECO IRTG observations, GPS
surveyed perennial and ephemeral stream charfhBBA — Rural Development AdministratioR TERRECO — Field-based TERRECO IRTG observations,
2009-2011 test pits, soil samples, soil characterizali®ERRECO - Field-based TERRECO IRTG observations, 2009 (36 classes), 2010 (114 classes), 2011 (100
classes)d KMA — Korean Meteorological Weather Station NetwofKTERRECO — Field-based TERRECO IRTG observations, 2009-2011 (precipitation,
temperature, relative humidity, wind speed, solar radiali®fCO — Yanguu County Office, wastewater treatment statistics 2003-RTHERRECO — Field-based,
spatially distributed, discharge measurements as described in Shope et al. K2THRRECO - Field-based, spatially distributed plots of example management and
interviews with multiple stakeholders.

The calculated baseflow was subsequently compared to thkand agriculture (2 to 10°), and mildly sloping rice paddies
SWAT modeled baseflow contribution. in the central portion of the catchment (fb 2°) (Table 2).

The SWAT model also includes several methods to cal-The observed river network was geo-referenced and ex-
culate potential evapotranspiration (PET) (Hargreaves anglicitly incorporated into the DEM because modification of
Samani, 1985; Monteith, 1965; Penman, 1948; Priestleystream channels in highly managed catchments is prevalent
and Taylor, 1972) depending on the observational meteoand inclusion of stream delineation improves hydrologic seg-
rological data available. Because of the robust and high-mentation and boundary delineation. In addition, extensive
frequency spatially variable micrometeorologic data avail-ground-based surveys of engineered channels, diversions,
able through the TERRECO project, we simulated daily PETculverts, drainage features, sediment retention ponds, and
using the Penman—Monteith method (Penman, 1948). As deroads throughout the Haean catchment were completed. To
scribed in Ruidisch et al. (2013) and Shope et al. (2013), thenvestigate the role that engineered structures have in chan-
weather conditions throughout the catchment are heterogeael routing, three channel classifications were constructed for
neous and therefore, the physically based Penman—Monteitfl) the river network; (2) the river network and engineered
estimates were preferred over the alternative methods. Soitulverts; and (3) the river network, culvert system, and exist-
evaporation and crop transpiration were estimated using théng roads (Fig. 2). We implemented the engineered structures
FAO Penman—Monteith equation as described in Allen etin SWAT by sequentially adding them to the prescribed river

al. (1988). network and we superimpose the modified networks onto the
DEM. The roads and culverts were then prescribed as imper-

3.3 Spatial data vious channels with no transmission loss on the river net-
work. Therefore, we had three complete model constructs

3.3.1 DEM from the beginning to the end with different hydrographic

segmentation and subbasin boundary delineation.
The Soyang watershed 30m resolution digital elevation
model (DEM) obtained from the National Geographic In- 3.3.2 Soils
formation Institute (NGII) was clipped to the extent of the
Haean catchment boundaries (Fig. 1). The Haean catchRegional soil information was obtained from the Rural De-
ment was divided into three slope classes representing steegelopment Administration (RDA) (1:25000) and based on
forested high elevation (2Go 9C¢°), moderately sloped dry- a single surficial soil layer. The Haean spatial soil data set

www.hydrol-earth-syst-sci.net/18/539/2014/ Hydrol. Earth Syst. Sci., 18, 53857, 2014
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Kilometers
3

Fig. 2. Multiple river system and infrastructure model configurations within the Haean catchment which, contribute to surface discharge
accumulation and flow routing. The panels display the configuratior{Aprsolely the Haean river networkB) the river network and
engineered culvert drainage system; §&8jithe river network, the culvert system, and the road infrastructure.

Table 2. Percentage of Haean catchment associated with the indi{ TERRECO) coupled the RDA soil data, LULC, and exten-
vidual aggregated land use, soil, and slope classifications. The slopsive field-based soil profiles to develop a spatial distribu-
classification generally defines the difference between forest, drytion of multiple soil horizons to a depth of 3m. Our results

land farming, and rice paddy systems throughout Haean. found that Haean soils are intensively managed and modified
and highly dependent on land use (Tenhunen et al., 2011).
Area Percent Soil properties, including the hydrologic soil group, texture
Category (krf)  watershed class, the percentage content of rock, sand, silt, and clay
Landuse content, and the hydraulic conductivity, were derived from

a 2009 catchment-wide field survey that was aggregated into

girr::?alsgians 5'1?23 9'24_'23/(‘; % 6 unique soil types (Tgbl'e 2). The hydrologic group and tex-

Rice 8.53 13.59% ture for each of the soils is (1) very steep forest soil (C, loam-

General cabbage 321 5.12% sand), (2) forest soil (C, loam-sand), (3) moderately steep dry

Coniferous forest 0.04 0.06 % soil (D, sand-silt), (4) flat dryland soil (D, sand-silt), (5) rice

Deciduous forest 3529  56.25% paddy soil (C, sand), and (6) sealed ground (D, clay).

Ginseng 0.81 1.29%

Inland water 0.03 0.04%

Residential land use 1.05 1.67%

Maize 0.52 0.83% 3.3.3 Land use and land cover (LULC)

General orchards 0.86 1.36%

Potato 2.47 3.93%

Eﬁgf: opsis %.12223 %_?ﬂa Intensive field-based, plot-scale LULC observations for each
of the years 2009 through 2011 resulted in up to 126 in-

Soils dividual LULC classes. For the purposes of this study, the

Flat dry soil 807 12.87% 2009 ground survey data have been distilled to 15 different

Forest soil 19.74 31.46 % LULC classes (Table 2). Haean is a mixed land use catch-

Moderately steep dry soil 8.33 13.28% ment, which contains 54 % agricultural land, and fields are

Rice paddy soil 13.78 21.96% typically less than 0.40 kk The remainder of the catch-

Sealed ground 12.47 19.87% ment area is upland forest at higher elevations, predomi-

Very steep forest soil 0.35 0.55% nately composed of 30 to 40yr old mixed deciduous for-

Slope est. Major species include Mongolian oa®uercus mon-
golica), Daimyo oak Quercus dentafa and Korean ash

Low slope rice paddy 8.02 12.79%

(Fraxinus rhynchophylla While this agriculture dependent
catchment has exhibited LULC increases up to 37 % through
forest encroachment (Kim et al., 2011), the LULC distri-
bution throughout the study period between 2009 and 2011
remained relatively stablet{1.2 %, Yanggu County Office,
2012).

