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Introduction

The key to understand the behavior of geodesic flows on a single translation surface
is to understand its GL+

2 (R)-orbit closure. In 1989, a first glimpse of this connection
was discovered by Veech [Vee89]: The famous Veech dichotomy states that on a Veech
surface, either all geodesics in a given direction are closed or all geodesics in a given
direction are dense and uniformly distributed.

In a similar vein, Masur [Mas06] showed that if the vertical geodesic flow on a trans-

lation surface is not dense and not uniformly distributed, then the
(
et 0
0 e−t

)
-orbit of

this translation surface leaves every compact set in the corresponding stratum. Hence
to construct a translation surface with a non-dense flow, we could instead construct a
translation surface such that its orbit leaves every compact set in the stratum.

The classification of GL+
2 (R)-orbit closures is far from complete. Every translation

surface of genus 1 has a closed orbit and is a Veech surface. Translation surfaces of
genus 2 provide a much richer theory and were classified by Calta and McMullen [Cal04;
McM07]. Using Prym varieties McMullen [McM06] constructed families of closed orbits
in genus 2, 3 and 4. Using similar methods, Lanneau and Nguyen [LN17] describe orbit
closures coming from Prym eigenforms in the strata H(2, 2)odd and H(1, 1, 2).

The groundbreaking work of Eskin, Mirzakhani and Mohammadi [EMM15] offers ways
to construct orbit closures different from Prym eigenforms and Teichmüller curves. Their
Fields medal winning work proved what Zorich [Zor14] calls a “magic wand”: GL+

2 (R)-
orbit closures are affine invariant submanifolds.

Affine invariant submanifolds open new doors to the study of orbit closures. Lanneau,
Nguyen, Möller and Wright showed that in special orbit closures there are at most finitely
many (primitive) Teichmüller curves [LM17; LNW15]. Another helpful theorem is the
cylinder deformation theorem of Wright [Wri15a], which says that distorting only some
cylinders of a translation surface by a matrix in GL+

2 (R), yields a translation surface
in the orbit closure of the first translation surface. Using this theorem, Mirzakhani and
Wright classified orbit closures of full rank [MW18], Aulicino and Nguyen and classified
orbit closures in genus 3 of rank 2 [AN16a; AN16b; ANW16] and Nguyen and Wright
showed that in the hyperelliptic component of H(4) orbits are either closed or dense
[NW13]. Furthermore, Apisa showed that in the hyperelliptic components of H(2g − 2)
and H(g − 1, g − 1) orbit closures of higher rank are covering constructions [Api15].

Despite this far from complete list of results, the classification of orbit closures is still
a wide open question.

We study orbit closures in the principal stratumH(1, 1, 1, 1). Herrlich and Schmithüsen
studied the Wollmilchsau and a special Hurwitz space consisting of translation surfaces
of genus three with four simple singularities [HS07a; HS08]. The special feature of this
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Hurwitz space is that there exists a family of Teichmüller curves intersecting the Teich-
müller curve of the Wollmilchsau. Moreover, the union of these Teichmüller curves is
dense in the Hurwitz space.

We will study which other orbit closures occur in a slightly larger Hurwitz space H.
Additionally, we enrich this Hurwitz space with the translation structures coming from
the covered tori and denote it by ΩH. Forgetting the covering information, we obtain
the subspace ΩL of the moduli space of translation surfaces. A translation is an affine
automorphism of a translation surface in ΩL with derivative I and a rotation is one with
derivative −I. In this thesis we show the following results:

Theorem 1. There exists a descending chain of affine invariant submanifolds ΩLi of
ΩL of dimension 5− i for i = 1, 2, 3, each described by rotations and translations.

Using Ratner’s theorem we can deduce the existence of affine invariant submanifold in
ΩL, and more general in every Hurwitz space of coverings of tori, of arbitrary dimension.
However, we study affine invariant submanifolds given by rotations and translations. In
this case Ratner does not help. For more than four branch points such a chain does not
even exist any more, see Section 7.1.

Every connected component of an affine invariant submanifold is an orbit closure of a
single translation surface. We classify the connected components of these spaces.

Theorem 2. The space ΩH is connected. The spaces ΩHi have i+ 1 connected compo-
nents for i = 1, 2, 3, distinguished by the monodromy of the covering.

All these subspaces are constructed using translations and rotations of the torus that
can be lifted to automorphisms of the covering surface. We show that there are no other
affine invariant submanifolds which are constructed using translations and rotations.

Theorem 3. All affine invariant submanifolds of ΩL, which are described by rotations
and translations of the covering surface, are ΩL, ΩL1, ΩL2 and ΩL3.

There is one more affine invariant submanifold of ΩL1, which is described by transla-
tions of the torus that do not lift to the covering surface.

In ΩL3 every translation surface is a Veech surface. We compute their Veech groups.
Finally, we explain why different generalizations of our approach do not yield results as
nice as in this thesis.

The structure of this thesis is as follows:
Chapter 1 to 5 is about fundamentals. In the first chapter we briefly discuss Riemann

surfaces and algebraic curves and why they are the same. In the second chapter we
introduce translation surfaces and, most importantly, affine invariant submanifolds. In
the third chapter we discuss covering theory and Hurwitz spaces. In chapter 4 we
introduce the notation for all finite groups we will need and in chapter 5 we summarize
facts about the Wollmilchsau.

Chapter 6 is the main part of this thesis. We introduce the Hurwitz space ΩH and
discuss its properties. The crucial tool is the polygon decomposition of translation
surfaces in ΩL. This gives us the ideas to construct subspaces and enables us to prove
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our theorems. In Section 6.4 we prove Theorems 1 and 2. After that, we compute the
Veech groups of translation surfaces in ΩL3. Finally, we prove the first half of Theorem 3
in Section 6.6.

Chapter 7 illustrates the difficulties in generalizing our attempt. Firstly, we increase
the number of branch points. We show that for more than four branch points the
equivalent of Theorem 1 does not hold any more. Secondly, in Section 7.2 we study affine
invariant submanifolds in ΩL that are given by an automorphism of the torus, which has
no lift on the covering surface. From this section the second half of Theorem 3 follows.
Finally, we study coverings of translation surfaces of genus two.

At this point I want to express my gratitude to all those who have supported me and
made this thesis possible: First and foremost, Frank Herrlich, who introduced me to this
topic and, with his famous open door policy, gave me at the same time all the freedom
to work on my own and helped me to answer all the questions I had.

I want to thank Gabriela Weitze-Schmithüsen, who introduced me to translation sur-
faces in the first place, for her motivating nature and for the possibility to talk with her
about my questions and answers whenever she was around.

Moreover, I thank the whole Arbeitsgruppe for the pleasant working environment, the
interesting talks and, most importantly, for the coffee breaks.

I want to thank the Landesgraduiertenförderung, which supported me with a grant for
two years.

Furthermore, I want to thank my parents Hiltrud and Utz, who supported me all
the time during my studies and my graduation. Finally, I want to express my deepest
gratitude to Julia, who helped me through all those times when nothing worked out,
who was as excited as me when things worked out and who, away from this dissertation,
lightened my mood all the time.

5



6



Contents

Introduction 3

1 Riemann surfaces and algebraic curves 8
1.1 Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Algebraic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Translation surfaces 11
2.1 Translation surfaces, strata and Veech surfaces . . . . . . . . . . . . . . . 11
2.2 Origamis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Affine invariant submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Hurwitz spaces 22
3.1 Covering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Branched coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Hurwitz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Hurwitz spaces of translation coverings . . . . . . . . . . . . . . . . . . . . 31

4 Finite groups 35

5 The Wollmilchsau 36

6 A Hurwitz space of translation surfaces 38
6.1 A special Hurwitz space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Taking advantage of the translation structure . . . . . . . . . . . . 43
6.2 A subspace of codimension one . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 A subspace of codimension two . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 A subspace of codimension three . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 The Wollmilchsau and its siblings . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Invariant loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Generalizations 99
7.1 More points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Weakening the meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Higher base genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 116

7



1 Riemann surfaces and algebraic curves

In this section we recall the basic definitions of Riemann surfaces and algebraic curves.
Furthermore, we justify that we use the terms “compact Riemann surface” and “non-
singular projective curve over C” interchangeably.

1.1 Riemann surfaces

Let us briefly recall the basic notions of a Riemann surface and a holomorphic differential
on it.

Definition 1.1. A Riemann surface is a 2-dimensional manifold together with a com-
plex atlas whose transition maps are biholomorphic.

A definition of a holomorphic differential on a Riemann surface is given by Miranda
[Mir95]. This may not be the shortest definition, but it is given with a nice motivation.

Definition 1.2 (Miranda [Mir95]). Let V ⊆ C be an open subset of the complex
plane. A holomorphic 1-form is an expression ω = f(z)dz, where f is a holomorphic
function on V .

Let ω1 = f(z)dz and ω2 = g(w)dw be holomorphic 1-forms on V1 and V2 with coor-
dinates z and w and let T : V2 → V1 be holomorphic. We say T transforms ω1 to ω2 if
g(w) = f(T (w))T ′(w).

Now let X be a Riemann surface. A (holomorphic) 1-form or (holomorphic) differ-
ential form on X is a collection of holomorphic 1-forms {ωΦ }Φ, one for each chart
Φ: U → V , on the target V . For two overlapping charts the holomorphic 1-forms are
transformed into each other by the transition map.

Hence locally a differential form is of the form fdz for some holomorphic map f . The
order of a holomorphic differential at some point p ∈ X is defined to be the order of
the corresponding function f at p. This notion is independent of the choice of local
coordinates. If the order is n we call p a zero of order n. Furthermore, let us denote the
set of non-zero holomorphic differential forms on a subset U ⊆ X of a Riemann surface
X by

Ω(U) = { ω holomorphic differential form on U } \ { 0 } .
This defines a sheaf Ω = ΩX , which is called the sheaf of nonzero holomorphic differential
forms on X.

Proposition 1.3 (Lamotke [Lam09]). Let X be a compact Riemann surface of genus
g. Then the set of holomorphic differentials Ω(X)∪{ 0 } is a g-dimensional vector space
and the sum of orders of the zeros of a holomorphic differential ω ∈ Ω(X) is 2g − 2.
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According to Miranda [Mir95], we can pull back differential forms. For a given holo-
morphic map F : X → Y the pullback is defined as F ∗ : Ω(Y )→ Ω(X) by applying F on
every chart. Furthermore, we can integrate differential forms along paths. Integration
along paths is done locally in every chart. It makes no difference whether we integrate
the pullback of a differential form or integrate along the pushforward of the path, i. e. for
a path γ in X and a differential ω ∈ Ω(Y ), we have

∫

γ
F ∗ω =

∫

F∗γ
ω.

Integration along homotopic and homologous paths yields the same result. So the notion
of the integral extends to elements in the fundamental group or in the first homology
group.

The moduli space of compact Riemann surfaces

Mg = {X compact Riemann surface of genus g } / ∼
consists of all Riemann surfaces of a given genus g. Two surfaces are equivalent if they
are biholomorphic. For g ≥ 2, the dimension of Mg is 3g − 3, and the moduli space of
elliptic curves M1 can be identified via the j-invariant with the complex plane C.

Here and subsequently, all Riemann surfaces are compact and hence we use “Riemann
surface” instead of “compact Riemann surface”.

1.2 Algebraic curves

The basic definitions of algebraic geometry are found in the book of Hartshorne [Har77].
For simplicity of notation we write “curve” instead of “non-singular, projective variety of
dimension 1”. Since we work over the complex numbers we talk about Riemann surfaces
instead of curves most of the time. This is justified by the following explanation.

In 1851 Riemann [Rie51] showed the Riemann existence theorem. It states that on
each compact Riemann surface there is a non-constant meromorphic function. Hence it
is a covering of the Riemann sphere P1C. This shows that the field of all meromorphic
functions of the surface is a finite algebraic extension of the function field C(x) and
hence an algebraic curve over the complex numbers. On the other hand, every algebraic
curve over C can be embedded in some projective space and thus can be given a complex
structure. Using Serre’s GAGA [Ser56], sheaves in the analytic category and sheaves in
the algebraic category can be identified.

In what follows, a curve will always be a projective, non-singular curve over the com-
plex numbers and hence we will use the terms “curve” and “Riemann surface” inter-
changeably.

Recall that a hyperelliptic involution of a curve X of genus g ≥ 2 is an involution
τ : X → X with 2g + 2 fixed points. The quotient X/〈τ〉 is the projective space P1C.
A curve is called hyperelliptic if it has a hyperelliptic involution in its automorphism
group, or if it is a covering of the Riemann sphere of degree 2. A hyperelliptic curve is
given by an equation

y2 = f(x),
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where f is a polynomial of degree 2g + 1 or 2g + 2.
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2 Translation surfaces

In this section we define translation surfaces – the subject of this work – and state some
of their fundamental properties. Furthermore, we discuss affine invariant submanifolds,
which are what Zorich calls a “magic wand” [Zor14].

2.1 Translation surfaces, strata and Veech surfaces

We give three definitions of translation surfaces and define their moduli space and its
stratification. Moreover, we discuss how the group GL+

2 (R) of real matrices with positive
determinant acts on the space of translation surfaces.

We start with the most geometric definition of a translation surface. We take a
collection of polygons in R2 such that for every edge there is one parallel edge of the
same length. Then we glue each edge to exactly one edge by a translation. The resulting
object is a surface and is called a translation surface. The following definition is more
precise.

Definition 2.1 (Masur [Mas06]). Let P1, . . . , Pn be a collection of finitely many poly-
gons in the plane. Let P ∗i be the polygon Pi without its vertices and D =

⋃n
i=1 ∂P

∗
i the

union of the edges of the polygons. Fix an orientation of the plane and of each edge
as well as an involution T : D → D, such that the restriction of T to the interior of
an edge is the translation to an edge with opposite orientation. We denote the gluing
instructions given by the polygons and the gluing map T by ω. If the surface

X =

(
n∐

i=1

P ∗i

)
/T

is connected, the surface together with the gluing instruction (X,ω) is called translation
surface.

We abbreviate X = (X,ω), if it is not ambiguous.
With this definition we can glue the opposite sides of a square and get a torus. This is

the best-studied example of a translation surface. More complicated and more interesting
is the double n-gon constructed by Veech [Vee89] in the following way. For odd n, take
two regular n-gons, rotate one copy by π and glue parallel edges of equal length. This
yields a translation surface of genus n−1

2 . Via the gluing all vertices get identified and
thus the angle at a vertex is (n − 2)π. This is a so-called singularity, which we define
rigorously later. The case n = 5 is drawn in Figure 2.1.

It is good, but not always true, to think of singularities as the vertices of the polygons
defining the translation surface. Since the gluing of the polygons is given by translations,
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Figure 2.1: Each pair of edges with the same color is glued together. This gives rise to
a translation surface called the Veech pentagon. In the gluing process, all
vertices get identified and form a singularity with angle 6π.

we can give an atlas of a translation surface without its singularities whose transition
maps are translations. On the other hand, given a surface together with an atlas whose
transition maps are translations, we can triangulate this surface to get a polygonial
decomposition.

Definition 2.2. A translation surface is a compact surface such that there exists an
atlas on all but finitely many points whose transition maps are translations.

In particular, a translation surface is a Riemann surface. Locally it looks like the
complex plane and hence we can pull back the differential dz on every chart. Since the
transition maps are translations, this gives rise to a holomorphic differential on the whole
translation surface. On the other hand, let X be a Riemann surface and ω ∈ Ω(X) a
holomorphic differential. For each chart (U, z) we fix a point p0 ∈ U and define a new
chart

U 3 p 7→
∫ p

p0

ω,

i.e. we integrate along some path going from p0 to p. This provides a translation atlas
of X \ { zeros of ω }. For more details, see the survey of Hubert and Schmidt [HS06].

Definition 2.3. Let X be a Riemann surface and ω ∈ Ω(X) a holomorphic differential.
The pair (X,ω) is called a translation surface and the zeros of ω are called singularities.

With the above considerations we have sketched that all three definitions of translation
surfaces coincide. With more effort one can show that the notion of singularity is the
same in all three definitions. A zero of order n of ω gives rise to an angle 2(n + 1)π in
the polygon description. For our purpose, the most important ones are the description
by polygons and the description by holomorphic differentials.

Naturally, we are interested in maps between translation surfaces.

Definition 2.4. A map (X,ω) → (Y, υ) is called affine map if it is locally given by
z 7→ Az + b for A ∈ GL2(R) and b ∈ R2. If A = I, the map is called translation and
rotation if A = −I. Let us denote by Aff(X,ω) the set of all affine maps (X,ω)→ (X,ω)
and by Aff+(X,ω) the set of all orientation preserving affine maps (X,ω)→ (X,ω).
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The pullback of a translation structure via a translation gives the same translation
structure, i.e. t∗ω = ω for a translation t and ω ∈ Ω(X). Since the transition maps are
translations, the matrix A of an affine map does not depend on the chosen chart. Hence
we have a well-defined map

D : Aff(X,ω)→ GL2(R)

sending an affine map to its linear part. This map is called the derivative. Note that
the surface X is compact, thus the matrix has to preserve the area and hence is of
determinant ±1. Furthermore, the derivative of an orientation preserving affine map is
a matrix in SL2(R). Hence we have the map

D : Aff+(X,ω)→ SL2(R).

Now consider the space

ΩMg = { (X,ω) | X ∈Mg, ω ∈ Ω(X) } / ∼

of translation surfaces of genus g. Two translation surfaces are considered equivalent if
and only if there is a translation between them. This is the moduli space of translation
surfaces of genus g. It is a holomorphic fiber bundle over the moduli space Mg.

Corollary 2.5 (Gauß-Bonnet formula). Let (X,ω) ∈ ΩMg be a translation surface
of genus g and let α1, . . . , αn be the orders of the zeros of ω. Then

n∑

i=1

αi = 2g − 2.

Proof. By Proposition 1.3 the orders of zeros of ω add up to 2g − 2.

Note that the zeros of the holomorphic differential are the singularities of the cor-
responding translation surface. Hence we have a stratification of the moduli space of
translation surfaces ΩMg into strata H(α) of translation surfaces with fixed numbers of
singularities, where α = (α1, . . . , αn) is a partition of 2g − 2. For example, the double
5-gon is in the stratum H(2). The torus is in the stratum H(∅) = ΩM1, which is the
whole moduli space of translation surfaces of genus 1. A holomorphic differential in ΩM1

cannot have a zero, hence it is of the form λdz for some λ ∈ C×. Every such differential
is valid, hence ΩM1 = C× × C.

Proposition 2.6 (Veech [Vee86]). Each stratum H(α) is a complex orbifold of di-
mension 2g + n− 1.

Idea of proof. We will just sketch the idea of the proof according to Wright [Wri15b].
Let Sg be a surface of genus g and Σ ⊆ Sg a finite set of marked points. We study the
infinite degree covering H̃(α) of the stratum H(α) consisting (up to some equivalence)
of triples (X,ω, f). Here, f : Sg → X is a homeomorphism sending marked points to
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A =

(
1 2
0 1

)

Figure 2.2: On this translation surface, opposite edges are glued. Its single singularity
of angle 6π is marked in red. The effect of applying the matrix A is shown.

singularities. Now we fix a basis { γ1, . . . , γ2g+n−1 } of relative homology H1(S,Σ,Z) to
get charts

H̃(α)→ C2g+n−1, (X,ω, f) 7→
(∫

f∗γi

ω

)2g+n−1

i=1

.

These coordinates are called period coordinates and make H̃(α) into an orbifold. To
see this one can use Veech’s zippered rectangle construction, see e.g. Yoccoz [Yoc10].
Factoring out the mapping class group, this atlas descends to an atlas of H(α) away
from the fixed points of the action.

One interesting concept closely related to the dynamics of translation surfaces is the
action of the matrix group GL+

2 (R) on the moduli space of translation surfaces. Given
a translation surface in its polygon decomposition, we can apply a matrix to these
polygons. Polygons are mapped to polygons and parallel sides of equal length are mapped
to parallel sides of equal length. Hence we can apply the same gluing as before and get a
new translation surface. It has the same number of singularities with the same order as
before. For an example of this action see Figure 2.2. In conclusion, this gives an action
of GL+

2 (R) on each stratum H(α).
This action can be expressed via holomorphic differentials and translation atlases as

well.
Due to Masur [Mas82], most translation surfaces have large orbits, i.e. their orbits are

dense in the whole stratum they live in. Those special translation surfaces whose orbits
are so small that they are closed deserve their own name.

Definition 2.7. Let (X,ω) be a translation surface. The stabilizer of the GL+
2 (R)-

action is denoted by Γ(X,ω) ⊆ SL2(R) and called Veech group. If the Veech group is a
lattice in SL2(R), the translation surface is called a Veech surface or lattice surface.

The name of this group is coined by the ground breaking work of Veech [Vee89]. The
Veech group of a translation surface is a discrete, non-cocompact subgroup of SL2(R).
The Veech group may be seen as the image of the derivative D(Aff+(X,ω)) of all affine
maps of X. There are many equivalent descriptions of a surface being a Veech sur-
face and we will just state some of them. Let us define a saddle connection to be a
geodesic segment connecting a singularity to some singularity with no singularity in its
interior. Since the transition maps are translations, we have a well-defined image of this
geodesic segment in R2 starting at the origin. This image is called the holonomy vector
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of the saddle connection. Denote by hol(X,ω) the set of all holonomy vectors of saddle
connections on the translation surface (X,ω).

Proposition 2.8 (Smillie-Weiss [SW10]). Let (X,ω) be a translation surface. Then
the following are equivalent:

a) (X,ω) is a Veech surface.

b) The GL+
2 (R)-orbit of (X,ω) is closed.

c) The set {u ∧ v | u, v ∈ hol(X,ω) } is a discrete set of numbers.

The wedge product u∧ v can be thought of, up to the factor e1∧ e2 with the standard
basis vectors e1 and e2, as the determinant det(u, v). Since a fixed factor does not change
the discreteness, we can omit this factor.

Furthermore, the famous Veech dichotomy gives a first glimpse at the connections
between dynamics on one single surface and dynamics on the whole moduli space.

Proposition 2.9 (Veech dichotomy [Vee89]). Let (X,ω) be a Veech surface. Then
for each direction θ the geodesic flow in direction θ is periodic or it is uniquely ergodic.

This means that starting from any point in (X,ω) in direction θ and going in the same
direction all the time, the resulting path is either closed or it is dense and uniformly
distributed. The reader interested in the connection between the GL+

2 (R)-orbit of a
translation surface and its dynamical behavior will find more information, and more
literature, in the survey by Zorich [Zor06].

2.2 Origamis

The easiest example of a translation surface is the torus. Its Veech group is SL2(Z). A
finite covering of the torus ramified over exactly one point has a Veech group which is
commensurable to SL2(Z), i.e. its intersection with SL2(Z) has finite index in the Veech
group and in SL2(Z). This special property motivates the following definition.

Definition 2.10. An origami is a finite unramified covering of the once-punctured
torus.

There is exactly one translation structure on the origami such that the covering map is
a translation. This is the translation structure we choose. By work of Gutkin and Judge
[GJ00] a translation surface is an origami if and only if its Veech group is commensurable
to SL2(Z). An equivalent condition is that there is a parallelogram that tiles the surface.
This last property is the reason for the playful name origami coined by Lochak [Loc05].
Observe that every origami is a Veech surface.

One remarkable property of origamis is that they give rise to curves in moduli space.
More generally, given a translation surface (X,ω) we study its GL+

2 (R)-orbit. As a Rie-
mann surface, X is stabilized by the orthogonal group O+(2) with positive determinant.
Hence we have a map

GL+
2 (R)/O+(2) = SL2(R)/ SO(2) = H→ Tg,n
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from the upper half plane into the Teichmüller space of X. A holomorphic, isometric
embedding H→ Tg,n is called a Teichmüller embedding. Its image is called Teichmüller
disk. The above map is a Teichmüller embedding, see e.g. Herrlich [Her12]. The projec-
tion of the Teichmüller disk into moduli space is almost always something strange. In a
few happy cases the projection is a curve. Then this curve is called Teichmüller curve.

Proposition 2.11. Let (X,ω) be a translation surface. The above construction yields a
Teichmüller curve if and only if (X,ω) is a Veech surface. In this case, the Teichmüller
curve is birationally equivalent to H/Γ(X,ω).

Proof. See e.g. Herrlich and Schmithüsen [HS07b].

The next advantage of origamis is that it is remarkably easy to compute their Veech
groups. Let (X,ω) be an origami and let q : X∗ → E∗ be the unramified covering
belonging to this origami. Then the map q yields a natural inclusion into the free group

q∗π1(X∗) = U ⊆ F2 = π1(E∗)

of finite index. On the other hand, each such inclusion U ⊆ F2 into the free group
gives a covering of the once-punctured torus E∗. So we can describe an origami as a
subgroup of the free group F2. Let β : Aut(F2) → GL2(Z) = Out(F2) be the natural
projection and define Aut+(F2) = β−1(SL2(Z)) to be the group of orientation preserving
automorphisms. Now define

Stab(U) =
{
γ ∈ Aut+(F2)

∣∣ γ(U) = U
}
,

the stabilizer of U .

Proposition 2.12 (Schmithüsen [Sch04]). Let q : X → E be an origami and U =
q∗π1(X∗) ⊆ F2. Then the Veech group of the origami is given by

Γ(X,ω) = β(Stab(U)),

the image of the stabilizer of U in SL2(Z).

This theorem gives an algorithm to compute the Veech group of any origami elaborated
in Schmithüsen’s paper [Sch04]. There the description of an origami as a finite index
subgroup of the free group F2 can also be found. Observe that such an algorithm does
not exist for general translation surfaces and depends heavily on the extra data carried
by an origami.

For a more thorough treatment of origamis and Teichmüller curves see the introductory
texts by Herrlich and Schmithüsen [Her12; HS07b].
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2.3 Affine invariant submanifolds

So far all we know about GL+
2 (R)-orbits is that they are nice for Veech surfaces, because

their projection in moduli space is a curve. Most other orbits are dense in the stratum
they belong to. Hence it seems like a good idea to study orbit closures and not just
orbits. This is justified by the Fields-medal winning result of Eskin, Mirzakhani and
Mohammadi [EMM15], which shows that orbit closures are so-called affine invariant
submanifolds. In this section we want to define what Zorich [Zor14] calls a “magic
wand” and state some of its properties.

Firstly, let us recall absolute and relative homology following Hatcher [Hat15]. Let X
be a topological space and define a singular n-simplex to be a continuous map σ : ∆n →
X from an n-simplex to X. Let Cn(X) be the free group generated by the singular
n-simplices. We have a boundary map

∂n : Cn(X)→ Cn−1(X), σ 7→
n∑

i=0

(−1)iσ|[v0,...,v̂i,...,vn],

where [v0, . . . , v̂i, . . . , vn] is the (n−1)-simplex omitting the vertex vi. This equips C•(X)
with the structure of a chain complex. We define the absolute n-th homology group by
Hn(X,Z) = ker(∂n)/ im(∂n+1).

Now let Σ ⊆ X be a subset of X. The complex C•(Σ) is a sub chain complex of
C•(X) and note that the boundary map descends to a boundary map of the quotient
∂Σ
n : Cn(X)/Cn(Σ)→ Cn−1(X)/Cn−1(Σ). We define the n-th relative homology group of
X relative to Σ by

Hn(X,Σ,Z) = ker(∂Σ
n )/ im(∂Σ

n+1).

The relative homology group of a surface of genus g with n punctures is a free abelian
group in 2g+n−1 generators. Those generators can be thought of as a symplectic basis
of the fundamental group and, by ordering the punctures, n−1 paths from one puncture
to the next. We will make this more clear in the following easy, yet important example.

Example 2.13. Let E be a torus and Σ̄ =
{
P̄ , Q̄,−Q̄,−P̄

}
⊆ E. The questionable

names of the points are chosen, since later we need points with these names and looking
up the relations will be easier this way.

We are interested in the relative homology group H1(X, Σ̄,Z) of the torus relative to
the set Σ̄. Observe that C2(Σ̄) = C1(Σ̄) is the free abelian group over Σ̄. Let ∆ be a
2-simplex with vertices x, y and z. Then

∂2(∆) = xy − yz + zx,

where xy denotes the (oriented) 1-simplex from x to y. Furthermore,

∂1(xy) = x− y.
What is the kernel of ∂1? Loops having the same beginning and end point, x = y, are
in the kernel. Moreover, paths with beginning and end point in Σ̄ have image in C0(Σ̄)
and thus are in the kernel. So the kernel

ker(∂1) =
{

loops and paths with beginning and end point in Σ̄
}
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consists of all loops as well as of all paths with endpoints in the set Σ̄. Then we need
to calculate the image of ∂2. Since C2(Σ̄) = C1(Σ̄) the image consists of all alternating
boundaries of triangles, just as in absolute homology, and of all constant paths in Σ̄.
Summing up we have

H1(E, Σ̄,Z) =
{

loops and nonconstant paths with beginning and end point in Σ̄
}
/ ∼,

where two paths are equivalent if there exist triangles with alternating orientation con-
necting those paths.

The current situation is sketched in Figure 2.3. A basis of absolute homology, labeled
by ā and b̄, is given by the red paths and a basis of relative homology by the red and blue
paths, where the blue paths are labeled by cP̄ Q̄, cQ̄−P̄ and c−P̄−Q̄, each connecting two
points in Σ̄. We now compute the green paths, whose labels are explained in Figure 2.3.

Let us write d for the diagonal path from P̄ to −P̄ , so we have the rectangle

cP̄ Q̄

cQ̄−P̄

c−P̄−Q̄

c−Q̄P̄

d

P̄

Q̄ −P̄

−Q̄

and this gives us cP̄ Q̄+cQ̄−P̄ = d and c−P̄−Q̄+c−Q̄P̄ = −d with respect to the orientation
of d. Thus we have

c−Q̄P̄ = −cP̄ Q̄ − cQ̄−P̄ − c−P̄−Q̄.
Similarly, orienting d from the lower left to the upper right corner, the rectangle

−P̄Q̄ Q̄c′−P̄ Q̄cQ̄−P̄

ā

u −u
d

gives us the two equations

u+ c′−P̄ Q̄ + cQ̄−P̄ = d and ā− d = −u.

