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To investigate the nature and evolution of TeV pulsar wind nebulae, we examine the firmly identi-
fied PWNe in the H.E.S.S. Galactic Plane Survey, along with the few other known detections from
the literature, as well as the upper limits extracted from the H.E.S.S survey. These data exhibit
a correlation of TeV surface brightness with pulsar spin-down power. It appears to be caused by
both an increase of TeV extension and a decrease of TeV luminosity with decreasing spin-down
power. We also find that the offsets of pulsars with ages around 10 kyr with respect to the wind
nebula centres are frequently larger than can be plausibly explained by pulsar proper motion and
could be due to an asymmetric environment. These and other results will be presented and put to
context with a basic modelling of TeV pulsar wind nebula evolution.
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Evolution of TeV pulsar wind nebulae S. Klepser

This conference contribution is based on the recent paper on the subject (H.E.S.S. Collabora-
tion et al. 2017 [1]). All details, more plots, and references can be found in that reference. This
proceedings paper wraps up the main conclusions and key figures of the paper.

1. Overview

The paper subsumes and examines the population of TeV pulsar wind nebulae (PWNe) found
to date. An updated census presents 14 objects reanalysed in the H.E.S.S. Galactic Plane Survey
(HGPS) pipeline, which are considered to be firmly identified PWNe. Five more objects could be
found outside that catalogue range or pipeline. In an evaluation of candidate PWNe, we conclude
that there are ten strong further candidates in the HGPS data.

Most of the PWNe are located in the bright and dense Crux Scutum arm of the inner Milky
Way (Fig. 1). A spatial correlation study confirmed the picture drawn in earlier studies, namely that
only young, energetic pulsars grow TeV pulsar wind nebulae that are bright enough for detection
with presently available Cherenkov telescopes. For the first time, flux upper limits for undetected
PWNe are given around 22 pulsars with a spin-down power beyond 1035 ergs−1 and with expected
apparent extensions (plus offsets) below 0.6◦ in the sky.

2. Census of PWNe around high-Ė pulsars

Of the 17 most energetic ATNF pulsars, with a spin-down power of Ė ≥ 1037 ergs−1, 11 have
either an identified TeV wind nebula (9) or candidate (2) featured in the present study. Of the
remaining 6,

• 3 are included in Table 5 in H.E.S.S. Collaboration et al. 2017 [1], where all flux limits of
pulsars without detected PWN are listed;

• 3 are out of the range of the HGPS:

– PSR J2022+3842: SNR G076.9+01.0, contains an X-ray PWN; not reported in TeV

– PSR J2229+6114: Boomerang, contains an X-ray PWN; detected by MILAGRO and
VERITAS, but of unclear nature in TeV

– J0540−6919: In the Large Magellanic Cloud; a limit is given in H.E.S.S. Collaboration
et al. 2015 [2].

Concluding, only 5 of the 17 highest-Ė pulsars remain without a detected potential counterpart in
the TeV band.

3. PWN evolution

Figures 5 to 10 in H.E.S.S. Collaboration et al. 2017 [1] show, like Fig. 2 and Fig. 3 in this
proceedings paper, a variety of trends between pulsar and TeV wind nebula parameters, and con-
sistently compare them to a simple one-zone time-dependent emission model of the TeV emission
with a varied range of model input parameters. The main conclusion is that for several observables,
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Pulsars (Ė > 1035erg s−1)

10 5 0 5 10

Galactic x (kpc)

10

5

0

5

G
a
la

ct
ic

 y
 (

kp
c)

Sun

GC

10% Crab Horizon

1% Crab Horizon

Ca
ri
na

Sagittarius

C
ru

x-
C
e
n
ta

u
ru

s

Scutum

N
o
rm

a

P
e
rse

u
s

Cygnus

3 kpc arm

0

45 315

2 kpc4 kpc6 kpc8 kpc

D
is

ta
n
ce

 [
kp

c]

