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Abstract. Watershed-scale modeling can be a valuable tool
to aid in quantification of water quality and yield; however,
several challenges remain. In many watersheds, it is dif-
ficult to adequately quantify hydrologic partitioning. Data
scarcity is prevalent, accuracy of spatially distributed meteo-
rology is difficult to quantify, forest encroachment and land
use issues are common, and surface water and groundwa-
ter abstractions substantially modify watershed-based pro-
cesses. Our objective is to assess the capability of the Soil
and Water Assessment Tool (SWAT) model to capture event-
based and long-term monsoonal rainfall–runoff processes in
complex mountainous terrain. To accomplish this, we deve-
loped a unique quality-control, gap-filling algorithm for in-
terpolation of high-frequency meteorological data. We used
a novel multi-location, multi-optimization calibration tech-
nique to improve estimations of catchment-wide hydrologic
partitioning. The interdisciplinary model was calibrated to
a unique combination of statistical, hydrologic, and plant
growth metrics. Our results indicate scale-dependent sensi-
tivity of hydrologic partitioning and substantial influence of
engineered features. The addition of hydrologic and plant

growth objective functions identified the importance of cul-
verts in catchment-wide flow distribution. While this study
shows the challenges of applying the SWAT model to com-
plex terrain and extreme environments; by incorporating an-
thropogenic features into modeling scenarios, we can en-
hance our understanding of the hydroecological impact.

1 Introduction

Land use and land cover (LULC) distribution can have a
substantial influence on catchment water balance due to lo-
calized precipitation, evaporation, transpiration, soil mois-
ture redistribution, and crop associated temporal variations
in surface runoff. The effects of land use change, including
deforestation (Forti et al., 1995), agricultural intensification
(Berka et al., 2001), yearly variations in agricultural land use
(Tilman et al., 2002), and construction of roads, culverts, and
sediment detention ponds (Strauch et al., 2014) on stream
discharge and water quality occur at many spatial and tem-
poral scales. Deforestation significantly affects streamflow
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characteristics (Calder, 1992) by increasing erosion and de-
creasing soil moisture and soil nutrient concentrations. Agri-
cultural intensification influences surface runoff by altering
infiltration, evaporation, and timing of runoff. As agricultural
land use increases, the need for water resources management
increases, particularly in complex topography driven by ex-
treme events.

The water resources of the Haean catchment in South Ko-
rea are important to quantify because the catchment rep-
resents an important contributor to the Han River and the
Soyang Lake watershed, which is a major drinking water
source for major metropolitan areas including the city of
Seoul (Jo and Park, 2010). The catchment is also a signifi-
cant source of sediment and nutrients due to the high agri-
cultural activity and forest encroachment (Jung et al., 2012;
Lee et al., 2014). Small-scale agriculture is the largest eco-
nomic activity within the basin, engaging 85 % of the pop-
ulation and up to 44 % of the available land area within the
catchment. Increasing agricultural encroachment into the for-
est region imposes a significant risk to water yield and quality
with a reduction in forested area by 37 % over the past 20 yr
(Kim et al., 2011). Furthermore, routing and flow manage-
ment in Haean has significantly increased the erosive power
and decreased infiltration during individual events (Arnhold
et al., 2013). Previous studies have suggested an appreciable
decline in aquatic species, attributed in large part to an in-
crease in fine grain sediment erosion and nutrient concentra-
tions (B. Kim, personal observation, 2010; Jun, 2009). Since
the end of the Korean War in 1953, a variety of ameliora-
tion measures such as river regulation, installation of catch-
ment drainage systems, and waste water treatment plants
(WWTPs) have been implemented in order to enlarge com-
munities and increase local agricultural production. These
measures have led to a change in the catchment-wide wa-
ter balance, spatiotemporal nutrient dynamics, and flood-
plain ecology (Jun, 2009). Several conservation projects have
been implemented within the Haean catchment and through-
out South Korea to limit and effectively manage soil ero-
sion including retention pond construction, modification of
riparian channel widths, and channel reinforcement. Conse-
quently, the landscape has been intensively altered, creating
a mosaic of ecohydrologic landscape patterns. Surface wa-
ter and groundwater abstractions, dam and reservoir oper-
ations, and engineered hydraulic structures (culverts, sedi-
ment ponds, and roads) have disrupted the natural hydrology
of the catchment. In higher elevations, surface water flow has
been observed to be entirely depleted over extended stretches
due to domestic and irrigation abstractions for dryland farms
(Shope et al., 2013). Previous research has indicated that
seasonal precipitation, as well as individual events, influ-
ences the hydrologic flushing of organic materials from the
land surface (Jung et al., 2012; Lee et al., 2014). The long-
term interdisciplinary research group TERRECO (Tenhunen
et al., 2011), has collected spatiotemporal terrestrial surface
runoff measurements to calculate sediment yield (Arnhold

et al., 2013), conduct dye tracer experiments to estimate
soil structure and variably saturated flow and transport pro-
cesses (Ruidisch et al., 2013), and examine groundwater and
surface water exchange on spatiotemporal fluxes and near-
stream biogeochemistry (Bartsch et al., 2014). To quantify
overland runoff, sediment transport, and soil loss from indi-
vidual crops under specific management practices, it is cri-
tical to understand sustainable resource allocation and sce-
nario implications in this agriculturally productive, complex
terrain.

Coupled hydrological and crop production watershed-
scale models are a useful tool to simulate the interactions
of catchment physical characteristics, agricultural practices,
and weather inputs on the water yield and to evaluate con-
servation practices in locations with limited observational
data (Cho et al., 2012). Model scenarios can be helpful in
identifying reasonable measures for assessing environmen-
tal ecological status (Lam et al., 2012; Volk et al., 2009).
Gassman et al. (2007) found that the distributed Soil and Wa-
ter Assessment Tool (SWAT) model was a promising model
for predominately agricultural watersheds located through-
out the world when compared to several other integrated wa-
tershed models. SWAT has also been successfully applied in
a wide variety of data-limited studies, particularly in South
Korea (Lee et al., 2012, 2011; Stehr et al., 2008; Mekonnen
et al., 2009). We use the SWAT model because it is a well-
documented, efficient model that couples long-term climate,
land use, and management practices to evaluate catchment-
wide hydrology.

This study builds upon multiple research investigations
distributed throughout the Soyang Lake watershed by imple-
menting the SWAT ecohydrologic model within the Haean
catchment to quantify hydrologic processes and catchment-
wide flow partitioning. Our objectives are to (1) assess
the potential of a spatiotemporal algorithm to improve dis-
cretization of monitored precipitation, (2) characterize the
spatiotemporal river discharge patterns at multiple locations
throughout the monsoon driven catchment through multi-
objective optimization, (3) determine the capability of the
SWAT model to capture daily monsoonal rainfall–runoff pro-
cesses in complex mountainous terrain, and (4) quantify the
significance of engineered structures (roads, culverts, sedi-
mentation ponds) on flow partitioning. To accomplish these
objectives, we utilized robust and comprehensive, spatiotem-
poral river discharge estimates at 14 locations throughout the
Haean catchment to quantify flow partitioning. We discuss
the construction of the ecohydrologic SWAT model for the
Haean catchment, the selection and sensitivity of model pa-
rameters, and the calibration and validation of the model. Fi-
nally, we evaluate three different river routing systems in-
cluding (1) the surface water drainages; (2) a combination of
the rivers and engineered culverts; and (3) the rivers, culverts,
and road network, to identify flow partitioning throughout the
catchment.
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Fig. 1. Haean study area within the Lake Soyang watershed is
located in northeastern South Korea along the demilitarized zone
(DMZ) border with North Korea. The regional KMA weather sta-
tion and local meteorological stations are denoted with white circles
and (WS). River discharge monitoring locations are denoted by (S)
and the yellow squares.