Thus we have ā− cQ̄−P̄ = c′−P̄ Q̄.

In the same spirit, we can calculate the elements c′
Q̄P̄

and c′−Q̄−P̄ . Furthermore, we can
show that every horizontal edge is homologous to ā and every vertical edge is homologous
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ā

b̄

cP̄ Q̄

cQ̄−P̄

c−P̄−Q̄

c′−P̄ Q̄

c−Q̄P̄

c′
P̄−Q̄

c′
Q̄P̄

c′−Q̄−P̄

P̄

Q̄ −P̄

−Q̄

Figure 2.3: A basis of the relative homology of the four times punctured torus is depicted
in red and blue. Other elements are green.

to b̄. All in all, we have

c−Q̄P̄ = −cP̄ Q̄ − cQ̄−P̄ − c−P̄−Q̄,
c′−P̄ Q̄ = ā− cQ̄−P̄ ,
c′Q̄P̄ = b̄− cP̄ Q̄ and

c′−Q̄−P̄ = −b̄− c−P̄−Q̄.

Having seen these explicit calculations, let us return to our actual topic. We need
relative homology to define period coordinates. Let (X,ω) be a translation surface and
fix a basis {α1, . . . , αm } of relative homology. By Proposition 2.6 the map

(X,ω) 7→
(∫

αi

ω

)m

i=1

can be extended to a neighborhood of (X,ω) in its stratum. These maps make a stratum
into an orbifold and are called period coordinates. Implicitly this says that a basis of
relative homology can be canonically transformed onto nearby surfaces.

Definition 2.14 (Wright [Wri15b]). An affine invariant submanifold L is a suborb-
ifold of a stratum H that satisfies the following conditions:

a) There exists a manifold N and a proper immersion f : N → H into a stratum with
image f(N ) = L.

b) For every point inN there exists a neighborhood U such that f(U) can be described
by R-linear homogeneous equations in period coordinates.
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The first half of this definition is rather technical and we may think of an affine
invariant submanifold as a subset of a stratum.

Proposition 2.15 (Eskin-Mirzakhani-Mohammadi [EMM15]). Any GL+
2 (R)-in-

variant, closed set is a finite union of affine invariant submanifolds. In particular, every
orbit closure is an affine invariant submanifold.

To indicate why this seminal result is so important we state some of its implications.
More elaborated surveys are from Wright or Zorich [Wri15b; Zor14].

Firstly, the only previously known result about orbit closures was the study of genus
2 translation surfaces by McMullen and Calta [Cal04; McM07]. Due to them, in genus
2 we can write down a list of all possible orbit closures of translation surfaces. So far,
such a classification is not even achieved in genus 3.

Secondly, it is fairly easy to see that affine invariant submanifolds are in fact GL+
2 (R)-

invariant [Wri15b, Proposition 3.5]. To prove the converse one needs roughly 250 pages.
Hence the terms “closed orbit” and “2-dimensional affine invariant submanifold” describe
the same objects.

One remarkable theorem using affine invariant submanifolds is the Cylinder Deforma-
tion Theorem by Wright [Wri15a]. Roughly, this theorem says that if we deform just
some cylinders of a translation surface by a matrix in GL+

2 (R), the resulting translation
surface is in the orbit closure of the first one. Subsequent papers by Aulicino, Nguyen
and Wright classify all orbit closures in two of the three connected components of H(4)
[ANW16; NW13].

Another theorem of importance by Wright [Wri14], generalizing work by Masur and
Veech, shows that almost every translation surface in an affine invariant submanifold
is generic, i.e. its orbit closure is the whole affine invariant submanifold. One of its
corollaries specifies explicit conditions for a surface to be generic.

Corollary 2.16 (Wright [Wri14]). A translation surface whose period coordinates are
linearly independent over Q̄ is generic, i.e. its orbit closure is as large as possible.

More classicaly, orbit closures are studied using Ratner’s theorem. Many thanks to
Martin Möller for pointing this out.

Proposition 2.17 (Ratner). Let G be a finite dimensional, connected Lie group and
Γ ⊆ G a lattice. Let U ⊆ G be a subgroup of G generated by unipotent elements. For
every x ∈ G there exists a group U ⊆ H ⊆ G such that

U · [x] = H · [x] ⊆ G/Γ.

This theorem has applications for translation surfaces. Let G = SL2(R) and Γ = SL2(Z).

For t ∈ R define ut =

(
1 t
0 1

)
and let U be the group generated by ut. Using Ratner’s

theorem one can show that every U -orbit is either closed or dense in SL2(R)/ SL2(Z).
This is an answer to the question wether the geodesic flow in a given direction is ergodic
or periodic.
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For our purposes, another application is of interest. Let G = SL2(R) o (R2)n be the
semi-direct product of SL2(R) with n copies of R2. We define the semi-direct product
by the multiplication

(A, x1, . . . , xn) · (B, y1, . . . , yn) = (AB, x1 +Ay1, . . . , xn +Ayn).

Let Γ = SL2(Z) o (Z2)n be a lattice in G. Then G/Γ describes the space of tori with n
marked points. We regard the action of U = SL2(R) on G/Γ given by

A · (B, y1, . . . , yn) = (AB,Ay1, . . . , Ayn).

By Ratner’s theorem there is for every (B, y) a group H such that

SL2(R)(B, y) = H(B, y).

We want to understand the dimension of this group. We already know that for a matrix
A ∈ SL2(Z) we have (AB,Ay) = (B,Ay) for every B ∈ SL2(R). Let us write y1 =
(a1, b1). Then the first coordinate of Ay1 is in the set a1Z + b1Z. This set is dense in
R if and only if Z + b1

a1
Z is dense in R and this happens if and only if b1

a1
/∈ Q. Since

the second coordinate is of the same form, either SL2 y1 is dense or discrete in R2. It
is dense if and only if a1 and b1 are Q-linearly independent, i. e. y1 is a generic point.
Hence for every generic point the group H has to have a corresponding component of
dimension 2 and for every non-generic point a component of dimension 0. Furthermore,
H contains SL2(R). Hence it is of dimension 2 plus the number of generic points in y.

To construct an GL+
2 (R)-orbit closure of (complex) dimension k in G we take some

arbitrary torus and choose k−2 generic branch points. By the above considerations this
gives us a (k − 2) + 2 = k-dimensional group H and thus a k-dimensional orbit closure.
Thus we have shown the following.

Proposition 2.18. In the space of translation tori with n marked points, GL+
2 (R)-orbit

closures of every possible dimension exist.
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3 Hurwitz spaces

In this chapter we briefly recall some covering theory and introduce the monodromy
group. Branched coverings behave like coverings outside of a special set of points, the
branch points. These branch points have fewer preimages than the degree of the covering.
This is where ramification occurs. The set of all branched coverings with restricted
ramification behavior is called a Hurwitz space. We talk briefly about classical Hurwitz
spaces, which contain covers of the Riemann sphere. Then we consider Hurwitz spaces
of coverings of elliptic curves.

3.1 Covering theory

Let us recall the basic definitions and statements of covering theory. For more details see
Hatcher and Miranda [Hat15; Mir95]. In this section all spaces are topological spaces,
mostly denoted by X, Y or Z.

The fundamental group of a topological space X with base point x ∈ X is the group
π1(X,x) consisting of all homotopy classes of loops starting in x. This is in fact a group.
Given a map f : X → Y we get a push forward map f∗ : π1(X,x) → π1(Y, f(x)) by
mapping a loop γ to the loop f ◦ γ. If X is connected, for all x0, x1 ∈ X the groups
π1(X,x0) and π1(X,x1) are isomorphic. Hence we often omit the base point and write
π1(X) = π1(X,x).

Definition 3.1. A covering (map) is a continuous map p : X → Y of topological spaces
such that every point y ∈ Y has a neighborhood U whose preimage p−1(U) is a union
of disjoint open subsets in X, each of which is mapped homeomorphically onto U by p.

The cardinality of a fiber p−1(y) of y ∈ Y does not depend on y, is called the degree of
the covering p : X → Y and is denoted by deg(p). By convention, all our covering spaces
will be connected. A simply connected covering space is called universal covering. It is
universal in the sense that it covers every covering of the base space. In our setting, the
universal covering exists.

One important feature of a covering is that a path on the covered space can be lifted
to a path on the covering space. This follows from the following, more general result.

Proposition 3.2 (Lifting property). Fix a base point z ∈ Z. A map f : Z → Y can
be lifted along a covering p : X → Y , i.e. there exists a map f̃ : Z → X such that the
diagram
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X

Z Y

p

f

f̃

commutes, if and only if f∗π1(Z, z) ⊆ p∗π1(X,x) and f(z) = p(x).

The map f̃ is called a lift of f . A lift is not unique, but two lifts coincide if they
coincide in one point. If f is a path, Z = [0, 1] is simply connected and hence every path
can be lifted to the covering space. From the proposition it easily follows that a map
f : Y → Y can be lifted along a covering p : X → Y to a map X → X if and only if
f∗p∗π1(X,x1) ⊆ p∗π1(X,x2) with fp(x1) = p(x2) for base points x1, x2 ∈ X.

For a covering map p : X → Y the induced map p∗ : π1(X) → π1(Y ) is injective. Its
image consists of all those loops in Y whose lifts are loops in X. A lift of the identity is
called deck transformation and the group of those maps will be denoted by Deck(X/Y )
or Deck(p). A covering is called normal if the deck transformation group acts transitively
on one (or each) fiber. This is equivalent to the condition that p∗π1(X) ⊆ π1(Y ) is a
normal subgroup.

Let H ⊆ π1(Y, y) be a subgroup of the fundamental group of Y with base point y and
let Ỹ be the universal cover of Y . Then the space Ỹ /H is a covering space of Y since
Ỹ /π1(Y, y) = Y . Hence every subgroup of π1(Y, y) gives a covering of Y . On the other
hand, every covering p : X → Y gives us a subgroup p∗π1(X,x) ⊆ π1(Y, y). All in all,
this gives a bijection between the set of all isomorphism classes of coverings of Y with
the set of all conjugacy classes of subgroups of π1(Y, y). Here, two coverings p : X → Y
and p′ : X ′ → Y are isomorphic if there is a homeomorphism X → X ′ such that the
diagram

X X ′

Y

∼=

p p′

commutes.
Let p : X → Y be a finite covering of degree d. Consider the fiber p−1(y) = { y1, . . . , yd }

over some point y ∈ Y and a loop γ in Y based at y. This loop can be lifted to a path γ̃.
Fixing γ̃(0) = yi this lift is unique and its endpoint is some yj for j ∈ { 1, . . . , d }. Doing
this for all indices yields a permutation and gives rise to a homomorphism π1(Y, y)→ Sd.

Definition 3.3. The group homomorphism

µ : π1(Y, y)→ Sd

is called the monodromy map. Its image is the monodromy group.

A subgroup of Sd is called transitive if for each pair of indices { i, j } there is a permuta-
tion σ in this group such that σ(i) = j. If Y is connected, the image of the monodromy
map is transitive.
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3.2 Branched coverings

We now apply the above theory to holomorphic maps between Riemann surfaces, see
Miranda [Mir95]. From now on, all spaces will be Riemann surfaces, which we denote
mostly by capital letters X, Y and E. Unfortunately, most holomorphic maps are no
covering maps. To see this, let p : X → Y be a non-constant holomorphic map and
x ∈ X. In a neighborhood of x the map has the form z 7→ zn. The integer n is called
the multiplicity or ramification index of p at x, is denoted by multx(p) and depends on
x. But the set of points with multiplicity strictly greater than 1 is a discrete set and
outside of this set the map p is a covering map. Furthermore, the degree of p can be
calculated as the sum

∑
x∈p−1(y) multx(p) of all multiplicities of points in the fiber over

a point y and is independent of y.

Definition 3.4. A branched covering of a Riemann surface is a holomorphic non-constant
map p : X → Y between Riemann surfaces. A point x ∈ X is called ramification point if
it has multiplicity greater than one and a point y ∈ Y is called branch point if it is the
image of a ramification point.

Let p : X → Y be a branched covering and B ⊆ Y be the set of branch points. Then
the map p : X \ p−1(B) → Y \ B is a (topological) covering as defined in the previous
section. We will call a covering simply branched if each fiber of a branch point has
deg(p)− 1 elements.

Proposition 3.5 (Riemann-Hurwitz formula). Let p : X → Y be a branched cover-
ing. Then

2g(X)− 2 = deg(p) (2g(Y )− 2) +
∑

x∈X
(multx(p)− 1),

where g(X) and g(Y ) denote the genus of X and Y , respectively.

In the case of a simply branched covering we have multx(p) = 2 for each ramification
point x ∈ X. Therefore it suffices to know three of the following four informations to
compute the fourth: The degree of the covering, the genus of the covered surface, the
genus of the covering surface and the number of ramification points.

The deck transformation group of a branched covering is defined to be the deck trans-
formation group of the corresponding (unbranched) covering. Furthermore, a branched
covering is normal if and only if its unbranched variant is normal. The monodromy of a
branched covering p : X → Y is the group homomorphism

µ : π1(Y \B, y0)→ Sd,

which is defined as before.

Lemma 3.6 (Żo l
↪

adek [Żo l02]). The branched covering X → Y is normal if and only
if the deck transformation group and the image of the monodromy map are isomorphic.
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For the next proposition, let us call two holomorphic maps X → Y and X ′ → Y equiv-
alent if their corresponding covering maps are isomorphic. Two group homomorphisms
from the same source to Sd are called equivalent if they are conjugated in Sd.

Proposition 3.7 (Miranda [Mir95]). Let Y be a compact Riemann surface and B ⊆
Y a finite subset. We have a bijection of the sets

{ holomorphic maps p : X → Y of degree d whose branch points lie in B } / ∼

and

{ group homomorphism µ : π1(Y \B, y0)→ Sd with transitive image } / ∼ .

3.3 Hurwitz spaces

In 1891 Hurwitz [Hur91] answered the question of how many coverings with given ramifi-
cation data of the Riemann sphere exist. He showed the above proposition for Y = P1C.
This led to the so-called (classical) Hurwitz space

Hd,g(P1C) =
{
p : X → P1C simply branched covering

∣∣ g(X) = g,deg(p) = d
}

of all simply branched coverings of the Riemann sphere of degree d and of genus g.
By the Riemann-Hurwitz formula from Proposition 3.5, we can calculate the number
of ramification points of the covering. Hurwitz showed that for all d and g the spaces
Hd,g(P1C) are connected complex manifolds.

In the following we generalize the classical Hurwitz space. The first step is to look
at coverings of surfaces other than the Riemann sphere. Following Fulton [Ful69], we
sketch why these are complex manifolds. The next step is to vary the covered surface
and look at all coverings of a family of surfaces. Berstein and Edmons [BE84] showed
that for a genus 1 base curve the Hurwitz space of primitive, simply branched coverings
is always connected. A more algebraic approach by Bujokas [Buj15] shows the same and
gives a classification of the connected components, when the coverings do not need to
be primitive. Finally, Magaard, Shaska, Shpectorov and Völklein [Mag+02] describe all
automorphism groups of genus 3 surfaces as well as the loci described by those groups.

Let Y be a Riemann surface, r a positive integer and let ΣrY = Y r/Sr be the r-fold
symmetric product of Y . Define the discriminant locus

∆ = { (y1, . . . , yr) ∈ ΣrY | there is i 6= j such that yi = yj }

and let B ∈ ΣrY \∆. Then Fulton [Ful69] defines the Hurwitz space

H(d,B, Y ) = { p : X → Y branched covering with branch locus B | deg(p) = d } / ∼

of branched coverings of degree d with branch locus B and the Hurwitz space

H(d, r, Y ) = { p : X → Y branched covering with r branch points | deg(p) = d } / ∼

25



of branched coverings of degree d with r branch points. In both cases, two coverings are
equivalent if they are isomorphic as defined in Section 3.1. Define the map

Ψr : H(d, r, Y )→ ΣrY \∆,

which assigns to a covering its set of branch points. For every branch locus B ∈ ΣrY \∆
we have Ψ−1

r (B) = H(d,B, Y ). Wanting the map Ψr to be a covering, we choose the
following topology for ΣrY \ ∆: Let U1, . . . , Ur be disjoint, simply connected, open
subsets in Y and define the set

N(U1, . . . , Ur) = { (p1, . . . , pr) ∈ ΣrY \∆ | pi ∈ Ui } .

These sets form a basis of the topology of ΣrY \ ∆. Via pulling back along Ψr, this
gives a topology on H(d, r, Y ). Now fix U1, . . . , Ur and let U =

⋃r
i=1 Ui be their union.

Let B and B′ ∈ N(U1, . . . , Ur). Then the maps Y \ B → Y \ U and Y \ B′ → Y \ U
are deformation retractions and hence the fundamental groups π1(Y \B) and π1(Y \B′)
are both isomorphic to π1(Y \ U). Each subgroup H ⊆ π1(Y \ B) of the fundamental
group corresponds to a covering pH : XH → Y \ B. On the one hand, by the above
isomorphism, H ⊆ π1(Y \ U) and H corresponds to a covering p′H : X ′H → Y \ U . On
the other hand, by restricting pH to the preimage p−1

H (Y \U), we get a covering of Y \U
described by the group H. Hence it is the same as the covering p′H , i.e. the covering of
Y \U is a restriction of the covering of Y \B. By symmetry arguments, the covering of
Y \ U is a restriction of the covering of Y \B′ as well. Thus we have a bijection

H(d,B, Y )→ H(d,B′, Y ) for B,B′ ∈ N(U1, . . . , Ur).

For a covering p ∈ H(d,B, Y ) let us denote by pB′ ∈ H(d,B′, Y ) the covering assigned
to p by the above bijection. Hence the preimage

Ψ−1
r (N(U1, . . . , Ur)) =

∐

p∈H(d,B,Y )

{
pB′

∣∣ B′ ∈ N(U1, . . . , Ur)
}

of an open set in ΣrY \ ∆ is a disjoint union of sets homeomorphic to N(U1, . . . , Ur).
Thus Ψr is a covering map. The natural complex structure of ΣrY makes H(d, r, Y ) into
a complex manifold.

Next we vary the covered surface. We fix the genus of the covered surface, the genus
of the covering surface, the degree of the covering and assume that our covering is simply
branched.

Definition 3.8. The space

Hd,g,h = { p : X → Y simply branched covering | deg(p) = d, g(X) = g, g(Y ) = h } / ∼,

which consists of all simply branched coverings of degree d from a surface of genus g to
one of genus h, is called Hurwitz space. Two coverings p : X → Y and p′ : X ′ → Y ′ are
equivalent if and only if there are isomorphisms X → X ′ and Y → Y ′ such that the
diagram

26



X X ′

Y Y ′

p p′

commutes.

Observe that by the Riemann-Hurwitz formula in Proposition 3.5 we can equivalently
describe this space by the degree d of the covering, the genus g of the covering surface
and the number of ramification points. A covering p : X → Y is called primitive if it does
not factor into an unramified covering Y ′ → Y and a ramified one X → Y ′. Note that
if for every y ∈ B the fiber p−1(y) has exactly one element, the covering p is primitive.

Proposition 3.9 (Berstein-Edmonds [BE84]). Let X and Y be connected surfaces
and p : X → Y be a simply branched covering of degree d. Then p is primitive if and
only if the monodromy map is surjective.

Let us now restrict to coverings of the torus, thus h = 1.

Proposition 3.10. The Hurwitz space Hd,g,1 is a complex manifold.

Proof. We already know that Hd,g(E) is a complex manifold for each E ∈ M1. The
space Hd,g,1 is a fiber bundle over the complex manifold M1 and the fibers Hd,g(E) are
complex manifolds as well. Hence it is a complex manifold.

Berstein and Edmonds [BE84] showed that the space

H0
d,g,1 = { p ∈ Hd,g,1 | p primitive }

of all primitive coverings of tori is connected. They used topological methods similar to
those of Hurwitz.

Algebraically, the same result was shown by Bujokas in his thesis [Buj15]. Moreover,
he classified the connected components of the Hurwitz space Hd,g,1 in two ways. On
the one hand, by the type of the cokernel of the push forward p∗ of the first homology
group. This is the direct product of two cyclic groups Cd1 × Cd2 with d1 | d2. On the
other hand, let e be the maximal degree of an isogeny over which the covering factors
and let m denote the maximal natural number for which the covering factors over the
multiplication by [m]. Then the above cokernel can be written as Cm × C e

m
.

Proposition 3.11 (Berstein-Edmonds [BE84], Bujokas [Buj15]). The connected
components of Hd,g,1 are separated by the isomorphism type of the cokernel of the push
forward p∗. Moreover, we have a bijection between the connected components of Hd,g,1

and pairs (e,m), where m2 | e | d. In particular, the space of primitive coverings H0
d,g,1

is connected.

Finally, we want to describe Hurwitz spaces the way Magaard et al. [Mag+02] did.
Let G be a finite group. Then a curve X is called a G-curve if there exists an injective
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map G ↪→ Aut(X). Two G-curves X and X ′ are equivalent if there is a G-equivariant
isomorphism X → X ′. Let C1, . . . , Cr be non-trivial conjugacy classes in G and C =
(C1, . . . , Cr). For r = 0 we have C = ∅. Given a branched covering p : X → X/G, a
distinguished inertia group generator at x ∈ X is an element in G which acts on the

tangent space at x as multiplication by exp
(

2πi
multx(p)

)
.

Definition 3.12. Let G be a finite group and X a curve.

a) A G-curve X is of ramification type (g,G,C) if the genus of X is g and the covering
X → X/G is ramified at r points such that Ci is the conjugacy class of the
distinguished inertia group generator at the i-th branch point.

b) The space H(g,G,C) of all equivalence classes of G-curves of ramification type
(g,G,C) is called Hurwitz space.

Denote by ci the order of an element in Ci and call c = (c1, . . . , cr) the signature of
the G-curve. The genus of X/G and the dimension of the space of all G-curves with
given ramification type only depends on the signature c, not on C.

We denote the map forgetting the G-action by

F : H(g,G,C)→Mg

and the map, which maps a G-curve X to the quotient X/G with its set of branch points
marked, by

F0 : H(g,G,C)→Mg0,r

This enables us to calculate the dimension of these Hurwitz spaces.

Proposition 3.13 (Bertin-Romagny [BR96]). The set H(g,G,C) is a quasi-projec-
tive variety. The morphism F0 is surjective and both F and F0 are finite. If nonempty,
the dimension of each connected component of F(H(g,G,C)) is 3g0 − 3 + r.

Furthermore, the morphism F : H(g,G,C)→Mg is unramified.

The notion of unramified is defined by Grothendieck in EGA [Gro67]. Most importantly,
interpreting the Hurwitz space H(g,G,C) as a complex manifold, the algebraic notion
unramified translates into the differential geometric notion of immersion, i.e. the induced
map on the tangent spaces T1H(g,G,C)→ T1Mg is injective. See for example [FL80].

Furthermore, Magaard et al. [Mag+02] study which groups appear as full automor-
phism groups of curves. They give a complete list of all possible automorphism groups
of curves of genus 3. Furthermore, for each automorphism group they calculate the di-
mension of the locus of all curves with these automorphisms and write down equations
defining the curves in this locus. In genus 3 most of this was known before by Komiya
and two Kuribayashis [KK79; KK90].

Proposition 3.14 (Magaard et al. [Mag+02]). For non-hyperelliptic surfaces of ge-
nus 3, we state in Table 3.1 their possible equations, their automorphism groups and the
dimension of the locus of all surfaces with corresponding automorphism group. Each
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G Equation 0 = Dimension

C2 x4 + x2(y2 + a) + by4 + cy3 + dy2 + ey + g, 4
either e = 1 or g = 1

V4 x4 + y4 + ax2y2 + bx2 + cy2 + 1 3
D8 x4 + y4 + ax2y2 + b(x2 + y2) + 1 2
D8 ×Z C4 y4 − x(x− 1)(x− λ) 1

S4 x4 + y4 + a(x2y2 + x2 + y2) + 1 1
C3 y3 − x(x− 1)(x− s)(x− t) 2
C6 y3 − x(x− 1)(x− s)(x+ 1− s) 1
S3 a(x4 + y4 + 1) + b(x2y2 + x2 + y2) + c(x2y + y2x+ xy) 3

Table 3.1: For a non-hyperelliptic surface of genus 3, we denote in the first column its
automorphism group, in the second its equation and in the third the dimension
of the locus of such curves. All variables are complex numbers.

G Equation y2 = Dimension of locus

C2 x(x− 1)(x5 + ax4 + bx3 + cx2 + dx+ e) 5
V4 (x2 − 1)(x6 + ax4 + bx2 + c) 3
C3

2 (x4 + ax2 + 1)(x4 + bx2 + 1) 2
D8 × C2 x8 + ax4 + 1 1

C4 x(x2 − 1)(x4 + ax2 + b) 2
C2 × C4 x(x2 − 1)(x4 + ax2 + 1) 1
D12 x(x6 + ax3 + 1) 1

Table 3.2: For a hyperelliptic surface of genus 3, we denote in the first column its auto-
morphism group, in the second its equation and in the third the dimension of
the locus of such curves. All variables are complex numbers.

locus is connected. We do leave out those exceptional automorphism groups, whose cor-
responding loci consist of one point only.

For hyperelliptic surfaces of genus 3, we state in Table 3.2 their possible equations,
their automorphism groups and the dimension of the locus of all surfaces with correspond-
ing automorphism group. Each locus is connected. We do leave out those exceptional
automorphism groups, whose corresponding loci consist of one point only.

The groups appearing in the tables will be described more precisely in Chapter 4.
For a first idea it is enough to say that Cn is the cyclic group with n elements, Dn the
dihedral group with n elements, Sn the symmetric group on n elements and V4 = C2×C2

the Klein four-group.
In fact, we are only interested in one Hurwitz space: The Hurwitz space H2,3,1 of

all coverings of degree 2 from a surface of genus 3 to a torus. We use both, the con-
nectedness argument of Bujokas and the dimension formulas as well as the equations
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and automorphism groups from Magaard et al. Hence we have to show that H2,3,1 is a
Hurwitz space of G-curves of some ramification type.

Lemma 3.15. The Hurwitz spaces H2,3,1, H0
2,3,1 and H(3, C2, (−1,−1,−1,−1)) coin-

cide.

Proof. Let p : X → E be in H2,3,1. Since deg(p) = 2, the covering is normal. By
Lemma 3.6 we have Deck(p) = µ(π1(E \ B)) ⊆ S2 and |Deck(p)| = 2. Hence the
monodromy map is surjective and by Proposition 3.9 the covering is primitive. This
implies

H2,3,1 = H0
2,3,1.

We now show that H2,3,1 ⊆ H(g,G,C) and calculate g, G and C: The quotient
X/Deck(p) is E and we set G = Deck(p) = C2. Furthermore, g(X) = g = 3. By
the Riemann-Hurwitz formula we have four ramification points, hence r = 4. The

generator of C2 acts on the tangent space of a ramification point by e
2πi
e for some

natural number e. Since the generator is of order 2, e ∈ { 1, 2 }. Because the multiplicity
is greater than 1, e = 2 for each ramification point. Hence C = (−1,−1,−1,−1) and
H2,3,1 ⊆ H(3, C2, (−1,−1,−1,−1)).

On the other hand, H(3, C2, (−1,−1,−1,−1)) ⊆ H2,3,1: Define E = X/C2. The
covering X → E is of degree 2 and has four ramification points, each with ramification
index 2. Hence the Riemann-Hurwitz formula gives

4 = 2 · (2g(E)− 2) +
4∑

i=1

1,

showing g(E) = 1.
Up to now, we showed that each covering in H(3, C2, (−1,−1,−1,−1)) is a covering

in H2,3,1 and vice versa. We still have to check that the equivalence relations on both
spaces coincide. On the one hand, let p : X → E and p′ : X ′ → E′ be equivalent, i.e.
there exist biholomorphic maps Φ: X → X ′ and Ψ: E → E′ such that the diagram

X X ′

E E′

Φ

p p′

Ψ

commutes. We have to show that Φ is G-equivariant for G = C2. Let i : G → Aut(X)
and i′ : G→ Aut(X ′) be embeddings. For g ∈ i(G) we have

p′ ◦ Φ(gx) = Ψ ◦ p(gx) = Ψ ◦ p(x)

since g is a deck transformation. Hence Φ(gx) and Φ(x) are in the fiber p′−1(Ψ ◦ p(x)).
So there exists a deck transformation g′ ∈ i′(G) such that Φ(gx) = g′Φ(x). Thus Φ is
G-equivariant.
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On the other hand, let X and X ′ in H(g,G,C) be two equivalent curves of type
(g,G,C) and let Φ: X → X ′ be a G-equivariant isomorphism. We define the surfaces
E = X/G and E′ = X ′/G and the map

Ψ: E → E′, x ·G 7→ Φ(x) ·G.

This map is well defined, since if x = x′ · g are in the same G-orbit, we have

Ψ(x ·G) = Φ(x) ·G 3 Φ(x) = Φ(x′ · g) = Φ(x′) · g ∈ Φ(x′) ·G = Ψ(x′ ·G).

for a g′ ∈ G. Furthermore, Ψ is biholomorphic because Φ is.

3.4 Hurwitz spaces of translation coverings

In this section we want to equip the Hurwitz spaces discussed before with additional
structure. These Hurwitz spaces give rise to nontrivial affine invariant submanifolds.

Definition 3.16. Let Hd,g,h be the Hurwitz space consisting of all simply branched
coverings of degree d from a surface of genus g to one of genus h. We define the Hurwitz
space of translation coverings by

ΩHd,g,h = { (p,X, ω, Y, υ) | (p,X, Y ) ∈ Hd,g,h, υ ∈ Ω(Y ), ω = p∗υ } / ∼,

consisting of all translation coverings, which, after forgetting the translation structure,
belong to the Hurwitz space Hd,g,h. We call two translation coverings (p,X, ω, Y, υ) and
(p′, X ′, ω′, Y ′, υ′) equivalent if and only if there exist translations X → X ′ and Y → Y ′

such that the diagram

(X,ω) (X ′, ω′)

(Y, υ) (Y ′, υ′)

p p′

commutes.