Crab Nebula

CTA 1

3C 58

Vela X

Kes 75

MSH 15-52
J1825-137

Detected PWNe
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Figure 1: Schematic of the objects discussed here in the context of the Milky Way and its spiral arms. The
yellow and blue curves outline the sensitivity horizon of the HGPS for point-like sources with an integrated
gamma-ray luminosity (1–10TeV) of 1% and 10% of the Crab luminosity, respectively. Top: Firmly identi-
fied PWNe, candidates, and energetic pulsars (Ė > 1035 ergs−1) without detected TeV wind nebula. Bottom:
Simplified view with all firm (HGPS and external) identifications and positively rated candidates displayed
with the same symbol, and negative candidates removed. The figures are reproduced from H.E.S.S. Collab-
oration et al. 20171, but the sizes of the symbols are scaled with logL1−10TeV

here.
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a trend was found in the data that is consistent with the trends suggested by our model. With a mod-
erate variation of the model input parameters, we can mimic also the spreads of the observables.
Our first-order understanding of the evolution of TeV pulsar wind nebulae with ages up to some
tens of kiloyears therefore seems to be compatible with what the whole population of detected and
undetected PWNe suggests.

More concretely, using the flux limits for undetected PWNe, we find evidence that the TeV
luminosity of PWNe decays with time while they expand in size, preventing the detection of those
whose pulsar has dropped below a spin-down of ∼ 1036 ergs−1 (roughly corresponding to several
tens of kiloyears). This was implicitly known before from the mere non-detection of old TeV pulsar
wind nebulae, but for the first time could be put into a quantitative perspective, both by fitting data
and limits, and by comparing the data to model predictions. The power-law relation between TeV
luminosity and pulsar spin-down could be estimated as L1−10TeV ∼ Ė0.58±0.21, in consistency with
the model, which suggests a power index of around 0.5.
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Figure 2: Left: Relation of TeV luminosity and pulsar Ė. Right: PWN extension evolution with time, in
comparison to the modelling considered in this work. The figures are reproduced from H.E.S.S. Collabora-
tion et al. 2017 [1].

Another feature that was discussed on some individual objects before (e.g. [3]) is the “crush-
ing" of PWNe, which can be exerted by the inward-bound reverse front of the supernova shock
wave. For SNRs that develop asymmetrically, for instance due to an inhomogeneous surrounding
medium, this crushing may result in distortion and displacement of the wind nebula. A very bright,
very extended example of this is HESS J1825−137, also presented at this conference [4]. Put to
a population-scoped context, it becomes clear that pulsar proper motions alone are not sufficient
to explain the large offsets observed, and some kind of a crushing mechanism may indeed be the
dominant and frequent cause of pulsar-PWN offset in middle-aged systems. Furthermore, the off-
sets of PWNe from their pulsars appear to relate to high efficiency (Fig. 3, right), suggesting that
the PWNe either gain energy and brightness through the process that causes the offset or that dense
surroundings amplify both the IC luminosity and the offset between pulsar and wind nebula. While
the evidence for this at present is not very strong, following up with expanded future studies is
certainly worthwhile.
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Evolution of TeV pulsar wind nebulae S. Klepser

The expansion of PWNe with time was also shown to be evident in the data. The fitted relation
R ∼ τ0.55±0.23

c suggests an average expansion coefficient in between those expected in theory (1.2
and 0.3). The data set is not comprehensive enough to do a fit with two power laws, but appears to
be consistent with the model (Fig. 2, right). Notably, this expansion is not so clear in X-rays, where
the synchrotron emission always remains very local because it only traces the young particles in
areas of high magnetic field relatively close to the pulsar. Most of the old objects (> 30kyr) are
therefore smaller than 1pc in their bright X-ray core emission.

As a consequence of the two moderate correlations of luminosity and spatial extent with pulsar
Ė, a stronger correlation was found between the PWN surface brightness and pulsar Ė (Fig. 3, left).
What stands out is not only the correlation itself, but also its relatively low scatter.
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Figure 3: Left: Relation of TeV surface brightness and pulsar Ė. Right: TeV efficiency as a function of
pulsar offset, plotted for pulsars of different age groups. High-offset systems tend to be more TeV-efficient
than low-offset systems. The figures are reproduced from H.E.S.S. Collaboration et al. 2017 [1].

