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Abstract 

Land-use and land-cover changes (LULCC) have large impacts on climate. Cumulative LULCC 

emissions between 1750 and today were responsible for about one third of total anthropogenic CO2 

emissions during this time, thereby making a large contribution to the increase in global mean surface 

temperature of around 1°C relative to the pre-industrial era. However, the land as a whole currently 

represents a net carbon sink, with the capacity to store additional carbon if managed properly. In fact, 

the removal of carbon from the atmosphere (“negative emissions”) via land-based climate change 

mitigation technologies is increasingly regarded as a necessary option to limit global warming below 

2°C. However, the potential carbon removal under the consideration of limited land availability and 

associated impacts on the environment are highly uncertain. In this thesis I make use of recent pro-

gress with respect to the representation of LULCC in dynamic global vegetation models (DGVMs), in 

particular the LPJ-GUESS model, to explore long-term effects of land-use change on the recovery of 

ecosystems, carbon removal potential from land-based mitigation, and associated side effects on a 

range of other ecosystem service indicators beyond carbon storage. 

Idealised land-use scenarios are used to study the effects of land-use history (in terms of agricultural 

type and duration) on the recovery of carbon in ecosystems following agricultural abandonment. 

Simulations with LPJ-GUESS show that nearly all global ecosystems require decades or centuries to 

regenerate to the pre-disturbed state. The type and duration of former land use is particularly important 

for the recovery of soil carbon, with recovery times often differing by centuries across scenarios, but is 

also significant for vegetation carbon and composition recovery which typically show differences of 

several decades. Spatially, the greatest sensitivity to prior land use is found in boreal forests and sub-

tropical grasslands. The simulations show that land-use history is an important consideration when 

assessing LULCC as an option to remove carbon from the atmosphere. 

Land-based carbon removal options are then explored further based on land-use projections of future 

mitigation strategies (forest maintenance and expansion, bioenergy combined with carbon capture and 

storage, or a combination of both approaches) from two land-use models, with the aim to study the 

likely efficacy and the environmental risks of land management for carbon storage. The land-use 

scenarios are used as input to four DGVMs to simulate carbon removal from the atmosphere via land-

based mitigation in an RCP2.6 climate. The carbon removal achieved in the DGVMs by the end of the 

century is typically lower (19-130 GtC) than originally implemented in the land-use models (86-141 

GtC). Differences in carbon removal between the models are mainly due to model assumptions regard-

ing bioenergy crop yields, and how the soil carbon response to LULCC is simulated, with smaller 

contributions from differences in forest biomass and the rate of forest regrowth. With respect to im-

pacts on other ecosystem service indicators, avoided deforestation and afforestation generally induces 

larger changes than bioenergy cultivation, which is related to the different land demand of both ap-

proaches. Afforestation results in an increase, compared to a baseline scenario, in evapotranspiration 
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of 1.3-2.1%, and of 15.7-24.1% for emissions of biogenic volatile organic compounds, the ranges 

resulting from simulations based on the two different land-use models. In contrast, decreases of 0.8-

1.3% in albedo, 0.7-2.2% in runoff, 3.5-35.1% in crop production, and 6.7-13.2% in nitrogen loss 

occur. In the bioenergy simulations, there is a decrease in crop production of 6.6-9.7%, in N loss of 

7.6-10.3%, and of 2.2-8.2% for emissions of biogenic organic compounds, but only minor changes in 

albedo, evapotranspiration, and runoff. 

In conclusion, an adequate representation of LULCC in vegetation models in combination with a 

detailed analysis of direct and indirect effects is critical to draw more robust conclusions about the 

impacts of land-based mitigation on the carbon cycle and the impacts (both from a co-benefit and 

trade-off perspective) it has on ecosystem functioning underlying other ecosystem services. Neverthe-

less, the results of this thesis suggest that the amount of carbon removal typically assumed to be 

achievable in ambitious climate mitigation scenarios might well be overoptimistic. Furthermore, when 

associated impacts on other ecosystem services and technological challenges are also considered, 

relying on an ever increasing amount of negative emissions to achieve the 2°C target appears a very 

high-risk strategy. 
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Zusammenfassung (German) 

Landnutzungs- und Bodenbedeckungsänderungen haben große Auswirkungen auf das Klima. Die 

kumulativen Landnutzungsemissionen zwischen 1750 und heute entsprechen etwa einem Drittel der 

gesamten menschlichen CO2-Emissionen in diesem Zeitraum und trugen somit erheblich zum Anstieg 

der globalen Durchschnittstemperatur um etwa 1°C im Vergleich zum vorindustriellen Zeitalter bei. 

Das Land stellt insgesamt jedoch momentan eine Netto-Kohlenstoffsenke dar und besitzt die Möglich-

keit zusätzlichen Kohlenstoff zu speichern, falls eine entsprechende Nutzung erfolgt. Tatsächlich wird 

die Kohlenstoffentnahme aus der Atmosphäre („negative Emissionen“) durch landbasierte Klima-

schutztechnologien mehr und mehr als notwendig erachtet, um die globale Erwärmung auf unter 2°C 

zu begrenzen. Jedoch ist die potentielle Kohlenstoffentnahme unter Berücksichtigung der begrenzten 

Landverfügbarkeit und der damit verbundenen Auswirkungen auf die Umwelt sehr unsicher. In dieser 

Doktorarbeit nutze ich jüngste Fortschritte bezüglich der Darstellung von Landnutzungs- und Boden-

bedeckungsänderungen in dynamischen globalen Vegetationsmodellen (insbesondere mit Hilfe des 

Models LPJ-GUESS), um die längerfristigen Auswirkungen von Landnutzungswandel auf die Rege-

neration von Ökosystemen zu erforschen. Außerdem untersuche ich das Kohlenstoffentnahmepotential 

durch landbasierte Klimawandelminderungsstrategien, sowie die damit verbundenen Nebeneffekte auf 

eine Reihe weiterer Indikatoren von Ökosystemdienstleistungen über die Kohlenstoffspeicherung 

hinaus. 

Idealisierte Landnutzungsszenarien werden benutzt, um den Einfluss der Landnutzungsgeschichte 

(bezüglich der landwirtschaftlichen Nutzungsart und Zeitdauer) auf die Regeneration von Kohlenstoff 

in Ökosystemen nach Beendigung der landwirtschaftlichen Nutzung zu erforschen. Simulationen mit 

dem LPJ-GUESS Modell zeigen, dass nahezu alle globalen Ökosysteme Jahrzehnte oder Jahrhunderte 

benötigen, um zu ihrem ursprünglichen Zustand zurückzukehren. Die Art und Zeitdauer der früheren 

Landnutzung ist besonders wichtig für die Regeneration des Bodenkohlenstoffs, für den sich die 

Regenerationszeiten oftmals um Jahrhunderte innerhalb der Szenarien unterscheiden. Die Landnut-

zungsgeschichte ist jedoch auch für die Regeneration des Vegetationskohlenstoffs und der Vegetati-

onszusammensetzung von Bedeutung, für die sich Unterschiede von mehreren Jahrzehnten innerhalb 

der Szenarien ergeben. Räumlich betrachtet findet man den größten Einfluss der früheren Landnutzung 

in borealen Wäldern und subtropischen Grasländern. Die Simulationen zeigen, dass die Landnut-

zungsgeschichte bei der Bewertung von Landnutzungs- und Bodenbedeckungsänderungen als Mög-

lichkeit zur Kohlenstoffentnahme aus der Atmosphäre berücksichtigt werden sollte. 

Landbasierte Kohlenstoffentnahmeoptionen werden dann auf der Grundlage von Landnutzungsprojek-

tionen zukünftiger Klimawandelminderungsstrategien (der Erhalt und die Ausweitung von Wäldern, 

Bioenergie kombiniert mit Kohlenstoffabscheidung und Speicherung oder eine Kombination beider 

Ansätze) zweier Landnutzungsmodelle weiter erforscht, um die voraussichtliche Wirksamkeit und die 

Umweltrisiken von Landbewirtschaftung zur Kohlenstoffspeicherung zu ermitteln. Die Landnutzungs-
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szenarien dienen als Eingabedaten für vier dynamische globale Vegetationsmodelle, um die Kohlen-

stoffentnahme aus der Atmosphäre durch landbasierte Klimawandelminderungsstrategien in einem 

RCP2.6 Klima zu simulieren. Die Kohlenstoffentnahme, die am Ende des Jahrhunderts in den dynami-

schen Vegetationsmodellen erreicht wird, ist normalerweise geringer (19-130 GtC) als die Kohlen-

stoffentnahme, die ursprünglich in den Landnutzungsmodellen realisiert wurde (86-141 GtC). Die 

Unterschiede in der Kohlenstoffentnahme zwischen den Modellen sind vermutlich vor allem den 

Modellannahmen über die Erträge von Bioenergiepflanzen zuzuschreiben und wie Änderungen im 

Bodenkohlenstoff durch Landnutzungsänderungen simuliert werden. Ein geringer Anteil wird auch 

durch Unterschiede in der Waldbiomasse und der Waldwachstumsrate erklärt. Bezüglich der Auswir-

kungen auf weitere Indikatoren von Ökosystemdienstleistungen zeigt sich, dass der Schutz und die 

Ausweitung der Wälder allgemein größere Effekte als der Anbau von Bioenergiepflanzen hervorrufen. 

Dies hängt mit dem unterschiedlichen Flächenbedarf beider Ansätze zusammen. Aufforstung führt im 

Vergleich zu einem Referenzszenario zu einer 1.3-2.1% höheren Verdunstung und Transpiration und 

zu 15.7-24.1% höheren Emissionen von flüchtigen organischen Verbindungen, wobei sich die Spann-

weite aus den Simulationen ergibt die auf den beiden unterschiedlichen Landnutzungsmodellen basie-

ren. Außerdem kommt es zu einer um 0.8-1.3% verringerten Albedo, einem um 0.7-2.2% verringerten 

Abfluss, einer um 3.5-35.1% verringerten landwirtschaftlichen Produktion und einer Verringerung der 

Stickstoffverluste um 6.7-13.2%. In den Bioenergiesimulationen kommt es zu einer Abnahme der 

landwirtschaftlichen Produktion um 6.6-9.7%, der Stickstoffverluste um 7.6-10.3% und der Emissio-

nen flüchtiger organischer Verbindungen um 2.2-8.2%, während die Albedo, die Verdunstung und 

Transpiration, sowie der Abfluss kaum beeinflusst werden. 

Zusammengefasst sind eine angemessene Darstellung von Landnutzungs- und Bodenbedeckungs-

änderungen in Vegetationsmodellen, sowie eine detaillierte Auswertung der direkten und indirekten 

Effekte entscheidend, um robustere Aussagen darüber treffen zu können, wie sich landbasierte Kli-

mawandelminderungsstrategien auf den Kohlenstoffkreislauf auswirken. Außerdem können so die 

Folgen für Ökosystemfunktionen, die weiteren Ökosystemdienstleistungen unterliegen, besser abge-

schätzt werden, sowohl hinsichtlich von Zusatznutzen als auch von Einbußen. Die Ergebnisse der 

vorliegenden Doktorarbeit weisen darauf hin, dass die Kohlenstoffentnahme, die üblicherweise in 

ambitionierten Klimaschutzszenarien als realisierbar erachtet wird, deutlich zu hoch angesetzt sein 

könnte. Wenn zusätzlich die damit verbundenen Auswirkungen auf weitere Ökosystemdienstleistun-

gen, sowie die technologischen Herausforderungen berücksichtigt werden, so erscheint die stetig 

wachsende Abhängigkeit von negativen Emissionen, um das 2°C Ziel zu erreichen, als eine höchst 

riskante Strategie.  
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This thesis is submitted as a monograph and consists of three main sections (Sections 3-5). Slightly 

modified versions of these sections have also been published in peer-reviewed journals. The sections 

are as follows: 

 

3. Impacts of land-use history on the recovery of ecosystems after agricultural abandonment 

This section is based on the paper Krause, A., Pugh, T. A. M., Bayer, A. D., Lindeskog, M., and 

Arneth, A. (2016). Impacts of land-use history on the recovery of ecosystems after agricultural 

abandonment, Earth System Dynamics, 7, 745-766, doi:10.5194/esd-7-745-2016. 

 

4. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts 

This section is based on the paper Krause, A., Pugh, T. A. M., Bayer, A. D., Li, W., Leung, F., 

Bondeau, A., Doelman, J. C., Humpenöder, F., Anthoni, P., Bodirsky, B. L., Ciais, P., Müller, C., 

Murray-Tortarolo, G., Olin, S., Popp, A., Sitch, S., Stehfest, E., and Arneth, A. (2018). Large uncer-

tainty in carbon uptake potential of land-based climate-change mitigation efforts, Global Change 

Biology, doi:10.1111/gcb.14144. 

 

5. Global consequences of afforestation and bioenergy cultivation on ecosystem service indica-

tors 

This section is based on the paper Krause, A., Pugh, T. A. M., Bayer, A. D., Doelman, J. C., 

Humpenöder, F., Anthoni, P., Olin, S., Bodirsky, B. L., Popp, A., Stehfest, E., and Arneth, A. (2017). 

Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators, 

Biogeosciences, 14, 4829-4850, doi:10.5194/bg-14-4829-2017. 

 

Due to the papers being published, and therefore involving the work of co-authors, I detail my contri-

bution to the Sections 3-5 as follows: 

3. I contributed to the experiment design, performed the simulations and analysis, and led the writing 

of the paper. 

4. I contributed to the experiment design and the implementation of the land-use patterns into LPJ-

GUESS, performed the LPJ-GUESS simulations, analysed the output from all participating models, 

and led the writing of the paper. 

5. I contributed to the experiment design, performed the LPJ-GUESS simulations (which are the same 

as in Section 4 apart from the sensitivity simulations) and analysis, and led the writing of the paper. 

  



ix 
 

Contents 

 
Abstract                   ii 

Zusammenfassung (German)                  iv 

Contents                  ix 

Abbreviations and units                xi 

List of Figures                 xiii 

List of Tables                 xv 

 

1 General introduction                  1 

1.1 Human interferences with the climate system ......................................................................1 

1.2 Perturbations of the terrestrial carbon cycle via land-use changes .......................................3 

1.3 Land-use impacts beyond CO2..............................................................................................6 

1.4 Agricultural land demand and the role of negative emissions ..............................................8 

1.5 Representing land use in Dynamic Global Vegetation Models ..........................................12 

1.6 Thesis structure and objectives ...........................................................................................13 

 

2 Methods                 15 

2.1 The LPJ-GUESS Dynamic Global Vegetation Model ........................................................15 

2.2 Specific methodology Section 3 .........................................................................................17 

2.2.1 LPJ-GUESS model version ...................................................................................17 

2.2.2 Land-use scenarios .................................................................................................18 

2.2.3 Simulation setup ....................................................................................................18 

2.2.4 Analysed grid-cells and biome classification ........................................................19 

2.2.5 Analysed variables and definition of recovery ......................................................19 

2.3 Specific methodology Section 4 .........................................................................................20 

2.3.1 The IMAGE and MAgPIE land-use models ..........................................................20 

2.3.2 Land-use scenarios .................................................................................................22 

2.3.3 Conversion of IMAGE and MAgPIE land-use data to LPJ-GUESS input data ....24 

2.3.4 Description of the Dynamic Global Vegetation Models ........................................26 

2.3.5 Simulation setup ....................................................................................................30 

2.4 Specific methodology Section 5 .........................................................................................31 

2.4.1 Land-use scenarios and simulation setup ...............................................................31 

2.4.2 Analysed ecosystem service indicators ..................................................................31 

2.4.3 Variables not directly available from LPJ-GUESS output ....................................33 

 

3 Impacts of land-use history on the recovery of ecosystems after agricultural 

abandonment                 35 

3.1 Results .................................................................................................................................35 

3.1.1 Reference simulation .............................................................................................35 

3.1.2 Recovery of the dominant plant functional type ....................................................36 

3.1.3 Recovery of vegetation carbon ..............................................................................39 

3.1.4 Recovery of soil carbon .........................................................................................42 

3.1.5 Recovery of net biome productivity ......................................................................44 

3.2 Discussion and conclusions ................................................................................................45 

3.2.1 Comparison of identified recovery times to observations and previous studies ....45 

3.2.2 Implications of recovery definition ........................................................................49 

3.2.3 Conclusions from Section 3 ...................................................................................52 



x 
 

4 Large uncertainty in carbon uptake potential of land-based climate-change mitigation 

efforts                              54 

4.1 Results .................................................................................................................................54 

4.1.1 Total carbon uptake in the mitigation scenarios ....................................................55 

4.1.2 Vegetation carbon ..................................................................................................57 

4.1.3 Soil carbon .............................................................................................................62 

4.1.4 Cumulative carbon capture and storage .................................................................63 

4.2 Discussion and conclusions ................................................................................................65 

4.2.1 Discussion ..............................................................................................................65 

4.2.2 Conclusions from Section 4 ...................................................................................69 

 

5 Global consequences of afforestation and bioenergy cultivation on ecosystem service 

indicators                 71 

5.1 Results .................................................................................................................................71 

5.1.1 Carbon uptake ........................................................................................................71 

5.1.2 Albedo....................................................................................................................74 

5.1.3 Evapotranspiration .................................................................................................74 

5.1.4 Runoff ....................................................................................................................77 

5.1.5 Crop production .....................................................................................................77 

5.1.6 Nitrogen loss ..........................................................................................................78 

5.1.7 Biogenic volatile organic compounds ....................................................................79 

5.2 Discussion and conclusions ................................................................................................80 

5.2.1 Modelling uncertainties under present-day and future climate ..............................80 

5.2.2 Climate regulation via biogeochemical and biophysical effects ............................82 

5.2.3 Water availability ...................................................................................................83 

5.2.4 Food production .....................................................................................................84 

5.2.5 Water and air quality..............................................................................................85 

5.2.6 Potential impacts on biodiversity ...........................................................................86 

5.2.7 Role of model assumptions on carbon uptake via land-based mitigation and 

implications for other ecosystem services .............................................................87 

5.2.8 Conclusions from Section 5 ...................................................................................89 

 

6 General conclusions and outlook              91 

6.1 Answers to the underlying research questions ....................................................................91 

6.2 Limitations ..........................................................................................................................93 

6.3 Future work .........................................................................................................................94 

6.4 Final remarks ......................................................................................................................95 

 

Acknowledgements                                        96 

Literature                                                     97 

Appendix                                                   115 

  



xi 
 

Abbreviations and units 

ADAFF  Avoided deforestation and afforestation/reforestation 

AR5   Fifth Assessment Report 

BASE   Baseline scenario without land-based mitigation 

BECCS   Bioenergy combined with carbon capture and storage 

BECCS&ADAFF A scenarios that combined BECCS and ADAFF 

BVOC   Biogenic volatile organic compound 

C20, C60, C100 Land-use scenarios in which a transition from natural vegetation to cropland 

was followed by a transition back to natural vegetation after 20, 60, or 100 

years 

C   Carbon 

CDR   Carbon dioxide removal 

CFT   Crop functional type 

CH4   Methane 

CMIP5   Coupled Model Intercomparison Project, Phase 5 

CO2   Carbon dioxide 

DGVM   Dynamic Global Vegetation Model 

Ecal   Exa-calories (10
18

 cal) 

EJ   Exa-joule (10
18

 J) 

ES   Ecosystem service 

ESM   Earth System Model 

FAO   Food and Agriculture Organization of the United Nations 

GFED   Global Fire Emissions Database 

GHG   Greenhouse gas 

GPP   Goss primary productivity 

GtC Giga-tons of carbon (1 GtC is equal to 1 peta-gram of carbon or 3.67 GtCO2) 

HYDE History Database of the Global Environment 

IAM   Integrated Assessment Model 

IMAGE  Integrated Model to Assess the Global Environment 

IPCC   Intergovernmental Panel on Climate Change 

IPSL-CM5A-LR Climate model of the Institut Pierre Simon Laplace (low resolution configura-

tion) 

ISI-MIP Inter-Sectoral Impact Model Intercomparison Project 

JULES   Joint UK Land Environment Simulator 

LAI   Leaf area index 

LPJ-GUESS  Lund-Potsdam-Jena General Ecosystem Simulator 



xii 
 

LPJmL   Lund-Potsdam-Jena model with managed Land 

LU   Land use 

LUC   Land-use change 

LUH2   Land-Use Harmonization 2 

LULCC  Land-use and land-cover change 

LUM   Land-use model 

MAgPIE  Model of Agricultural Production and its Impact on the Environment 

Mha   Million hectares (1 Mha is equal to 10
6
 ha or 10 000 km

2
) 

N   Nitrogen 

N2O   Nitrous oxide 

NBP   Net biome productivity 

NH3   Ammonia 

NOX   Nitrogen oxides 

NPP   Net primary productivity 

ORCHIDEE  ORganizing Carbon and Hydrology In Dynamic EcosystEms model 

O3   Ozone 

P20, P60, P100 Land-use scenarios in which a transition from natural vegetation to pasture 

was followed by a transition back to natural vegetation after 20, 60, or 100 

years 

PFT   Plant functional type 

PgC   Peta-grams of carbon (1 PgC is equal to 1 giga-ton of carbon or 3.67 GtCO2) 

PHU   Potential heat unit 

ppmv   Parts per million by volume (1 ppmv CO2 is equal to 2.12 GtC) 

RCP   Representative Concentration Pathway 

SSP   Shared Socioeconomic Pathway 

TeBS   Temperate broadleaved summergreen tree 

  



xiii 
 

List of Figures 

1.1 Time series of atmospheric CO2, surface temperature, yearly and cumulative BECCS, and 

yearly and cumulative LUC emissions as calculated by AR5 IAMs ...........................................2 

1.2 Simplified schematic of the global C cycle .................................................................................4 

1.3 Combined components of the global C budget as a function of time ..........................................6 

1.4 Time series of fraction of global land surface area occupied by different land-cover classes ....9 

2.1 Vegetation representation in LPJ-GUESS .................................................................................16 

2.2 Soil C recovery at one single example site ................................................................................19 

2.3 Time series of land-cover classes in the LUC scenarios ...........................................................23 

2.4 Increase in forest cover in ADAFF and bioenergy production area in BECCS ........................23 

2.5 Time series of global forest area in the individual models for the BASE, ADAFF, and BECCS 

scenarios ....................................................................................................................................31 

3.1 Vegetation C, soil C, dominant PFT, and corresponding biomes in the reference simulation ..35 

3.2 Time series of dominant PFT, vegetation C, soil C, and NBP for the different experiments....36 

3.3 Maps of recovery times for the dominant PFT, vegetation C, soil C, and NBP ........................37 

3.4 Histograms of recovery times for the dominant PFT, vegetation C, soil C, and NBP ..............40 

3.5 Average net N mineralisation rates in the soil ...........................................................................41 

3.6 Average N limitation on vegetation RuBisCO capacity ............................................................42 

3.7 Maximum difference in recovery time for the dominant PFT, vegetation C, soil C, and NBP .43 

3.8 Annual ratio of C removed by harvest and C stored in vegetation ............................................44 

3.9 Maps of recovery times with an alternative recovery definition based on percentage ..............50 

3.10 Maps of recovery times with an alternative recovery definition base on an additional upper 

threshold ....................................................................................................................................51 

4.1 Global and tropical vegetation and litter and soil C pools in the LUMs and DGVMs ..............54 

4.2 Time series of simulated C uptake in the LUMs and DGVMs ..................................................56 

4.3 Simulated change in total C, vegetation C, litter and soil C, cumulative CCS, cumulative 

instant deforestation emissions, and cumulative NPP for the mitigation simulations ...............57 

4.4 Maps of total C uptake in the LUMs and DGVMs ....................................................................58 

4.5 Maps of the range divided by the mean in total C uptake across DGVMs ................................59 

4.6 Example sites showing vegetation C, and soil C, and LUC trajectories ...................................60 

4.7 Potential vegetation C, litter C, and soil C stocks in MAgPIE and LPJ-GUESS ......................61 

4.8 Comparison of vegetation C, litter C, and soil C changes following afforestation in MAgPIE 

and LPJ-GUESS for different biomes .......................................................................................61 

4.9 Maps of cumulative NPP differences for the mitigation scenarios in the DGVMs ...................63 

4.10 Maps of bioenergy crop yields in BECCS .................................................................................64 

5.1 Time series of ecosystem functions as simulated by LPJ-GUESS ............................................73 



xiv 
 

5.2 Global relative changes in analysed ecosystem functions .................................................... 74 

5.3 Regional relative changes in ecosystem functions (region-based) in BASE, ADAFF, and 

BECCS ............................................................................................................................ 75 

5.4 Regional relative changes in ecosystem functions (biome-based) in BASE, ADAFF, and 

BECCS ............................................................................................................................ 76 

5.5 Regional relative changes in ecosystem functions (region-based) in BECCS&ADAFF ......... 77 

5.6 Impacts of fixing dynamic PHU, crop area, N fertilisers, and atmospheric CO2 on LPJ-GUESS 

crop production and N loss................................................................................................ 78 

5.7 Maps of mean surface albedo in January and July in LPJ-GUESS........................................ 81 

5.8 Map of total annual runoff in LPJ-GUESS ......................................................................... 81 

  



xv 
 

List of Tables 

2.1 LPJ-GUESS plant functional types ...........................................................................................17 

2.2 Land-cover changes in the mitigation scenarios ........................................................................24 

2.3 LPJ-GUESS CFTs, LUM crop types, and EarthStat major crops .............................................25 

2.4 Overview of major DGVM differences .....................................................................................27 

2.5 Linking ecosystem functions to ecosystem services .................................................................32 

3.1 Average recovery times and standard deviations per biome and for each simulation ...............38 

3.2 Observations and LPJ-GUESS results of soil C changes during agriculture and vegetation and 

soil C recovery after abandonment ............................................................................................46 

4.1 Relative contribution of avoided deforestation (compared to afforestation) to the vegetation 

carbon uptake in the LUMs and DGVMs for the ADAFF simulations .....................................59 

5.1 Global values of all analysed ecosystem functions as simulated by LPJ-GUESS ....................72



1 
 

 

1 General introduction 

 

Historic land-use and land-cover changes (LULCC, often simply referred to as land-use changes, 

LUC) have resulted in dramatic alterations of the Earth’s surface. LUC are expected to continue in the 

future as a function of population growth, changing diets, and changing crop yields, but also because 

land management is increasingly considered as an option to mitigate climate change. However, the 

efficacy of this approach is highly uncertain and associated side effects on the environment are often 

not considered or unknown. In this thesis, I explore the implications of LUC on the recovery of eco-

systems, future C uptake potential, and impacts on other ecosystem functions by applying and analys-

ing results from process-based global vegetation models. The introduction of the thesis begins with an 

overview about human-induced climate change, followed by a closer examination of LUC impacts on 

the carbon cycle, and on climate and ecosystem functions in general. Afterwards, I provide some 

background information about the drivers and the land demand of historic and future LUC, including 

the necessity of land-based mitigation to stabilise climate. Lastly, I depict recent progress in global 

vegetation modelling with respect to LUC before describing the structure and research questions 

addressed in this thesis. 

 

1.1 Human interferences with the climate system 

Climate on Earth has always been changing. For example, temperatures were so warm during the 

Early Eocene Climatic Optimum (51-53 million years ago) that no ice existed on its surface (Zachos et 

al., 2008). In contrast, the Earth has several times entered extremely cold phases in which ice sheets 

reached tropical latitudes (Rieu et al., 2007). The key forcings and feedbacks responsible for these 

climate fluctuations are still not fully known (e.g. Anagnostou et al., 2016, Foster et al., 2017, Spiegl 

et al., 2015, Zachos et al., 2001). 

Climate continued to change during human evolution. In fact, the steady global cooling over the last 

10 million years or so was probably a crucial driving factor for the divergence of human species from 

chimpanzees (Lieberman, 2014). The last 2.5 million years, the Quaternary, were characterised by 

repeating cycles of long cold and dry periods (glacials) interrupted by short warm and humid periods 

(interglacials), triggered by cyclic changes of the Earth’s orbital parameters (Ruddiman, 2006). Hu-

mans only started to settle down permanently at the beginning of the current interglacial, the Holocene 

(ca. 11 700 years ago until present), in which climate was not only relatively warm and wet but also 

remarkably stable. However, temperatures started to rise again at the start of the Industrial Revolution 

(around year 1850), particularly since the 1970s. Global surface temperatures today are ~1°C warmer 

than at the start of the industrial era (Hansen et al., 2017a) and warmer than most if not all of the 

Holocene (Marcott et al., 2013). A large body of evidence suggests that recent climate change was 
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largely caused by human activities, most importantly the emissions of carbon dioxide (CO2) and other 

greenhouse gases (GHG) such as methane (CH4) and nitrous oxide (N2O) to the atmosphere (Bindoff 

et al., 2013). Atmospheric CO2 levels recently passed 400 ppmv (Dlugokencky and Tans, 2017), 

 

Figure 1.1: Time series (2000-2100) of atmospheric CO2 concentration [ppm] (a), surface temperature increase 

[°C] relative to the pre-industrial era, calculated using the reduced complexity climate model MAGICC6 (b), 

yearly bioenergy with capture and storage [exa-joule, EJ] (c), cumulative bioenergy with capture and storage (d), 

yearly land-use change emissions [GtC] (e), and cumulative land-use change emissions (f) as calculated by 

Integrated Assessment Models (IAM) for the Fifth Assessment Report (AR5) of the Intergovernmental Panel on 

Climate Change. Each line shows the results from one IAM simulation extracted from the AR5 scenario database 

(https://secure.iiasa.ac.at/web-apps/ene/AR5DB/, last accessed September 2017). Subfields chosen are “Concen-

tration|CO2|MAGICC6|MED”, “Temperature|Global Mean|MAGICC6|MED”, “Primary Energy|Biomass|w/ 

CCS”, and ”Emissions|CO2|Land Use”. Missing values are linearly interpolated. Note that all scenarios with a 

bioenergy production of >400 EJ yr
-1

 are from the same IAM (GCAM 3.0). Since such bioenergy production 

rates seem highly unlikely (Creutzig et al., 2015) this suggests an error or miscalculation of some processes, or 

implausible assumptions for this model. 
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compared to typical values of 180-200 ppmv for glacials and 240-280 ppmv for interglacials, and thus 

exceed the range reconstructed for the last 800 000 years (Bereiter et al., 2015, Luthi et al., 2008). 

Climate projections suggest that for a “business-as-usual scenario” (i.e. extrapolating the historic trend 

in GHG emissions into the future), atmospheric CO2 levels will continue to rise and likely exceed 800 

ppmv by the end of the 21
st
 century, resulting in an additional warming of several degrees Celsius 

(Fig. 1.1a-b; see also e.g. Friedlingstein et al., 2014, Xu and Ramanathan, 2017). This would imply 

severe, long-term, and potentially irreversible impacts on ice sheets, sea level, ecosystems, and human 

well-being (e.g. Barnett et al., 2005, Clark et al., 2016, Doney et al., 2009, Knutti et al., 2016, Thomas 

et al., 2004, Watts et al., 2015). However, as set as an explicit goal in the UN Paris Agreement in 

2015, rapid reductions in GHG emissions and the implementation of so-called “negative emissions” 

(the removal of CO2 from the atmosphere) could possibly limit global warming below 2°C, or prefera-

bly even 1.5°C, relative to the pre-industrial era (Figueres et al., 2017, Luderer et al., 2016, Rockstrom 

et al., 2017, Rogelj et al., 2016a, Sanderson et al., 2016, Schleussner et al., 2016). 

 

1.2 Perturbations of the terrestrial carbon cycle via land-use changes 

The global carbon (C) cycle describes C exchanges between the atmosphere, hydrosphere, cryosphere, 

biosphere, pedosphere, and lithosphere, mainly in the form of CO2 (Fig. 1.2; Ciais et al., 2013). Most 

of the C on Earth is stored in the lithosphere in the form of sedimentary carbonates (>66 000 000 GtC) 

or in the oceans (~38 000 GtC), primary as inorganic C dissolved at great depths. A much smaller 

fraction exists in the vegetation (420-620 GtC), soils (1500-2400 GtC), or is stored in rock formations 

as fossil fuels (>4000 GtC, partly as accessible reserves; Ciais et al., 2013). However, while these 

pools seem negligible compared to the lithospheric and oceanic reservoir, C fluxes occur much faster 

in the small pools, whereas the larger pools are not cycled on human-relevant time scales. The atmos-

phere currently contains around 850 GtC (~20 GtC more than in the 2013 report of the Intergovern-

mental Panel on Climate Change – IPCC; see Fig. 1.2). C exchanges between the biosphere and the 

atmosphere occur on different time scales. During day time, plants use energy from solar radiation to 

take up C from the air through their leaves, a process called photosynthesis. Each year, photosynthesis 

in the terrestrial biosphere removes around 120 GtC from the atmosphere (gross primary productivity, 

GPP; Beer et al., 2010). However, at the same time plants also release C to the atmosphere. Around 

half of the GPP (60 GtC yr
-1

) is directly re-emitted via autotrophic respiration, while the remainder 

(net primary productivity, NPP; Ito, 2011) is primary used for plant growth. When the plant, or part of 

the plant, dies, its dead biomass is transferred to the litter, where it is decomposed by microbes, and 

the C released back to the atmosphere (heterotrophic respiration). Under present-day conditions global 

GPP is slightly larger than the sum of autotrophic respiration, heterotrophic respiration, and other C 

losses (for example through fire), so that the land acts as a net C sink (see below). The decay of dead 

organic material is sometimes prevented by anaerobic conditions, which over time scales of millions 
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of years enables the formation of coal, oil, or natural gas. Over these very long time periods, the at-

mospheric C content is primarily determined by the balance between the weathering of rocks (remov-

al) and volcanic eruptions (release).   

 
Figure 1.2: Simplified schematic of the global C cycle. Numbers represent C stocks [PgC] and annual C ex-

change fluxes [PgC yr
–1

]. Black numbers and arrows indicate reservoir mass and exchange fluxes estimated for 

the time prior to the industrial era, about 1750. Red arrows and numbers indicate annual anthropogenic fluxes 

averaged over the 2000–2009 time period. The figure is from Ciais et al. (2013). 