2 Catchment characteristics

The Haean catchment study area (38.239–38.329◦ N,
128.083–128.173◦E) is located in the Gangwon Province of
the northeastern portion of South Korea along the demilita-
rized zone (DMZ) between South and North Korea (Fig. 1).
The 62.7 km2 catchment has a unique bowl-shaped physio-
graphic characteristic with elevation ranging between 339 to
1321 m a.s.l., which drastically alters the local meteorologi-
cal conditions. The catchment drainage is the Mandae River
with a maximum length of 8.6 km. Limited historical obser-
vations are available, although this is typical for most areas

outside of Europe and North America. The average catch-
ment discharge at the outlet is 4.32 m3 s−1 (1.20–379 m3 s−1)

while the average discharge at the S1 headwater monitoring
location is 0.03 m3 s−1 (1.4× 10−4–10.0 m3 s−1). The catch-
ment hydrology is further described in Shope et al. (2013).
The catchment is 56 % forested and 44 % agricultural LULC.

Geologically, the basin is composed of a Precambrian
gneiss complex at the higher elevation mountain ridges and a
highly weathered Jurassic biotite granite intrusion that was
subsequently eroded throughout the central portion of the
catchment (Kwon et al., 1990). Alluvium generally extends
up to 2 m in depth and bedrock is typically observed between
20 and 45 m below land surface in the catchment interior.
Surficial soil texture is typically saprolitic sand and sandy
loam with high infiltration capacity (Arnhold et al., 2013; Jo
and Park, 2010).

The climate in South Korea is humid continental to hu-
mid subtropical, influenced by the East Asian summer mon-
soon and early autumn typhoons. The monsoon season ex-
tends from the end of June through the end of July, fol-
lowed by scattered events through early September, with
up to 70 % of the total annual precipitation between the
months of June and August. The average annual rainfall
over the most recent 12 yr of record is 1514 mm (930 to
2299 mm yr−1) with a maximum precipitation as high as
48.6 mm h−1 or up to 223.2 mm d−1. The average annual
temperature is 8.65± 0.35◦C ranging between−26.9◦C in
January to 33.4◦C in August. Choi et al. (2010) found
that the temperature lapse rate within the Haean catchment
ranged between−0.56◦C 100 m−1 throughout the spring to
+1◦C 100 m−1 during early morning inversions after many
consecutive sunny days.

3 Methods and model construction

3.1 Model description

The SWAT model is a continuous, physically based, dis-
tributed model originally developed to predict the long-term
impact of climate and land use management practices on hy-
drologic, sediment, and agricultural chemical yields in large,
complex basins (Arnold et al., 1998). Essentially, SWAT uses
the water balance approach to simulate watershed hydrologic
partitioning as described by Neitsch et al. (2010). Catch-
ments are divided, typically on a topographic basis, into spa-
tially linked subbasins and the subbasins are segregated into
unique hydrological response units (HRUs) by integrating
the combination of LULC, soil type, and slope to describe
the system physical heterogeneity. The modeled hydrolog-
ical components include surface runoff, percolation, lateral
flow, groundwater flow, evapotranspiration (ET), and trans-
mission losses. The simulation of watershed hydrology with
SWAT is split into the land phase and the channel or routing
phase of the hydrologic cycle, which controls the amount of
water, sediment, and nutrients into the main channel in each
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subbasin and through the channel network to the watershed
outlet (Neitsch et al., 2011). Incoming precipitation is par-
titioned into canopy storage, infiltration, and surface runoff
through either the SCS (Soil Conservation Service) curve
number (CN) method (U.S.D.A., 1972) or the Green–Ampt
(Green and Ampt, 1912) method. Daily runoff volume from
the SCS retention parameter can be calculated through the
shallow soil water content or through accumulated plant ET.
The SCS curve number method with calculated plant evap-
otranspiration was selected for the Haean catchment simu-
lations. The hydrologic condition of the vegetation is im-
portant in determining CN for individual HRUs (U.S.D.A.,
1972). Therefore, the distributed CN was further modified
within individual HRUs through time-variable LULC char-
acterization and crop growth. The model uses the modified
Rational Method to estimate peak flow (Neitsch et al., 2011).
Runoff in SWAT is aggregated from the HRU level into the
subbasin level and then routed through the stream network.
The Manning equation is used to estimate the flow rate and
velocity through the channels. Flow routing is based on either
the variable storage or the Muskingum routing method; and
for this study, we chose the variable storage method (Neitsch
et al., 2011).

3.2 Model inputs

3.2.1 Climate data

Hourly climate data for the period from 1998 to 2011 were
measured and collected from several regional stations of
the Korean Meteorological Agency (KMA) (Fig. 1). Precip-
itation and minimum/maximum temperature were obtained
from the Haean KMA station (38.287◦ N, 128.148◦E). Rel-
ative humidity, temperature, and wind speed were obtained
from the Inje KMA station in the adjacent Yanggu County
(38.207◦ N, 128.017◦ E). Solar radiation was collected from
the Chuncheon KMA station (37.904◦ N, 127.749◦ E). Dis-
tributed climate data were also collected from 15 micro-
meteorological stations (Delta-T Devices, Ltd.) throughout
the catchment (Fig. 1) between 2009 and 2011. Sub-hourly
data was aggregated into hourly precipitation (±0.2 mm),
minimum/maximum air temperature (±0.2◦ C), wind speed
(±0.1 m s−1), solar radiation (±5 W m−2), and relative hu-
midity (±2 %). Each parameter was quality controlled by re-
moving erroneous data and then gap filling from a similar
station using a weighted algorithm based on elevation, sta-
tion proximity, and aspect. The algorithm, as formulated for
precipitation, is presented as

Pe(z,d,ϕ) =
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a
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(
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[
minimizev
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])
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]
+ ...[(
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dx
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)
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∣∣] + Px

)
w2

]
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])
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The variablePe is the estimated precipitation (mm),z is the
elevation (m),d is the distance to the observation point (m),
φ is the observation point aspect (deg.),i is the time step,

a is the total number of consecutive missing data,Po is the
observed precipitation (mm),v is the total number of obser-
vational meteorological stations,j is the cumulative number
of stations, the “e” and “o” subscripts are the estimated and
observed location values,w is the weighting factor, andx
andy subscripts are the first and second most proximal loca-
tions to the estimation location, respectively. Locally based
relative humidity was modified by accounting for the tem-
perature dependent local dew point. The SWAT model does
not explicitly interpolate spatial meteorological conditions
but instead, prescribes the nearest weather station parameters
to the centroid of each subbasin (Neitsch et al., 2011). Due
to the large variation in topographical complexity throughout
the catchment, precipitation volume, soil moisture, and plant
growth were impacted when SWAT assigned the meteoro-
logical data to each subbasin. We tested several interpolation
methods to grid the measured meteorology results through-
out the catchment (inverse distance weighted (IDW), spline,
nearest neighbor, and kriging). The IDW method performed
optimally and was used to grid the measured meteorological
results throughout the catchment and the virtual weather cor-
responding to each subbasin centroid was prescribed. Prin-
ciple data sources used for the Haean catchment ecohydro-
logic model are provided in Table 1. Choi et al. (2010) found
highly variable temperature lapse rates, implying that stag-
nant East Asian monsoon high pressure systems can signifi-
cantly vary climatic conditions on a local scale. A tempera-
ture lapse rate of−0.52◦C 100 m−1 was incorporated into
the continuous spatial interpolation for temperature.

3.2.2 Discharge and evapotranspiration estimates

Event-based and baseflow surface water discharge measure-
ments were collected at up to 14 locations throughout the
catchment between 2003 and 2011 (Fig. 1) through multi-
ple methods as described by Shope et al. (2013). Observed
streamflow at interior locations within the catchment (S1, S4,
S5, and S6) and the catchment outlet (S7) were utilized for
daily and monthly model calibration to better parameterize
spatial variability in hydrologic partitioning. These monitor-
ing locations are distributed throughout the catchment along
an elevation gradient with increasing drainage area and pro-
vide regional representation of model parameterization. In
addition, the unique punchbowl shape enabled the calibration
parameters to be correlated to other ungauged subcatchments
with similar slope, elevation, and aspect.