Moderate slope dryland 17.43 27.78%
Steep slope forest uplands ~ 37.28 59.43%

Hydrol. Earth Syst. Sci., 18, 539557, 2014 www.hydrol-earth-syst-sci.net/18/539/2014/
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Table 3. Agricultural crop management schedule including planting and harvest dates, fertilization dates, amounts, and type of fertilizer,
tilling dates and method, SCS curve number for each crop, and the heat units required to reach maturity.

Planting Harvest Initial planting
LULC/ PHUP Tillage Fertilizer (leafouj (cessatiorf Age LAI  Biomass
crop CN (°C) JD type JD type Amntd JD JD () (=) (kghal)
General 70.3 1710 121 Rotaryhoe 133 Chem 345 135 224
Bean 133 Furrowout 133 Org 120
General 71.0 2159 126 Rotaryhoe 138 Chem 360 140 201
Cabbage 138 Furrowout 138 Org 150
171 Chem 0.72
Potato 71.8 2381 101 Rotaryhoe 113 Chem 330 115 243
113 Furrowout 113 Org 100
Radish 71.3 1631 136 Rotaryhoe 150 Chem 340 152 232
150 Furrowout 150 Org 150
182 Chem 150
Rice 78.0 2736 124 Rotaryhoe 136 Chem 230 138 288 0 02 50
136 Riceroller 156 Chem 0.2
169 Chem 0.2
181 Chem 0.5
193 Chem 0.5
Ginseng 715 3065 109 Rotaryhoe 121 Chem 468 123 298
121 Furrowout 121 Org 120
Maize 69.7 2999 111 Rotaryhoe 123 Chem 316 125 295
123 Furrowout 123 Org 100
General 58.6 3163 106 Rotaryhoe 118 Chem 287 120 303 10 0 100
Orchard 118 Furrowout 118 Org 100
Timothy 72.0 2912 135 304
Codonopsis  40.7 2833 120 Chem 320 120 307
120 Org 150
166 Chem 0.5 40 0 342
Forest 50.5 2896 112 307

aCN is the SCS curve numb&PHU is the cumulative heat units above ®®required for the LULC/crop to reach maturi§yFertilizer type is classified as Chem
(inorganic chemical) not explicitly described or Org (organic mamﬁ‘raartilizer amount (kg hial). © Leaf out and cessation define the beginning and end of season
for forest and orchard land use.

3.4 Management inputs and crop parameterization cation frequency is provided in Table 3. Fertilizer application
o parameters within the SWAT database were varied for each
3.4.1 Management parameter estimation crop and subbasin for spatially distributed management. The

) ) o simulated timing of management actions (i.e., fertilization,
Agricultural management practices within the Haean catch—[i"age’ planting, irrigation, harvesting) was implemented in
ment were surveyed between 2009 through 2011 througks\waT through daily heat unit summations because tradi-
a combination of on-site stakeholder interviews, empiricaljona| planting and harvest methods are dependent on cli-
field observations (Tenhunen et al., 2011), published literayatic observations closely correlated to heat units.
ture (i.e., Nguyen et al., 2012), and regulatory reports from
the Research Institute of Gangwon (RIG), the Ministry of
Environment, the National Institute of Agricultural Science,
and Technology and the Korean Forest Research Institute.

More than 300 interviews of stakeholders and farmers wereéBiomass analysis was completed by collecting and sampling
completed under the TERRECO project to quantify fertiliza- 5 to 10 entire plants, representative of each crop type (Ta-
tion and pesticide application quantities and timing, irriga- ble 2) from a 2009 catchment-wide sample set of TER-
tion practices, planting and harvesting activities, and tillageRECO harvest plots (J. Tenhunen, unpublished data). Each
methodologies. TERRECO managed plots were also usedf the plants was field separated and subsequently weighed
to obtain comprehensive temperature-based planting, fertilfor fresh weight. The leaf area was individually measured us-
izer, tillage, mulching, development, and harvest informationing a portable leaf area meter (Opti-Sciences, Inc., AM 300).
(J. Tenhunen, unpublished data). An example of the land us&he samples were then separated and dried &E86r more

and crop management schedule, application rate, and applthan 1 week, prior to measuring the sample dry weight.

3.4.2 Biomass sampling, analysis, and plant growth
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Table 4. Example SWAT model crop parameter database variations in the Haean model.