The map πH : ΩHd,g,h → Hd,g,h makes ΩHd,g,h naturally into a topological space.
There are more important maps: We have the forgetful map ΩF : ΩHd,g,h → ΩMg given
by ΩF(p,X, ω, Y, υ) = (X,ω). We denote the image of ΩF by ΩLd,g,h. Furthermore,
recall the forgetful map F : Hd,g,h →Mg mapping (p,X, Y ) to X. We denote the image
of F by Ld,g,h. Finally, we have the map πL : ΩLd,g,h → Ld,g,h given by πL(X,ω) = X.
These maps make the diagram
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ΩHd,g,h ΩLd,g,h

(p,X, ω, Y, υ) (X,ω)

(p,X, Y ) X

Hd,g,h Ld,g,h

πH

ΩF

πL

F

commutative and have nice properties. To simplify notation we omit the indices and
write H = Hd,g,h.

Proposition 3.17. Let H = Hd,g,h be a Hurwitz space.

a) The map πH : ΩH → H defines a fiber bundle with fiber π−1
H (p,X, Y ) = p∗Ω(Y ).

b) The space ΩH is the pullback ΩL×LH along the maps F : H → L and πL : ΩL →
L.

c) The map ΩF : ΩH → ΩL is a proper immersion.

d) The map πL : ΩL → L defines a fiber bundle.

Proof. a) Let U(p,X, Y ) be a neighborhood of a covering (p,X, Y ) ∈ H. We are
interested in the fiber

π−1
H (U(p,X, Y )) =

{
(p′, X ′, ω′, Y ′, υ′) | (p′, X ′, Y ′) ∈ U(p,X, Y ),

υ′ ∈ Ω(Y ′), ω′ = p′∗υ′
}
.

The map π0 : ΩMh →Mh is a fiber bundle with fiber π−1
0 (Y ) = Ω(Y ). This gives,

for a neighborhood U(Y ) of Y , a homeomorphism φ : π−1
0 (U(Y ))→ U(Y )×Ω(Y ).

In other words, a translation structure on a surface gives us translation structures
in a neighborhood of this surface. Hence for Y ′ ∈ U(Y ) and υ ∈ Ω(Y ) we find via
ϕ−1(Y ′, υ) a translation structure υ′ on Y ′. By pulling back we get a translation
structure ω′ = p′∗υ′ for a covering p : X → Y . This leads to a homeomorphism

π−1
H (U(p,X, Y ))→ U(p,X, Y )× p∗Ω(Y ),

which makes πH : ΩH → H into a fiber bundle with fiber p∗Ω(Y ).

b) We have to check that ΩH has the universal property of a fiber product. Given a
manifold J and maps f : J → ΩL and g : J → H we have to show that there exists
a unique map h : J → ΩH making the diagram
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J

ΩH ΩL

H L

h

f

g

πH

ΩF

πL

F

commutative. Since F(g(j)) = πL(f(j)) = X we can assume f(j) = (X,ω) and
g(j) = (p,X,E). Then the only way to define h is by

h(j) = (p,X, ω, Y, υ)

with p∗υ = ω. The differential η is unique since from p∗υ1 = p∗υ2 follows υ1 ◦ p =
υ2 ◦ p. Since p is surjective, υ1 = υ2.

c) By Proposition 3.13 the map F : H → L is a unramified morphism and hence
a (differential geometric) immersion. Being unramified is invariant under base
change, so ΩF is unramified and hence a (differential geometric) immersion.

d) By a theorem of Ehresmann [Ehr48], to see that πL is a fiber bundle, it is sufficient
to show that πL is a surjective proper submersion. Because the tangent spaces
TH and TL have the same dimension and because F and ΩF are immersions
according to c), they are submersions. Furthermore, πH is a fiber bundle and thus
a submersion. The following commutative diagram of tangent spaces

TΩH TΩL

TH TL
shows that the map πL is a submersion. Moreover, it is surjective by definition.
Finally, since πH is a fiber bundle, it is proper. Since F is finite, it is proper in the
algebro-geometric sense and by SGA1 [Gro71, XII, Prop 3.2] also in the topological
sense. Then π−1

L (K) = ΩF ◦π−1
H ◦F−1(K) is compact for each compact set K and

hence πL is proper.

This enables us to show that ΩLd,g,1 is an affine invariant submanifold whose dimension
depends only on the number of branch points.

Corollary 3.18. Let n be the number of branch points of a covering in ΩHd,g,1.

a) The space ΩHd,g,1 is a connected complex manifold of dimension n+ 1.

b) The space ΩLd,g,1 is an affine invariant submanifold of dimension n+ 1.

Proof. a) By Proposition 3.10 Hd,g,1 is a manifold, by Proposition 3.9 it is connected
and by Proposition 3.13 it is of dimension dimHd,g,1 = dimM1,n = n.

The space ΩHd,g,1 is a fiber bundle over the complex manifold Hd,g,1 with fibers
π−1
H (E) = Ω(E) = C× which are one-dimensional complex connected manifolds.

Thus the fiber bundle itself is a complex connected manifold of dimension n+ 1.
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b) A sketch of the proof is carried out by Wright [Wri15b].

By a) ΩHd,g,1 is a manifold. Furthermore, the map ΩF : ΩHd,g,1 → ΩLd,g,1 is a
proper immersion. Hence we only have to check that ΩLd,g,1 is locally described
by homogeneous R-linear equations in period coordinates. The immersion ΩF
is locally injective. Thus, when working with a translation surface (X,ω), we can
always assume it is equipped with a unique covering denoted by p : (X,ω)→ (E, η).

Let (X,ω) ∈ ΩLd,g,1 and let Σ be the set of singularities of ω and Σ̄ = p(Σ) the
set of branch points. Since ω = p∗η we have

∫

c
ω =

∫

c
p∗η =

∫

p∗c
η.

The kernel of the map p∗ : H1(X,Σ,Z)→ H1(E, Σ̄,Z) is of dimension

dimH1(X,Σ,C)− dimH1(E, Σ̄,C) = (2g + n− 1)− (n+ 1) = 2g − 2.

Extending the basis of the kernel { c1, . . . , c2g−2 } to a basis of the whole relative
homology H1(X,Σ,Z), we get systems of linear equations

∫

ci

ω = 0, i = 1, . . . , 2g − 2.

This system describes a linear subspace of dimension (2g+n−1)−(2g−2) = n+1.
This shows that ΩLd,g,1 is an affine invariant submanifold of dimension at most
n+ 1.

On the other hand, ΩLd,g,1 is at least (n + 1)-dimensional: The space ΩM1 is 2-
dimensional and we may choose freely, after fixing one branch point, n− 1 branch
points. This gives us at least n+ 1 degrees of freedom.

Although ΩHd,g,h is not a manifold anymore for h > 1 the same procedure works to

produce affine invariant submanifolds. By picking a finite covering Ω̃Hd,g,h of ΩHd,g,h

we get an immersion Ω̃Hd,g,h → ΩHd,g,h → ΩLd,g,h. Note that ΩHd,g,h does not need to
be connected for d > 2 or h > 1.

34



4 Finite groups

In this chapter we define the groups we need in this thesis.
We denote by Cn the cyclic group of order n, by Sn the symmetric group on n elements

and by Dn the dihedral group with n elements given by

Dn = 〈x, a | an2 = x2 = 1, xax−1 = a−1〉

for even n.
All the following groups can be found in the large book by Hall and Senior [HS64].

Denote by V4 = C2 × C2 the Klein four-group. The group D8 ×Z C4 is the central
product of the dihedral group D8 and the cyclic group C4. It can also be seen as the
direct product of those with amalgamation by C2. We have a presentation

D8 ×Z C4 = 〈a, x, y | a4 = x2 = 1, a2 = y2, xax−1 = a−1, ay = ya, xy = yx〉.

In the book by Hall and Senior this group corresponds to the group of order 16 with
number 8. Moreover, we are interested in a presentation of the direct product

D8 × C2 = 〈a, x, y | a4 = x2 = y2 = 1, xax = a−1, ya = ay, xy = yx〉

of the dihedral group D8 and the cyclic group C2. In the book by Hall and Senior this
group corresponds to the group of order 16 with number 6. Furthermore, by

Q = 〈i, j, k | i2 = j2 = k2 = ijk = −1〉

we denote the quaternion group. In the book by Hall and Senior this group corresponds
to the group of order 8 with number 5.

In the following diagram we sketch how some of these groups are contained in each
other. Subgroups are indicated by arrows. The order of the groups increases from left
to right and is 2, 4, 8 and 16, respectively.

Q

D8 D8 ×Z C4

C2 V4

C3
2 D8 × C2
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5 The Wollmilchsau

In this chapter we sketch some results of Herrlich and Schmithüsen [HS07a; HS08]. We
define the Wollmilchsau, consider a Hurwitz space in which it is contained and talk about
other origamis, whose Teichmüller curves form a dense subset of this Hurwitz space.

The Wollmilchsau is the translation surface described by Figure 5.1. Edges with same
labels are glued and points with the same name coincide. By the Euler formula the
genus of the Wollmilchsau is 3.

The quaternion group Q acts by left multiplication on the squares of the Wollmilchsau.
The quotient of the Wollmilchsau by the quaternion group Q is a torus and the corre-
sponding covering has one ramification point. Hence the Wollmilchsau is an origami.
There is one more automorphism that rotates each square by π around the four ver-
tices. Observe that its square is the map −1. Hence the whole automorphism group
is D8 ×Z C4, the central product of the dihedral group D8 and the cyclic group C4.
Another point of view is to regard the Wollmilchsau as a covering of degree 2 of the
torus with four ramification points. To see this note that the map −1 interchanges the
two polygons and has four fixed points, namely the vertices.

The Veech group of the Wollmilchsau is SL2(Z) and its Teichmüller curve consists of
those curves Wλ given by the equation y4 = x(x− 1)(x− λ). For every Wλ there is an
involution with four fixed-points such that the quotient of Wλ by this involution does not
depend on λ. Such an involution is not in Q. If the branch points of the corresponding
covering are N -torsion points, multiplying by N gives rise to a new origami. Since there
are infinitely many torsion points, we get infinitely many origamis. For every origami
obtained in this way, its Teichmüller curve intersects the one of the Wollmilchsau. These
infinitely many Teichmüller curves form a dense subset of a subspace of the Hurwitz
space H2,3,1, which is the closure of all coverings with symmetric branch points and a
non-hyperelliptic covering surface. The first condition implies that the Klein four-group
V4 is contained in the automorphism group of the surface.

Using explicit formulas, Herrlich and Schmithüsen compute the equations for each
curve in this special subspace and the dimension of this space. These coincide with the
equation and dimension in Table 3.1 for G = V4. Furthermore, they compute the Veech
groups of origamis whose Teichmüller curves intersect the one of the Wollmilchsau.
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Figure 5.1: The Wollmilchsau. Edges with the same label are glued. The quaternion
group acts by left multiplication on the set of squares.
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6 A Hurwitz space of translation surfaces

In the previous chapter, we discussed a special Hurwitz space discovered by Herrlich and
Schmithüsen [HS07a]. Its remarkable property is that it is the closure of an infinite union
of Teichmüller curves, each one intersecting the Teichmüller curve of the Wollmilchsau.
This Hurwitz space can be described as the space of all coverings of degree 2 of a
torus with four ramification points such that the covering surfaces are not hyperelliptic
and such that the branch points are symmetric with respect to some origin. The last
condition is equivalent to the condition that the automorphism group contains the Klein
four-group V4.

In this chapter we reinvent this Hurwitz space, starting from a more general perspec-
tive with the Hurwitz space H2,3,1 of all coverings of the torus of degree 2 with four
ramification points. This space contains the above Hurwitz space as a subspace of codi-
mension 1. Our viewpoint differs greatly from the original one. We equip each covering
in H2,3,1 with a natural translation structure arising from the one of the covered torus.
Hence we can use more elementary methods to obtain results about the connected com-
ponents and the dimension of the Hurwitz space. Then we investigate subspaces of this
Hurwitz space where the relations of the branch points are restricted. The first sub-
space is the Hurwitz space defined by Herrlich and Schmithüsen, except that we permit
hyperelliptic surfaces. Thereafter, each restriction on the set of branch points gives an
extra automorphism. We compute the connected components and dimensions of the
subspaces given by those automorphisms. Furthermore, their images in ΩM3 are not
only loci given by a fixed automorphism group, but also affine invariant submanifolds.

Finally, we show that there are no affine invariant submanifolds in the Hurwitz space
of translation coverings that are described by their automorphism groups other than the
ones we constructed. The Wollmilchsau is a translation surface in one of those subspaces.
We find three siblings of the Wollmilchsau and compute their Veech groups.

6.1 A special Hurwitz space

In this section we compute properties of the Hurwitz space H2,3,1. By adding an addi-
tional translation structure to each covering in this space, the results follow elementarily.
Most of them follow as well from more general statements by Bujokas, Berstein-Edmonds
and Wright [BE84; Buj15; Wri15b].

Recall the definition of the Hurwitz space Hd,g,h in Definition 3.8 and the forgetful
map F : Hd,g,h →Mg defined in Section 3.3.
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Definition 6.1. The Hurwitz space

H = H2,3,1 =
{

(p,X,E) | X ∈M3, E ∈M1,1

p : X → E simply ramified covering of degree 2
}

consists of all coverings of degree 2 of a Riemann surface of genus 3 over an elliptic curve.
Denote by F : H →M3 the forgetful morphism and its image by

L = L2,3,1 = F(H).

It consists of those Riemann surfaces of genus 3 which are coverings of degree 2 of an
elliptic curve.

By the Riemann-Hurwitz-formula in Proposition 3.5 we can describe the space H
equivalently by coverings of degree 2 with four ramification points. Since a covering in
H is of degree 2 and hence normal, the deck transformation group is C2, the cyclic group
of order 2. Here and subsequently, let σ denote the generator of the deck transformation
group. Thus the generic automorphism group of a Riemann surface X in L is

Aut(X) = C2.

By Proposition 3.11 we know that H is a connected complex manifold. Due to Propo-
sition 3.13 its dimension is 3 · 1− 3 + 4 = 4.

Given the automorphism σ, we can compute explicit formulas for curves in L. Those
can be found in Tables 3.1 and 3.2 for the non-hyperelliptic and the hyperelliptic case,
respectively. Nevertheless, we make our computation explicit.

Proposition 6.2. Let X ∈ L be a non-hyperelliptic Riemann surface of genus 3. Then
it is the zero set of the homogeneous polynomial

f = x4 + x2(y2 + az2) + by4 + cy3z + dy2z2 + eyz3 + gz4,

where not e = g = 0. The dimension of the locus L is 4, hence the complex numbers
a, b, c, d, e and g are not independent.

Proof. Since the genus of X is g(X) = 3, the canonical embedding embeds X into P2C.
So there is a homogeneous polynomial f ∈ C[x, y, z] of degree deg(f) = 4 such that
V (f) = X, see e.g. [Har77]. We may assume that σ : x 7→ −x. Hence in the polynomial
f only even powers of x are necessary. Let f be given by

f = a0x
4 + x2(a1y

2 + a2yz + a3z
2) + a4y

4 + a5y
3z + a6y

2z2 + a7yz
3 + a8z

4

with coefficients ai ∈ C, i = 0, 1, . . . , 8.
Firstly, observe that a1 = a2 = a3 = 0 would imply the existence of an automorphism

x 7→ ζ4x of order 4. In the generic case, this does not exist. For a0 = 0 we get that
x2(a1y

2 + a2yz + a3z
2) = p(x : y : z) for a homogeneous polynomial p. Substituting

a1y
2 + a2yz + a3z

2 = z2, we have p(x : y : z) = x2z2 and hence X is hyperelliptic, a
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contradiction. Thus a0 6= 0 and we normalize a0 = 1. Now assume a7 = a8 = 0. Then
we have

f = a0x
4 + x2(a1y

2 + a2yz + a3z
2) + a4y

4 + a5y
3z + a6y

2z2.

Every fixed point of σ has to fulfill x = 0. For z = 1 this gives

f(0 : y : 1) = y2(a4y
2 + a5yz + a6z

2),

which has three solutions and for z = 0 we have

f(0 : 1 : 0) = a4,

which is a solution only if a4 = 0. Thus σ has only three fixed points in the generic case,
a contradiction.

We may assume that a1 6= 0. If a1 = 0, interchange y and z. Then a1 is substituted
by a3. If furthermore a3 = 0, we substitute y with y+ z and thus a2yz with a2yz+ a2z

2

and a2 6= 0, since a1 = a2 = a3 = 0 is false. By substituting y with y + λz we get

x2(a1y
2 + a2yz + a3z

2) 7→ x2
(
a1y

2 + (2λa1 + a2)yz + (a1λ
2 + a2λ+ a3)

)
z2.

Choose λ such that 2λa1 + a2 = 0, then the polynomial is transformed to

f = x4 + x2(a1y
2 + a3z

2) + a4y
4 + a5y

3z + a6y
2z2 + a7yz

3 + a8z
4.

Since we assumed a1 6= 0, we may subsitute y by 1√
a1
y and hence get a1 = 1.

Note that the dimension of the locus is 4. This can be seen as follows. The automor-
phism σ comes from an automorphism σ : P2C→ P2C given by σ(x : y : z) = (−x : y : z).
This automorphism has the fixed point set V (x)∪ { (1 : 0 : 0) }. To change the equation
f into a nicer form we are using automorphisms in Aut(P2C) = PGL3(C) which leave
the images of f invariant under σ. Equivalently, we use automorphisms which leave the
fixed point set of σ invariant. Hence they are of the form



λ 0 0
0 a b
0 c d




with λ, a, b, c, d ∈ C. Using these automorphisms we can eliminate five parameters and
four remain.

Proposition 6.3. Let X ∈ L be a hyperelliptic Riemann surface of genus 3. Then it is
the zero set of the polynomial

y2z6 = (x2 − z2)(x6 + ax4z2 + bx2z4 + cz6),

where a, b, c ∈ C.

40



Proof. A hyperelliptic curve X of genus g is defined by an equation y2z6 = f(x, z) with
deg(f) = 2g+ 2. The hyperelliptic involution is given by y 7→ −y. Since X ∈ L, we may
assume that σ : x 7→ −x. Thus only even powers of x occur in the polynomial f .

By substituting x by some multiple of itself we may assume that

y2z6 =
4∏

i=1

(x2 − aiz2).

By nonsingularity we may assume a1 6= 0 and hence substitute z by
√
a1z and y by

y
√
a1
−3. We get

y2z6 = (x2 − z2)
4∏

i=2

(x2 − aiz2) = (x2 − z2)(x6 + ax4z2 + bx2z4 + cz6).

Observe that there is, as pointed out in the proof, a hidden dependence in the first
equation. The space H is of dimension 4, but we can choose 5 coefficients. Furthermore,
the dimension of the hyperelliptic locus is less than the dimension of the non-hyperelliptic
locus. This is reasonable, since the automorphism group of hyperelliptic curves in L has
to contain the Klein four-group V4 = C2 × C2. The generic, non-hyperelliptic curve has
just one automorphism of order 2, hence this space is less restrictive.

Instead of holomorphic structures, we use the extra information given by translation
structures. Hence we start with a torus equipped with a translation structure and regard
all coverings of degree 2 with four ramification points. We pull back the translation
structure along the covering, getting a translation structure on the covering surface as
well as a translation covering.

Definition 6.4. Define the Hurwitz space of translations coverings to be the set

ΩH = { (p,X, ω,E, η) | (p,X,E) ∈ H, η ∈ Ω(E), p∗η = ω }

of all translation coverings coming from coverings in H. Observe that by definition p is
a translation, i.e. Dp = I. Let us denote by

ΩL = { (X,ω) | there exist p,E, η such that (p,X, ω,E, η) ∈ ΩH }

the space of all translation surfaces in ΩM3 that admit a translation covering of degree
2 of a torus ramified over four points.

From now on, we denote the set of ramification points in X by Σ = {P,Q,R, S } and
the set of branch points in E by Σ̄ = { P̄ , Q̄, R̄, S̄ }.

In the more general case in Section 3.4 we already discussed Hurwitz spaces of trans-
lation coverings. Using this language, we have ΩH = ΩH2,3,1 and ΩL = ΩL2,3,1. Let us
recall our main result.

Proposition 6.5. The space of translation surfaces ΩL is a five-dimensional affine in-
variant submanifold of the stratum H(1, 1, 1, 1).
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Figure 6.1: In the first row, a translation surface in the stratum H(1, 1, 1, 1) with an
automorphism σ interchanging both polygons is sketched. In the second
row, a translation surface in the same stratum without this automorphism
is sketched. An element b of the relative homology group, its image under σ
and their natural extensions onto the nearby surface are sketched.

Proof. See Corollary 3.18.

In the proof of Corollary 3.18 we have used that the forgetful maps F : H → L and
ΩF : ΩH → ΩL are immersions. Hence their images are not necessarily manifolds, but
may contain orbifold points. In the language of translation surfaces, these orbifold points
can be described quite easily.

In the following, we illustrate why ΩL is part of the singular locus of the orbifold
H(1, 1, 1, 1). Let (X,ω) ∈ ΩL be a translation surface and fix a basis of relative homology.
Applying the extra automorphism σ to this basis, we get another basis. Integrating along
both bases yields the same period coordinates. If, on the other hand, we transform (X,ω)
to a surface nearby, which does not have an extra automorphism, integrating along both
bases gives us different period coordinates.

An example is depicted in Figure 6.1. We see two translation surfaces in the principal
stratum H(1, 1, 1, 1). The first one has an automorphism σ interchanging both polygons.
The second translation surface is in a small neighborhood of the first one, but does not
have this automorphism. We choose a path b and its image σ(b). Due to Proposition 2.6

we can extend those paths naturally to paths b̃ and σ̃(b) on the second, nearby surface.
Whether we integrate b or σ(b) does make no difference. But on the second surface,

integrating along b̃ or σ̃(b) makes a difference. Hence locally the space ΩL looks like
C5/C2 and thus, as a subset of the whole stratum, consists of orbifold points. But
regarding ΩL on its own, most points are manifold points. Later, we show that the
singular locus is of codimension 1 in ΩL.
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cut and paste

Figure 6.2: A square torus is cut into a polygon.
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Figure 6.3: A polygon consisting of two copies of the square torus whose vertices are
labeled by P , Q, R and S.

6.1.1 Taking advantage of the translation structure

In the remainder of this work, a description by polygons of translation coverings in ΩH
is crucial. Firstly, we sketch the rough idea of this polygon construction and then we
present a rigorous proof thereof.

We fix a torus and cut and reglue this torus as sketched in Figure 6.2. Then we take
two copies of this torus as in Figure 6.3 and label the vertices by P , Q, R and S. We
have to glue those two polygons such that the angle at every labeled point is 4π. We can
choose to either glue the leftmost vertical edge to the right vertical edge of the same or
the other polygon. Furthermore, we can glue the top edge connecting P and Q to the
bottom edge connecting P and Q in the left or the right polygon. If we would glue the
edge from Q to R to the edge on the same polygon as we glued the edge connecting P
and Q, the angle around Q would be 2π. Hence every possible gluing is determined by
the first two choices. All in all, this gives us four possible gluings, which are sketched in
Figure 6.4.

We give a more thorough treatment of the above discussion here. We describe the
space of polygons needed to construct every translation covering in ΩH. Let P be a
polygon. We can describe P by its vertices v1, . . . , vn in clockwise orientation. On the
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Figure 6.4: In each row, a translation surface is depicted. All of them can be described by
one polygon. Edges with same markings are glued. The deck transformation
σ interchanges the two copies of the polygon and is sketched on the first
translation surface.
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one hand, two consecutive vertices give us an edge ei = vi+1 − vi. On the other hand,
with the convention v1 = 0, we regain every vertex vi as the sum of preceding edges
vi =

∑i−1
j=1 ej . Therefore we can describe P equivalently either by its edges or by its

vertices. If a polygon is given by its edges e1, . . . , en, we will denote those as a tuple
in Cn. For a tuple (e1, . . . , en) ∈ Cn we get a path by drawing the vector e1 starting
in 0, then drawing the vector e2 starting in e1 and so forth. However, most tuples
(e1, . . . , en) ∈ Cn do not produce a polygon, because the path they form is not closed.
The space of (not necessarily convex) polygons with n vertices is given by

Pn =

{
(e1, . . . , en) ∈ Cn

∣∣∣∣∣
n∑

i=1

ei = 0

}
,

consisting of all tuples in Cn such that the sum of their entries is zero. As this set is the
zero set of a polynomial, it is a closed submanifold of Cn. Furthermore, we want to glue
our polygons to translation surfaces. So we need for every edge one parallel edge of the
same length to which it can be glued. Inspired by our pictures, for even n we define

Psn =
{

(e1, . . . , en) ∈ Pn
∣∣∣ e1 = −en

2
+1, ei = −en−i+2 for 2 ≤ i ≤ n

2

}
.

This space consists of all polygons whose upper half is a translate of the lower half.
Those polygons will be called symmetric. The defining conditions are closed conditions,
so this is a closed subspace of the space of polygons Pn. The dimension of Psn is n

2 .
The polygons in Pn may have self-intersections. We do not want to forbid these per

se, but we just allow very simple self-intersections. To see why this is necessary, imagine
that the branch point Q̄ is on top of the point P̄ . In the construction described above,
the path from P̄ to Q̄ will be part of the vertical path from P̄ to P̄ . This may be
thought of as a degeneration of the polygon, see e.g. Figure 6.5. It is also possible, that
the points P̄ , Q̄ and R̄ are on top of each other. These types of self-intersections are
precisely the ones we want to allow. Let us denote by vi + ei the image of the path
defined by t 7→ vi + tei for t ∈ (0, 1). We define the set

Pon =
{

(e1, . . . , en) ∈ Pn | ∃j0 ≤
n

2
: vi + ei ⊆ v1 + e1 ∀i ≤ j0 and

(vi + ei) ∩ (vj + ej) = ∅ ∀2 ≤ i < j ≤ n or i = 1, j > j0,

vi + ei ∩ vj + ej = ∅ ∀|i− j| 6= 1 and i < j > j0
}
,

consisting of all polygons in Pn for which the first n
2 edges may be contained in the first

edge but with no other self-intersections. Those polygons will be called semi-simple.

Definition 6.6. We denote by Ps,on = Psn ∩ Pon the space of all symmetric, semi-simple
polygons.

For simplicity of notation, we write P = Ps,o10 .
In the following we want to show that every translation covering in ΩH can be repre-

sented by a polygon in P and a choice of four possible gluings.
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Figure 6.5: The degenerate polygon on the left can be thought of as the limit of the
polygon on the right where the green edge converges along the light green
face to the dashed edge.

Lemma 6.7. Every four-punctured torus with translation structure can be represented
by a polygon in P whose vertices are the punctures.

Proof. Without loss of generality we may assume the torus to be the standard torus
C/Z + iZ. Let C be the universal covering of the torus chosen such that the origin is
mapped to one marked point P̄ . Assume that no two marked points have the same real
part. In the universal covering C we draw a straight path going up and/or right from the
origin to one preimage of a marked point that has the smallest positive real part. Again,
from this point we draw a straight path going up and/or right to the point with the next
largest real part. We go on in this manner until we reach a point which is mapped to P̄
again and then draw a straight path upwards until we reach the next point mapped to
P̄ . Then, we draw from the origin upwards until we reach another point mapped to P̄
and repeat the procedure explained above. This gives us a closed polygon. The obvious
gluing instruction gives us our torus.

If two preimages P̃ and Q̃ of marked points have the same real part, we have to draw a
straight line going up. Without loss of generality we may assume P̃ = 0, which gives us
a degenerate polygon as seen in Figure 6.5. The edge going from P̃ to another preimage
P̃1 of the same point has to be glued to the right side of the polygon. At the same time
the edge going up from P̃ to Q̃ lies on this edge, so it has to be glued to the right side
as well. Hence we cut off the polygon’s little arm and glue it to the right side.

If all four preimages of the marked points have the same real part, our construction
fails. Instead we add 1 to one of these preimages. It still gets mapped to the same point
and our construction works as before.

Proposition 6.8. We have a surjective map P × {1, 2, 3, 4} → ΩH.

Proof. Let N ∈ P be a polygon and take two copies N1 and N2 of N . We label the edges
of Ni clockwise by ai, bi, ci, di, ei, −ai, −ei, −di, −ci and −bi for i = 1, 2. Let us think
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of the edges ai as the “vertical” edges connecting P to P . Assume that the polygon N is
non-degenerate. We may glue the edge a1 to the edge −a1 or −a2. Then we are free to
glue b1 to either −b1 or −b2. After that, there is no choice anymore. If we glued b1 and
c1 both to −b1 and −c1, the angle around the vertex in between would be 2π instead of
4π. Hence the choice of how to glue a1 and b1 determines how to glue the other edges.
We define the gluing map Ti by

Ti(a1) =

{
−a1, i = 3, 4

−a2, i = 1, 2
and

Ti(b1) =

{
−b1, i = 1, 3

−b2, i = 2, 4
.

For a non-degenerate polygon N and i ∈ { 1, 2, 3, 4 } this gives us the translation surface
(N1 ×N2) /Ti.

We want the map P × { 1, 2, 3, 4 } → ΩH to be continuous and this determines the
map on degenerate polygons. To illustrate this, assume that the point Q lies above P .
See Figures 6.5 and 6.6. Take a series of non-degenerate polygons (Nn) with points (Qn)
converging to the polygon N and the point Q. For each Nn the gluing defined above
works. As (Qn) converges to Q, the edges (−b1)n converge to a subset of the edge a1.
Since −b1 ⊆ a1, the edge −b1 has to be glued to some subedge of Ti(a1). Because of
coninuity we have

Ti(a1) ⊇ Ti(−b1) = lim
n→∞

Ti ((−b1)n) .

