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A B S T R A C T

Surface roughness in turbulent channel flow is effectively modelled using a modified version of the Parametric
Forcing Approach introduced by Busse and Sandham (2012). In this modified approach, the model functions are
determined based on the surface geometry and two model constants, whose value can be fine tuned. In addition
to a quadratic forcing term, accounting for the effect of form drag due to roughness, a linear forcing term,
analogous to the Darcy term in the context of porous media, is employed in order to represent the viscous drag.
Comparison of the results with full-geometry resolved Direct Numerical Simulation (DNS) data for the case of
dense roughness (frontal solidity ≅0.4) shows a satisfactory prediction of mean velocity profile, and hence the
friction factor, by the model. The model is found to be able to reproduce the trends of friction factor with
morphological properties of surface such as skewness of the surface height probability density function and
coefficient of variation of the peak heights.

1. Introduction

Study of turbulent flows over rough surfaces finds application in
several engineering – e.g. turbomachinery, marine transportation and
ice accretion on aircrafts – and geophysical – e.g. wind flow over plant
and urban canopies – problems. Roughness causes an increase in the
friction factor.
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In Eq. (1) τw and Ub denote wall shear stress and bulk velocity. It is
also well established that roughness leads to a shift +UΔ in the loga-
rithmic law of the wall (Nikuradse, 1933; Hama, 1954).
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where =κ 0.4 is the von Kármán constant and the value 5.5 is the log-
law intercept for a smooth wall. It can be shown that an increase in the
roughness function +UΔ corresponds to an increase in friction factor
(Jimenez, 2004; Flack and Schultz, 2010).

Alternatively, Eq. (2) can be written as
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where roughness function +UΔ is replaced by the interchangeably
usable quantity ks – effective or equivalent sand-grain roughness height

(Jimenez, 2004). For a majority of practical rough surfaces (so called k-
type roughness), ks is “proportional to the dimensions of roughness
elements”, provided that the roughness elements are large enough to
fall into the ‘fully-rough’ regime (Jimenez, 2004). The ratio of ks to the
physical characteristic dimension k of roughness is a function of the
surface geometry (Jimenez, 2004). A comprehensive review on the
dependence of the ratio ks/k on different geometrical surface para-
meters has been undertaken by Flack and Schultz (2010). Recently,
Forooghi et al. (2017) and Thakkar et al. (2017) investigated several
irregular rough surfaces using DNS in order to determine the most
important surface parameters for the prediction of flow properties, i.e.

+UΔ or ks. There is a consensus among above references that, at con-
stant roughness density, flow properties are most sensitive to the
skewness Sk of the surface height probability distribution function.
Surface slope also plays an important role in determining both skin
friction and physics of the flow. With a decrease in effective slope –
defined as mean absolute streamwise surface slope – form drag loses its
dominance in the momentum exchange between the surface and flow
(Napoli et al., 2008; Schultz and Flack, 2009).

DNS in which the details of surface geometry are resolved is re-
quired to guarantee that both roughness and flow scales are properly
accounted for. A number of such simulations have been published in the
past, in which the surface geometry is captured either by body con-
forming grids (Choi et al., 1993; Chan et al., 2015) or immersed
boundary method (IBM) (Orlandi and Leonardi, 2006; Bhaganagar,
2008; Busse et al., 2015; Forooghi et al., 2017; Mazzuoli and Uhlmann,
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2017). Both approaches are extremely demanding in terms of compu-
tational cost and/or grid generation effort. A way to avoid such diffi-
culties is using a modified version of the Navier–Stokes equation near
the wall, in which roughness is ‘effectively’ modelled. These models,
clearly, do not process the degree of fidelity that full-surface resolved
DNS provides, thus, require careful verification. In the framework of
Reynolds-averaged Navier–Stokes, for instance, so-called Discrete Ele-
ment Method (DEM) has been used for a long time (Taylor et al., 1985;
Tarada, 1990). In DEM, roughness geometry is represented by simple
roughness elements and the mass and momentum conservation equa-
tions are averaged over control volumes containing several of these
elements. Effects of form drag and vortex shedding from roughness
elements enter the momentum and turbulent kinetic energy equations
through source terms; consequently, not only the momentum equation
but also turbulence transport equations contain extra ‘modelled’ terms.

The idea of modifications in Navier–Stokes equation for roughness
modelling has also been used in LES and DNS context. Cui et al. (2003)
suggested an approach in which an arbitrary rough surface is decom-
posed into two parts: resolved scale and sub-grid scale roughness, for
the former immersed boundary method and for the latter a random
body-force model is used. For very high Reynolds numbers where the
roughness height falls below the first near-wall grid point,
Anderson and Meneveau (2010) suggested an LES model in which a
body force is applied within the first grid-point. The value of the body
force is determined based on total incoming momentum flux into the
roughness.