Heaf ALAL BIO_™ BM"
LULC units  HUS® BLAI® DLAIY FRGRWE LAIMX1f FRGRWZ LAIMX2! GSE T_BASE MIN HvSTHl CHTMXK BIO_E LEAF DIE-OFF
Rice 1250 0.15 4 0.95 0.1 0.1 05 0.95  0.005 10 0 0.5 0.6 22 0 0.1
Radish 3300 0.01 5 0.9 0.1 0.1 0.3 0.95 0.3 0 0 2 0.6 30 0 0.1
Potato 3000 0.01 4 0.9 0.1 0.1 05 0.95 0.003 0 0 0.95 0.6 25 0 0.1
General beans 1050 0.15 5.4 1 0.1 0.1 05 0.95  0.003 10 0 0.31 0.6 25 0 0.1
General cabbage 900 0.2 35 0.9 0.1 0.1 0.5 0.95 0.003 0 0 0.8 0.5 19 0 0.1
Deciduous forest 300 0.01 7 1 0.1 0.1 0.5 0.95 0.0005 0 0 0.76 10 15 0.15 0.1
Coniferous forest 800 0.01 7 0.97 0.1 0.1 0.5 0.95 0.0005 0 0.06 0.76 10 15 0.15 0.1

2 Heat Units is the total base zero annual heat units for the plant cover/land use to reach rﬁ&ﬁMEﬁ is the fraction of the total base zero annual heat units at which the
management operation occufBLAI is the maximum potential leaf area indékDLAI is the fraction of the growing season when the leaf area begins to deBIFRGRW1,2
represent the fraction of the plant growing season corresponding to the 1st and 2nd point on the optimal leaf area developFﬂehlJ\dh(rSkeQ represent the fraction of the
maximum leaf area index corresponding to the 1st and 2nd point on the optimal leaf area developme®@Bhgthe maxixmum stomatal conductance at high solar radiation
and low vapor pressure deficit (m%). h T_BASE is the minimum or base temperature for plant grO\R/fh)(i ALAI_MIN is the minimum leaf area index for the plant during

the dormant period (Am=2).] HVSTI is the fraction of aboveground biomass removed during a harvest operation and lost from theksyitsivX is the maximum canopy
height (m).I BIO_E is the radiation use efficiency or biomass energy ratio (kg W&VJ m=2)). ™ BIO_LEAF is the fraction of tree biomass accumulated each year that is
converted to residue during dorman@BMDIEOFF is the biomass die-off fraction.

To differentiate between crop types particular to South Ko-single pothole, we limited the rice paddies in each subbasin
rea(i.e., ginseng), several modified land use classes were crée a single HRU. We accomplished this by varying the soil
ated in the SWAT crop database. Nine representative fieldhreshold until only a single rice paddy HRU was in each of
plots along an elevation transect were analyzed and crop pahe subbasins.
rameters were varied to minimize the simulated and observed
residuals for leaf area index (LAI), biomass, and crop yield.

The crop parameters were altered based on observed mea- Results and discussion

surements, plant physiology modeling results from the PIX-

GRO model (i.e., Adiku et al., 2006), and published litera- 4.1 Meteorological drivers and the effects of

ture. The crop parameters that were varied are presented in  interpolation

Tables 3 and 4. Intensive cultivation was also present in agri-

cultural areas not serviced by irrigation canals and thereforeMeteorological time series data, particularly precipitation is
groundwater abstraction was estimated from the PIXGROa highly sensitive driver in hydrologic modeling applications
model as the quantity required for optimal plant growth. Typ- (Strauch et al., 2012). Spatial monitoring distributions are
ical to many Asian catchments, Haean can be considered typically limited and do not capture heterogeneous meteoro-
highly managed catchment with increased uncertainty due tdogical conditions that can be interpolated by wide-meshed

insufficient spatiotemporal water management data. monitoring networks (Notter et al., 2007). Large variations
in elevation throughout the Haean catchment influence the
3.4.3 Rice paddies, potholes, and water abstraction precipitation volume, soil moisture, and plant growth. They

can also influence the peak flow and the time of concentra-
The quantity and timing of river and groundwater abstrac-tion to peak discharge of the simulated hydrograph (Khak-
tions is uncontrolled and local estimates were inadequatdaz et al., 2012; Wilson et al., 1979). Our weather analysis
for model inclusion. Depending on the HRU location, ir- revealed heterogeneous meteorological conditions through-
rigation water was extracted from an adjacent river reachout the Haean catchment that are dependent on elevation and
or from shallow groundwater. Groundwater-derived irriga- aspect and largely focused in subregions (Choi et al., 2010;
tion practices were limited to orchards and rice paddies andshope et al., 2013). These meteorological variations have a
were accounted for in the simulations through water avail-direct influence on the relative humidity and therefore, the
ability based auto-irrigation at the HRU level and defined spatial variability of plant growth parameters between sub-
by the soil water deficit. Haean rice paddies were simu-basins was significant (Fig. 3).
lated in SWAT as potholes, which are hydrologically simi- We examined the model sensitivity to alternative precipi-
lar to ponded areas. Rice paddies are typically characterizethtion interpolation methods (IDW, Spline, nearest neighbor,
by multiple cascading-elevation plots separated by embankand kriging), both through spatially explicit plant growth re-
ments. The rice paddies had low infiltration and typically sat-sponse and river discharge to assess the robustness of inter-
urated soil conditions and therefore, infiltration as a functionpolation in our domain. We found that total river discharge
of water content rather than flow routing was used for esti-between interpolation methods varied less than 0.1 % at the
mation of subsurface losses. The HRUs within each subbasiimtegrated catchment outlet (S7) and the discharge differ-
were developed using 0% land use and 0% slope thresholdnces at multiple locations throughout the catchment (S1,
for reach subbasins resulting in maximum number of HRUs.S4, S5, and S6) were negligible. The IDW univariate in-
Since a subbasin can have multiple HRUs but only have derpolation technique for precipitation did result in slightly
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Fig. 3. Meteorologic variability and average daily value of each variable throughout the Haean catchment f¢gA2@#E3cribes the daily
precipitation and temperature variabilif®) is the range in solar radiation and the average value between all of the locé&pissthe wind
speed variability, an(D) is the relative humidity range.

improved plant growth response for selected crops and locharge and found no appreciable difference between model
cations than other methods. Similar to results obtained byresults. However, our results show that elevation-based plant
Notter et al. (2012), the IDW method was invoked to develop parameters and convective precipitation captured through in-
a continuous grid of meteorological drivers that were subse-creased subbasin discretization can be important. Subbasins

quently assigned to individual subbasins. with steep slopes and extensive vertical gradients must ac-
count for elevation-based climate conditions, which con-
4.2 Model calibration, validation, and uncertainty tribute to highly variable ET conditions. The sensitivity anal-
assessment ysis of discharge related model parameters was achieved by
sequentially varying an individual parameter while maintain-
4.2.1 Sensitivity and model parameterization ing the remaining parameters for each monitoring location.