The evolution trend of the photon index remains an open issue at present. Neither the data nor
the model are particularly clear about it for the young to middle-aged PWNe we investigated.

4. Detection biases

Since both the H.E.S.S. Galactic Plane Survey and the ATNF pulsar database only cover a
fraction of the Milky Way, depending on TeV and pulsar brightnesses, the study in H.E.S.S. Col-
laboration et al. 2017 [1] suffers from several selection biases discussed throughout the paper. For
TeV-bright, high-Ė, young pulsar systems (> 1036 ergs−1) we achieve a relatively good coverage,
whereas for systems beyond some tens of kiloyears of age we likely miss many sources. In the plots
discussing flux-related quantities, this is partly compensated by the inclusion of flux limits, allow-
ing for statements that consider the presence of non-detections. For extension- and position-related
quantities, however, we can only rely on the detected cases. It would require a full population syn-
thesis study to judge whether some of the correlations are genuine or include side effects of other
correlations or selection biases. This usually needs many astrophysical assumptions and theoretical
suppositions, which was beyond the scope of this experimental paper.
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Evolution of TeV pulsar wind nebulae S. Klepser

One presumably very influential parameter ignored in this study is the density of matter and
background light at the position of each pulsar. It is likely due to such circumstances that 3C 58,
CTA 1 and Vela X, also presented at this conference [5] are so faint (see Fig. 1), and N 157B (in the
Large Magellanic Cloud) is so bright. In the scope of a population synthesis study, one could use a
specific Milky Way model to “calibrate" the calorimetric objects that TeV pulsar wind nebulae are
assumed to be.

5. Modelling

On the modelling side, we are able to describe the trends and scatter of the TeV properties
of the present PWN population with a relatively simple time-dependent modelling described in
Appendix A of H.E.S.S. Collaboration et al. 2017 [1] and whose basic evolution is displayed in
Fig. 4. Its 12 free parameters (7 of which were varied for the varied model) were well below the
4× 19 observed parameters that the firmly identified PWNe provided. It is remarkable that the
adaptive parameters needed to be varied in a fairly small range, compared to what one may fathom
from the modelling literature, while still producing sufficient scatter in the predicted observables.
Whether this indicates that the variations of the individual PWN parameters are indeed small, or
whether this is an effect of the parameters being (anti-)correlated (see caveats discussion in A.7
of H.E.S.S. Collaboration et al. 2017 [1]), could not be clarified in this work. It might require
a deeper physical model of the pulsars and possibly a multidimensional likelihood fit to correctly
quantify all correlations and identify the true distributions of its parameters.
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Figure 4: Modelled spectral energy distribution (SED) of a generic PWN according to the model given in
[1], Appendix A. Left: Time evolution of the SED, ranging from 1kyr to 200kyr. Right: Decomposition
of the SED of a middle-aged PWN (10kyr; black dashed curve) into contributions by leptons from various
injection epochs (coloured lines). The grey-shaded bands indicate the energy range of 1–10TeV explored in
this work. The figures are reproduced from H.E.S.S. Collaboration et al. 2017 [1].

6. Outlook

In the CTA era, many of the PWNe that will be detected in addition to the now assessed
population will be middle-aged and old systems that are too faint or too extended to be detected
with current instruments. Also, improvements in the radio and gamma-ray band coverage will
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enlarge the sample of pulsars detected in our Galaxy. To gain new insights from studying these
systems, a solid and publicly available modelling code is needed that includes the difficult reverse
shock interaction phase of a PWN in a reproducible way. This may help to understand the effect
and influence of the amount of crushing and pulsar offset of the PWN, which is likely an influential
factor of later PWN evolution.

On the analysis side, it would be beneficial to (i) improve the angular resolution and get to
smaller scales of extension, (ii) find ways to reliably disentangle overlapping sources and their
spectra, and (iii) aim for detecting objects larger than the IACT camera FOV. It is only if this is
improved that larger datasets and more exposure can help us to unriddle sources that are closeby or
occult each other in the densely populated arms of the Galaxy.
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