Busse and Sandham (2012) proposed a Parametric Forcing Ap-
proach (PFA) in which the effect of roughness is introduced by adding
the body force term − α F y u u( )i i i i to the otherwise-unchanged Na-
vier–Stokes equation (no summation over index i). ui denotes in-
stantaneous velocity and =i 1, 2, 3 indicate streamwise, wall-normal
and spanwise directions corresponding to x, y, z coordinates, respec-
tively. αi and Fi(y) are referred to as ‘roughness factor’ and ‘roughness
shape function’ by these authors, respectively. They further simplify the
model by applying = =α F α F αF1 1 3 3 and =α 02 . By using a DNS grid,
PFA involves no other modelling except for the forcing term that re-
presents the momentum exchange between the flow and roughness,
therefore, it is possible to purely evaluate the performance of roughness
modelling terms. In the PFA introduced in Busse and Sandham (2012)
the function αF is not directly related to a specific roughness geometry,
therefore, cannot be determined a priori.

The present work aims at a modified version of PFA, in which –
apart from the tunable scalar model constants – the forcing amplitude
can be determined a priori for a desired roughness geometry, so that the
mean flow profile and, thus, the ‘friction factor’ can be predicted cor-
rectly. The model is expected to satisfactorily capture the trends of
friction factor with two important topographical surface parameters,
i.e. ‘skewness’ and ‘coefficient of variation of roughness peak heights’.
Full-geometry resolved DNS data from Forooghi et al. (2017) is used to
evaluate the model and its capability to follow the physical trends.

2. Roughness samples

Four roughness samples with systematically chosen geometrical
surface parameters are considered in the present paper. The full-geo-
metry resolved DNS for these surfaces have been reported by
Forooghi et al. (2017); in the present work the ‘geometrical functions’
required in the modified PFA (details in Section 3) are calculated
for the same samples and the results are compared. The geometry of
roughness is generated using an algorithm explained in full in
Forooghi et al. (2017), which creates 3D irregular rough surfaces
k x z( , )͠ . Briefly, the geometry is generated by mounting axisymmetric
roughness elements with prescribed shape and spacing in a random
pattern on a smooth ‘reference plane’ which is the lower boundary of
the computational domain. Certain topographical properties of the
roughness can be adjusted in this approach. Before discussing these

properties, it should be stressed that in the present study we focus on
the roughness elements with high slopes. As discussed in the in-
troduction, a rough surface with low slope does not behave in the same
way as ‘normal’ roughness does. Schultz and Flack (2009) showed that
when the surface slope falls below a certain threshold, the effective
roughness height does not scale with the physical dimensions of
roughness; therefore, they proposed calling this type of surfaces ‘wavy’
instead of ‘rough’. These authors also suggested a threshold of 0.35 for
the effective slope of a wavy surface. Yuan and Piomelli (2014), later
on, found a considerably higher threshold equal to 0.7. The surfaces
used in this work all have an effective slope equal to 0.88 which should
be high enough to avoid any ‘waviness’ behaviour.

As discussed in the introduction, data published in the literature
suggest that, at a constant effective slope, skewness Sk defined as

∫ ∫= − = −Sk
A k
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can control the effective roughness height to a high extent. In Eq. (4), A
is the surface area projected on the reference plane, shortly wall-pro-
jected area, and kMD (melt-down height) is the mean surface height. k ,͠
which is the surface height from the reference plane, is a function of
coordinates in y-normal plane, i.e. k x z( , )͠ . Forooghi et al. (2017) found
that at constant skewness, a roughness composed of ‘uniform’ elements
shows a higher resistance to flow than one with non-uniform elements.
To measure the non-uniformity of the peak heights a ‘coefficient of
variation’ Δ, defined as the height difference between the highest and
the lowest peaks of the surface normalized with the mean peak height,
is used.

Table 1 summarizes the geometrical properties of the surface sam-
ples. Sample Ia is used as the control case. Compared to this sample,
sample II has a higher skewness but a similar Δ, while sample III has a
similar Sk but its Δ is zero (uniform peak heights). Sample Ib has the
same topographical properties as Ia but its dimensions are scaled down.
Mean roughness peak height k1 is halved in Ib compared to Ia. The
values of +k shown in the table suggest that the studied surfaces likely
span all the way between the transitionally-rough and fully-rough re-
gimes, which facilitates assessing the versatility of the model under
investigation.

The values of friction velocity Reτ for each case – similar for the
reference DNS and present simulations – are also listed in Table 1.