Spatiotemporal aquifer contributions were investigated by
quantifying the relative baseflow from the hydrograph using
several baseflow separation techniques including differential
discharge measurements and recession analysis (Shope et al.,
2013). For estimate consistency between each of the monitor-
ing locations, we applied a recursive digital filter to separate
the low-frequency baseflow signal from the high-frequency
runoff in the formulation described by Eckhardt (2005).
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Table 1.Principle input data sets for the construction of the Haean catchment SWAT model.

Data set Agency Data set type Scale

(a) Spatial data sets

General boundaries GADMa Bathymetry, coastline, roads, lakes, rivers, counties, watersheds 1 : 10 000
Watershed DEM NGIIb Clipped DEM from Soyang Lake contour map 1 : 25 000
Stream channels TERRECOc Hydrologically corrected high-density flow network 1 : 10 000
Soils RDAd Clipped from Soyang Lake surficial soils map 1 : 25 000
Soils TERRECOe From 2009–2011 field based shallow soil (1.2) m observations 1 : 10 000
Land cover TERRECOf Agriculture and Forest field validated LULC 1 : 5000

(b) Temporal data sets

Precipitation, temperature KMAg Haean Cooperative Network weather station (1998–2009) Point
Relative humidity, wind speed KMAg Yanguu Cooperative Network weather station (1998–2009) Point
Solar radiation KMAg Chuncheon Cooperative Network weather station (1998–2009) Point
Local meteorology TERRECOh TERRECO stations, 15 in catchment (2009–2011) Point
WWTP point sources YCOi Wastewater treatment statistics at 5 plants (2002–2010) Point
Discharge and loads TERRECOj Field-based, discharge measurements (2003–2011) Point
Agricultural management data TERRECOk Farmer, county, administrative interviews and field-based plots

a GADM – Global Administrative Areas.b NGII – National Geographic Information Institute.c TERRECO – Field-based TERRECO IRTG observations, GPS
surveyed perennial and ephemeral stream channels.d RDA – Rural Development Administration.e TERRECO – Field-based TERRECO IRTG observations,
2009–2011 test pits, soil samples, soil characterization.f TERRECO – Field-based TERRECO IRTG observations, 2009 (36 classes), 2010 (114 classes), 2011 (100
classes).g KMA – Korean Meteorological Weather Station Network.h TERRECO – Field-based TERRECO IRTG observations, 2009–2011 (precipitation,
temperature, relative humidity, wind speed, solar radiation.i YCO – Yanguu County Office, wastewater treatment statistics 2003–2010.j TERRECO – Field-based,
spatially distributed, discharge measurements as described in Shope et al. (2013).k TERRECO – Field-based, spatially distributed plots of example management and
interviews with multiple stakeholders.

The calculated baseflow was subsequently compared to the
SWAT modeled baseflow contribution.

The SWAT model also includes several methods to cal-
culate potential evapotranspiration (PET) (Hargreaves and
Samani, 1985; Monteith, 1965; Penman, 1948; Priestley
and Taylor, 1972) depending on the observational meteo-
rological data available. Because of the robust and high-
frequency spatially variable micrometeorologic data avail-
able through the TERRECO project, we simulated daily PET
using the Penman–Monteith method (Penman, 1948). As de-
scribed in Ruidisch et al. (2013) and Shope et al. (2013), the
weather conditions throughout the catchment are heteroge-
neous and therefore, the physically based Penman–Monteith
estimates were preferred over the alternative methods. Soil
evaporation and crop transpiration were estimated using the
FAO Penman–Monteith equation as described in Allen et
al. (1988).

3.3 Spatial data

3.3.1 DEM

The Soyang watershed 30 m resolution digital elevation
model (DEM) obtained from the National Geographic In-
formation Institute (NGII) was clipped to the extent of the
Haean catchment boundaries (Fig. 1). The Haean catch-
ment was divided into three slope classes representing steep
forested high elevation (10◦ to 90◦), moderately sloped dry-

land agriculture (2◦ to 10◦), and mildly sloping rice paddies
in the central portion of the catchment (0◦ to 2◦) (Table 2).
The observed river network was geo-referenced and ex-
plicitly incorporated into the DEM because modification of
stream channels in highly managed catchments is prevalent
and inclusion of stream delineation improves hydrologic seg-
mentation and boundary delineation. In addition, extensive
ground-based surveys of engineered channels, diversions,
culverts, drainage features, sediment retention ponds, and
roads throughout the Haean catchment were completed. To
investigate the role that engineered structures have in chan-
nel routing, three channel classifications were constructed for
(1) the river network; (2) the river network and engineered
culverts; and (3) the river network, culvert system, and exist-
ing roads (Fig. 2). We implemented the engineered structures
in SWAT by sequentially adding them to the prescribed river
network and we superimpose the modified networks onto the
DEM. The roads and culverts were then prescribed as imper-
vious channels with no transmission loss on the river net-
work. Therefore, we had three complete model constructs
from the beginning to the end with different hydrographic
segmentation and subbasin boundary delineation.

3.3.2 Soils

Regional soil information was obtained from the Rural De-
velopment Administration (RDA) (1 : 25000) and based on
a single surficial soil layer. The Haean spatial soil data set
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Fig. 2. Multiple river system and infrastructure model configurations within the Haean catchment which, contribute to surface discharge
accumulation and flow routing. The panels display the configuration for(A) solely the Haean river network;(B) the river network and
engineered culvert drainage system; and(C) the river network, the culvert system, and the road infrastructure.

Table 2. Percentage of Haean catchment associated with the indi-
vidual aggregated land use, soil, and slope classifications. The slope
classification generally defines the difference between forest, dry-
land farming, and rice paddy systems throughout Haean.

Area Percent
Category (km2) watershed

Landuse

Barren soil 5.92 9.43 %
General beans 1.63 2.60 %
Rice 8.53 13.59 %
General cabbage 3.21 5.12 %
Coniferous forest 0.04 0.06 %
Deciduous forest 35.29 56.25 %
Ginseng 0.81 1.29 %
Inland water 0.03 0.04 %
Residential land use 1.05 1.67 %
Maize 0.52 0.83 %
General orchards 0.86 1.36 %
Potato 2.47 3.93 %
Radish 2.12 3.38 %
Codonopsis 0.28 0.44 %

Soils

Flat dry soil 8.07 12.87 %
Forest soil 19.74 31.46 %
Moderately steep dry soil 8.33 13.28 %
Rice paddy soil 13.78 21.96 %
Sealed ground 12.47 19.87 %
Very steep forest soil 0.35 0.55 %

Slope

Low slope rice paddy 8.02 12.79 %
Moderate slope dryland 17.43 27.78 %
Steep slope forest uplands 37.28 59.43 %

(TERRECO) coupled the RDA soil data, LULC, and exten-
sive field-based soil profiles to develop a spatial distribu-
tion of multiple soil horizons to a depth of 3 m. Our results
found that Haean soils are intensively managed and modified
and highly dependent on land use (Tenhunen et al., 2011).
Soil properties, including the hydrologic soil group, texture
class, the percentage content of rock, sand, silt, and clay
content, and the hydraulic conductivity, were derived from
a 2009 catchment-wide field survey that was aggregated into
6 unique soil types (Table 2). The hydrologic group and tex-
ture for each of the soils is (1) very steep forest soil (C, loam-
sand), (2) forest soil (C, loam-sand), (3) moderately steep dry
soil (D, sand-silt), (4) flat dryland soil (D, sand-silt), (5) rice
paddy soil (C, sand), and (6) sealed ground (D, clay).