Between eight and eleven parameters from the original 15

The model sensitivity was addressed with respect to spadischarge-related parameters were found to be sensitive to
tial distribution (number and location of meteorological sta- ctchment-wide flow partitioning (Fig. 4). Subsequently, the
tions, LULC distribution), observational record (LULC cov- 'ange of each of the parameters was minimized during cali-
erages, meteorological stations), resolution (soil coveragebration procedures. S o
subbasin discretization), and hydrologic stimulus (rainfall- The use of lumped, semi-distributed, and fully distributed
runoff). The Haean catchment model configuration resultedM0del parameterization was also investigated through sensi-
in 142 topographically based subbasins and 2532 individuaflVity analysis. We assigned the same parameter magnitudes
HRUS. Previous investigations have shown that the numbePY €rop type for the lumped distributed parameters, by crop
of subbasins has little influence on runoff (Jha et al., 2004;yPe and subbasin for semi-distributed, and by HRU in the
Tripathi et al., 2006; Xu et al., 2012a, b). Alternatively, other fully distributed construction. We found that fully distributed
studies have found that HRU discretization can have a subParameters between subbasin, soil, and LULC were negligi-
stantial effect depending on the physical catchment condiPly better than semi-distributed parameters based on aggre-
tions, data quality, and investigative scale (i.e., Setegn epated LULC within individual subbasins. We also found that

al., 2008; Haverkamp et al., 2002). We assessed the effedpe use of a lumped parameter assignment did not perform as
of subbasin size and HRU definition on surface water dis-Well as either the fully or semi-distributed parameterization.
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surface ground decision making process to determine the relative priority of
runoff infiltration routing water each alternative when all of the criteria were considered si-

1T u P-Value z' 20 multaneously. Because our results indicated that the sensi-

at-Stat N tivity analysis was significantly based on the monitoring lo-

08
06 | 5 cation, we calibrated multiple locations along an elevation
i . 0 transect. In Fig. 4, ther“stat” provides a measure of parame-
. I i i 5 ter sensitivity where larger absolute values are more sensitive
- -10 and the ‘p value” determines the significance of sensitivity
0 = :15 with higher significance as values approach zero (Abbaspour,
5 15 2011).
' 10 Our results generally indicate surface runoff and routing
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N e 7-7 Lo ; -15 sitive. At lower catchment elevations, infiltration, routing,
and groundwater parameters dominate. Since the upper el-
08 evation locations are composed of shallow, highly perme-
5 able (S. Arnhold, unpublished results) soils over bedrock;

5 parameters are more sensitive at higher elevations with in-
Z 0 we conceptualize high infiltration rates that contribute to in-
35 creased baseflow and streamflow accumulation. At mid- to
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0 creasing sensitivity to infiltration and groundwater param-
- eters at lower elevations (Fig. 4). The REVAPMN ground-
water parameter was a sensitive parameter at each location;
however, the magnitude was relatively small. CH_K(2) was
the least sensitive parameter, although included in the analy-
sis for comparison. Table 6 provides a summary of the SWAT
parameters. The infiltration parameters suggest significant
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=10 low-elevation locations, higher land management and soil
amendments lead to runoff and less infiltration. These results
E identify the importance of and differences between model
08 1 : sensitivities as a function of the model equations, model
06 | ] £ sensitivity, and observational dynamics. Therefore, caution
7 : » should be exercised in rainfall-runoff process simulations in
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a @ 5 ; z 7 oz 3 Model performance was assessed by several metrics at each
= &} ]

location including the simulated and observed water balance,
) . o the coefficient of determinationk?), Nash—Sutcliffe effi-
F_|g. 4 SWAT simulated parameter sensitivity ¢alue) a_nd _model ciency (NSE), percentage bias (PBIAS), and the baseflow
significance { test) for the Haean catchment for monitoring loca- o 2 .
tions S1, S4, S5, S6, and S7 along the elevation transect. contribution. TheR* was _used to (_ava_luate_tlme and space
dependent cross-correlations and indicate if system behavior
is accurately represented by the model (Bennett et al., 2012).
The Nash-Sutcliffe efficiency (NSE) is a normalized corre-
Therefore, for computational efficiency, a semi-distributed lation related statistic used to compare observational vari-
approach was taken throughout the catchment utilizing theance to the residual variance, particularly during peak events
most sensitive parameters at each monitoring location for pa¢Nash and Sutcliffe, 1970). The percentage bias (PBIAS) is a
rameterization in adjacent areas. guantitative measure of simulated versus observed river dis-
While we did not explicitly quantify the optimal param- charge for the entire simulation period and defines the to-
eterization, through a series of iterations we weighted thetal volume differences between the simulated and observed
objective functions k2, NSE, PBIAS, and baseflow percent- fluxes. In addition, the baseflow statistic compares the simu-
age) in decreasing order as we compared individual locationfated baseflow contribution to the calculated estimate at each
throughout the catchment. In effect, we used a multi-criterialocation to alleviate hydrologic partitioning from alternative
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sources. This metric provides an independent check on a sp&able 6. Calibration and validation statistics for each of the moni-

cific component of the water budget. Finally, measured plantoring locations throughout the Haean Catchment. The data includes

growth dynamics were compared with simulated results. the subbasin demarcation of the monitoring locations, the total num-
ber of observations, the observed and simulated water balance, the