= −Re u H k
ν

( )
τ

τ MD
(5)

In Eq. (5), H is the distance between the bottom plane and the middle of
the channel, i.e. the wall-normal dimension of the computational do-
main (see Section 4 for the complete description of the computational
set-up), therefore, the length scale −H k( )MD used in the definition of
Reynolds number is the half-height of a channel with the same cross-
section area or, namely, the ‘effective’ half-height of the channel. The
friction velocity =u τ ρ( / )τ w

1
2 is based on the wall shear stress and is

calculated from the integral momentum balance using the mean

Table 1
Summary of surface samples used in the present study and the values of
Reynolds number in the simulations. Results for cases Ia, II and III are discussed
in details in Forooghi et al. (2017).

Sample k/H kMD/H Sk Δ +k Reτ

Ia 0.12 0.074 0.21 0.7 67 498
Ib 0.06 0.037 0.21 0.7 32 500
II 0.12 0.047 0.66 0.7 64 502
III 0.19 0.1 0.21 0 110 499

1 This quantity is used as the representative dimension of the roughness throughout the
paper.
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streamwise pressure gradient such that

= − −τ dP dx H k( / )·( ).w MD (6)

It should be noted that the wall shear stress calculated in this way takes
into account contributions of both viscous friction and form drag on the
roughness elements to the momentum transfer. In the present paper, all
lengths and velocities in viscous units, denoted by plus subscript +() , are
nondimensionalized by uτ and ν/uτ, respectively.

3. Description of the model

In the present approach a ‘forcing term’ fi is added to the in-
compressible momentum equation.
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The forcing term acts parallel to the wall ( =f 02 ). Fig. 1 schematically
illustrates the difference between the PFA and full-geometry resolved
DNS. As indicated in the figure, the forcing term is non-zero everywhere
below the plane of the highest roughness peak. The details of the rough
surface are contained in the forcing term via ‘geometrical functions’ to
be derived in the following.

As discussed in the introduction, Busse and Sandham (2012), among
others, originally proposed a quadratic relation between the forcing
term and local velocity. This kind of relation originates from the as-
sumption that the form drag is the dominant resistance force due to
roughness. The present DNS results (Forooghi et al., 2017) show,
however, that when the roughness is dense, in the locations deep inside
the roughness – i.e. the deepest valleys – the flow can be too slow for
the form drag to be the only dominant force. In addition, it will be
discussed further in Section 5 that it is not possible to satisfactorily
match the mean velocity profiles from the reference DNS when merely a
quadratic body force is used. These observations lend support to the
idea that addition of a linear forcing term accounting for the viscous
drag can improve the versatility of the model. Consequently, the forcing
term will be the sum of a linear and a quadratic term

= + = − −f f f A y u B y u u( ) ( ) .i L i Q i i i i, , (8)

In Eq. 8, multiple index does not indicate summation. Comparing to the
original (Busse and Sandham, 2012) formulation – disregarding the
nondimensionalization – function B(y) is the equivalent of αF(y) while
A(y) is zero in this reference.

One can identify a clear analogy between the present formulation
and classical Darcy–Brinckmann–Forchheimer (DBF) equation for the
modelling of flow in porous media (see reference Vafai and Kim, 1995),
in which, a linear (Darcy) and a quadratic (Forchheimer) term are used
to reproduce the effects of ‘viscous’ and ‘inertial’ resistance against the
flow, respectively. While we do not necessarily intend to force a one-to-
one correspondence between the present and the DBF formulations, it is
clear that the analogy between the two can be beneficial in derivation
of the forcing terms. In particular, when it comes to finding an ex-
pression for the linear forcing term, we find it reasonable to take the
much elaborated Darcy term in the context of porous media as a
starting point. Using this analogy, function A can be expressed as

=A ν
K (9)

where K is the ‘permeability’ of the porous medium. One of the most
common approaches to the calculation of permeability in the context of
porous media is the Kozney–Carman theory which utilizes the analogy
between bundles of capillary conduits and porous media to derive an
equation for K (Kaviany, 1995):

=K
d
k

ϵ
16

h

K

2

(10)

where dh is the ‘pore’ hydraulic diameter and ϵ is the porosity. kK is a

constant called ‘Kozney constant’ which contains the effects of solid
shape and fluid flow path. A comprehensive review of the values of kK
for different porous media (ranging from artificial media made of in-
line bars and cubes to real material such as soil and fluidized beds)
performed by Ozgumus et al. (2014) reports values between roughly 4
and 16 for this constant. From the definition, the hydraulic diameter
can be expressed as =d ,h s