3.3.3 Land use and land cover (LULC)

Intensive field-based, plot-scale LULC observations for each
of the years 2009 through 2011 resulted in up to 126 in-
dividual LULC classes. For the purposes of this study, the
2009 ground survey data have been distilled to 15 different
LULC classes (Table 2). Haean is a mixed land use catch-
ment, which contains 54 % agricultural land, and fields are
typically less than 0.40 km2. The remainder of the catch-
ment area is upland forest at higher elevations, predomi-
nately composed of 30 to 40 yr old mixed deciduous for-
est. Major species include Mongolian oak (Quercus mon-
golica), Daimyo oak (Quercus dentata), and Korean ash
(Fraxinus rhynchophylla). While this agriculture dependent
catchment has exhibited LULC increases up to 37 % through
forest encroachment (Kim et al., 2011), the LULC distri-
bution throughout the study period between 2009 and 2011
remained relatively stable (±1.2 %, Yanggu County Office,
2012).
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Table 3. Agricultural crop management schedule including planting and harvest dates, fertilization dates, amounts, and type of fertilizer,
tilling dates and method, SCS curve number for each crop, and the heat units required to reach maturity.

Planting Harvest Initial planting
LULC/ PHUb Tillage Fertilizer (leaf out)e (cessation)e Age LAI Biomass
crop CNa (◦C) JD type JD typec Amntd JD JD (yr) (–) (kg ha−1)

General 70.3 1710 121 Rotary hoe 133 Chem 345 135 224
Bean 133 Furrow out 133 Org 120
General 71.0 2159 126 Rotary hoe 138 Chem 360 140 201
Cabbage 138 Furrow out 138 Org 150

171 Chem 0.72
Potato 71.8 2381 101 Rotary hoe 113 Chem 330 115 243

113 Furrow out 113 Org 100
Radish 71.3 1631 136 Rotary hoe 150 Chem 340 152 232

150 Furrow out 150 Org 150
182 Chem 150

Rice 78.0 2736 124 Rotary hoe 136 Chem 230 138 288 0 0.2 50
136 Rice roller 156 Chem 0.2

169 Chem 0.2
181 Chem 0.5
193 Chem 0.5

Ginseng 71.5 3065 109 Rotary hoe 121 Chem 468 123 298
121 Furrow out 121 Org 120

Maize 69.7 2999 111 Rotary hoe 123 Chem 316 125 295
123 Furrow out 123 Org 100

General 58.6 3163 106 Rotary hoe 118 Chem 287 120 303 10 0 100
Orchard 118 Furrow out 118 Org 100
Timothy 72.0 2912 135 304

Codonopsis 40.7 2833 120 Chem 320 120 307
120 Org 150
166 Chem 0.5 40 0 342

Forest 50.5 2896 112 307

a CN is the SCS curve number.b PHU is the cumulative heat units above 0.0◦C required for the LULC/crop to reach maturity.c Fertilizer type is classified as Chem
(inorganic chemical) not explicitly described or Org (organic manure).d Fertilizer amount (kg ha−1). e Leaf out and cessation define the beginning and end of season
for forest and orchard land use.

3.4 Management inputs and crop parameterization

3.4.1 Management parameter estimation

Agricultural management practices within the Haean catch-
ment were surveyed between 2009 through 2011 through
a combination of on-site stakeholder interviews, empirical
field observations (Tenhunen et al., 2011), published litera-
ture (i.e., Nguyen et al., 2012), and regulatory reports from
the Research Institute of Gangwon (RIG), the Ministry of
Environment, the National Institute of Agricultural Science,
and Technology and the Korean Forest Research Institute.
More than 300 interviews of stakeholders and farmers were
completed under the TERRECO project to quantify fertiliza-
tion and pesticide application quantities and timing, irriga-
tion practices, planting and harvesting activities, and tillage
methodologies. TERRECO managed plots were also used
to obtain comprehensive temperature-based planting, fertil-
izer, tillage, mulching, development, and harvest information
(J. Tenhunen, unpublished data). An example of the land use
and crop management schedule, application rate, and appli-

cation frequency is provided in Table 3. Fertilizer application
parameters within the SWAT database were varied for each
crop and subbasin for spatially distributed management. The
simulated timing of management actions (i.e., fertilization,
tillage, planting, irrigation, harvesting) was implemented in
SWAT through daily heat unit summations because tradi-
tional planting and harvest methods are dependent on cli-
matic observations closely correlated to heat units.

3.4.2 Biomass sampling, analysis, and plant growth

Biomass analysis was completed by collecting and sampling
5 to 10 entire plants, representative of each crop type (Ta-
ble 2) from a 2009 catchment-wide sample set of TER-
RECO harvest plots (J. Tenhunen, unpublished data). Each
of the plants was field separated and subsequently weighed
for fresh weight. The leaf area was individually measured us-
ing a portable leaf area meter (Opti-Sciences, Inc., AM 300).
The samples were then separated and dried at 80◦C for more
than 1 week, prior to measuring the sample dry weight.
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Table 4.Example SWAT model crop parameter database variations in the Haean model.

Heata ALAI_ i BIO_m BMn

LULC units HUSCb BLAI c DLAI d FRGRW1e LAIMX1 f FRGRW2e LAIMX2 f GSIg T_BASEh MIN HVSTI j CHTMXk BIO_El LEAF DIE-OFF

Rice 1250 0.15 4 0.95 0.1 0.1 0.5 0.95 0.005 10 0 0.5 0.6 22 0 0.1
Radish 3300 0.01 5 0.9 0.1 0.1 0.3 0.95 0.3 0 0 2 0.6 30 0 0.1
Potato 3000 0.01 4 0.9 0.1 0.1 0.5 0.95 0.003 0 0 0.95 0.6 25 0 0.1
General beans 1050 0.15 5.4 1 0.1 0.1 0.5 0.95 0.003 10 0 0.31 0.6 25 0 0.1
General cabbage 900 0.2 3.5 0.9 0.1 0.1 0.5 0.95 0.003 0 0 0.8 0.5 19 0 0.1
Deciduous forest 300 0.01 7 1 0.1 0.1 0.5 0.95 0.0005 0 0 0.76 10 15 0.15 0.1
Coniferous forest 800 0.01 7 0.97 0.1 0.1 0.5 0.95 0.0005 0 0.06 0.76 10 15 0.15 0.1

a Heat Units is the total base zero annual heat units for the plant cover/land use to reach maturity.b HUSC is the fraction of the total base zero annual heat units at which the
management operation occurs.c BLAI is the maximum potential leaf area index.d DLAI is the fraction of the growing season when the leaf area begins to decline.e FRGRW1,2
represent the fraction of the plant growing season corresponding to the 1st and 2nd point on the optimal leaf area development curve.f LAIMX 1,2 represent the fraction of the
maximum leaf area index corresponding to the 1st and 2nd point on the optimal leaf area development curve.g GSI is the maxixmum stomatal conductance at high solar radiation
and low vapor pressure deficit (m s−1). h T_BASE is the minimum or base temperature for plant growth (◦C). i ALAI_MIN is the minimum leaf area index for the plant during
the dormant period (m2 m−2). j HVSTI is the fraction of aboveground biomass removed during a harvest operation and lost from the system.k CHTMX is the maximum canopy
height (m).l BIO_E is the radiation use efficiency or biomass energy ratio ((kg ha−1)/(MJ m−2)). m BIO_LEAF is the fraction of tree biomass accumulated each year that is
converted to residue during dormancy.n BMDIEOFF is the biomass die-off fraction.

To differentiate between crop types particular to South Ko-
rea (i.e., ginseng), several modified land use classes were cre-
ated in the SWAT crop database. Nine representative field
plots along an elevation transect were analyzed and crop pa-
rameters were varied to minimize the simulated and observed
residuals for leaf area index (LAI), biomass, and crop yield.
The crop parameters were altered based on observed mea-
surements, plant physiology modeling results from the PIX-
GRO model (i.e., Adiku et al., 2006), and published litera-
ture. The crop parameters that were varied are presented in
Tables 3 and 4. Intensive cultivation was also present in agri-
cultural areas not serviced by irrigation canals and therefore,
groundwater abstraction was estimated from the PIXGRO
model as the quantity required for optimal plant growth. Typ-
ical to many Asian catchments, Haean can be considered a
highly managed catchment with increased uncertainty due to
insufficient spatiotemporal water management data.