In other words, the edge −b1 has to be glued to a subedge of the edge to which a1 gets
glued. At the same time it has to be glued to the same edge as every (−b1)n. So we
add a new point Q on the edge Ti(a1) and glue the edge −b1 to the subedge of Ti(a1)
between P and Q. More graphically, we cut off the little arm forming the edge from P
to Q and translate it onto the edge Ti(a1) such that the point P fits in. We have to add
the point Q on this edge. This new edge is glued to the edge limn→∞ Ti ((−b1)n).

The above construction gives us a translation surface. In Figure 6.4 every row cor-
responds to one translation surface covering a fixed torus. The four possible gluings
correspond, from top to bottom, to the gluing maps T1 to T4. We see that the angle
at each vertex is 4π. So those translation surfaces are in the stratum H(1, 1, 1, 1). Fur-
thermore, we define a translation σ interchanging the two polygons. The quotient by
the group generated by σ is one polygon with Roman and Arabic numerals as well as o
and oo identified. Clearly, the quotient is a torus. Since the translation σ has four fixed
points and is of order 2, this shows that the map P → ΩH is well defined.

It is surjective since for each torus we can give four different coverings with the given
ramification data: By Proposition 3.7 there are as many coverings of a given surface with
fixed degree and branch points as there are monodromy maps with transitive image. In
our case the degree is d = 2 and hence being transitive is the same as being surjective.
The fundamental group of the four-times punctures torus is generated by four loops
around the branch points, which are mapped to (1 2), and two loops generating the
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fundamental group of the torus, whose images we can choose freely. So there exist four
different monodromy maps and hence four different coverings.

The fibers of the map P × { 1, 2, 3, 4 } → ΩH are at least countable: For a covering
p : (X,ω)→ (E, η) we construct a polygon by looking at the universal cover of the torus
E. We mark the preimages of the branch points P̄ , Q̄, R̄ and S̄. Then, starting in one
preimage of P̄ we draw an edge to one preimage of the next point, say Q̄. As depicted
in Figure 6.7, there are countably many ways to draw this edge. None of these edges
interferes with an edge from a preimage of Q̄ to one of R̄. Hence we can draw countably
many polygons all describing the same torus.

We now show explicitly that the space ΩH is connected. Every polygon in P can
be continuously transformed into a rectangle by just flattening out all the angles. To
show that the Hurwitz space of translation coverings ΩH is connected, we only need to
show that we can transform translation coverings given by the same polygon, but with
different gluings, into each other.

Proposition 6.9. The Hurwitz space of translation coverings ΩH is connected.

Proof. By the above argument, we can transform every translation covering in one of
the forms seen in Figure 6.8. The first one is glued by T2 and the second one by T1.
Cutting and gluing in the indicated way gives us an isomorphic translation covering. So
we have a path from any translation covering glued by T2 to any translation covering
glued by T1.

The second row gives an isomorphism from a translation covering glued by T3 to one
glued by T4 and the third row gives an isomorphism from a translation covering glued
by T1 to one glued by T3.

Combining those, we find a path from any translation covering in ΩH to any other
translation covering in ΩH, thus ΩH is path connected and hence connected.

6.2 A subspace of codimension one

In this section we discuss in more detail the Hurwitz space first mentioned by Herrlich
and Schmithüsen [HS07a; HS08]. They described it as the non-hyperelliptic component
of the Hurwitz space of coverings of degree 2 of the torus whose branch points are
symmetric or, equivalently, by those coverings which allow a lift of the multiplication
by −1. Among other things, they showed that this space is a 3-dimensional manifold
and computed equations for each surface therein. The most remarkable property of this
space is that its projection into the moduli space contains a dense subset consisting of
Teichmüller curves, which all intersect the Teichmüller curve of the Wollmilchsau.

We start in the same vein as Herrlich and Schmithüsen and define a subspace of H
by restricting the branch points to symmetric branch points. This is equivalent to the
fact that the multiplication by −1 can be lifted. Thereafter, we use translation cover-
ings instead of holomorphic coverings and thus obtain a 4-dimensional affine invariant
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one, where the limit is as in Figure 6.5. The indicated cutting and gluing
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Figure 6.7: This is the universal covering of a torus with preimages of the branch points
marked. Starting from one preimage of P̄ , say P̃ , there are countably many
ways to draw an edge to a preimage of Q̄.
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Figure 6.8: Three isomorphisms of translation surfaces, which interchange every possible
gluing.
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submanifold of ΩL. This point of view enables us to reprove the existence of a lift of the
multiplication by −1 and to describe the connected components of this space.

Definition 6.10. For a covering p : X → E in H let Σ̄ =
{
P̄ , Q̄, R̄, S̄

}
denote the set

of branch points in E and let Ō ∈ E be its origin. We define the subspace

H1 =
{

(p,X,E) ∈ H
∣∣ P̄ + S̄ = Q̄+ R̄ = Ō

}

of H consisting of all coverings with two pairs of symmetric branch points. We define
its image in the moduli space M3 to be

L1 = F(H1),

consisting of those Riemann surfaces that admit a covering in H1.

From now on we write S̄ = −P̄ and R̄ = −Q̄. We assume that the branch points are not
2-torsion points. If one point, say P̄ , was a 2-torsion point, we would have P̄ = −P̄ = S̄.
Thus the covering would have at most three ramification points in contradiction to our
definition of H.

Following Herrlich and Schmithüsen [HS07a], we describe this space by the possibility
to lift the multiplication by −1 to the covering.

Proposition 6.11. Let [−1] : E → E denote the multiplication by −1 on an elliptic
curve E. Then the Hurwitz space

H1 = { (p,X,E) ∈ H | there exists a lift τ : X → X of [−1] : E → E }

can be identified with the space of all coverings, to which the multiplication by −1 can be
lifted.

Here and subsequently, we denote by τ the lift of [−1].

Proof. Let p : X → E be a covering in the right hand set and let τ be a lift of [−1].
Then [−1](Σ̄) ⊆ Σ̄. Note that Σ̄ =

{
P̄ , Q̄,−P̄ ,−Q̄

}
has four elements. If [−1] had a

fixed point in Σ̄, say P̄ , then P̄ = [−1](P̄ ) = −P̄ . Hence Σ̄ has only three elements, a
contradiction. Thus [−1] has no fixed points in Σ̄, which shows that P̄ , [−1](P̄ ) = −P̄ ,
Q̄ and [−1](Q̄) = −Q̄ are four different branch points. The branch points fulfill the
relation P̄ + (−P̄ ) = Q̄+ (−Q̄) = Ō. Thus p ∈ H1.

Now let p : X → E be a covering in H1 having branch points with the relation P̄ + S̄ =
Q̄+ R̄ = Ō. We follow the proof by Herrlich and Schmithüsen [HS07a]. Let X∗ = X\Σ
and E∗ = E\Σ̄ be the corresponding punctured surfaces. Observe that [−1] also is
an automorphism of E∗. We want to show that the automorphism [−1] lifts to an
automorphism τ of X (or X∗). Thus we want to show that there exists an automorphism
τ : X∗ → X∗ such that the diagram

X∗ X∗

E∗ E∗

p

τ

p

[−1]
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is commutative. By the lifting property stated after Proposition 3.2, we have to show

[−1]∗p∗π1(X∗) ⊆ p∗π1(X∗).

To simplify notation, we use loops instead of their equivalence classes. The group
p∗π1(X∗) consists of those loops in π1(E∗) that are lifted to loops in π1(X∗), com-
pare Section 3.1. The kernel of the monodromy map µ : π1(E∗) → S2 consists of those
loops that are lifted to loops in π1(X∗). So p∗π1(X∗) = ker(µ). Thus we have to check
whether multiplying by −1 changes the monodromy type of a given loop in E∗. We
choose generators of the fundamental group of E∗ with base point Ō. Let α and β be
two loops generating the fundamental group of the (non-punctured) torus such that they
are invariant under multiplication by −1. Then pick counterclockwise loops `P̄ , `Q̄, `−Q̄
and `−P̄ around the branch points P̄ , Q̄, −Q̄ and −P̄ . These six loops generate the
fundamental group π1(E∗). Since [−1] maps P̄ to −P̄ , Q̄ to −Q̄ and vice versa, we have

[−1]∗(`P̄ ) = `−P̄ and [−1]∗(`Q̄) = `−Q̄.

Thus the monodromy of the loops around the branch points is not changed by [−1].
Furthermore, since α and β are invariant under [−1], we have

[−1]∗(α) = −α and [−1]∗(β) = −β.

Since µ maps into S2 and therein every element is self-inverse, [−1]∗ ker(µ) ⊆ ker(µ) and
there exists a lift τ∗ : X∗ → X∗ that can be extended to an automorphism τ ∈ Aut(X).

Corollary 6.12. The automorphism group of a covering in H1 or a surface in L1 con-
tains the Klein four-group V4.

Proof. Let p : X → E be a covering in H1. We have to show that the generator σ of the
deck transformation group and the rotation τ commute and that τ is of order 2.

Let X∗ = X \ Σ. We have p ◦ σ = p and by definition p ◦ τ = [−1] ◦ p, so

p ◦ τ(x) = [−1] ◦ p(x) = [−1] ◦ p ◦ σ(x) = p ◦ τ ◦ σ(x) for x ∈ X∗.

Thus for x ∈ X, τ ◦ σ(x) and τ(x) are in the same fiber, i.e. they differ by the deck
transformation σ. Hence τ ◦ σ = σ ◦ τ .

The fixed points of τ are in the fibers of the fixed points of [−1]. Those are 2-torsion
points and thus different from the points in Σ̄. Therefore the fixed points of τ are not
in the set of ramification points Σ. For a fixed point F ∈ X∗ of τ we have τ2(F ) = F .
Hence τ2 has a fixed point and τ2 is a lift of idE , which implies τ2 = idX .

According to the Riemann-Hurwitz formula in Proposition 3.5, the involution τ has
either no, four or eight fixed points. For a fixed point F̄ of [−1] let {F, σ(F ) } = p−1(F̄ )
be its fiber. We have

p ◦ τ(F ) = [−1] ◦ p(F ) = [−1](F̄ ) = F̄
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and hence τ acts on the fiber of the fixed point F̄ . If τ had no fixed point, then it would
act non-trivially on the fiber of F̄ . Hence

τ(F ) = σ(F ) and τ(σ(F )) = F

and στ has a fixed point. By substituting τ with στ we can always assume that τ has a
fixed point.

Corollary 6.13. The equation of a generic covering in H1 or a generic surface in L1

depends on the number of fixed points of τ . If τ has four fixed points, the generic surface
is not hyperelliptic and is given by

x4 + y4 + ax2y2 + bx2 + cy2 + 1 = 0, a, b, c ∈ C.

If τ has eight fixed points, the surface is hyperelliptic and is given by

y2 = (x2 − 1)(x6 + ax4 + bx2 + c), a, b, c ∈ C.

In both cases, the dimension of the locus of those curves is 3.

Proof. The generic automorphism group of a surface in L1 is the Klein four-group V4.
The only possible hyperelliptic involutions are τ and στ . By our discussion above, στ
cannot have eight fixed points. Hence τ has eight fixed points if and only if the surface is
hyperelliptic. Then both equations and the dimensions are given in Tables 3.1 and 3.2.

The first equation and its dimension also were computed by Herrlich and Schmithüsen
[HS07a]. We determined the second equation in Proposition 6.3, too.

As before, we now equip coverings in H1 with an extra translation structure and
study the Hurwitz space of translation coverings. We show that it gives us an affine
invariant submanifold of dimension 4. Furthermore, we explicitly describe its connected
components using a description of this space by polygons.

Definition 6.14. The Hurwitz space of translation coverings

ΩH1 =
{

(p,X, ω,E, η) ∈ ΩH
∣∣ P̄ + S̄ = Q̄+ R̄ = Ō

}

contains all translation coverings in ΩH with two pairs of symmetric branch points.
Equivalently, it contains all translation coverings in ΩH to which there exists a lift τ of
the rotation [−1]. Its image in the moduli space of translation surfaces

ΩL1 = ΩF(ΩH1)

consists of all translation surfaces admitting a translation covering in ΩH1.

Observe that the derivative D[−1] is −I and thus Dτ = −I, i.e. τ is a rotation.
We want to show that ΩH1 is an affine invariant submanifold of dimension 4. If we

show that H1 ⊆ H is a submanifold, we can restrict the immersion ΩF : ΩH → ΩL to
ΩH1 and it only remains to compute linear equations in period coordinates.
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Lemma 6.15. The subspace H1 ⊆ H is a submanifold.

Proof. Our aim is to construct for every covering a neighborhood U in H and a chart
ϕ : U → C5 such that ϕ(U ∩H1) is the intersection of C5 with some linear subspace.

For this purpose, let us recall the definition of the topology on H(2, 4, E), the Hurwitz
space of coverings of E of degree 2 with four ramification points, given in Section 3.3.
Let e1, e2, e3 and e4 ∈ E and let Ui be a simply connected neighborhood of ei ∈ E for
i = 1, 2, 3, 4, such that Ui ∩ Uj = ∅ for i 6= j. The sets

N(U1, . . . , U4) = { (e1, e2, e3, e4) ∈ Σ4E \∆ | ei ∈ Ui }

define a basis of the topology of Σ4E \∆, the fourfold symmetric product of E with its
diagonal removed. Furthermore, the map

Ψ4 : H(2, 4, E)→ Σ4E \∆

is a covering, which maps every covering of E to the set of its branch points.
We fix a covering p : X → E in H(2, 4, E). Since Ψ4 is a covering map, we may choose

a small enough neighborhood U of p such that Ψ4(U) is biholomorphic to U . On this
open set we define a chart via

ϕ : U → Ψ4(U)→ C4,

where the last map is defined as follows: Denote by ēi a representative in C of the branch
point ei, i = 1, 2, 3, 4, then define

(e1, e2, e3, e4) 7→ (ē1, ē2, ē1 + ē4, ē2 + ē3).

Let us denote by H1(2, 4, E) the space of coverings E of degree 2 with four ramification
points having symmetric branch points as in H1. For a neighborhood U , chosen as above,
we have

Ψ4 : U ∩H1(2, 4, E)→ { (e1, e2, e3, e4) ∈ N(U1, . . . , U4) | e1 + e4, e2 + e3 ∈ Γ }

for E = C/Γ. Hence for a covering p ∈ H1(2, 4, E) we can choose the map ϕ such that

ϕ(p) = (ē1, ē2, 0, 0).

This implies that ϕ(U ∩ H1(2, 4, E)) is the intersection of C4 with a two-dimensional
linear subspace and thus H1(2, 4, E) is a submanifold of H(2, 4, E).

So far, so good. But actually we are interested in the space H1, not H1(2, 4, E). As
before, choose a neighborhood U ⊆ H(2, 4, E) of a covering p : X → E. For every nearby
torus E′ we find a matrix A such that A ·E = E′. Hence for every covering p0 ∈ U with
branch point set Σ̄ we get a new covering of A · E with branch point set A · Σ̄. These
coverings form a neighborhood Ũ of p : X → E in H. The chart ϕ : Ũ → C5 is given by
mapping a covering p : X → E = C/Z + τZ with branch points e1, e2, e3 and e4 to

ϕ(p) = (τ, ē1, ē2, ē1 + ē4, ē2 + ē3).
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Because the relations of the branch points are linear equations, they are invariant under
multiplication by a matrix. Hence we can choose ϕ such that

ϕ(p) = (τ, ē1, ē2, 0, 0)

for a covering (p,X,E) ∈ H1. Hence ϕ(Ũ ∩H1) is the intersection of C5 with a three-
dimensional linear subspace and thus H1 is a submanifold of H.

Recall that we have computed generators and explicit relations of the relative homology
group H1(E, Σ̄,Z) of the torus E relative to the set of branch points Σ̄ in Example 2.13.
In particular, recall the following notations: The paths ā and b̄ form a basis of the
absolute homology group H1(E,Z) of the torus and for x, y ∈ E the paths cxy are
geodesic paths going from x to y.

Proposition 6.16. The space ΩL1 is an affine invariant submanifold of dimension 4.

Proof. By Lemma 6.15, H1 is a submanifold of H. Hence ΩH1 is a submanifold of
ΩH. Moreover, the restriction of the map ΩF : ΩH1 → ΩL1 is an immersion into
the principal stratum H(1, 1, 1, 1). Thus we only have to show that we can describe
ΩL1 locally by linear equations in period coordinates. In a small enough neighborhood
of a translation covering, the immersion ΩF is injective. Thus, when working with a
translation surface (X,ω) we can always assume it is equipped with a unique covering
denoted by p : (X,ω)→ (E, η).

We choose linearly independent relative homology classes inH1(X,Σ,Z), which project
via p to

ā, b̄, cP̄ Q̄, cQ̄−P̄ , c−P̄−Q̄,

described above and in Example 2.13. We name them

a, b, cPQ, cQ−P , c−P−Q,

respectively. Observe that none of these elements is in the kernel of p∗ since they project
to non-trivial paths on E. Thus we can extend these five elements to a basis of nine-
dimensional relative homology by adding elements in the four-dimensional kernel ker(p∗).
We denote the important integrals by

∫

a

ω = A,

∫

b

ω = B,

∫

cPQ

ω = C1,

∫

cQ−P

ω = C2 and

∫

c−P−Q

ω = C3.

Because the rotation τ is a lift of [−1] and p a translation covering, we have the identity
τ∗ω = τ∗p∗η = p∗[−1]∗η = −p∗η = −ω. For each c ∈ H1(X,Σ,Z),

−
∫

c

ω =

∫

c

τ∗ω =

∫

c

p∗[−1]∗η =

∫

[−1]∗p∗c

η
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follows. Plugging in the basis of the relative homology group and using the relations
from 2.13, we obtain the following equations:

C1 =

∫

cPQ

ω = −
∫

cPQ

τ∗ω = −
∫

[−1]∗cP̄ Q̄

η = −
∫

c−P̄−Q̄

η = −
∫

c−P−Q

ω = −C3,

C2 =

∫

cQ−P

ω = −
∫

c−QP

ω =

∫

cPQ

ω +

∫

cQ−P

ω +

∫

c−P−Q

ω = C1 + C2 + C3,

C3 =

∫

c−P−Q

ω = −
∫

cPQ

ω = −C1,

A =

∫

a

ω = −
∫

a

τ∗ω = −
∫

−a

ω = A and

B =

∫

b

ω = −
∫

b

τ∗ω = −
∫

−b

ω = B.

Combining all these equations, the only restriction we get is C1 + C3 = 0. This is one
more restriction than in ΩL, thus in period coordinates ΩL1 is a hyperplane in C5 and
hence its dimension is less or equal to 5− 1 = 4.

On the other hand, ΩL1 is at least four-dimensional: The moduli space ΩM1 of
translation structures on tori is 2-dimensional. Moreover, we can fix an origin and
choose two branch points P̄ and Q̄. The other two points are given by definition as −P̄
and −Q̄. Choosing the torus and two branch points gives us at least four degrees of
freedom.

In the next step, we show that the space ΩH1 is not connected any more. In fact,
one can already see from the equations given in Corollary 6.13 that there must be at
least two connected components in L1, distinguished by being hyperelliptic or not. We
show that there are exactly those two connected components in the Hurwitz space of
translation surfaces ΩH1. To proceed we describe the space ΩH1 by polygons.

Recall from Proposition 6.8 that the polygons in P defining ΩH are given by five
complex parameters. We denoted those vectors by a, b, c, d and e with ∂(a) = P̄ − P̄ ,
∂(b) = P̄ − Q̄, ∂(c) = Q̄ − (−Q̄), ∂(d) = (−Q̄) − (−P̄ ) and ∂(e) = (−P̄ ) − P̄ . The
rotation [−1] : E → E interchanges the points P̄ and −P̄ as well as Q̄ and −Q̄. Thus
the edges c and e are mapped to themselves, whereas the edges b and d are interchanged.
This is sketched in Figure 6.9.

Thus the polygons describing translation coverings in ΩH1 have to be in the space of
polygons

P1 = { (a, b, c, d, e) ∈ P | b = d } ,
where the second and fourth edge are represented by the same vector in C.

Proposition 6.17. We have a surjective map P1 × { 1, 2, 3, 4 } → ΩH1.
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P̄ Q̄

R̄ S̄

P̄

P̄ Q̄

R̄ S̄

P̄

q

r

b

c

b = d

e

a
Ō

Figure 6.9: The rotation [−1] interchanges the first and third parallelogram and leaves
the second and fourth one invariant. Its fixed points are marked in red. The
edges of the polygon are labeled fitting the description.

Proof. By the above discussion, every polygon representing a translation covering in
ΩH1 has to live in P1.

It suffices to show that every polygon in P1 gives rise to four different translation
coverings in ΩH1, since by Proposition 3.7 used as in the proof of Proposition 6.8, there
are exactly four such translation coverings. Obviously, there are four coverings in ΩH.
Hence we have to prove the existence of a lift τ of [−1] on each of them. We can do
this in two ways: Firstly, choose one of the fixed points of [−1], see Figure 6.9, to be
the origin. Say we choose the one between Q̄ and R̄. By definition P̄ + R̄ = Ō. Let us
denote by q the edge from the origin to the left upper Q̄ and by r the edge from the
origin to the right lower R̄. We have

S̄ = q + c+ d = q + c+ b and P̄ = r − c− b

giving us P̄ + S̄ = Ō. Hence [−1] leaves the set of branch points invariant and its lift τ
exists.

Secondly, we can give for every translation structure explicit lifts of [−1]. See Fig-
ure 6.10: The map τ is determined by deciding whether the parallelogram labeled by B
is mapped to itself or to B′. We choose τ(B) = B. Then, in all cases we have τ(A) = C,
τ(B′) = B′ and τ(A′) = C ′. The image of D depends on the gluing. In the first two
cases, τ(D) = D′ and in the last two cases, τ(D) = D and τ(D′) = D′.

In Figure 6.10 we see that the map τ has either four or eight fixed points. The latter
implies that τ is a hyperelliptic involution. This is an elementary confirmation of the
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Figure 6.10: In the same order as in Figure 6.4, in every row is a translation surface in
ΩH1. The map τ is sketched and maps a parallelogram to a more saturated
parallelogram of the same color. The fixed points of τ are marked in red.
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results we presented before. From this it follows that the spaces ΩH1 and ΩL1 cannot be
connected. Any continuous path from one surface to another transforms the involution
τ to another involution with the same number of fixed points. We can distinguish the
connected components by counting the fixed points of τ . To see this, we need to find
better paths than those from Proposition 6.9, because these disturb the symmetries of
translation coverings in ΩH1. The idea for the constructions of those paths comes from
the following group-theoretical statement.

Lemma 6.18. Let µ : F5 = 〈x, y, z, a, b〉 → S2 be a surjective homomorphism such that
µ(x) = µ(y) = µ(z) = (1 2). There are four such maps, which are determined by the
images of a and b. The kernels of those four maps are

U1 = 〈xx, xy, yx, xz, zx, ax, xa, bx, xb〉, if µ(a) = µ(b) = (1 2),

U2 = 〈xx, xy, yx, xz, zx, ax, xa, b, xbx〉, if µ(a) = (1 2), µ(b) = id,

U3 = 〈xx, xy, yx, xz, zx, a, xax, bx, xb〉, if µ(a) = id, µ(b) = (1 2) and

U4 = 〈xx, xy, yx, xz, zx, a, xax, b, xbx〉, if µ(a) = µ(b) = id .

Those kernels are free groups in nine generators. Furthermore, they are isomorphic as
subgroups of the free group F5. The isomorphisms ϕi ∈ Aut(F5) are given by ϕi(x) = x,
ϕi(y) = y, ϕi(z) = z for i = 1, 2, 3, 4 and

ϕ1 : U1 → U2, ϕ1(a) = a, ϕ1(b) = ab,

ϕ2 : U1 → U3, ϕ2(a) = xa, ϕ2(b) = b,

ϕ3 : U3 → U4, ϕ3(a) = a, ϕ3(b) = xb and

ϕ4 : U4 → U2, ϕ4(a) = xa, ϕ4(b) = b.

This technical lemma is filled with life by the observation that such maps µ are exactly
the monodromy maps of coverings p : X → E from a Riemann surface of genus 3 to an
elliptic curve of degree 2 with four ramification points. By Proposition 3.7 there exist
only four such coverings for fixed ramification data. In the above setting, we interpret
the elements x, y and z as loops around branch points, for instance x = `P̄ is the loop
in E around the branch point P̄ . The elements a and b may be seen as the horizontal
and vertical loops ᾱ and β̄ of the torus going through a fixed point of the involution
[−1]. With this in mind, compare the groups Ui with the pictures of the translation
surfaces in Figure 6.4 or Figure 6.10. In the first picture, the lift of the vertical loop β̄
and the lift of the horizontal loop ᾱ are not closed, hence the kernel of the monodromy
map belonging to the first picture is the first group U1. Likewise, the second, third and
fourth group belongs to the second, third and fourth picture, respectively.

For this reason let us fix the following notation: A translation covering in ΩH is of
(monodromy) type Ui (or just i) if the kernel of the monodromy map p∗π1(X) = ker(µ)
is the group Ui. Moreover, let us denote by `P̄ , `Q̄ and `−Q̄ the counterclockwise loops
around the branch points P̄ , Q̄ and −Q̄ corresponding to x, y and z.

Proof of Lemma. By the theorem of Nielsen-Schreier, see Schreier’s paper [Sch27], a
subgroup of index d in a free group of rank k is free of rank 1 + d(k − 1). Since µ is
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surjective, the kernel is of index 2 in F5. So it is a free group of rank 1 + 2(5− 1) = 9. It
is easily seen that every element in Ui is in the kernel of the corresponding map µ and
that there are no relations between the generators, so the groups Ui are free in the given
generators.

We verify that all those maps are surjective, by showing that every generator is in the
image. Hence they have to be bijective. The difference between two sets of generators
are always two elements. Hence we only have to show that those two missing generators
are in the image of the corresponding map. For the map ϕ1 we have

ϕ1((xa)−1xb) = a−1x−1xab = b and

ϕ1(x2(ax)−1bx) = xxx−1a−1abx = xbx,

showing that the map ϕ1 is surjective. Similarly, we have

ϕ2(ax) = xax, ϕ2(x−2xa) = a,

ϕ3(x−2xb) = b, ϕ3(bx) = xbx,

ϕ4(x−2xax) = ax and ϕ4(a) = xa.

All the given maps are surjective and the claim follows.

Proposition 6.19. The Hurwitz space of translation surfaces ΩH1 has two connected
components. They are distinguished by the number of fixed points of τ .

More precisely, one connected component consists of the coverings of type 1, 2 and 3.
The second connected component consists of the coverings of type 4. Every covering
surface in the second component is hyperelliptic.

Proof. As discussed before, there must be at least two connected components. We con-
struct paths that connect any translation covering in ΩH1 of type U1 with any translation
covering of type U2 and U3. The path has to linger in ΩH1 the whole time, i.e. it has to
respect the extra symmetry. Looking at Figure 6.8, the first two paths do not respect
the symmetry: If before the cutting the two edges b = d coincide, then after cutting
and gluing the edges b and d no longer coincide. The idea for paths that work comes
from the rather technical Lemma 6.18. We have to translate the maps ϕ1 : U1 → U2 and
ϕ2 : U1 → U3 into a cutting and gluing instruction.

Let ᾱ and β̄ be the horizontal and vertical loop of the torus. Together with the loops
`P̄ , `Q̄ and `−Q̄ around the branch points they form a basis of the fundamental group of
the punctured torus.

The map ϕ1 : U1 → U2 maps the vertical path β̄ to ᾱβ̄, see Figure 6.11. Denote
by (a, b, c, d, e) ∈ P1 a polygon defining a translation covering in ΩH1. The translation
surface consists of two copies of this polygon, where we label the edges of the first polygon
by a1, b1, c1, d1 and e1 and the edges of the second polygon by a2, b2, c2, d2 and e2. The
resulting covering is of type U2 if the edges −c1 and c1 are glued. It is of type U1 if the
edge −c1 is glued to the edge c2. Hence starting in U2, we cut along the lift αβ of ᾱβ̄
which connects the edges −c1 and c2. Then we reglue to get a surface in U1 as follows:
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Figure 6.11: On the left, in the fundamental group the combination of the paths ᾱ and
β̄ gives the path ᾱβ̄. On the right, combining ᾱ and the loop `P̄ gives `P̄ ᾱ.
For simplicity, the base point is not fixed.

See Figure 6.12, where the purple path is the path αβ. In the first step, we transform the
surface such that the dashed line is vertical and all edges are horizontal. We then reglue
the polygon such that the path αβ is in one polygon. Transforming the edges again we
return to the polygon we began with, but now of type U1. In every transformation we
do not change the relation of the edges b1 = d1.

In the same spirit, the map ϕ2 : U1 → U3 maps the horizontal path ᾱ to the path
`P̄ ᾱ. Again, we want its lift `Pα to be in only one polygon. But comparing the right
picture in 6.11 and the last operation in Figure 6.8, we see that this is exactly what
happened when showing the connectedness of ΩH. By cutting off the right lower part
in Figure 6.8, which contains the purple path, we see that the two edges b1 and d1 are
not affected. Thus we obtain a path in ΩH1 that connects a translation covering of type
U1 with one of type U3.

6.3 A subspace of codimension two

In the last section we have seen that demanding an extra symmetry yields a 4-dimensional
affine invariant submanifold in the principal stratum H(1, 1, 1, 1). In this section we
introduce another additional symmetry. Firstly, by a relation of the branch points,
secondly by a restriction on the defining polygons and thirdly by an extra automorphism.
With the second and third description we compute the automorphism group of each
generic surface depending on the monodromy type. This shows that this new Hurwitz
space of translation surfaces has three connected components and that it is an affine
invariant submanifold of dimension 3 in H(1, 1, 1, 1). Finally, we calculate under which
conditions translation surfaces in this space are Veech surfaces and under which they are
origamis.