4ϵ s being total interface area per unit total
volume. Replacing this expression into Eq. (10) and the result into
Eq. (9) yields the following expression for the linear forcing amplitude
function A:

=A y k νs y
y

( ) ( )
ϵ( )K

2

3 (11)

The dependency on the y-coordinate is necessary for roughness mod-
elling as the geometrical properties of roughness vary considerably in
the wall normal direction. Given the geometry of the roughness, one
can find both ϵ and s functions at a certain y-position by integrating the
fluid (void) volume and the interface area within an infinitesimally thin
layer in y-direction which covers the entire domain in the wall-parallel
plane. In general case, the dependency on the other two coordinates can
also be included in the model to account for non-homogeneous
roughness, but such a case is not discussed in the present paper to avoid
complexity.

It should be mentioned that the Kozney–Carman theory is one of the
possible approaches for the estimation of permeability used in the
Darcy term. In the present work we adopt this approach due to its re-
lative simplicity and familiarity, and we use kK simply as a tunable
model constant. For further refinements of the PFA model, further
discussions on which permeability models may deliver best results will
be beneficiary. Noteworthy is the possibility to evaluate the Darcy term
directly by solving Stokes equations for a specific porous structure, as
described in Lācis and Bagheri (2017), which rules out the model
constant and leads to a fully a priori mode. Nevertheless, such a pos-
sibility is not examined in the present paper.

The quadratic forcing amplitude B in Eq. (8) can be found using the
analogy to form drag of a bluff body:

=B y c
s y

( )
( )
2

.D
f

(12)

where cD can be seen as a type of drag coefficient and sf is the total
projected frontal surface area per unit total volume.

kK and cD are in fact the two model constant in the present for-
mulation. Apart from these constants the model requires determining
three ‘geometrical functions’ ϵ(y), s(y) and sf(y). It should be mentioned
that, the forcing term fi as appears in Eqs. (7) and (8) is dimensional.
One can consider nondimesionalization in viscous units

=+f
f H
u
·

i
i

τ
2 (13)

Consequently, the dimensionless form of the linear and quadratic for-
cing terms can be expressed as

= =+ + + +f A u A
Re

k s, 1 *
ϵL i i

τ

K
,

2
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= =+ + + + +f B u u B
c s

,
*

2Q i i i
D f

, (15)

where =s s H* · and =s s H* ·f f are dimensionless geometrical functions;
ϵ is by definition dimensionless. Constants kK and cD are also di-
mensionless. Obviously, any lengthscale other than H – for instance k –
could alternatively be used for the nondimensionalization.

Tiles of 2H×2H area from the roughness geometries modelled in
the present paper are shown in Fig. 2 along with the profiles of the
dimensionless geometrical functions ϵ and s*f . Samples Ia and Ib are
topographically identical; only in Ib, all dimensions of the roughness
geometry are halved. It is observed in Fig. 2 (top) that both samples I
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and III (similarly Ib) consist of densely packed roughness elements
while sample II has more sparsely distributed roughness elements.
Sparseness of the roughness translates to a higher value of Sk as the
mean surface height becomes relatively small compared to the max-
imum peak height, hence a more positively skewed surface height PDF.
As Fig. 2 (bottom left) shows, for samples Ia, Ib and III, porosity be-
comes nearly zero at =y 0 meaning that the bottom wall is fully cov-
ered; this is not the case for sample II. Remarkably, when it comes to the
s*f profiles, the maxima do not occur at =y 0. The reason is that, when
the roughness elements are densely distributed, they overlap near the
bottom plane and little free space remains among them. As a result, the
extent of solid–fluid interface decreases and obviously there is a smaller
flow fronting area. For sample II, the one with sparser roughness ele-
ments, the peak of s*f lies relatively close to the bottom wall indicating
less overlapping. Comparing s*f of the two samples Ia and Ib, the latter
reaches zero at a y/H half of the former due to the downscaling but its
peak value is two times larger. It can be explained by the fact that the
total roughness surface area remains constant despite downscaling2 but
this total area is confined to a smaller range of y, therefore the area
density becomes larger. Indeed, it can be shown that the area under-
neath each s*f curve is equal to the frontal solidity of the corresponding
surface. Frontal solidities are identical in all four samples.

4. Numerical solution

Pseudo-spectral in-house Navier–Stokes solver SIMSON

(Chevalier et al., 2007) is used for both DNS and PFA simulations. For
the present PFA simulations, same computational box as in
Forooghi et al. (2017) is used; box dimensions in streamwise, wall-
normal and spanwise direction are =L L L H H H( , , ) (8 , , 4 )x y z . Periodic
boundary conditions are applied in both streamwise and spanwise di-
rections. On the lower boundary of the box ( =y 0), no-slip boundary
condition is applied while at =y H, symmetry boundary condition is
used (so-called open channel).