3.4.3 Rice paddies, potholes, and water abstraction

The quantity and timing of river and groundwater abstrac-
tions is uncontrolled and local estimates were inadequate
for model inclusion. Depending on the HRU location, ir-
rigation water was extracted from an adjacent river reach
or from shallow groundwater. Groundwater-derived irriga-
tion practices were limited to orchards and rice paddies and
were accounted for in the simulations through water avail-
ability based auto-irrigation at the HRU level and defined
by the soil water deficit. Haean rice paddies were simu-
lated in SWAT as potholes, which are hydrologically simi-
lar to ponded areas. Rice paddies are typically characterized
by multiple cascading-elevation plots separated by embank-
ments. The rice paddies had low infiltration and typically sat-
urated soil conditions and therefore, infiltration as a function
of water content rather than flow routing was used for esti-
mation of subsurface losses. The HRUs within each subbasin
were developed using 0 % land use and 0 % slope threshold
for reach subbasins resulting in maximum number of HRUs.
Since a subbasin can have multiple HRUs but only have a

single pothole, we limited the rice paddies in each subbasin
to a single HRU. We accomplished this by varying the soil
threshold until only a single rice paddy HRU was in each of
the subbasins.

4 Results and discussion

4.1 Meteorological drivers and the effects of
interpolation

Meteorological time series data, particularly precipitation is
a highly sensitive driver in hydrologic modeling applications
(Strauch et al., 2012). Spatial monitoring distributions are
typically limited and do not capture heterogeneous meteoro-
logical conditions that can be interpolated by wide-meshed
monitoring networks (Notter et al., 2007). Large variations
in elevation throughout the Haean catchment influence the
precipitation volume, soil moisture, and plant growth. They
can also influence the peak flow and the time of concentra-
tion to peak discharge of the simulated hydrograph (Khak-
baz et al., 2012; Wilson et al., 1979). Our weather analysis
revealed heterogeneous meteorological conditions through-
out the Haean catchment that are dependent on elevation and
aspect and largely focused in subregions (Choi et al., 2010;
Shope et al., 2013). These meteorological variations have a
direct influence on the relative humidity and therefore, the
spatial variability of plant growth parameters between sub-
basins was significant (Fig. 3).

We examined the model sensitivity to alternative precipi-
tation interpolation methods (IDW, Spline, nearest neighbor,
and kriging), both through spatially explicit plant growth re-
sponse and river discharge to assess the robustness of inter-
polation in our domain. We found that total river discharge
between interpolation methods varied less than 0.1 % at the
integrated catchment outlet (S7) and the discharge differ-
ences at multiple locations throughout the catchment (S1,
S4, S5, and S6) were negligible. The IDW univariate in-
terpolation technique for precipitation did result in slightly
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Haean catchment for 2010. Panel A) describes the daily precipitation and temperature 1080 
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locations, C) is the wind speed variability, and D) is the relative humidity range.  1082 

Fig. 3. Meteorologic variability and average daily value of each variable throughout the Haean catchment for 2010.(A) describes the daily
precipitation and temperature variability,(B) is the range in solar radiation and the average value between all of the locations,(C) is the wind
speed variability, and(D) is the relative humidity range.

improved plant growth response for selected crops and lo-
cations than other methods. Similar to results obtained by
Notter et al. (2012), the IDW method was invoked to develop
a continuous grid of meteorological drivers that were subse-
quently assigned to individual subbasins.

4.2 Model calibration, validation, and uncertainty
assessment

4.2.1 Sensitivity and model parameterization

The model sensitivity was addressed with respect to spa-
tial distribution (number and location of meteorological sta-
tions, LULC distribution), observational record (LULC cov-
erages, meteorological stations), resolution (soil coverage,
subbasin discretization), and hydrologic stimulus (rainfall–
runoff). The Haean catchment model configuration resulted
in 142 topographically based subbasins and 2532 individual
HRUs. Previous investigations have shown that the number
of subbasins has little influence on runoff (Jha et al., 2004;
Tripathi et al., 2006; Xu et al., 2012a, b). Alternatively, other
studies have found that HRU discretization can have a sub-
stantial effect depending on the physical catchment condi-
tions, data quality, and investigative scale (i.e., Setegn et
al., 2008; Haverkamp et al., 2002). We assessed the effect
of subbasin size and HRU definition on surface water dis-

charge and found no appreciable difference between model
results. However, our results show that elevation-based plant
parameters and convective precipitation captured through in-
creased subbasin discretization can be important. Subbasins
with steep slopes and extensive vertical gradients must ac-
count for elevation-based climate conditions, which con-
tribute to highly variable ET conditions. The sensitivity anal-
ysis of discharge related model parameters was achieved by
sequentially varying an individual parameter while maintain-
ing the remaining parameters for each monitoring location.
Between eight and eleven parameters from the original 15
discharge-related parameters were found to be sensitive to
catchment-wide flow partitioning (Fig. 4). Subsequently, the
range of each of the parameters was minimized during cali-
bration procedures.

The use of lumped, semi-distributed, and fully distributed
model parameterization was also investigated through sensi-
tivity analysis. We assigned the same parameter magnitudes
by crop type for the lumped distributed parameters, by crop
type and subbasin for semi-distributed, and by HRU in the
fully distributed construction. We found that fully distributed
parameters between subbasin, soil, and LULC were negligi-
bly better than semi-distributed parameters based on aggre-
gated LULC within individual subbasins. We also found that
the use of a lumped parameter assignment did not perform as
well as either the fully or semi-distributed parameterization.
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Fig. 4. SWAT simulated parameter sensitivity (p value) and model
significance (t test) for the Haean catchment for monitoring loca-
tions S1, S4, S5, S6, and S7 along the elevation transect.

Therefore, for computational efficiency, a semi-distributed
approach was taken throughout the catchment utilizing the
most sensitive parameters at each monitoring location for pa-
rameterization in adjacent areas.

While we did not explicitly quantify the optimal param-
eterization, through a series of iterations we weighted the
objective functions (R2, NSE, PBIAS, and baseflow percent-
age) in decreasing order as we compared individual locations
throughout the catchment. In effect, we used a multi-criteria

decision making process to determine the relative priority of
each alternative when all of the criteria were considered si-
multaneously. Because our results indicated that the sensi-
tivity analysis was significantly based on the monitoring lo-
cation, we calibrated multiple locations along an elevation
transect. In Fig. 4, the “t stat” provides a measure of parame-
ter sensitivity where larger absolute values are more sensitive
and the “p value” determines the significance of sensitivity
with higher significance as values approach zero (Abbaspour,
2011).

Our results generally indicate surface runoff and routing
parameters are more sensitive at higher elevations with in-
creasing sensitivity to infiltration and groundwater param-
eters at lower elevations (Fig. 4). The REVAPMN ground-
water parameter was a sensitive parameter at each location;
however, the magnitude was relatively small. CH_K(2) was
the least sensitive parameter, although included in the analy-
sis for comparison. Table 6 provides a summary of the SWAT
parameters. The infiltration parameters suggest significant
baseflow response at higher elevations. At mid-elevations,
surface runoff and routing parameters become more sen-
sitive. At lower catchment elevations, infiltration, routing,
and groundwater parameters dominate. Since the upper el-
evation locations are composed of shallow, highly perme-
able (S. Arnhold, unpublished results) soils over bedrock;
we conceptualize high infiltration rates that contribute to in-
creased baseflow and streamflow accumulation. At mid- to
low-elevation locations, higher land management and soil
amendments lead to runoff and less infiltration. These results
identify the importance of and differences between model
sensitivities as a function of the model equations, model
sensitivity, and observational dynamics. Therefore, caution
should be exercised in rainfall–runoff process simulations in
relatively ungauged basins.

