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Abstract 

Water diffusion into silica glass results in a zone where the water reacts with the 
SiO2 structure and “damages” the originally intact SiO2 rings. The consequence 
is a reduced Young’s module. This effect must be strongly stress-enhanced 
at crack tips under the high near-tip stresses.  
In this report the general influence on crack stability and local failure condition 
is addressed. The results give rise for subcritical crack growth in the sense of 
crack extension under applied stress intensity factors below the fracture tough-
ness KIc. A threshold stress intensity factor for subcritical crack growth in silica 
can be concluded.  
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1. Damage by hydroxyl generation 

Water diffuses into silica glass as a molecule, occasionally reacting with the silica 
network according to the following equation: 

 Si-O-Si +H2O  SiOH+HOSi. (1.1) 

The concentration of the hydroxyl water S = [SiOH] is usually expressed in terms of 
the OH-concentration, [OH], whereas the concentration of the molecular water is 
given by C = [H2O].  

When a hydroxyl has been formed, the initial silica ring is broken and the mechanical 
cohesion is weakened as is illustrated in Fig. 1. Such “defects” in the glass structure 
can be treated by using the damage variable D of continuum damage mechanics 
(Kachanov [1], Lemaitre [2]). This parameter is proportional to the density of micro-
defects.  
According to the postulate of strain equivalence by Lemaitre [3], the effective elastic 
modulus, ED, decreases with increasing damage  

  )1(0 DEED   (1.2) 

where E0 is the modulus of virgin glass. The damage variable D can be determined 
from module measurements via eq.(1.2).  

 

 
Fig. 1 Volume element of silica showing damage by bond breaking due to the water/silica reaction, 

third dimension ignored. 

We assume in the following considerations that the damage is isotropic and considered 
to be of scalar nature. This is equivalent to the assumption of randomly orientated 
defects. We furthermore assume that nano-pores in SiO2, caused by hydroxyl 
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generation, might behave like normal pores. Then also E remains isotropic and the 
damage D becomes dependent on the hydroxyl concentration: 

In literature, there is experimental evidence for modulus decrease with increasing 
hydroxyl content. This can be seen from measurements of Young’s modulus as a 
function of water content. Measurements on longitudinal sound velocities in silica 
specimens with different water content were reported by Fraser [4] and Le Parc et al. 
[5].  

Analytical computations on the reduction of Young’s modulus with porosity were 
carried out by Wang [6] for spherical pores. From the measurements and this model 
we could derive in [7]  
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with the parameters B1=5/3, B214/15 and the maximum possible hydroxyl con-
centration Smax. An approximate inverse representation is for instance 
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As a consequence of stresses acting during the silica/water reaction (1.1) the equi-
librium is affected since the hydroxyl concentration is stress-dependent. This has been 
outlined in [8]. In order to allow a transparent derivation, swelling stresses may be 
neglected first. The hydroxyl concentration as a function of stress can be written  

  ]exp[0 SS    (1.5) 

where S0 is the hydroxyl concentration in the absence of any stress. At temperatures 
>500°C, the parameter  reads for uniaxial loading [8] 

  
RT

   with /mol)cm(4.14 3   (1.6) 

2. Conclusions on the basis of the J-Integral  
At crack tips under externally applied loads, the singular stresses must result in high 
hydroxyl concentrations and, consequently, high damage followed by a strong stress 
reduction. As long as a positive crack-tip stress intensity factor exists, Ktip0, also 
stress singularity must exist with ij. The hydroxyl concentration must reach its 
maximum possible value, Smax, with the consequence that the damage must tend to 
D1 and the Young’s modulus must disappear at the tip, ED0. These consequences 
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make the occurrence of singular stresses and a crack-tip stress intensity factor at least 
questionable.  
The problem will be discussed here by using the path-independence of the J-Integral 
by Rice [9]. For any time-independent material behaviour the fracture mechanics J-
integral can be used as the loading parameter. It simply reads for linear-elastic 
materials 

 G
E
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J 




)1( 22 
  (2.1) 

where the right-hand side is also called the energy release rate G. Since the J-integral 
for any path around the crack tip is a parameter independent of the specially chosen 
path, its value must be the same for a path  far away from the tip (in the bulk) and the 
path D directly at the crack tip, i.e. in the damaged region as is illustrated in Fig. 2a 
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where ED and D are the elastic properties at the tip affected by water and Ktip is the 
true stress intensity factor present at the crack tip. For D0  
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It has been shown by Merkle [10] that (2.3) also holds for slender notches.  