 

Past human activities have caused dramatic alterations of the C cycle, either via burning fossil fuels 

and cement production (a transfer of C from the Earth crust/lithosphere to the atmosphere), or via 

LUC (a transfer of C from the terrestrial biosphere and pedosphere to the atmosphere). As this thesis 

focuses on interactions between terrestrial ecosystems and the atmosphere, I provide an overview of 

LUC impacts on vegetation and soil C stocks in the following. Deforestation for agricultural land 

(croplands or pastures) releases large amounts of C stored in biomass to the atmosphere, either directly 

(if forests are burned) or subsequently (when the wood products are burned or decompose). Addition-

ally, deforestation prevents continued C accumulation in old-growth forests (Luyssaert et al., 2008), 

e.g. due to CO2 fertilisation. Depending on prior vegetation cover, agricultural soils can also be a C 
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source, but emissions usually occur over longer time periods than for vegetation C. Croplands general-

ly result in soil C losses compared to natural ecosystems because harvest reduces the C input to the 

soil and heterotrophic respiration and erosion rates are often high in croplands (Guo and Gifford, 

2002, Smith et al., 2016b). For pastures the picture is less clear, with the direction and magnitude of 

change depending on climate, soils, and management intensity (McSherry and Ritchie, 2013, Powers 

et al., 2011). For example, a recent study estimated that agricultural soils represented a C source of 

around 133 GtC during the Holocene, with equal contributions from croplands and pastures 

(Sanderman et al., 2017). In contrast, a review by Li et al. (submitted) found small soil C gains fol-

lowing forest conversions to grassland at most locations, but did not account for management intensity 

due to the lack of reported information. Conversely, once agricultural land abandonment occurs, 

regrowing secondary forests act as a long-term C sink (if not further disturbed) as vegetation and soil 

C pools recover (Chazdon, 2014, Chazdon et al., 2016, Houghton and Nassikas, 2017). 

Historic LUC emissions are typically calculated using bookkeeping approaches (Hansis et al., 2015, 

Houghton, 2003a) or Dynamic Global Vegetation Models (DGVMs; Arneth et al., 2017, Le Quere et 

al., 2016). The cumulative net LUC emissions between 1750 and today have been estimated to be 

around 190 GtC, compared to 410 GtC from fossil fuel burning and industry (Le Quere et al., 2016). 

However, the relative contribution of LUC emissions to total anthropogenic CO2 emissions decreased 

over time, as fossil fuel emissions accelerated; net LUC emissions over the last decade are estimated 

to have been around 1.0 GtC yr
-1

, compared to 9.3 GtC yr
-1

 from fossil fuel burning and cement pro-

duction (Fig. 1.3). Currently, the land takes up around 30% of the total anthropogenic C emissions of 

ca. 10.3 GtC yr
-1

, thereby reducing the growth rate of atmospheric CO2 (Le Quere et al., 2016). The 

land sink flux, FRES, is typically derived as a remainder from the other terms of the global C cycle as: 

 𝐹𝑅𝐸𝑆 = 𝐹𝐹𝐹𝐶 +  𝐹𝐿𝑈𝐶 − 𝐹𝑂𝐶𝐸𝐴𝑁 −  𝐺𝐴𝑇𝑀 

where FFFC is fossil fuel and cement emissions, FLUC the net LUC emissions, FOCEAN the atmosphere-

ocean flux, and GATM the growth rate of atmospheric CO2. It is thus often termed the "residual sink”. 

The net land flux (the sum of FRES and FLUC) is relatively well constrained by both CO2 budgets and 

inversions. However, despite having been studied intensively for many years, the size of both LUC 

emissions and the residual sink are subject to very high uncertainties (Arneth et al., 2017, Houghton et 

al., 2012, Le Quere et al., 2016, Peng et al., 2017, Prestele et al., 2017), and there is still no scientific 

census about the spatial distribution and nature of the sink (i.e. the relative contribution of climate 

change, CO2, N deposition, recovery from past disturbances, and changing management) and its future 

persistence (Ahlstrom et al., 2015, Bellassen and Luyssaert, 2014, Erb et al., 2013, Houghton, 2003b, 

Houghton, 2007, Keenan et al., 2016, Pan et al., 2011, Poulter et al., 2014, Schimel et al., 2001, Sitch 

et al., 2015, Zhu et al., 2016). 
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Figure 1.3: Combined components of the global C budget as a function of time, for emissions from fossil fuels 

and industry, and emissions from LUC, as well as their partitioning among the atmosphere, land, and oceans. 

The figure is from Le Quere et al. (2016). 

 

1.3 Land-use impacts beyond CO2 

The effects of LUC on climate can generally be classified into two broad categories, alterations of 

atmospheric composition (biogeochemical effects, e.g. Arneth et al., 2010) and changes in surface 

energy and water fluxes (biophysical effects, Foley et al., 2003). Changes in atmospheric CO2 levels 

belong to the former group, with other biogeochemical effects being emissions of CH4 (primary from 

ruminants and rice cultivation) and N2O (primary from fertilisers) (Tian et al., 2016, Tubiello et al., 

2015, Zaehle et al., 2011). Additionally, agriculture can alter the emissions of non-GHG reactive 

nitrogen (N) (Erisman et al., 2011), mineral dust aerosols (Ginoux et al., 2012), fire aerosols (Kloster 

et al., 2010), or biogenic volatile organic compounds (BVOCs; Rosenkranz et al., 2015, Unger, 2014), 

thereby influencing climate directly or indirectly via the formation of ozone (O3, a GHG), secondary 

aerosols, or by changing the properties of clouds. 

Despite this, biophysical LUC effects impact climate primarily on the local to regional scale. Surface 

albedo varies significantly between forests and open land, especially in regions under snow cover, 

thereby affecting the proportion of absorbed sunlight (Betts, 2000, Devaraju et al., 2015, Jackson et 

al., 2008). Forests are also known to evaporate more water (and to have a larger roughness length) 

than agricultural areas, resulting in regional surface cooling and potentially affecting cloud formation 
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(Bala et al., 2007, Ban-Weiss et al., 2011) and regional or remote precipitation patterns (Ellison et al., 

2012, Quesada et al., 2017, Sampaio et al., 2007, Swann et al., 2012, Zemp et al., 2014). Additionally, 

water vapour in the atmosphere acts as a GHG (Boucher et al., 2004), and the absorbed energy will be 

released again once the vapour condenses, possibly at a very different location. While the albedo effect 

is particularly important in high latitudes, the evaporation effect dominates in the tropics (Bonan, 

2008). Consequently, the question whether the net biophysical climate effect of deforestation is a 

regional warming or cooling depends on the specific location and time of the year (Alkama and 

Cescatti, 2016, Bright et al., 2017, Li et al., 2015, Perugini et al., 2017). 

Over the last years a number of modelling studies addressed the question of how important biophysi-

cal LUC effects on surface temperature are compared to biogeochemical effects (Perugini et al., 2017). 

Some of these studies found biophysical and biogeochemical effects comparable in magnitude when 

applying idealised deforestation/afforestation scenarios (Bala et al., 2007, Bathiany et al., 2010, 

Devaraju et al., 2015, Swann et al., 2012). In contrast, most simulations driven by more realistic LUC 

suggest that biophysical impacts are relatively small on the global scale (Arora and Montenegro, 2011, 

Brovkin et al., 2013, Pongratz et al., 2011, Pongratz et al., 2010), even though individual studies also 

reported large biophysical effects (Davies-Barnard et al., 2014). On the local to regional scale, bio-

physical deforestation effects are often found to exceed the magnitude of the warming signal from 

increased GHG emissions (Arora and Montenegro, 2011, Betts et al., 2007, de Noblet-Ducoudre et al., 

2012, He et al., 2014). While most studies thus point towards negligible biophysical impacts on the 

global scale, this topic is still debated. Uncertainty mainly arises from the inadequate representation of 

landscape heterogeneity and LUC processes, and from different implementations of LUC into the 

climate/Earth system models (Brovkin et al., 2013, de Noblet-Ducoudre et al., 2012, Pitman et al., 

2009, Rounsevell et al., 2014). 

Furthermore, the impacts of LUC on the environment are not restricted to climate. Natural ecosystems 

provide a wide range of ecosystem services (ES), typically classified into provisioning, regulating, and 

cultural services (Haines-Yong and Potschin, 2013, Millennium Ecosystem Assessment, 2005). His-

toric human activities have caused dramatic alterations of a wide range of ecosystem functions and 

associated ES. For example, Rockström et al. (2009) proposed that three (biodiversity loss, interfer-

ence with the N cycle, climate change) out of nine planetary boundaries have already been exceeded. 

Species extinction rates today are orders of magnitudes higher than natural background levels 

(Barnosky et al., 2011, Pimm et al., 2014), largely caused by LUC (Newbold et al., 2014). Modern 

agriculture secures food provision for a growing population but enhances soil erosion, compaction, 

and salinisation, and the perturbation of biogeochemical cycles (Foley et al., 2005, Stoate et al., 2001). 

Impacts on aquatic systems are closely related to those on soils. Groundwater and rivers suffer from 

unprecedented amounts of toxicants and leached nutrients (Malmqvist and Rundle, 2002), and lakes as 

well as coastal regions are characterised by acidification and eutrophication (Galloway et al., 2004). 
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An increasing amount of atmospheric pollutants such as tropospheric O3 affect plant growth (Arneth et 

al., 2010) and reduce human life expectancy (Kampa and Castanas, 2008). However, the multiplicity 

of such environmental side effects are often not considered when LUC and land management are being 

discussed, for example, as options to mitigate climate change (Williamson, 2016). 

 

1.4 Agricultural land demand and the role of negative emissions 

There is scientific agreement that humans started the domestication of wild plants and animals at the 

beginning of the Holocene in several regions of the world independently from each other (Ellis et al., 

2013, Lieberman, 2014). Agriculture quickly replaced hunting-and-gathering as the dominant lifestyle, 

and the substantial increase in the amount of calories available to people triggered a massive popula-

tion growth and the establishment of permanent settlements (but also increased the risk of famine, 

malnutrition, disease, inequality, violence, and labor input; Harari, 2015). However, the extent of early 

agriculture and associated impacts on the environment are still controversial (Ellis et al., 2013, Lewis 

and Maslin, 2015), and, despite agreement on the general picture, the available spatially-explicit global 

LUC reconstructions (Hurtt et al., 2011, Kaplan et al., 2011, Klein Goldewijk et al., 2016, Klein 

Goldewijk et al., 2011, Pongratz et al., 2008, Ramankutty and Foley, 1999) differ substantially in 

terms of total cultivated area and spatial patterns over time. According to the Hurtt et al. (2011) recon-

struction (which is based on the History Database of the Global Environment - HYDE - reconstruction 

by Klein Goldewijk et al., 2011), by year 1850 around 564 Mha of the Earth’s land surface was used 

for cropland and 774 Mha for pasture. LUC continues to take place until present and croplands and 

pastures in year 2005 covered around 1560 and 3340 Mha, respectively (Hurtt et al., 2011; see also 

Fig. 1.4). Uncertainty in these numbers is particularly large for pastures partly due to terminological 

difficulties and a wide range of management intensities across regions (Alexander et al., 2017b, Erb et 

al., 2017). However, agricultural development since the early 20
th
 century has not only been character-

ised by an expansion of agricultural land but also by rapidly changing management practices. The 

invention and application of synthetic fertilisers, pesticides, irrigation, and new crop varieties and 

machines ensured food provision for an accelerating population growth despite only moderately in-

creasing production area (Pretty, 2008). Food availability, in combination with improved hygiene, 

freshwater access, and modern medicine triggered the rapid population increase from 2.5 to 7.5 billion 

people between 1950 and today (United Nations, 2015). At some places, increased agricultural 

productivity, production shifts, and societal changes also allowed for the abandonment of land previ-

ously used for cropping or grazing. Cramer et al. (2008) calculated an abandoned cropland area of 

around 210 Mha globally between 1700 and 1990 based on the LUC reconstruction by Ramankutty 

and Foley (1999). Using LUC reconstructions from the HYDE database, Campbell et al. (2008) esti-

mated total abandoned agricultural area (cropland and pasture) in the year 2000 to be around 474-579 

Mha (including areas converted to forest or urban), mainly in temperate regions. While these numbers 
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seem relatively small compared to present-day total agricultural area (~5000 Mha), there is potential 

for future cropland and pasture abandonment (see next paragraph). 

 
Figure 1.4: Time series of reconstructed/modelled fraction of global land surface area (excluding ice and open 

water) occupied by urban land, cropland, pasture, secondary non-forest, secondary forest, primary non-forest, 

primary forest for 1500–2100. The future period is based on RCP2.6-IMAGE. The total global ice-free land area 

is 12 900 Mha. The figure is from Hurtt et al. (2011). 

 

LUC will continue to take place in the future, with large uncertainties in the projected trends and 

spatial patterns (Alexander et al., 2017b, Eitelberg et al., 2015, Popp et al., 2017). According to five 

Shared Socioeconomic Pathways (SSPs), global population will continue to grow at least until mid-

century and reach 6.9-12.6 billion people by the end of the century (Samir and Lutz, 2017). Increases 

in crop productivity and closing yield gaps might reduce the land demand to feed the growing popula-

tion and potentially free up land for other usages (Erb et al., 2016, Foley et al., 2011, Godfray et al., 

2010, Mueller et al., 2012). However, yields have been reported to stagnate or decline in several 

regions of the world (Alexandratos and Bruinsma, 2012, Ray et al., 2012, Tilman et al., 2002), and 

even retaining the rate of historic yield increases will likely prove insufficient to meet projected food 

demand (Laurance et al., 2014, Ray et al., 2013). Moreover, future yield increases might be hindered 

by climate change impacts on crop growth, at least in some regions (Pugh et al., 2016, Rosenzweig et 

al., 2014). Shifts in diets towards more meat and dairy consumption are expected to trigger additional 

pressure on natural ecosystems (Erb et al., 2016, Valin et al., 2014), although any shift towards vege-

tarian diets and the minimisation of food losses and overconsumption could reduce agricultural land 

demand (Alexander et al., 2017a, Alexander et al., 2016, Bajzelj et al., 2014, Edmonds et al., 2013, 

Godfray et al., 2010). Taken together, a net expansion in food-producing agricultural area within the 

next decades seems more likely than large-scale agricultural abandonment. 
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Additionally, the necessity of negative emissions might trigger future LUC. From more than 1000 

scenarios considered in the Fifth Assessment Report (AR5) of the IPCC, all scenarios limiting global 

end-of-century warming below 1.5°C, the majority of scenarios limiting warming below 2°C, and even 

many less ambitious scenarios needed to invoke substantial amounts of negative emissions, i.e. the 

removal of CO2 from the atmosphere, in order to meet the targeted warming levels (Fuss et al., 2014). 

Noteworthy, in all scenarios that remain below 2°C warming without negative emissions, global 

emissions peak around the year 2010, which, despite a recent slowdown in emissions growth (Peters et 

al., 2017), is contrary to observations (Anderson, 2015). The amount of negative emissions necessary 

to achieve the 2°C target varies across studies and scenarios, depending on assumed GHG (and aero-

sol) emission trajectories, the desired likelihood to achieve the target (Rogelj et al., 2015), and also on 

the time period chosen to define pre-industrial climate (Schurer et al., 2017)
1
. The remaining cumula-

tive emissions budget to stay below 2°C warming until 2100 has been estimated to be around 140-320 

GtC (updated to the year 2017 based on Anderson, 2015, Anderson and Peters, 2016, Rockstrom et al., 

2017, Rogelj et al., 2016b), with a recent study claiming that 180-220 GtC could still allow for the 

1.5°C target (Millar et al., 2017)
2
. Any exceedance of this would have to be compensated by negative 

emissions. To put the 140-320 GtC into perspective, total anthropogenic emissions today are around 

11.2 GtC yr
-1

 (emissions in year 2015; Le Quere et al., 2016), equivalent to 13-29 years of current CO2 

emission rates until the budget is reached. Using a simple coupled C-cycle climate model, Lenton 

(2010) found that, while negative emissions of 300 GtC (via afforestation, in addition to conventional 

mitigation in their baseline scenario which reached 2.5°C warming in 2100) proved insufficient to stay 

below the 2°C target, 1000 GtC (via biochar and biomass burial) resulted in an end-of-century warm-

ing of 1.34°C. Gasser et al. (2015) combined 11 state-of-the-art Earth System Models (ESMs) with 

stylised mitigation scenarios and estimated that, depending on timing and intensity of conventional 

mitigation efforts, between 25-100 (if fossil fuel CO2 emission reductions start in 2015 at a rate of -5% 

per year) and 450-800 GtC (start in 2030 at -1% per year) will have to be removed from the atmos-

phere by year 2100 to reach the 2°C target. Cumulative negative emissions reported from Integrated 

Assessment Model (IAM) scenarios typically lie at the mid-to-lower end of this range
3
, on average 

~130-250 GtC (Boysen et al., 2017b, Fuss et al., 2016, Rogelj et al., 2015, Smith et al., 2016a, Tavoni 

and Socolow, 2013, Wiltshire and Davies-Barnard, 2015). The recent incorporation of negative emis-

sions into IAMs increased the models’ options to achieve ambitious mitigation targets. This resulted in 

                                                           
1
 This issue is further complicated by misinterpretations and inconsistencies across studies due to the confusion 

of gross vs. net negative emissions, the confusion of CO2 vs. C, different definitions of negative emissions, e.g. 

bioenergy CCS vs. total CCS, or the inclusion/exclusion of other options than BECCS like afforestation, and 

different CCS efficiencies and conversion factors to translate between energy [J] and mass [kgC]. 
2
 Note that Millar et al. (2017) reported the “threshold exceedance budget”, while the smaller “threshold avoid-

ance budget” is probably a more appropriate measure; see e.g. https://www.cicero.uio.no/no/posts/klima/how-

much-carbon-dioxide-can-we-emit (last accessed October 2017). 
3
 Note that Gasser et al. (2015) claimed that their estimates of gross negative emissions fall in the lower end of 

the range reported by IAMs. The reason presumably is that Gasser et al. looked at total CCS (including fossil 

fuel CCS), while IAMs typically report BECCS. 

https://www.cicero.uio.no/no/posts/klima/how-much-carbon-dioxide-can-we-emit
https://www.cicero.uio.no/no/posts/klima/how-much-carbon-dioxide-can-we-emit
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the paradox that “despite little progress in international climate policy and increasing emissions, long-

term climate stabilisation through the lens of IAM appears easier and less expensive” (Tavoni and 

Socolow, 2013). IAMs typically assume perfect foresight about socioeconomic and technological 

development, and thus tend to favour negative emissions over conventional mitigation if found to be 

economically beneficial. The production of bioenergy crops in combination with C capture and geo-

logic storage upon combustion (BECCS) is currently regarded by the IAMs as the most promising 

option to achieve negative emissions (see also Fig. 1.1c-d). However, even though IAMs typically 

assume very high yields from second-generation bioenergy crops (Creutzig, 2016), this approach 

would require the allocation of a significant proportion of the land surface for bioenergy cultivation, 

thereby increasing pressure on remaining natural ecosystems and food-producing agriculture (Schueler 

et al., 2016, Slade et al., 2014). For example, Smith et al. (2016a) reported bioenergy land require-

ments of 380-700 Mha (assuming the cultivation of high-productive dedicated energy crops) by the 

end of the century for scenarios consistent with the 2°C target, and potentially a lot more if only forest 

or agricultural residues were used as bioenergy feedstocks
4
. Humpenöder et al. (2014) found a cumu-

lative carbon dioxide removal (CDR) of 160 GtC on ~500 Mha bioenergy area by the end of the 

century, including the assumption of technological yield increases in their underlying vegetation 

model. Using an uncoupled version of the same vegetation model as Humpenöder et al., Boysen et al. 

(2017a) estimated that in the absence of technological yield increases for bioenergy crops, at least 

1300 Mha (~30% of current agricultural area) of low-productive land (which in their study is aban-

doned first) currently used for food production would have to be converted to bioenergy plantations by 

year 2020 to achieve >130 GtC in 2100. A smaller area would only be possible if more productive 

land was available for bioenergy cultivation (Boysen et al., 2016). 

An alternative or supplement to BECCS could be the protection and expansion of global forest area 

because forests are natural C sinks (Houghton et al., 2015, Mackey et al., 2013). In fact, some IAMs 

explicitly consider avoided deforestation and afforestation/reforestation (ADAFF) as an option to 

reduce atmospheric CO2 (Fig. 1.1e-f). However, the associated land demand for a given CDR target 

would likely be even higher than for BECCS (Humpenöder et al., 2014, Lenton, 2010, Smith et al., 

2016a). Some scientists proposed the irrigation of desert regions to allow for tree growth (Becker et 

al., 2013, Keller et al., 2014, Ornstein et al., 2009), although there are doubts concerning costs and 

feasibility. Other options of less land requirements also have the potential to remove C from the at-

mosphere (or more generally speaking to stabilise climate, often termed geoengineering; Lenton and 

Vaughan, 2009), but so far are regarded as too costly, energy demanding, ineffective, technologically 

unproven, or bear serious environmental risks (Field and Mach, 2017, Keller et al., 2014, Smith et al., 

2016a, Williamson, 2016). 

                                                           
4
 This is only for bioenergy cultivation in combination with CCS. However, many scenarios (including >2°C 

scenarios) also rely on substantial amounts of non-CCS bioenergy, thereby increasing total bioenergy land 

demand. 
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Finally, future LUC will in turn also be affected by climate change and atmospheric CO2 levels which 

impact on vegetation composition (Holmgren et al., 2013, Scholze et al., 2006), forest mortality (Allen 

et al., 2015, Choat et al., 2012, Neumann et al., 2017, Seidl et al., 2014), forest regrowth (Anderson-

Teixeira et al., 2013), and crop yields (Brown et al., 2000, Cai et al., 2016, Challinor et al., 2014, 

McGrath and Lobell, 2013, Pugh et al., 2016, Rosenzweig et al., 2014, Schauberger et al., 2017), with 

direct implications on terrestrial C stocks and the area needed for food or bioenergy production. Re-

versely, if negative emissions result in a net removal of C from the atmosphere (i.e. gross negative 

emissions exceed fossil fuel emissions), natural C sink capacities might weaken and hinder the effec-

tiveness of negative emissions (Fuss et al., 2016, Jones et al., 2016). 

 

1.5 Representing land use in Dynamic Global Vegetation Models 

DGVMs were originally designed to simulate water and C fluxes in potential natural vegetation and 

their response to environmental changes (Cramer et al., 2001, Prentice et al., 2007, Quillet et al., 

2010). They are usually run “offline” forced by prescribed climate and other forcing variables but 

sometimes are also run “online” as part of the land/vegetation component of IAMs or ESMs to study 

feedbacks between the terrestrial biosphere, socio-economy, and the physical climate system. Despite 

its importance for the C cycle and climate, until recently LUC was not, or only very rudimentarily, 

represented in DGVMs or similar models like land surface models (Pugh et al., 2015). For example, 

most ESMs contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) 

treated cropland similar or equal to natural grassland, thereby not accounting for differences in phe-

nology, physiology, and management (Brovkin et al., 2013, Xu and Hoffman, 2015). Bioenergy 

plantations were treated as cropland or grassland, or were entirely ignored (Boysen et al., 2017b). 

Progress over the last decade with respect to LUC in DGVMs includes the parameterisation of specific 

crop functional types (CFTs; Bondeau et al., 2007, Levis et al., 2012, Lindeskog et al., 2013), includ-

ing dedicated bioenergy crops (Beringer et al., 2011, Mayer, 2017), management techniques like 

tillage (Levis et al., 2014, Pugh et al., 2015, Stocker et al., 2014) and irrigation (Jagermeyr et al., 

2015, Lindeskog et al., 2013), flexible sowing and harvesting dates (Bondeau et al., 2007, Lindeskog 

et al., 2013), variable grassland management (Rolinski et al., 2017), the implementation of the N cycle 

enabling crop fertilisation (Olin et al., 2015b), and gross land-cover transitions, including shifting 

cultivation, wood harvest, and subsequent forest regrowth in different age classes (Arneth et al., 2017, 

Bayer et al., 2017, Shevliakova et al., 2009, Stocker et al., 2014, Wilkenskjeld et al., 2014). The more 

detailed representation of anthropogenic activities tends to increase historic LUC emissions in the 

DGVMs, and consequently questions our current process understanding about ecosystem responses to 

environmental changes (Arneth et al., 2017, Pugh et al., 2015). 
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1.6 Thesis structure and objectives 

The main research questions of this thesis are as follows: 

- What are the impacts of land-use and land-cover changes on the terrestrial carbon cycle and to 

what degree are these impacts reversible? 

- Can large-scale land-based mitigation efforts contribute to climate stabilisation by removing 

substantial amounts of carbon from the atmosphere? 

- What would be the environmental side effects of land-based climate change mitigation? 

- How do different representations of agricultural processes in vegetation models affect the results? 

To answer these questions the results of this thesis are broken into three main sections (Sections 3-5), 

each with their own objectives. Section 2 summarises information about the common methodology 

used in all sections of this thesis (i.e., the applied DGVM LPJ-GUESS) as well as about the specific 

methodology used in Sections 3-5. Section 3 studies the long-term impacts of the LU history on the 

recovery of ecosystems in LPJ-GUESS. The research questions addressed are: 

- How fast do ecosystems return to their pre-disturbed state (in terms of vegetation composition, 

carbon pools, and fluxes) following agricultural abandonment? 

- Is there an impact of different land-use histories (in terms of agricultural duration and management 

type) on the recovery of ecosystems? 

- Are there any regions where the ecosystem never returns to its pre-disturbed state? 

Sections 4 and 5 directly address the potential, and environmental side effects, of land-based climate 

change mitigation projects. Both sections build upon output from DGVMs driven by LUC scenarios 

from two land-use models. In these scenarios, C removal is achieved via bioenergy production com-

bined with C capture and storage and/or avoided deforestation and afforestation
5
. Section 4 focuses on 

potential C removal from land-based mitigation, not only in LPJ-GUESS, but also in three other 

DGVMs. The questions addressed are: 

- What amounts of carbon removal from the atmosphere can be achieved in Dynamic Global Vege-

tation Models when driven by scenarios of future land management for climate change mitigation? 

-  How do these numbers compare to the carbon removal achieved in the land-use models used to 

create the scenarios? 

- What are the main mechanisms responsible for the differences? 

Section 5 focuses on potential environmental side effects of land-based mitigation in addition to C 

removal, as calculated using LPJ-GUESS simulations. For this, a number of ecosystem services indi-

                                                           
5
 The term afforestation refers to both afforestation and reforestation in the following. 
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cators are considered, including surface albedo, evapotranspiration, runoff, crop production, N loss, 

and BVOC emissions. The research questions are: 

- What are the impacts of land management for carbon uptake on other ecosystem services and 

ecosystem service indicators? 

- Do the effects of land-based climate change mitigation on ecosystem service indicators differ 

based on the mitigation approach (BECCS, ADAFF, or a combination of both)? 

- If so, can a mitigation approach be identified in which trade-offs between other ecosystem service 

indicators are less pronounced than in the other approaches? 

- What are the spatial and temporal patterns of the impacts of land-based mitigation on ecosystem 

service indicators? 

Sections 3-5 are based on results from three papers, with slightly edited results, discussion, and con-

clusions chapters in order to fit the thesis structure. Section 3 builds upon the paper “Impacts of land-

use history on the recovery of ecosystems after agricultural abandonment” by Krause et al. (2016) 

published in Earth System Dynamics. Section 4 is based on the paper “Large uncertainty in carbon 

uptake potential of land-based climate-change mitigation efforts” by Krause et al. (2018) published in 

Global Change Biology. Section 5 builds upon the paper “Global consequences of afforestation and 

bioenergy cultivation on ecosystem service indicators” by Krause et al. (2017) published in Biogeosci-

ences. The two open access papers (Krause et al. 2016; Krause et al. 2017) are attached in the Appen-

dix of this thesis. A general conclusion and outlook section with respect to the overall research ques-

tions is presented in Section 6, providing a broader perspective on the findings of this thesis. 

As much of the work presented in the following involved also some input from the co-authors of the 

published/prepared versions of the sections, I will generally use “we” instead of “I” throughout the 

Sections 2-5.   
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2 Methods 
 

2.1 The LPJ-GUESS Dynamic Global Vegetation Model 

The primary tool used in this thesis is the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-

GUESS) DGVM. LPJ-GUESS is a process-based model designed to simulate vegetation dynamics 

and corresponding C, N, and water fluxes from regional to global scales (Smith et al., 2001, Smith et 

al., 2014). It is forced by daily temperature, precipitation, and shortwave radiation, typically at a 

spatial resolution of 0.5° x 0.5° for global studies. Global atmospheric CO2 mixing ratio is prescribed 

at annual time steps, gridded reactive N deposition at decadal time steps, and gridded soil texture is set 

constant over time. LPJ-GUESS adopts many physiological and biophysical features from the LPJ 

DGVM (Sitch et al., 2003), but explicitly represents tree size structure and demographics. Potential 

woody vegetation is simulated as age cohorts of different groups of plant species (Fig. 2.1), competing 

for light, space, nutrients, and water in a number of patches (typically between 5 and 50), each repre-

senting an area of 1000 m
2
 (Smith et al., 2001). This approach adopts features of forest gap models 

(Bugmann, 2001), enabling a more realistic and detailed representation of forest succession, competi-

tion, and interaction between plant individuals compared to most other DGVMs. Patches are simulated 

repeatedly to capture the stochastic implementation of mortality and establishment processes. Grasses 

are represented by a single individual at ground level. LPJ-GUESS typically represents around 12 

plant functional types (PFTs; see Table 2.1) which differ in terms of their bioclimatic limits, growth 

form (trees or herbaceous plants), phenology (evergreen, summergreen or raingreen), life history 

strategy (shade-tolerant or intolerant), and photosynthetic pathway (C3 or C4), and cover all major high 

plant types. Model processes include photosynthesis, respiration, water uptake, evapotranspiration, 

phenology, C and N allocation, growth, and mortality, simulated on daily or annual time steps. Daily 

C assimilation is calculated based on a modified Farquhar photosynthesis scheme (Haxeltine and 

Prentice, 1996b) and allocated to leaves, stems, and fine roots at the end of each year according to a 

set of prescribed allometric relationships for each woody PFT (Sitch et al., 2003). Wildfires destroy 

parts of the biomass as a function of litter moisture and load (Thonicke et al., 2001), while patch-

destroying disturbances are implemented as stochastic events with an expected return interval of 100 

years. Following such disturbances, or if agricultural land is converted back to natural vegetation, 

there is a typical succession from grasses to light-demanding pioneer trees, eventually followed in 

many ecosystems by the establishment of shade-tolerant PFTs. Soil C and N dynamics are based on 

the CENTURY model (Parton et al., 1993), representing 11 soil and litter pools that differ in their C:N 

ratios and decay rates (Smith et al., 2014). Major model updates over the last years include the imple-

mentation of an improved hydrology scheme (Gerten et al., 2004), BVOC emissions (Arneth et al., 

2007, Schurgers et al., 2009), agricultural land (Lindeskog et al., 2013, Olin et al., 2015a, Olin et al., 

2015b), and a coupled C-N cycle (Smith et al., 2014, Warlind et al., 2014). The model has been exten-

sively evaluated against a broad range of experimental and observational data, including large-scale 
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vegetation patterns (Hickler et al., 2012), ecosystem-atmosphere C fluxes (Ahlstrom et al., 2012, 

Fleischer et al., 2015, Piao et al., 2013), forest succession (Smith et al., 2014), vegetation seasonality 

(Lindeskog et al., 2013), and crop yields (Blanke et al., 2017, Olin et al., 2015a, Olin et al., 2015b, 

Pugh et al., 2015). 

 
Figure 2.1: Vegetation representation in LPJ-GUESS with consideration of age cohorts. The figure is from 

Smith et al. (2014). 

 

Agricultural processes have recently been introduced into LPJ-GUESS so that besides natural vegeta-

tion, the model now represents pasture and cropland land-cover classes (Lindeskog et al., 2013). Land-

cover transitions are prescribed at annual time steps. Pastures are populated by competing C3 and C4 

grasses which are annually harvested (50% of above-ground biomass) to account for the effects of 

livestock grazing on C cycling. Croplands are represented by the globally most important crop species, 

grouped into four CFTs: wheat, maize, rice, and other temperate summer crops (Bondeau et al., 2007, 

Lindeskog et al., 2013). The C-only version of LPJ-GUESS represents additional CFTs but C-N 

cycling so far is only included for these four CFTs. CFT fractions are prescribed and CFTs thus do not 

compete with each other within a grid-cell. CFTs differ in their temperature limits, heat requirements, 

C allocation, and C:N ratios in different plant organs. The timing of sowing is modelled dynamically 

depending on temperature and precipitation variability in a grid-cell (Waha et al., 2012), with tempera-

ture limits as in Bondeau et al. (2007). C allocation in crops is simulated on a daily time step. Harvest-

ing (90% of the grain) occurs once a crop-specific potential heat unit (PHU) sum is fulfilled based on 

the mean temperature of the last 10 years (Lindeskog et al., 2013). Farmers are assumed to adapt to 

climate shifts by adjusting the crop variety to climate, which is implemented in the model as an adap-

tation of the crops’ PHU. Optional management techniques include irrigation (the irrigated/rain-fed 
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fraction of each CFT is prescribed for each grid-cell and year), cover crops, residue removal 

(Lindeskog et al., 2013), tillage (Chatskikh et al., 2009, Olin et al., 2015a, Pugh et al., 2015), and N 

fertilisation at specific stages of crop development (prescribed for each grid-cell and year; Olin et al., 

2015b). It is now also possible to simulate gross land-cover transitions within LPJ-GUESS (Bayer et 

al., 2017). 

Table 2.1: LPJ-GUESS plant functional types used in this thesis. 

BNE Boreal needleleaved evergreen tree 

BINE Boreal shade-intolerant needleleaved evergreen tree 

BNS Boreal needleleaved summergreen tree 

TeNE Temperate needleleaved evergreen tree (not used in Section 3) 

TeBS Shade-tolerant temperate broadleaved summergreen tree 

IBS Shade-intolerant broadleaved summergreen tree 

TeBE Temperate broadleaved evergreen tree 

TrBE Tropical broadleaved evergreen tree 

TrIBE Tropical shade-intolerant broadleaved evergreen tree 

TrBR Tropical broadleaved raingreen tree 

C3G Cool C3 grass 

C4G Warm C4 grass 

 

2.2 Specific methodology Section 3 

 

2.2.1 LPJ-GUESS model version 

At the time the simulations for Section 3 were performed, the CFTs in LPJ-GUESS had not yet been 

updated to include a coupled C-N cycle (the simulations for the Sections 4 and 5 were performed with 

CFTs). We therefore represented croplands by C3 and C4 grass PFTs modified to mimic important 

aspects for the C and N cycles. Settings for croplands and pastures were as follows: 

1. For transitions from natural vegetation to cropland, we transferred only 3% of the cleared 

woody biomass to the litter instead of 12% for natural vegetation-pasture transitions. This ac-

counts for the practice that farmers would try to remove as many coarse roots as possible be-

fore planting of crops. 