4.2.3 Manual and automated model calibration NSE, Rz, and PBIAS statistics, and the percent baseflow contribu-

tion.
Due to the complexity of Iarge—s.cale m_uIti—objective angl— Drainage
yses, watershed models are typically highly parameterized  Monitoring area  No. of PBIAS  Percent
. . . . . : 2
and manual calibration can be virtually impossible (Schuol location (knf) observ. NSE R (%)  baseflow
and Abbaspour, 2006) although multi-site, multi-objective 2010 calibration period
: : : : : [ S1 0.35 283 0.83 0.84 9.61 0.49
inverse c_ahbratlon and uncertainty analysis can aid in un-  2g 154 33 090 091 _878 016
derstanding the system (Abbaspour et al., 2004; Duan et s4 1.66 202 0.95 0.96 8.86 0.42
al., 2003). Model calibration was separated into two com- S5 2.09 259 085 0.89 1.27 0.16
nents, (1) manual catchment-scale calibration to estimate N 312 34 09 09 ~108 0.13
po , men . ss 6.55 36 085 095 -72.38 0.21
system processes and variability, and (2) automated calibra- sw 6.65 35 097 0.98 —10.60 0.13
tion to quantify model uncertainty. gg 272-2185 2%57 %%54 %9770 —6;19’1333 0-20006
.The SWAT model was simulated fr.om. 2.006. through 20;1 s7 52.08 207 073 093 2939 013
with the first 3 yr excluded for model initialization. The cali- 2009 validat ;
. . . . . validation period
bration and validation of river discharge was performed ata s1 0.35 66 092 083 —6.85 0.54
daily time step from 2009 through 2011, with 2010 as the cal- 22 i-z‘é 28 0.98 097 -9.05 0.15
|_brat|on period and 2(_)09 as the vahdatlo_n period. For loca- ¢ 2.09 65 088 090 —3.18 0.18
tions S4 and S6, we did not have observational records for the  sn 3.12 22 091 094 —14.47 0.14
2009 validation period and instead used the concept of self- SS 6.55 22 076 087 -3331 0.20
imilarity lidati lts. Si the t t foll d SwW 6.65 22 094 095 -359 0.10
similarity for validation results. Since the transect followe SK 798 22 062 071 1976 0.26
an elevation gradient in a limited portion of the catchment,  ss 22.15 0 - - - -
S7 52.08 22 074 0097 26.30 0.13

we conceptualized that similar hydrologic processes were oc-
curring for similar elevation and drainage areas in other parts
of the catchment. For example, location S4 was calibrated
to the 2010 observational data, although there was limitecaverage width of the prediction band divided by the stan-
data to validate for 2009. Because SD and SK had similadard deviation of the measured data (Faramarzi et al., 2009).
topography, elevation, drainage area, and land use patterrgince the uncertainty in field-based river discharge measure-
ing as S4 and S6, respectively, they were used to validate thments was typically< 5% (Shope et al., 2013), a conser-
S4 calibration parameters. Intensive manual calibration wawative 10 % measurement error was included in theahd
performed at each of the subbasins routed to a monitoring factor” calculations (Abbaspour et al., 2009; Andersson
station and used to minimize the acceptable parameter ranget al., 2009; Butts et al., 2004; Schuol et al., 2008). Yang
at each site. The difficulty is that manual calibration sensitiv-et al. (2008) found that reasonable prediction uncertainty
ity suffers from the linearity assumption by not accounting ranges were achieved with 1500 model simulation iterations,
for correlations between individual parameters. while, (Ging6r and Gonci, 2012) showed that 300 iterations
After manual calibration was optimized through the provided similar results to 1500 iterations. In Haean, at least
weighted, multi-criteria metrics previously discussed, auto-300 simulation iterations at each location were performed
mated model calibration, validation, and uncertainty anal-throughout the auto-calibration routine (Table 5).
ysis was completed using the Sequential Uncertainty Fit- As described, the calibration parameters were selected to
ting Algorithm (SUFI-2) (Abbaspour et al., 2004, 2007). optimize the PBIAS,R?, and NSE test statistics, the esti-
The manual calibration results provided distributed, physi-mated groundwater baseflow, and the plant growth dynamics.
cally based parameter ranges that were incorporated into th€he main SWAT parameters controlling baseflow processes
SUFI-2 auto-calibration routine, starting with the catchmentin Haean include GW_REVAP, GWQMN, GW_DELAY,
outlet and following a top to bottom approach. Model uncer- ALPHA_BF, and ESCO (Table 6). The primary parameters
tainty in auto-calibration is quantified by the 95 % prediction that affected surface runoff throughout the Haean catchment
uncertainty (95PPU) at the 2.5 and 97.5% cumulative dis-are CN2 and SOL_AWC. During model calibration proce-
tribution, which is obtained through Latin hypercube sam- dures, the ESCO and GW_REVAP parameters were typically
pling procedure (Abbaspour et al., 2004). Because the modeddjusted to minimize the PBIAS and improve the annual dis-
varies multiple parameters at the same time, two indices areharge and water balance trends. The GWQMN parameter
used to assess the stochastic calibration performance. Theas then adjusted to simulate the seasonal discharge trends
“ p factor” describes the percentage of data bracketed by thassessed by maximizing the month? and NSE statis-
95 % prediction uncertainty and the factor” describes the tics. Finally, the CN2, CH_N(2), and GWDELAY parameters
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were calibrated to account for daily trends by maximizing the Calibration period Valldaton period
NSE. When the Muskingum routing method was utilized, the 5 & ¢ & 5 ¢ 2 5 8 =2 28 8 22 © = 3 =
channel parameters CH_N(2) and CH_K(2) were ranked 2 i« tetonst - ocationst 1} 160
and 3 in the sensitivity analysis. However, the relative change 1. [ " |
in NSE between outlet results was negligibteq.01) com- " s s ’ s g |
pared to the default variable storage routing method, and the |~ ° | : » i
addition of more parameters was substantial. Therefore, vari  »{ ;g ﬁih L L 'ML M %
able storage routing within the SWAT model was chosen to R —— _ —— T
limit the model parameterization. I . pfactor=079 || °0
The explanation for the deviations in runoff at the low o, : e
elevation locations (S6 and S7) is not known or reflected z ® | seo- v k satanaivetos| 50