 

 

Fig. 2 a) Two J-integral paths around a crack tip; path  far away from the tip (blue) reflects the 
properties of the bulk material, path D (red) in the water-affected and damaged crack-tip region, b) 

paths for a notch.  

a) 

 

D 

E0 

ED 


D 

 E0 

ED 
b)

 



 4

Since in eq.(2.2) a finite value on the left-hand side is prescribed by the external 
loading, the right-hand side must be finite, too. For the crack tip it results due to 
ij that: SSmax and ED0. The disappearing denominator ED requires that also 
the numerator must disappear. Consequently, it must hold K=Ktip=0 resulting in finite 
stresses. Under the assumption of finite notch radii, this problem vanishes. 

3. Slender notch approach 
3.1 Notch radius from silica ring structure 

In a micro-structurally motivated approach, the crack tip region (Fig. 3a) is considered 
as a slender notch with root radius  in the order of the average radius of the SiO2 
rings, Fig. 3b. For such a notch, Wiederhorn et al. [11] suggested a crack-tip radius of 
ρ = 0.5 nm.  

 

 
Fig. 3 a) Crack in silica terminating in a nano-pore, b) equivalent slender notch with a finite notch root 
radius , grey molecules are mechanically inactive. 

3.2 Notch radius from theoretical strength 

Stresses at slender notches were given by Creager and Paris [12]. The stress com-
ponent normal to the crack plane (the tangential stress t=y) is in distance  from the 
notch root (Fig. 4) 
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The other stress components are  
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Directly at the notch root, =0, it holds for the maximum stress 
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The fracture toughness of silica is KIc = 0.8 MPam [13] and the theoretical strength is 
about [14] 

  GPa 230 


 E
 (3.5) 

as is in agreement with strengths up to 25GPa measured by Brambilla and Payne [15] 
on extremely thin silica fibers of about 60 nm radius.  
The notch-root radius results then from the condition y=0 for K=KIc as 1.5 nm. 

 
Fig. 4 Mechanically effective notch from theoretical strength. 

3.3 Notch radius from Theory of Critical Distance 

A third estimate of the root radius  can be obtained by use of a non-local approach. 
The location at which failure occurs can be computed by application of the “Theory of 
Critical Distances” (TCD) as was developed by Taylor [16, 17]. The TCD postulates 
that failure occurs when a distance dependent effective stress eff exceeds the tensile 
strength 0. 
The effective stress is in this approach the stress value y in a distance of =L from the 
notch root, where the length L is given by 
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Introducing (3.6) and (3.5) into (3.1) and setting =L results in 

 2
2
02

)51(
IcK


 
   0.62 nm (3.7) 

eff





 6

This says that in the light of the TCD-approach the guess by Wiederhorn et al. [11] is a 
good estimate.  
The failure location, L in Fig. 5, results from (3.6) and (3.7) as 

  309.0
51

1



L  (3.8) 

with the maximum stress for =0, max, given by eq.(3.4), the stress at =L results 
as 

 00max 572.1)15(2    (3.9) 

 

 
Fig. 5 Failure location ahead of a notch root according to the TCD by Taylor [16,17]. 