2. Harvest efficiency (in this study: fraction of above-ground biomass that is assumed to be re-

turned to the atmosphere within one year) was 0.5 yr
-1

 for pasture, representing the net effect 

of grazing processes (Lindeskog et al., 2013). For crop simulations we changed the harvest ef-

ficiency to 0.8 yr
-1

, representing simplified crop harvest, as in Lindeskog et al. (2013). 
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3. While we removed 100% of harvested N biomass for croplands, we changed this value to 65% 

for pastures. That accounts for significant urine N regain from animals fed on pastures (Dean 

et al., 1975, Lauenroth and Milchunas, 1992). 

4. Root turnover rate was 0.7 yr
-1

 for pasture and was adapted to 1.0 yr
-1

 for croplands to repre-

sent the annual plant types used in most croplands. 

5. We estimated tillage effects in croplands by increasing heterotrophic respiration in the surface 

humus and microbial pools, as well as in the microbial and slow turnover pools of the soil by a 

factor of 1.94 (Olin et al., 2015a). 

6. We simulated N fertilisation in croplands by applying 75 kgN ha
-1

 yr
-1 

equally throughout the 

year to sustain crop productivity with time. This value represents a compromise between high-

er values presently found in parts of Europe and lower values in most of Africa (e.g. Potter et 

al., 2010). We therefore exclude spatial differences in N fertilisation of croplands from the 

simulation results. 

We used 50 patches to minimise the inter-annual variability at the grid-cell level. 

 

2.2.2 Land-use scenarios 

In this study, we analysed the recovery of ecosystems following different agricultural LU histories, 

irrespective of whether the ecosystem recovers as a result of climate/environmental protection activi-

ties or as a by-product of other socio-economic forces. For this, we created idealised LU scenarios in 

which we made a transition from natural vegetation to either pasture or cropland directly after the 

model spin-up, followed by a transition back to natural vegetation after time periods of 20, 60, and 100 

years. This resulted in three pasture (P20, P60, P100) and three cropland (C20, C60, C100) simula-

tions. Additionally, we created a reference scenario in which natural vegetation was retained through-

out the whole simulation period to simulate the ecosystem without any human interference. 

 

2.2.3 Simulation setup 

The simulations for Section 3 were performed under (approximately) present-day environmental 

conditions. During spin-up (500 years) and the simulation period (900 years), we forced LPJ-GUESS 

with temperature-detrended, repeated 1981-2000 climate from the University of East Anglia Climate 

Research Unit 3.21 dataset (CRU, 2013), 1990s mean N deposition (Lamarque et al., 2013), and a 

fixed atmospheric CO2 mixing ratio of 356 ppmv. Land-cover transitions were taken from the ideal-

ised scenarios described in Section 2.2.2. For all simulations (P20, P60, P100, C20, C60, C100, refer-

ence simulation) we used potential natural vegetation cover to spin up the model. We ran the model 

for Europe and Africa (33°E to 55°W), covering a wide range of environmental conditions and all 

major biomes (Smith et al., 2014). We chose Africa and Europe for the simulation domain because the 

original LU version of the model was evaluated against observations in Africa (Lindeskog et al., 2013) 

and to limit the computational expense of the simulations. We did not intend to realistically represent 
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typical crop and pasture management across the domain (i.e. the spatial variability in fertiliser use, 

multiple cropping systems, or irrigation). 

 

2.2.4 Analysed grid-cells and biome classification 

To facilitate the interpretation, we classified each grid-cell to one biome. We used the same classifica-

tion rules as Smith et al. (2014), aggregated to eight biomes as in Bayer et al. (2015). Afterwards, we 

excluded grid-cells from the analyses which were classified as desert or tundra, had a mean NPP 

below 0.1 kgC m
-2

 yr
-1 

(in the reference simulation), or were located above 62.5°N, making the as-

sumption that the relevance of these low-production areas for agriculture is negligible. 

 

2.2.5 Analysed variables and definition of recovery 

We studied the influence of LU history on ecosystems by analysing four key variables: dominant PFT, 

vegetation C, soil C (excluding litter), and net biome productivity (NBP). NBP is the net atmosphere-

land C flux after C losses associated with respiratory fluxes, fire, harvest, land clearing, and decompo-

sition of LUC product pools are subtracted from GPP. We investigated the legacy effects of LU histo-

ry by calculating a recovery time for each variable, simulation, and grid-cell after the conversion back 

to natural vegetation. For vegetation C, soil C, and NBP, recovery time was defined as the year in 

which the 20-year running mean of the variable exceeded the threshold of one standard deviation (σ) 

below the mean of the reference simulation (full simulation period) for the first time after agricultural 

abandonment. σ was calculated on the 20-year running mean of the reference simulation. To avoid 

"false-positive" identifications of recovery in cases for which the variable of interest was initially 

within 1 σ, but then exhibited dynamics taking it outside this range (e.g. P20 soil C in Fig. 2.2), we 

 

Figure 2.2: Soil C [kgC m
-2

] for the six simulations after conversion to natural vegetation at one single example 

site to illustrate how recovery time was calculated according to our definition. The cyan-shaded area corresponds 

to reference simulation mean ± 1 σ. When soil C exceeds the mean - 1 σ threshold and the time of the minimum 

(which in this case is located in the first 200 years and below the mean - 1 σ threshold for all six simulations) is 

passed, recovery is achieved. 
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applied an additional criterion of whether the minimum after the transition to natural vegetation oc-

curred in the first 200 years and if it was below the mean minus 1 σ threshold. If that was the case, the 

condition was expanded so that the variable could only be defined as recovered after the year in which 

the minimum occurred (“minimum rule”). We chose a 200-year window because the minimum oc-

curred within the first 200 years for all biome averages of all variables and simulations. If the mini-

mum was located after 200 years, we assumed the minimum to be a result of natural variability and 

recovery was achieved as soon as the variable in question exceeded the threshold of 1 σ below the 

reference mean. Figure 2.2 shows an example of how soil C recovery was calculated for one site. 

For the dominant PFT recovery, we first identified which PFT dominates each grid-cell in the refer-

ence simulation based on the annual maximum leaf area index (LAI) amongst PFTs. We then checked 

for dominant PFT recovery in the same way as we did for vegetation C, soil C, and NBP (i.e., whether 

its LAI exceeded the threshold of 1 σ below the reference simulation mean; condition 1) but addition-

ally checked whether its LAI was also larger than the LAI of any other PFT in the same simulation 

and year (i.e. the dominant PFT is the same as in the reference simulation, condition 2). Thus, domi-

nant PFT recovery was only possible if both conditions were fulfilled. For example, if the temperate 

broadleaved evergreen (TeBS) tree was the dominant PFT in the reference simulation (with an average 

maximum LAI of, for example, 3.0 and standard deviation of ± 0.2), dominant PFT recovery in a 

specific LU simulation (e.g. P20) would occur once the LAI of TeBS in this simulation a) hits the 

threshold of 2.8 (3.0 - 0.2, condition 1) and b) is larger than the LAI of any other PFT in P20 in the 

specific year i.e., TeBS is the dominant PFT in the grid-cell (condition 2). For all variables, the recov-

ery time was capped at 800 years after reconversion to natural vegetation, the point when simulations 

ended. Recovery times of 800 years thus represent a lower limit. However, the actual recovery time in 

these cases could theoretically lie between 801 years and infinity. 

 

2.3 Specific methodology Section 4 

 

2.3.1 The IMAGE and MAgPIE land-use models 

Sections 4 and 5 both build upon DGVMs simulations driven by LUC scenarios from the IMAGE and 

MAgPIE models. The following paragraphs provide a short overview of the two models. 

The Integrated Model to Assess the Global Environment (IMAGE) is an ecological-environmental 

model framework that includes several sub-models representing the energy system, agricultural econ-

omy, LU, natural vegetation, and climate system (Stehfest et al., 2014). Socio-economic parameters 

are usually calculated for 26 world regions, and most environmental parameters are modelled on a 0.5° 

x 0.5° grid at annual time steps. LU dynamics are driven by demand for and supply of crops, animal 

products, and bioenergy. Bioenergy demand to achieve a specific CDR target is determined by the 

energy system sub-model which uses land availability from the LU sub-model following a set of 
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sustainability criteria (Hoogwijk et al., 2003). For this study, bioenergy crops were included as fast-

growing C4 grasses (Doelman et al., 2018) as these produce higher yields than woody plants in many 

locations. The level of agricultural intensification required to free up land for afforestation to achieve a 

specific CDR target is estimated using a stepwise approach of increasing yields and livestock efficien-

cies. This implies that reduced crop and pasture areas go with higher yields and livestock efficiencies, 

thereby allowing the same food production as in the baseline. Afforestation is assumed to occur first in 

grid-cells with high potential for forest growth. IMAGE also represents degraded forests which are 

assumed to be completely deforested and can be reforested as part of the afforestation activities 

(Doelman et al., 2018). The degraded forest land-cover class was implemented in IMAGE due to 

larger deforestation rates reported by the Food and Agriculture Organization of the United Nations 

(FAO) 2015 Forest Resource Assessment (http://www.fao.org/3/a-i4793e.pdf, last accessed September 

2017) than the historical expansions of cropland and pasture area reported by FAO. These differences 

are assumed to be caused by additional reasons (e.g. unsustainable forestry preventing regrowth of 

natural forests, mining, or illegal logging) and accounted for by a historically calibrated rate of forest 

degradation which is extrapolated into the future (Doelman et al., 2018). Natural vegetation regrowth 

trajectories as well as crop yields, C, and water dynamics are modelled dynamically by the internally 

coupled DGVM Lund-Potsdam-Jena model with managed Land (LPJmL; Bondeau et al., 2007, 

Stehfest et al., 2014). 

The Model of Agricultural Production and its Impact on the Environment (MAgPIE) is a global multi-

regional partial equilibrium model of the agricultural sector (Lotze-Campen et al., 2008, Popp et al., 

2014). MAgPIE aims to minimise the global costs for agricultural production throughout the 21
st
 

century at a 5-year time step (recursive dynamic optimisation) and is driven by demand for agricultural 

commodities and associated costs in 10 world regions. The cost minimisation is subject to various 

spatially explicit biophysical factors such as land and water availability as well as crop yields (provid-

ed by LPJmL). Major options to fulfil increasing demand are intensification (yield-increasing technol-

ogies), expansion (LUC), and international trade. Demand for CDR enters the model at the global 

scale, while the spatial distribution of bioenergy production or afforestation is derived endogenously in 

the model (involving economic and biophysical factors). Bioenergy demand is fulfilled chiefly 

through the growth and harvest of grassy energy crops; woody bioenergy in this study is grown only 

on less than 1% of the area used for bioenergy production. Actual bioenergy yields are derived from 

potential LPJmL yields (using information about observed LU intensity and agricultural area for 

initialisation), but can exceed LPJmL yields over time due to technological progress (Humpenöder et 

al., 2014). Afforestation is assumed to occur as managed regrowth of natural vegetation according to 

parameterised s-shaped growth curves towards a maximum potential natural vegetation C density as 

provided by LPJmL, with soil C increasing linearly towards its potential maximum within 20 years 

(Humpenöder et al., 2014). For simplicity, we refer to both IMAGE and MAgPIE as land-use models 

(LUMs) in the following. 
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2.3.2 Land-use scenarios 

As input to the DGVMs we used the baseline projections (without land-based mitigation) from 

IMAGE and MAgPIE and three land-based mitigation scenarios, each calculated by both LUMs based 

on the assumption of a cumulative CDR target of 130 GtC by the year 2100. In the “BECCS” scenario 

this was achieved via bioenergy plant cultivation and subsequent CCS, the “ADAFF” scenario in-

volved maintaining and expanding global forest area, and in “BECCS&ADAFF” the CDR demand 

was fulfilled in equal parts via both options. While in the LUMs the CDR target in ADAFF was 

achieved via terrestrial C uptake (CDR = ∆ vegetation C + ∆ soil C + ∆ product pool C), in BECCS it 

was fulfilled solely via CCS (CDR = cumulative CCS; calculated by multiplying the harvested 

bioenergy C by a capture efficiency factor of 0.8; Klein et al., 2014) and thus did not account for 

changes in vegetation and soil C. The baseline scenario (“BASE”) involved no land-based mitigation 

but LUC took place in response to, among other factors, increasing food demand, dependent on popu-

lation and GDP growth. Food production in the mitigation scenarios was maintained at the same levels 

as in BASE. LUC was provided by the LUMs as net land-cover transitions. Wood harvest was not 

accounted for in the data provided by the LUMs. Climate change and CO2 fertilisation effects on plant 

growth were accounted for in the LUMs’ crop growth and vegetation models. All scenarios were 

developed with the Representative Concentration Pathway (RCP) 2.6 climate produced by the climate 

model of the Institut Pierre Simon Laplace (IPSL-CM5A-LR). As it seems currently unlikely that 

RCP2.6 can be achieved without any land-based mitigation (Fuss et al., 2014), the BASE scenario 

should rather be regarded as a diagnostic scenario to isolate the LU effects induced by the mitigation 

scenarios from other factors. Both LUMs harmonised their cropland and pasture LU patterns to the 

spatially explicit HYDE 3.1 dataset (Klein Goldewijk et al., 2011) in the year 1995 (MAgPIE) or 2005 

(IMAGE) to create a continuous historical-to-future time series, with small deviations in the area of 

the land-cover classes occurring due to different land masks and calibration routines. The simulation 

period was 1970-2100 in IMAGE and 1995-2100 in MAgPIE, with LU scenarios starting to diverge in 

year 2005. The spin-up in IMAGE was set to 700 years with natural vegetation cover followed by 300 

years with year 1970 land-cover map, climate, and CO2. In MAgPIE, potential C densities from 

LPJmL were used as initial (1995) values, with agricultural vegetation and litter C pools set to zero 

and soil C depleted based on IPCC recommendations to account for real land-cover at the start of the 

simulation period (Humpenöder et al., 2014). Socioeconomic developments as input to the LUMs 

were based on SSP2 (“Middle of the Road”; O'Neill et al., 2014, Popp et al., 2017). Details about the 

conversion of IMAGE and MAgPIE-LU data to LPJ-GUESS input data can be found in Section 2.3.3. 

In the two BASE scenarios, forest area decreases throughout the future for both IMAGE and MAgPIE 

(Fig. 2.3), but more so for IMAGE due to the representation of degraded forests (which are treated as 

grassland in IMAGE; see above). Even though MAgPIE and IMAGE derive crop yields and C densi-

ties from the same DGVM (LPJmL; dynamically coupled in IMAGE, and in MAGgPIE providing 
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potential C stocks, crop yields, irrigation water requirements, and blue water availability; Bondeau et 

al., 2007), the land demand to meet the same CDR target is larger in IMAGE than in MAgPIE. This 

reflects different model approaches: in IMAGE, land allocation for bioenergy cultivation follows a 

rule-based approach according to sustainability criteria, implying that only marginal land not needed 

for food production is available for bioenergy. In MAgPIE, bioenergy and food production compete 

for fertile land based on a cost minimisation procedure. Concerning afforestation, managed regrowth 

(according to prescribed growth curves) is assumed in MAgPIE, while in IMAGE natural regrowth 

dynamically calculated within LPJmL is implemented. Consequently, bioenergy production in 

MAgPIE is located in regions with mostly higher yields compared to IMAGE, and forest regrowth 

  

Figure 2.3: Time series (2000-2100) of forest area (including afforested area), pasture, food cropland, and 

bioenergy cropland [Mha] for the different LUC scenarios, for IMAGE (left) and MAgPIE (right). Other natural 

land and degraded forests (in IMAGE only) are not shown. 

 

 

 
Figure 2.4: (top) Increase in forest cover (excluding other natural vegetation and degraded forest) in ADAFF by 

year 2099 (compared to BASE year 2099) for (a) IMAGE and (b) MAgPIE-LU patterns. (bottom) Bioenergy 

production area in BECCS by year 2099 for (c) IMAGE and (d) MAgPIE-LU patterns. 
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occurs at a faster rate, resulting in less LUC and mitigation actions starting later in the MAgPIE sce-

narios (Fig. 2.3). Land demand in the mitigation scenarios is generally greater for ADAFF than for 

BECCS (Fig. 2.4) because of different sequestration rates per unit area and because C uptake in forests 

diminishes when trees mature (Humpenöder et al., 2014). Avoided deforestation and afforestation in 

the ADAFF scenarios is chiefly located in the tropics (Fig. 2.4). Forest area is 1040 Mha larger in 

ADAFF than in BASE for IMAGE by year 2099 and 1103 Mha larger for MAgPIE (Table 2.2). In 

IMAGE, ~42% of the difference in forest area between ADAFF and BASE can be attributed to avoid-

ed deforestation and 58% to afforestation (Fig. 2.3). In MAgPIE, avoided deforestation is responsible 

for only 4% of the difference in forest area between ADAFF and BASE, emphasizing the much larger 

role of afforestation compared to avoided deforestation in MAgPIE. The LUMs also differ in terms of 

land-cover classes affected by ADAFF activities. In IMAGE, forest maintenance and expansion usual-

ly takes place on future/former pastures or degraded forests (ADAFF compared to BASE), but in 

MAgPIE afforestation on abandoned croplands is also relevant (at least after year 2070; Fig. 2.3, Table 

2.2; note that some of the abandoned cropland in MAgPIE ADAFF is not afforested but instead con-

verted to pasture, while at other locations pastures are afforested, resulting in small net changes in 

pasture area by the end of the century). Bioenergy production area in BECCS is increased mainly at 

the expense of natural vegetation in IMAGE but taken also from existing agricultural land in MAgPIE. 

Total cropland area increases in the scenario combining both strategies (BECCS&ADAFF) compared 

to BASE for IMAGE but decreases for MAgPIE BECCS&ADAFF (Table 2.2). 

Table 2.2: Land-cover changes [Mha] by year 2099 (parentheses: year 2050) in the mitigation scenarios (com-

pared to BASE) as provided by the IMAGE and MAgPIE land-use models. 

 ADAFF - BASE BECCS - BASE BECCS&ADAFF - BASE 

IMAGE MAgPIE IMAGE MAgPIE IMAGE MAgPIE 

Forest +1040 

(+647) 

+1103 

(+288) 

-410 (-223) -60 (-30) +427 

(+212) 

+383 

(+122) 

Other 

natural 

(excluding 

degraded 

forest) 

+77 (+6) -170 (-2) -99 (-43) -110 (-37) +19 (+4) -60 (-8) 

Degraded 

forest 

-535 (-196) - +0 (+0) - -535 (-196) - 

Cropland 

(food) 

-28 (-29) -855 (-115) +6 (+2) -174 (-44) -36 (-38) -428 (-103) 

Cropland 

(bioenergy) 

- - +495 

(+262) 

+403 

(+157) 

+255 

(+130) 

+164 (+77) 

Pasture -554 (-428) -78 (-171) +7 (+2) -58 (-47) -130 (-112) -60 (-87) 
 

2.3.3 Conversion of IMAGE and MAgPIE land-use data to LPJ-GUESS input data  

For Section 4, which is based on simulations from four DGVMs driven by the LU projections from the 

two LUMs, the implementation of the LU patterns from the LUMs into the DGVMs was left to the 
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responsibility of the individual DGVM groups. An overview about the four DGVMs and their repre-

sentation of land management processes is provided in Section 2.3.4. The following paragraphs de-

scribe the implementation of the LU patterns into LPJ-GUESS. 

Land-cover and crop transitions provided by the LUMs were converted to a suitable format to be used 

as input data for LPJ-GUESS simulations. Both LUMs provided the fraction of cropland (land used for 

food and bioenergy production), pasture, forest, other natural land, and built-up area in a 0.5° x 0.5° 

raster from 1901 to 2100, summing to one. Cropland and pasture land covers for LPJ-GUESS were 

directly adopted from the LUMs. On natural land, LPJ-GUESS simulates the dynamics of trees and 

grasses simultaneously as a function of environmental conditions, so the “forest” and “other natural” 

land covers were merged. We converted the corresponding degraded forest fractions to pastures in 

LPJ-GUESS to ensure consistency with the representation of degraded forests in IMAGE. Built-up 

area was negligible for all scenarios and for simplicity was also attributed to natural vegetation. 

IMAGE used a slightly larger grid-list than MAgPIE and accounted for the water fraction of a grid-

cell; but as the impacts on land-based mitigation in LPJ-GUESS turned out to be small (<2 GtC over 

the simulation period) we only included grid-cells in our simulations for which LU data were provided 

by both LUMs (assuming 100% land cover) to facilitate comparison of the results. 

Table 2.3: Crop functional types (CFTs) used in LPJ-GUESS, how the land-use models’ crop types were aggre-

gated to these CFTs, and EarthStat major crops (Monfreda et al., 2008) used to calculate circa year 2000 actual 

yields of these CFTs. 

LPJ-GUESS CFT 

(photosynthetic pathway) 

IMAGE and MAgPIE crop types 

aggregated to this CFT 

EarthStat major crop types used 

to calculate circa year 2000 

actual yields of LPJ-GUESS 

crops 

temperate wheat (C3), 

representing C3 crops with 

winter or spring sowing 

depending on historical 

climate 

temperate cereals, rapeseed rye, barley, wheat, rapeseed 

temperate other summer 

crops (C3) representing C3 

crops with spring sowing 

only 

potatoes, cassava, pulses, 

soybean, groundnuts, sunflower, 

palm oil, sugar beet, cotton, roots 

and tubers, oil crops, others 

potato, cassava, groundnut, 

soybean, sunflower, oilpalm 

rice (C3) (paddy) rice rice 

maize (C4) maize, tropical cereals, sugarcane, 

bioenergy crops 

maize, millet, sorghum, 

sugarcane; bioenergy yields 

were not modified due to limited 

observational data 

crop grass (C3 or C4) fodder unmodified as not used for crop 

production calculation 

 

IMAGE used yearly (1970-2100) fractions of seven food crops (each separated into rain-fed and 

irrigated fractions) and rain-fed bioenergy grass in each grid-cell where cropland existed. MAgPIE 

provided yearly (1995-2100) fractions of 17 non-bioenergy crop types (separated into rain-fed and 
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irrigated) and two rain-fed bioenergy crop types (grassy and woody). The attribution between LPJ-

GUESS CFTs and LUM crop types is shown in Table 2.3. For the years in which the LUMs did not 

provide CFT fractions (1901-1969 for IMAGE and 1901-1994 for MAgPIE) ratios were taken from 

the first provided year (e.g. if in IMAGE temperate wheat covered 70% of a grid-cell’s cropland area 

in year 1970 and maize covered 30%, we assumed the same ratio throughout the entire spin-up and the 

1901-1969 period). We made the attribution to C3 or C4 crop grass in croplands based on a preceding 

pasture-only simulation which was forced by the same environmental conditions as our actual simula-

tions (RCP2.6). Dedicated bioenergy crops are currently not implemented in LPJ-GUESS and were 

represented by the CFT corresponding to maize, which is the highest yielding CFT in the model. 

Removed residues of bioenergy crops (90%) were included in the CCS calculation (see Section 2.4.3), 

while removed residues of food crops (75%) were emitted to the atmosphere. Residues left on-site 

(10 and 25%, respectively) were transferred to the litter. 

Average annual N fertiliser rates per cropland area (synthetic and organic fertiliser, derived from 

yields) were provided by IMAGE (1970-2100) and MAgPIE (1995-2100) and had to be hindcasted to 

the year 1901. Historic N fertiliser rates (synthetic fertiliser on C3 + C4 annual and perennial crops) 

were available from the recently released Land-Use Harmonization 2 (LUH2) dataset (Hurtt et al, in 

preparation, http://luh.umd.edu/index.shtml, last accessed November 2017). However, as LUH2 only 

considers synthetic fertiliser (and ignores manure), the correlation between LUH2 and the LUMs in 

the first provided year (1970 and 1995, respectively) was poor in terms of spatial patterns and total 

amount of applied N, making a simple merging inapplicable. We thus decided to use IMAGE and 

MAgPIE N fertiliser rates and spatial patterns for the available time periods and computed a hindcast, 

starting with the initial spatial patterns and rates in IMAGE and MAgPIE multiplied by the relative 

year-to-year per-country change in the LUH2 dataset in the period prior to 1970 and 1995, respective-

ly. This resulted in a smooth historical to future N fertiliser dataset reflecting the LUMs spatial pat-

terns in terms of absolute values, with historic variations based on relative changes in LUH2 and late 

historic to future variations adopted unmodified from the LUMs. Fertiliser rates differed significantly 

between IMAGE and MAgPIE, with MAgPIE exceeding IMAGE fertiliser rates in most locations. As 

no fertilisation occurred before 1916 in LUH2 (before the Haber-Bosch process was found), we ap-

plied a minimum fertiliser rate of 6 kgN ha
-1

 yr
-1

 (in addition to atmospheric deposition) to all areas 

under crops throughout the entire simulation period to limit continued soil N depletion. As the LUMs 

only provided per-cropland fertiliser rates, we applied the same amount of fertiliser for all CFTs in a 

grid-cell, and distributed the annual amount over the year as a function of crop phenological state 

(Olin et al., 2015b). 

 

2.3.4 Description of the Dynamic Global Vegetation Models 

The LU scenarios were used as input to four DGVMs: LPJ-GUESS (Olin et al., 2015a, Smith et al., 

2014), ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms; Krinner et al., 

http://luh.umd.edu/index.shtml
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2005), JULES (Joint UK Land Environment Simulator; Best et al., 2011, Clark et al., 2011), and 

LPJmL (Bondeau et al., 2007, Sitch et al., 2003). The models have different heritages; while 

ORCHIDEE and JULES were developed as land components of global climate models (IPSL and 

MetUM/HadGEM), LPJ-GUESS and LPJmL were originally designed as stand-alone offline models 

to simulate vegetation dynamics and associated C and water fluxes. LPJmL is also the vegetation sub-

model of both IMAGE (where it is internally coupled) and MAgPIE (where potential C densities and 

actual yields - derived from modelled potential yields - are used), but the offline version used here 

differs from the versions used in the LUMs mainly by not considering technological yield increases in 

the future. All DGVMs represent vegetation using a number of PFTs, with LPJ-GUESS and LPJmL 

also representing dedicated CFTs. LPJ-GUESS distinguishes from the other DGVMs by its representa-

tion of different age classes amongst woody PFTs, allowing forest regrowth to be explicitly simulated, 

and by having N cycling as an additional constraint on ecosystem C processes (in addition to soil 

water availability which is accounted for in all DGVMs). All DGVMs represent LUC and land man-

agement explicitly even though the models differ in terms of implemented processes and level of 

detail. Table 2.4 provides an overview of model differences which are important for this study. 

Table 2.4: Overview of major DGVM differences relevant to this study. 

Variable or process DGVM 

LPJ-GUESS ORCHIDEE JULES LPJmL 

Major updates to the 

version used in Sitch et 

al. (in preparation)
 a
 

croplands are 

now represented 

by specific CFTs 

(including N 

fertilisation) 

no cropland and 

pasture harvest 

no 

Input variables 2m air tempera-

ture, precipita-

tion, down-

welling 

shortwave radia-

tion, atm. N 

deposition and 

fertilisation, atm. 

CO2, LU 

2m air temperature, precipitation, 

downwelling shortwave radiation, 

near-surface wind speed, surface air 

pressure, specific humidity, atm. 

CO2, LU 

2m air tempera-

ture, precipita-

tion, down-

welling 

shortwave and 

longwave radia-

tion, atm. CO2, 

LU 

Spatial resolution 0.5
o 
x 0.5

o
 2° x 2° 0.5° x 0.5° 0.5

o 
x 0.5

o
 

Number of land grid-

cells the DGVM 

simulated 

59 098 4717 (76 836 

when remapped 

to 0.5° resolu-

tion) 

59 103 63 652 

Fractional land mask 

(e.g. accounting for the 

urban or water frac-

tions of a grid-cell, 

assumed to be constant 

over time) 

no yes (internal) yes (post-

processing; land 

mask taken from 

IMAGE for 

consistency) 

Spin-up length 500 years 2000 years 1000 years 5390 years 

Shortest time step for 

C and water fluxes 

daily 30 min daily 
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Fire yes no yes 

N cycle yes no 

Number of natural 

PFTs 

12 (10 trees, C3 + 

C4 grass) 

10 (8 trees, C3 + 

C4 grass) 

5 (2 trees, 1 

shrub, C3 + C4 

grass) 

9 (7 trees, C3 + 

C4 grass) 

Implementation of LU 

patterns from the 

LUMs into the DGVM 

absolute 

cropland, pas-

ture, and natural 

area prescribed 

by LUMs, PFT 

distribution on 

natural land is 

simulated dy-

namically 

changes in 

cropland, pas-

ture, and forest 

vs. other natural 

area prescribed 

by LUMs, forest 

area and PFT 

distribution 

(static on natural 

land) in year 

2005 according 

to internal map 

(from European 

Space Agency) 

absolute cropland, pasture, and 

natural area prescribed by LUMs, 

PFT distribution on natural land is 

simulated dynamically 

Implementation of 

agricultural expansion 

all natural PFTs are reduced propor-

tionally 

grasslands are 

reduced first, 

then shrubs, then 

forests 

all natural PFTs 

are reduced 

proportionally 

Historical LU from IMAGE or 

MAgPIE 

from IMAGE for all scenarios to 

reduce computation time 

From IMAGE or 

MAgPIE 

Representation of 

degraded forests (for 

IMAGE-LU patterns 

only) 

as pasture as natural grass-

land 

as natural vege-

tation (forests or 

natural grass-

land) 

as pasture 

Fate of biomass upon 

deforestation 

74% of woody 

biomass and 

71% of leaves 

oxidised in same 

year, 20% of 

woody biomass 

to product pool 

(25-yr turnover 

time), remainder 

to litter 

60% of above-

ground heart-

wood and sap-

wood oxidised in 

the same year, 

remaining har-

vested biomass 

to two product 

pools (10-yr and 

100-yr turnover 

time), remainder 

to litter 

above-ground 

biomass moved 

to three product 

pools with 1, 10 

and 100-yr 

turnover times 

(fractions PFT 

specific), below-

ground biomass 

to soil 

67% of above-

ground biomass 

oxidised in same 

year, 33% to 

product pool (25-

yr turnover 

time), root 

biomass to litter 

Forest (re)growth 

dynamics 

cohort approach 

(competition 

between differ-

ent age classes), 

natural regrowth 

dilution approach (one average individual per PFT), 

natural regrowth 

Pasture management harvest, woody 

vegetation is 

prevented from 

growing 

no harvest, 

woody vegeta-

tion is prevented 

from growing 

harvest
 b
, woody 

vegetation is 

prevented from 

growing 

harvest with 

variable intensi-

ty, woody vege-

tation is prevent-

ed from growing 

Representation of 

pasture harvest 

50% of above-

ground biomass 

oxidised each 

year, remainder 

none 30% of litter 

flux oxidised 

normally 75% of 

leaf biomass 

oxidised when 

leaf biomass 
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to litter reaches 0.1 kgC 

m
-2

; in marginal 

areas 25% of leaf 

biomass is oxi-

dised when 

maximum leaf 

biomass is 

reached 

Cropland management four CFTs (tem-

perate wheat, 

maize, rice, 

temperate other), 

variable sowing 

and harvest date, 

tillage, irrigation, 

fertilisation, 

dynamic poten-

tial heat unit 

calculation, 

woody vegeta-

tion is prevented 

from growing 

C3 or C4 crop 

grass (similar 

phenology as 

natural grass but 

adapted maxi-

mum LAI 

and slightly 

modified critical 

temperature and 

humidity 

parameters), 

harvest, woody 

vegetation is 

prevented from 

growing 

C3 or C4 grass, 

harvest, woody 

vegetation is 

prevented from 

growing 

12 CFTs, varia-

ble sowing and 

harvest date, 

irrigation, woody 

vegetation is 

prevented from 

growing 

Representation of food 

crop harvest 

annually, 90% of 

grain and 75% of 

other above-

ground biomass 

oxidised, re-

mainder to litter 

45% of biomass 

oxidised after 

leaf senescence 

30% of litter 

flux oxidised 

annually, storage 

organs oxidised, 

70% of remain-

ing above-

ground biomass 

oxidised, re-

mainder to soil 

Dedicated bioenergy 

CFTs 

no (grown as 

maize) 

no (grown as C3 

or C4 crop grass) 

no (grown as C3 

or C4 grass) 

yes (fast-

growing C4 

grass, temperate 

and tropical short 

rotation coppice) 

Representation of 

bioenergy crop harvest 

annually, 90% of 

total above-

ground biomass 

(which means 

residues are also 

used for CCS) 

same as food crops for grass, 85% of 

the leaf mass is 

harvested 

when above-

ground biomass 

reaches 0.4 kgC 

m
-2

; trees are cut 

every 8 years 

Main model references Smith et al. 

(2014) 

Krinner et al. 

(2005) 

Best et al. 

(2011), Clark et 

al. (2011) 

Sitch et al. 

(2003), Schap-

hoff et al. (2013) 

Main references for the 

model’s agricultural 

component 

Lindeskog et al. 

(2013), Olin et 

al. (2015a) 

Piao et al. (2009) Jones et al. 

(2011); crop 

harvest is a new 

feature 

Bondeau et al. 

(2007), Beringer 

et al. (2011), 

Waha et al. 

(2012) 
a
 This manuscript is based on simulations with the same DGVMs as used here that were driven by idealised LUC 

scenarios from IMAGE and MAgPIE. 
b
 Pastures are treated as cropland in these JULES simulations. Normally pastures are not harvested in JULES. 
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2.3.5 Simulation setup 

The DGVM simulation period was 1901-2099. The DGVMs were forced by daily meteorological 

variables, yearly CO2 mixing ratio, and LU scenarios (see Table 2.4). Spin-up lengths in the DGVMs 

was set to 500, 2000, 1000, and 5390 years for LPJ-GUESS, ORCHIDEE, JULES, and LPJmL, re-

spectively, sufficient to attain a stable equilibrium of C pools and fluxes in each model. The number of 

patches in LPJ-GUESS was set to 10 for primary vegetation (land that was never converted to agricul-

ture) and 2 for secondary vegetation (agricultural land that was converted back to natural vegetation). 