Definition 6.20. For a covering p : X → E in H1, let P̄ , Q̄, −Q̄ and −P̄ denote the
branch points in E. We define the subspace

H2 =
{

(p,X,E) ∈ H1

∣∣ P̄ + Q̄ = −P̄ − Q̄
}
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Figure 6.12: This picture shows the transformation from a surface of type U2 to one of
type U1 as described in the proof of Proposition 6.28: We bash the surface
into a rectangle, cut it in half and shear it a bit. Finally, we bring it back
into the form we began with. The fixed points of τ are red. The purple
curve is the path αβ.
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of all coverings such that the point P̄ + Q̄ is a 2-torsion point. Its image

L2 = F(H2)

in the moduli space of Riemann surfaces of genus 3 consists of those Riemann surfaces
admitting a covering in H2.

As before, we are mainly interested in the Hurwitz space of translation coverings
belonging to H2. Again, we can use polygons to describe the translation coverings arising
from H2. These polygons have one more restriction, which stems from the condition
P̄ + Q̄ = −P̄ − Q̄. This point of view has the further advantage that our proofs are quite
elementary.

Definition 6.21. The Hurwitz space of translation surfaces

ΩH2 =
{

(p,X, ω,E, η) ∈ ΩH1

∣∣ P̄ + Q̄ = −P̄ − Q̄
}

contains all translation coverings in ΩH1 such that the point P̄ + Q̄ is a 2-torsion point.
Its image

ΩL2 = ΩF(ΩH2)

in the moduli space of translation surfaces of genus 3 consists of those translation surfaces
that admit a translation covering in ΩH2.

Lemma 6.22. Every torus that is covered by a translation covering in ΩH2 can be
described using a polygon in

P2 = { (a, b, c, d, e) ∈ P | b = d, c = e } .

Figure 6.13 shows an example of a torus described by a polygon in P2. Its edges are
marked accordingly.

Proof. Let E be a torus covered by a translation covering in ΩH2 with branch points P̄ ,
Q̄, −Q̄ and −P̄ . Writing the edges as the vectors between two vertices, we get

c = −Q̄− (Q̄) = −2Q̄ and e = P̄ − (−P̄ ) = 2P̄ .

As P̄ + Q̄ is a 2-torsion point, e − c = 2(P̄ + Q̄) = 0. Furthermore, since P2 ⊆ P1, we
have b = d.

Corollary 6.23. We have a surjective map P2 × { 1, 2, 3, 4 } → ΩH2.

Proof. The map is the restriction of the map defined in Proposition 6.8. We show that
it is surjective: By Lemma 6.22 every covered torus can be described as a polygon in P2.
We take two copies of this polygon and glue them via the gluings given in Proposition 6.8.
These gluing are depicted in 6.15. Hence this yields four different translation coverings
of one torus with fixed branch points. As in the proof of Proposition 6.8, there exist
exactly four different coverings of a fixed torus with fixed branch points.
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P̄ Q̄

P̄

P̄ Q̄
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−Q̄ −P̄

−Q̄ −P̄
a

b
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d
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P̄ + Q̄

Ō

ᾱ
β̄

Figure 6.13: An elliptic curve with its origin Ō and the point P̄ + Q̄ marked in purple.
This surface is covered by a surface in ΩH2. Two loops of the fundamental
group are plotted in blue and red. Note that the edges fulfill b = d and
c = e.

Now we describe the space ΩH2 by its automorphisms. We do this explicitly by
specifying an automorphism of the torus which can be lifted to an automorphism of the
covering surface.

Lemma 6.24. Let p : (X,ω) → (E, η) be a translation covering in ΩH2 with branch
points P̄ , Q̄, −P̄ and −Q̄ in E. The translation

tP̄+Q̄ : E → E, x 7→ x+ P̄ + Q̄

can be lifted to a translation on the translation surface (X,ω).

Proof. Similarly to Proposition 6.11 we have to show that the monodromy of the fun-
damental group of the punctured torus is invariant under the map tP̄+Q̄. We construct
a basis for which this holds.

We denote by Ō the base point of the torus, which is a fixed point of [−1]. We have
tP̄+Q̄(Ō) = P̄ + Q̄. This is a 2-torsion point and thus another fixed point of [−1].

Choose ᾱ to be the “horizontal” loop of the torus that contains the two fixed points
Ō and P̄ + Q̄ of [−1] as sketched in Figure 6.13. Then

tP̄+Q̄(Ō) = P̄ + Q̄ ∈ α and tP̄+Q̄(P̄ + Q̄) = Ō ∈ α.

Since tP̄+Q̄ is a translation, it leaves the loop ᾱ and its monodromy invariant.
We define β̄ to be the “vertical” loop of the torus. It starts in Ō, so it is mapped

by the translation tP̄+Q̄ to a vertical loop starting in P̄ + Q̄. Thus β̄ is mapped two
parallelograms to the right by tP̄+Q̄. We can translate β̄ one parallelogram to the right
by concatenating it with the loop around −Q̄. For a visualization see Figure 6.14.
Thus the image of β̄ under a translation by two parallelograms to the right is given by
β̄ ◦ `−Q̄ ◦ `−P̄ . Hence the monodromy of tP̄+Q̄(β̄) is computed by

µ(tP̄+Q̄(β̄)) = µ(β̄)µ(`−P̄ )µ(`−Q̄) = µ(β̄)(1 2)(1 2) = µ(β̄)
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Figure 6.14: A torus with some loops. Combining the loops β̄ and `−Q̄ gives the purple
loop. For better visualization, the loops all have different base points.

and thus is left invariant.
Because the loops around the branch points are mapped to loops around branch points,

their monodromy does not change and the claim follows.

Now we reformulate the definition of the space ΩH2. Instead of using the relation of
the branch points, we lift the above translation tP̄+Q̄ and use this automorphism as the
defining property of ΩH2.

Proposition 6.25. The Hurwitz space of translation coverings

ΩH2 =
{

(p,X, ω,E, η) ∈ ΩH1

∣∣ there exists ϕ ∈ Aut(X), ϕ(±P ) = ∓Q,
ϕ(±Q) = ∓P, Dϕ = I, ϕ ◦ σ = σ ◦ ϕ

}

can be identified with the space of all coverings that have an extra translation ϕ. This
translation ϕ commutes with the deck transformation and interchanges the ramification
points in the given way.

Here and subsequently, we denote this particular translation by ϕ.

Proof. Let (p,X, ω,E, η) ∈ ΩH2. Then we have P̄ + Q̄ = −P̄ − Q̄. According to
Lemma 6.24, there exists a lift ϕ of tP̄+Q̄. Since the covering is a translation covering,
Dϕ = I. Furthermore, ϕσ = σϕ, since the map ϕ is a lift. Finally, we have

tP̄+Q̄(P̄ ) = P̄ + P̄ + Q̄ = P̄ − P̄ − Q̄ = −Q̄

and thus ϕ(P ) = −Q. In the same manner, one can show that the remaining points are
mapped appropriately.

On the other hand, let p be a translation covering in ΩH1 and let ϕ : X → X be a map
with the prescribed properties. Because ϕ and σ commute, ϕ descends to a translation
ϕ̄ : E → E. It fulfills

ϕ̄(P̄ ) = −Q̄ and ϕ̄(−P̄ ) = Q̄.
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Hence it is a translation by −P̄ − Q̄ and, at the same time, by P̄ + Q̄. Thus P̄ + Q̄ =
−P̄ − Q̄.

We now give an alternative, more elementary proof of Proposition 6.25, which yields
a description of the automorphism group and of the connected components of ΩH2.
Using Corollary 6.23, we can draw explicit pictures of translation coverings in ΩH2. The
translation tP̄+Q̄ : E → E on the torus maps one fixed point of [−1] to another one.
Thus it maps the left half of the polygon to the right half. We can choose one of two
possible lifts, which differ by the deck transformation σ. In Figure 6.15 we choose the
lift ϕ : X → X of tP̄+Q̄ such that it maps the left half of the left polygon to the right
half of the left polygon. In the first two cases the map ϕ has order 4, because the right
edge of the hexagon A gets mapped to the right edge of ϕ(A), labeled by oo. Hence
applying ϕ2 to A, the left edge of A is mapped to the edge labeled by oo, the left edge
of the hexagon ϕ2(A). Similarly, in the last two cases the automorphism ϕ has order 2.

Proposition 6.26. The automorphism group of a generic translation covering in ΩH2

or of a generic translation surface in ΩL2 depends on the monodromy of the covering. It
is either the dihedral group D8 with eight elements or the elementary abelian group C3

2

with eight elements. In the latter case, the corresponding surface is hyperelliptic.

Proof. We write out the proof in the first case and leave the other cases to the reader.
According to the first picture in Figure 6.15 we see that ϕ2 = σ. Observe that

[−1] ◦ tP̄+Q̄ ◦ [−1](x̄) = [−1] ◦ tP̄+Q̄(−x̄) = [−1](−x̄+ P̄ + Q̄)

= x̄− P̄ − Q̄ = x̄+ P̄ + Q̄ = tP̄+Q̄(x̄).

Hence [−1] ◦ tP̄+Q̄ ◦ [−1]−1 = tP̄+Q̄. The map σϕ = ϕ−1 is a lift of the right hand side
of the equation. The map τ ◦ ϕ ◦ τ−1 is a lift of the left hand side. If they coincide in
one point, they are equal. Let O be the fixed point of τ plotted in 6.15. In this picture,
we see that τϕτ−1(O) = ϕ−1(O) and hence τϕτ−1 = ϕ−1. So the automorphism group
is given by the relations

Aut(X) = 〈τ, ϕ | ϕ4 = τ2 = id, τϕτ−1 = ϕ−1〉.

Comparing with Chapter 4 we see that this is exactly the dihedral group D8.
Similarly, in the second case the automorphism group is again D8. In the third and

fourth case, ϕ and τ commute. Thus the automorphism group is the elementary abelian
group C3

2 .
Furthermore, the third and fourth case are hyperelliptic: From Figure 6.10 and Corol-

lary 6.13 we know that the fourth one is hyperelliptic. In Figure 6.15 we see that in the
third case the involution τϕ has eight fixed points. Hence those surfaces are hyperelliptic
as well.

Corollary 6.27. If the automorphism group of a surface in L2 contains the dihedral
group D8, the generic curve is not hyperelliptic and is given by

x4 + y4 + ax2y2 + b(x2 + y2) + 1 = 0, a, b ∈ C.
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Figure 6.15: In every row is a translation surface in ΩH2 of type 1, 2, 3 and 4, respectively.
The translation ϕ maps a region to a more saturated region of the same
color. For a translation surface of type 1, the points O and τϕτ−1(O) are
sketched in green. For one of type 3, the fixed points of τϕ are sketched in
red.
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If, on the other hand, the automorphism group contains C3
2 , the generic curve is hyper-

elliptic and is given by

y2 = (x4 + ax2 + 1)(x4 + bx2 + 1), a, b ∈ C.

In both cases, the dimension of the locus of those curves is 2.

Proof. The generic automorphism group of a covering and hence of a surface is, by
Proposition 6.26, either D8 or C3

2 . In the last case, the surface is hyperelliptic. The
dimensions and equations follow from Tables 3.1 and 3.2.

This implies that the dimension of the space ΩL2 and the Hurwitz space ΩH2 is 3. We
will prove this independently in Proposition 6.31.

Proposition 6.28. The Hurwitz space of translation surfaces ΩH2 has three connected
components. They are distinguished by the number of fixed points of τ and ϕτ .

Note that translation coverings of type 1 and 2 are in one connected component. Trans-
lation coverings of type 3 and 4 each form a connected, hyperelliptic component.

Proof. Again, we use the structure of the translation coverings as sketched in Figure 6.15.
Looking at Proposition 6.9 and Figure 6.12, we can use the exactly same procedure to
construct a path from a surface of type 1 to one of type 2.

There cannot be less connected components, because the map ϕτ has eight fixed points
if and only if the surface is of type 3. A continuous path connecting a surface of type 3
to one of another type preserves the number of fixed points of ϕτ .

Since the map πH2 : ΩH2 → H2 has connected fibers, the Hurwitz space of transla-
tion surfaces ΩH2 cannot have more connected components than the Hurwitz space H2.
Hence H2 must at least have three connected components. Furthermore, each continu-
ous path between two translation coverings yields, via πH2 , a continuous path between
the two corresponding (holomorphic) coverings. Hence H2 and ΩH2 do have the same
number of connected components. Nevertheless, L2 and ΩL2 just have two connected
components.

Proposition 6.29. The space of translation surfaces ΩL2 and its image L2 in the mod-
uli space both have two connected components. They are distinguished by being hyperel-
liptic or not.

Proof. We have to construct a path from a translation surface of type 3 to one of type 4,
since it follows from Proposition 6.28 that the non-hyperelliptic part of ΩL2 is connected.
In Figure 6.16 we see how a translation surface of type 4 is transformed into one of type
3: Cut off the last square in each polygon and glue it in front. Then we relabel the
vertices and edges. By deforming the polygon we may assume both translation surfaces
are of the depicted form. Note that in the first row the hyperelliptic involution is τ and
in the second row it is ϕτ .

Since the map πL2 : ΩL2 → L2 has connected fibers, we get that L2 has two connected
components as well.
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Figure 6.16: A path between two hyperelliptic translation surfaces in ΩL2. We cut off
and glue the blue rectangle in the upper row to the left. Relabeling gives
the second row.
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Figure 6.17: Not a path between two coverings. We cut off the blue rectangle and glue it
to the left. The origin Ō does not change and hence the red points in both
pictures are the fixed points of the rotation [−1].
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Why does this procedure not work in ΩH2? If we would do the same thing, we had to
cut the covered torus in the same manner, see Figure 6.17. This cutting and gluing does
not change the origin Ō. From the origin we can (up to a transposition of P̄ and Q̄)
deduce the branch points. Hence in both rows, the map whose fixed point set consists
of the red points is the rotation [−1]. The lift of both maps is τ . But to fit together
with the covering the lift of the map in the second row should be ϕτ , see Figure 6.17.
A contradiction. In other words, the covering remembers the order of the branch points
(at least up to a transposition), whereas forgetting the covering forgets the order of the
points as well.

To finish this section we show that the space ΩL2 is an affine invariant submanifold
of dimension 3 of H(1, 1, 1, 1). Thus ΩL2 is of codimension 2 in ΩL, justifying its name.

Lemma 6.30. The subspace H2 ⊆ H is a submanifold.

Proof. The proof works as the proof of Lemma 6.15. Hence we only show how we must
alter a chart ϕ to make this work.

Let p be a covering and let e1 = P̄ , e2 = Q̄, e3 = −Q̄ and e4 = −P̄ be the branch
points in E = C/Z + τZ. We define the chart ϕ such that

ϕ(p) = (τ, ē1, ē1 + ē4, ē2 + ē3, ē1 + ē2 − ē3 − ē4).

In H2 we have the relations e1 + e4 = Ō, e2 + e3 = Ō and e1 + e2 − e3 − e4 = Ō. Thus
for a covering p ∈ H2 the chart ϕ is given by

ϕ(p) = (τ, ē1, 0, 0, 0).

Hence locally H2 is the intersection of C5 with a two-dimensional linear subspace showing
that H2 is a submanifold of H.

In particular, the proof shows that the Hurwitz space H2 is not only a submanifold of
H, but also of H1.

Proposition 6.31. The space ΩL2 ⊂ ΩL is an affine invariant submanifold of the
principal stratum H(1, 1, 1, 1) of dimension 3.

Proof. The Hurwitz space of translation surface ΩH2 is a submanifold of ΩH, because
due to Lemma 6.30H2 is a submanifold ofH. Furthermore, we can restrict the immersion
ΩF : ΩH → ΩL to an immersion ΩH2 → ΩL2 into the principal stratum H(1, 1, 1, 1).
Hence we only need to show that the image of some translation covering under the for-
getful map ΩF is given by linear equations in period coordinates of the right dimension.
In a small enough neighborhood of a translation covering the immersion ΩF is injective.
Thus, when working with a translation surface (X,ω) ∈ ΩL2 we can always assume that
it is equipped with a unique translation covering denoted by p : (X,ω)→ (E, η).

Let us recall the notation introduced in Proposition 6.16: The elements in the absolute
homology group a and b ∈ H1(X,Z) project via p : X → E to ā and b̄, the generators
of the homology group H1(E,Z) of the torus. The arcs from one ramification point to
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another are called cPQ, cQ−P and c−P−Q. Their projections going from one branch point
to another are called cP̄ Q̄, cQ̄−P̄ and c−P̄−Q̄. Finally, we denote the integrals by

∫

a

ω = A,

∫

b

ω = B,

∫

cPQ

ω = C1,

∫

cQ−P

ω = C2 and

∫

c−P−Q

ω = C3.

Because p is a translation covering and ϕ a translation, we have ϕ∗ω = ω and p∗η = ω.
Thus for each c ∈ H1(X,Σ,Z) we have

∫

c

ω =

∫

c

ϕ∗ω =

∫

ϕ∗c

ω =

∫

p∗ϕ∗c

η =

∫

tP̄+Q̄∗p∗c

η.

Moreover, by Example 2.13, we compute the relations

tP̄+Q̄∗ā = ā, tP̄+Q̄∗b̄ = b̄,

tP̄+Q̄∗cP̄ Q̄ = −c−P̄−Q̄,
tP̄+Q̄∗cQ̄−P̄ = c′−P̄ Q̄ = ā− cQ̄−P̄ and

tP̄+Q̄∗c−P̄−Q̄ = −cP̄ Q̄,

where c′−P̄ Q̄ is the path from −P̄ to Q̄. In Example 2.13 we computed how to write it as
a linear combination of basis vectors. For example, the third equation follows because
tP̄+Q̄(P̄ ) = −Q̄ and tP̄+Q̄(Q̄) = −P̄ . Hence the geodesic cP̄ Q̄ gets mapped to a geodesic
going from −Q̄ to −P̄ , but in the same direction as cP̄ Q̄, so the image is −c−P̄−Q̄. These
equations give us

A =

∫

a

ω =

∫

tP̄+Q̄∗ā

η =

∫

ā

η =

∫

a

ω = A,

B =

∫

b

ω =

∫

tP̄+Q̄∗b̄

η =

∫

b̄

η = B

as well as the more interesting equations

C1 =

∫

cPQ

ω =

∫

tP̄+Q̄∗cP̄ Q̄

η = −
∫

c−P̄−Q̄

η = −
∫

c−P−Q

ω = −C3,

C2 =

∫

cQ−P

ω =

∫

a

ω −
∫

cQ−P

ω = A− C2 and

C3 =

∫

c−P−Q

ω = −
∫

cPQ

ω = −C1.
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Figure 6.18: A polygon describing a translation surface in standard form. The holonomy
of the blue saddle connection is x+ y+ (0, 1)>+x and the holonomy of the
red one is (0, 1)> + y.

Overall, we have the equations C1 +C3 = 0 and 2C2 = A. Note that C1 +C3 = 0 is the
equation already given by τ in the proof of Proposition 6.16. Hence we have one more
restriction than in the case of ΩL1. In period coordinates this describes a hyperplane in
C4, making ΩL2 an at most 3-dimensional affine invariant submanifold.

On the other hand, the space is at least 3-dimensional. The moduli space of trans-
lation tori ΩM1 is 2-dimensional. We may choose one branch point freely, say P̄ . This
determines the other three branch points because the fourth one is −P̄ and the condition
P̄ + Q̄ = −P̄ − Q̄ implies 2P̄ = 2Q̄, which yields Q̄ and thus also −Q̄.

In the previous proof we have seen that the translation ϕ : X → X gives us a subspace
of codimension 2 in ΩH, without explicitly requiring the existence of the rotation τ . This
manifests itself in the proof by the condition C1+C3 = 0. We interpret this geometrically
as follows: We draw a polygon that admits a translation ϕ as in the definition of ΩH2.
The edges b and d coincide, since ϕ(P ) = −Q and ϕ(Q) = −P . Thus we can construct
the involution τ as in Figure 6.15 and the existence of the translation ϕ implies the
existence of the map τ .

Finally, according to Wright [Wri14] the GL+
2 (R)-orbit of almost every translation

surface in an affine invariant submanifold is as large as possible. In our case, almost
every translation surface in ΩL2 has a 3-dimensional orbit closure in ΩL2. The GL+

2 (R)-
orbit of any other translation surface is closed and hence the corresponding surface is
a Veech surface. A translation surface in ΩL2 is in standard form if the torus is the
standard torus and the branch point Q̄ is to the right of P̄ . Hence we can find a polygon
as depicted in Figure 6.18 which describes the translation surface. Let us denote by
a = (0, 1)>, x = (x1, 0) and y = (y1, y2) ∈ R2 the holonomy vectors described in the
figure. In every GL+

2 (R)-orbit we find a translation surface in standard form. For these
translation surfaces, we describe explicitly when they are Veech surfaces.

Proposition 6.32. Let (X,ω) ∈ ΩL2 be a translation surface given in standard form.
Denote by a = (0, 1)>, x = (x1, 0) and y = (y1, y2) ∈ R2 the holonomy vectors of
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the saddle connections leaving P to the north, P to the east and going from Q to −Q,
respectively.

Then (X,ω) is a Veech surface if and only if y2 and y1

x1
are rational.

Proof. For a visualization see Figure 6.18.
Using Proposition 2.8 a translation surface is a Veech surface if and only if the set of

wedge products of holonomy vectors of saddle connections

{ hol(γ1) ∧ hol(γ2) | γ1, γ2 saddle connections of X }

is discrete in R. Since a saddle connection has to connect two singularities, the most basic
holonomy vectors are of the form x, y, x+ y or (0, 1). The more complicated holonomy
vectors are Z-linear combinations of those. Note that neither 2x nor 2y are holonomy
vectors of saddle connections. Hence the holonomy vector of a saddle connection γ has
to be of the form

hol(γ) = m(x+ y) + n(0, 1) + ex+ fy, m, n ∈ Z, e, f ∈ { 0, 1 } .

Computing the wedge of the holonomy vectors of two saddle connections γ1 and γ2 with
appropriate indices gives us

hol(γ1) ∧ hol(γ2) = det
(
m1(x+ y) + e1x+ f1y + (0, n1),m2(x+ y) + e2x+ f2y + (0, n2)

)

= det

(
(m1 + e1)x1 + (m1 + f1)y1 (m2 + e2)x1 + (m2 + f2)y1

(m1 + f1)y2 + n1 (m2 + f2)y2 + n2

)

= (e1f2 + e1m2 − e2f1 − e2m1 − f1m2 + f2m1)x1y2

+ (e1n2 − e2n1 +m1n2 −m2n1)x1 + (f1n2 − f2n1 +m1n2 −m2n1)y1.

On the one hand, by dividing by x1 6= 0 we see that for rational y2, y1

x1
∈ Q the set of

holonomy vecotrs is discrete, because it is of the form Z + qZ for some rational number
q ∈ Q.

On the other hand, for y2 6= 0 we divide by x1y2. The division by a number does not
change wether a subset of R is dense or not. For f1 = n1 = m1 = m2 = 0 we compute

hol(γ1) ∧ hol(γ2)

x1y2
= e1f2 + (e1n2)

1

y2
∈ Z +

1

y2
Z.

Hence the set
{

hol(γ1) ∧ hol(γ2)

x1y2

∣∣∣∣ f1 = n1 = m1 = m2 = 0

}
= Z +

1

y2
Z

is dense in R if and only if 1
y2

/∈ Q. Thus if X is a Veech surface we have 1
y2
∈ Q.

Assuming e1 = n1 = m1 = m2 = 0, we have

hol(γ1) ∧ hol(γ2)

x1y2
= −e2f1 + (f1n2)

y1

x1y2
∈ Z +

y1

x1y2
Z.
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The set {
hol(γ1) ∧ hol(γ2)

x1y2

∣∣∣∣ e1 = n1 = m1 = m2 = 0

}
= Z +

y1

x1y2
Z

is dense in R if and only if y1

x1y2
/∈ Q. Thus if X is a Veech surface we have y1

x1y2
∈ Q as

well as 1
y2
∈ Q, which leads to x1

y1
∈ Q.

Finally, assume y2 = 0. Then, after division by x1, we have

hol(γ1) ∧ hol(γ2) = (e1n2 − e2n1 +m1n2 −m2n1) + (f1n2 − f2n1 +m1n2 −m2n1)
y1

x1

∈ Z +
y1

x1
Z.

This gives us a dense subset of R if and only if y1

x1
/∈ Q. Hence, if X is a Veech surface

we have y1

x1
∈ Q.

Corollary 6.33. Every Veech surface in L2 is an origami.

Proof. We study the branch points of the covered torus.
Let X be a Veech surface in standard form. Then we have y2 = m

n and y1

x1
= p

q for

some m,n, p, q ∈ Z. The torus is given by R2/Γ with Γ = (0, 1)>Z + (2x1 + 2y1, 0)>Z
and representatives of the branch points are

(
0
0

)
,

(
x1

0

)
,

(
y1

y2

)
and

(
y1 + x1

y2

)
.

Note that a vector (v, w) corresponds to the zero vector if and only if w ∈ Z and
v ∈ (x1 + y1)2Z. Observe that

2(x1 + y1)Z = 2

(
x1 +

x1y1

x1

)
Z = 2x1

(
1 +

p

q

)
Z 3 2x1(p+ q) and (6.1)

2(x1 + y1)Z = 2

(
x1y1

y1
+ y1

)
Z = 2y1

(
q

p
+ 1

)
Z 3 2y1(q + p). (6.2)

Hence after multiplying by n, the representatives of the branch points are

(
0
0

)
,

(
nx1

0

)
,

(
ny1

m

)
and

(
n(y1 + x1)

m

)
.

After multiplying by 2(p+ q) they are given by

(
0
0

)
,

(
2x1(p+ q)n

0

)
,

(
2y1(p+ q)n

m

)
and

(
(2y1 + 2x1)n(p+ q)

m

)
.

Because of Equations (6.1) and (6.2) all representatives are in Γ and hence by multiplying
with 2n(p+ q) we map all branch points to the origin.

The map [2n(p+q)]◦p : X → E is a once-ramified covering and thus X is an origami.
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6.4 A subspace of codimension three

This section resembles the last section. By an additional relation of the branch points
we obtain a subspace ΩH3 of the Hurwitz space of translation surfaces ΩH2. We de-
scribe this space in terms of polygons, which are degenerate. The degeneration is an
implication of the symmetries the polygons have. These symmetries imply the existence
of an additional translation giving us three equivalent definitions of the subspace ΩH3.
Combining these, we show that the subspace ΩH3 has four connected components and
that its image under the forgetful map is an affine invariant submanifold of dimension 2.

Definition 6.34. For a covering p : X → E in H2, denote by P̄ , Q̄, −Q̄ and −P̄ the
branch points in E. We define the Hurwitz space

H3 =
{

(p,X,E) ∈ H2

∣∣ P̄ − Q̄ = Q̄− P̄
}

of all coverings, where the point P̄ − Q̄ is a 2-torsion point. Its image under the forgetful
map

L3 = F(H3) = {X ∈ L2 | there exists p,E, such that (p,X,E) ∈ H3 }

contains all Riemann surfaces of genus 3 that admit a covering of degree 2 of an elliptic
curve ramified over four points such that the sum of any two is a 2-torsion point.

We are interested in the Hurwitz space of translation surfaces belonging to H3.

Definition 6.35. The Hurwitz space of translation coverings

ΩH3 =
{

(p,X, ω,E, η) ∈ ΩH2

∣∣ P̄ − Q̄ = Q̄− P̄
}

contains all translation surfaces in ΩH2 that have the extra symmetry describing H3.
Its image under the forgetful map

ΩL3 = ΩF(ΩH3)

contains all translation surfaces in the principal stratum H(1, 1, 1, 1) admitting a trans-
lation covering of degree 2 of the torus ramified over four points such that the sum of
any two branch points is a 2-torsion point.

Next we want to understand this space in terms of polygons. For a given covering
p : (X,ω) → (E, η) in ΩH3, we describe the torus as a polygon. For the branch points
P̄ , Q̄, −Q̄ and −P̄ , let us denote

u = P̄ − Q̄ = Q̄− P̄ , v = P̄ + Q̄ = −P̄ − Q̄ and w = u+ v.

From these relations, the formulas

P̄ + u = Q̄, Q̄+ u = P̄ , − Q̄+ u = −P̄ , − P̄ + u = −Q̄,
P̄ + v = −Q̄, Q̄+ v = −P̄ − Q̄+ v = P̄ , − P̄ + v = Q̄,

P̄ + w = −P̄ , Q̄+ w = −Q̄ − Q̄+ w = Q̄ and − P̄ + w = P̄
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P̄

Q̄

P̄

P̄

Q̄

P̄

−Q̄

−Q̄

−P̄u

v

w

Figure 6.19: This torus belongs to a covering in ΩH3. The edges u, u′ and v are marked.
By cutting and gluing we can transform this torus into the left one in
Figure 6.20.

b
c

d

e

a

Q̄

P̄

−Q̄

−P̄ P̄

Q̄ −Q̄
Q̄

−P̄ P̄

= lim

Q̄n Q̄n−Q̄n

−P̄n P̄n

Q̄n −Q̄n
Q̄n

−P̄n P̄n

Figure 6.20: The right picture degenerates to the left one by letting the orange and green
paths converge to the corresponding dashed paths. Cutting off the arising
arm we get the left picture. The edges of the left polygon are labeled.

follow. Hence we draw the torus by starting in a point P̄ and going along the vector u to
reach Q̄. Starting in P̄ and going along the vector v, we reach −Q̄. Along the vector w
we reach −P̄ . The resulting torus is sketched in Figure 6.19. Via cutting and gluing this
torus can be transformed into the left one in Figure 6.20. There we see how this torus
arises via a degeneration of the right torus: The green and orange edges converge to
the corresponding dashed edges. There remains an orange arm in the lower right corner
which we cut off and glue to the left side. The colored edges in the left picture indicate
this. Furthermore, in the left picture we see that the (oriented) edges of this polygon in
P fulfill the relation a = −2e. This also follows from the formulas above by noting that
a = 2u and e = −u. So we define the set

P3 = { (a, b, c, d, e) ∈ P | b = d, c = e, a = −2e }

of polygons which define such a torus.

Proposition 6.36. We have a surjective map P3 × { 1, 2, 3, 4 } → ΩH3.