For the PFA simulations a grid of size =N N N( , , ) (768, 301, 384)x y z
nodes is used leading to a grid spacing of +x y z(Δ , Δ , Δ )
≅ −(5.5, 0.02 3.5, 5.5). A CFL number of 0.8 is used for time stepping,
and the average (Runge–Kutta) time-step size is equal to roughly one-
third of viscous time unit (ν u/ τ

2). For the calculation of statistics, tem-
poral-averaging is carried out for at least 20 flow-through times after
the statistical steady-state is reached. For calculation of certain statis-
tical quantities (see Section 5) spatial averaging in wall-parallel direc-
tions over the entire domain is also applied. The spatial averaging is
carried out over both fluid and solid parts of the domain, which is
analogous to the ‘superficial’ averaging – a concept widely used in the
porous media literature. In what follows, temporal and spatial aver-
aging is denoted by overline () and angle brackets 〈 〉, respectively.

5. Results and discussion

The model introduced in the previous section, contains model
constants, whose values are not known a priori, thus, require ‘calibra-
tion’. Based on the preliminary simulations with a wide parameter
space, a range of cD between 1.0 and 2.0 with kK between 10 and 40
leads to satisfactory predictions and can be used for fine-tuning. In
Section 5.1, a detailed discussion on the trends of flow statistics with

Fig. 1. Schematic representation of the PFA (right)
against full-geometry resolved DNS (left). Details of
the rough surface are ‘homogenized’ and effectively
modelled through a forcing term fi below the plane of
the highest roughness peak (top dashed line). The
other dashed lines in the figure schematically represent

the plane of mean peak height ( =y k) and the plane of mean surface height ( =y kMD).

Fig. 2. Top: tiles of the surface samples modelled in the present paper from left to right Ia, II and III (all values shown on the figures are normalized by H; the surfaces
are coloured with the local height for better visual distinction). Sample Ib is similar to Ia, scaled down in all dimensions by a factor 1/2. Bottom: geometrical functions
ϵ (left) and s*f (right) for all surface samples. s* is almost proportional to s*f hence not shown here for brevity.

2 Comparing Ia to Ib the surface area of each element in the latter is scaled down by a
factor 1/4 but at the same time the total number of elements on the wall is 4 times larger.
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Fig. 3. Mean streamwise velocity profiles for sample Ia averaged over time and wall-parallel coordinates. Same profiles are plotted against inner-logarithmic (top)
and outer-linear (bottom) y-coordinate. Left column: constant kK, variable cD; right column: constant cD, variable kK. Dotted line indicates DNS results for the same
sample. Vertical dashed line indicates the mean roughness peak height.

Fig. 4. Profiles of Reynolds stresses for sample Ia obtained from Eq. (16) in comparison with the DNS results for the same sample. Vertical dashed line indicates the
mean roughness peak height.
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the model constants, in the above-mentioned range, is presented for one
of the cases (Ia). In Section 5.2, the performance of the model for the
other cases is examined. In this section one pair of the model constants
based on in Section 5.1 is adopted.

5.1. Effect of model constants

Fig. 3 shows the effect of the model constants in the ranges
1.0≤ cD≤ 2.0 and 10≤ kK≤ 40 on the calculated mean velocity
profile in comparison to the corresponding DNS simulation (dotted
line). In general, the agreement between the DNS and PFA results are
satisfactory over the entire range. It can be observed in the logarithmic
plots that both an increase in cD and a decrease in kK lead to a down-
ward shift in the logarithmic region or, in other words, an increased
roughness function. The logarithmic behaviour itself is not affected by
the choice of the constants; in all cases the logarithmic region starts at

− ≅+y k( ) 50MD .
The downward trend of velocity profile with cD is an expected be-

haviour since the resistance to the flow is in direct relation to cD. The

explanation of the trend with kK is, however, less straightforward as the
resistance increases with an increase in this constant. Indeed, in the
region closer to =y 0 where, as will be shown later, the linear forcing
term dominates, an increase in kK, as expected, suppresses the flow;
however, the suppression of flow in this region entails a lower flow in
the entire roughness layer, thus, a less intense quadratic forcing. The
overall effect is a steeper velocity profile towards the edge of the
roughness layer, and an upward shift in the neighbouring logarithmic
region. One should pay attention to the fact that the ‘inflection point’,
which is typical of the mean velocity profiles near the roughness crest,
remains almost at the same location with the variation of kK. At this
point it is possible to explain why the linear forcing term is required for
a reasonable prediction of the velocity profile. In the absence of this
term, the resistance in the region near the wall would be under-
predicted by the quadratic term, resulting in an increased velocity and,
thus, form drag near the edge of the roughness layer and consequently,
an overprediction of the roughness function. To avoid this over-
prediction, a smaller value of cD should be used, which leads to a high
deviation from the physical velocity profile in the buffer layer. In