All DGVMs used RCP2.6 IPSL-CM5A-LR climate data (1950-2099) from the first phase of the Inter-

Sectoral Impact Model Intercomparison Project (ISI-MIP; Warszawski et al., 2014), bias-corrected to 

the 1960-1999 historical period as in Hempel et al. (2013). The temperature increase is ~2°C by the 

end of the 21
st
 century relative to the pre-industrial era. This value is in the middle of an ensemble of a 

wider range of climate models used in ISI-MIP (Warszawski et al., 2014). Climate data for the 

DGVMs’ spin-up and the 1901-1949 period were randomly taken from the 1950-1959 period. Histori-

cal (1901-2005) and future (RCP2.6, 2006-2099) atmospheric CO2 mixing ratios were taken from 

Meinshausen et al. (2011). The year 1901 value (296 ppmv) was used for the spin-up. Future atmos-

pheric CO2 mixing ratio peaks at 443 ppmv in year 2052 and drops to 424 ppmv by the end of the 

century (Meinshausen et al., 2011). Gridded N deposition rates (used by LPJ-GUESS only) were 

available as decadal monthly averages for the historical and future (RCP2.6) period (Lamarque et al., 

2010, Lamarque et al., 2011). N deposition for the year 1901 was used for the spin-up. LUC was 

based on spatially explicit LU maps derived from the LUMs (for the historic period based on 

HYDE3.1; see Section 2.3.2 for more information about the LUC scenarios) and translated into the 

vegetation types of each DGVM (see Table 2.4). Year 1901 land cover was used for the spin-up. The 

DGVMs aimed to be as consistent as possible with the LUMs when implementing LU patterns from 

the LUM scenarios (e.g. for IMAGE scenarios all DGVMs apart from JULES followed the IMAGE 

assumption that no trees exist in degraded forests; see Table 2.4). Management information (crop 

types, irrigation, and N fertiliser) were also provided by the LUMs but were only used by some 

DGVMs which represented the relevant processes explicitly (Table 2.4). LPJ-GUESS was the only 

model being able to use N fertilisers as provided by the LUMs (see Section 2.3.3). The implementa-

tion of LU data into the DGVMs (e.g. mapping to DGVM vegetation types and defining rules by 

which managed land expands over natural vegetation), land masks, and additional required input 

variables (e.g. soil characteristics) were left to the responsibility of the individual DGVM groups. 

Different model structures and implementations of the LU patterns can result e.g. in differences in 

global forest area in the individual DGVMs (Fig. 2.5). The spatial resolution of the DGVMs was the 

same as the resolution of the input data (0.5° x 0.5°), except for ORCHIDEE (2° x 2°). In total, 32 

combinations of DGVMs and LUC scenarios were simulated, including 24 combinations of DGVMs 

and mitigation LUC scenarios. 
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Figure 2.5: Time series of global forest area [Mha] in the individual models for the BASE, ADAFF, and BECCS 

scenarios, for the same input land-cover data from IMAGE (left, 5-year running means) and MAgPIE (right). 

Model differences arise from different land masks, different PFTs (e.g. in JULES there is a shrub PFT which was 

treated as forest here), and the response of natural vegetation to climate and CO2 changes (static vs. dynamic 

vegetation). 

 

2.4 Specific methodology Section 5 

 

2.4.1 Land-use scenarios and simulation setup 

The simulations analysed in Section 5 are the same as the LPJ-GUESS simulations that are also used 

in Section 4. Information about the LU scenarios, their implementation into LPJ-GUESS, and the 

simulation setup can thus be found in Section 2.3. 

 

2.4.2 Analysed ecosystem service indicators 

We analysed the implications of future LU patterns for the following ES indicators: C storage (as an 

indicator for global climate change mitigation), surface winter and summer albedo and evapotranspira-

tion (indicators for regional climate effects in response to land-cover change), annual runoff (indicator 

for water availability), peak monthly runoff (indicator for flood protection), crop production (exclud-

ing production on areas where the LUMs grow cotton or forage crops, and excluding harvest of pas-

tures; indicator for food production), N loss (in LPJ-GUESS currently not differentiated into dissolved 

N vs. N lost to the atmosphere; indicator for water or air quality, or GHG losses), and emissions of the 

most common BVOCs - isoprene and monoterpenes (indicator for air quality). We only used spatially 

explicit LU and land management (irrigation and synthetic plus organic N fertiliser) patterns from the 

LUMs as input to the LPJ-GUESS simulations; other variables also available from the LUMs (C 

storage and crop production) were calculated by LPJ-GUESS. Most variables were direct outputs from 

LPJ-GUESS simulations. Calculations for ES indicators not taken directly from model outputs (C 

storage via CCS, albedo, crop production scaled to EarthStat yields; Monfreda et al., 2008) or differ-

ent from the standard model setup (BVOCs) are provided in Section 2.4.3. 
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Table 2.5: Linking ecosystem functions to ecosystem services (ESs). An increase in an ecosystem function can 

be interpreted positive (+), negative (-), zero (0), or either positive or negative (+/-), depending on the back-

ground conditions or perspective. Effects can be small (+ or -) or large (++ or --). Regional effects are shown 

without brackets and global effects, where relevant, in brackets. Indirect effects that are more directly represent-

ed by another ecosystem function considered here are not shown. The table is based on evidence from the litera-

ture in cases where the link is not directly clear (see footnotes). 

Ecosystem function / 

ES indicator 

ES – 

climate 

change 

mitigation 

ES – water 

availability 

ES – flood 

protection 

ES – water 

quality 

ES – air 

quality 

ES – food 

production 

C storage ↑ ++ (++)      

Surface albedo ↑ ++ (+)
a
      

Evapotranspiration ↑ ++ (+/-)
b
      

Annual runoff ↑  ++ - 0/+
c
   

Peak monthly runoff ↑  0/+
d
 -- 0/-

e
  0/-

f
 

Crop production ↑      ++ (++) 

N loss ↑ +/- (+/-)
g
   --

g
 - (-)

g
  

BVOC emissions ↑ +/- (+/-)
h
    0/-- (0/-)

i
  

a
 The global effects of LU-driven albedo changes seem to be small (de Noblet-Ducoudre et al., 2012). 

b 
Local surface cooling as heat is needed to evaporate water. On larger scales, the effect could be either a warm-

ing due to increases in atmospheric water vapour (Boucher et al., 2004) or a cooling due to increased planetary 

albedo resulting from more cloudiness (Bala et al., 2007, Ban-Weiss et al., 2011). 
c
 High flows imply more volume for dilution, prevent algae growth, and maintain oxygen levels (Whitehead et 

al., 2009). 
d
 Effect of peak monthly runoff on water availability is dependent on seasonal rainfall distribution and regional 

water storage capacity. Annual runoff is the clearer indicator. 
e 
Soil erosion and associated re-mobilisation of metals is enhanced during flood events (Whitehead et al., 2009). 

f
 Due to flood damage in croplands (Posthumus et al., 2009). 

g
 LPJ-GUESS at present calculates total N loss and does not differentiate between leaching and gaseous loss. 

Thus we indicate several effects that would arise from N emitted as N2O (a GHG), as NOX or NH3 (affecting air 

quality and aerosol formation), or as dissolved N. The net effect of N loss on climate has been estimated to be a 

small cooling (Erisman et al., 2011) but uncertainties are large. 
h
 The net impact of BVOC emissions is very uncertain. On the global scale, increased BVOC emissions might 

result in a warming (Unger, 2014). 
i 
BVOCs often increase O3 and secondary organic aerosol formation, primarily locally (Rosenkranz et al., 2015), 

with principally opposite warming and cooling effects (Unger, 2014). 

 

The analysed ES indicators can serve as proxies for several ESs linked to human well-being. Table 2.5 

gives a qualitative overview of how these ES indicators and corresponding ESs are interlinked. We did 

not aim to value and rank individual ES indicators and thus did not assess here how relative changes 

could be differently prioritised in decision-making for land management. While this is certainly too 

simple a generalisation for fully assessing the implications of such scenarios, ranking or prioritising 
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individual ES indicators is a substantial challenge, which was beyond the scope of the study. A given 

relative change can be more crucial for some indicators than for others and their importance can also 

vary across regions and parties concerned. ESs will be influenced by changes in climate, atmospheric 

chemistry, and LU even in the absence of land management for C mitigation. To separate these non-

mitigation effects from those effects associated with a mitigation approach, we compared changes in 

ES indicators in the BASE simulations over the 21
st
 century to the changes that occurred when a 

mitigation approach was implemented. Land-based mitigation may thus potentially enhance or de-

grade ESs to human societies. 

 

2.4.3 Variables not directly available from LPJ-GUESS output 

Bioenergy yields included removed harvestable organs and crop residues (90% of total above-ground 

biomass). We estimated the total amount of C sequestered via CCS in the bioenergy simulations by 

assuming an 80% capture rate upon oxidisation, which is the same value as in the LUMs (Klein et al., 

2014). We did not account for energy production via BECCS and focused on the more important 

climate benefit via C sequestration (Humpenöder et al., 2014). The total C was then calculated as the 

sum of terrestrial C (vegetation C, soil and litter C, C stored in wood products), and cumulative C 

stored via CCS. 

We calculated January and July surface albedo mainly based on mean winter (snow-free and snow-

covered) and summer albedo values for different land-cover types derived from MODIS satellite 

observations by Boisier et al. (2013). For the Southern Hemisphere we switched snow-free winter and 

summer albedo values. The LPJ-GUESS PFTs’ fractional plant cover determined the fraction of the 

grid-cell occupied by the land-cover groups (crops, grasses, evergreen trees, deciduous trees, bare 

soil). For tropical evergreen trees we assumed an albedo of 0.14 year-round based on Boisier et al. 

(2013). For woody bioenergy we assumed the same albedo as deciduous forests. The albedo of the 

non-vegetated fraction of the grid-cell under snow-free conditions was taken from Houldcroft et al. 

(2009) (average of white and black sky albedo), assuming a value of 0.15 at locations where no meas-

urements were available. We estimated the grid-cell’s monthly fraction under snow cover fsnow as 

𝑓snow =
𝑧sn

0.01 + 𝑧sn

 

where zsn was the average monthly snow depth [m] (Wang and Zeng, 2010, equation 17) which can be 

output from LPJ-GUESS. The albedo of the snow-covered fraction was calculated based on the values 

from Boisier et al. (2013) for snow-covered vegetation and bare soil and the grid-cell albedo was then 

the area-weighted average of snow-covered and snow-free albedos. 

To account for spatial variations in crop management other than irrigation and fertilisation, which are 

not accounted for in LPJ-GUESS, we scaled our food crop yields to the actual yields from the 
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EarthStat dataset (Monfreda et al., 2008), thereby only taking the absolute year-to-year changes from 

LPJ-GUESS. For this, we re-scaled yields of our four food CFTs (temperate wheat, temperate other 

summer crops, rice, maize) around the year 2000 (1997-2003) to match actual yields based on area-

weighted yields of major food crops in the EarthStat dataset (aggregated to 0.5° x 0.5° resolution; see 

Table 2.3 for which EarthStat crop types were aggregated to which LPJ-GUESS CFT). We then used 

these actual yields over the full simulation crop yield time series, with year-to-year variations calculat-

ed based on the yield changes in LPJ-GUESS (area-weighted between rain-fed and irrigated yields). If 

crops were present in the LUMs but no adequate crop types were available in the EarthStat dataset for 

a grid-cell we took the yields unmodified from LPJ-GUESS. We first converted dry matter yields 

[kg m
-2

] as given by LPJ-GUESS/EarthStat to fresh matter yields (by dividing rice yields by 0.87 and 

all other crop yields by 0.88) and finally to kcal m
-2

 (by multiplying wheat and temperate other sum-

mer crop fresh matter yields by 3283, rice fresh matter yields by 2800, and maize fresh matter yields 

by 3560; http://www.fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315, last accessed No-

vember 2017). Fodder and cotton were not used for the crop production calculation. Total crop pro-

duction was then the sum of temperate wheat, temperate other summer crops, rice, and non-bioenergy 

maize production. Yields of bioenergy crops (grown as maize) were used unmodified to estimate CCS 

(see above) due to limited observational data of bioenergy crop yields. 

Crop BVOC basal emission factors were taken from natural C3 or C4 grass, apart from woody bioener-

gy crops which we grew as maize but used isoprene basal emission factors of 45 μg[C] g
−1

[leaf foliar 

mass] h
−1

 (Ashworth et al., 2012). These values are much higher than the values for normal grasses (8 

μg g
−1 

h
−1

 for C4 grasses and 16 μg g
−1 

h
−1

 for C3 grasses) and account for the fact that isoprene emis-

sions from typical woody bioenergy species like oil palm or willow are very high. 

  

http://www.fao.org/docrep/003/X9892E/X9892e05.htm#P8217_125315
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3 Impacts of land-use history on the recovery of ecosystems after agricul-

tural abandonment 

 

This section analyses the long-term impacts of prior LU on vegetation regrowth and C sequestration 

following land abandonment. We use LPJ-GUESS simulations to explore the legacy effects of six 

different agricultural LU histories (in terms of LU type and duration; for information about the scenar-

ios, the simulation setup, and the recovery definition see Section 2.2) on the recovery of ecosystems 

across a wide range of environments. 

 

3.1 Results 

 

3.1.1 Reference simulation 

The reference simulation does not include any LUC activities and thus provides the distribution of 

potential C stocks as simulated by LPJ-GUESS under present-day (1981-2000) climate. Maps of 

simulated vegetation and soil C, as well as dominant PFT and biomes derived from PFT composition 

for the reference simulation are shown in Fig. 3.1. The salient features of biome and C storage distri-

bution on the regional scale are captured (Haxeltine and Prentice, 1996a, Scharlemann et al., 2014). 

 

Figure 3.1: Vegetation C [kgC m
-2

] for the reference simulation (present-day climate and no land-use change), 

averaged over the whole simulation period of 900 years (upper left), soil C [kgC m
-2

] (lower left), dominant PFT 

(upper right), and corresponding biomes (lower right). Grid-cells with a NPP below 0.1 kgC m
-2

 yr
-1

, deserts and 

tundra, and latitudes above 62.5°N are masked in grey. PFT abbreviations are given in Table 2.1. 
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Vegetation C reaches its highest values in tropical forests of central Africa and decreases towards the 

deserts of southern and northern Africa. Patterns are more homogeneous in Europe, where most areas 

store 5-10 kgC m
-2

. Similar to vegetation C, soil C in the (sub-)tropics also decreases with drier condi-

tions. However, the differences are small, with typical values of 5-10 kgC m
-2

. Soils in the temperate 

and southern boreal ecosystems of Europe generally store more C (usually >10 kgC m
-2

), especially in 

colder environments. While Europe is mostly dominated by woody PFTs (e.g. TeBS is the acronym 

for temperate broadleaved summergreen tree; see Table 2.1), in Africa there is a shift from C3 and C4 

grasses in the dry regions to trees in the humid tropics. This gradient also appears in the corresponding 

biome map: in Africa and the Arabian Peninsula, LPJ-GUESS reproduces the transition from grass-

lands to savannas and tropical forests as the Equator is approached. Europe is mostly classified as 

temperate forests, with some boreal forests in the north and some shrublands/savannas in the south. 

 
Figure 3.2: Time series (20-year running mean) of dominant PFT, vegetation C, soil C, and NBP for the differ-

ent simulations, starting from the time of reconversion to natural vegetation and area-averaged over all grid-cells. 

Dominant PFT, vegetation C, and soil C are shown in relative values compared to reference simulation mean, 

while NBP is shown as absolute values [kgC m
-2 

yr
-1

] because values cannot be presented relative to a zero 

background. The cyan-shaded area corresponds to the reference simulation (no land-use change) mean ± 1 σ. 

Note the different scales on the y-axes. 

 

3.1.2 Recovery of the dominant plant functional type 

The LAI of the dominant PFT recovers on average within around one century for all LU histories 

(Fig. 3.2). Maps of the recovery time (Fig. 3.3) show distinct geographical patterns which occur in all 

simulations. Most sub-tropical grasslands and savannas, and parts of the temperate and boreal forests 

recover within several decades, some grasslands even within 5 years. In contrast, recovery times are 

clearly longer (>100 years) in other parts of the temperate forests and in the tropical forests. Long 

recovery is associated with woody successional vegetation dynamics, as slow-recovering areas are 

usually dominated by temperate broadleaved summergreen and tropical broadleaved evergreen forests 

(compare PFT distribution in Fig. 3.1). These are shade-tolerant PFTs that establish only slowly after 
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disturbances. For 84% of all analysed grid-cells, condition 1 (LAI recovery) was the delaying condi-

tion for dominant PFT recovery (numbers exemplified for the P60 simulation), compared to only 3% 

for condition 2 (dominance recovery). For the remaining grid-cells, both conditions were fulfilled in 

the same year. 

 
Figure 3.3: Maps of recovery times in years for the dominant PFT, vegetation C, soil C, and NBP for the P20, 

P100, C20, and C100 simulations. 

 

Overall, differences across simulations of different LU histories are moderate, with generally only 

small differences in temperate forests, savannas, and shrublands (Fig. 3.3; see also biome averages in 

Table 3.1 and the histogram Fig. 3.4). Areas of major differences are central Africa, where P20 recov-

ers faster than other simulations because post-agricultural net mineralisation rates are higher in this 

region for P20 than for the other simulations (Fig. 3.5), thereby relatively increasing post-agricultural  
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Table 3.1: Average recovery times and standard deviations per biome and for each simulation. Recovery times 

are depicted in Figure 3.3. 

Biome 

 

 

Simulation 

P20 P60 P100 C20 C60 C100 

 

dominant PFT recovery time, averaged per biome 

 

Tropical forest 90 ± 55 112 ± 48 121 ± 50 113 ± 54 125 ± 52 126 ± 51 

Temperate forest 102 ± 74 96 ± 63 93 ± 57 99 ± 71 89 ± 61 92 ± 69 

Boreal forest 47 ± 89 52 ± 97 53 ± 90 47 ± 95 60 ± 111 145 ± 178 

Savanna 47 ± 71 57 ± 74 62 ± 77 50 ± 65 57 ± 73 59 ± 76 

Shrub 95 ± 93 104 ± 101 108 ± 100 103 ± 100 109 ± 112 109 ± 112 

Grassland 76 ± 108 102 ± 109 115 ± 109 45 ± 77 55 ± 97 58 ± 100 

Total 80 ± 85 93 ± 84 99 ± 84 77 ± 78 83 ± 85 90 ± 95 

 

 

 

Vegetation C recovery time, averaged per biome 

 

Tropical Forest 106 ± 50 137 ± 61 150 ± 65 121 ± 65 138 ± 73 139 ± 74 

Temperate forest 84 ± 24 93 ± 31 108 ± 46 91 ± 29 124 ± 59 149 ± 79 

Boreal Forest 102 ± 47 113 ± 57 127 ± 71 111 ± 55 144 ± 79 187 ± 107 

Savanna 49 ± 37 61 ± 44 66 ± 46 35 ± 40 42 ± 43 43 ± 44 

Shrub 73 ± 40 86 ± 48 96 ± 51 60 ± 38 69 ± 48 73 ± 54 

Grassland 96 ± 136 119 ± 140 126 ± 138 40 ± 98 43 ± 102 45 ± 105 

Total 88 ± 80 106 ± 87 117 ± 90 75 ± 74 92 ± 87 101 ± 98 

  

Soil C recovery time, averaged per biome 

 

Tropical forest 74 ± 60 69 ± 43 66 ± 45 80 ± 46 64 ± 46 49 ± 43 

Temperate forest 207 ± 98 229 ± 105 241 ± 117 237 ± 108 261 ± 133 260 ± 144 

Boreal forest 327 ± 107 381 ± 122 421 ± 140 362 ± 112 425 ± 132 454 ± 161 

Savanna 84 ± 132 132 ± 191 162 ± 233 85 ± 112 83 ± 125 74 ± 126 

Shrub 107 ± 140 129 ± 161 135 ± 168 137 ± 173 139 ± 183 125 ± 183 

Grassland 286 ± 234 366 ± 262 422 ± 283 239 ± 227 219 ± 229 198 ± 228 

Total 182 ± 176 220 ± 209 245 ± 236 182 ± 171 183 ± 186 174 ± 194 

  

NBP recovery time, averaged per biome 
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Tropical forest 57 ± 37 65 ± 26 71 ± 27 56 ± 28 64 ± 24 65 ± 24 

Temperate forest 97 ± 29 108 ± 29 113 ± 31 102 ± 30 112 ± 31 119 ± 36 

Boreal forest 136 ± 55 146 ± 56 152 ± 58 139 ± 54 151 ± 59 169 ± 71 

Savanna 31 ± 40 34 ± 30 36 ± 26 29 ± 18 32 ± 17 33 ± 17 

Shrub 51 ± 37 58 ± 31 59 ± 29 52 ± 27 58 ± 26 59 ± 25 

Grassland 25 ± 37 31 ± 31 35 ± 30 27 ± 15 34 ± 20 36 ± 22 

Total 59 ± 51 66 ± 49 71 ± 49 60 ± 45 68 ± 47 72 ± 52 

 

N availability compared to the other simulations (Fig. 3.6), and the African Mediterranean coast, 

where croplands recover much faster because the reduced C:N ratio in the soil (not shown) enhances N 

mineralisation and thus plant N availability compared to pastures. Furthermore, in parts of the boreal 

zone recovery takes several hundred years for C100 instead of a few decades for the other simulations 

because lower available N levels relatively reduce the growth of IBS (the dominant PFT in this region) 

compared to other woody PFTs. Figure 3.7 shows the maximum differences between recovery times 

across all simulations per biome (black dots), as well as across a subset of simulations (coloured 

squares and triangles). The differences were first calculated for each grid-cell and only then averaged 

over biomes, thereby providing an estimate of the relative importance of former LU duration versus 

former LU type on recovery times. While substantial differences occur across the pasture simulations 

(P20, P60, P100) in tropical forests, savannas, and grasslands, and across cropland simulations (C20, 

C60, C100) in boreal forests (emphasizing the importance of LU duration in these regions), major 

differences between P100 and C100 occur in boreal forests and grasslands (emphasizing the im-

portance of LU type if agricultural duration was long). On the other hand, in our simulations, domi-

nant PFT recovery in temperate forests is hardly influenced by the type of former LU or, conversely, 

pasture duration has negligible effects on boreal forest recovery. Interestingly, temperate forests re-

cover faster for P100 and C100 than for P20 and C20. This pattern is generally restricted to areas 

where the TeBS PFT dominates. We interpret this behaviour as reduced soil N favouring TeBS in the 

competition with other tree PFTs, thereby reaching its background LAI levels earlier. 

 

3.1.3 Recovery of vegetation carbon 

Compared to dominant PFT, recovery occurs slightly later for vegetation C (Fig. 3.2, Table 3.1). 

Spatial patterns look more homogeneous than for the dominant PFT (Fig. 3.3). While most grasslands 

recover within a few decades for all simulations, in particular so for post-cropland recovery, recovery 

occurs only after several decades or centuries in forest ecosystems. Lower standard deviations for the 

mean differences in vegetation C recovery times compared to the standard deviations for the mean 

differences in dominant PFT recovery times for most biomes (Fig. 3.7a-b) reflect the spatially more 

uniform response of vegetation C recovery. Exceptions are tropical forests and grasslands, where the 

standard deviation is higher for vegetation C recovery compared to dominant PFT recovery. 
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Fig. 3.4: Histograms of recovery times for the dominant PFT, vegetation C, soil C, and NBP for the six simula-

tions. Colours indicate different biomes. 
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Significant differences in recovery times occur between simulations of different LU types that have 

the same duration, and between simulations of the same LU type but with different duration. For 

example, in the grasslands and savannas of southern, eastern and northern Africa, former croplands 

recover much faster than former pastures (see also Table 3.1) because post-agricultural N availability 

is enhanced in these regions (Fig. 3.6). In former croplands in these environments, the combined effect 

of fertilizing and harvesting is a net N flux to the ecosystem (not shown) and mineralisation rates are 

enhanced after cropland abandonment (Fig. 3.5). This net N flux can partially be explained by high 

levels of water stress in these savannas and grasslands, resulting in greater C and N allocation to roots 

relative to leaves and thereby decreased harvest removal in this region (see Fig. 3.8). Conversely, 

recovery in northern European forests is delayed for C60 and, to an even greater extent, C100 because 

in this region N removal by annual harvest exceeds N addition through fertilisation during the agricul-

tural period (not shown) and post-agricultural N mineralisation rates in this region are substantially 

reduced compared to the other simulations many decades or even a few centuries after abandonment 

(Fig. 3.5). Differences in vegetation recovery times resulting from agricultural duration are mostly 

found in temperate and boreal forests for the cropland simulations (here longer durations result in 

longer recovery times due to reduced N availability, Fig. 3.6) and in tropical forests and shrublands for 

the pasture simulations, emphasizing the importance of agricultural duration in these regions (see also 

Fig. 3.7b). 

 

Figure 3.5: Average net N mineralisation rates [kgN ha
-1 

yr
-1

] in the soil for the reference simulation (full simu-

lation period) and averaged over the first 100 years of regrowth for the P20, P100, C20, and C100 simulations. 
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3.1.4 Recovery of soil carbon 

Relative depletion of soil C content under crop and pasture LU is not as large (loss of 0-11% com-

pared to the reference simulation) as for vegetation C (Fig. 3.2). However, regeneration proceeds over 

longer time scales due to slower C accumulation in soils than in vegetation. C depletion is generally 

more pronounced for former crops than for pastures due to the greater harvest efficiency, which leads 

to more biomass removed each year, and the effect of tillage enhancing soil respiration (Section 2.2.1). 

Upon re-conversion, soil C accumulation is delayed for the pasture simulations compared to the 

cropland simulations, especially for P20, where the residual roots and other litter left after the original 

deforestation event continue to decay and soil C decreases for some decades. The general delay for 

pastures is associated with larger heterotrophic respiration rates (not shown) compared to rates calcu-

lated in recovering croplands. 

 
Figure 3.6: Average N limitation on vegetation RuBisCO capacity (and thus on gross primary production) for 

the reference simulation (full simulation period) and during the first 100 years of regrowth for the P20, P100, 

C20, and C100 simulations. N limitation is a number scaling from 0 (completely N-limited) to 1 (no N 

limitation; Smith et al., 2014). 

 

Soil C recovery rates are highly latitude-dependent (Fig. 3.3), being much slower in temperate (~250 

years) and boreal forests (~400 years) than in the tropics (<100 years, sometimes even within 5 years). 

Initial soil C depletions are larger in higher latitudes, while these regions also suffer from low produc-

tivity, thereby reducing C input to the soil upon regrowth. Additionally, in the intensive LU simula-

tions (P100, C60, C100), vegetation productivity in the boreal region is further reduced compared to 

the reference simulation in the first 200 years of regrowth (not shown) due to N limitation (Smith et 

al., 2014), reducing litter input to the soil even further.   
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Figure 3.7: Maximum difference in recovery time (longest recovery time minus shortest recovery time of all 

selected simulations) for the dominant PFT, vegetation C, soil C, and NBP. Black dots show maximum differ-

ences across all six simulations (P20, P60, P100, C20, C60, C100), green squares differences across 20-year 

pasture and cropland simulations (P20, C20), blue squares differences across 60-year pasture and cropland 

simulations (P60, C60), red squares differences across 100-year pasture and cropland simulations (P100, C100), 

orange triangles differences across pasture simulations (P20, P60, P100), and purple triangles differences across 

cropland simulations (C20, C60, C100). Background colours indicate associated biomes, arrows one standard 

deviation, and the dashed line 0 years’ difference. Thus, the black dots show the sensitivity of recovery times to 

LU history across all simulations for each biome. The red, blue, and green squares indicate the relative contribu-

tion of LU type for a specific LU duration to this sensitivity, and the orange and purple squares indicate the 

relative contributions of pasture and of cropland duration. For example, if recovery times for one variable in one 

grid-cell were to be 50, 60, 65, 90, 100, 110 years (for P20, P60, P100, C20, C60, C100), the maximum differ-

ence in recovery time across all simulations (black) would be 60 years, across the 20-year simulations (green) 40 

years, across the 60-year simulations (blue) 40 years, across the 100-year simulations (red) 45 years, across the 

pasture simulations (orange) 15 years and across the cropland simulations (purple) 20 years. 

 

Soil C recovery times differ substantially between simulations in many areas. LU type is particularly 

important in grasslands and non-tropical forests. While croplands tend to recover faster than pastures 

in grasslands of southern and northern Africa, the opposite occurs in most temperate and boreal forests 

but also the northern Sahel, where soil C after re-conversion from croplands does not recover at all. 

Post-agricultural N availability is enhanced in parts of the Sahel for the cropland simulations due to 

increased N mineralisation rates (Fig. 3.5 and Fig. 3.6), and trees benefit more than grasses, leading to 

a shift in the equilibrium vegetation state towards woody species (not shown), which results in an 

overall lower soil C pool size. It should be noted that even though some regions do not recover within 

800 years, a large fraction of the original C loss is already replenished after a few centuries, thereby 

limiting implications for the C cycle. Counter to a priori expectations, for tropical and temperate 

forests and for shrublands, the difference between P20 and C20 is usually higher than between P60 

and C60 or P100 and C100 (Fig. 3.7c). Pasture duration is relevant for speed of soil C recovery in 

most ecosystems and, apart from in the tropics, a longer duration usually delays recovery, mainly due 

to substantial initial depletions after long pasture durations (Fig. 3.2). For croplands, longer durations 
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tend to delay recovery in temperate and boreal forests but accelerate soil C recovery in the (sub-) 

tropics. This is somewhat unexpected for the tropical forest biome, where longer cropland durations 

usually do not increase N availability upon abandonment in our simulations (Fig. 3.6). However, while 

tropical soils lose large amounts of C during the first decades of cropland use, slow C accumulation 

takes place thereafter, resulting in higher soil C values at the end of the agricultural period for C100 

than for C20 in large parts of eastern Africa. This occurs because tillage-driven C losses in more labile 

soil pools, which dominate the system’s response during the first decades, are eventually supplanted as 

the dominant process by accumulation in more stable pools. This is different to temperate and boreal 

forest, where soil C decreases throughout the entire cropland period. Overall, the greatest sensitivity of 

soil C recovery times to different LU histories is found in boreal forests and grasslands, where maxi-

mum differences across simulations are often several centuries (Fig. 3.7c). The maximum differences 

across all simulations (P20/P60/P100/C20/C60/C100) in boreal forests are mainly due to differences 

across simulations of same LU type but different duration (e.g. P20/P60/P100), whereas the sensitivity 

of grasslands mainly reflects differences across simulations of different LU type but same duration 

(e.g. P100/C100), emphasizing the importance of duration and type of agriculture in a range of bi-

omes. 

 

Figure 3.8: Annual ratio of C removed by harvest and C stored in vegetation, averaged over the whole agricul-

tural period and for the P60 simulation. As only above-ground biomass is harvested, lower values indicate 

increased C allocation to roots compared to leaves due to limited water supply. 

 

3.1.5 Recovery of Net Biome Productivity 

NBP switches from being a C source to the atmosphere during the period of land management to a C 

sink after reconversion to natural vegetation (Fig. 3.2). The sink capacity of the recovering ecosystem 

is greatest during the first decades and then gradually returns to the NBP levels of the reference simu-

lation. P20 and, to a lesser extent, C20 act as a smaller sink than the other simulations at least during 

the first 100 years of regrowth. Recovery generally occurs slower in temperate and boreal regions than 
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in the tropics for all simulations (Fig. 3.3). Apart from boreal forests, standard deviations of mean 

differences in recovery times are very small in all biomes compared to the other variables (Fig. 3.7d). 

Recovery times are often somewhat lower than those which would be expected from vegetation and 

soil C recovery times. This is because the greater standard deviation of NBP in our reference simula-

tion (Fig. 3.2) reduces the threshold value in our recovery definition, thereby making it easier to reach 

recovery levels for NBP. We discuss the implications of this further in Section 3.2.2. 

Differences in NBP recovery times between simulations are relatively small (typically a few years to 

decades; see Table 3.1). The largest differences in recovery times are found in the boreal forests be-

tween the cropland simulations, and, as for soil C, the differences are often greater between P20 and 

C20 than between P100 and C100 (Fig. 3.7d). 

 

3.2 Discussion and conclusions 

 

3.2.1 Comparison of identified recovery times to observations and previous studies 

The effects of forest conversion to croplands or pastures are relatively well studied. Tilled croplands 

typically show large depletions of soil C compared to natural forest vegetation, but the picture for 

pasture is more diverse (Davidson and Ackerman, 1993, Don et al., 2011, Guo and Gifford, 2002). 

Table 3.2 summarises recent reviews about observed soil C changes in agriculture compared to our 

results. LPJ-GUESS tends to simulate lower C loss in croplands than commonly reported in observa-

tions. We attribute this to a combination of the observation’s focus on the top soil (while in LPJ-

GUESS soil C is implicitly averaged over the whole soil column) and our relatively high fertiliser 

rates increasing productivity and thereby C input to the soil. Pugh et al. (2015) studied the C dynamics 

of soils in managed lands in LPJ-GUESS and found C accumulation even after 100 years of grazed 

pasture at some locations, especially for low atmospheric CO2 concentrations. However, they used the 

C-only version of the model, thereby neglecting C-N interactions and increased N limitation on grass 

growth with time due to N removal by harvest. Croplands were explicitly represented by a number of 

managed, but unfertilised, CFTs in Pugh et al. (2015). They found soil C reductions in Europe and 

Africa of ~50% after 100 years of cultivation, whereas in our study C losses are much smaller (~12%), 

possibly partly due to different tillage effects in the two soil models applied. 

In contrast to studies of LU effects compared to previously natural ecosystems, the regeneration of 

ecosystems after agricultural abandonment has been studied less, and a direct comparison to our 

simulations is challenging, either because limited information about former LU or reference conditions 

was provided in these studies or because there are important differences from our setup in terms of 

management and LU duration or other site-specific characteristics. Additionally, most of the available 

studies were conducted in Amazonia or North America (Don et al., 2011) and there is large variability 

in physical and biotic characteristics as well as in land management (Kauffman et al., 2009). Many 
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studies focus on the recovery of biodiversity or species richness (Cramer et al., 2008, Queiroz et al., 

2014), but these variables cannot be adequately captured by our large-scale PFT approach. It is often 

assumed that the ecosystem will gradually return to its previous state and that intensive LU delays 

recovery but the time scales are widely unknown and differ across variables and regions, e.g. tropical 

species composition recovers much slower than forest structure and soil nutrients (Chazdon, 2003). 