4.2.2 Metrics of model performance for calibration
procedures

Model performance was assessed by several metrics at each
location including the simulated and observed water balance,
the coefficient of determination (R2), Nash–Sutcliffe effi-
ciency (NSE), percentage bias (PBIAS), and the baseflow
contribution. TheR2 was used to evaluate time and space
dependent cross-correlations and indicate if system behavior
is accurately represented by the model (Bennett et al., 2012).
The Nash–Sutcliffe efficiency (NSE) is a normalized corre-
lation related statistic used to compare observational vari-
ance to the residual variance, particularly during peak events
(Nash and Sutcliffe, 1970). The percentage bias (PBIAS) is a
quantitative measure of simulated versus observed river dis-
charge for the entire simulation period and defines the to-
tal volume differences between the simulated and observed
fluxes. In addition, the baseflow statistic compares the simu-
lated baseflow contribution to the calculated estimate at each
location to alleviate hydrologic partitioning from alternative
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sources. This metric provides an independent check on a spe-
cific component of the water budget. Finally, measured plant
growth dynamics were compared with simulated results.

4.2.3 Manual and automated model calibration

Due to the complexity of large-scale multi-objective anal-
yses, watershed models are typically highly parameterized
and manual calibration can be virtually impossible (Schuol
and Abbaspour, 2006) although multi-site, multi-objective
inverse calibration and uncertainty analysis can aid in un-
derstanding the system (Abbaspour et al., 2004; Duan et
al., 2003). Model calibration was separated into two com-
ponents, (1) manual catchment-scale calibration to estimate
system processes and variability, and (2) automated calibra-
tion to quantify model uncertainty.

The SWAT model was simulated from 2006 through 2011
with the first 3 yr excluded for model initialization. The cali-
bration and validation of river discharge was performed at a
daily time step from 2009 through 2011, with 2010 as the cal-
ibration period and 2009 as the validation period. For loca-
tions S4 and S6, we did not have observational records for the
2009 validation period and instead used the concept of self-
similarity for validation results. Since the transect followed
an elevation gradient in a limited portion of the catchment,
we conceptualized that similar hydrologic processes were oc-
curring for similar elevation and drainage areas in other parts
of the catchment. For example, location S4 was calibrated
to the 2010 observational data, although there was limited
data to validate for 2009. Because SD and SK had similar
topography, elevation, drainage area, and land use pattern-
ing as S4 and S6, respectively, they were used to validate the
S4 calibration parameters. Intensive manual calibration was
performed at each of the subbasins routed to a monitoring
station and used to minimize the acceptable parameter range
at each site. The difficulty is that manual calibration sensitiv-
ity suffers from the linearity assumption by not accounting
for correlations between individual parameters.

After manual calibration was optimized through the
weighted, multi-criteria metrics previously discussed, auto-
mated model calibration, validation, and uncertainty anal-
ysis was completed using the Sequential Uncertainty Fit-
ting Algorithm (SUFI-2) (Abbaspour et al., 2004, 2007).
The manual calibration results provided distributed, physi-
cally based parameter ranges that were incorporated into the
SUFI-2 auto-calibration routine, starting with the catchment
outlet and following a top to bottom approach. Model uncer-
tainty in auto-calibration is quantified by the 95 % prediction
uncertainty (95PPU) at the 2.5 and 97.5 % cumulative dis-
tribution, which is obtained through Latin hypercube sam-
pling procedure (Abbaspour et al., 2004). Because the model
varies multiple parameters at the same time, two indices are
used to assess the stochastic calibration performance. The
“p factor” describes the percentage of data bracketed by the
95 % prediction uncertainty and the “r factor” describes the

Table 6. Calibration and validation statistics for each of the moni-
toring locations throughout the Haean Catchment. The data includes
the subbasin demarcation of the monitoring locations, the total num-
ber of observations, the observed and simulated water balance, the
NSE, R2, and PBIAS statistics, and the percent baseflow contribu-
tion.

Drainage
Monitoring area No. of PBIAS Percent
location (km2) observ. NSE R2 (%) baseflow

2010 calibration period
S1 0.35 283 0.83 0.84 9.61 0.49
SD 1.54 33 0.90 0.91 −8.78 0.16
S4 1.66 202 0.95 0.96 8.86 0.42
S5 2.09 259 0.85 0.89 1.27 0.16
SN 3.12 34 0.95 0.96 −1.08 0.13
SS 6.55 36 0.85 0.95 −72.38 0.21
SW 6.65 35 0.97 0.98 −10.60 0.13
SK 7.28 35 0.95 0.97 −6.93 0.20
S6 22.15 267 0.64 0.70 41.33 0.06
S7 52.08 207 0.73 0.93 29.39 0.13

2009 validation period
S1 0.35 66 0.92 0.83 −6.85 0.54
SD 1.54 20 0.98 0.97 −9.05 0.15
S4 1.66 0 – – – –
S5 2.09 65 0.88 0.90 −3.18 0.18
SN 3.12 22 0.91 0.94 −14.47 0.14
SS 6.55 22 0.76 0.87 −33.31 0.20
SW 6.65 22 0.94 0.95 −3.59 0.10
SK 7.28 22 0.62 0.71 19.76 0.26
S6 22.15 0 – – – –
S7 52.08 22 0.74 0.97 26.30 0.13

average width of the prediction band divided by the stan-
dard deviation of the measured data (Faramarzi et al., 2009).
Since the uncertainty in field-based river discharge measure-
ments was typically< 5 % (Shope et al., 2013), a conser-
vative 10 % measurement error was included in the “p and
r factor” calculations (Abbaspour et al., 2009; Andersson
et al., 2009; Butts et al., 2004; Schuol et al., 2008). Yang
et al. (2008) found that reasonable prediction uncertainty
ranges were achieved with 1500 model simulation iterations,
while, (Güngör and Göncü, 2012) showed that 300 iterations
provided similar results to 1500 iterations. In Haean, at least
300 simulation iterations at each location were performed
throughout the auto-calibration routine (Table 5).

As described, the calibration parameters were selected to
optimize the PBIAS,R2, and NSE test statistics, the esti-
mated groundwater baseflow, and the plant growth dynamics.
The main SWAT parameters controlling baseflow processes
in Haean include GW_REVAP, GWQMN, GW_DELAY,
ALPHA_BF, and ESCO (Table 6). The primary parameters
that affected surface runoff throughout the Haean catchment
are CN2 and SOL_AWC. During model calibration proce-
dures, the ESCO and GW_REVAP parameters were typically
adjusted to minimize the PBIAS and improve the annual dis-
charge and water balance trends. The GWQMN parameter
was then adjusted to simulate the seasonal discharge trends
assessed by maximizing the monthlyR2 and NSE statis-
tics. Finally, the CN2, CH_N(2), and GWDELAY parameters
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were calibrated to account for daily trends by maximizing the
NSE. When the Muskingum routing method was utilized, the
channel parameters CH_N(2) and CH_K(2) were ranked 2
and 3 in the sensitivity analysis. However, the relative change
in NSE between outlet results was negligible (∼ 0.01) com-
pared to the default variable storage routing method, and the
addition of more parameters was substantial. Therefore, vari-
able storage routing within the SWAT model was chosen to
limit the model parameterization.

The explanation for the deviations in runoff at the low
elevation locations (S6 and S7) is not known or reflected
in the SWAT input data. However, by examining a combi-
nation of optimized calibrated data, process-based compar-
isons, and field observations, the overall calibration metrics
indicated increased flow routing directly from high elevation
locations to lower elevation river locations. A possible ex-
planation is the density of surface water collection and sedi-
mentation ponds within the catchment, which may have im-
pacted the observed runoff characteristics of the watershed
(Cho et al., 2012). Using a multi-criteria optimization ap-
proach, we identified that engineered flow routing and infras-
tructure construction such as roads and culverts, contributed
to increased discharge at lower elevations. These catchment-
wide landscape engineering results are further discussed in
Sect. 4.5.