in the SWAT input data. However, by examining a combi-

Baseflow = 15%
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40 s | 40
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nation of optimized calibrated data, process-based compai
isons, and field observations, the overall calibration metrics

180 180

g

indicated increased flow routing directly from high elevation : v« o067 ) : -7 |10
locations to lower elevation river locations. A possible ex- £ -0 . wsiooss  |F i
planation is the density of surface water collection and sedi-£ * st -16: 1 saseton= 1o ©
mentation ponds within the catchment, which may have im- o0 : j wb ’ o
pacted the observed runoff characteristics of the watershe z o s e LKL, o
(Cho et al., 2012). Using a multi-criteria optimization ap- £ e ‘ watonsk_|F 1o
proach, we identified that engineered flow routing and infras-éljz 'Kf‘gmt?f? 'ﬂf‘;‘nfjf i
tructure construction such as roads and culverts, contribute: w {ust-oss e ki
to increased discharge at lower elevations. These catchmen , [esto=soc| o [ I I Baselow =205 |
wide landscape engineering results are further discussed i a:eh 1 ?& | L
Sect. 4.5. A i : Rodhd v
180 L = 180
iy ;?f::‘f:f;sa w I;ufc::x’:.nj;m 100
4.3 Spatiotemporal flow partitioning with respect to o § i ot || 140
river discharge e 7 ‘ Mot (o |
o | Baseflow=13% g T Baseflovi=13% |
The calibration and validation of the Haean catchment daily 43 L kBl , hjt\.,i | 00

discharge yielded good results given the scarcityandthetem = = 2 = = 5 £ = = 2 2 ¢ 2 8 2 ¢ 2 ¢ =

poral longevity of the available data. The modeling results
indicated that SWAT performance at the Haean catchment reFig. 5. Calibrated and validated daily comparison of drainage area
lied heavily on the quality and more importantly abundancenormalized observed and simulated river discharge along the eleva-
of discharge data, similar to the results of Dessu and Medion transect of monitoring locations S1, S4, S5, S6, and the catch-
lesse (2012). The NSE score for monitoring locations S1, 54,ment OL_JtIe_t S_?. Inclu_de_d on each panel are the objective function
S5, S6, and S7 ranged between 0.64 and 0.95 with an avefnd optimization statistics.
age score of 0.76 for the 2010 calibration period and between
0.40 and 0.98 for the validation period (Fig. 5). Satisfactory
NSE scores of- 0.5 (Moriasi et al., 2007) were achieved at and may have significant uncertainty. The calibrated base-
all 14 gauge locations in the calibration period and at 12 offlow of 42 % at S4 is similar to the estimate at the upstream
14 in the validation period. Th&? value was also reasonable location S1 and nearly twice as high as all of the down-
for each of the monitoring locations, ranging from 0.70 to stream locations, indicating that this mid-elevation area may
0.96 with an average value of 0.81 for the calibration periodbe transition zone between baseflow and runoff dominated
and between 0.71 and 0.97 for the validation period (Fig. 5).streamflow. This suggests that high elevation locations have
The fact that similar performance measures were reached imcreased baseflow contributions, relative to low elevation lo-
both validation and calibration periods indicate that there wascations, regardless of the observational data period.
minimal “overfitting” of the distributed parameters. We found increased differences between the simulated and
The baseflow contribution estimated at monitoring loca- observed water balance as measured through PBIAS statis-
tion S4 using a digital filter hydrograph separation techniquetics at locations S6 and S7, which were 41 and 29 %, respec-
was 26 %, although the calibrated estimate was 42 %. The hytively. These PBIAS estimates are unsatisfactory according
drograph separation magnitude varied significantly, dependto Morasi et al. (2007), regardless of the very gadtdand
ing on the data quality, the length of the analysis, and the timeNSE metrics and acceptable baseflow estimates. The increase
step investigated. However, the digital filter methodology for in water balance was hypothesized to be a function of rapid
estimation of the hydrograph separation is not process-baseand large flow contributions from high elevation locations
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Table 7.Biomass production and crop yield statistics for South Korea and specifically, for the Haean catchment.

Average S Korea cultivation 2009 Haean 2009 LULC area 2009 Haean

Area  Production Yield Plot Yield Plot Haean  Crop Yield
(ha) (metrictn) (tnhal) (tnha 1) (ha) (ha) (tn)
Rice 936 766 6 869 305 7.33 11.26  13.32 87312 73796
Cabbage 34321 2542000 74.07 481 1035 32742 15226
Potato 26 804 600 000 22.38 22.94 1.17 25,038 490895
Radish 23780 1223000 51.43 35.24 1.26 21828 610422
Soybean 80505 137000 1.70 14.66 0.09 16692 2719127
Deciduous forest - - - 42.03 103.05 359520 146620

Sources: Ministry for Food, Agriculture, Forestry & Fisheries (MIFAFF), Korea Rural Economic Institute, Korean Statistical Information
Service (KOSIS), Korea Agro-Fisheries Trade Corp. (aT), Yanggu statistical year-book 2003-2011 from the Yanggu County Office,
FAOSTAT 2008, World Bank 2009.