Different recovery processes are strongly interlinked, e.g. vegetation accumulation and turnover are 

key factors in the replenishment of soil quality and nutrients which in turn determine plant productivi-

ty, and post-agricultural soil C and N dynamics have been shown to correlate during the regeneration 

of ecosystems (Knops and Tilman, 2000, Li et al., 2012). 

Table 3.2: Observations and LPJ-GUESS results of soil C changes during agriculture (cropland or pasture) and 

vegetation and soil C recovery after agricultural abandonment. 

Observation 

type 

Biome Observation value Closest 

simulations 

in terms of 

LU history 

Average model 

value for the specif-

ic biome 

Reference 

 

Soil C changes during agriculture 

 

Soil C change 

averaged over 

different 

depths 

global 42% loss for 

forest-cropland 

conversions, 8% 

gain for forest-

pasture conver-

sions 

P20, P60, 

P100, C20, 

C60, C100 

7-17% loss in forest 

biomes for 

croplands, 2% gain 

to 7% loss for 

pastures 

Guo and 

Gifford (2002) 

Soil C change 

at 36 cm 

tropical 

forest 

25% loss for 

cropland, 12% 

loss for pasture/ 

grassland 

C20, C60, 

P20, P60 

11-12% loss for 

croplands, 2% gain 

to 4% loss for 

pastures 

Don et al. 

(2011) 

Soil C change 

at 29 cm 

temperate 

forest 

new equilibrium 

after 23 years 

C100 C loss throughout 

the entire cropland 

duration 

Poeplau et al. 

(2011) 

 

Vegetation recovery after agricultural abandonment 

 

Above-ground 

vegetation 

recovery time 

tropical 

forest 

189 years C20 121 years Saldarriaga et 

al. (1988) 

Above-ground 

vegetation 

recovery rate 

tropical 

forest 

slowdown with 

time, recovery 

slower for pasture 

than for cropland 

P20, P60, 

P100, C20, 

C60, C100 

(slight) slowdown, 

pasture recovery 

slower only for 

long durations 

(P100/C100)  

Silver et al. 

(2000) 

Total and 

vegetation C 

recovery rate 

temperate 

forest 

linear with time P60, P100 (slight) slowdown Hooker and 

Compton 

(2003) 

Vegetation 

recovery rate 

temperate 

forest 

linear with time C20, C60 (slight) slowdown Poulton et al. 

(2003) 

Above-ground 

vegetation 

tropical 

forest 

recovery speed 

inversely related 

P20, P60, 

P100 

recovery speed 

inversely related to 

Uhl et al. 

(1988) 
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recovery rate to LU duration LU duration 

Above-ground 

vegetation 

recovery rate 

and time 

tropical 

forest 

73 years, recovery 

speed inversely 

related to LU 

duration 

C20, C60, 

C100 

121-139 years, 

recovery speed 

inversely related to 

LU duration 

Hughes et al. 

(1999) 

Maximum tree 

height recov-

ery rate 

tropical 

forest 

recovery speed 

inversely related 

to LU duration 

C20, C60, 

C100 

recovery speed 

inversely related to 

LU duration 

Randriamalala 

et al. (2012) 

Vegetation 

height recov-

ery rate 

tropical 

forest 

slower for pasture 

than for cropland 

P20, P60, 

P100, C20, 

C60, C100 

slower only for 

long durations 

(C100/P100) 

Moran et al. 

(2000) 

Above-ground 

vegetation 

recovery rate 

tropical 

forest 

slower for pasture 

than for cropland 

P20, C20 faster for P20 than 

for C20 

Wandelli and 

Fearnside 

(2015) 

 

Soil C recovery after agricultural abandonment 

 

Soil C recov-

ery at up to 30 

cm 

global large variation 

across studies, 

tendency to lose 

C in the first years 

for pastures, 

immediate accu-

mulation for 

croplands 

P20, P60, 

P100, C20, 

C60, C100 

tendency to lose C 

in the first years for 

pastures, immediate 

accumulation for 

croplands 

Paul et al. 

(2002) 

Soil C recov-

ery at 34 cm 

global more accumula-

tion for croplands 

than for pastures, 

no accumulation 

in boreal zone 

P20, P60, 

P100, C20, 

C60, C100 

more accumulation 

for croplands than 

for pastures, slower 

accumulation in 

boreal zone 

Laganiere et 

al. (2010) 

Soil C recov-

ery at 28/40 

cm 

temperate 

forest 

linear accumula-

tion, no equilibri-

um after 120 

years 

C20 linear accumula-

tion, no equilibrium 

after 120 years 

Poeplau et al. 

(2011)  

Soil C recov-

ery time at 0-

60 cm 

grassland 158 years C100 198 years Potter et al. 

(1999) 

Soil C recov-

ery time at 0-

60 cm 

savanna/ 

temperate 

forest 

230 years C20 85 (savanna) / 237 

(temperate forest) 

years 

Knops and 

Tilman (2000) 

Soil C recov-

ery time 0-10 

cm 

temperate 

forest 

>100 years C20, C60, 

C100 

237-261 years Foote and 

Grogan (2010) 

Soil C recov-

ery time 0-25 

cm 

tropical 

forest 

50-60 years P20, P60, 

P100, C20, 

C60, C100 

49-80 years Silver et al. 

(2000) 

 

Table 3.2 includes several studies about ecosystem vegetation and soil recovery after agricultural 

abandonment. Overall, the studies that looked at vegetation recovery upon abandonment indicate that 

biomass accumulation slows down after some decades and that accumulation rates correlate negatively 

with agricultural duration. Our simulations show that the rate of vegetation C sequestration indeed 

declines over time and that longer LU durations delay recovery in each of the analysed biomes. Obser-
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vations also indicate that use of land for pasture delays recovery in the tropics upon pasture abandon-

ment compared to cropping, but in our simulations this seems to be the case only after long agricultur-

al durations. For studies about soil C dynamics after agricultural abandonment, interpretation is often 

hindered by combining different soil layers or aggregating different LU types (Li et al., 2012) and by 

large variations observed across studies (Post and Kwon, 2000). Nevertheless, most of the observed 

patterns are reproduced in our simulations, suggesting that LPJ-GUESS captures the salient processes: 

after abandonment, croplands accumulate C faster than pastures, and recovery often takes more than a 

century. The impact of LU duration has rarely been studied. However, our results suggest that even 

though longer agricultural durations mostly result in greater initial soil C depletions, recovery can 

occur at similar or even faster speed in the sub-tropics and tropics. In temperate and boreal forests long 

LU durations tend to delay recovery. 

The LPJ-GUESS model has been successfully tested against a range of observations and observation-

based products, including vegetation distribution, vegetation dynamics, and soil C response to changes 

in vegetation cover (Hickler et al., 2004, Miller et al., 2008, Pugh et al., 2015, Smith et al., 2014). In 

our simulations, we used only two different agricultural land-cover types (intensive grazing and ferti-

lised, tilled crops). Our analysis would therefore not identify effects of, for instance, clearing tech-

nique (e.g. burning compared to mechanical removal) or different land management practices (e.g. 

repeated burning or irrigation) within one land-cover type. For example, recovery of species richness 

and maximum tree height of secondary forests occurs faster under no tillage compared to heavy tillage 

(Randriamalala et al., 2012). 

Our study is intended as an idealised experiment to highlight the importance of LU history on ecosys-

tem state and fluxes across biomes. Still, some processes with the potential to affect post-agricultural 

ecosystem recovery, at least regionally, are not currently included in LPJ-GUESS. One aspect is the 

phosphorus cycle, which is not implemented in LPJ-GUESS, even though it can be significantly 

altered by LUC (MacDonald et al., 2012, McLauchlan, 2006). Moreover, while C and N cycles inter-

act in LPJ-GUESS (Smith et al., 2014), the uniform annual fertiliser rate we applied in this study 

might be realistic in some regions, such as parts of Europe, but exceeds present-day fertiliser use in 

Africa (Potter et al., 2010). Seed availability, remnant trees, and resprouting from surviving roots are 

important factors during initial stages of tree colonisation following agricultural cessation (Bellemare 

et al., 2002, Cramer et al., 2008). While LPJ-GUESS does not account for these effects explicitly, 

seedling establishment is limited by a suitable growth environment, such that effects like re-sprouting 

or remnant trees as seed sources are mimicked. The model has been shown to, for example, reproduce 

vegetation recolonisation in northern Europe during the Holocene well (Miller et al., 2008) as well as 

canopy structural changes as a function of forest age (Smith et al., 2014). What is more, by using a 

prescribed climate in our simulations, hydrological biosphere-atmosphere interactions and feedbacks 

are not captured (Eltahir and Bras, 1996, Giambelluca, 2002), which could alter regional climate in 
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response to land-cover change, potentially affecting recovery rates, especially in tropical regions. 

Biophysical effects are not restricted to modifications of the water cycle but also include changes in 

surface albedo and roughness length as a function of ecosystem structure and composition, thereby 

affecting air mixing and heat transfer. While forests generally absorb more sunlight than grasslands 

(e.g. Culf et al., 1995), differences amongst tree species and age classes exist as well. Substantial 

impacts related to realistic LU have been found at local-to-regional scales (Alkama and Cescatti, 2016, 

Peng et al., 2014). Whether or not the locally observed changes translate to a significant global radia-

tive forcing is still debated as the direction of change differs across regions in some climate models, 

which may cancel when integrated globally (Pielke et al., 2011). Additionally, while we focus on C 

sequestration rates in our analysis, there might be biogeochemical implications beyond C. For in-

stance, the emissions of BVOCs to the atmosphere vary greatly amongst plant species (Kesselmeier 

and Staudt, 1999). BVOCs affect atmospheric composition and climate via O3 production, lengthening 

the lifetime of atmospheric CH4, and contributing to secondary organic aerosol formation (Penuelas 

and Staudt, 2010, Wu et al., 2012). BVOC emission factors might also be drastically influenced by 

wildfires (Ciccioli et al., 2014), which in turn are driven by species composition and vegetation densi-

ty. Thus, different successional trajectories of ecosystem structure and composition recovery have the 

potential to directly modify air quality and climatic conditions under which regrowth occurs, potential-

ly creating positive or negative climate system feedbacks. 

 

3.2.2 Implications of recovery definition 

The term recovery is subjective and, in the absence of a universal definition amongst ecologists, 

several definitions currently exist. The definition used in this study examines recovery from a C se-

questration perspective which does not capture situations, for example, where the system approaches a 

new equilibrium (as soil C did in some regions in the cropland simulations). In order to obtain a better 

understanding of the uncertainties related to our definition we therefore explored four alternative 

plausible recovery definitions. 

When applying a mean minus 2 σ threshold (instead of a mean minus 1 σ threshold), recovery times 

are generally shorter, e.g. on average 75 instead of 106 years for vegetation C in P60, but the overall 

geographic patterns are very consistent across both definitions (not shown). For all variables and 

simulations, notable differences between both definitions occur in regions with longest recovery times, 

especially for sub-tropical soil C in the pasture simulations. 

Recovery based on percentage change results in more heterogeneous patterns across variables when 

compared to our standard recovery definition (Fig. 3.9). Applying a threshold of 95% of the mean, 

instead of a mean minus 1 σ threshold, produces slightly longer dominant PFT recovery times in parts 

of the temperate and tropical forests, and shorter recovery times in grasslands, especially for the pas-

ture simulations. Vegetation C shows similar patterns to the dominant PFT. However, the differences 
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to our standard definition are more pronounced. Soil C recovery times generally decrease dramatically, 

especially outside the tropics. NBP recovery times generally increase, particularly in forest ecosys-

tems. 

 
Figure 3.9: Maps of recovery time for the dominant PFT, vegetation C, soil C, and NBP with an alternative 

recovery definition (compared to Fig. 3.3) for the P60 and C60 simulations. The definition is the same as our 

standard definition but with a mean ∙ 0.95 threshold instead of mean - 1 σ. 

 

By expanding our standard recovery definition by an upper threshold (reference mean plus 1 σ), and 

with the “minimum rule” also applied to the maximum (see Section 2.2.5), one can test whether some 

ecosystems recover from higher rather than lower values than in the reference simulation. Mostly 

grasslands are affected by this alternative definition (Fig. 3.10). Dominant PFT recovery under this 

definition takes slightly longer throughout the African grasslands for the pasture simulations, and 

considerably longer in parts of northern and southern Africa for the cropland simulations. Patterns are 

similar for vegetation C but the increase in vegetation C recovery times is often larger than the in-

crease in dominant PFT recovery times, especially for croplands. Soil C recovery is notably longer in 

sub-tropical and eastern African grasslands. The recovery times of NBP are hardly affected. However, 

we do not use an upper threshold in the primary definition used in this study because in this case the 

ecosystem is already operating at a level of service above that which the undisturbed ecosystem would 

have provided and our aim here was to investigate recovery from a depletion perspective.  

Finally, when using the mean ± 1 σ definition and additionally checking whether the variable is still in 

the mean ± 1 σ range at the end of the simulation period (not shown), many grid-cells do not recover 

even within the set maximum cut-off of 800 years. Elements of random fluctuations due to natural 

variability arising from stochastic processes and disturbances and responding C, N, and water dynam-
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ics make a clear identification of recovery period difficult in that case. In particular for soil C, no 

recovery is found for parts of eastern and sub-tropical Africa. The system converges towards a new 

equilibrium state in these regions which lies above reference values. NBP stays within background 

levels everywhere. 

 
Figure 3.10: Maps of recovery time for the dominant PFT, vegetation C, soil C and NBP with an alternative 

recovery definition (compared to Fig. 3.3) for the P60 and C60 simulations. The definition is the same as our 

standard definition but with a mean ± 1 σ threshold and the minimum check also applied to the maximum instead 

of a mean - 1 σ threshold and only checking the minimum. 

 

Altogether, the alternative recovery definitions agree on the general findings when applying our stand-

ard definition, especially in terms of relative recovery rates. For all definitions, vegetation C and 

dominant PFT recover faster in grasslands than in forest-dominated ecosystems, and soil C recovery 

takes much longer in higher latitudes. However, some areas, especially in the sub-tropics, “recover” 

from values higher than in the reference simulation, and these cases are not captured by our standard 

definition. Additionally, in the tropics, soil C accumulation sometimes does not stop once background 

values are reached and soil C leaves the reference range. When recovery is defined based on standard 

deviation, NBP recovery is often quicker than recovery of the C pools. This inconsistency emphasises 

the importance of both recovery definition and selected variables when studying the recovery of eco-

systems (Jones and Schmitz, 2009). This is particularly relevant for flux tower measurements, where 

an underlying long-term trend caused by the recovery from previous, often unquantified or unknown 

LUC, might be overlooked due to a large inter-annual variability in net ecosystem exchange. 
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3.2.3 Conclusions from Section 3 

Most studies which have explored the effects of distant human activities on present-day ecosystems 

were restricted by sampling difficulties, small spatial scales, short time periods since abandonment, 

and little information about background conditions or the specific LU history of the site. Here, we use 

a model-based approach to study the legacy effects of agricultural LU history (type and duration) on 

ecosystem regeneration and C sink capacity after the cessation of agriculture in a range of biomes 

across Europe and Africa. The model reproduces qualitatively the response found at study locations, 

including distinct differences in recovery between different variables of the terrestrial C cycle. Long-

lasting legacy effects of former agricultural intensity emerge as important for present-day ecosystem 

functions. These findings have implications for various scientific applications: 

1. Long-term monitoring sites (e.g. FLUXNET) and Earth observation systems need to collect 

and maintain detailed information about past and present land cover and land management to 

adequately interpret their data. 

2. Assessments of trends in data from sites that seek to identify impacts of climate change and/or 

increasing atmospheric CO2 concentration need to make sure that legacy effects of past LU are 

not confounding the observed trends. 

3. Simulation experiments need to move beyond deforestation but also represent, in a more de-

tailed manner, regrowth dynamics following agricultural abandonment at the sub-grid level. 

At the moment a few DGVMs have started to do so (Shevliakova et al., 2009, Stocker et al., 

2014, Wilkenskjeld et al., 2014) based on model products of tropical shifting cultivation 

(Hurtt et al., 2011), but accounting for gross land-cover changes is also important in other re-

gions like Europe (Fuchs et al., 2015). Failure to consider LU history may lead to errors in the 

simulation of vegetation properties, potentially resulting in biases in C sequestration or energy 

balance calculations, with subsequent implications for simulations of regional and global cli-

mate. Our study suggests that, for vegetation and soil C studies, accounting for LUC over the 

last 100-150 years is sufficient in the tropics, while more than 200 years might be necessary in 

the temperate and boreal zone; studies restricted to vegetation should not have to account for 

LUC more than 150 years ago in any major climatic zone. 

4. Assessing the efficiency of climate mitigation through large-scale reforestation or afforesta-

tion projects will require knowledge about the type and duration of previous LU. Our simula-

tions suggest that the potential to rapidly sequester C in biomass and soil is greatest in tropical 

forests following short periods of cropland, while boreal forests accumulate C slowest, espe-

cially when previously used for pasture. Special attention should be paid to monitoring chang-

es in below-ground C, as in most places the accumulation of soil C is much more sensitive to 

LU history than C accumulation in regrowing trees.  
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5. In terms of soil C, our results suggest that some sub-tropical regions might not recover at all 

on time scales relevant for humans. However, given the low absolute amounts of C “missing” 

in these soils, implications for the global C cycle are expected to be small. 
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4 Large uncertainty in carbon uptake potential of land-based climate-

change mitigation efforts 

 

In this section we run four DGVMs forced by land-based mitigation LUC scenarios from the two 

LUMs (for information about the LUC scenarios and their implementation into the DGVMs see Sec-

tion 2.3). We compare the C uptake achieved in the DGVMs via bioenergy cultivation combined with 

C capture and storage or avoided deforestation and afforestation to the C uptake targeted and achieved 

in the LUMs to assess the potential contribution of negative emissions to climate stabilisation. 

 

4.1 Results 

Present-day C pools as simulated by IMAGE and MAgPIE are 440 and 484 GtC in global vegetation, 

and 1121 and 1981 GtC in the soils (including litter), respectively. Vegetation C simulated by the 

DGVMs ranges between 275 and 425 GtC, and soil C between 1315 and 1954 GtC (Fig. 4.1). For the 

two non-mitigation BASE scenarios, in all DGVMs except LPJmL the land acts as a net C sink be-

tween the years 2000 and 2099 (Fig. 4.1). The magnitude and direction of change in C pools is deter-

mined by the DGVM’s response to RCP2.6 climate change, CO2 fertilisation, and baseline LUC. 

 
Figure 4.1: Global (circles) and tropical (30°S-30°N; squares) vegetation and litter and soil C pools [GtC] in the 

LUMs and DGVMs for the years 2000 and 2099 (BASE scenario). Tropical C stocks were not available from 

MAgPIE. Note that presented C pools are affected by LUC and thus do not represent potential C pools. 

 



55 
 

4.1.1 Total carbon uptake in the mitigation scenarios 

Total additional C uptake in the mitigation scenarios is here calculated as the sum of changes in vege-

tation C, soil and litter C, and (relatively negligible) product pool C, plus cumulative CCS (all relative 

to BASE). While an uptake target of 130 GtC was set in both LUMs, actual total C uptake in the 

LUMs in most cases deviates somewhat from this number. For the ADAFF scenarios, the simplicity of 

the afforestation implementation in IMAGE was unable to exactly meet the target. In MAgPIE, affor-

estation decision-making was based on present-day potential C pools. Potential impacts of climate 

change and CO2 fertilisation on the terrestrial C storage capacity were therefore not considered, which 

leads to a mismatch between intended and actual sequestration. The realised C uptake between year 

2005 and 2099 for ADAFF is 141 GtC in IMAGE and 120 GtC in MAgPIE (Fig. 4.2a-b, Fig. 4.3a). 

Around 49% of the total C increase in IMAGE ADAFF can be attributed to avoided deforestation and 

51% to afforestation (for MAgPIE spatial C stocks were not available but afforestation is certainly 

much more important due to the limited decline in forest area in MAgPIE BASE). For BECCS (and 

the BECCS component of the BECCS&ADAFF scenario), in both LUMs the CDR target was imple-

mented as a gross CCS target which included the harvested C from bioenergy crops and a fractional 

(80%; Klein et al., 2014) capture and storage of this harvest. Cumulative CCS reaches 128 GtC in year 

2099 in both LUMs (see Section 4.1.4) so the implemented CDR/CCS target is reached. However, 

calculations of the target in the LUMs originally neglected terrestrial C losses from deforestation for 

bioenergy cultivation. When these are included, cumulative CCS combined with ecosystem C losses 

from deforestation result in a net total C uptake of 86 and 107 GtC, thus below the sought target due to 

emissions from LUC. The total C uptake in the LUMs for the combined bioenergy and afforestation 

scenario (BECCS&ADAFF) is 129 and 122 GtC (Fig. 4.3a). 

In contrast to the two LUMs, total C uptake is typically lower in the DGVM simulations forced by the 

same LU patterns, with total C uptake in the DGVMs ranging between 19 and 130 GtC (Fig. 4.2a-b, 

Fig. 4.3a). Unsurprisingly (as LPJmL represents the vegetation component of the LUMs), the closest 

agreement exists between the LUMs and LPJmL. ORCHIDEE simulates the lowest uptake for 

ADAFF and JULES the lowest uptake for BECCS. BECCS&ADAFF usually results in uptake rates 

that lie between the ADAFF and the BECCS cases. The maximum yearly total C uptake per decade 

(2000-2009, 2010-2019,…) ranges from 1.9 GtC yr
-1

 (IMAGE ADAFF) to 3.5 GtC yr
-1

 (MAgPIE 

ADAFF) in the LUMs and from 0.4 GtC yr
-1

 (ORCHIDEE IMAGE-ADAFF) to 2.0 GtC yr
-1

 (LPJmL 

IMAGE-BECCS) in the DGVMs. Spatially, total C uptake is concentrated in the tropics for ADAFF 

(except in ORCHIDEE which simulates substantial emissions in some regions), while patterns are 

more diverse for BECCS (Fig. 4.4). The largest agreement in total C uptake across DGVMs is found 

in tropical Africa for the ADAFF scenarios (Fig. 4.5). The contributions of vegetation, soil, and cumu-

lative CCS to model discrepancies in total C uptake are analysed in the following subsections. 
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Figure 4.2: Time-series (2010-2099) of simulated C uptake (total of all grid-cells) in the LUMs and DGVMs for 

the ADAFF and BECCS simulations (compared to the respective BASE simulation), for IMAGE-LU patterns 

(left, 5-year running means) and MAgPIE-LU patterns (right). a+b) total C (including cumulative CCS), c+d) 

vegetation C, e+f) litter and soil C, g+h) cumulative CCS. C uptake in the BECCS&ADAFF simulations usually 

lies between BECCS and ADAFF and is therefore not shown. 
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Figure 4.3: Simulated change in total C (a), vegetation C (b), litter and soil C (c), cumulative CCS (d), cumula-

tive instant (oxidized in the same year) deforestation/degradation emissions (e), and cumulative NPP (f) between 

year 2005 and 2099 for the mitigation simulations (compared to the respective BASE simulation) in IM-

AGE/MAgPIE (as simulated by the LUMs in the LUC scenarios), LPJ-GUESS, ORCHIDEE, JULES and 

LPJmL. 

 

4.1.2 Vegetation carbon 

As intended, the simulations with the ADAFF scenarios result in increasing biomass over the 21
st
 

century compared to the BASE simulations for all LUMs and DGVMs. Vegetation C uptake in year 

2099 is 79 and 66 GtC in IMAGE and MAgPIE and ranges between 39 and 73 GtC in the DGVMs 

(Fig. 4.2c-d, Fig. 4.3b), with generally larger uptake for IMAGE scenarios than for MAgPIE scenarios 
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due to the earlier start of ADAFF activities in IMAGE (Fig. 2.3). Biomass accumulation occurs at a 

relatively steady rate in the DGVMs but accelerates during the second half of the century in the LUMs 

(Fig. 4.2c-d). There is a drop in vegetation C uptake for LPJmL MAgPIE around mid-century. As 

agricultural land has low vegetation C pools in LPJmL this decline seems to be related to a decreasing 

vegetation C density in forests, which is not compensated for by the simultaneous increase in forest 

area. Tree PFTs in LPJmL are represented by a single individual (representing the average of all trees 

belonging to this PFT), and the individual’s properties are changed when afforestation occurs in a 

grid-cell. These changes in the PFT’s properties might in some regions reduce its ability to compete or 

make it more vulnerable to disturbances so that tree mortality is increased compared to the BASE 

scenario in which no afforestation took place. 

 

 

Figure 4.4: Maps of total C uptake [kgC m
-2

] in the LUMs (a-d) and DGVMs (e-t) for the ADAFF and BECCS 

simulations (compared to BASE) between year 2005 and 2099 for IMAGE ADAFF (1
st
 column), MAgPIE 

ADAFF (2
nd

 column), IMAGE BECCS (3
rd

 column) and MAgPIE BECCS (4
th

 column). Numbers are global 

totals. 
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Figure 4.5: Maps of the absolute value of the range divided by the mean (|(max-min)/x̄ |) in total C uptake across 

DGVMs by year 2099. Red colours indicate regions of highest uncertainty in total C uptake. Regions where the 

absolute mean total C uptake across models is below 0.1 kgC m
-2

 are masked. 

 

The vegetation C uptake in IMAGE can be equally attributed to avoided deforestation and to afforesta-

tion (Table 4.1). No quantification is possible in MAgPIE because spatial C stocks were not available. 

In the DGVMs, the contribution of avoided deforestation to the vegetation C uptake in ADAFF is 

generally larger for IMAGE-LU than for MAgPIE-LU (Table 4.1), confirming the much larger role of 

afforestation compared to avoided deforestation in MAgPIE. For BECCS, all LUMs and DGVMs 

simulate deforestation-driven decreases in vegetation C. JULES simulates the largest biomass losses 

upon deforestation and ORCHIDEE the smallest losses. Since global vegetation C stocks are similar 

across DGVMs (with the exception of ORCHIDEE; Fig. 4.1), differences in C losses arise from spatial 

variations in biomass which DGVMs (and presumably also LUMs) are known to not capture well 

(Johnson et al., 2016). BECCS deforestation emissions are generally larger for IMAGE-LU patterns 

than for MAgPIE-LU patterns, reflecting the much larger decline in forest area (Fig. 2.3, Table 2.2). 

 

Table 4.1: Relative contribution of avoided deforestation (compared to afforestation) to the vegetation carbon 

uptake in the LUMs and DGVMs for the ADAFF simulations. 

 IMAGE-LU MAgPIE-LU 

IMAGE/MAgPIE 50% not available 

LPJ-GUESS 55% 25% 

ORCHIDEE 60% 10% 

JULES 67% 14% 

LPJmL 55% 18% 
 

 

Site-level comparisons can help us to better understand differences across models. Therefore, in order 

to understand local responses better and to use these to interpret the simulated global totals, we applied 

the models at a number of grid locations (for IMAGE scenarios as spatial information were not availa-
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ble from MAgPIE), selected because a large fraction of the grid-cells’ area underwent land-cover 

transitions within the 21
st
 century. However, there are substantial variations in the models’ response to 

LUC across different sites, making it difficult to choose representative grid-cells and to draw universal 

conclusions from this comparison. Figure 4.6 shows three relatively representative example sites. As 

expected for a 0.5° resolution, there are substantial differences on grid-cell level across models in 

terms of initial vegetation C densities. All models simulate increasing biomass in response to affor-

estation (Fig. 4.6a-b; taken from the ADAFF simulations) and biomass losses upon deforestation (Fig. 

4.6c; taken from the BECCS simulations). However, JULES does not simulate forest degradation (Fig. 

4.6c; see Section 2.3.1 for more information about degraded forests in IMAGE), contributing to the 

lower vegetation C uptake compared to the other DGVMs for the IMAGE ADAFF (and IMAGE 

BECCS&ADAFF) scenario. 

 

Figure 4.6: Three example sites showing vegetation C [kgC m
-2

] (a-c) and litter and soil C [kgC m
-2

] (d-f) 

trajectories in IMAGE and the DGVMs for different LUC (prescribed by IMAGE; g-i): afforestation on pasture 

(left and middle) and deforestation for agriculture and forest degradation (right). Note that ORCHIDEE was run 

on 2° x 2° resolution and is thus excluded. 

 

For MAgPIE scenarios, site-level comparisons are not shown because MAgPIE only reported global C 

pools. For the MAgPIE ADAFF scenario, global vegetation C uptake is very similar in all DGVMs but 

lower than in MAgPIE (Fig. 4.2d). It seems that one reason for this divergence is different assump-

tions about potential vegetation C stocks (available for MAgPIE and LPJ-GUESS; see Fig. 4.7). An 

additional factor explaining the divergence is the pace of the regrowth curve. In contrast to the other 

models, MAgPIE assumes a single response function per biome, irrespective of spatial differences in 

climate and soil conditions within a biome, and thus ignores the effects of spatial differences within a 

biome, e.g. in terms of annual precipitation or soil fertility on forest regrowth (Poorter et al., 2016). 

Additionally, MAgPIE does not account for disturbances. When looking at forest regrowth rates 

averaged over different biomes it seems that tropical regrowth occurs much faster in MAgPIE than, for 

example, in LPJ-GUESS (Fig. 4.8a). 
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Figure 4.7: Potential vegetation C (top), litter C (middle), and soil (bottom) C stocks [kgC m
-2

] in the year 1995 

for MAgPIE (left) and LPJ-GUESS (middle), and the difference between the two models (right). Note the 

logarithmic scales. Numbers are global totals. 

 

 

 

 

Figure 4.8: Comparison of (relative) changes in vegetation C (a-c), litter C (d-f), and soil C (g-i) following 

afforestation in MAgPIE and LPJ-GUESS, averaged over different biomes. The orange lines correspond to LPJ-

GUESS simulations of different former agriculture durations adopted from Section 3. These LPJ-GUESS simu-

lations in Section 3 only cover regions in Africa and Europe below 63°N and the model version differs from the 

version used in Section 4 (specific CFTs are not included and croplands are represented as intensively managed 

grassland; grasses have a larger below-ground/above-ground biomass ratio than CFTs so that less C is removed 

during harvest and more C is transferred to the litter and soil; consequently initial litter and soil C depletions 

would likely be lower in the LPJ-GUESS version used in Section 4). Biome classifications are also slightly 

different between MAgPIE and LPJ-GUESS, e.g. MAgPIE also includes a “temperate-boreal” class (not shown). 
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4.1.3 Soil carbon 

Compared to vegetation, modelled soil C changes in response to ADAFF activities are much more 

diverse, with some DGVMs simulating net soil C losses upon afforestation (Fig. 4.2e-f, Fig. 4.3c). Soil 

C uptake in ADAFF is 62 GtC in IMAGE and 54 GtC in MAgPIE which is comparable to vegetation 

C uptake. In contrast, soil C changes in the DGVMs range between -33 and +57 GtC. Soil C accumu-

lation in LPJmL for the MAgPIE ADAFF scenario starts significantly earlier than in the other models. 

As afforestation on pastures is common in MAgPIE until around year 2070, this indicates a large soil 

C uptake potential in LPJmL for pasture-forests transitions, which is also apparent in the LPJmL 

simulations driven by the IMAGE ADAFF LU patterns. For BECCS, all models simulate small soil C 

losses (up to -16 GtC) which are generally larger in the LUMs than in the DGVMs. In both ADAFF 

and BECCS, model differences in soil C changes are more pronounced for IMAGE-LU patterns than 

for MAgPIE-LU patterns. 

The soil C emissions in JULES and ORCHIDEE for the ADAFF scenarios (and the relatively low 

emissions for BECCS) might be partly caused by the simplistic representation of agricultural man-

agement processes in these models. While LPJmL and LPJ-GUESS represent croplands by specific 

CFTs and growing seasons, ORCHIDEE and JULES grow crops as harvested grass (modified natural 

grass in ORCHIDEE, natural grass in JULES; see Table 2.4). Additionally, ORCHIDEE does not 

include grazing of pastures, resulting in more biomass C being transferred to the litter when the grass 

dies. Consequently, pastures and croplands have larger soil C pools in ORCHIDEE and JULES, re-

spectively, than if those management processes were accounted for, resulting in less soil C accumula-

tion potential upon afforestation. To test further how different representations of agriculture in the 

DGVMs affect soil C changes upon afforestation we performed two sensitivity simulations with LPJ-

GUESS in which we simplified the representation of management processes following Pugh et al. 

(2015). In these simulations, the rate of change in LPJ-GUESS soil C pools is reduced by 57% in the 

MAgPIE ADAFF scenario (compared to the soil C uptake in the “standard” LPJ-GUESS simulations) 

when croplands are represented by pastures (mimicking the representation of croplands in JULES), 

and by 49% in the IMAGE ADAFF case when pastures are not harvested (mimicking the representa-

tion of pastures in ORCHIDEE, not shown). Furthermore, in contrast to IMAGE and LPJmL, LPJ-

GUESS, JULES, and particularly ORCHIDEE simulate a widespread decline in NPP upon afforesta-

tion (Fig. 4.3f, Fig. 4.9) because in these models tropical grasslands (or croplands) are often more 

productive than tropical forests. Even though the fraction of NPP transferred to the soil might differ 

across models (e.g. due to different mortality in secondary forests), this suggests that the lower 

productivity of regrowing forests compared to agriculture also plays an important role for the limited 

soil C accumulation (or emissions) in LPJ-GUESS, JULES, and ORCHIDEE. 
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Figure 4.9: Maps of cumulative NPP differences for the mitigation scenarios (compared to BASE) in the 

DGVMs by year 2099 for IMAGE ADAFF (1
st
 column), MAgPIE ADAFF (2

nd
 column), IMAGE BECCS (3

rd
 

column) and MAgPIE BECCS (4
th

 column). Numbers are global totals. 

 

4.1.4 Cumulative carbon capture and storage 

CCS is calculated by multiplying the harvested C of bioenergy crops by a capture efficiency of 80% 

before geologic storage. A prescribed CCS trajectory was implemented in both LUMs, which means 

that annual global CCS rates are the same in both LUMs (Fig. 4.2g+h). Cumulative CCS reaches 128 

GtC in both LUMs by year 2099 (Fig. 4.3d). In the DGVMs, cumulative CCS ranges from 37 to 130 

GtC by year 2099 (Fig. 4.3d). As the DGVMs used bioenergy production area from the LUMs and 

also the same assumptions about capture efficiency and storage capacity, the lower CCS calculated in 

most of the DGMVs has to arise mainly from differences in simulated bioenergy yields, including 

differences in the harvest index. Both LUMs assume rain-fed perennial and fast-growing second 

generation bioenergy crops (such as Miscanthus) to fulfil CCS demand. LPJmL is the only DGVM 

representing bioenergy crops explicitly, but like the other DGVMs does not assume technological 

yield increases, which means the slightly larger cumulative CCS than in MAgPIE originates from 

higher initial yields. In contrast, LPJ-GUESS grows bioenergy as maize (with residues included for 

CCS), ORCHIDEE as crop grass, and JULES as natural grass (for harvest assumptions see Table 2.4). 