Fig. 5. Distribution of mean streamwise forcing term (solid line) and its linear (dashed line) and quadratic (dash-dotted line) components in the near wall region. Line
colours in the left and right columns of the present figure have the same meaning as in the respective column of Fig. 3. Vertical dashed lines correspond to the
horizontal dashed lines in Fig. 1, i.e. from left to right: melt down height ( =y kMD), mean peak height ( =y k) and maximum peak height.

Fig. 6. Quadratic forcing term due to mean velocity (solid line) and fluctuations (dashed line). Either column of the present figure corresponds to the respective
column of Fig. 5.
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summary, it is possible to match the value of either the bulk velocity or
roughness function using a single constant cD, but the velocity profile –
particularly in the neighbourhood of the roughness crest – could not be
captured correctly if =k 0K . It is observed that the present model could
not correctly match the profile in the very vicinity of the reference
plane, i.e. − <+y k( ) 15,MD , but since this region accounts for a very
small portion of the flow rate, this deviation can be tolerated.

As already pointed out, the model is mainly designed to predict the
mean velocity profile and, consequently, the friction factor. However, a
comparison of the most influential turbulence statistics is instructional.

Such a comparison is made for the Reynolds stresses in Fig. 4. Here, the
fluctuating velocity ″ui used to define the Reynolds stresses, is obtained
by calculating the difference between the local instantaneous velocity
and the double averaged mean, i.e. ″ = −u u ui i i . As a result of
homogeneity in the wall-parallel directions in PFA, the same result
would be achieved if only temporal averaging were used for the cal-
culation of the fluctuations, provided that the averaging time is long
enough. In the reality (DNS), however, the fluctuating component ″ui
can be further decomposed into a time-invariant component ∼u ,i re-
presenting the spatial deviation from u ,i and a temporal fluctuating
component ′ui . As a result, ″ ″u ui j could be expressed as

″ ″ = ′ ′ + ∼∼u u u u u ui j i j i j (16)

The first term on the right hand side is the true Reynolds stress, and the
second term on the right hand side is referred to as ‘dispersive stress’.
Details on the computation of the dispersive stresses in DNS are pro-
vided in Appendix A. Further discussions on the meaning and role of
dispersive stresses can also be found in Coceal et al. (2006) and
De Marchis et al. (2010). In the present – and any ‘homogenized’
modelling approach – dispersive stress is zero and there is no distinction
between ″ ″u ui j and ′ ′u ui j . This issue will be discussed further in
Section 5.2. Here we mainly focus on the effect of model constants on
the Reynolds stresses calculated from the model results. It is clear in
Fig. 4 that variations of both model constants mainly influence the peak
values of Reynolds stress profiles and the region below it. A decrease in
cD and an increase in kK both lead to a higher peak value. This agrees
well with the trend of mean velocity and suggests that the modelled
peak value is related to the mean velocity gradient in the vicinity of the
peak location, i.e. slightly above the edge of the roughness layer. The
modelled Reynolds stress profiles all collapse with the profile of ″ ″u ui j
towards the middle of the channel, which agrees well with the outer
layer similarity hypothesis. In the near wall region, however, the
agreement is poor, particularly for the xx component of the Reynolds
stress. This can be attributed to the simplifications in the physics of the
problem made by the model.

So far, the influence of the model constants on the flow statistics is
discussed. It is insightful to additionally observe how the linear and
quadratic forcing terms reflect a variation in either constants. For that
purpose, Fig. 5 shows the wall-normal double averaged profiles of these
two terms along with their sum. Here only the region below the
roughness crest where fi assumes non-zero values is shown, and only the
streamwise direction is discussed. For brevity index =i 1 is dropped.
The graph on the left hand side presents the results from constant kK but
variable cD and the one on the right hand side presents those with
constant cD but variable kK (similar to the left and right columns in
Fig. 3, respectively). For better comparison, the locations of melt-down
plane ( =y kMD), mean roughness peak height ( =y k) and roughness
crest are indicated by vertical dashed lines in both graphs. It is observed
that the linear and quadratic forcing terms dominate in the region
below and above =y k, respectively. Total force peaks in the area
around =y k where both terms are present. As expected, an increase in
the model constant related to each term, increases the share of the re-
spective term in the total drag. The peak location of either term shows
little sensitivity to the variation of the model constant. It can be un-
derstood that the centroid of the drag profile adjusts itself more to the
geometry and less to the values of the model constants.