Proof. Let p : (X,ω)→ (E, η) be a translation covering in ΩH3. We have just seen that
the torus E is represented by a polygon of the desired form. We can state explicitly four
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different gluings, see Figure 6.21, which yields four coverings of E of degree 2 with four
ramification points. For now, ignore all the colors and the labels of the parallelograms,
because Ψ is not yet defined.

We have seen before, compare Propositions 3.7 and 6.8, that there are exactly four
translation coverings for each given set of covering data. Thus we have found all.

The gluing given in Figure 6.21 is no coincidence. It arises via the limit construction
seen in Figure 6.6. In our case, as in Figure 6.20, the edges −2en converge to the edge
a.

A question we should have addressed earlier must be answered now: How do the maps
ϕ and τ look like on a surface coming from a degenerate polygon? The short answer is
given in Figure 6.22: The first row is a translation surface of monodromy type 1, the
second one is of type 4. The arrows indicate which parallelogram is mapped to which
by τ and the colors do the same for ϕ. Note that the maps τ and ϕ look the same on
translation surfaces of type 1 and 2, and they do look the same on translation surfaces
of type 3 and 4.

Let us start with the rotation τ : See Figure 6.10 for its original definition. The map τ
is given as the rotation around the midpoint of an edge between Q and −Q and is a lift of
[−1]. We fix this lift by giving an explicit point of rotation. In Figure 6.22 we choose the
red point in the left polygon. Then the map τ is rotates each parallelogram by π and maps
it to the parallelogram indicated by the arrow. The same map is obtained in another
way: We degenerate a translation surface in ΩL1 to one in ΩL3. The parallelograms in
Figure 6.10 labeled by A, C, A′ and C ′ degenerate to lines. The degeneration of τ is
exactly the map described above.

The translation ϕ can be studied similarly: Recall its original definition in Figure 6.15
as a lift of the translation tP̄+Q̄. It maps the point P to −Q and the point Q to −P . We
choose the lift of tP̄+Q̄ such that in Figure 6.22 every parallelogram is mapped to a more
saturated parallelogram of the same color. The same map is obtained in another way:
We degenerate a translation surface in ΩL2 to one in ΩL3. Since the hexagon labeled
by A in Figure 6.15 degenerates to a parallelogram, ϕ behaves as described above.

A closer study reveals that none of the properties of τ and ϕ change: The order and
the relations of τ and ϕ are the same, for example for a translation surface of type 1 we
have τϕ = σϕτ , τ2 = id and ϕ2 = σ.

In what follows, we use the polygon description of coverings in ΩH3 to state their
generic automorphism groups and to show that ΩH3 has four connected components.
Using the automorphism groups, we describe the space ΩL3 as an affine invariant sub-
manifold of dimension 2 in H(1, 1, 1, 1). We start by giving a description of the space
ΩH3 in terms of an additional automorphism, which is the lift of a translation.

Lemma 6.37. Let p : (X,ω) → (E, η) be a translation covering in ΩH3 with branch
points P̄ , Q̄, −P̄ and −Q̄ in E. The translation

tP̄−Q̄ : E → E, x 7→ x+ P̄ − Q̄

can be lifted to a translation on X.
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Figure 6.21: In every row a translation covering in ΩH3 of type 1, 2, 3 and 4, respectively,
is sketched. The colored squares indicate the map Ψ: A parallelogram is
mapped to a more saturated parallelogram of the same color. In the second
picture the fixed points of Ψ ◦ τ are indicated in red.
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Figure 6.22: In the first row, the maps τ and ϕ are sketched on a degenerate translation
surface of type 1 (they do the same for type 2). In the second row, the maps
τ and ϕ are sketched on a degenerate translation surface of type 4 (they do
the same for type 3).
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P̄

−Q̄

−P̄ P̄

Q̄

−P̄ P̄

Q̄

Ō

P̄ − Q̄

β̄

ᾱ

Figure 6.23: The base point of this elliptic curve is Ō. Two loops are sketched. The
translation tP̄−Q̄ leaves the “vertical” loop β̄ invariant and maps the “hori-
zontal” loop ᾱ to the dashed blue loop.

Proof. Given the translation tP̄−Q̄ : E → E, from P̄ − Q̄ = Q̄− P̄ the identities

tP̄−Q̄(P̄ ) = P̄ + P̄ − Q̄ = P̄ + Q̄− P̄ = Q̄, tP̄−Q̄(Q̄) = P̄ ,

tP̄−Q̄(−Q̄) = −P̄ and tP̄−Q̄(−P̄ ) = −Q̄

follow. Hence the translation maps branch points to branch points. We need to show
that tP̄−Q̄∗p∗π1(X∗) ⊆ p∗π1(X∗) or, equivalently, that the translation tP̄−Q̄ acts on
the kernel of the monodromy map µ : π1(E∗) → S2. Obviously, the loops around the
branch points are mapped to loops around branch points and their monodromy is not
changed. We explicitly describe a basis of the fundamental group whose monodromy is
not changed by the translation tP̄−Q̄.

Let Ō be a fixed point of [−1], say between P̄ and −P̄ as sketched in Figure 6.23.
Choose β̄ to be the “vertical” loop going through Ō and P̄ − Q̄ = tP̄−Q̄(Ō). Hence
tP̄−Q̄(β̄) = β̄ and its monodromy is not changed. Choose ᾱ to be the “horizontal” loop
as drawn in Figure 6.23. It is mapped to the dashed blue loop ᾱ ◦ `−Q̄ ◦ `Q̄. Thus
µ(tP̄−Q̄(ᾱ)) = µ(ᾱ)(1 2)2 = µ(ᾱ), the monodromy of ᾱ is not changed by tP̄−Q̄.

Proposition 6.38. The Hurwitz space of translation coverings

ΩH3 =
{

(p,X, ω,E, η) ∈ ΩH2

∣∣ there exists Ψ ∈ Aut(X), Ψ(±P ) = ±Q,
Ψ(±Q) = ±P, DΨ = I, Ψ ◦ σ = σ ◦Ψ

}

can be identified with the space of all translation coverings that have an extra translation
Ψ. This automorphism Ψ commutes with the deck transformation σ and interchanges
the ramification points as described above.

Proof. Let p be a translation covering in the right-hand set and let Ψ: X → X be an
automorphism as described above. Since Ψ and σ commute, Ψ descends to a translation
t : E → E of the torus given by x 7→ b+ x. This translation fulfills

t(P̄ ) = b+ P̄ = Q̄ and t(Q̄) = b+ Q̄ = P̄
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and hence b = Q̄− P̄ = P̄ − Q̄. This relation shows that the translation covering p is in
ΩH3.

Now let p ∈ ΩH3 be a translation covering. We have P̄ − Q̄ = Q̄ − P̄ and then,
by Lemma 6.37, there exists a translation tP̄−Q̄ which can be lifted to a map with the
desired properties. Hence p is in the right-hand side.

More elementarily, we describe the map Ψ explicitly. The base point Ō of the torus
is the green point depicted in Figure 6.23. Via the translation tP̄−Q̄ it is mapped to the
other green point tP̄−Q̄(Ō). Similarly, t2

P̄−Q̄(Ō) = Ō. We lift this map to a covering in
ΩH3. We label the lower left parallelogram of the left polygon by A as in Figure 6.21.
By choosing whether the parallelogram A is mapped to the parallelogram on top of it, or
to the corresponding parallelogram in the right polygon, we fix the lift Ψ of tP̄−Q̄. To be
consistent with our previous work, we choose the former. In the first row of Figure 6.21,
we observe that the edge labeled by I on the left polygon is mapped to the dashed edge
above of it. Hence, the edge labeled by I on the right polygon is mapped onto the same
dashed line, thus the parallelogram below of it is Ψ−1(A). By similar arguments, one
deduces that the map looks as given in Figure 6.21. The first row describes a translation
covering of type 1, the second of type 2 and so forth. The map Ψ maps each parallelogram
to a more saturated parallelogram of the same color. We can deduce several interesting
facts about Ψ from these pictures, which we use in the next proposition to describe the
generic automorphism group of each translation covering or translation surface.

Proposition 6.39. The automorphism group of a generic translation covering in ΩH3

or a generic translation surface in ΩL3 is of order 16 and depends on its monodromy. It
is either the central product of the dihedral 8-group and the 4-cyclic group, D8×Z C4, or
the direct product of the dihedral 8-group and the 2-cyclic group, D8 × C2. In the latter
case, the surface is hyperelliptic.

Proof. Let (X,ω) be a translation surface in ΩL3 of type 1. In the first picture of
Figure 6.21, we note that Ψ2 = σ and Ψ is of order 4. Using both, Figures 6.21 and 6.22,
we check the following: The map Ψϕ maps the parallelogram labeled by A to the one
labeled by Ψ2(B). But the map ϕΨ maps the parallelogram labeled by A to the one
labeled by B. Hence they differ by σ and we have Ψϕ = ϕΨσ. Similarly, we confirm
Ψτ = τΨσ. From Proposition 6.26 we recall the relation τϕ = ϕτσ and that ϕ2 = σ.
Note that σ is in the center of the automorphism group.

Comparing with Chapter 4 we want to show that

Aut(X,ω) = 〈a, x, y|a4 = x2 = 1, a2 = y2, xax−1 = a−1, ya = ay, xy = xy〉
= D8 ×Z C4.

We choose a = ϕΨ, x = ϕτ , y = τϕΨ and compute, by using the relations described
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above and σ2 = id, that all relations are fulfilled:

a2 = ϕΨϕΨ = ϕϕΨΨσ = σ3 = σ and hence

a4 = id . Furthermore

x2 = ϕτϕτ = ϕϕττσ = σ2 = id,

y2 = τϕΨτϕΨ = τ2ϕΨϕΨσ2 = ϕΨϕΨ = a2,

xax−1 = ϕτϕΨϕτ = ϕϕτΨϕτσ = τΨϕτ = Ψϕττσ2 = Ψϕ = σϕΨ = a−1,

ay = ϕΨτϕΨ = τϕΨϕΨσ2 = ya and finally

xy = ϕττϕΨ = ϕτΨτϕσ2 = ϕττϕΨσ4 = yx.

Similarly, for a translation surface of type 2 the claim follows by choosing

a = ϕ, x = τ, y = τΨ

and by noting the relations Ψτ = τΨ and Ψϕ = ϕΨσ. For a translation covering of type
3 we choose

a = Ψ, x = τ, y = τϕ

with the relations Ψτ = τΨσ and Ψϕ = ϕΨσ. Finally, for a translation covering of type
4 we choose

a = ϕΨ, x = ϕ, y = τ

with the relations Ψτ = τΨ and Ψϕ = ϕΨσ. For any translation surface (X,ω) ∈ ΩL3

of type 2, 3 or 4 with generators chosen as above we then get

Aut(X,ω) =
〈
a, x, y

∣∣ a4 = x2 = y2 = 1, xax = a−1, ya = ay, xy = yx〉
= D8 × C2.

Translation surfaces of type 3 and 4 are hyperelliptic by Propositions 6.9 and 6.26.
Translation surfaces of type 2 are hyperelliptic, because the map Ψτ is of order 2 and has
eight fixed points. These fixed points are the red points in the second row in Figure 6.21.

Corollary 6.40. The equation of a surface in L3 depends on the automorphism group
of it. If it is D8×Z C4, the central product of the dihedral group of order 8 and the cyclic
group of order 4, the generic surface is given by

y4 = x(x− 1)(x− λ), λ ∈ C.

If, on the other hand, the automorphism group is D8×C2, the direct product of the dihe-
dral group of order 8 and the cyclic group of order 2, the generic surface is hyperelliptic
and is given by

y2 = x8 + ax4 + 1, a ∈ C.

In both cases the dimension of the locus of those surfaces is 1.
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Proof. Using Proposition 6.39 and comparing the possible automorphism groups with
the Tables 3.1 and 3.2, we get these equations as well as the dimensions of the loci.

From this follows that the dimension of ΩH3 has to be 2. We will prove this inde-
pendently in Proposition 6.43. Furthermore, the first equation is also shown by Herrlich
and Schmithüsen [HS08], since it is the Teichmüller curve of the Wollmilchsau.

Corollary 6.41. The Hurwitz space ΩH3 of translation surfaces has four connected
components. They can be distinguished by the number of fixed points of τ , ϕτ and Ψτ .

Note that each translation surface belonging to a covering in ΩH3 of type 2, 3 or 4 is
hyperelliptic.

Proof. There cannot be a continuous path between surfaces with different automorphism
groups, so there is no path from a translation surface of type 1 to any other. By
Proposition 6.28 there are no paths between surfaces of type 2, 3 and 4. Hence we have
four connected components.

In Corollary 6.52 we will see that ΩL3 has only two connected components. But
the previous corollary gives us that H3 has and ΩH3 each have four connected com-
ponents. Hence the forgetful map merges the three hyperelliptic components of H3

into a single connected component of L3. Furthermore, combining this corollary with
Propositions 6.9, 6.19 and 6.28 we get our desired result:

Theorem 2. The space ΩH is connected. The spaces ΩHi have i + 1 connected com-
ponents for i = 1, 2, 3. These components can be distinguished by the monodromy of the
covering or by the number of fixed points of τ , ϕτ and Ψτ , respectively.

As in the previous sections, we show that the subspace H3 ⊆ H is a submanifold. This
enables us to prove that ΩH3 is an affine invariant submanifold by using the restriction
of the immersion ΩF : ΩH → ΩL.

Lemma 6.42. The subspace H3 ⊆ H is a submanifold.

Proof. The proof works as the proof of Lemmas 6.15 and 6.30. Hence we only show how
we must alter a chart ϕ to make this work.

Let p be a covering and let e1 = P̄ , e2 = Q̄, e3 = −Q̄ and e4 = −P̄ be the branch
points in E = C/Z + τZ. We define the chart ϕ such that

ϕ(p) = (τ, ē1 + ē4, ē2 + ē3, ē1 + ē2 − ē3 − ē4, ē1 − ē2 + ē3 − ē4).

This map is still bijective, because the linear map

(ē1, ē2, ē3, ē4) 7→ (ē1 + ē4, ē2 + ē3, ē1 + ē2 − ē3 − ē4, ē! − ē2 + ē3 − ē4)

corresponds to the regular matrix



1 0 0 1
0 1 1 0
1 1 −1 −1
1 −1 1 −1


 .
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In H3, the branch points fulfill the relations e1+e3 = Ō, e2+e4 = Ō and e1−e2+e3−e4 =
Ō. Thus for a covering p ∈ H3 the chart ϕ is given by

ϕ(p) = (τ, 0, 0, 0, 0).

Hence locally H3 is the intersection of C5 with a 1-dimensional linear subspace showing
that H3 is a submanifold of H.

Proposition 6.43. The space ΩL3 ⊆ ΩL is an affine invariant submanifold of the
principal stratum H(1, 1, 1, 1) of dimension 2.

Proof. By Lemma 6.42, H3 ⊆ H2 is a submanifold and so is ΩH3 ⊆ ΩH2. We restrict
the immersion ΩF to this subspace and thus the only thing we need to show is that the
image of some translation covering under the forgetful map ΩF of ΩH3 is given by linear
equations in period coordinates of the right dimension. In a small enough neighborhood
of a translation covering the immersion ΩF is injective. Thus, when working with a
translation surface (X,ω) ∈ ΩL3, we may assume that it is equipped with a unique
translation covering denoted by p : (X,ω)→ (E, η).

Recall the notation introduced in Propositions 6.16 and 6.31: The loops a and b project
to a basis ā and b̄ of the absolute homology group of the torus. The arcs cPQ, cQ−P
and c−P−Q and the elements in the kernel of p∗ extend this to a basis of the relative
homology group H1(X,Σ,Z). Denote by cP̄ Q̄, cQ̄−P̄ and c−P̄−Q̄ the projections of the
arcs via p to the torus. Integrating ω over those paths gives the complex numbers A,
B, C1, C2 and C3 respectively. In Figure 2.3 the translation tP̄−Q̄ acts by a vertical
translation mapping P̄ to Q̄. Hence using the relations computed in Example 2.13 we
establish

tP̄−Q̄∗ā = ā, tP̄−Q̄∗b̄ = b̄,

tP̄−Q̄∗cP̄ Q̄ = c′Q̄P̄ = b̄− cP̄ Q̄, tP̄−Q̄∗cQ̄−P̄ = −c−Q̄P̄ = cP̄ Q̄ + cQ̄−P̄ + c−P̄−Q̄,

tP̄−Q̄∗c−P̄−Q̄ = c′−Q̄−P̄ = −b̄− c−P̄−Q̄.

Integration yields the equations

A =

∫

a

ω =

∫

a

Ψ∗ω =

∫

tP̄−Q̄∗ā

η =

∫

a

ω = A,

B =

∫

b

ω =

∫

Ψ∗b

ω = B,

C1 =

∫

cPQ

ω =

∫

Ψ∗cPQ

ω =

∫

b

ω −
∫

cPQ

ω = B − C1,

C2 =

∫

cQ−P

ω =

∫

Ψ∗cQ−P

ω =

∫

cPQ

ω +

∫

cQ−P

ω +

∫

c−P−Q

ω
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= C1 + C2 + C3 and

C3 =

∫

c−P−Q

ω =

∫

Ψ∗c−P−Q

ω = −
∫

b

ω −
∫

c−P−Q

ω = −B − C3.

This gives us the equations B − 2C1 = 0, C1 + C3 = 0 and B + 2C3 = 0. Plugging
in C1 = −C3 we see that the first and the last equation are the same. By using the
automorphism ϕ we retrieve the equations given in ΩL2, namely C1 + C3 = 0 and
2C2 = A. Thus we have one restriction more as in ΩL2. In period coordinates this extra
restriction describes a hyperplane in C3. This shows that ΩL3 is an affine invariant
submanifold of dimension at most 2.

Its dimension is at least 2 because we are free to choose a torus only. Having chosen
a torus, both points P̄ + Q̄ and P̄ − Q̄ are 2-torsion points. There are just four of them.
Having chosen those the sum, (P̄ + Q̄) + (P̄ − Q̄) = 2P̄ gives us the point P̄ and then
the others follow as well.

This especially means that each connected component of ΩL3 is a closed GL+
2 (R)-orbit

of a single translation surface. Furthermore, every translation surface in ΩL3 is a Veech
surface, thus its Veech group is a lattice in SL2(R).

Combining this proposition with Propositions 6.5, 6.16 and 6.31 we get our desired
result:

Theorem 1. There exists an descending chain of affine invariant submanifolds ΩLi of
ΩL of every possible dimension 5−i for i = 1, 2, 3, each given by translations or rotations.

Let us summarize briefly what happened so far: We constructed the Hurwitz space of
translation coverings ΩH. We found a sequence of subspaces ΩH ⊇ ΩH1 ⊇ ΩH2 ⊇ ΩH3

of decreasing dimensions, each given by translations and rotations. We computed the
connected components of every of these spaces as stated in Theorem 2. We showed that
these space give rise to affine invariant submanifolds and hence proved Theorem 1. In
conclusion, we described explicitly orbit closures of every possible dimension in ΩH. In
particular, we found closed GL+

2 (R)-orbits. In the next section, we compute the Veech
groups of a translation surface in each of these orbits and their Teichmüller curves.

6.5 The Wollmilchsau and its siblings

The Wollmilchsau is discussed by Herrlich and Schmithüsen [HS07a; HS08] and summa-
rized in Chapter 5. They show several of its remarkable properties. It is given by the
polygon ((

0
2

)
,

(
1
0

)
,

(
0
1

)
,

(
1
0

)
,

(
0
1

))
∈ P3

glued by the first gluing rule and thus of type 1. Hence it is a translation surface in the
non-hyperelliptic connected component of ΩH3. It is depicted in Figure 5.1.

85



Herrlich and Schmithüsen compute its automorphism group, its equation, its Veech
group and show that there are infinitely many other origamis whose Teichmüller curves
intersect the one of the Wollmilchsau. All these Teichmüller curves form a dense subset
of the non-hyperelliptic component of the Hurwitz space H1.

We call the translation surfaces given by the same polygon as the Wollmilchsau, but
of different type, siblings of the Wollmilchsau. We compute their Veech groups with the
same methods used by Herrlich and Schmithüsen [HS07a]. Recall that any translation
surface in ΩL3 is in a GL+

2 (R)-orbit of the Wollmilchsau or one of its siblings. Hence its
Veech group is conjugated to one of the Veech groups we will calculate.

To compute the Veech group we need some preparations. Most importantly, recall
Proposition 2.12: Given an origami q : X → E, denote by q : X∗ → E∗ its unramified
correspondent. This yields the inclusion q∗π1(X∗) ⊆ π1(E∗) = F2 = 〈x, y〉. We define
β : Aut(F2)→ Out(F2) = GL2(Z) to be the natural projection, which is explicitly given
by

β(γ) =

(
#x(γ(x)) #x(γ(y))
#y(γ(x)) #y(γ(y))

)
, (6.3)

where #x(w) and #y(w) denote the number of x respectively y appearing in the word
w. Here x−1 counts as −1. Let us denote by Aut+(F2) = β−1(SL2(Z)) the group of
orientation preserving automorphisms of the free group F2 and define the stabilizer of
U by Stab(U) =

{
γ ∈ Aut+(F2)

∣∣ γ(U) = U)
}

. Then Proposition 2.12 states that

Γ(X,ω) = β(Stab(U)).

Hence we can compute the Veech group of an origami by computing the stabilizer of the
fundamental group.

Let us recall our setting. We are interested in the Veech groups of all translation sur-
faces in ΩL3. Since the Hurwitz space of translation coverings ΩH3 is an affine invariant
submanifold of dimension 2, each of its connected components is a closed GL+

2 (R)-orbit.
Hence we have to pick a translation covering in each connected component of ΩH3 and
regard the corresponding translation surface in ΩL3. The Veech groups of two different
translation surfaces in one orbit are conjugated, so we may as well choose the Wollmilch-
sau and its siblings.

Let p : X → E in ΩH3 be a covering of the Wollmilchsau or one of its siblings. The
torus is given by E2 = C/(2Z + 2iZ) and consists of four squares. By translating the
torus we can assume that

P̄ =

(
0
0

)
, Q̄ =

(
1
0

)
, −P̄ =

(
0
1

)
and − Q̄ =

(
1
1

)
.

Thus the multiplication [2] : E2 → E2 by 2 on the torus maps all branch points to the
origin. Note that this does not contradict our requirement that the branch points are
not 2-torsion points, because we look at the translated torus. Nonetheless, the map

q = [2] ◦ p : X → E2 → E
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is a covering ramified over one point and thus an origami. Denoting the punctured
surfaces by a star ∗, we have the unramified covering q : X∗ → E2∗ → E∗. Furthermore,
for U = q∗π1(X∗) and K2 = [2]∗π1(E2∗), by covering theory, we have the inclusions

U = q∗π1(X∗) ⊆ K2 = [2]∗π1(E2∗) ⊆ π1(E∗) = F2.

Let x and y be the generators of F2. As a subgroup of the free group F2, the fundamental
group K2 of the four-times punctured torus is generated by the loops x2, y2 and the loops
around the four branch points. Define `m,n = xmyn[x, y]y−nx−m for m,n ∈ Z, then

K2 = 〈x2, y2, `0,0, `1,0, `0,1〉

is a free group of rank 5. The loop `1,1 ∈ K2 satisfies the relation [x, y] = `0,0`1,0`0,1`1,1.
We need a description of the fundamental groups of the Wollmilchsau and its siblings

and the stabilizers of their fundamental groups. We proceed in two steps: Firstly, we
compute a group G, containing the stabilizer Stab(U), and the index [G : Stab(U)] of
G in the stabilizer. Secondly, we give a subgroup of H ⊆ Stab(U) contained in the
stabilizer with index [G : H] = [G : Stab(U)]. Thus H = Stab(U) and this yields the
Veech group.

To calculate U , we use that p∗π1(X∗) is the kernel of the monodromy µ : π1(E2∗)→ S2.
The monodromy of the loops `m,n has to be non-trivial, because they are loops around
the branch points. Thus there are only four possible monodromy maps µ given by

µ1 : x2 7→ (1 2), y2 7→ (1 2),

µ2 : x2 7→ id, y2 7→ id,

µ3 : x2 7→ id, y2 7→ (1 2) and

µ4 : x2 7→ (1 2), y2 7→ id .

We call their kernels U1, U2, U3 and U4, respectively. Note that the kernel Ui corresponds
to the translation surfaces in the i-th row sketched in Figures 6.4, 6.10, 6.15 and 6.21.
Furthermore, the Ui coincide with those defined in Lemma 6.18. Hence if the kernel of
a monodromy map is Ui, the corresponding translation covering is of type i. We denote
the Wollmilchsau and its siblings by X∗i = H/Ui for i = 1, 2, 3, 4, where we identify Ui
with the deck transformation group of the universal covering. When it is not important
which one we mean, we just write X∗ = H/U .

Let H→ X∗ be a universal covering. Then we can lift the translation structure on X∗

to one on H. With respect to this translation structure we define the group Aff+(H) of
orientation preserving affine maps on the upper half plane. Since H is simply connected,
every affine map of X∗, E2∗ or E∗ can be lifted to H. In Lemma 6.46 we show that
every affine map of H descends to an affine map on E2∗. Hence every affine map on X∗

descends to an affine map on E2∗ by first lifting it to H and then projecting it down onto
E2∗. The interesting question is: Which affine maps on E2∗ can be lifted to X∗? We can
extend the affine map E2∗ → E2∗ to an affine diffeomorphism E2 → E2. A necessary
condition for this map to have a lift is that it leaves the branch points invariant. Thus
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it is reasonable to define the group

G? =
{
f̄ ∈ Diff+(E2)

∣∣∣ f̃(z) = Az + e, A ∈ SL2(R), e ∈ R2, f̄(Σ̄) = Σ̄
}

of those orientation preserving diffeomorphisms of the torus that leave the set of branch
points invariant and whose lifts to the C are affine. Note that the derivative of a map in
G? is in SL2(R), since the maps are orientation and volume preserving automorphisms.

Lemma 6.44. Fix a universal covering π : C → E2. Let Σ̃ = π−1(Σ̄) be the preimage
of Σ̄. The group

G? =
{
f̄ ∈ Diff+(E2)

∣∣∣ f̃(z) = Az + e, A ∈ SL2(Z), e ∈ Σ̃
}

can be described by all affine maps whose lift has linear part in SL2(Z) and translation
part in Σ̃.

Proof. Let f̄ ∈ G? be such that f̃(z) = Az + e. We write shortly f̄(P̄ ) for π(f̃(P̃ )). For
P̃ = (0, 0)> we compute f̄(P̄ ) = π(e) and hence e ∈ Σ̃. Furthermore, f̄(Q̄) = π(f̃(Q̃)) =
π(AQ̃+ e) ∈ Σ̄ if and only if π(AQ̃) ∈ Σ̄. We compute

π(AQ̃) = π

((
a b
c d

)(
1 + 2m

2n

))
= π

((
a+ 2ma+ 2nb
c+ 2mc+ 2nd

))
=

(
a
c

)
+ 2Z2.

Thus f̄(Q̄) ∈ Σ̄ if and only if a, c ∈ Z. Similarly, f̄(−Q̄) ∈ Σ̄ if and only if b, d ∈ Z.

Since we want to compare a group of affine maps with a group of automorphisms of
F2, we need a tool which identifies them. For this purpose, we define the map

? : Aff+(H)→ Aut+(F2), f 7→ (f? : σ 7→ f ◦ σ ◦ f−1).

Here we identify π1(E∗) = F2 = Deck(H/E∗): For the following notation, see Figure 6.24.
Let e0 ∈ E be the base point and denote by p0 : H→ E∗ a universal covering. Let z0 ∈ H
be such that p0(z0) = e0. Then every loop ` ∈ π1(E∗) = F2 can be lifted to a loop ˜̀

such that ˜̀(0) = z0. We define the deck transformation `D in z0 to be `D(z0) = ˜̀(1). If
z ∈ H with p0(z) = e 6= e0, we choose a path α from z to z0. We lift −p0(α) to a path
β with β(0) = γ̃(1) and define `D(z) = β(1). Note that p0(`D(z)) = e. One can check
that the map `D is a deck transformation.

Lemma 6.45 (Schmithüsen [Sch04]). The map ? : Aff+(H) → Aut+(F2) is an iso-
morphism and the diagram

Aff+(H) SL2(Z)

Aut+(F2)

D

?
β

commutes. Furthermore, for a subgroup H ⊆ F2 an affine automorphism f̃ ∈ Aff+(H)
descends to H/H if and only if f̃?(H) = H.
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z0 z

˜̀(1) β(1)

α

˜̀

β

p0

e0 e

p0(α)
`

Figure 6.24: The loop ` gives rise to a deck transformation of the universal covering p0,
which maps z to β(1).

From this lemma we deduce that, as we claimed before, every affine diffeomorphism
of H descends to one of E2 and compute the image of G? under the map ?.

Lemma 6.46 (Herrlich, Schmithüsen [HS07a]). Every affine, orientation preserv-
ing diffeomorphism f̃ ∈ Aff+(H) descends to an affine diffeomorphism f̄ : E2 → E2.

Proof. We show that K2 = [2]∗π1(E∗) is a characteristic subgroup of F2, i.e. that it is
mapped to itself by every automorphism of F2. Then by definition f̃?(K2) = K2 and by
Lemma 6.45 the claim follows.

The group K2 is the kernel of the homomorphism

F2 → V4, x 7→ (1, 0), y 7→ (0, 1).

Given any surjective homomorphism F2 → V4, one can verify that its kernel is K2.
Hence for any automorphism of F2, the concatenation with the above map is a surjective
homomorphism F2 → V4. Thus the kernel is not changed.

We write `m,n ∈ Σ̄ if the loop `m,n is a loop around a point in Σ̄. In our case, this is
true for every m,n ∈ Z. But the following results can be proven similarly for tori coming
from multiplication by some larger k ∈ N.