Consequently, average bioenergy yields are highest in LPJmL followed by LPJ-GUESS and then 

ORCHIDEE and JULES (Fig. 4.10). Cumulative CCS in all DGVMs apart from LPJmL is higher for 

IMAGE-LU patterns than for MAgPIE-LU patterns (Fig. 4.3d) because the larger cultivation area in 

IMAGE (Fig. 2.4) outweighs lower average yields (Fig. 4.10). In the LUMs, the same trade-off be-

tween land expansion and yields results in equivalent global CCS rates in both LUMs. 
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Figure 4.10: Maps of bioenergy crop yields [tons dry mass ha

-1
, assuming a 45% C content] in BECCS (IM-

AGE-LU left, MAgPIE-LU right) as simulated by IMAGE (1
st
 row), LPJ-GUESS (2

nd
 row), ORCHIDEE (3

rd
 

row), JULES (4
th

 row) and LPJmL (5
th

 row) for year 2099. Note that yields are per-cropland area rather than per-

grid-cell area. Spatial information were not available for MAgPIE. Areas in black do not grow bioenergy crops. 

Numbers are global averages (not weighted by grid-cell differences in bioenergy area). 
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4.2 Discussion and conclusions 

 

4.2.1 Discussion 

Cumulative LUC emissions over the 1750-2015 period were ~190 GtC (Le Quere et al., 2016), with a 

very large uncertainty arising from how different forms of land management are considered in the 

simulations (Arneth et al., 2017) but also due to different LUC hindcasts (Bayer et al., 2017). Consid-

ering that a possibly large fraction of agricultural area will be needed for future food production 

(Boysen et al., 2017a, Popp et al., 2017), and assuming that CO2 fertilizing effects on forest growth 

will be limited in RCP2.6, this suggests that achieving 130 GtC net uptake via ADAFF might be 

challenging, consistent with results from the DGVMs here. Several earlier studies estimated an upper 

limit of afforestation storage capacity of ~150 GtC within this century, despite very different methods 

and assumptions (Lenton, 2010, and references therein). Sitch et al. (in preparation) report 40-180 GtC 

from the same DGVMs as used in this study when applying stylised alternative afforestation scenarios 

(achieved e.g. via a C price rather than aiming for a specific CDR target) from IMAGE and MAgPIE. 

A large C uptake (215 GtC compared to a reference scenario) was found by Sonntag et al. (2016) in a 

coupled ESM for a high emission scenario (RCP8.5) when using RCP4.5 LU (afforestation, -700 Mha 

agricultural land) instead of RCP8.5 LU (deforestation, +800 Mha agricultural land; Hurtt et al., 2011) 

in the reference scenario. The C uptake was thus higher than in our study, but so were baseline defor-

estation rates, climate impacts, and, particularly, differences in CO2 fertilisation; the high levels of 

CO2 fertilisation under RCP8.5 typically causes DGVMs to simulate much larger C uptake in forests. 

Some of the discrepancy in total C uptake between the LUMs and the DGVMs in the ADAFF scenari-

os originates from differences in vegetation C uptake, especially for MAgPIE. Natural forest regrowth 

upon agricultural abandonment is implemented in all DGVMs and IMAGE, while MAgPIE assumes 

managed afforestation towards the biomass of potential natural vegetation. Observational studies differ 

substantially in reported forest regrowth rates and trajectories towards a steady state (see Section 3.2.1 

and references therein). Biomass accumulation in tropical forests has often been reported to slow down 

a few decades after agricultural cessation, with above-ground biomass levels (representing ~80% of 

total biomass, Cairns et al., 1997) of mature tropical forests being reached within ca. 66-90 years 

(Anderson-Teixeira et al., 2016, Poorter et al., 2016), and below-ground biomass needing more time 

to recover, especially following shifting agriculture (Martin et al., 2013). Poorter et al. (2016) also 

found slower accumulation rates in dry (<1500 mm) compared to wet (>2500 mm) environments. In 

comparison, tropical (22°S-20°N as in Poorter et al.) afforestation in the MAgPIE ADAFF scenario 

occurs in relatively dry regions, with an average precipitation of 1682 mm. In our study, tropical 

recovery times, i.e. the time secondary forests need to reach 90% of old forest biomass, are 47 years 

for MAgPIE and ~150 years for LPJ-GUESS (Fig. 4.8a). The similar vegetation C uptake across all 

DGVMs for the ADAFF scenarios suggests that 150 years are also a reasonable estimation for the 

other DGVMs, even though no stylised simulations were available to verify this number. Given that 
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the observational studies mentioned above point towards typical recovery times that lie in the middle 

of this range suggests that tropical biomass accumulation rates might be underestimated in the 

DGVMs. This would suggest an actually higher vegetation C uptake potential via ADAFF than calcu-

lated by our DGVMs. In contrast, if most of the afforestation occurs as natural regrowth or if forest 

management is unable to substantially accelerate forest regrowth, tropical biomass accumulation rates 

might be overestimated in MAgPIE. 

Degraded forests also represent an uncertainty in our IMAGE scenarios. JULES represented degraded 

forests as natural vegetation, whereas the other DGVMs, simply for consistency, followed the IMAGE 

assumption of degraded forests being grassland. In reality, degraded forests likely represents a mixture 

between both approaches, with above-ground biomass estimated to be 70% lower than in undisturbed 

forests (Asner et al., 2010). Clearly, assuming a degraded forest being a grassland will overestimate 

vegetation C uptake potential in these regions (in IMAGE ~50% of the avoided deforestation and 

afforestation area by the end of the century is from degraded forests; see Table 2.2). Additionally, the 

mismatch between forest loss and agricultural gain, i.e. the rate of forest loss exceeding agricultural 

expansion rates reported by FAO (based on which the degraded forest class was introduced in IM-

AGE) might be largely explained by shifting cultivation (Houghton and Nassikas, 2017). However, 

most LUMs/DGVMs so far cannot simulate adequately shifting cultivation due to not representing 

different age classes amongst trees. The representation of forest degradation thus remains a challenge 

for LUMs and DGVMs. 

Soil C changes contribute most to variations in total C uptake across models. Differences in simulated 

present-day soil C stocks are hardly surprising as global soil C estimates are very uncertain 

(Scharlemann et al., 2014) and large variations across DGVMs and ESMs have been reported before 

(Anav et al., 2013, Tian et al., 2015, Todd-Brown et al., 2013). Todd-Brown et al. (2013) showed that 

soil C stocks in ESMs are closely coupled to simulated NPP. In our simulations, simulated changes in 

NPP in response to ADAFF activities are very different across models which, along with differing 

representations of harvest, likely explains much of the differences in soil C accumulation. Substantial 

divergence in simulated productivity in response to LUC are also reported by Sitch et al. (in prepara-

tion) who attribute this behaviour to different representations of agriculture in the DGVMs. Modelling 

work by DeFries (2002) suggests that regional impacts of LUC on NPP are highly variable depending 

on management intensity and original vegetation cover, and that cropland productivity is higher com-

pared to forests in temperate regions. The relatively high productivity of temperate crops seems to be 

confirmed for European studies (Ciais et al., 2010, Luyssaert et al., 2010), but estimates are highly 

dependent on the data source from which NPP is derived. In the tropics, observations suggest crop 

productivity at many locations to be lower than for forests (Cleveland et al., 2015, Monfreda et al., 

2008). As afforestation in our scenarios is mostly concentrated in the tropics, the NPP decrease fol-
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lowing afforestation in most DGVMs (due to the high productivity of C4 grasslands/croplands com-

pared to forests) seems to be unrealistic. 

Numerous studies explored soil C changes following LUC (Smith et al., 2016b, and references 

therein), but there is still substantial disagreement in terms of the direction and magnitude of change 

for most land-cover transitions. While studies agree that transitions from forests to croplands reduce 

soil C (and vice versa), patterns are more diverse for conversions to/from grassland, depending on 

management intensity, climate, and soils (McSherry and Ritchie, 2013, Powers et al., 2011). The 

picture is further complicated by evidence that the existing field observations in the tropics (where 

most ADAFF activities occur in our scenarios) might not be representative for many tropical land-

scapes (Powers et al., 2011). The LUC scenarios from the LUMs differ in terms of converted land-

cover types: in MAgPIE, afforestation partly takes place on former croplands (especially before year 

2025 and after 2070). MAgPIE assumes initial litter C (both in croplands and pastures) to be com-

pletely depleted and, based on IPCC guidelines, to be replenished within 20 years following agricul-

tural abandonment. Soil C in former croplands is assumed to increase from the grid-cell specific 

average soil C density of cropland and natural vegetation towards the soil C density of natural vegeta-

tion within 20 years (Humpenöder et al., 2014). However, a litter C density of zero and an assumed 

time frame of 20 years until soil C reaches equilibrium appear questionable. In fact, some studies 

report soil C to decrease during the first years after cropland cessation (Deng et al., 2016), and subse-

quent C accumulation is usually slow and proceeds over several decades or even centuries (Silver et 

al., 2000). In contrast to the prescribed recovery implemented in MAgPIE, IMAGE simulates soil C 

changes dynamically within LPJmL. However, the contribution of soils to total C uptake is compara-

ble to MAgPIE even though ADAFF activities in IMAGE are largely restricted to pasture-forest 

transitions. In reality, afforestation on grassland (or avoided conversion from forest to grassland) has 

even less soil C uptake potential than on croplands; soil C depletions in pastures/grasslands relative to 

forests are generally low (Don et al., 2011, Laganiere et al., 2010) and in many cases pas-

tures/grasslands even store more soil C than the replacing forests (Li et al., submitted; Guo and 

Gifford, 2002, Poeplau et al., 2011, Powers et al., 2011). Additionally, declines in soil C have been 

reported during the first years of forest regrowth before accumulation occurs and net accumulation is 

often only achieved after several decades (Paul et al., 2002, Poeplau et al., 2011). Consequently, the 

large soil C uptake in the LUMs for the ADAFF scenarios is likely overoptimistic.  

As shown above, limited soil C accumulation (compared to vegetation C) in response to afforestation 

as simulated by some DGVMs seems more realistic than the rapid soil C uptake in the LUMs. Howev-

er, historic agriculture has likely resulted in substantial net soil C emissions (Sanderman et al., 2017, 

Smith et al., 2016b), so large losses in response to afforestation as simulated by ORCHIDEE are also 

unlikely, especially for the MAgPIE ADAFF scenario (where croplands are preferentially afforested). 

Besides differences in simulated changes in NPP, the amount of C removed from agricultural land 
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likely also plays an important role. The recovery of soil C following agricultural cessation is analysed 

in Section 3 with a different version of LPJ-GUESS (croplands are represented by tilled, fertilised, and 

harvested grassland rather than specific CFTs) and shows reasonable agreement with observations (see 

Section 3.2.1). ORCHIDEE and JULES represent fewer management processes and therefore may 

underestimate soil C uptake potential in ADAFF (but also losses in BECCS); the incorporation of 

harvest (not included in ORCHIDEE pastures) and the representation of crops by specific CFTs (in-

cluding tillage), instead of grasses, substantially increases soil C depletions on agricultural land in 

LPJ-GUESS (Pugh et al., 2015). However, there are also observations suggesting that moderately 

intensive grazing might actually increase soil C stocks in C4-dominated grasslands (McSherry and 

Ritchie, 2013, Navarrete et al., 2016), a process the DGVMs likely do not capture well. 

The LUMs did not include deforestation emissions ("carbon debt", Fargione et al., 2008) in their 

BECCS CDR target. This is a common procedure in BECCS scenarios (or at least LUC emissions are 

often not seperated from fossil fuel emissions, e.g. Smith et al., 2016a). For two bioenergy scenarios 

(600 and 800 Mha production area made available via either deforestation or agricultural abandon-

ment, RCP2.6 climate) comparable in terms of production area and climate changes to our scenarios, a 

modelling study by Wiltshire and Davies-Barnard (2015) estimated vegetation C losses of 70 and 0 

GtC and, using average depletions from Guo and Gifford (2002), soil C losses of 20 and 60 GtC. In 

our simulations, vegetation and soil emissions are relatively small, but our study still confirms that 

these emissions should not be neglected when considering bioenergy as an option to achieve negative 

emissions. 

Cumulative CCS in BECCS differs substantially across models, ranging between 37 GtC and 130 GtC 

in the DGVMs, and reaching 128 GtC in both LUMs. By comparison, Wiltshire and Davies-Barnard 

(2015) found 75 and 200 GtC for the two comparable scenarios, which is similar to the 100-230 GtC 

range reported by Smith et al. (2016a) for IAM scenarios consistent with the 2°C target. Recently, 

Boysen et al. (2017a) estimated land availability for bioenergy production in LPJmL. They found that 

for substantial reductions in yield gaps and a global population of 6.5 billion people in year 2020, 

more than 2000 Mha of agricultural land could be abandoned for biomass plantations. In this extreme 

case, C removal from these plantations could deliver up to 350 GtC between 2020 and 2100. However, 

much less land would be available for more realistic assumptions about closing yield gaps and popula-

tion growth, and potentially more if plantations would replace natural ecosystems. In our study, bioen-

ergy area was prescribed by the LUMs and differences in CCS across models originate from simulated 

bioenergy crop yields. The LUMs and LPJmL represent these crops as dedicated bioenergy crops, 

mimicking characteristics of perennial energy crops like switchgrass or Miscanthus. Bioenergy yields 

in LPJmL have recently been evaluated against observations and showed reasonable results but were 

hindered by limited experimental data in the tropics (Heck et al., 2016). The other DGVMs grew 

bioenergy crops as maize (LPJ-GUESS), productive crop grass (ORCHIDEE), or natural grass 
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(JULES). JULES and ORCHIDEE also did not increase the harvest index for bioenergy crops relative 

to food crops. Additionally, the LUMs assumed technological yield increases and closing yield gaps 

over time, resulting in higher average yields than in most DGVMs. While research of dedicated bioen-

ergy crops is just in its infancy and thus on the one hand promises high potential, there is also evidence 

that yield increases observed over the last decades for cereals have recently slowed down 

(Alexandratos and Bruinsma, 2012). In fact, much of the historic yield increase was achieved via 

increasing the harvest index and fertiliser application, processes that are unlikely to substantially affect 

bioenergy yields (Searle and Malins, 2014). It also remains to be seen what bioenergy yield will be 

attainable in more marginal lands compared to sites where these crops are typically grown today 

(Searle and Malins, 2014). Consequently, what bioenergy yields we can expect in the future is contro-

versial, with the optimistic assumptions made in IAMs/LUMs being plausible, but towards the upper 

bound of uncertainty (Creutzig, 2016). 

 

4.2.2 Conclusions from Section 4 

Based on results from four DGVMs driven by LU patterns from two LUMs we conclude that forest 

maintenance and expansion, as well as large-scale bioenergy production combined with CCS, offer the 

potential to remove substantial amounts of C from the atmosphere and thus can help to mitigate cli-

mate change. However, the size of the removal is highly uncertain, and may be much less than previ-

ously assumed in IAM/LUM scenarios consistent with the 2°C target (Boysen et al., 2017b, Rogelj et 

al., 2015, Smith et al., 2016a, Tavoni and Socolow, 2013, Wiltshire and Davies-Barnard, 2015); the C 

uptake simulated by the LUMs is only achieved in one out of 24 combinations of mitigation LUC 

scenarios and DGVMs. The main reasons for the typically lower C uptake in the DGVMs as initially 

implemented in the LUMs are slower soil C accumulation (or even losses) following afforestation, 

different assumptions on potential/maximum vegetation C stocks, lower growth rates of forests, and 

lower bioenergy crop yields. Clearly the per-area C uptake (and thus the land demand) in land-based 

mitigation scenarios depends on assumptions made about vegetation and soil processes in the 

IAMs/LUMs. An improved implementation of land-based CDR options in both kinds of models, 

LUMs and DGVMs, as well as a deeper interaction between both is necessary to draw more robust 

conclusions about the potential contribution of land management to climate stabilisation. While the 

LUMs should emphasise the large uncertainty in assumed yields from bioenergy plantations, the 

DGVMs need to improve the parameterisations of managed herbaceous vegetation, particularly bioen-

ergy crops (and also woody bioenergy), as well as regrowth of managed forests for afforestation. Field 

observations should focus on studying bioenergy crop yields under commercial production conditions. 

Additionally, the LUMs and some DGVMs need to reconsider their assumptions about soil C seques-

tration rates following afforestation. More detailed information about grazing intensities on grasslands, 

and a clear differentiation between natural grasslands and intensively managed pastures in observa-
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tional studies might also help to reduce the uncertainty in soil C changes following LUC (Navarrete et 

al., 2016). 

In this section we only address the uncertainty in land-based mitigation arising from potential C up-

take for a prescribed, realistically available area. However, the establishment of negative emissions 

from land management could also be hindered by unacceptable social or ecological side effects 

(Kartha and Dooley, 2016, Smith et al., 2016a), biophysical and biogeochemical climate impacts 

beyond C (Boysen et al., 2017a, Smith et al., 2016a), irreversible effects of overshooting CO2 concen-

trations (Kartha and Dooley, 2016, Tokarska and Zickfeld, 2015), or simply because CCS turns out to 

be technologically infeasible at commercial scale. There is also strong evidence that the time scales for 

shifts in farming systems to be realised may be of the order of several decades, substantially delaying 

the onset of negative emissions from BECCS (Alexander et al., 2013, Brown et al., submitted). Com-

bining these unknowns and caveats with the large uncertainty in C uptake potential identified in this 

section suggests that relying on negative emissions to mitigate climate change is a very high-risk 

strategy, and reducing GHG emissions is a far safer and more reliable option. Ecological impacts from 

land-based mitigation are analysed in the following section. 
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5 Global consequences of afforestation and bioenergy cultivation on eco-

system service indicators 

 

In this section, we use LPJ-GUESS simulations forced by mitigation LUC scenarios from the two 

LUMs (for information about the LUC scenarios and their implementation into LPJ-GUESS see 

Section 2.3) to study the impacts of land-based mitigation (bioenergy cultivation combined with C 

capture and storage; avoided deforestation and afforestation) on a range of associated ecosystem 

functions within a consistent modelling framework: C storage, surface albedo, evapotranspiration, 

water runoff, crop production, N loss, and BVOC emissions (see also Section 2.4). 

In the following, the expressions “LPJGIMAGE” and “LPJGMAgPIE” refer to results from LPJ-GUESS 

simulations driven by LU patterns from the IMAGE and MAgPIE models, plus climate, CO2, and N 

deposition following RCP2.6. At some points we refer to output directly taken from the IMAGE and 

MAgPIE scenarios, in which case this is explicitly stated (“in the original results/directly from the 

LUMs /the LUMs report”). 

 

5.1 Results 

 

5.1.1 Carbon storage 

Total global C pools simulated with LPJ-GUESS are generally lower for LPJGIMAGE than for 

LPJGMAgPIE for all scenarios (Table 5.1, Fig. 5.1a). This difference is mainly a result of the representa-

tion of degraded forests as grasslands in IMAGE-LU patterns (see Section 2.3.1 and Table 2.2), while 

MAgPIE does not include degraded forests. Moreover, some temperate croplands that are specified in 

the MAgPIE-LU patterns to grow fodder are represented in LPJ-GUESS by rain-fed or irrigated, 

harvested grass. This crop type increases soil C relative to cereal crops because the larger below-

ground/above-ground biomass ratio results in less C being removed during harvest and thus more C 

input to the soil. C sequestration is calculated by LPJ-GUESS for both BASE simulations within the 

21
st
 century, resulting in total C pools of 1995 (LPJGIMAGE) and 2047 (LPJGMAgPIE) GtC by 2090-2099 

(Table 5.1). The combined effects of LU, changing climate, N deposition, and atmospheric CO2 levels 

thus enhance total C pools by 1.7 and 3.2% (33 and 64 Gt) between the beginning and the end of the 

century (Fig. 5.2a). 

As expected from the overall scenario objective, total, vegetation, and soil C pools are higher in the 

ADAFF simulations relative to the respective BASE at the end of the century (Table 5.1, Fig. 5.1a-c). 

The additional C uptake for ADAFF is larger for LPJGIMAGE (3.6% or 72 GtC in year 2090-2099, 76 

GtC in year 2099) than for LPJGMAgPIE (2.4% or 49 GtC in year 2090-2099, 55 GtC in year 2099, Fig. 

5.2b). This reflects the larger afforestation area and earlier afforestation activities in IMAGE (Fig. 2.1, 
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Fig. 2.2b). The largest changes in total C are found in tropical regions, especially in Africa (+15 and 

+9%, Fig. 5.3b) and/or tropical forests (+13 and +8%, Fig. 5.4b), mostly due to increases in vegetation 

C. 

Table 5.1: Global net total values ± standard deviations (over 10 years) of all analysed ecosystem functions as 

simulated by LPJ-GUESS for all scenarios and different time periods and for LPJGIMAGE (top) and LPJGMAgPIE 

(bottom). Total C is the sum of vegetation C, soil C, product C (wood removed during deforestation but not 

immediately oxidised), and cumulative CCS. 

Ecosystem 

function 

BASE ADAFF BECCS&ADAFF BECCS 

2000-2009 2090-2099 

Vegetation C 

[GtC] 

380 ± 1 

393 ± 2 

415 ± 2 

459 ± 2 

478 ± 4 

496 ± 5 

444 ± 3 

476 ± 3 

391± 2 

450 ± 2 

Soil and litter C 

[GtC] 

1575 ± 1 

1585 ± 1 

1578 ± 1 

1587 ± 1 

1588 ± 1 

1599 ± 2 

1580 ± 1 

1592 ± 2 

1567 ± 1 

1583 ± 1 

Product C [GtC] 5.7 ± 0.4 

4.6 ± 0.2 

1.5 ± 0.1 

0.3 ± 0.0 

0.4 ± 0.0 

0.4 ± 0.0 

1.0 ± 0.1 

0.3 ± 0.0 

2.4 ± 0.2 

0.6 ± 0.1 

Cumulative CCS 

[GtC] 

- 

- 

- 

- 

- 

- 

52.1 ± 3.4 

34.7 ± 2.5 

100.0 ± 6.6 

73.5 ± 5.6 

Total C [GtC] 1961 ± 2 

1983 ± 2 

1995 ± 3 

2047 ± 3 

2067 ± 5 

2096 ± 7 

2077 ± 7 

2103 ± 7 

2060 ± 7 

2108 ± 8 

January albedo 0.250 ± 0.004 

0.249 ± 0.004 

0.240 ± 0.002 

0.240 ± 0.002 

0.237 ± 0.002 

0.238 ± 0.002 

0.238 ± 0.002 

0.240 ± 0.002 

0.241 ± 0.002 

0.240 ± 0.002 

July albedo 0.182 ± 0.001 

0.182 ± 0.001 

0.179 ± 0.001 

0.179 ± 0.001 

0.177 ± 0.001 

0.177 ± 0.001 

0.178 ± 0.001 

0.178 ± 0.001 

0.180 ± 0.001 

0.179 ± 0.001 

Evapotranspiration 

[1000 km
3
 yr

-1 a] 

58.6 ± 0.7 

58.9 ± 0.7 

57.9 ± 1.2 

58.8 ± 1.2 

59.1 ± 1.2 

59.5 ± 1.2 

58.6 ± 1.2 

59.3 ± 1.2 

57.7 ± 1.2 

58.9 ± 1.2 

Annual runoff 

[1000 km
3
 yr

-1
] 

52.5 ± 3.1 

52.2 ± 3.1 

55.1 ± 2.8 

54.3 ± 2.8 

53.9 ± 2.8 

53.7 ± 2.8 

54.4 ± 2.8 

53.9 ± 2.8 

55.3 ± 2.8 

54.2 ± 2.8 

Peak monthly 

runoff [1000 km
3
 

month
-1

] 

17.9 ± 1.0 

17.9 ± 1.0 

18.9 ± 1.2 

18.8 ± 1.2 

18.7 ± 1.2 

18.6 ± 1.2 

18.8 ± 1.2 

18.7 ± 1.2 

19.0 ± 1.2 

18.8 ± 1.2 

Crop production 

[Ecal] 

28.9 ± 0.5 

27.5 ± 0.9 

35.9 ± 0.5 

45.2 ± 0.4 

34.7 ± 0.5 

29.3 ± 2.0 

34.0 ± 0.5 

35.5 ± 0.7 

33.5 ± 0.5 

40.8 ± 0.5 

N loss [TgN yr
-1

] 60.3 ± 7.1 

73.3 ± 6.8 

109.7± 13.2 

119.0 ± 8.0 

102.3 ± 12.5 

103.2 ± 8.4 

103.6 ± 12.3 

108.1 ± 7.9 

98.4 ± 11.5 

110.0 ± 7.0 

Isoprene 

emissions [TgC yr
-

1
] 

477 ± 8 

503 ± 9 

419 ± 9 

495 ± 10 

529 ± 11 

578 ± 13 

469 ± 10 

532 ± 11 

382 ± 8 

483 ± 10 

Monoterpene 

emissions 

 [TgC yr
-1

] 

40.7 ± 0.6 

41.9 ± 0.7 

38.9 ± 0.9 

40.5 ± 0.9 

40.2 ± 1.0 

41.6 ± 1.0 

39.4 ± 0.9 

40.9 ± 0.9 

38.2 ± 0.9 

40.4 ± 0.9 

a 
1000 km

3
 are equal to 1 Eg of water. 

 

The BECCS scenario focusing on bioenergy crops and CCS as a climate change mitigation strategy 

removes slightly less C from the atmosphere than ADAFF for LPJGIMAGE but removes more C for 

LPJGMAgPIE (Table 5.1, Fig. 5.2c). Interestingly, LPJGIMAGE ADAFF accumulates more C than 

LPJGIMAGE BECCS within the first half of the century, while BECCS catches up during the second 

half of the century (Fig. 5.1a). This acceleration of the BECCS sink is related to a steady increase in 

bioenergy area throughout the century. The additional total C storage achieved by the period 2090-
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2099 (compared to BASE 2090-2099) is 66 GtC (74 GtC in year 2099) for LPJGIMAGE and 61 GtC (69 

GtC in year 2099) for LPJGMAgPIE. Within these totals, cumulative C storage via CCS (harvested C 

from bioenergy crops multiplied by a capture efficiency of 80%) is 100 and 74 GtC by the end of the 

century (Table 5.1), but total C uptake is less than cumulative CCS as LPJ-GUESS simulates a loss of 

vegetation and soil C from expanded agricultural land. C storage in the combined bioenergy-avoided 

deforestation and afforestation case (BECCS&ADAFF) mostly lies between the BECCS and the 

ADAFF case but for LPJGIMAGE exceeds both ADAFF and BECCS by the end of the century (Table 

5.1, Fig. 5.1a, Fig. 5.2d, Fig. 5.5). 

 
Figure 5.1: Time series (2000-2099) of ecosystem functions as simulated by LPJ-GUESS for all scenarios, area-

weighted and summed/averaged over all grid-cells. a) total C pool (terrestrial C, including CCS for bioenergy 

scenarios), b) vegetation C pool, c) soil and litter C pool, d) January albedo (5-year running mean), e) July 

albedo (5-year running mean), f) evapotranspiration (5-year running mean), g) annual runoff (5-year running 

mean), h) peak monthly runoff (5-year running mean), i) crop production, j) N loss (5-year running mean), k) 

isoprene emissions, l) monoterpene emissions. 
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Figure 5.2: Global relative changes in analysed ecosystem functions simulated by LPJ-GUESS for different LU 

scenarios from IMAGE and MAgPIE. Changes are capped at ±40% for clarity reasons, and values exceeding 

40% are written below the bar. a) changes in the BASE simulation from 2000-2009 to 2090-2099. b) changes 

from BASE to ADAFF by the 2090-2099 period. c) same as b) but from BASE to BECCS. d) same as b) but 

from BASE to BECCS&ADAFF. 

 

5.1.2 Albedo 

Globally averaged January albedo under present-day conditions is significantly higher (~0.25) than 

July albedo (~0.18) due to the extensive northern hemisphere snow cover in January. Both values 

decrease throughout the 21
st
 century in the BASE simulations, but more so for January (-4.1 and -3.7% 

for LPJGIMAGE and LPJGMAgPIE, respectively) than for July (-1.7 and -1.8%) as a result of northward 

vegetation shifts and reductions in snow cover (Table 5.1, Fig. 5.1d-e, Fig. 5.2a). Regionally, for both 

months and both LUMs, the greatest reductions occur in high latitudes (Fig. 5.3a). 

An increase in forested area as in the ADAFF scenario results in further albedo reductions that are - at 

least for July albedo - comparable in magnitude to the changes in BASE throughout the century (Table 

5.1, Fig. 5.2b). Only small increases compared to BASE occur in the BECCS simulations (Fig. 5.2c) 

as the land demand for bioenergy crop cultivation is relatively small. BECCS&ADAFF results in a 

decrease in January and July albedo for both LUMs. 

 

5.1.3 Evapotranspiration 

Global evapotranspiration in the BASE simulations decreases much more for LPJGIMAGE (-1.2%) than 

for LPJGMAgPIE (-0.1%; Table 5.1, Fig. 5.1f, Fig 5.2a) due to different deforestation rates. There is 

large spatial variability with evapotranspiration decreasing in some regions but increasing in others 

(Fig. 5.3a), mainly driven by shifting rainfall patterns (not shown). 

As expected from the generally high evapotranspiration rates of forests, end-of-century evapotranspi-

ration in ADAFF is 2.1 and 1.3% higher than in BASE for LPJGIMAGE and LPJGMAgPIE, respectively 

(Fig. 5.2b), with the largest increase occurring in Africa (Fig. 5.3b). BECCS results in a change of -0.4 

and +0.2% (LPJGIMAGE and LPJGMAgPIE), and BECCS&ADAFF in an increase of 1.3 and 0.8%. 
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Figure 5.3: Regional relative changes in analysed ecosystem functions as simulated by LPJ-GUESS for 

IMAGE-LU (left) and MAgPIE-LU (right). Changes are capped at ±50% for clarity reasons, values exceeding 

±50% are written upon or below the bar. Regions are aggregated Global Fire Emissions Database (GFED) 

regions (Giglio et al., 2010) and are North America, South America, Europe, Middle East, Africa, North Asia, 

Central Asia, South Asia, and Oceania. a) changes in the BASE simulation from 2000-2009 to 2090-2099. b) 

changes from BASE to ADAFF by the 2090-2099 period. c) same as b) but from BASE to BECCS. 
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Figure 5.4: Same as Fig. 5.3 but changes shown for different biomes rather than GFED regions. Biomes are 

aggregated from the biomes used in Smith et al. (2014): tundra+desert+woodland+ shrubland; dry+moist savan-

na; dry and tall grassland; tropical forest; temperate forest; boreal+temperate/boreal mixed forest. The LAI map 

used for the biome classification was taken from the LPJGMAgPIE BASE simulation and the 2000-2009 period. 

The coloured snapshot in a) shows the same biomes as the grey-coloured biomes in the larger maps to facilitate 

differentiation. 
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5.1.4 Runoff 

In the BASE simulations, global annual runoff increases by 4.9 and 4.1% by the end of the century for 

LPJGIMAGE and LPJGMAgPIE, respectively, with a slightly larger increase of 5.2 and 5.0% in peak 

monthly runoff (Table 5.1, Fig. 5.1g-h, Fig. 5.2a). This increase is mainly driven by precipitation 

changes, but forest loss and increased water use efficiency simulated under elevated CO2 levels also 

play a role. Similar to evapotranspiration, spatial patterns are heterogeneous, with generally larger 

changes in annual runoff than in peak monthly runoff in high latitudes and reverse patterns in parts of 

the (sub-)tropics (Fig. 5.3a, Fig. 5.4a). 

Changes in runoff in the mitigation simulations are opposite to evapotranspiration changes (Fig. 5.2b-

d, Fig. 5.3b-c, Fig. 5.4b-c), and the effects of land-based mitigation on annual runoff are often larger 

than on peak monthly runoff. ADAFF reduces annual runoff by 2.2 and 1.1% (LPJGIMAGE and 

LPJGMAgPIE) and peak monthly runoff by 1.3 and 0.7% compared to BASE, while BECCS increases 

annual runoff by 0.3 and 0.2% and peak monthly runoff by 0.2 and 0.0%. 

 
Figure 5.5: Regional relative changes in analysed ecosystem functions as simulated by LPJ-GUESS for 

IMAGE-LU (left) and MAgPIE-LU (right) from BASE to BECCS&ADAFF by the 2090-2099 period. Changes 

are capped at ±50% for clarity reasons, values exceeding ±50% are written upon the bar. The decrease in crop 

production might occur if increases in crop yields cannot be realised. Regions are aggregated GFED regions 

(Giglio et al., 2010). 

 

5.1.5 Crop production 

Globally, total crop production simulated by LPJ-GUESS averages ~29 and 27 exa-calories (Ecal) yr
-1

 

over the years 2000-2009 and increases by 24 and 64% to 36 and 45 Ecal yr
-1

 by the end of the century 

for the LPJGIMAGE and LPJGMAgPIE BASE simulations, respectively (Table 5.1, Fig. 5.1i). For compari-

son, the increase is 78 and 96% in the original IMAGE and MAgPIE results, respectively. The large 

differences in crop production increase between LPJGIMAGE and LPJGMAgPIE can be explained by 

variations in management and crop types (e.g. whether the LUMs assume C3 or C4 crops to be grown 

in certain regions), and the area and location of managed land, which differs considerably by the end 
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of the century, especially in Africa (not shown). Sensitivity simulations in which N fertiliser rates, 

cropland area, atmospheric CO2 mixing ratio, or the dynamic PHU calculation (i.e. adaption to climate 

change via selecting suitable crop varieties; see Section 2.1) were fixed at year 2009 levels indicate 

that around 62 and 39% (LPJGIMAGE and LPJGMAgPIE, respectively) of the crop production increase in 

the BASE simulations can be attributed to increases in N fertiliser rates, 22 and 74% to cropland 

expansion, 26 and 10% to increased atmospheric CO2 levels, and 9 and 4% to dynamic PHU calcula-

tion (Fig. 5.6a). The numbers do not add up to 100% due to non-linear effects, interdependencies 

between variables (crop area/fertilisation), and additional influences we did not analyse (e.g. climate, 

N deposition, crop types, and irrigation). 