4. Failure behaviour 
4.1 Crack-growth resistance 
The damage variable D according to Lemaitre [3] can be interpreted as the part of the 
material cross-section that can no longer transmit forces. Consequently, the area that 
can carry load, AD, is reduced to  

  )1(0 DAAD   (4.1) 

where A0 denotes the total geometrical cross section subsuming damaged and un-
damaged regions. The crack growth resistance Gc represents the energy necessary to 
split all bonds that are broken when the crack has passed the considered volume ele-
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ment. Application of the damage variable yields for the crack growth resistance of the 
damaged material, Gc,D,   

  )1(0,, DGG cDc    (4.2) 

(Gc,0 = crack resistance for the undamaged material, D=0) or in terms of stress intensity 
factors 

  )1()1()1(
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  )1(Ic, DKK Dc   (4.3) 

where Kc,D is the reduced toughness of the damaged material and KIc the fracture 
toughness measured in fracture mechanics tests on the undamaged material. 

4.2 General conclusion on crack stability 

Crack extension in the absence of damage is governed by the condition that the applied 
stress intensity factor equals the fracture toughness, i.e. 

  IcKKappl   (4.4) 

In presence of hydroxyl water and damage at the crack tip, this relation has to be 
replaced by the local failure condition 

  Dtip KK ,Ic  (4.5) 

From eq.(4.5) a critical value of the applied stress intensity factor, Kappl,c  KIc, has to 
be concluded that after introducing eqs.(2.3) and (4.3) reads 

  DKKDKDK capplappl  1)1(1 Ic,Ic  (4.6) 

Equation (4.6) says that cracks with hydroxyl at the tip can propagate at stress inten-
sity factors even below the fracture toughness, i.e. 

  Ic, KK cappl   (4.7) 

with the equality sign only for D=0. Whereas eq.(4.4) governs stable crack extension, 
the condition (4.7) ensures the existence of subcritical crack propagation so far with-
out information of time- and rate-effects.  
 
4.3 Hydroxyl concentration and Ktip as a function of Kappl 

In 4.2 we concluded the rather trivial result that a crack can grow even below fracture 
toughness KIc due to the local damage at the tip. Next, we will compute the local 
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hydroxyl concentration and the damage as a function of the externally applied stress 
intensity factor Kappl. For this purpose we first rewrite eq.(1.5) as  
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and then introduce eqs.(1.2) and (2.3)   
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The result is an implicit equation for the dependency S(Kappl) since S occurs on both 
sides. This relation cannot be solved analytically. Therefore, we determine the inverse 
function, Kappl(S), according to 
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  (4.10) 

and invert this solution numerically by using spline interpolation functions. For graphi-
cal representation of S(Kappl), the plot K(S) can be produced simply by changing coor-
dinates. 
The near-tip stress state on the prospective plane of a crack is multiaxial with the 
Cartesian components 

  zxyz  2,    (4.11) 

Here, z is the stress normal on the prospective crack plane, y the stress in crack pro-
pagation direction and x the stress component parallel to the crack front.  is 
Poisson’s ratio, =0.17. 

The hydrostatic stress, defined as  

 )(3
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Compared to the uniaxial tensile stresses addressed in [8] where h=z/3, this value is 
much closer to the purely hydrostatic stress state described by h/z=1 and is therefore 
much more appropriate for crack problems. In the following we therefore use purely 
hydrostatic stresses. As outlined in [18] this circumstance results in 5 cm3/mol.  
The hydroxyl concentration S as a function of the applied stress intensity factor is plot-
ted in Fig. 6a for room temperature with S0= 0.0347 wt% [19] and differently chosen 
parameters  in eq.(1.6). The crack-tip stress intensity factor is represented in Fig. 6b 
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versus the applied one. In this plot, the red arrows indicate the maximum values that 
can be computed from eq.(4.10) as 
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Fig. 6 a) Influence of the applied stress intensity factor Kappl on the hydroxyl concentration S, b) effect 
on the crack-tip stress intensity factor Ktip (red arrows indicate maximum Ktip according to eq.(4.14)). 
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Fig. 7 a) Failure condition illustrated by the intersection of the crack-tip stress intensity factor Ktip with 

the curve for the critical value Kc,D, b) critical values of the applied stress intensity factor, Kappl,cr, 
obtained via the failure condition Ktip=Kc,D, c) results of b) in a semi-logarithmic plot. 