One should note that both mean and fluctuating velocities are
present in the quadratic forcing term. For =i 1, assuming that u1> 0:

= + ″+ + + + +
f B u B uQ,1 1

2
1

2
(17)

The distinction between the two components is important for example
in the context of turbulence modelling where the momentum equation
is solved only for the mean velocity and any effect of the fluctuations
needs to be accounted for through closure equations. Fig. 6 compares
the first (solid line) and second (dashed line) terms on the right hand

Fig. 7. Mean streamwise velocity profiles of all cases obtained from PFA (solid
line) in comparison to DNS (dashed line) results.

Fig. 8. The predicted values of friction factor by PFA (filled symbols) and DNS
(hollow symbols) for all cases.

Fig. 9. Rms error in the prediction of mean velocity profile by PFA in com-
parison to DNS; roughness characteristic dimension is used as abscissa variable.
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side of Eq. (17). It is observed that for the case under consideration the
fluctuating term only accounts for approximately 20% of the ‘modelled’
form drag. It is also revealed that both components show similar trends
to the variation of the model constants.

5.2. Evaluation of the model

In the present section the simulation results of all cases obtained
with the constant values of =k 25K and =c 1.5,D those delivering the
smallest deviation from the DNS solution for case Ia, are discussed. The
orders of magnitude of these model constants match those of Kozney
constant and drag coefficient in similar problems therefore is physically
justified.

Mean velocity profiles from all samples introduced in Table 1 are
presented in Fig. 7 along with the same profiles obtained from DNS. For
visual reasons, profiles of cases Ia, II and Ib are shifted upwards by 1, 2
and 3 units, respectively. A very good agreement with DNS is observed
in all cases. Similar to what already observed for case Ia, there is a slight
deviation around the point where velocity starts to grow from zero.
Having said that, the general shape of the profiles and, in particular, the
location of the inflection point is reproduced well by the model. Also
the values of friction factor calculated from the PFA agree well with
those from DNS as shown in Fig. 8. This figure demonstrates how the
present model is able to predict the trends of friction factor with to-
pographical surface properties, i.e. Sk (compare Ia and II) and Δ
(compare Ia and II) as well as the characteristic roughness height
(compare Ia and Ib).

It should be recalled that the purpose of the present approach is not
only to predict the friction factor correctly, but also to reproduce the
mean velocity profile as closely as possible. To better quantify the latter
capability, the root-mean-square error of the calculated velocity profiles
compared to the DNS profiles defined as

∫
∫

=
−

E
u u dy

u dy

( )
rms

H
PFA DNS

H
DNS

0 1, 1,
2

0 1, (18)

are calculated and displayed in Fig. 9. The figure reveals that the root-
mean square error is less than 3% for all cases.

Finally, the computed profiles of Reynolds stress are shown in
Fig. 10. Only the most critical component, i.e. the xx component is
discussed here. On the left column (similar to Fig. 4) the profiles of

″ ″u u1 1 from DNS are added for comparison, while on the right column
only the pure Reynolds stress, i.e. ′ ′u u1 1 from DNS is presented. As

already reasoned, there is no difference between these two quantities in
PFA.

As previously observed in the results of sample Ia in Section 5.1,
Fig. 10 (left) shows that PFA meaningfully underpredicts the peak of

″ ″u u1 1 for all cases. This underprediction is most severe for case II and
least for case III. Moreover, ″ ″u u1 1 from PFA is damped abruptly inside
the roughness layer, while DNS shows higher values below the rough-
ness crest. However, if the dispersive stresses are taken away from

″ ″u u1 1 and only the pure Reynolds stress ′ ′u u1 1 is considered, a dif-
ferent picture is obtained. As shown in Fig. 10 (right), in this case the
agreement between the PFA and DNS improves significantly. Unlike for

″ ″u u ,1 1 the peak of ′ ′u u1 1 is slightly overpredicted by PFA, suggesting
that the extra amount that the model is not able to reproduce in the
former case, is due to the dispersive stress. Physically speaking, dis-
persive stresses find no counterpart in a ‘homogenized’ roughness ap-
proach like the present one, and their absence in the calculated flow
field by the model is sensible. Case Ib, which has the lowest +k value
among all, shows the largest amount of deviation in its predicted peak
value. In the prediction of Reynolds stress ′ ′u u1 1 – similar to the mean
velocity profile – the present model produces a sharper transition from
the near-wall motionless fluid to the flow above it and, as a result, an
underprediction inside the roughness layer. The deviation inside this
layer is however less pronounced than for ″ ″u u1 1 as the dispersive
stress part is not present.