that were routed through culverts, drainages, and road sys- 7000 4=t
tems to lower catchment locations. Essentially, the effect of Q Max Heat Sum trend = -0.198x + 129
the anthropogenic routing not only creates a large disparity g 6000 r
in simulated discharge, but limits the subsurface infiltration § —
at the plot-scale for higher elevation locations and surrep-  §
titiously develops a misleading flashy flow system with re- ; 4000 A
duced landscape water storage. =

The lower NSE score anft? values could be attributed £ 3000
to the low magnitude relative variability of discharge at =

: X o . . X £ 2000 - |
higher elevation monitoring locations, which contributes to < f
increased deviations of NSE scores during event conditions, £ 1000 - |
particularly monsoonal extreme events. At location SK, there g /
is scarce observation data and because the NSE statistics T A L SR S I L
weight extreme events higher, limited but high deviations & 2 § § § § § § § § § § S

have a much larger impact than minor deviations. In addi-
tion, the difficulty in accurately simulating the river discharge Fig. 6. Daily heat sum estimate between 1998 and 2010 for the S1
at monitoring location SK was hypothesized to be a func-forest boundary monitoring location within the Haean watershed
tion of high elevation flow contributions that bypassed the (Fig. 1).
monitoring gage as hyporheic flow (Shope et al., 2013). The
hydrological response throughout East Asia and within the
Haean catchment in particular, is typically flashy and erratic,at these locations were good and consistent with the results
further attributing to event-based deviations in the objectivegstimated at the calibration locations.
functions. At monitoring location S5, a higher temporal den-  Each of the objective functions, hydrologic partitioning
Sity qf observations was obtained and the mode_l performancquamiﬁed by PBIAS, and the baseflow percentages were cal-
metrics are generally better than for other locations. ibrated simultaneously, which while optimizing the values of
Overall, the calibration and validation results were goodsome parameters, were at the detriment of other parameters.
and the percentage of baseflow contribution at each locatiofror example, the NSE at S5 was initially 0.89; however, pa-
was reasonable in terms of the hydrograph separation estigmeter adjustments were made to minimize the water bal-
mates. The auto calibration metrics of p-value andlue are  gnce, which resulted in a lower NSE value. The event on
both reasonable, while th%zand NSE statistics were consis- 1 September 2010 had a major influence on the magnitude
tently above satisfactory and predominately considered veryf the NSE andk? objective function. This is primarily due
good. The averagg factor throughout the calibration period  tg the paucity of observation points and therefore, the weight
at all stations was 0.64 (0.54 to 0.69) and thfactor was  of individual points on the overall relationship, particularly
0.21 (0.10 to 0.38). The averagefactor andr factor from during peak events.
the validation period was 0.74 (0.64 to 0.79) and 0.14 (0.10  The simulation results were very good in terms of ade-
to 0.21), respectively (Fig. 5). This indicates that the major-quately simulating baseflow contributions, the majority of
ity of the simulated results were within the 95 % confidence moderate events, and most extreme events for each location.
interval and that the standard deviation was adequately minitn addition, the other statistical objective functions were typi-
mized. As shown in Flg 5 and Table 7, the validation reSUltSCa”y good to very good. The qua“ty of input data, such as the
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Fig. 7.Comparison of simulated versus observed leaf area index (LAI) for five of the primary crops grown in Haean and the deciduous forest.

estimated river discharge (Shope et al., 2013) or the short duterms of agricultural growth dynamics at selected plot loca-
ration of observational data, significantly affected the modeltions throughout the catchment. While calibrating spatiotem-
performance. For example, extensive observational data wagoral discharge as previously described, we also investigated
collected at S5 but more limited at S4 and S6, resulting inthe effect of crop dynamics through temporal leaf area index
decreased statistics at the latter location, even after calibrad_Al) as a proxy for crop growth and development (Fig. 7).
tion. The relatively large 95 PPU band factor” necessary Individual crop growth and development parameters were ad-
to bracket the observed data indicates that the uncertainty ijusted for a comparison between observed and simulated LAI
the conceptual model is also very important for the Haean(Table 4). Results indicate a generally reasonable approxi-
catchment. mation of simulated LAl where th&? for each of the crop
types ranged from 0.51 to 0.76 (Fig. 7). More importantly,
the results provide a consistent estimate of temporal trends