4.3 Spatiotemporal flow partitioning with respect to
river discharge

The calibration and validation of the Haean catchment daily
discharge yielded good results given the scarcity and the tem-
poral longevity of the available data. The modeling results
indicated that SWAT performance at the Haean catchment re-
lied heavily on the quality and more importantly abundance
of discharge data, similar to the results of Dessu and Me-
lesse (2012). The NSE score for monitoring locations S1, S4,
S5, S6, and S7 ranged between 0.64 and 0.95 with an aver-
age score of 0.76 for the 2010 calibration period and between
0.40 and 0.98 for the validation period (Fig. 5). Satisfactory
NSE scores of> 0.5 (Moriasi et al., 2007) were achieved at
all 14 gauge locations in the calibration period and at 12 of
14 in the validation period. TheR2 value was also reasonable
for each of the monitoring locations, ranging from 0.70 to
0.96 with an average value of 0.81 for the calibration period
and between 0.71 and 0.97 for the validation period (Fig. 5).
The fact that similar performance measures were reached in
both validation and calibration periods indicate that there was
minimal “overfitting” of the distributed parameters.

The baseflow contribution estimated at monitoring loca-
tion S4 using a digital filter hydrograph separation technique
was 26 %, although the calibrated estimate was 42 %. The hy-
drograph separation magnitude varied significantly, depend-
ing on the data quality, the length of the analysis, and the time
step investigated. However, the digital filter methodology for
estimation of the hydrograph separation is not process-based
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Fig. 5. Calibrated and validated daily comparison of drainage area
normalized observed and simulated river discharge along the eleva-
tion transect of monitoring locations S1, S4, S5, S6, and the catch-
ment outlet S7. Included on each panel are the objective function
and optimization statistics.

and may have significant uncertainty. The calibrated base-
flow of 42 % at S4 is similar to the estimate at the upstream
location S1 and nearly twice as high as all of the down-
stream locations, indicating that this mid-elevation area may
be transition zone between baseflow and runoff dominated
streamflow. This suggests that high elevation locations have
increased baseflow contributions, relative to low elevation lo-
cations, regardless of the observational data period.

We found increased differences between the simulated and
observed water balance as measured through PBIAS statis-
tics at locations S6 and S7, which were 41 and 29 %, respec-
tively. These PBIAS estimates are unsatisfactory according
to Morasi et al. (2007), regardless of the very goodR2 and
NSE metrics and acceptable baseflow estimates. The increase
in water balance was hypothesized to be a function of rapid
and large flow contributions from high elevation locations
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Table 7.Biomass production and crop yield statistics for South Korea and specifically, for the Haean catchment.

Average S Korea cultivation 2009 Haean 2009 LULC area 2009 Haean

Area Production Yield Plot Yield Plot Haean Crop Yield
(ha) (metric tn) (tn ha−1) (tn ha−1) (ha) (ha) (tn)

Rice 936 766 6 869 305 7.33 11.26 13.32 87 312 73 796
Cabbage 34 321 2 542 000 74.07 4.81 10.35 32 742 15 226
Potato 26 804 600 000 22.38 22.94 1.17 25,038 490 895
Radish 23 780 1 223 000 51.43 35.24 1.26 21 828 610 422
Soybean 80 505 137 000 1.70 14.66 0.09 16 692 2 719 127
Deciduous forest – – – 42.03 103.05 359 520 146 620

Sources: Ministry for Food, Agriculture, Forestry & Fisheries (MIFAFF), Korea Rural Economic Institute, Korean Statistical Information
Service (KOSIS), Korea Agro-Fisheries Trade Corp. (aT), Yanggu statistical year-book 2003–2011 from the Yanggu County Office,
FAOSTAT 2008, World Bank 2009.

that were routed through culverts, drainages, and road sys-
tems to lower catchment locations. Essentially, the effect of
the anthropogenic routing not only creates a large disparity
in simulated discharge, but limits the subsurface infiltration
at the plot-scale for higher elevation locations and surrep-
titiously develops a misleading flashy flow system with re-
duced landscape water storage.

The lower NSE score andR2 values could be attributed
to the low magnitude relative variability of discharge at
higher elevation monitoring locations, which contributes to
increased deviations of NSE scores during event conditions,
particularly monsoonal extreme events. At location SK, there
is scarce observation data and because the NSE statistics
weight extreme events higher, limited but high deviations
have a much larger impact than minor deviations. In addi-
tion, the difficulty in accurately simulating the river discharge
at monitoring location SK was hypothesized to be a func-
tion of high elevation flow contributions that bypassed the
monitoring gage as hyporheic flow (Shope et al., 2013). The
hydrological response throughout East Asia and within the
Haean catchment in particular, is typically flashy and erratic,
further attributing to event-based deviations in the objective
functions. At monitoring location S5, a higher temporal den-
sity of observations was obtained and the model performance
metrics are generally better than for other locations.

Overall, the calibration and validation results were good
and the percentage of baseflow contribution at each location
was reasonable in terms of the hydrograph separation esti-
mates. The auto calibration metrics of p-value andr value are
both reasonable, while theR2and NSE statistics were consis-
tently above satisfactory and predominately considered very
good. The averagep factor throughout the calibration period
at all stations was 0.64 (0.54 to 0.69) and ther factor was
0.21 (0.10 to 0.38). The averagep factor andr factor from
the validation period was 0.74 (0.64 to 0.79) and 0.14 (0.10
to 0.21), respectively (Fig. 5). This indicates that the major-
ity of the simulated results were within the 95 % confidence
interval and that the standard deviation was adequately mini-
mized. As shown in Fig. 5 and Table 7, the validation results
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Figure 5 –Calibrated and validated daily comparison of drainage area normalized observed and 1088 

simulated river discharge along the elevation transect of monitoring locations S1, S4, S5, S6, 1089 
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Figure 6 - Daily heat sum estimate between 1998 and 2010 for the S1 forest boundary 1093 

monitoring location within the Haean watershed (Figure 1).  1094 

Fig. 6. Daily heat sum estimate between 1998 and 2010 for the S1
forest boundary monitoring location within the Haean watershed
(Fig. 1).

at these locations were good and consistent with the results
estimated at the calibration locations.

Each of the objective functions, hydrologic partitioning
quantified by PBIAS, and the baseflow percentages were cal-
ibrated simultaneously, which while optimizing the values of
some parameters, were at the detriment of other parameters.
For example, the NSE at S5 was initially 0.89; however, pa-
rameter adjustments were made to minimize the water bal-
ance, which resulted in a lower NSE value. The event on
1 September 2010 had a major influence on the magnitude
of the NSE andR2 objective function. This is primarily due
to the paucity of observation points and therefore, the weight
of individual points on the overall relationship, particularly
during peak events.

The simulation results were very good in terms of ade-
quately simulating baseflow contributions, the majority of
moderate events, and most extreme events for each location.
In addition, the other statistical objective functions were typi-
cally good to very good. The quality of input data, such as the
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 Figure 7 - Comparison of simulated versus observed leaf area index (LAI) for five of the 1096 
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Fig. 7.Comparison of simulated versus observed leaf area index (LAI) for five of the primary crops grown in Haean and the deciduous forest.

estimated river discharge (Shope et al., 2013) or the short du-
ration of observational data, significantly affected the model
performance. For example, extensive observational data was
collected at S5 but more limited at S4 and S6, resulting in
decreased statistics at the latter location, even after calibra-
tion. The relatively large 95 PPU band “r factor” necessary
to bracket the observed data indicates that the uncertainty in
the conceptual model is also very important for the Haean
catchment.

4.4 Agricultural management and production

The heat sum methodology used to estimate time variable
management and planting actions, provides the flexibility to
account for unseasonable variations in meteorological drivers
between years (Fig. 3). Heat sums are calculated as the cu-
mulative daily temperature greater than the base temperature
of 0.0◦C initiated on the planting date and completed at the
maximum growth. The HUSC is the percentage of the total
heat units necessary for optimal growth of an individual crop
and is prescribed for each management activity. The mini-
mum heat sum over the period of record was 4246◦C dur-
ing 2009, the maximum was 5783◦C during 2003, and the
average annual heat sum is 5222◦C (Fig. 6). The 12 yr lin-
ear trend line of maximum cumulative annual heat sum val-
ues indicates a general decrease of nearly 74.8◦C per year.
When the potentially extreme years of 2003, 2008, and 2009
were excluded, a decrease of 15.3◦ C per year was estimated.
While precipitation trends suggest more extreme events oc-
curring over a shorter time, these results indicate a decreas-
ing trend in annual heat output necessary for optimal plant
growth.