Figure 7a illustrates the failure condition of the damaged material at a crack tip. The 
black curves show the applied and crack-tip stress intensity factors versus the hydroxyl 
concentration. The toughness is described by the red curves. The critical stress 
intensity factor according to eq.(4.3) is given by the condition Ktip=Kc,D, i.e. failure 
occurs at the intersection shown by the square, here at a critical hydroxyl concentration 
of Scr0.125. The related value of the applied stress intensity factor is introduced in 
Fig. 7a as the circle. In Fig. 7b the critical values of the applied stress intensity factor, 
Kappl,cr, obtained via the failure condition Ktip=Kc,D, are plotted versus the hydroxyl 
concentration S0. 

4.4 Crack stability 

Figure 7c shows the same result in a logarithmic representation. Figure 7b tells us for 
instance that the critical applied stress intensity factor for a water concentration of S0 = 

0.0347 wt% would be in the case of  = 5 cm3/mol (encircled data point in Fig. 7b):  

Kappl,cr =0.35 KIc=0.28 MPam. 

Figure 8 illustrates the crack stability schematically for cracks of depth a. For an 
applied stress intensity factor, Kappl > Kappl,cr, spontaneous crack extension from the 
initial crack size a0 must occur as is illustrated in Fig. 8 by the arrows. The 
perpendicular dashed lines represent the threshold stress intensity factor Kth. At values, 
Kappl<Kappl,cr, the material resists failure. 
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Fig. 8 Crack stability behaviour for =5 cm3/mol and 10 cm3/mol. Arrows indicate unstable extension.  

5. Reason for subcritical crack growth  
Cracks in silica modelled for instance by Fig. 4 or the model by Taylor [16, 17] 
describe failure in a certain distance =L below the “sharp” notch contour. When water 
at the tip comes in contact to silica, it has first to diffuse over the length L before it can 
cause failure. This needs of course a finite time. Neglecting stress-enhanced diffusivi-
ties and mass transfer coefficients h [20] the molecular water profiles C(t) are schema-
tically given in Fig. 9a (C0=maximum concentration at the surface).  

 

 
Fig. 9 Time-dependent water concentration at a crack tip, a) without stress-enhanced diffusivity, b) 

stress-enhanced diffusion included. 
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In Fig. 9b the normalized time , defined by here as 

  


2L

Dt
def

   (5.1) 

is plotted versus Kappl/KIc. The time tends against infinity at the thresholds for  = 5 and 
10 cm3/mol. Even in the case that local failure at Kappl,c must occur, the time necessary 
for reaching the related water concentration must result in a delay of failure. The 
reciprocal time 1/ that is proportional to the crack-growth rate v of subcritical crack 
growth is shown in Fig. 10. With the fracture toughness of silica KIc=0.8 MPam [13], 
the threshold value for subcritical crack growth is introduced at K=0.28 MPam. 

 

 
Fig. 10 Reciprocal normalized time characterizing crack growth rate v of subcritical crack growth.  

Concluding remarks 
There is so far much unpredictability that makes quantitative computations of the 
threshold value and the shape of the subcritical crack growth curve impossible without 
extensive additional studies. Only some points may be mentioned: 

 So far, the parameter  in eqs.(4.8-4.10) is unknown and had to be used as a 
free parameter. Its value of course must depend on the stress state for which 
uniaxial and hydrostatic stresses are limit cases. 

 The diffusivity, affecting the time effects is stress-dependent. What the diffu-
sivity in the damaged material is and in which way the activation volume for 
stress-enhancement depends on the damage are completely open questions. 
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 Furthermore, the entrance of water into the surface is unknown. Especially the 
questions, whether a mass-transfer coefficient [20] or reaction parameter for a 
slow surface reaction [21] exists at the freshly formed crack faces and how 
strong this parameter would depend on the damage have to be clarified. 

 Last, it has to be emphasized that the reaction between silica and water is 
assumed to be in the equilibrium state. This simplifying assumption may be not 
necessarily fulfilled. 

What we can say so far is that a threshold stress intensity factor for subcritical crack 
growth must exist even for silica.  
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