4.4 Agricultural management and production me ’ > i
in simulated biomass or agricultural production.

The heat sum methodology used to estimate time variable
management and planting actions, provides the flexibility to4.5 Influence of engineered landscape structure
account for unseasonable variations in meteorological drivers
between years (Fig. 3). Heat sums are calculated as the ciBoth the calibration and validation indicate successful spa-
mulative daily temperature greater than the base temperaturgal results with very good metrics, although a point of con-
of 0.0°C initiated on the planting date and completed at thecern between observed and simulated results was at moni-
maximum growth. The HUSC is the percentage of the totaltoring locations S6 and S7. The river discharge discrepan-
heat units necessary for optimal growth of an individual cropcies between simulated and observed results were realized
and is prescribed for each management activity. The minithrough PBIAS, which accounts for observed and simulated
mum heat sum over the period of record was 424&lur-  water balance differences. Field-based observations showed
ing 2009, the maximum was 578@ during 2003, and the that catchment-wide surface runoff near the high elevation
average annual heat sum is 5222(Fig. 6). The 12yr lin-  crops is routed to culverts immediately adjacent to the in-
ear trend line of maximum cumulative annual heat sum val-dividual fields and road networks that discharge to low ele-
ues indicates a general decrease of nearly %@ .8er year.  vation river network reaches. As indicated in Fig. 2, many
When the potentially extreme years of 2003, 2008, and 200%f these long, extensive features traverse from high elevation
were excluded, a decrease of 8 3per year was estimated. plots near the forest boundary down to the lower portions of
While precipitation trends suggest more extreme events octhe catchment. To test the impact of these anthropogenic en-
curring over a shorter time, these results indicate a decreaggineered structures on catchment-wide hydrologic partition-
ing trend in annual heat output necessary for optimal planing, we compared several different surficial flow routing con-
growth. figurations. The routing configurations utilized in the model
To evaluate the SWAT simulation results on the ecohydro-simulations were (1) with rivers only, (2) with both rivers and
logic response, we also analyzed the simulation results irculverts, and (3) a combination of rivers, culverts, and roads
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(Fig. 2). As previously described in Sect. 4.3, the model per-cause the catchment is essentially a bowl-shaped topographic
formance in terms of PBIAS decreased toward the catchmenteature, the concept of symmetry enabled the results from
outlet, particularly near S6 and S7. As the transect continues single elevation-based transect of monitoring locations to
to the catchment outlet, the factor decreases from 71 to be utilized in a catchment-wide model calibration and vali-
11 %, indicating that less data is bracketed by the 95 % conéation. Our results showed that a combination of statistical,
fidence interval, while the factor describing the standard hydrologic, and plant growth objective functions as model-
deviation of the observed discharge increases from 0.20 téng metrics provide a more comprehensive understanding of
0.36. system interactions. We included not only classical statisti-
When the model was reconfigured to account for both thecal metrics to calibrate our model, but we also calibrated the
river drainage network and the culverts, a better calibrationmodel to independent baseflow contribution estimates and
was obtained where the PBIAS at monitoring locations Sé6plant growth dynamics. These novel calibration metric ad-
and S7 decreased from 41 and 29 % to 8 and 9 %, respeditions enabled us to improve the simulated hydrologic par-
tively. The dramatic difference in PBIAS was not extended titioning distributed throughout the catchment.
by including the roads into the river and culvert drainage Our goal of simulating high-frequency monsoonal events
network with a negligible increase in PBIAS observed at S6in an area of complex physiographic topography provided
and S7. Therefore, inclusion of the field-based drainage culsubstantial reliability in the use of the SWAT model in sim-
verts was effective in moderating the difference in observedlar mountainous areas, particularly throughout East Asia.
and model computed river discharge at lower elevation mon-To enhance the calibration of the SWAT model, simula-
itoring points and consistent with field-based observations otion of daily spatiotemporal stream discharge was improved
event-peak flow routing through the Haean watershed. Howthrough the incorporation of additional modeling metrics.
ever, it is surprising that the road network had minimal influ- Spatial variations of baseflow contributions and spatiotempo-
ence. During peak event conditions, substantial overland flowral plant growth dynamics through LAI helped to better con-
and sediment transport was observed throughout the Haeastrain catchment-wide hydrologic partitioning. Our results
catchment. Since the poured concrete culverts are immedishow that fundamental shifts between surficial and baseflow
ately adjacent to many of the plots, reduced landscape-scald@riven hydrologic flow partitioning occur within the catch-
infiltration required to maintain local soil moisture storage ment. High elevation steep sloping regions were found to
and rapidly transported excessive nutrients from fertilizerbe generally baseflow dominated while lower elevation lo-
applications into the lower parts of the catchment is preva-cations were predominately influenced by surface runoff.
lent. This results in a rapid transport of elevated nutrient The influences of engineered infrastructure systems (roads
and sediment loads into the river. Therefore, while there is aand culverts) were significant in hydrologic flow partition-
significant influence on landscape-scale surface runoff, riveing. Our results indicate that multiple calibration metrics and
discharge, and effectively hydrologic partitioning, a poten- hydrologic characteristicsR?, NSE, PBIAS, baseflow per-
tially greater issue is the impact expected from the rapid anccentage, and plant growth) were influential in quantifying
large-scale alteration in water quality. scale-dependent watershed processes. By not including the
culverts into the simulations, we demonstrate that the model
simulations adequately represented observed spatiotempo-
5 Conclusions ral discharge. However, by including PBIAS as a calibra-
tion metric, we improved flow partitioning on the landscape
To provide a high accuracy estimate of spatiotemporal mescale by up to 33 %, particularly at the low elevation loca-
teorological conditions, we used a unique high-frequencytions while minimal variations were observed at upper eleva-
quality control, and gap-filling algorithm to develop a de- tions. To optimize PBIAS, we explicitly included the culverts
tailed interpolation of weather patterns. The interpolated me-and the culverts and roads into the modeled drainage system
teorological conditions were then discretized throughout theto demonstrate that the spatially extensive irrigation culverts
catchment and the conditions were prescribed at the centroiddjacent to most fields and the road network play an impor-
of each of the subbasins. This novel technique provided aant role in flow routing.
better estimate of the dynamic variability due to convective However, there were limitations in the reliability of mod-
storm events than the default SWAT application of prescrib-eling in similar regions, particularly with respect to field es-
ing the nearest weather station to the subbasin centroid.  timates, data collection, and the conceptual model. In rela-
We demonstrate that the use of a novel catchment-widetively ungauged locations, it can be difficult to adequately
multi-location, multi-objective function approach can dras- distribute a monitoring network with high-frequency tempo-
tically improve process-based estimates of catchment-wideal resolution. Data gaps due to equipment malfunction and
hydrologic partitioning. By calibrating the model to many lo- instrument sensitivity to ice can be prevalent in locations
cations distributed throughout the catchment, landscape corwith complex topography and meteorological variability.
trols on hydrologic partitioning can be estimated as opposedinother significant source of uncertainty is irrigation and
to the integrated effect simulated at the catchment outlet. Beeonsumptive use water withdrawal quantification. However,
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