To evaluate the SWAT simulation results on the ecohydro-
logic response, we also analyzed the simulation results in

terms of agricultural growth dynamics at selected plot loca-
tions throughout the catchment. While calibrating spatiotem-
poral discharge as previously described, we also investigated
the effect of crop dynamics through temporal leaf area index
(LAI) as a proxy for crop growth and development (Fig. 7).
Individual crop growth and development parameters were ad-
justed for a comparison between observed and simulated LAI
(Table 4). Results indicate a generally reasonable approxi-
mation of simulated LAI where theR2 for each of the crop
types ranged from 0.51 to 0.76 (Fig. 7). More importantly,
the results provide a consistent estimate of temporal trends
in simulated biomass or agricultural production.

4.5 Influence of engineered landscape structure

Both the calibration and validation indicate successful spa-
tial results with very good metrics, although a point of con-
cern between observed and simulated results was at moni-
toring locations S6 and S7. The river discharge discrepan-
cies between simulated and observed results were realized
through PBIAS, which accounts for observed and simulated
water balance differences. Field-based observations showed
that catchment-wide surface runoff near the high elevation
crops is routed to culverts immediately adjacent to the in-
dividual fields and road networks that discharge to low ele-
vation river network reaches. As indicated in Fig. 2, many
of these long, extensive features traverse from high elevation
plots near the forest boundary down to the lower portions of
the catchment. To test the impact of these anthropogenic en-
gineered structures on catchment-wide hydrologic partition-
ing, we compared several different surficial flow routing con-
figurations. The routing configurations utilized in the model
simulations were (1) with rivers only, (2) with both rivers and
culverts, and (3) a combination of rivers, culverts, and roads
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(Fig. 2). As previously described in Sect. 4.3, the model per-
formance in terms of PBIAS decreased toward the catchment
outlet, particularly near S6 and S7. As the transect continues
to the catchment outlet, thep factor decreases from 71 to
11 %, indicating that less data is bracketed by the 95 % con-
fidence interval, while ther factor describing the standard
deviation of the observed discharge increases from 0.20 to
0.36.

When the model was reconfigured to account for both the
river drainage network and the culverts, a better calibration
was obtained where the PBIAS at monitoring locations S6
and S7 decreased from 41 and 29 % to 8 and 9 %, respec-
tively. The dramatic difference in PBIAS was not extended
by including the roads into the river and culvert drainage
network with a negligible increase in PBIAS observed at S6
and S7. Therefore, inclusion of the field-based drainage cul-
verts was effective in moderating the difference in observed
and model computed river discharge at lower elevation mon-
itoring points and consistent with field-based observations of
event-peak flow routing through the Haean watershed. How-
ever, it is surprising that the road network had minimal influ-
ence. During peak event conditions, substantial overland flow
and sediment transport was observed throughout the Haean
catchment. Since the poured concrete culverts are immedi-
ately adjacent to many of the plots, reduced landscape-scale
infiltration required to maintain local soil moisture storage
and rapidly transported excessive nutrients from fertilizer
applications into the lower parts of the catchment is preva-
lent. This results in a rapid transport of elevated nutrient
and sediment loads into the river. Therefore, while there is a
significant influence on landscape-scale surface runoff, river
discharge, and effectively hydrologic partitioning, a poten-
tially greater issue is the impact expected from the rapid and
large-scale alteration in water quality.

5 Conclusions

To provide a high accuracy estimate of spatiotemporal me-
teorological conditions, we used a unique high-frequency,
quality control, and gap-filling algorithm to develop a de-
tailed interpolation of weather patterns. The interpolated me-
teorological conditions were then discretized throughout the
catchment and the conditions were prescribed at the centroid
of each of the subbasins. This novel technique provided a
better estimate of the dynamic variability due to convective
storm events than the default SWAT application of prescrib-
ing the nearest weather station to the subbasin centroid.

We demonstrate that the use of a novel catchment-wide,
multi-location, multi-objective function approach can dras-
tically improve process-based estimates of catchment-wide
hydrologic partitioning. By calibrating the model to many lo-
cations distributed throughout the catchment, landscape con-
trols on hydrologic partitioning can be estimated as opposed
to the integrated effect simulated at the catchment outlet. Be-

cause the catchment is essentially a bowl-shaped topographic
feature, the concept of symmetry enabled the results from
a single elevation-based transect of monitoring locations to
be utilized in a catchment-wide model calibration and vali-
dation. Our results showed that a combination of statistical,
hydrologic, and plant growth objective functions as model-
ing metrics provide a more comprehensive understanding of
system interactions. We included not only classical statisti-
cal metrics to calibrate our model, but we also calibrated the
model to independent baseflow contribution estimates and
plant growth dynamics. These novel calibration metric ad-
ditions enabled us to improve the simulated hydrologic par-
titioning distributed throughout the catchment.

Our goal of simulating high-frequency monsoonal events
in an area of complex physiographic topography provided
substantial reliability in the use of the SWAT model in sim-
ilar mountainous areas, particularly throughout East Asia.
To enhance the calibration of the SWAT model, simula-
tion of daily spatiotemporal stream discharge was improved
through the incorporation of additional modeling metrics.
Spatial variations of baseflow contributions and spatiotempo-
ral plant growth dynamics through LAI helped to better con-
strain catchment-wide hydrologic partitioning. Our results
show that fundamental shifts between surficial and baseflow
driven hydrologic flow partitioning occur within the catch-
ment. High elevation steep sloping regions were found to
be generally baseflow dominated while lower elevation lo-
cations were predominately influenced by surface runoff.

The influences of engineered infrastructure systems (roads
and culverts) were significant in hydrologic flow partition-
ing. Our results indicate that multiple calibration metrics and
hydrologic characteristics (R2, NSE, PBIAS, baseflow per-
centage, and plant growth) were influential in quantifying
scale-dependent watershed processes. By not including the
culverts into the simulations, we demonstrate that the model
simulations adequately represented observed spatiotempo-
ral discharge. However, by including PBIAS as a calibra-
tion metric, we improved flow partitioning on the landscape
scale by up to 33 %, particularly at the low elevation loca-
tions while minimal variations were observed at upper eleva-
tions. To optimize PBIAS, we explicitly included the culverts
and the culverts and roads into the modeled drainage system
to demonstrate that the spatially extensive irrigation culverts
adjacent to most fields and the road network play an impor-
tant role in flow routing.

However, there were limitations in the reliability of mod-
eling in similar regions, particularly with respect to field es-
timates, data collection, and the conceptual model. In rela-
tively ungauged locations, it can be difficult to adequately
distribute a monitoring network with high-frequency tempo-
ral resolution. Data gaps due to equipment malfunction and
instrument sensitivity to ice can be prevalent in locations
with complex topography and meteorological variability.
Another significant source of uncertainty is irrigation and
consumptive use water withdrawal quantification. However,
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limited detailed data is typically available on the quantity,
timing, or location of water withdraws and care should be
taken to incorporate into model construction.

Overall, the results of this study show that unique mod-
eling methodologies can be employed to decrease modeling
uncertainty including accurate meteorological boundary con-
ditions, spatially distributed monitoring locations, and addi-
tional physically based modeling metrics. Our results fur-
ther elucidate the effect of catchment-scale engineered struc-
tures on discharge and the potential influence on nutrient
loading and contaminant transport. Care must be taken dur-
ing model construction to avoid overlooking valuable hydro-
logic information and complex relationships that may be de-
ciphered through additional objective function metrics. This
study shows the challenges of applying the SWAT model to
complex terrain and meteorological extreme environments
and the means to overcome these difficulties.
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