Lemma 6.47 (Herrlich, Schmithüsen [HS07a]). Define the groups

G =
{
γ ∈ Aut+(F2)

∣∣ γ(`m,n) ∈ Σ̄ ⇐⇒ `m,n ∈ Σ̄
}

and

Stab(U)? =
{
f̃ ∈ Aff+(H)

∣∣∣ f̄ lifts to X
}
,

where f̄ : E2 → E2 is the projection of f̃ . Then the map ? : Aff+(H) → Aut+(F2)
induces isomorphisms

G? → G and Stab(U)? → Stab(U).
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Proof. Every f̄ ∈ G? can be restricted to an affine map E2∗ → E2∗. This map can be
lifted to H. We show that f̄(Σ̄) = Σ̄ is equivalent to the fact that f̃?(`) ∈ Σ̄ if and only
if ` ∈ Σ̄:

Let ` be a loop in E2∗ and let f̃ ∈ Aff+(H). For z ∈ H we have the map

f̃?(`)(z) = f̃ `Df̃
−1(z) = f̃β(1)

with ˜̀(0) = z0, β(0) = ˜̀(1) and α(0) = f̃−1(z). Furthermore, note that

(f̄ `)D(z) = β′(1)

with f̃ ˜̀(0) = f̃(z0), β′(0) = f̃ ˜̀(1) and α′(0) = z. We define β = f̃−1β′ and α = f̃−1α′

and have ˜̀(0) = z0, β(0) = ˜̀(1) and α(0) = f̃−1(z). Hence f̃?(`) = (f̄ `)D. This shows
that

f̃?(`) ∈ Σ̄ if and only if f̄ ` ∈ Σ̄. (6.4)

For f̃? ∈ G we have f̃?(`) ∈ Σ̄ if and only if ` ∈ Σ̄. By Equation (6.4) this is equivalent
to ` ∈ Σ̄ and hence f̄ ∈ G?. On the other hand, for f̄ ∈ G? we have f̄ ` ∈ Σ̄ if and only
if ` ∈ Σ̄. By Equation (6.4) this is equivalent to f̃?(`) ∈ Σ̄ and hence f̃? ∈ G. Hence the
map ? : G? → G is well defined and surjective. It is injective, because it is the restriction
of an injective map.

The second claim follows, since f̄ lifts to X if and only if f̃ descends to H/U . By
Lemma 6.45 this is equivalent to f̃∗(U) = U . Hence ? : Stab(U)? → Stab(U) is well
defined and surjective. The map is injective, because it is the restriction of an injective
map.

Our next goal is to compute the index of [G : Stab(U)] = [G? : Stab(U)?] in terms of
automorphisms of the free group. Then we define a subgroup H ⊆ Stab(U) by giving
explicit generators. Using the isomorphism ?, we compute the index [G : H] and show
that it equals [G : Stab(U)]. Hence H = Stab(U) and the Veech group is given as
the image of H under the map β : Aut+(F2) → SL2(Z). For this purpose, we need a
technical lemma.

Lemma 6.48. Let x and y be the generators of F2 and define `p,q = xp yq [x, y] y−q x−p.
We have the following equations for all p, q, n ∈ Z and m ∈ N:

yn `0,q = `0,q+n y
n (6.5)

xn `p,q = `p+n,q x
n (6.6)

x y = `0,0 y x (6.7)

x ym = `0,0 · · · `0,m−1y
mx (6.8)

y x2 = `−1
0,0 `

−1
1,0 x

2 y (6.9)

x y−1 = y x `−1,−1 y
−2 (6.10)

Proof. We have

yn `0,q = yn yq x y x−1 y−1 y−q = yn+q x y x−1 y−1 y−q−n yn.
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Thus the first equation follows. Similarly, the second one is obtained. For the third one
we compute

x y = x y x−1 y−1 y x = `0,0 y x.

The fourth equation follows inductively:

x ym = x ym−1 y = `0,0 · · · `0,m−2 y
m−1 x y = `0,0 · · · `0,m−2 y

m−1`0,0 y x

= `0,0 · · · `0,m−1 y
m x

The fifth equation can by computed by using Equations (6.6) and (6.7):

y x2 = y x x = `−1
0,0 x y x = `−1

0,0 x `
−1
0,0 x y = `−1

0,0 `
−1
1,0 x

2 y

Finally, the last equation follows from Equations (6.5) and (6.6):

x y−1 = x y x−1 y−1 y x y−1 y−1 = `0,0 y x y
−2 = y x `−1,−1 y

−2.

The step x `−1
0,0 = `−1

1,0 x follows by using Equation (6.6) with n = −1 and taking the
inverse.

Proposition 6.49. The index [G : Stab(Ui)] = 3 for i = 2, 3, 4 and G = Stab(U1).

Proof. We use the exact same technique as Herrlich and Schmithüsen [HS07a]. The
group G acts on the set { U1, U2, U3, U4 }. The index [G : Stab(Ui)] is, by the orbit
counting theorem, the size of the orbit G · Ui for i = 1, 2, 3, 4. Hence we want to find
maps in G ⊆ Aut+(F2) interchanging U2, U3 and U4.

Firstly, let us discuss the case U1. Assume there would be a map Ui → U1 for some
i = 2, 3, 4. Then this map would descend to an affine map Xi = H/Ui → H/U1 = X1. By
conjugation, this gives an isomorphism Aut(Xi) → Aut(X1). But by Proposition 6.39
these groups are non-isomorphic, a contradiction! Thus the orbit of U1 is G ·U1 = { U1 }.
This implies Stab(U1) = G.

Now we state the maps interchanging U2, U3 and U4. We define the two automorphisms

γ1 :

{
x 7→ x y x−1,

y 7→ x−1
and γ2 :

{
x 7→ x,

y 7→ x y
.

We have to check that both are in the group G. To see this, we show that the correspond-
ing affine maps are in G?. The linear part is found by applying β : Aut(F2) → GL2(Z)
as defined in Equation (6.3) and has to be in SL2(Z). The translation part can by seen
by computing γi(`0,0) for i = 1, 2. If γi(`0,0) = `p,q for some p, q ∈ Z, the affine map
maps P̄ = (0, 0) to the branch point (p, q) ∈ Σ̄. Hence the translation part is in Σ̄ and
the affine map in G.

The corresponding matrices are given by

β(γ1) =

(
0 −1
1 0

)
, β(γ2) =

(
1 1
0 1

)
∈ SL2(Z).
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Furthermore, we compute

γ1(`0,0) = `0,0 and γ2(`0,0) = xx y x−1 y−1 x−1 = `1,0.

We calculate how these maps act on the set {U1, U2, U3, U4 } of kernels of monodromy
maps. The map γ1 interchanges U4 and U3: By Equation (6.8) we have

γ1(x2) = x y x−1 x y x−1 = x y2 x−1 = `0,0 `0,1 y
2 xx−1 = `0,0 `0,1 y

2 and

γ1(y2) = x−2.

Hence µ(γ1(x2)) = (1 2)(1 2)µ(y2) and µ(γ1(y2)) = µ(x2). Recall that U3 and U4 are
given by

U3 :

{
µ(x2) = id

µ(y2) = (1 2)
and U4 :

{
µ(x2) = (1 2)

µ(y2) = id
,

thus we have γ1(U4) = U3.
The map γ2 interchanges U2 and U3: According to Equations (6.7) and (6.9) we have

γ2(x2) = x2 and

γ2(y2) = x y x y = `0,0 y x
2 y = `0,0 `

−1
0,0 `

−1
1,0 x

2 y2 = `−1
1,0 x

2 y2.

Therefore µ(γ2(x2)) = µ(x2) and µ(γ2(y2)) = (1 2)µ(x2)µ(y2). Recall that U2 and U3

are given by

U2 :

{
µ(x2) = id

µ(y2) = id
and U3 :

{
µ(x2) = id

µ(y2) = (1 2)
,

thus we have γ1(U2) = U3.
Summing up, { U2, U3, U4 } is one orbit of length three.

Proposition 6.50. Let Xi = H/Ui for i = 1, 2, 3, 4. The Veech groups of the Wollmilch-
sau and its siblings are given by

a) Γ(X1) = SL2(Z),

b) Γ(X2) = Θ =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a+ b+ c+ d ≡ 0 mod 2

}
,

c) Γ(X3) = Γ0(2) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ 0 mod 2

}
and

d) Γ(X4) = Γ0(2) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod 2

}
.

Proof. We use Proposition 2.12. Hence Γ(Xi) = β(Stab(Ui)) for i = 1, 2, 3, 4. We write
down generators of the stabilizers Stab(Ui) by showing that they generate a subgroup
of Stab(Ui) of index 3 in G for i = 2, 3, 4 and the whole group G for i = 1. By
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Proposition 6.49 this suffices. Then we compute the index in SL2(Z) by using the map
β : Aut+(F2)→ SL2(Z).

a) Since G = Stab(U1) and β(G) = SL2(Z) this is obvious. This was already shown
by Herrlich and Schmithüsen [HS08].

b) Recall that U2 is given by µ(x2) = µ(y2) = id. We define the maps

γ1 :

{
x 7→ y−1

y 7→ x
and γ2 :

{
x 7→ x

y 7→ x2 y
.

Obviously, the map γ1 stabilizes U2, because it interchanges the monodromy. To see
that γ2 stabilizes U2, we check that µ(γ2(y2)) = id. By Equation (6.9) we have

γ2(y2) = x2 y x2 y = x2 `−1
0,0 `

−1
1,0 x

2 y y

and thus µ(γ2(y2)) = µ(x2)2 (1 2)2 µ(y2) = id.
For i = 1, 2 we define Ai = β(γi) giving us

A1 =

(
0 1
−1 0

)
and A2 =

(
1 0
2 1

)
.

Those two matrices generate the theta group Θ, see e.g. Busam and Freitag [BF09].
Thus Θ ⊆ Γ(X2) is a subgroup of the Veech group of index 3 in SL2(Z). Since the index
[SL2(Z) : Γ(X2)] = 3, we have Θ = Γ(X2).

d) Recall that U4 is given by µ(x2) = (1 2) and µ(y2) = id. We define the maps

γ1 :

{
x 7→ x,

y 7→ x y
and γ2 :

{
x 7→ xy2,

y 7→ x−1 y−1
.

Clearly, µ(γ1(x2)) = µ(x2). By showing that γ1(y2) = x y x y has trivial monodromy, we
see that γ1 is in the stabilizer of U4. Using Equations (6.5) to (6.8) we have

γ1(y2) = x y x y = x y `0,0 y x = `1,1 x y y x = `1,1 x y
2 x = `1,1 `0,0 `0,1 y

2 xx. (6.11)

Hence µ(γ1(y2)) = (1 2)3µ(y2)µ(x2) = (1 2)4 = id.
Furthermore, we show that µ(γ2(x2)) = (1 2) and µ(γ2(y2)) = id. We use Equa-

tions (6.5) and (6.7) to (6.9) to compute

γ2(x2) = x y2 x y2 = `0,0 `0,1 y
2 xx y2 and

γ2(y2) = x−1 y−1 x−1 y−1 = (y x y x )−1 = (y `0,0 y x x )−1 = x−2 y−2 `−1
0,1.

As requested, we have shown that µ(γ2(x2)) = (1 2)2µ(y2)2µ(x2) = (1 2) as well as
µ(γ2(y2)) = (1 2)µ(x2)µ(y2) = id.

Define Ai = β(γi) for i = 1, 2, then

A1 =

(
1 1
0 1

)
and A2 =

(
1 −1
2 −1

)
.
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Busam and Freitag [BF09] give two generators of Γ0(2):

B1 =

(
1 1
−2 −1

)
and B2 =

(
−1 −2
2 3

)
.

One can compute that B1 = A−1
1 A−1

2 A1 and B2 = A−1
1 A2A

2
1 as well as A1 = B1B2

and A2 = B1B2B
−1
1 B−1

2 B−1
1 . Hence A1 and A2 generate Γ0(2), which is a subgroup

of the Veech group. By Shimura [Shi71], Γ0(2) is of index 3 in SL2(Z) and thus by
Proposition 6.49, Γ0(2) = Γ(X4).

c) Recall that U3 is given by µ(x2) = id and µ(y2) = (1 2). Define the maps

γ1 :

{
x 7→ xy,

y 7→ y
and γ2 :

{
x 7→ xy−1,

y 7→ x2y−1
.

Obviously µ(γ1(y2)) = (1 2). To see that γ1 is in the stabilizer of U3 we have to show
that µ(γ1(x2)) = id. By Equation (6.11) we have

γ1(x2) = x y x y = `0,0 `0,1 y
2 x2 `1,1.

Thus µ(γ1(x2) = (1 2)3µ(x2)µ(y2) = (1 2)µ(y2) = id.
For γ2 to be in the stabilizer of U3, we have to show that µ(γ2(x2)) = id and

µ(γ2(y2)) = (1 2). By Equations (6.7) and (6.10) we have

γ2(x2) = x y−1 x y−1 = x y−1 y x `−1,−1 y
−2 = x2 `−1,−1 y

−2

γ2(y2) = x2 y−1 x2 y−1 = x2 y−1 x (x y−1) = x2 y−1 (x y)x `−1,−1 y
−2

= x2 y−1 `0,0 y x x `−1,−1 y
−2 = x2 `0,−1 x

2 `−1,−1 y
−2

Hence µ(γ2(x2)) = µ(x2)(1 2)µ(y2) = id and µ(γ2(y2)) = µ(x2)2(1 2)2µ(y2) = (1 2) as
desired.

Define Ai = β(γi) for i = 1, 2. Then

A1 =

(
1 0
1 1

)
and A2 =

(
1 2
−1 −1

)
.

The transposed matrices A>1 and A>2 generate the group Γ0(2). Hence A1 and A2

generate the group Γ0(2). The index in SL2(Z) is again 3 since the map

SL2(Z)/Γ0(2)→ SL2(Z)/Γ0(2), A · Γ0(2) 7→
(
A−1

)>
Γ0(2)

is bijective.
For another computation of the index see e.g. Busam and Freitag [BF09].

Corollary 6.51. The siblings of the Wollmilchsau X2, X3 and X4 have conjugated
Veech groups.
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Proof. Recall the maps

γ1 :

{
x 7→ x y x−1,

y 7→ x−1
and γ2 :

{
x 7→ x,

y 7→ x y
.

defined in the proof of Proposition 6.49. They give rise to the matrices

β(γ1) =

(
0 −1
1 0

)
and β(γ2) =

(
1 1
0 1

)
.

It is easy to see that the groups Γ0(2) and Γ0(2) are conjugated using the first matrix.
Conjugating a matrix in Γ0(2) by the matrix β(γ2), we get a matrix of the form

(
1 1
0 1

)(
a b
c d

)(
1 −1
0 1

)
=

(
a+ c −a+ b− c+ d
c −c+ d

)
.

The sum of the entries is b+2d ≡ b ≡ 0 mod 2, since b ≡ 0 mod 2. Thus the conjugated
matrix is in Θ.

Corollary 6.52. The space ΩL3 has two connected components.

Proof. The siblings of the Wollmilchsau are in the same GL+
2 (R)-orbit in L3. Moreover,

they are hyperelliptic and the Wollmilchsau is not, hence the Wollmilchsau has to be in
another orbit.

Corollary 6.53. Let Xi = H/Ui for i = 1, 2, 3, 4. The Teichmüller curves C(Xi) of the
origamis Xi, i = 1, 2, 3, 4, all have genus 0.

Proof. We have C(Xi) = H/Γ(Xi). Then C(X1) = H/ SL2(Z) is the affine line. We
look-up in Shimura’s book [Shi71] that the curve H/Γ0(2) also has genus 0, but more
cusps. Since Θ and Γ0(2) are conjugated to Γ0(2), the curves H/Γ0(2) and H/Θ have
the same genus.

As stated in Chapter 5, there are infinitely many Teichmüller curves intersecting the
Teichmüller curve of the Wollmilchsau. But the proof in the paper of Herrlich and
Schmithüsen [HS08] cannot be transferred to the siblings of the Wollmilchsau: Let us
denote by Wλ a surface in the Teichmüller curve of the Wollmilchsau and by Eλ the
torus given by y2 = x(x − 1)(x − λ). A crucial step in their proof is to show that the
Jacobian of Wλ is isogenous to E−1 × E−1 × Eλ. There are plenty of automorphisms
of order 2 with four fixed points on Wλ, which give rise to a covering Wλ → E for an
elliptic curve E. In the lucky case that we find an automorphism of Wλ that descends
to an automorphism of order 4 on E, we immediately have E = E−1. This leads to the
isogeny between the Jacobian and E−1 × E−1 × Eλ.

For the Wollmilchsau, one sees that the map σϕτ is an involution with four fixed points.
The map τϕΨ is in the normalizer of σϕτ and hence descends to an automorphism of
E. One can check that it has order 4, which yields E = E−1 as desired.
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The situation is quite different for the siblings of the Wollmilchsau. One can compute
the normalizers of all elements of order 2 in the corresponding automorphism group.
The result is surprisingly simple: In the notation of the proof of Proposition 6.39, the
normalizers are generated either by σ, x and y or by σ, xa−1 and y. In both cases, the
normalizer is isomorphic to C3

2 and has no element of order 4. Hence there is no element
of order 4 on the covered elliptic curve and it seems plausible, that we cannot decompose
the Jacobian as nicely as for the Wollmilchsau.

Although this does not prove that there are not infinitely many Teichmüller curves
intersecting the Teichmüller curve of the siblings of the Wollmilchsau, it strongly hints
into this direction.

6.6 Invariant loci

So far we have shown that the Hurwitz space of translation surfaces ΩL contains affine
invariant submanifolds ΩL3 ⊆ ΩL2 ⊆ ΩL1 ⊆ ΩL of descending dimensions. In particu-
lar, ΩL contains orbit closures of every possible dimension. It is not clear whether there
are orbit closures other than the ones we listed here. The subspaces of ΩH, which we
created, can be described by their automorphism groups. The automorphisms are either
translations or rotations, hence affine and holomorphic. Moreover, these maps can be
extended along the whole GL+

2 (R)-orbit of each translation covering. This motivates the
following definition.

Definition 6.54. Let G be a group. A set of translation surfaces is called Ω-invariant
(G-)locus, if the affine automorphism group of every translation surface in it contains G.
By forgetting the translation structure, each automorphism is a holomorphic one, thus
we have an inclusion of G into the holomorphic automorphism group of the surface or
covering. Finally, these inclusions should beG-compatible, i.e. for each translation surface
(X,ω), each matrix A ∈ GL+

2 (R) and each affine homeomorphism (X,ω) → A · (X,ω)
there are embeddings G ↪→ Aut(X,ω) and G ↪→ Aut(A · (X,ω)) such that the following
diagram

G Aut(X,ω)

Aut(A · (X,ω))

commutes.

In other words, every automorphism of a translation surface in an Ω-invariant locus is
holomorphic and affine. Moreover, it can be extended along the whole GL+

2 (R)-orbit.
Referring to the previous sections, the space ΩL1 is the Ω-invariant V4-locus of ΩL.

The space ΩL2 is a union of the Ω-invariant D8-locus and of the Ω-invariant C3
2 -locus

of ΩL. Finally, the space ΩL3 is a union of the Ω-invariant (D8 × C2)-locus and of the
Ω-invariant (D8 ×Z C4)-locus of ΩL. In this section we show that those are all affine
invariant submanifolds of ΩL that are Ω-invariant loci.
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Lemma 6.55. Let G be a finite group and let (X,ω) be a translation surface in an Ω-
invariant G-locus. For f ∈ G, the corresponding map f : (X,ω) → (X,ω) is either a
rotation or a translation, i.e. Df = ±I.

Proof. Since f is holomorphic, affine and orientation preserving, we have Df ∈ SO(2).
ForA ∈ GL+

2 (R) the automorphism f extends to an affine map fA : A·(X,ω)→ A·(X,ω).
Its derivative is

DfA = ADfA−1.

Hence fA is an automorphism of A ·X if and only if its derivative DfA ∈ SO(2). But
DfA = ADfA−1 ∈ SO(2) if and only if either A ∈ SO(2) or Df is in the center of
GL+

2 (R). Since A is not necessarily orthogonal, Df is in the center of GL+
2 (R). Because

det(Df) = 1, Df = ±I.

Lemma 6.56. For each Ω-invariant G-locus of ΩL, G has no element of order 3.

Proof. Let f : (X,ω) → (X,ω) be an automorphism of order 3. By Lemma 6.55 it is a
rotation or translation, i.e. Df = ±I. Since f3 = id, we have Df3 = I and hence f is a
translation.

Let Σ = {P,Q,R, S } be the set of singularities and assume f(P ) = P . Then there is a
neighborhood of U of P which gets translated to a neighborhood of P . Hence f |U = σ|U
or f |U = id |U , where σ denotes the deck transformation. Since f is holomorphic, f = σ
or f = id. None of them is of order 3, which is a contradiction.

Now assume f(P ) 6= P . We have f3(P ) = P . But f2(P ) 6= P , because otherwise
f2 = σ or f2 = id by the above reasoning. Furthermore, f2(P ) 6= f(P ) since otherwise
P = f(P ). Let us name f(P ) = Q, f2(P ) = R. Then the set

{
P, f(P ), f2(P )

}
= { P,Q,R } ( { P,Q,R, S } = Σ

has three elements. It follows that f(S) = S. This is again a contradiction.

The elements of a group describing an Ω-invariant locus are affine and holomorphic
maps. Using the previous lemmas, we show that most possible automorphism groups
from Tables 3.1 and 3.2 do not define an Ω-invariant locus in ΩL.

Proposition 6.57. The only affine invariant submanifolds of ΩL forming an Ω-invariant
locus are those we constructed.

Proof. Recall the automorphism groups of surfaces of genus 3 listed in Tables 3.1 and 3.2.
Every automorphism has to extend to the whole GL+

2 (R)-orbit. By Lemma 6.56 there
is no element of order 3 in the automorphism group. Hence we can exclude the groups
C3, C6, S3, S4 and D12 as possible automorphism groups.

In the hyperelliptic case, there are only three groups left: C2, C4 and C2 × C4. The
first one is generated by the hyperelliptic involution and hence cannot contain the deck
transformation σ. The group C4 has to contain the hyperelliptic involution and the
involution σ. But C4 contains only one element of order 2. The group C2 × C4 can be
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Figure 6.25: On this special translation surface we have a rotation around the marked
red point with angle π

2 . Polygons of the same color get mapped onto each
other by the map f ∈ C2 × C4 from least to most saturated color.

excluded by comparing with the list in Magaard’s paper [Mag+02]: The quotient of the
automorphism group by the hyperelliptic involution is the Klein four-group V4. Hence
the hyperelliptic involution in C2 × C4 is an element of order 2 in C4. Thus there has
to be a map f ∈ C4 with f2 = τ . Hence Df2 = −I, so Df /∈ { I,−I }. By Lemma 6.55
such a map cannot be extended on the whole GL+

2 (R)-orbit.
In the non-hyperelliptic case we excluded all possible groups, so there is nothing to

show.

In fact, there is a nice picture of the map f ∈ C2 × C4, see Figure 6.25. But one
easily sees that the map heavily depends on the symmetries and cannot be extended to
a translation surface distorted by the action of a non-orthogonal matrix.
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7 Generalizations

In this chapter we briefly discuss the difficulties of generalizing the concepts presented
before.

7.1 More points

The most naive attempt to generalize is to add more branch points. The main difference
is that the resulting polygons have more edges and vertices. In the following we want
to show, that for more than four branch points we cannot use our previous methodes to
construct affine invariant submnaifolds of codimension 1.

We are interested in covering of degree 2 of the torus with n branch points. By the
Riemann-Hurwitz formula the number of branch points is even. We define the Hurwitz
space

Hn =
{

(p,X,E)
∣∣ p : X → E simply ramified covering,

g(X) =
n

2
+ 1, E ∈M1,1, deg(p) = 2

}

of all coverings of the torus simply ramified at n points. Let us denote the set of branch
points by Σ̄. Choosing a translation structure of the torus, we define the Hurwitz space
of translation coverings

ΩHn = { (p,X, ω,E, η) | (p,X,E) ∈ Hn, η ∈ Ω(E), p∗η = ω } .

Similar to our construction in Chapter 6 we can find polygons describing translation sur-
faces in the Hurwitz space ΩHn, see e. g. Figure 7.1. By Proposition 3.13 the dimension

e0

e1

e2 en

en+1

en+2e2n

e2n+1

P0

P0

P1

P1

P2

P2

Pn−1

Pn−1

P0

P0

Figure 7.1: A polygon with 2n+ 2 edges defining a translation surface in ΩHn.
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of Hn is given by dimHn = n and hence dim ΩHn = n+ 1. As before, let us define the
subspace

ΩHn
+,k =

{
(p,X, ω,E, η) ∈ ΩHn | ∃f : (X,ω)→ (X,ω), Df = I, which descends to

f̄ : (E, η)→ (E, η) such that f̄k = id
}

consisting of those translation coverings, which admit a translation descending to a
translation of order k on the torus. Equivalently, the translation f̄ lifts to a translation
f̃ : C→ C by the preimage of a k-torsion point.

Furthermore, we define the subspace

ΩHn
−,k =

{
(p,X, ω,E, η ∈ ΩHn) | ∃f : (X,ω)→ (X,ω), Df = −I, which descends to

f̄ : (E, η)→ (E, η) s. th. |Fix(f̄) ∩ Σ̄)| = k
}

consisting of those translation coverings, which admit a rotation descending to a rotation
of the torus. The number of fixed points of f̄ which are branch points, is k.

Proposition 7.1. Assume ΩHn
J,k is nonempty for J ∈ {+,−} and n, k ∈ N. Then it

is an affine invariant submanifold and its dimension is given by

a) dim ΩLn+,k = n
k + 1 for 1 ≤ k ≤ n,

b) dim ΩLn−,k = n−k
2 + 2 for n ≥ k ∈ { 0, 2, 4 }.

Note that we do not claim that ΩHn
J,k exists. For J = − the number k is restricted to 0,

2 or 4. For J = + the space ΩH4
I,4 does not exist, because the translation by a 4-torsion

point does not lift to a translation of the covering space. This is partly discussed in the
next section.

Proof. a) The translation f̄ : (E, η)→ (E, η) is of order k and acts on the set of branch
points. The f̄ -orbit of a branch point has length k, hence we are free to choose n

k branch
points and two vectors defining the torus. We fix one branch point by translating the
torus and hence remain with n

k + 2−1 degrees of freedom. Thus the dimension of ΩHn
I,k

is at most n
k + 1.

On the other hand, let us choose the following basis of relative homology of the torus
relative the the set of branch points Σ̄: Let us fix one representative P̄j for each f̄ -orbit
of branch points and denote the number of orbits by r. We define ā and b̄ to be the
generators of the absolute homology group of the torus. Then we define the path

c̄ij to be a geodesic path from f̄ i−1P̄j to f̄ iP̄j

for i = 1, . . . , k and j = 1, . . . , r. Note that r = n
k . Since

∑k
i=1 c̄

i
j is a closed path, it is

of the form −mā− nb̄ for integers m,n ∈ Z. Moreover, we define

c̄` to be the geodesic path from f̄k−1P̄` to P̄`+1
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for ` = 1, . . . , r − 1. The set
{
ā, b̄, c̄ij , c̄`

∣∣ i = 1, . . . , k − 1, j = 1, . . . , r, ` = 1, . . . , r − 1
}

is a basis of the relative homology group H1(E, Σ̄,Z) of the torus E relative to the set
of branch points Σ̄. We denote fixed lifts of those paths by omitting the bar. Because
c̄ij = f̄ i−1

∗ c̄1
j we immediately see that

∫

c1j

ω =

∫

c2j

ω = · · · =
∫

ckj

ω.

These equations are equivalent to
∫

c1j

ω −
∫

c2j

ω = 0, . . . ,

∫

ck−2
j

ω −
∫

ck−1
j

ω = 0 (7.1)

and, since f̄∗c̄
k−1
j = c̄kj = −∑k−1

i=1 c̄
i
j +mā+ nb̄, to

k∑

i=1

∫

cij

ω −m
∫

a
ω + n

∫

b
ω = k

∫

c1j

ω −m
∫

a
ω + n

∫

b
ω = 0 (7.2)

for all j = 1, . . . , r.
For ` = 1, . . . , r − 1 the path f̄∗c̄` is a geodesic path from P̄` to f̄(P̄`+1) and hence

f̄∗c̄` −
k−1∑

i=1

c̄i` − c̄` − c̄1
`+1 = −mā− nb̄

is a closed path. This gives us the equation

k−1∑

i=1

∫

cij

ω +

∫

c1j+1

ω +m

∫

a
ω + n

∫

b
ω = 0. (7.3)

By Equations (7.1) and (7.2) we get a system of linear equations in
∫
cij
ω for i =

1, . . . , k − 1 and j = 1, . . . , r. The dependence on
∫
a ω and

∫
b ω is postponed. As a

matrix it is of the form

Aj =




1 −1
1 −1

. . .
. . .

1 −1
k



∈ Z(k−1)×(k−1)

for j = 1, . . . , r. The columns describe the equations in
∫
c1j
ω, . . . ,

∫
ck−1
j

ω. Similarly, by

Equation (7.3) and postponing the dependence on the absolute homology classes, for
every j = 1, . . . , r − 1 we get a matrix

Bj =
(
1 1 . . . 1

)
∈ Z1×k,
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where the columns describe the equations in
∫
c1j
ω, . . . ,

∫
ck−1
j

ω and in
∫
c1j+1

ω. Now we

collect the dependence of the above equations on
∫
a ω and

∫
b ω. By Equations (7.2)

and (7.3) we get a matrix C ∈ Zk(r−1)−1×2, where the j-th row is of the form

Cj =

{
(m,n), if j ∈ kZ ∪ (kZ− 1),

(0, 0), otherwise.

The matrix A defined by

A1

B1

A2

C B2

.

.

.

.

.

.

Ar







is an integer (rk − 1× r(k − 1) + 2)-matrix. It describes the system of linear equations
belonging to (7.1), (7.2), (7.3), where the columns belong to the variables

∫
a ω,

∫
b ω,

∫
c11
ω,

. . . ,
∫
ck−1
1

ω,
∫
c11
ω,. . . ,

∫
ck−1
r

ω. It is of rank r(k− 1). The basis of relative homology has

r(k− 1) + r− 1 + 2 = r(k− 1) + r+ 1 elements and hence the linear equations describe
a subspace of dimension

r(k − 1) + r + 1− r(k − 1) = r + 1 =
n

k
+ 1.