Crop production calculated with LPJ-GUESS is reduced in all mitigation simulations compared to 

BASE, in contrast to a set requirement in the LUMs to retain annual production at similar levels to 

BASE: in the LUMs this is achieved through further technology increases (for example through im-

proved management, inputs, pest control, and better crop varieties) compared to BASE. The decline 

simulated in LPJ-GUESS, which is larger for LPJGMAgPIE than for LPJGIMAGE, especially for ADAFF 

(LPJGIMAGE -3% for the 2090-2099 period compared to 2090-2099 BASE; LPJGMAgPIE -35%), occurs 

because LPJ-GUESS captures only yield increases achieved through higher N input, which only 

covers a part of the additional technological yield increase assumed by the LUMs for the mitigation 

scenarios (and which therefore allows for shrinking production area; see Table 2.2). 

 
Figure 5.6: Impacts of fixing dynamic PHU calculation (i.e. adaption to climate change via selecting suitable 

varieties), crop area, nitrogen fertilisers, and atmospheric CO2 mixing ratio at year 2009 levels on LPJ-GUESS 

crop production (a) and nitrogen loss (b), for the BASE simulations. 

 

5.1.6 Nitrogen loss 

Global N loss in the BASE simulations increases strongly over the 21
st
 century by 82% for LPJGIMAGE 

and 62% for LPJGMAgPIE (Fig. 5.1j, Fig. 5.2a). Most of the increase is caused by fertilisation but in-

creasing N deposition contributes as well (+19% over the century). N loss is higher for LPJGMAgPIE 
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than for LPJGIMAGE at the beginning and end of the 21
st
 century, but higher for LPJGIMAGE around mid-

century (Table 5.1, Fig. 5.1j). As total fertiliser application is higher for LPJGMAgPIE throughout the 

entire century these differences can be explained by spatial heterogeneity (e.g. in India, where fertilisa-

tion has a large impact on N loss, fertiliser rates are generally higher for LPJGIMAGE than for 

LPJGMAgPIE). Increases in N losses correspond roughly to increases in N application, and to crop 

production increases in the original LUMs. This indicates that crops in LPJ-GUESS approach N 

saturation, and cannot use the additional N for higher yields, and thus, that N application rates, while 

consistent with LUM yield levels, are too high for LPJ-GUESS yields. Sensitivity simulations indicate 

that most of the N loss increase between 2000-2009 and 2090-2099 is induced by increased fertiliser 

application and cropland expansions, while increasing atmospheric CO2 and the dynamic PHU calcu-

lation reduce N loss (Fig. 5.6b).  

N loss in ADAFF decreases by 6.7% for LPJGIMAGE and 13.2% for LPJGMAgPIE compared to BASE 

2090-2099 (Fig. 5.2b), but with large variability across regions (Fig. 5.3b, Fig. 5.4b). The decrease can 

be attributed to lower global fertiliser amounts in ADAFF than in BASE for both LUMs, as forests are 

not fertilised. In the BECCS simulations the decrease is larger for LPJGIMAGE (-10.3%) than for 

LPJGMAgPIE (-7.6%), including substantial regional variations, especially in South America (Fig. 5.3c). 

The fertilisation of bioenergy crops (for which low fertiliser rates are assumed in the LUMs) adds N to 

the system. However, crop N uptake and subsequent removal during harvest are also enhanced, result-

ing in a net N removal in LPJ-GUESS (and thus less N available to leave the system via leaching or in 

gaseous form). N loss reductions in BECCS&ADAFF lie between ADAFF and BECCS for 

LPJGMAgPIE (-9.2%) but are smallest amongst all mitigation simulations for LPJGIMAGE (-5.5%). 

 

5.1.7 Biogenic volatile organic compounds 

Changes in BVOC emissions are dominated by isoprene emissions, which are, by weight, an order of 

magnitude higher than those of monoterpenes (Table 5.1, Fig. 5.1k-l). In the BASE simulations, total 

BVOC emissions from 2000-2009 to 2090-2099 decrease by 11% for LPJGIMAGE but only by 2% for 

LPJGMAgPIE (Fig. 5.2a). Spatially, BVOC emissions generally increase in high latitudes but decrease in 

the tropics (Fig. 5.3a), corresponding to northward forest shifts and deforestation or forest degradation 

concentrated in low latitudes (not shown). The tropics dominate the overall response due to much 

higher typical emission rates. 

As expected from the generally high emission potential of woody vegetation (compared with herba-

ceous), BVOC emissions increase in the ADAFF simulations (by 24 and 16% for LPJGIMAGE and 

LPJGMAgPIE, respectively). Following the spatial change in forest cover, the increase mainly occurs in 

the tropics (Fig. 5.3b). In the BECCS simulations, BVOC emissions decrease by 8% for LPJGIMAGE 

and by 2% for LPJGMAgPIE (Fig. 5.2c) due to the low emissions of grassy bioenergy crops (grown as 



80 
 

maize in LPJ-GUESS). BECCS&ADAFF results in 11 and 7% higher emissions for LPJGIMAGE and 

LPJGMAgPIE, respectively (Fig. 5.2d). 

 

5.2 Discussion and conclusions 

 

5.2.1 Modelling uncertainties under present-day and future climate 

The ES indicators analysed in this study are subject to uncertainties arising from knowledge gaps, 

simplified modelling assumptions, and the need to use parameterisations suited for global simulations. 

LPJ-GUESS has been extensively evaluated against present-day C fluxes and stocks, both for natural 

and agricultural systems, at site scale and against global estimates (e.g. Fleischer et al., 2015, Piao et 

al., 2013, Pugh et al., 2015, Smith et al., 2014). The use of forcing climate data from only one climate 

model can be a major source of uncertainty as shown by the large variability in future terrestrial C 

stocks introduced by different climate change realisations even for the same emissions pathway 

(Ahlstrom et al., 2012). As we use the low-emission scenario RCP2.6 here, we expect this effect to be 

relatively small. The albedo calculation in this study was not used previously but patterns simulated by 

LPJ-GUESS under present-day conditions (Fig. 5.7) broadly agree with Fig. 3 in Boisier et al. (2013). 

Evapotranspiration and runoff in LPJ were evaluated by Gerten et al. (2004). Global total runoff 

calculated in this study for the 1961-1990 period is 26% higher than their results. Simulation biases 

against global estimates and observations from large river basins in the Gerten et al. study were main-

ly attributed to uncertainties in climate input data and to human activities such as LUC (which is now 

accounted for) and human water withdrawal. Spatial runoff patterns as simulated by the current LPJ-

GUESS version (Fig. 5.8) seem to reveal some improvements compared to the biases reported in 

Gerten et al. (2004) in mid- and high latitudes, but the model still overestimates runoff in parts of the 

tropics. With respect to crop production, simulated crop yields in LPJ-GUESS are constrained by N 

and water limitation, but not by local management decisions, crop varieties or breeds, diseases, and 

weeds (Lindeskog et al., 2013, Olin et al., 2015b), and future improvement in plant breeding are 

ignored. While we accounted for the additional restrictions by scaling simulated present-day yields to 

observations, applying the unscaled LPJ-GUESS yield changes into the future might create substantial 

underestimation of future yields and crop production, as the only yield-augmenting factor for a given 

crop type in LPJ-GUESS is increased N input. Global N-leaching rates are highly uncertain but the 

annual rate simulated with LPJ-GUESS (if all N losses are assumed to be via leaching) is within the 

range of published studies (Olin et al., 2015a). Future modelled N leaching may also be affected by 

ignoring improvements in plant breeds, as the current representation of crops may not be able to 

absorb the N input computed in the LUMs for improved varieties and management. For BVOCs, 

global datasets for evaluation are not available (Arneth et al., 2007, Schurgers et al., 2009). Spatial 

emission patterns are in good agreement with other simulations (Hantson et al., 2017). 
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Figure 5.7: Maps of mean surface albedo in January (top) and July (bottom) in LPJGIMAGE BASE (2000-2011). 

The scale is the same as in Boisier et al. (2013). 

 

 

 

Figure 5.8: Map of total annual runoff in LPJGIMAGE BASE (1961-1990). The scale is the same as in Gerten et 

al. (2004). 

 

While LPJ-GUESS has thus been evaluated as comprehensively as possible, a further next step for 

multi-process evaluation would be adopting a formalised benchmarking system that also allows to 

score model performance (Kelley et al., 2013). Likewise, large uncertainties reside in the actual 

LUMs, which differ to a large degree in their estimates of main land-cover classes for the present day 

(Alexander et al., 2017b, Prestele et al., 2016), and for which evaluation against observations has been 

identified as a challenge (van Vliet et al., 2016). 
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5.2.2 Climate regulation via biogeochemical and biophysical effects 

Our LPJGIMAGE simulations are slightly more effective than the LPJGMAgPIE simulations in terms of 

simulated C uptake, but all simulations diverge from the CDR target initially implemented in the 

LUMs (see Section 5.2.7 and Section 4). Land-based mitigation might also impact the emissions of 

other GHGs (e.g. N2O; see Table 2.5), but future fertiliser application rates and emissions from bioen-

ergy crops are highly uncertain (Davidson and Kanter, 2014). While N2O contributes to global warm-

ing, the net effect of reactive N might be a cooling when accounting for short-lived pollutants and 

interactions with the C cycle (Erisman et al., 2011). In our LPJ-GUESS simulations, reductions in N 

losses suggest a decrease in gaseous N emissions for both ADAFF and BECCS. However, no quantifi-

cations are possible as LPJ-GUESS does not yet differentiate between different forms of N losses. 

Climate effects of well-mixed GHG are global, whereas biophysical effects are primarily felt on the 

local scale (Alkama and Cescatti, 2016). Surface albedo in regions with seasonal snow cover is ex-

pected to decrease significantly for afforestation scenarios (Bala et al., 2007, Bathiany et al., 2010, 

Betts, 2000, Davies-Barnard et al., 2014), thereby opposing the biogeochemical cooling effect. Effects 

of enhanced forest cover are less pronounced in lower latitudes (Li et al., 2015) and for BECCS sce-

narios (Smith et al., 2016). A modelling study by Hallgren et al. (2013) found that while albedo ef-

fects and C emissions from deforestation for biofuel production might balance on the global scale, 

biophysical effects can be large locally. In our BECCS simulations, albedo changes are relatively 

small. However, we find noticeable albedo reductions in ADAFF despite the fact that for both LUMs 

afforestation was concentrated in snow-free regions, where satellites rarely observe albedo differences 

between forests and open land exceeding 0.05 (Li et al., 2015). 

High evapotranspiration rates, often observed in forests, cool the local surface. In tropical regions, this 

cooling effect exceeds the warming effect from lower albedo (Alkama and Cescatti, 2016, Li et al., 

2015). Current anthropogenic land-cover changes have been estimated to reduce terrestrial evapotran-

spiration by ~5% (Sterling et al., 2013). In our simulations, impacts of land-based mitigation on global 

evapotranspiration range from -0.4 to +2.1% (LPJGIMAGE BECCS and LPJGIMAGE ADAFF, respective-

ly). On the regional scale this can translate to absolute changes of more than 100 mm yr
-1

 in some 

tropical areas (e.g. central Africa). While these changes seem relatively small compared to the mean 

differences between forests and non-forests reported by Li et al. (2015) (141 mm yr
-1

 20°N-50°N, 238 

mm yr
-1

 20°S-50°S, 428 mm yr
-1

 20°S-20°N), our results still suggest that reducing emissions from 

deforestation and forest degradation (REDD) activities would not only help mitigate global climate 

change via avoided C losses but could provide additional local cooling, serving as a “payback” for 

tropical countries. The simulated evaporative water loss due to ADAFF at the end of the century 

(~1200 km
3
 yr

-1
 for

 
LPJGIMAGE and 750 km

3 
yr

-1
 for LPJGMAgPIE for a C sequestration rate of ~0.8 and 

1.4 GtC yr
-1

, respectively) is higher than estimated by Smith et al. (2016a) (370 km
3 

yr
-1

 for a C se-

questration rate of ~1.1 GtC yr
-1

). Furthermore, Smith et al. (2016a) assumed that dedicated rain-fed 
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bioenergy crops consume more water than the replaced vegetation (with additional water required for 

CCS), while in our simulations bioenergy crops had little impact on evapotranspiration as they were 

represented as maize. LU-driven changes in evapotranspiration rates can also modify the amount of 

atmospheric water vapour and cloud cover, with consequences for direct radiative forcing, planetary 

albedo, and precipitation (e.g. Sampaio et al., 2007; see also Table 2.5); however, such interactions 

cannot be captured by our model setup. 

BVOCs influence climate via their influence on tropospheric O3, CH4, and secondary organic aerosol 

formation (Arneth et al., 2010, Scott et al., 2014), which depend strongly on local conditions such as 

levels of nitrogen oxides (NOX) or background aerosol (Carslaw et al., 2010, Rosenkranz et al., 2015). 

BVOC emissions also impact climate directly by reducing terrestrial C stocks but the magnitude is 

small (<0.5%) compared to total GPP. While enhanced leaf-level BVOC emissions are driven by 

warmer temperatures, uncertainties arise from additional CO2 effects (which suppress leaf emissions). 

On the canopy scale, isoprene emissions generally decrease for deforestation scenarios (Hantson et al., 

2017) but increase for woody biofuel plantations, which tend to use high-emission tree species 

(Rosenkranz et al., 2015). In our simulations, we find increases in BVOC emissions for ADAFF but 

not so for BECCS as bioenergy crops were mostly grown as low-emission maize. The high spatial and 

temporal variability of the BVOC emissions, complications of atmospheric transport, and gaps in our 

knowledge of the reactions involved make it difficult to judge whether an increase in BVOC emissions 

results in a warming or cooling. The global effect (assuming present-day air pollution in 1850 and 

excluding aerosol-cloud interactions) of historic (1850s-2000s) reductions in BVOC emissions (20-

25%) due to deforestation has been estimated to be a cooling of -0.11 ± 0.17 W m
-2

 (Unger, 2014). 

Accordingly, the substantial increase in BVOC emissions in our ADAFF simulations (16 and 24%) 

might induce a warming of similar magnitude. 

 

5.2.3 Water availability 

Forests generally reduce local river flow compared to grass- and croplands. Based on 26 catchment 

datasets including 504 observations worldwide, Farley et al. (2005) reported an average decrease of 44 

and 31% in annual stream flow caused by woody plantations replacing grasslands and shrublands, 

respectively, with large variability across different plantation ages. Simulations by Sterling et al. 

(2013) suggest that historic land-cover changes were responsible for a 7% increase in total runoff. The 

reduction in global annual runoff due to ADAFF (1200 and 600 km
3
 yr

-1
 compared to BASE 2090-

2099 for IMAGE and MAgPIE, respectively) corresponds to around 16-32% of human runoff with-

drawal (Oki and Kanae, 2006), which could be seen as a potential risk to freshwater supply. Regional 

changes range from -5.2 to +0.4% across all scenarios, but in many cases impacts on irrigation (the 

largest consumer of freshwater) potential in fact might be small: modelling work suggests that renew-

able water supply will exceed the irrigation demand in most regions by the end of the century for 
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RCP8.5 (Elliott et al., 2014). However, Elliott et al. (2014) also found that regions with the largest 

potential for yield increases from increased irrigation are also the regions most likely to suffer from 

water limitations. Patterns will be different in an RCP2.6 world as CO2 fertilisation significantly 

reduced global irrigation demand (8-15% on presently irrigated area) in the Elliott et al. crop models 

and climate impacts are expected to be less severe in RCP2.6. 

In uncoupled simulations, such as those carried out here, atmospheric feedbacks related to higher 

evapotranspiration cannot be captured. At regional or continental scale, there is evidence that affor-

estation might actually increase runoff as the larger evapotranspiration rates enhance precipitation 

(Ellison et al., 2012). However, based on regional climate modelling, Jackson et al. (2005) concluded 

that atmospheric feedbacks were not likely to offset water losses in temperate regions, where the 

additional atmospheric moisture cannot be lifted high enough to form clouds. 

Changing runoff affects water supply but can also contribute to changes in flood risks. Bradshaw et al. 

(2007), using a multi-model approach and data from 56 developing countries, calculated a 4-28% 

increase in flood frequency and a 4-8% increase in flood duration for a hypothetical reduction of 10% 

natural forest cover, while van Dijk et al. (2009), for example, questioned forest potential to reduce 

large-scale flooding and argued that the frequency of reported floods can be mainly explained by 

population density. Ferreira and Ghimire (2012) extended the original Bradshaw sample to all coun-

tries (129) that reported at least one large flood between 1990 and 2009 and included socio-economic 

factors in their analyses. They did not find a statistically significant correlation between forest cover 

and reported floods. In our simulations, peak monthly runoff is generally reduced for ADAFF. How-

ever, given maximum regional changes of -3.6% (Africa, LPJGIMAGE ADAFF) and presuming that 

floods are largely controlled by other factors than forest cover, we expect LU effects on flooding to be 

limited. 

 

5.2.4 Food production 

Increasing food production in a sustainable way to feed a growing population is a major challenge of 

the modern world (Tilman et al., 2002). Population and income growth (in SSP2 population peaks in 

2070 at 9.4 billion people, and per capita GDP continues to increase until 2100 (Dellink et al., 2017, 

Samir and Lutz, 2017)) are projected to be accompanied by an increased need of total calories and 

shifts in diets (Popp et al., 2017). For SSP2, economic modelling suggests that global food crop de-

mand will increase by 50-97% between 2005 and 2050 (Valin et al., 2014). In the present study, the 

corresponding increase reported directly from the LUMs is 38% for IMAGE and 52% for MAgPIE in 

2050 (78 and 96% in year 2100). In our LPJ-GUESS BASE simulations we find crop production 

increases of 22 and 45% (LPJGIMAGE and LPJGMAgPIE, respectively) by 2050 and 24 and 64% by the 

end of the century (corresponding to a per capita increase for MAgPIE but a decrease for IMAGE). 

However, the production increase is significantly reduced in the mitigation simulations, especially for 
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LPJGMAgPIE ADAFF due to production shifts and the abandonment of croplands for afforestation. 

Similar results have been reported by Reilly et al. (2012) who found that afforestation substantially 

increases prices for agricultural products, while the cultivation of biofuels has little impact on agricul-

tural prices due to benefits of avoided environmental damage offsetting higher mitigation costs. Crop 

yields in LPJ-GUESS are a function of environmental conditions, fertilisers, irrigation, and adaption to 

climate change by selecting suitable varieties. In our BASE simulations, the combined effect is an 

average yield increase of 17 and 41% (LPJGIMAGE and LPJGMAgPIE) between 2000-2009 and 2090-

2099. In the LUMs, the mitigation scenarios are characterised by additional yield increases compared 

to BASE, triggered by increased land prices. This intensification is to some extent reflected in the 

fertiliser rates (derived from yields) provided by the LUMs. However, other management improve-

ments and investments in research and development leading to higher-yielding varieties also impact 

future yield increases. Additional assumptions about yield increases driven by technological progress 

can thus not be captured by LPJ-GUESS. The simulated decline in productivity in response to shrink-

ing cropland area in the mitigation scenarios suggests that, when adapting N fertilisation, irrigation, 

and cropland area and location from the LUMs, additional yield increases of up to 6.6 and 35% 

(LPJGIMAGE and LPJGMAgPIE) would be required between the 2000s and the 2090s to produce the same 

amount of food crops as in the BASE scenario, equivalent to ~0.07 and 0.33% per year. 

 

5.2.5 Water and air quality 

Managed agricultural systems directly impact freshwater quality. Historically, approximately 20% of 

reactive N moved into aquatic ecosystems (Galloway et al., 2004), causing drinking water pollution 

and eutrophication. As N loss in LPJ-GUESS is largely driven by fertilisation (Blanke et al., 2017), 

the much higher future fertilisation rates compared to present-day (+78% for LPJGIMAGE; +95% for 

LPJGMAgPIE) lead to an increase in N loss of 82 and 62% in BASE. Such a large increase would have 

severe impacts on waterways and coastal zones, where current levels of N pollution are already having 

substantial effects (Camargo and Alonso, 2006). However, as discussed above, the N application rates 

are derived from crop yields in the LUMs, and can only be partially utilised by LPJ-GUESS due to its 

lower yield levels. Increasing crop yields by increased N inputs leads to a strong decline in nutrient 

use efficiency and declining returns on yields (Cassman et al., 2002, Mueller et al., 2017). In contrast 

to the BASE simulations, the mitigation simulations result in somewhat lower N losses because less 

fertiliser is applied (ADAFF) or because bioenergy harvest removes more N than is added via bioen-

ergy crop fertilisation (BECCS). Simulated N losses in LPJ-GUESS are affected by different assump-

tions about N fertilisers and inconsistencies between the models: fertiliser rates in the LUMs were 

calculated to support the estimated crop yields (and hence the ensuing N demand). The resulting grid-

cell averages available to LPJ-GUESS did not take into account differences in N application across 

crop types in a grid-cell (Mueller et al., 2012). Additionally, IMAGE and MAgPIE simulate further 
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increases in crop productivity and N use efficiency and therefore nutrient recovery in harvested bio-

mass, which may only be partly captured by LPJ-GUESS (see Section 5.2.4). 

Although we do not explicitly simulate emissions of N gases, increased N losses suggest an excess of 

soil N, which increases the likelihood of gaseous reactive N emissions such as NOX and ammonia 

(NH3) pollution, contributing to particulate matter formation, visibility degradation, and atmospheric 

N deposition (Behera et al., 2013). The chemical form and level of these emissions will strongly 

depend on soil water status (Liu et al., 2007). Improvements in air quality, e.g. via reductions in tropo-

spheric O3, are not only relevant for human health but can also enhance plant productivity and crop 

yields (Wilkinson et al., 2012). The response of O3 to BVOC emissions changes depends on the local 

NOX:BVOC ratio (Sillman, 1999). An increase in BVOC emissions slightly suppresses O3 concentra-

tion in regions of low NOX background but promotes it in polluted regions (Pyle et al., 2011). 

Ganzeveld et al. (2010) used a chemistry-climate model to study the effects of LUC in the SRES A2 

scenario (tropical deforestation) on atmospheric chemistry. By year 2050, they found increases in 

boundary layer O3 mixing ratios of up to 9 ppb (20%). Changes in the concentration of the hydroxyl 

radical resulting from deforestation (the primary atmospheric oxidant, and main determinant of atmos-

pheric CH4 lifetime) are much less clear due to uncertainties in isoprene oxidation chemistry (Fuchs et 

al., 2013, Hansen et al., 2017b, Lelieveld et al., 2008), but O3 concentrations were not sensitive to this 

uncertainty (Pugh et al., 2010). ADAFF describes a reverse scenario, with forest expansion being 

largely concentrated in the tropics. The sign of changes in the ADAFF simulations is reverse to chang-

es in Ganzeveld et al.: by mid-century, global N loss in ADAFF decreases by 8 and 4% and isoprene 

emissions increase by 14 and 4% compared to BASE. Consequently, we would expect tropospheric O3 

burden in ADAFF to decrease in the tropics but to increase in large parts of the mid-latitudes. Howev-

er, changes in overall air quality will likely be dominated by anthropogenic emissions rather than LUC 

(Val Martin et al., 2015). BVOC emissions might also increase in bioenergy scenarios (Rosenkranz et 

al., 2015) but this does not happen in our study as the LUMs assumed grasses to be the predominant 

bioenergy crop type. 

 

5.2.6 Potential impacts on biodiversity 

Global-scale approaches that link changes in LU, climate, and other drivers to effects on biodiversity 

are scarce, and burdened with high uncertainty, though some approaches exist (Alkemade et al., 2009, 

Visconti et al., 2011). Biodiversity, whether it is being perceived as a requisite for the provision of 

ESs or an ES per se, with its own intrinsic value (Liang et al., 2016, Mace et al., 2012), has not been 

considered in our analysis. Nevertheless, it is evident that biodiversity can be in critical conflict with 

demands for land resources such as food or timber (Behrman et al., 2015, Murphy and Romanuk, 

2014). LUC has been the most critical driver of recent species loss (Jantz et al., 2015, Newbold et al., 

2014). This has led to substantial concerns that land requirements for bioenergy crops would be com-
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peting with conservation areas directly or indirectly. Santangeli et al. (2016) found around half of 

today’s global bioenergy production potential to be located either in already protected areas or in land 

that has highest priority for protection, indicating a high risk for biodiversity in the absence of strong 

regulatory conservation efforts. 

In principle, avoided deforestation and afforestation should maintain and enhance habitat and species 

richness, since forests are amongst the most diverse ecosystems (Liang et al., 2016). Forestation could 

also support the restoration of degraded ecosystems. However, success of large-scale afforestation 

programs under a C-uptake as well as a biodiversity perspective will depend critically on the types of 

forests promoted and so far show mixed results (Cunningham et al., 2015, Hua et al., 2016). Likewise, 

even under a globally implemented forest conservation scheme there may be cropland expansion into 

non-forested regions that could well be C-rich (implying reduced overall C mitigation) but also diverse 

such as savannas or natural grasslands. 

 

5.2.7 Role of model assumptions on carbon uptake via land-based mitigation and implications 

for other ecosystem services 

Our simulations show that trade-offs between C uptake and other ESs are to be expected. Consequent-

ly, the question of whether land-based mitigation projects should be realised depends not only on the 

effects on ESs, but also on the magnitude of C uptake that will be achieved. However, our study 

suggests that potential C uptake is highly model-dependent: C uptake in the three land-based mitiga-

tion options in LPJ-GUESS is lower than the target value used in the LUMs (see Section 4 for a quan-

titative analysis). When the underlying reasons for model-model discrepancies are explored, a number 

of reasons can be identified such as bioenergy yields, forest regrowth, legacy effects from past LUC, 

and recovery of soil C in response to afforestation. Additionally, for the BECCS scenarios the CDR 

target was implemented as a CCS target which does not account for additional LUC emissions, partly 

explaining the lower CDR values. 

For forest regrowth, the current model configuration of LPJ-GUESS simulates natural forest succes-

sion, including the representation of different age classes. In Section 3 it is shown that the recovery of 

C in ecosystems following different agricultural LU histories broadly agrees with site-based measure-

ments. LPJ-GUESS also has N (and soil water availability) as an explicit constraint on forest growth 

and has been successfully tested against a broad range of observations (Fleischer et al., 2015, Smith et 

al., 2014). These studies indicate an overall realistic rate of forest growth under natural succession. 

However, much of the afforestation may occur with management facilitating fast built-up of C stocks 

(as assumed in MAgPIE), but LPJ-GUESS does not implement plantations and has thus not been 

evaluated against this type of regrowth. Forest (re)growth is simulated very differently in LPJ-GUESS 

(where different age classes and their competition are simulated), IMAGE (where in this study the 

dynamically coupled LPJmL DGVM simulates natural regrowth in one individual per PFT), and 
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MAgPIE (where managed regrowth is prescribed towards potential C densities from LPJmL; see 

Section 2.3.1). LPJmL also does not yet consider N constraints on vegetation regrowth. C losses from 

deforestation and maximum C uptake following afforestation depend on potential C densities which 

are likely different in LPJmL and LPJ-GUESS. In the LUMs, the model’s algorithm adopts C pools 

from LPJmL and can thus decide to afforest the most suitable areas, while in LPJ-GUESS other re-

gions might have more afforestation potential. Finally, soil C sequestration rates are likely different 

between LPJ-GUESS and LPJmL, especially for MAgPIE-LPJmL, where the assumption of soil C 

recovering within 20 years is likely overoptimistic (see Sections 3 and 4). 

For BECCS, LPJ-GUESS simulates CCS rates of 2.2 and 1.8 GtC yr
-1

 (LPJGIMAGE and LPJGMAgPIE, 

respectively) by the end of the 21
st
 century, compared to 2.8 GtC yr

-1 
reported directly from the LUMs. 

The number from the LUMs is close to the mean removal rate of 3.3 GtC yr
-1 

reported in Smith et al. 

(2016a) for scenarios of similar production area (380-700 vs. 493 and 363 Mha in our IMAGE and 

MAgPIE BECCS scenarios, respectively) and slightly larger CO2 levels (430-480 ppmv vs. 

424 ppmv). Discrepancies between the models arise mainly from differences in assumptions about 

bioenergy crop yields. In our LPJ-GUESS simulations we grew bioenergy crops as maize (i.e. a CFT 

with parameters taken from maize). By the 2090-2099 period, simulated bioenergy yields are higher 

for LPJGMAgPIE BECCS (on average 13.8 t dry mass ha
-1

 yr
-1

, 10% of total above-ground biomass 

remaining on-site) than for LPJGIMAGE BECCS (12.2 t dry mass ha
-1

 yr
-1

) due to different fertiliser 

rates and production locations. Bioenergy crop yields in LPJ-GUESS might be influenced by incon-

sistencies between the models about fertilisation of bioenergy crops: while the LUMs generally as-

sume high N application, fertiliser rates are reduced in areas used for bioenergy production because 

bioenergy crops are less N-demanding. Consequently, the fertiliser rates from the LUMs might be 

insufficient to fulfil the N demand of the maize-based bioenergy crop in LPJ-GUESS, which responds 

strongly to fertilisation (Blanke et al., 2017). In contrast, bioenergy crops in the LUMs were repre-

sented by dedicated lignocellulosic energy grasses. Reported yields of dedicated bioenergy crops 

under present-day conditions show large variability (switchgrass: 1-35 t dry mass ha
-1

 yr
-1

; miscanthus 

× giganteus: 5-44 t ha
-1

 yr
-1

; woody species: 0-51 t ha
-1

 yr
-1

), depending on location, plot size, and 

management (Searle and Malins, 2014). By the end of the century, the LUMs report average bioenergy 

yields of ~15.0 t ha
-1

 yr
-1

 (IMAGE) and ~20.3 t ha
-1

 yr
-1

 (MAgPIE), but how bioenergy yields will 

evolve in reality when averaged across regions (including more marginal land) is highly uncertain 

(Creutzig, 2016, Searle and Malins, 2014, Slade et al., 2014). 

Legacy effects from historic LU might also impact future C uptake as the soil C balance continues to 

respond to LUC decades or even centuries after (Pugh et al., 2015; see also Section 3). We assessed 

the contribution of legacy effects by comparing an LPJ-GUESS simulation in which LU (but not 

climate and CO2) was held constant from year 1970 for IMAGE and 1995 for MAgPIE (consistent 

with the scenario starting years in each model) with a run with fixed LU from year 1901 on. The 
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differences then seen over the 21
st
 century between these two simulations would arise chiefly from 

legacy fluxes of 20
th 

century LUC. These were found to be 17-18 GtC (not shown), accounting for part 

of the difference in uptake between LPJ-GUESS and the LUMs. In the LUMs, harmonisation to histo-

ry has been done with respect to land cover, but this was not possible with respect to changes in vege-

tation and soil C pools (prior to 1970/1995). 

Our results show that assumptions about forest growth and C densities, bioenergy crop yields, and 

time scales of soil processes can critically influence the C removal potential of land-based mitigation. 

Large uncertainties about forest regrowth trajectories in different DGVMs (Pongratz et al., in prepara-

tion) and BECCS potential to remove C from the atmosphere (Creutzig et al., 2015, Kemper, 2015) 

have been reported before, including the importance of second-generation bioenergy crops (Kato and 

Yamagata, 2014) and LU-driven C losses in vegetation and soils (Wiltshire and Davies-Barnard, 

2015). This is clearly an important subject for future research. Additional analyses about the difference 

in C removal between the LUMs and LPJ-GUESS, including results from additional DGVMs, are 

presented in Section 4. 

 

5.2.8 Conclusions from Section 5 

Terrestrial ecosystems provide us with many valuable services like climate and air quality regulation, 

water and food provision, or flood protection. While substantial changes in ecosystem functions are 

likely to occur within the 21
st
 century even in the absence of land-based climate change mitigation, 

additional impacts are to be expected from land management for negative emissions. In all mitigation 

simulations, what might generally be perceived as beneficial effects on some ecosystem functions and 

their services (e.g. decreased N loss improving water and air quality) are counteracted by negative 

effects on others (e.g. reduced crop production), including substantial temporal and regional varia-

tions. Environmental side effects in our ADAFF simulations are usually larger than in BECCS, pre-

sumably reflecting the larger area affected by land-cover transitions in ADAFF. Without a valuation 

exercise it is not possible to state whether one option would be “better” than the other. All mitigation 

approaches might reduce crop production (in the absence of assumptions about large technology-

related yield increases) but potentially improve air and water quality via reduced N loss. Impacts on 

climate via biophysical effects and on water availability and flood risks via changes in runoff are 

found to be relatively small in terms of percentage changes when averaged over large areas, but this 

does not exclude the possibility of significant impacts e.g. on the scale of large catchments. 

Policy makers should be aware of manifold side effects - be they positive or negative - when discuss-

ing and evaluating the feasibility and effects of different climate mitigation options, possibly involving 

the prioritisation of individual ESs at the costs of exacerbating other challenges. Our analysis makes 

some of these trade-offs explicit, but there are many other services offered by ecosystems much more 

difficult to quantify, particularly relating to cultural services, which also need to be considered. Any 
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discussion about land-based climate change mitigation efforts should take into account their effects on 

ESs beyond C storage in order to avoid unintended negative consequences, which would be intrinsi-

cally undesirable and may also affect the effective delivery of climate mitigation through societal 

feedbacks. 
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6 General conclusions and outlook 

 

This thesis studied the importance and effects of future LUC - in particular the implementation of 

large-scale land-based climate change mitigation - on the C cycle and associated ecosystem functions. 

The following paragraphs aim to summarise the key results of this thesis, highlight major sources of 

uncertainty, and propose possible directions of future model development. 

 

6.1 Answers to the underlying research questions 

Sections 3-5 provide answers to the main research questions addressed in this thesis. 

 

- What are the impacts of land-use and land-cover changes on the terrestrial carbon cycle and 

to what degree are these impacts reversible? 

The findings of this thesis confirm earlier studies that found historic LUC activities have caused 

drastic alterations of the terrestrial C cycle (e.g. Le Quere et al., 2016) and will continue to do so in the 

future (e.g. Pugh et al., 2015). Depending on the type of land management, the land can continue to 

act as a C sink within the 21
st
 century and even take up additional C. However, the reversal of historic 

LUC (e.g. deforestation) is a slow process and in some cases the legacy effects continue to impact the 

recovery of ecosystems even after many centuries, suggesting that model simulations (especially for 

afforestation scenarios) should start at least one century before the period of interest begins. 