6. Conclusion

A modified version of the Parametric Forcing Approach (PFA) for
modelling of surface roughness is suggested and tested for prediction of
flow in so-called open channel configuration for four dense roughness
samples with different morphological surface properties. The results are
compared to the already available full-geometry resolved DNS results
for the same geometries at the same friction Reynolds number
(Reτ≅500). The model is based on adding two source terms (forcing
terms) to the otherwise-unchanged incompressible momentum equa-
tion. The two forcing terms are linearly and quadratically related to the
local instantaneous velocity, representing the viscous and form drag
effects of the roughness features. The model includes two model con-
stants analogous to Kozney constant (kK) and drag coefficient (cD).
Based on the analysis of the results the following points are understood:

– The PFA model is able to reproduce both friction factor and mean
velocity profile from full-geometry resolved DNS with the model

Fig. 10. Profiles of Reynolds stress (xx component) calculated by PFA for all cases in comparison with the profiles of total turbulent (left) and Reynolds stress (right)
from DNS (Reynolds stress = total stress − dispersive stress). Line legend is same as in Fig. 7.
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constant values =c 1.5D and =k 25K . The presence of the linear
forcing term improves the capability of the model for capturing the
mean velocity profile. The root-mean-square error in the prediction
of the mean velocity profile is less than 3% for the investigated
cases.

– The effects of the investigated morphological surface properties, i.e.
the skewness of surface height PDF and the coefficient of variation
of peak heights, are well reproduced by the model.

– The total forcing term peaks in the vicinity of the mean roughness
peak height plane, and the peak location shows little sensitivity to
the values of the model constants.

– Reynolds stresses are sensitive to the choice of model constants only
in the vicinity of the roughness and collapse well in the outer layer
irrespective of the model constants.

– The model is able to reproduce the profiles of Reynolds stress from
DNS relatively well with some underprediction in the peak values.
This underprediction is more severe for the case of transitionally-
rough regime. Having said that, the model is unable to reproduce
the dispersive stresses due to spatial inhomogeneity of the flow near
the rough surface. Consequently, when the profiles of Reynolds
stress from the model is compared to the sum of Reynolds and dis-
persive stresses from DNS, a considerable underprediction is ob-
served within the roughness sublayer.

In view of the above, we believe that a proof of concept for a
modified PFA model, which is capable of predicting the mean flow for
an arbitrary roughness geometry, is in hand. The model will obviously
benefit from further verification and possible refinements. Further work
on the model is suggested in two directions; comparison to the ex-
perimental data at higher Reynolds numbers for the prediction of fric-
tion coefficient and comparison to other independent full-geometry
resolved DNS for the prediction of mean velocity profile and possibly
turbulence statistics. Comparison to the results obtained from realistic
roughness will be particularly advantageous.
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Appendix A

The velocity field ui(x, y, z, t) can be decomposed into a temporally-averaged and a fluctuating components, i.e.

= + ′u x y z t u x y z u x y z t( , , , ) ( , , ) ( , , , )i i i (A1)

where overbar indicates temporal averaging. Time-averaged velocity u x y z( , , )i can be further averaged spatially in x and z-directions, and be
decomposed into two components, i.e.

= +u x y z u y u x y z( , , ) ( ) ( , , )͠i i i (A2)

where angle brackets indicate spatial averaging in x and z-directions. Consequently, Eq. (A1) can be rewritten as:

= + + ′u x y z t u y u x y z u x y z t( , , , ) ( ) ( , , ) ( , , , )͠i i i i (A3)

It should be noted that if the turbulence is homogeneous in x and z-directions, ui is only a function of y, so the second term on the right hand side of
Eq. (A3) vanishes once the statistics are converged (hereinafter the independent variables are dropped in all expressions for brevity).

In the present study, we compute ui and u ui j by temporal averaging on the fly. This makes possible local computation of the Reynolds stresses in
post processing using

′ ′ = −u u u u u u .i j i j i j (A4)

Reynolds stresses can be further averaged spatially to obtain the y-dependent profiles of ′ ′u ui j plotted in Fig. 10.
For the computation of dispersive stresses, one can calculate ui and u ui j by spatial averaging of already available ui and u ui j fields. One can

show that

″ ″ = −u u u u u ui j i j i j (A5)

where ″u ,i already introduced in the text, denotes sum of u͠i and ′ui . Dispersive stresses can be calculated by subtracting ′ ′u ui j from ″ ″u ui j according
to Eq. (16).
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