Hence, if not empty, ΩHn
I,k gives rise to an affine invariant submanifold ΩLnI,k of dimen-

sion n
k + 1.

b) The rotation f̄ : (E, η)→ (E, η) is of order 2 and acts on the set of branch points.
The number of fixed points of f̄ is, according to the Riemann-Hurwitz formula, even
and at most four. We choose freely one branch point for each non-trivial f̄ -orbit. The
number of non-trivial f̄ -orbits is given by

n−# { fixed points of f̄ , which are branch points }
2

=
n− k

2
.

A trivial f̄ -orbit allows us to choose from a finite set and hence does not increase our
degrees of freedom. Furthermore, we can choose two vectors defining the torus. Thus
we have at least n−k

2 + 2 degrees of freedom.
On the other hand, let us denote by P̄1, . . . , P̄r and by P̄ 1, . . . , P̄ k branch points such

that r is minimal with

Σ̄ = 〈f̄〉 { P̄1, . . . , P̄r } ∪ { P̄ 1, . . . , P̄ k } .
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The first r points are branch points, which are not fixed points of f̄ and the last k points
are branch points and fixed points of f̄ . Furthermore, let us choose a basis of relative
homology by defining

c̄j to be a geodesic path from P̄j to f̄ P̄j

for 1 ≤ j ≤ r and
c̄j to be a geodesic path from P̄ j to P̄ j+1

for 1 ≤ j ≤ k − 1. If k = 0 no path of the second type exists. Moreover, we define the
path

d̄j to be a geodesic path from f̄ P̄j to P̄j+1

for 1 ≤ j ≤ r − 1 and, for k 6= 0,

d̄r to be a geodesic path from f̄ P̄r to P̄ 1.

Finally, we denote by ā and b̄ the two generators of the absolute homology group of E.
Hence the set

{
ā, b̄, c̄i, c̄

j , d̄`
∣∣ i = 1, . . . , r, j = 1, . . . , k, ` = 1, . . . , r − 1 and up to r if k 6= 0

}

describes a basis of the relative homology group H1(E, Σ̄,Z). Their lifts to X are denoted
by omitting the bar.

This gives us, again, a bunch of equations. We have that f̄∗η = −η for every every
holomorphic differential η on E. Because we have f̄∗c̄j = −c̄j we get the uninteresting
equations ∫

cj
ω = −

∫

cj
f∗ω = −

∫

f∗cj
ω = −

∫

−cj
ω =

∫

cj
ω

for every 1 ≤ j ≤ k. Since f̄∗d̄` = c̄` + d̄` + c̄`+1 we get the equations

2

∫

d`

ω +

∫

c`

ω +

∫

c`+1

ω = 0 (7.4)

for every 1 ≤ ` ≤ r− 1. For k 6= 0 we get more equations: Because the path c̄j − f̄∗c̄j =
−mj ā− nj b̄ is closed we have

∫

cj
ω −

∫

f∗cj
ω = 2

∫

cj
ω = mj

∫

a
ω + nj

∫

b
ω (7.5)

for every 1 ≤ j ≤ k and for some integersmj , nj ∈ Z. Furthermore, we have f∗dr = cr+dr
and hence

2

∫

dr

ω +

∫

cr

ω = 0. (7.6)
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As a system of linear equations in period coordinates, for k = 0 only Equation (7.4)
matters and hence this system is given by the (r − 1)× (2r − 1)-matrix




1 1 1
1 1 1

. . .
. . .

. . .

1 1 1


 ,

where the columns describe the linear equations in
∫
c1
ω, . . . ,

∫
cr
ω,
∫
d1
ω, . . . ,

∫
dr−1

ω.
The rank of the matrix is r−1 and the basis of relative homology has r+r−1+2 = 2r+1
elements, hence it defines a subspace of dimension r + 2 = n

2 + 2.
For k 6= 0, in addition to Equation (7.4), which gives the same matrix as before, also

Equations (7.5) and (7.6) matter. Thus the system of linear equations defined by

1 1 1

1 1 1

.

.

.

.

.

.

.

.

.

1 1 1

1 2

2 m1 n1

2 m2 n2

.

.

.

.

.

.

.

.

.

2 mk nk







is an integer (r + k) × (2r + k + 2)-matrix. The columns describe the linear equations
in
∫
c1
ω, . . . ,

∫
cr
ω,
∫
d1
ω, . . . ,

∫
dr−1

ω,
∫
dr
ω,
∫
c1 ω, . . . ,

∫
ck ω,

∫
a ω,

∫
b ω. The rank of

this matrix is r+ k and the basis of relative homology has 2r+ k+ 2 elements, hence it
describes a subspace of dimension r + 2 = n−k

2 + 2.
In summary we have shown that ΩLn−I,k is an affine invariant submanifold of dimension

at least n−k
2 + 2.

As before, the forgetful map F : ΩHn → ΩLn gives us affine invariant submanifolds.
This enables us to prove that, using our previous construction, we are not able to con-
struct affine invariant submanifolds of codimension 1 in ΩLn.

Corollary 7.2. For n ≥ 6 there is no affine invariant submanifold of ΩLn of codimen-
sion 1 which is an Ω-invariant locus.

Proof. The space ΩLn is an affine invariant submanifold of dimension n+ 1.
An affine invariant submanifold and Ω-invariant locus of ΩLn is described by an ad-

ditional automorphism, which is a translation or a rotation.
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If it is a translation, it descends to a translation of order k on the torus. Hence the
dimension of the locus is given by n

k + 1. Let us assume k > 1, because otherwise the
translation is a deck transformation. Hence we have

n

k
+ 1 = (n+ 1)− 1 = n if and only if n =

k

k − 1
.

Since n is an integer, this is true if and only if k = 2 and n = 2.
If the automorphism is a rotation, let k be the number of fixed points of f̄ which are

branch points. Hence the dimension of the locus is given by n−k
2 + 2. We have

n− k
2

+ 2 = n if and only if 4− k = n,

thus if and only if (n, k) = (4, 0) or (2, 2).

7.2 Weakening the meaning

In the previous chapter we constructed affine invariant submanifolds described by auto-
morphisms of the covering surface. But to construct linear equations in period coordi-
nates we only need automorphisms of the covered surface. In this section we study which
affine invariant submanifolds of ΩL1 are described by automorphisms of the torus. The
restriction to subspaces of ΩL1 is necessary for our construction, but it seems plausible
that without this restriction no new subspaces arise.

On the torus E with four marked points P̄ , Q̄, −P̄ and −Q̄, we look at the translation
h : E → E given by h(P̄ ) = Q̄, h(Q̄) = −Q̄, h(−Q̄) = −P̄ and h(−P̄ ) = P̄ . It is of the
form

h(z) = z + b with b = Q̄− P̄ = −2Q̄ = 2P̄ .

This gives a relation of the branch points. Note that 8P̄ = Ō and hence h is the
translation by a 4-torsion point.

The other way around, given these relations there exists a translation h with the above
properties. For a visualization see Figure 7.2.

As in Chapter 6, we consider translation coverings of degree 2 of the torus with four
ramification points. Can the translation h be lifted along such a covering? The map h
can be lifted if and only if it leaves the kernel of the monodromy map invariant. Let b̄ be
the vertical path in the fundamental group π1(E∗) of the punctured torus as depicted in
Figure 7.2. This loop gets mapped to a loop translated one square to the right. Hence
h(β̄) = `−Q̄ ◦ β̄. Since the monodromy of a loop around a branch point is never trivial,
we have µ(h(β̄)) = (1 2)µ(β̄) 6= µ(β̄). Hence the translation h cannot be lifted to a
covering of the torus.

Nevertheless, this automorphism of the torus gives rise to an affine invariant subman-
ifold of the principal stratum H(1, 1, 1, 1).

Proposition 7.3. The subspace of ΩL, consisting of all translation surfaces coming
from translation coverings with branch points that fulfill the condition Q̄− P̄ = −2Q̄ =
2P̄ , is an affine invariant submanifold of H(1, 1, 1, 1) of dimension 2.
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P̄ Q̄ P̄

P̄ Q̄ P̄

−Q̄ −P̄

−Q̄ −P̄

β̄ h(β̄)

Figure 7.2: The translation h is sketched: It maps each parallelogram to the more sat-
urated parallelogram, i.e. one to the right. Furthermore, β̄ is an element of
the fundamental group and of the homology group of E.

cP̄ Q̄

cQ̄−P̄
c−P̄−Q̄

cQ̄−Q̄

cP̄−P̄

c−Q̄−P̄

P̄

Q̄

−Q̄

−P̄

P̄

Figure 7.3: A torus, which admits a translation h. In blue, basis elements of the relative
homology group are sketched. In red, their pictures are depicted.
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Proof. The corresponding Hurwitz space of translation coverings is a submanifold of
ΩH: Recall that the charts defined in Lemma 6.15 were given by mapping a covering to
its set of branch points and then to some linear combination of these. We have to alter
this map slightly to get the right notion of a chart. A chart is given by

ϕ : (p,X,E) 7→ Σ̄ 7→ (τ, 2ē1 + 2ē2, 3ē2 + ē4, ē1 + ē4, ē2 + ē3),

where Σ̄ = { ē1, ē2, ē3, ē4 } is the set of branch points. Due to the relations of the branch
points we have

ϕ(p,X,E) = (τ, 0, 0, 0, 0).

Thus locally this space is the intersection of C5 with a linear subspace. By adding the
translation structure we make this space into a submanifold of ΩH.

The restriction of the forgetful map ΩH → ΩL to this subspace is a proper immersion.
Hence we only need to show that the image of some translation covering under the for-
getful map ΩF is given by linear equations in period coordinates of the right dimension.
In a small enough neighborhood of a translation covering the immersion ΩF is injective.
Thus, when working with a translation surface (X,ω) we can always assume that it is
equipped with a unique translation covering denoted by p : (X,ω)→ (E, η).

We choose a basis of the relative homology group as in Example 2.13. The loops ā
and b̄ denote the “horizontal” and “vertical” loop of the torus and the paths cP̄ Q̄, cQ̄−P̄
and c−P̄−Q̄ are paths connecting two branch points. We still have that h(b̄) and h(ā) are
homologous to b̄ and ā, respectively. The lifts of those paths are denoted by removing
the bars.

For a better visualization see Figure 7.3. The blue paths are elements of the basis of
relative homology and their images are depicted in red. One sees that

h(cP̄ Q̄) = cQ̄−Q̄ = cQ̄−P̄ + c−P̄−Q̄.

Moreover, as in Example 2.13 one can compute

cP̄−P̄ = −a− b+ cP̄ Q̄ + cQ̄−P̄ , which leads to

h(c−Q̄P̄ ) = −cP̄−P̄ − c−P̄−Q̄ = a+ b− cP̄ Q̄ − cQ̄−P̄ − c−P̄−Q̄ and

h(cQ̄−P̄ ) = cP̄−P̄ = −a− b+ cP̄ Q̄ + cQ̄−P̄ .

We denote the integral over a, b, cPQ, cQ−P and c−P−Q by A, B, C1, C2 and C3,
respectively. We compute

C1 =

∫

cPQ

ω =

∫

cPQ

p∗η =

∫

cP̄ Q̄

η =

∫

cP̄ Q̄

h∗η =

∫

h∗cP̄ Q̄

η

=

∫

cQ̄−P̄

η +

∫

c−P̄−Q̄

η =

∫

cQ−P

ω +

∫

c−P−Q

ω = C2 + C3.
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With similar computations we get

A = A,

B = B,

C2 = A+B − C1 − C2 − C3 and

C3 = −A−B + C1 + C2.

This yields three linearly independent equations. The dimension of ΩL is 5, hence these
equations describe an affine invariant submanifold of dimension at most 5− 3 = 2.

Its dimension is at least 2, since in Figure 7.2 we can choose the vertical edge and the
first horizontal edge freely.

Let us point out that this subspace lives in the space ΩL1, because the rotation [−1]
exists on every translation covering in this space. This can be seen by explicitly defining
the rotation in Figure 7.2. Another way to see this is to manipulate the linear equations,
which yields C1 + C3 = 0, as in the proof of Proposition 6.16.

In the following we discuss in which sense we have a complete list of affine invariant
submanifolds in ΩL. For technical reasons we work in ΩL1, but probably a similar result
holds in ΩL. We study which affine invariant submanifolds of ΩL1, given by translations
and rotations of the torus, exist. The surprising answer is that no new submanifolds
appear in this list. They only differ from the ones we constructed by a relabeling of the
ramification points.

In Table 7.1 we write down all possible, non-trivial translations of the torus by giving
the images of the branch points. In the first four columns we denote the images of the
branch points. In the fifth column we write down the relation of the branch points or,
equivalently, the translation part of the translation. Normally, we label the points by
P̄ , Q̄, −Q̄ and −P̄ . Changing these names does not change the translation surface. In
which way we relabel the branch points is described in the sixth column. No change is
denoted by -. With this new order of points, the translation corresponds to one of the
three translations we discussed so far. This is denoted in the last column. For example,
the seventh row in the table reads as follows: The translation t maps each point to its
negative. Then it has to be of the form z 7→ z + b with b = −2P̄ = 2P̄ = 2Q̄ = −2Q̄.
Furthermore, if we interchange P̄ with −Q̄, we see that t(P̄ ) is given by what −Q̄ gets
mapped to, hence t(P̄ ) = Q̄. And t(Q̄) gets mapped, after interchanging the points, to
P̄ . Hence this map is, after relabeling the branch points, the automorphism which lifts
to Ψ.

In the space ΩL1 we can assume without loss of generality, by multiplying with [−1],
that every affine holomorphic automorphism t is a translation. Hence we have shown
the following proposition.

Proposition 7.4. The only affine invariant submanifolds of ΩL1 that can be described
by automorphisms of the torus are those we constructed so far.

Combining this with Proposition 6.57 we get our desired result:
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t(P̄ ) t(Q̄) t(−Q̄) t(−P̄ ) translation b order translation

Q̄ P̄ −P̄ −Q̄ Q̄− P̄ = P̄ − Q̄ - Ψ
Q̄ −Q̄ −P̄ P̄ Q̄− P̄ = 2P̄ - h
Q̄ −P̄ P̄ −Q̄ ±P̄ ± Q̄ = ±P̄ ∓ Q̄ P̄ , Q̄,−P̄ ,−Q̄ h
−Q̄ P̄ −P̄ Q̄ ±P̄ ± Q̄ = ±P̄ ∓ Q̄ P̄ ,−Q̄,−P̄ , Q̄ h
−Q̄ −P̄ P̄ Q̄ −Q̄− P̄ = Q̄+ P̄ - ϕ
−Q̄ −P̄ Q̄ P̄ −Q̄− P̄ = 2Q̄ P̄ ,−P̄ , Q̄,−Q̄ h
−P̄ −Q̄ Q̄ P̄ ±2P̄ = ±2Q̄ −Q̄, Q̄, P̄ ,−P̄ Ψ
−P̄ P̄ Q̄ −Q̄ −2P̄ = 2Q̄ = P̄ − Q̄ - h−1

−P̄ −Q̄ P̄ Q̄ −2P̄ = −2Q̄ = P̄ + Q̄ P̄ ,−P̄ , Q̄,−Q̄ h

Table 7.1: A list of all possible translations t of a torus covered by a translation surface
in ΩL1 that leave the set of branch points invariant. The first four columns
indicate how the branch points are mapped, the fifth column describes the
translation part of t and the sixth column shows how the order of the branch
points has to be changed to retrieve the well-known map written in the last
column.

Theorem 3. The only affine invariant submanifolds of ΩL forming an Ω-invariant locus
are ΩLi for i = 1, 2, 3. The only other affine invariant submanifold of ΩL1, which is
described by an automorphism of the torus that extends along the whole GL+

2 (R)-orbit,
is the one constructed above.

Finally, one can use the algorithm of Schmithüsen [Sch04] to compute the Veech group
of a translation surface given by the automorphism h. It is the congruence subgroup
Γ0(4) and is of index 6 in SL2(Z).

7.3 Higher base genus

To generalize our construction to higher base genus, we must be able to draw polygon
decompositions of the covered translation surfaces. Due to McMullen [McM07], such a
decomposition exists for genus g = 2. Roughly, this works as follows: Every translation
surface of genus 2 is hyperelliptic and has a saddle connection that is not fixed by
the hyperelliptic involution. Either the saddle connection is a loop, in which case the
resulting translation surface has a single singularity of order 2, or the saddle connection
is not closed, in which case the resulting translation surface has two singularities of order
1. Cutting along this saddle connection and its image yields a torus and a cylinder in
the first case and two tori in the second case. In Figure 7.4 an example for either case
is depicted.

For genus g > 2 just some sporadic examples of polygon decomposition of translation
surfaces are known. Some examples in genus 3 can be found in the work of Aulicino,
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Figure 7.4: The left translation surfaces is in the stratum H(2) and the right one in
H(1, 1). The hyperelliptic involution interchanges the thick edges. Cutting
along these edges yields a torus and a cylinder in the left picture and two
tori in the right picture. The fixed points of the hyperelliptic involution are
marked in green.

Nguyen and Wright [AN16b; ANW16; NW13]. We restrict ourselves to coverings of
surfaces of genus 2.

Consequently, let (Y, υ) be a translation surface of genus 2 and let p : X → Y be a cov-
ering from a surface of genus 3. By the Riemann-Hurwitz formula from Proposition 3.5
we have

4 = 2 · deg(p) +
∑

P∈Y
(eP (p)− 1).

Since deg(p) > 1, we have deg(p) = 2 and thus the covering is unramified. We pull back
the translation structure υ on Y to one on X. Since p is unramified, every point in Y
has two preimages. Hence a covering of a translation surface in the stratum H(1, 1) is
in H(1, 1, 1, 1) and one of a translation surface in the stratum H(2) is in H(2, 2).

Firstly, we want to count how many unramified coverings of degree 2 of a surface of
genus 2 exist. By Proposition 3.7, there is a bijection between the set of all coverings
p : X → Y and the set of all surjective group homomorphisms µ : π1(Y )→ S2. Because
the fundamental group of Y is given by

π1(Y ) = 〈a1, b1, a2, b2 | [a1, b1] · [a2, b2] = 1〉

and the codomain is abelian, there are no restrictions for a map { a1, a2, b1, b2 } → S2 to
induce a homomorphism π1(Y )→ S2. For the map to be surjective, we exclude the case
µ(a1) = µ(a2) = µ(b1) = µ(b2) = id. Hence there exist 16−1 = 15 possible maps, giving
us 15 possible coverings. In the next step, we will construct 15 translation coverings for
a given translation surface in H(1, 1) and for one in H(2).

We start with a translation surface of genus 2 in the stratum H(2). We take two
copies of the polygon describing the covered surface, see for example the left picture in
Figure 7.4. We label the edges of the first copy by the Arabic numerals 1, 2, 3 and 4 and
the edges of the second copy by the Roman numerals I, II, III and IV. Then we define
a gluing map

T : { 1, 2, 3, 4 } → { 1, 2, 3, 4 } ∪ { I, II, III, IV } .
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no 3 5 both

3-III 5-V 3-III, 5-V
1-I, 2-II 1-I, 2-II, 3-III 1-I, 2-II, 5-V 1-I, 2-II, 3-III, 5-V
1-I, 4-IV 1-I, 4-IV, 3-III 1-I, 4-IV, 5-V 1-I, 4-IV, 3-III, 5-V
2-II, 4-IV 2-II, 4-IV, 3-III 2-II, 4-IV, 5-V 2-II, 4-IV, 3-III, 5-V

3 possibilities 4 possibilities 4 possibilities 4 possibilities

Table 7.2: All possible gluing for a covering of a translation surface in H(1, 1), which is
in H(1, 1, 1, 1).

The map T assigns to an Arabic numeral a Roman one if the edge labeled by the Arabic
numeral is glued via a translation to the edge labeled by the Roman numeral. Otherwise
it is the identity. Note that we always have two edges with the same label, but since we
glue by translations, it is clear which edge has to be glued to which edge. We abbreviate
the map T by denoting just the pairs of Arabic and Roman numerals that are glued by
T . For example, the translation surface belonging to 4-IV is drawn in Figure 7.5. One
can check that every non-trivial gluing, i.e. T 6= id, gives rise to a translation surface in
H(2, 2).

For a translation surface in H(1, 1) a similar approach works: We take two copies of
a polygon describing this translations surface and label the edges of the first copy by 1
to 5 and the edges of the second copy by I to V. We define a gluing map

T : { 1, 2, 3, 4, 5 } → { 1, 2, 3, 4, 5 } ∪ { I, II, III, IV, V } .

As before, if an edge labeled by an Arabic numeral is glued via a translation to an edge
labeled by a Roman numeral, the map T assigns this Arabic numeral to the corresponding
Roman numeral. We abbreviate the map T by denoting just the pairs of Arabic and
Roman numerals that are glued by T . For example, the translation surface belonging to
5-V can be seen in Figure 7.6.

In this case, not every non-trivial gluing gives a translation surface in the stratum
H(1, 1, 1, 1). For example the assignment 1-I gives a translation surface of genus 4 in
the stratum H(3, 3). One can check that the gluing 3-III, the gluing 5-V and the gluing
3-III, 5-V each yield a translation surface in the stratum H(1, 1, 1, 1). By adding or, if
possible, removing two pairs of numerals from a valid gluing, we obtain another gluing
giving us a translation surface in H(1, 1, 1, 1). Table 7.2 contains and counts all possible
gluings. For a systematic approach, every column starts with one valid gluing (except
for the first one, which starts with the non-valid trivial gluing) and adds or subtracts
two pairs of gluing in each step.

On the one hand, for a given translation surface of genus 2 we can draw 15 explicit
coverings. On the other hand, by counting maps from the fundamental group to the
symmetric group S2, there exist at most 15 different coverings. Summing up, we found
all unramified translation coverings of degree 2 of a translation surface of genus 2.
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Figure 7.5: A covering of degree 2 of a translation surface in H(2) is in the stratum
H(2, 2).
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Figure 7.6: A covering of degree 2 of a translation surface in H(1, 1) is in the stratum
H(1, 1, 1, 1).

Let us denote by ΩH2 the space of all unramified translation coverings of degree 2
covering a translation surface in H(2) and by ΩH1,1 the space of all unramified transla-
tion coverings of degree 2 covering a translation surface in H(1, 1). The images of these
spaces under the forgetful map are denoted by ΩL2 and ΩL1,1, respectively.

Proposition 7.5. The spaces ΩL2 and ΩL1,1 are affine invariant submanifolds of di-
mension 4 and 5, respectively.

Proof. In Section 3.3 we have shown that for a fixed surface Y the space H(d, r, Y ),
consisting of coverings of degree d of Y with r ramification points, is a complex manifold.
Since ΩH2 and ΩH1,1 are fiber bundles over H(2, 0, Y ), they are complex manifolds as
well. Exactly as in the proof of Proposition 6.5 one can show that the forgetful map
ΩF : ΩHα → ΩLα is an immersion for α ∈ { (1, 1), 2 }. Hence we only have to check
that we can describe the spaces ΩL2 and ΩL1,1 locally by linear equations in period
coordinates. Recall that the forgetful map is locally injective, hence given a translation
surface (X,ω) we find a unique covering p : (X,ω)→ (Y, υ).

Let Σ̄ be the set of singularities of (Y, υ), p : X → Y a covering of degree 2 and
Σ = p−1(Σ̄). Consider the map

p∗ : H1(X,Σ,Z)→ H1(Y, Σ̄,Z).
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If c ∈ H1(X,Σ,Z) is in the kernel of p∗, we have

∫

c
ω =

∫

c
p∗υ =

∫

p∗c
υ = 0.

Hence both spaces are affine invariant submanifolds and their dimension is at most the
dimension of their images, i.e. the dimension of Z2g+|Σ|−1. For (Y, υ) ∈ H(2) we have
|Σ̄| = 1 and |Σ| = 2 and hence im(p∗) = Z4. For (Y, υ) ∈ H(1, 1) we have |Σ̄| = 2
and |Σ| = 4 and hence im(p∗) = Z5. Thus dimensions of ΩL2 and ΩL1,1 are 4 and 5,
respectively.

On the other hand, the dimension is at least 4 and 5, respectively, since the strata
H(2) and H(1, 1) are of dimension 4 and 5, respectively.

In the search for affine invariant submanifolds of this space we cannot proceed as in
the case of coverings of the torus. The main reason is that the automorphism group of a
translation surface of genus 2 is at most the Klein four-group V4. A proof thereof is given
by Herrlich, Kappes and Schmithüsen [HKWS08]. One generator of the automorphism
group, which always exists, is the hyperelliptic involution τ . In Figure 7.4 the hyperel-
liptic involution can be seen in the following way: Rotate each parallelogram by π, then
reglue such that the polygon is the same as before. The fixed points of the hyperelliptic
involution are marked in green. Hence we have 6 fixed points and the described map is
the hyperelliptic involution.

If a translation surface in H(1, 1) is symmetric enough, we have a second map ϕ, which
can be chosen to be a translation. In Figure 7.7 a translation is sketched. It maps a
rectangle to the other rectangle of the same color. Such a translation can only exist if
the defining polygon is rather symmetric: the edges labeled by 1 and 4 as well as the
edges labeled by 3 and 5 have to be parallel and of equal length. By using the coverings
we constructed above, this gives us, at least intuitively, a three-dimensional subspace of
H(1, 1, 1, 1).

Proposition 7.6. The locus ΩL1,1
2 of all translation surfaces in ΩL1,1 with automor-

phism group V4 is an affine invariant submanifold of H(1, 1, 1, 1) of dimension 3.

Proof. If both generators of the automorphism group are rotations, multiplying them
gives a translation. Hence we may assume that our second generator is a translation.
In the right picture of Figure 7.4, we see three vertical cylinders. By gluing arguments,
every translation of this translation surface has to map the middle cylinder onto itself.
Hence the only possible translation is the one sketched in Figure 7.7.

Let ϕ : Y → Y denote this translation. We choose a basis of relative homology a1,
a2, b1, b2 and c as sketched in Figure 7.7. We observe that ϕ(a1) = a1, ϕ(b1) = b2
and ϕ(b2) = b1. One can check, similar to Example 2.13, that ϕ(c) is homologous to c.
Similarly, but more elaborate, ϕ(a2) = a1 − a2. Hence

(p,X, ω, Y, υ) 7→ (a1 − 2a2, b1 − b2, a2, b2, c) ∈ C5
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Figure 7.7: A symmetric translation surface in ΩL(1, 1) with maximal automorphism
group. The translation ϕ is of order 2 and maps each parallelogram to the
more saturated parallelogram of the same color. The marked paths form a
basis of the relative homology group.

defines a chart of ΩH1,1, where we map an element in the relative homology group via
integration onto a vector in C. Due to the above observations, for a translation covering
in ΩH1,1

2 , the chart is given by

(p,X, ω, Y, υ) 7→ (0, 0, a2, b2, c).

This shows that locally ΩH1,1
2 is the intersection of C5 with a linear subspace and thus

it is a submanifold of ΩH1,1. Hence we can restrict the immersion ΩH1,1 → H(1, 1, 1, 1)
to ΩH1,1

2 and it only remains to show that we can describe ΩL1,1
2 by linear equations in

period coordinates.
By a tilde we denote the lift of an element in the relative homology group of Y to the

one of X. Integrating these paths, the only interesting equations we get are
∫

ã2

ω =

∫

ã2

p∗υ =

∫

a2

υ =

∫

a2

ϕ∗υ =

∫

ϕ∗a2

υ =

∫

a1

υ −
∫

a2

υ =

∫

ã1

ω −
∫

ã2

ω and

∫

b̃1

ω =

∫

ϕ∗b1

υ =

∫

b2

υ =

∫

b̃2

ω.

Let us denote the integral over b̃i by Bi and the integral over ãi by Ai for i = 1, 2. Then
we can denote the above equations shortly as

2A2 −A1 = 0 and B1 = B2.

These are two independent equations describing an affine invariant submanifold of at
most dimension 5− 2 = 3.

Furthermore, the dimension is at least 3, since in Figure 7.7 we have three independent
edges.
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Let us observe three things. Firstly, the map ϕ cannot be lifted to every covering.
More precisely, the map ϕ can be lifted if and only if the gluing is given by 1-I, 4-IV or
3-III, 5-V or 1-I, 3-III, 4-IV, 5-V. This implies that the space ΩH1,1

2 is not connected.
Secondly, there are no more affine invariant submanifolds of ΩL2 or ΩL1,1 that are

described by automorphisms of the covered surface. In particular, we cannot construct
a descending chain of affine invariant submanifolds given by automorphisms, such that
the codimension of two consecutive submanifolds is 1. Moreover, this procedure does
not yield Teichmüller curves as in the case of translation coverings of the torus discussed
in Section 6.4.

Thirdly, in contrast to the case of translation coverings of tori, we actually see the dis-
crepancy between holomorphic automorphisms and affine holomorphic automorphisms.
The automorphism group of a translation surface of genus 2 is C2 or V4, but there are
considerably more possible automorphism groups for a Riemann surface of genus 2, see
for example Cardona et al. [Car+99]. The last observation can be strengthened: Every
automorphism of a torus is an affine map, since it can be lifted to an automorphism of
the complex plane C. This automorphism is of the form z 7→ az + b and thus affine.
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witz”. In: Comptes rendus de l’Académie des sciences 322 (11 1996). arXiv:
math/0701680v1 [math.AG].

[Buj15] Gabriel Tavares Bujokas. “Covers of an Elliptic Curve E and Curves in
E × P1”. PhD thesis. Harvard University, 2015.

[Cal04] Kariane Calta. “Veech Surfaces and Complete Periodicity in Genus Two”.
In: Journal of the American Mathematical Society 17 (4 2004), pp. 871–908.

[Car+99] G. Cardona et al. “On curves of genus 2 with Jacobian of GL2-type”. In:
manuscripta mathematica 98.1 (1999), pp. 37–54.

[Ehr48] Charles Ehresmann. “Les Connexions Infinitésimales dans un Espace Fibré
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