- Can large-scale land-based mitigation efforts contribute to climate stabilisation by removing 

substantial amounts of carbon from the atmosphere? 

The amount of negative emissions achievable from land-based mitigation is highly uncertain. Avoided 

deforestation and afforestation as well as bioenergy cultivation combined with C capture and storage 

are widely used by the IAM/LUM community to achieve ambitious climate change mitigation targets. 

Even though the findings of this thesis suggest that negative emissions from land-based mitigation 

(both via ADAFF or BECCS) could delay the implementation of large emission reductions by a few 

years, the large role land-based mitigation plays in climate stabilisation scenarios appears worrying. 

Climate change mitigation scenarios typically assume that large-scale applications of negative emis-

sions (mainly from BECCS) could boost our remaining emission budget of 140-320 GtC (Rockstrom 

et al., 2017, Rogelj et al., 2016b) by a factor of around 1.6-2.0 (Fuss et al., 2014, Rogelj et al., 2015), 

thereby effectively almost halving the required fossil fuel emission reductions to stay below 2°C. 

However, this thesis suggests that potential CDR rates might well be lower than typically assumed by 

IAMs/LUMs, and cumulative CDR will likely not exceed 100 GtC by the end of the century due to 
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limited C uptake per unit land area, limited land availability, trade-offs with other ESs, and other 

constraints not explicitly investigated in this thesis. 

- What would be the environmental side effects of land-based climate change mitigation? 

There are always side effects from land-based mitigation on associated ecosystem functions, which are 

likely to enhance or reduce the supply of derived ESs, with large differences across scenarios, varia-

bles, regions, and time scales. While some impacts (changes in albedo, evapotranspiration, runoff, 

BVOC emissions) were expected, others (reductions in crop production and N loss) were less obvious 

and to some degree an outcome of inconsistencies in terms of process representation between the 

LUMs and LPJ-GUESS, thereby complicating the interpretation of the results and emphasizing the 

necessity of a better integration between the models to better assess changes in ESs. Afforestation 

generally induces larger changes in ES indicators than BECCS due to the larger area affected. One 

major concern of land-based mitigation is the potential conflict with food production. In the LUMs, 

technological progress is assumed to allow for the abandonment of agricultural areas for land-based 

climate change mitigation. However, this thesis suggests that if agricultural efficiency cannot be 

increased as expected, land-based mitigation will pose substantial risks to food security, especially in 

the case of land-intensive mitigation via afforestation. On the other hand, afforestation could have 

beneficial effects on biodiversity if managed properly, a major concern in large-scale BECCS scenari-

os. 

- How do different representations of agricultural processes in vegetation models affect the 

results? 

This thesis reveals large uncertainties in future terrestrial C cycling due to very different responses to 

LUC in the LUMs and DGVMs, and thus confirms earlier studies reporting large differences in LUC 

fluxes due to different representations of land cover and land management (Arneth et al., 2017, Pugh 

et al., 2015). Simulated total C uptake in the LUMs/DGVMs ranges between 19 GtC and 141 GtC, 

including large model disagreement in terms of total C uptake for both ADAFF as well as BECCS 

simulations. These differences are induced by assumptions about forest regrowth, potential vegetation 

and soil C pools, the direction and magnitude of soil C changes following LUC, and bioenergy crop 

yields. The analysis is hindered by differences in model structures, different implementations of LU 

patterns into the DGVMs, and incomplete data reporting. In many cases it is difficult to judge which 

model simulates the most realistic C uptake because observational data that can be used for model 

evaluation are scarce or provide an inconsistent picture. 
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6.2 Limitations 

This thesis identifies numerous sources of uncertainties which emerge from limited process under-

standing and data availability, limited computational resources and storage capacities, and inconsist-

encies and incomplete transparency across models. One salient limitation of the models used in this 

thesis (and other models simulating the global C cycle) is the still very rudimentary representation of 

LUC processes. While some basic management techniques are accounted for by at least some models 

(different crop types, fertilisation, irrigation, tillage, growing seasons, cropland and pasture harvest), 

other processes are typically ignored (pesticides, soil compaction, salinisation, and erosion). In any 

case, reliable large-scale observational datasets are often not available (Erb et al., 2017). Uncertainty 

is also large for bioenergy crop yields. Most DGVMs, including LPJ-GUESS, so far do not represent 

dedicated bioenergy CFTs which have very different physiologies and different growth requirements 

than food crops. LPJmL represents dedicated grassy or woody bioenergy crops but field observations 

do not provide a comprehensive picture about what bioenergy yields can be expected at larger scales 

in more marginal land and how much potential there is in terms of yield improvements. Adopting 

yields typically achieved in highly managed field trials as a benchmark bears the risk of a substantial 

overestimation of future bioenergy production. In addition, high yields require substantial amounts of 

management, water, and fertiliser input (especially if first generation bioenergy crops were to be 

grown), thereby increasing costs but also raising other issues like water consumption, water pollution, 

and N2O emissions (Creutzig, 2016, Crutzen et al., 2008, Lisboa et al., 2011, Smith et al., 2016a). 

It is also apparent that most models used here are not particularly suitable for the simulation of C 

removal via afforestation due to the typical representation of PFTs by just one single individual. LPJ-

GUESS is an exception as it explicitly simulates competition amongst trees of different age/size clas-

ses. Additionally, LPJ-GUESS is one of the few DGVMs accounting for nutrient (at least N) limitation 

on plant growth. Consequently, DGVMs such as LPJ-GUESS are arguably more suited to study forest 

regrowth after natural or anthropogenic disturbances, and to assess the potential contribution of C 

sequestration via afforestation to climate change mitigation. However, this thesis also shows that not 

only do the models have substantial limitations, but also that observational data for model evaluation 

in terms of C uptake via afforestation are quite scarce or contradictory. This includes growth rates in 

(managed) secondary forests, but particularly the direction and magnitude of changes in soil C in 

response to grassland-forest transitions. 

Another source of uncertainty is the forcing data for the DGVMs, especially climate. The simulations 

for Section 3 were performed with repeated cycles of present-day CRU climate. This dataset is derived 

from statistical interpolation of weather station data and is thus quite inaccurate in regions were meas-

urements are sparse (e.g. Africa). The simulations analysed in Sections 4 and 5 were driven by the 

same simulated meteorological variables for the LUMs and DGVMs, thereby ensuring consistency 

between simulations. However, we only used climate forcing from one single climate model and one 
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emission scenario (RCP2.6). While climate change is expected to be relatively moderate for RCP2.6, 

different climate models still simulate quite different rates of warming/precipitation changes and 

consequently influence C uptake potential (Ahlstrom et al., 2012). For example, global temperature 

increase in the five ISI-MIP climate models ranges between 1.4 and 2.4°C for RCP2.6 (Warszawski et 

al., 2014). The findings of this thesis could thus be modified by the use of additional climate models. 

Moreover, the C removal achieved via BECCS or ADAFF could be quite different in alternative 

emission scenarios, e.g. increased CO2 fertilisation could substantially enhance forest or bioenergy 

crop growth in a scenario in which negative emissions are needed to limit global warming below 3°C 

rather than 2°C. 

 

6.3 Future work 

As discussed above, the models need to further improve the representation of management practices, 

including (bioenergy) CFTs. All DGVMs (and LUMs) apart from LPJ-GUESS would benefit from a 

representation of different age classes amongst trees to account for heterogeneity at the landscape 

level. Biomass accumulation in secondary forests depends on forest age (Poorter et al., 2016, Yang et 

al., 2011), so the representation of all trees in a grid-cell by a single individual per PFT is likely a 

serious oversimplification. The implementation of age cohorts, along with bioenergy crops, is work-

in-progress for the ORCHIDEE DGVM. However, LPJ-GUESS also needs to be further improved to 

be able to simulate a wider range of forest management techniques. IAMs/LUMs increasingly focus 

on assisted regrowth and forest plantations to achieve more negative emissions via afforestation. 

Possible LPJ-GUESS features could thus comprise the introduction of new, fast-growing PFTs (and 

possibly preventing the growth of competitors in these regions), simulating tree planting via regrowth 

from an initial biomass, resprouting after wood harvest, and N (and phosphorus) fertilisation in forests. 

There is also a need to study additional variables in land-based mitigation impact assessments on top 

of the ones explored in this thesis. For example, biodiversity deserves protection not only because it is 

directly linked to ecosystem functioning, but also to secure genetic variety. However, the inclusion of 

biodiversity in DGVMs even at a very rudimentary level is challenging. The explicit simulation of 

N2O emissions is work-in-progress in LPJ-GUESS, which would allow for a better separation between 

aquatic and gaseous N losses. Additionally, LPJ-GUESS is currently being developed to simulate 

additional BVOC types and N-fixing crops. 

Finally, the evaluation of simulated CDR via land-based mitigation relies on comprehensive observa-

tional datasets, which are often scarce or not available. In particular, there is a clear lack of observa-

tions for bioenergy crop yields in the (sub-)tropics (Heck et al., 2016, Searle and Malins, 2014). More 

data are available with respect to the rate of tropical forest regrowth, however, it remains largely 

unclear to what extent management can accelerate C accumulation in secondary forests compared to 
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natural regrowth. Studies addressing these issues could therefore help to identify the most suitable 

locations for land-based mitigation and to minimise conflicts with other forms of LU. 

 

6.4 Final remarks 

Climate change likely represents a great challenge for human societies within the 21
st
 century, and its 

impacts in a business-as-usual scenario might pose a serious threat to the world we know today. This 

thesis emphasises the large uncertainties in potential C removal and environmental side effects from 

land-based climate change mitigation efforts, which encourages focusing on rapid reductions in GHG 

emissions to prevent dangerous climate change. However, it appears highly unlikely that conventional 

mitigation efforts alone will be able to limit global warming below 2°C or even 1.5°C. Even relatively 

small amounts of negative emissions could thus help to dampen effects of climate change, regardless 

of whether global warming will reach 2°C, 3°C, or more. Consequently, scientists should continue to 

pursue the feasibility of land-based mitigation and also explore the potentials and risks of alternative 

approaches like direct air capture. 
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Abstract. Land-use changes have been shown to have large effects on climate and biogeochemical cycles, but
so far most studies have focused on the effects of conversion of natural vegetation to croplands and pastures. By
contrast, relatively little is known about the long-term influence of past agriculture on vegetation regrowth and
carbon sequestration following land abandonment. We used the LPJ-GUESS dynamic vegetation model to study
the legacy effects of different land-use histories (in terms of type and duration) across a range of ecosystems.
To this end, we performed six idealized simulations for Europe and Africa in which we made a transition from
natural vegetation to either pasture or cropland, followed by a transition back to natural vegetation after 20,
60 or 100 years. The simulations identified substantial differences in recovery trajectories of four key variables
(vegetation composition, vegetation carbon, soil carbon, net biome productivity) after agricultural cessation.
Vegetation carbon and composition typically recovered faster than soil carbon in subtropical, temperate and
boreal regions, and vice versa in the tropics. While the effects of different land-use histories on recovery periods
of soil carbon stocks often differed by centuries across our simulations, differences in recovery times across
simulations were typically small for net biome productivity (a few decades) and modest for vegetation carbon
and composition (several decades). Spatially, we found the greatest sensitivity of recovery times to prior land
use in boreal forests and subtropical grasslands, where post-agricultural productivity was strongly affected by
prior land management. Our results suggest that land-use history is a relevant factor affecting ecosystems long
after agricultural cessation, and it should be considered not only when assessing historical or future changes
in simulations of the terrestrial carbon cycle but also when establishing long-term monitoring networks and
interpreting data derived therefrom, including analysis of a broad range of ecosystem properties or local climate
effects related to land cover changes.

1 Introduction

Historically, many natural forests or grasslands on Earth
have been cleared or cultivated for grazing, timber, food
production, mining or settlements. However, land-use
change (LUC) in these areas has rarely been continuous, and
land cover and management have often changed for a variety
of reasons (Burgi and Turner, 2002). Based on the HYDE

dataset, Campbell et al. (2008) estimated that 269 Mha of
cropland and 479 Mha of pasture have been abandoned be-
tween 1700 and 2000. Recently, agricultural cessation rates
have risen globally, especially in the temperate region. For
example, during the last decades, large areas in Europe pre-
viously used for pasture or crop cultivation have been aban-
doned (e.g., Schierhorn et al., 2013; Smith et al., 2005). Fol-
lowing agricultural abandonment, and in the absence of fur-
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ther anthropogenic influence, natural vegetation recolonizes
in a typical succession from herbaceous vegetation to shrub-
land and forests, if environmental conditions are suitable for
tree growth. These secondary forests act as an important car-
bon (C) sink during the years of regrowth, thereby reduc-
ing the growth rate of global atmospheric CO2 concentration
(Pan et al., 2011).

The immediate effects of land-use (LU) practices on
C fluxes and nutrient cycles have been studied in some de-
tail over recent decades. Generally, agriculture significantly
reduces C and, in the absence of supplementary sources, ni-
trogen (N) pools due to initial deforestation, reduced soil
litter input, and accelerated soil decomposition and erosion
(Davidson and Ackerman, 1993; Fujisaki et al., 2015; Guo
and Gifford, 2002; McLauchlan, 2006; Murty et al., 2002).
Pasture soils can be an exception as they have been found to
accumulate C, depending on location and management (Mc-
Sherry and Ritchie, 2013; Milchunas and Lauenroth, 1993).
The long-term importance of past LU on ecosystems, how-
ever, was recognized only recently, and much less effort has
been put so far into the investigation of legacy effects of
LU history on ecosystem processes, how long these effects
persist, or whether they may even be irreversible (Chazdon,
2014; Compton and Boone, 2000; Cramer et al., 2008; Hobbs
et al., 2009; McLauchlan, 2006). This is important not only
for understanding present-day ecological systems but also
because, due to demographical, social, technological, eco-
nomic and environmental changes, LUC and land abandon-
ment will continue to occur in the future (Hurtt et al., 2011).

Most observational studies that looked at the recovery of
ecosystems after agricultural cessation focused on the first
years of succession. Analyses of the long-term effects of
historical LU are often limited by the availability of ade-
quate LU information and the absence of undisturbed ecosys-
tems, and usually rely on chronosequences (Chazdon, 2003;
Knops and Tilman, 2000). Only a few long-term observa-
tional study plots like the one maintained at the Rothamsted
Experimental Station (e.g., Poulton et al., 2003) exist. Differ-
ences between (near) pristine and post-agricultural forests or
grasslands have been reported to persist for decades or cen-
turies after agricultural abandonment for various variables,
including soil pH (Falkengren-Grerup et al., 2006); microbial
communities (Fichtner et al., 2014); soil C, N and phospho-
rus (Compton and Boone, 2000); and other nutrients (Wall
and Hytonen, 2005). Furthermore, aboveground (ag) biomass
(Wandelli and Fearnside, 2015), percentage vegetation cover
(Lesschen et al., 2008), biodiversity (Vellend, 2004), species
composition (Aide et al., 2000) and structure (Bellemare et
al., 2002) remained affected for years to decades, or even
longer. These effects have consequences, not only for the
C sink capacity of the ecosystem but also for water and en-
ergy exchange between the land and the atmosphere (Foley
et al., 2003), which also has important, albeit still highly un-
certain, implications for regional climate change (e.g., Arora
and Montenegro, 2011; Brovkin et al., 2013; de Noblet-

Ducoudre et al., 2012). Some studies have detected an in-
fluence of ancient agriculture on forest composition and di-
versity even thousands of years later (Dambrine et al., 2007;
Dupouey et al., 2002; Willis et al., 2004). However, the per-
sistence of legacy effects varies considerably with former
LU, geographical location, sampling methods and examined
variables, making recovery trajectories often hard to predict
(Cramer et al., 2008; Foster et al., 2003; Guariguata and Os-
tertag, 2001; Norden et al., 2015; Post and Kwon, 2000; Sud-
ing et al., 2004).

In this study, we performed idealized simulations with the
LPJ-GUESS dynamic global vegetation model (DGVM) to
explore the importance of agricultural LU history in terms
of type and duration for the regeneration of ecosystems and
C stocks and fluxes under a range of environmental condi-
tions. We converted natural vegetation to either pasture or
cropland, followed by a re-transition to natural vegetation af-
ter time periods of 20, 60 and 100 years. While there are
numerous variables suitable to measure recovery (Chazdon,
2003; Martin et al., 2016), we analyzed recovery times for
vegetation composition (represented here by the dominant
plant functional type), vegetation C, soil C, and net biome
productivity to evaluate the longevity of the effects of LU his-
tory on the C cycle component of ecosystems and to ascertain
whether the system eventually recovers to its pre-disturbance
state.

2 Methods

2.1 LPJ-GUESS

LPJ-GUESS is a process-based DGVM that is driven by cli-
mate, atmospheric CO2 concentration and N input (Smith et
al., 2014). Plants are attributed to one of 11 plant functional
types (PFTs, nine groups of tree species and two grasses)
which are distinguished, for instance, in terms of their cli-
mate preferences for establishment and survival, photosyn-
thetic pathways, growth rates, and growth strategies (see Ta-
ble A1 for PFT acronyms and names). Vegetation dynamics
and composition at a given location result from competition
between plants for light and soil resources in a number of
independent replicate patches (50 in this study), averaged
per 0.5◦× 0.5◦ grid cell. Wildfire is included in the model
and, additionally, stochastic disturbances kill all the biomass
in a patch, representing, for example, storm or insect dam-
ages, with a typical return period of 100 years (Smith et al.,
2014). Recent model updates include the representation of
LUC (Lindeskog et al., 2013) and the implementation of the
N cycle in natural vegetation and grasses (Smith et al., 2014).
The representation of the N cycle is crucial for this study be-
cause previous agricultural N dynamics, such as extraction
through harvest and input through fertilization, can greatly
affect ecosystems even after many decades (Richter et al.,
2000).
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Conversion of natural to managed land in LPJ-GUESS is
characterized by the initial killing of all living vegetation in
the affected area. The corresponding woody biomass is partly
oxidized immediately (67–76 %) and partly transferred to the
product (21 %) or litter (3–12 %) pool. Ten percent of the
leaves are oxidized, while the rest of the leaves and the fine
roots enter the litter pool. Only the litter thus remains in the
ecosystem subsequent to land conversion. Pastures are repre-
sented by preventing tree establishment and wildfires and by
splitting the aboveground biomass of the grasses equally be-
tween atmosphere (harvest) and litter at the end of each year.
Crops were represented by grass PFTs modified to mimic as-
pects of cropland important for the C and N cycles. Settings
for croplands and pastures were as follows:

1. For transitions from natural vegetation to cropland, we
transferred only 3 % of the cleared woody biomass to
the litter instead of 12 % for natural vegetation–pasture
transitions. This accounts for the practice that farmers
would try to remove as many coarse roots as possible
before planting of crops.

2. Harvest efficiency (in this study: fraction of above-
ground biomass that is oxidized) was 0.5 yr−1 for pas-
ture, representing the net effect of grazing processes
(Lindeskog et al., 2013). For crop simulations we
changed the harvest efficiency to 0.8 yr−1, representing
simplified crop harvest, as in Lindeskog et al. (2013).

3. While we removed 100 % of harvested N biomass for
croplands, we changed this value to 65 % for pastures.
That accounts for significant urine N regain from ani-
mals fed on pastures (Dean et al., 1975; Lauenroth and
Milchunas, 1992).

4. Root turnover rate was 0.7 yr−1 for pasture and was
adapted to 1.0 yr−1 for croplands to represent the annual
plant types used in most croplands.

5. In croplands we estimated tillage effects by increasing
heterotrophic respiration by a factor of 1.94 (Pugh et al.,
2015).

6. We simulated N fertilization in croplands by apply-
ing 75 kg ha−1 yr−1 equally throughout the year to sus-
tain crop productivity with time. This value represents
a compromise between higher values presently found
in parts of Europe and lower values in most of Africa
(e.g., Potter et al., 2010).

After patch-destroying disturbances or managed land con-
verting back to natural vegetation, there is a typical succes-
sion from grasses to light-demanding pioneer trees, eventu-
ally followed in many ecosystems by the establishment of
shade-tolerant PFTs. It has been shown that LPJ-GUESS is
able to realistically simulate observed succession pathways
and species variations (Hickler et al., 2004; Smith et al.,
2014).

2.2 Simulation setup

During spin-up (500 years) and the simulation period
(900 years), we forced LPJ-GUESS with temperature-
detrended, repeated 1981–2000 climate from the University
of East Anglia Climate Research Unit 3.21 dataset (CRU,
2013), 1990s mean N deposition (Lamarque et al., 2013) and
a fixed atmospheric CO2 mixing ratio of 356 ppmv. We ran
the model for Europe and Africa (33◦ E to 55◦W), covering
a wide range of environmental conditions. These regions in-
clude all major biomes (Smith et al., 2014). We chose Africa
and Europe for the simulation domain because the original
LU version of the model was evaluated against observations
in Africa (Lindeskog et al., 2013) and to limit the computa-
tional expense of the simulations. We did not intend to realis-
tically represent typical crop and pasture management across
the domain (i.e., the spatial variability in fertilizer use, mul-
tiple cropping systems, or irrigation). For all simulations we
used potential natural vegetation cover to spin up the model,
followed by a transition to either pasture or croplands di-
rectly after spin-up and a transition back to natural vegeta-
tion after time periods of 20, 60 and 100 years. This resulted
in three pasture (P20, P60, P100) and three cropland (C20,
C60, C100) simulations. Additionally, we performed a ref-
erence simulation in which natural vegetation was retained
throughout the whole simulation period.

2.3 Analyzed grid cells and biome classification

To facilitate the interpretation, we classified each grid cell to
one biome. We used the same classification rules as Smith
et al. (2014), aggregated to eight biomes as in Bayer et
al. (2015). Afterwards, we excluded grid cells from the anal-
yses which were classified as desert or tundra, had a mean
net primary productivity (NPP) below 0.1 kg C m−2 yr−1, or
were located above 62.5◦ N, making the assumption that the
relevance of these low-production areas for agriculture is
negligible.

2.4 Analyzed variables and definition of recovery

We studied the influence of LU history on ecosystems by
analyzing four key variables: dominant PFT, vegetation C,
soil C (excluding litter) and net biome productivity (NBP).
NBP is the net atmosphere–land carbon flux after C losses
associated with respiratory fluxes, fire, harvest, land clear-
ing and decomposition of LUC product pools are subtracted
from gross primary productivity. We investigated the legacy
effects of LU history by calculating a recovery time for each
variable, simulation and grid cell after the conversion back
to natural vegetation. For vegetation C, soil C and NBP, re-
covery time was defined as the year in which the 20-year
running mean of the variable exceeded the threshold of one
standard deviation (σ ) below the mean of the reference sim-
ulation (full simulation period) for the first time after agricul-
tural abandonment. σ was calculated on the 20-year running
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mean of the reference simulation. To avoid “false-positive”
identifications of recovery in cases for which the variable of
interest was initially within 1σ but then exhibited dynam-
ics taking it outside this range (e.g., soil C in Fig. A1), we
applied an additional criterion of whether the minimum af-
ter the transition to natural vegetation occurred in the first
200 years and if it was below the mean minus 1σ threshold.
If that was the case, the condition was expanded so that the
variable could only be defined as recovered after the year in
which the minimum occurred (“minimum rule”). A 200-year
window was chosen because the minimum occurred within
the first 200 years for all biome averages of all variables and
simulations. If the minimum was located after 200 years, we
assumed the minimum to be a result of natural variability
and recovery was achieved as soon as the variable in ques-
tion exceeded the threshold of 1σ below the reference mean.
Figure A1 shows an example of how soil C recovery was cal-
culated for one site.

For the dominant PFT recovery, we first identified which
PFT dominates each grid cell in the reference simulation
based on the annual maximum leaf area index (LAI) amongst
PFTs. We then checked for dominant PFT recovery in the
same way as we did for vegetation C, soil C and NBP
(i.e., whether its LAI exceeded the threshold of 1σ below
the reference simulation mean; condition 1) but additionally
checked whether its LAI was also larger than the LAI of any
other PFT in the same simulation and year (i.e., the dom-
inant PFT is the same as in the reference simulation, con-
dition 2). Thus, dominant PFT recovery was only possible
if both conditions were fulfilled. For example, if the temper-
ate broadleaved evergreen (TeBS) tree was the dominant PFT
in the reference simulation (with an average maximum LAI
of, for example, 3.0 and standard deviation of ±0.2), dom-
inant PFT recovery in a specific LU simulation (e.g., P20)
would occur once the LAI of TeBS in this simulation (a) hits
the threshold of 2.8 (3.0− 0.2, condition 1) and (b) is larger
than the LAI of any other PFT in P20 in the specific year –
i.e., TeBS is the dominant PFT in the grid cell (condition 2).
For all variables, the recovery time was capped at 800 years
after reconversion to natural vegetation, the point when sim-
ulations ended. Recovery times of 800 years thus represent a
lower limit. However, the actual recovery time in these cases
could theoretically lie between 801 years and infinity.

3 Results

3.1 Reference simulation

Maps of simulated vegetation and soil C, as well as domi-
nant PFT and biomes derived from PFT composition for the
reference simulation, are shown in Fig. 1. The salient fea-
tures of biome and C storage distribution at the regional scale
are captured (Haxeltine and Prentice, 1996; Scharlemann et
al., 2014). Vegetation C reaches its highest values in tropical
forests of central Africa and decreases towards the deserts

of southern and northern Africa. Patterns are more homo-
geneous in Europe, where most areas store 5–10 kg C m−2.
Similar to vegetation C, soil C in the (sub)tropics also de-
creases with drier conditions; however, the differences are
small, with typical values of 5–10 kg C m−2. Soils in the
temperate and southern boreal ecosystems of Europe gen-
erally store more C (usually > 10 kg C m−2), especially in
colder environments. While Europe is mostly dominated
by woody PFTs (e.g., TeBS is the acronym for temperate
broadleaved summergreen tree), in Africa there is a shift
from C3 and C4 grasses in the dry regions to trees in the
humid tropics. This gradient also appears in the correspond-
ing biome map: in Africa and the Arabian Peninsula, LPJ-
GUESS reproduces the transition from grasslands to savan-
nas and tropical forests (TrFo) as the Equator is approached.
Europe is mostly classified as temperate forests (TeFo), with
some boreal forests (BoFo) in the north and some shrub-
lands/savannas in the south.

3.2 Dominant PFT recovery

The LAI of the dominant PFT recovers on average within
around one century for all LU histories (Fig. 2). Maps of
the recovery time (Fig. 3) show distinct geographical pat-
terns which occur in all simulations. Most subtropical grass-
lands and savannas, and parts of the temperate and boreal
forests, recover within several decades, some grasslands even
within 5 years. In contrast, recovery times are clearly longer
(> 100 years) in other parts of the temperate forests and in
the tropical forests. Long recovery is associated with woody
successional vegetation dynamics, as slow-recovering areas
are usually dominated by temperate broadleaved summer-
green and tropical broadleaved evergreen forests (compare
PFT distribution in Fig. 1). These are shade-tolerant PFTs
that establish only slowly after disturbances. For 84 % of all
analyzed grid cells, condition 1 (LAI recovery) was the de-
laying condition for dominant PFT recovery (numbers exem-
plified for the P60 simulation), compared to only 3 % for con-
dition 2 (dominance recovery). For the remaining grid cells,
both conditions were fulfilled in the same year.

Overall, differences across simulations of different LU his-
tories are moderate, with generally only small differences in
temperate forests, savannas and shrublands (Fig. 3; see also
biome averages in Table 1 and the histogram in Fig. A2). Ar-
eas of major differences are central Africa, where P20 recov-
ers faster than other simulations because post-agricultural net
mineralization rates are higher in this region for P20 than for
the other simulations (Fig. 4), thereby relatively increasing
post-agricultural N availability compared to the other simu-
lations (Fig. 5), and the African Mediterranean coast, where
croplands recover much faster because the reduced C : N ra-
tio in the soil (not shown) enhances N mineralization and
thus plant N availability compared to pastures. Furthermore,
in parts of the boreal zone recovery takes several hundred
years for C100 instead of a few decades for the other sim-
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Figure 1. Vegetation C (kg C m−2) for the reference simulation, averaged over the whole simulation period of 900 years (upper left panel),
soil C (kg C m−2) (lower left panel), dominant PFT (upper right panel), and corresponding biomes (lower right panel). Grid cells with a NPP
below 0.1 kg C m−2 yr−1, deserts and tundra, and latitudes above 62.5◦ N are masked in grey. PFT abbreviations are given in Table A1.

ulations because lower available N levels relatively reduce
the growth of IBS (the dominant PFT in this region) com-
pared to other woody PFTs. Figure 6 shows the maximum
differences between recovery times across all simulations per
biome (black dots), as well as across a subset of simula-
tions (colored squares and triangles). The differences were
first calculated for each grid cell and only then averaged over
biomes, thereby providing an estimate of the relative impor-
tance of former LU duration versus former LU type on recov-
ery times. While substantial differences occur across the pas-
ture simulations (P20, P60, P100) in tropical forests, savan-
nas and grasslands, and across cropland simulations (C20,
C60, C100) in boreal forests (emphasizing the importance
of LU duration in these regions), major differences between
P100 and C100 occur in boreal forests and grasslands (em-
phasizing the importance of LU type if agricultural duration
was long). On the other hand, in our simulations, dominant
PFT recovery in temperate forests is hardly influenced by the
type of former LU or, conversely, pasture duration has negli-
gible effects on boreal forest recovery. Interestingly, temper-
ate forests recover faster for P100 and C100 then for P20 and

C20. This pattern is generally restricted to areas where the
TeBS PFT dominates. We interpret this behavior as reduced
soil N favoring TeBS in the competition with other tree PFTs,
thereby reaching its background LAI levels earlier.

3.3 Vegetation C recovery

Compared to dominant PFT, recovery occurs slightly later for
vegetation C (Fig. 2, Table 1). Spatial patterns look more ho-
mogeneous than for the dominant PFT (Fig. 3). While most
grasslands recover within a few decades for all simulations,
in particular so for post-cropland recovery, recovery occurs
only after several decades or centuries in forest ecosystems.
Lower standard deviations for the mean differences in vege-
tation C recovery times compared to the standard deviations
for the mean differences in dominant PFT recovery times for
most biomes (Fig. 6a and b) reflect the spatially more uni-
form response of vegetation C recovery. Exceptions are trop-
ical forests and grasslands, where the standard deviation is
higher for vegetation C recovery compared to dominant PFT
recovery.
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Figure 2. Time series (20-year running mean) of dominant PFT, vegetation C, soil C and NBP for the different experiments, starting from
the time of reconversion to natural vegetation and area-averaged over all grid cells. Dominant PFT, vegetation C and soil C are shown in
relative values compared to reference simulation mean, while NBP is shown as absolute values (kg C m−2 yr−1) because values cannot be
presented relative to a zero background. The cyan-shaded area corresponds to reference simulation mean± 1σ . Note the different scales on
the y axes.

Significant differences in recovery times occur between
simulations of different LU types that have the same dura-
tion, and between simulations of the same LU type but with
different duration. For example, in the grasslands and savan-
nas of southern, eastern and northern Africa, former crop-
lands recover much faster than former pastures (see also Ta-
ble 1 and Fig. A2) because post-agricultural N availability is
enhanced in these regions (Fig. 5). In former croplands in
these environments, the combined effect of fertilizing and
harvest is a net N flux to the ecosystem (not shown) and
mineralization rates are enhanced after cropland abandon-
ment (Fig. 4). This net N flux can partially be explained
by high levels of water stress in these savannas and grass-
lands, resulting in greater C and N allocation to roots relative
to leaves and thereby decreased harvest removal in this re-
gion (Fig. A3). Conversely, recovery in northern European
forests is delayed for C60 and, to an even greater extent,
C100 because in this region N removal by annual harvest ex-
ceeds N addition through fertilization during the agricultural
period (not shown) and post-agricultural N mineralization
rates in this region are substantially reduced compared to the
other simulations many decades or even a few centuries af-
ter abandonment (Fig. 4). Differences in vegetation recovery
times resulting from agricultural duration are mostly found
in temperate and boreal forests for the cropland simulations
(here longer durations result in longer recovery times due
to reduced N availability, Fig. 5) and in tropical forests and
shrublands for the pasture simulations, emphasizing the im-
portance of agricultural duration in these regions (see also
Fig. 6b).

3.4 Soil C recovery

Relative depletion of soil C content under crop and pasture
LU is not as large (loss of 0–11 % compared to the reference

simulation) as for vegetation C (Fig. 2). However, regenera-
tion proceeds over longer timescales due to slower C accu-
mulation in soils than in vegetation. C depletion is generally
more pronounced for former crops than for pastures due to
the greater harvest efficiency, which leads to more biomass
removed each year, and the effect of tillage enhancing soil
respiration (Sect. 2.1). Upon re-conversion, soil C accumu-
lation is delayed for the pasture simulations compared to the
cropland simulations, especially for P20, where the residual
roots and other litter left after the original deforestation event
continue to decay and soil C decreases for some decades.
The general delay for pastures is associated with larger het-
erotrophic respiration rates (not shown) compared to rates
calculated in recovering croplands.

Soil C recovery rates are highly latitude-dependent
(Fig. 3), being much slower in temperate (∼ 250 years) and
boreal forests (∼ 400 years) than in the tropics (< 100 years,
sometimes even within 5 years). Initial soil C depletions
are larger in higher latitudes, while these regions also suffer
from low productivity, thereby reducing C input to the soil
upon regrowth. Additionally, in the intensive LU simulations
(P100, C60, C100), vegetation productivity in the boreal re-
gion is further reduced compared to the reference simulation
in the first 200 years of regrowth (not shown) due to N lim-
itation (Smith et al., 2014), reducing litter input to the soil
even further.

Soil C recovery times differ substantially between simu-
lations in many areas. LU type is particularly important in
grasslands and non-tropical forests. While croplands tend
to recover faster than pastures in grasslands of southern
and northern Africa, the opposite occurs in most temper-
ate and boreal forests but also the northern Sahel, where
soil C after re-conversion from croplands does not recover
at all. Post-agricultural N availability is enhanced in parts
of the Sahel for the cropland simulations due to increased
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Figure 3. Maps of recovery times in years for the dominant PFT, vegetation C, soil C, and NBP for the P20, P100, C20, and C100 simulations.

N mineralization rates (Figs. 4 and 5), and trees benefit more
than grasses, leading to a shift in the equilibrium vegeta-
tion state towards woody species (not shown), which re-
sults in an overall lower soil C pool size. It should be noted
that even though some regions do not recover within 800
years, a large fraction of the original C loss is already re-
plenished after a few centuries, thereby limiting implications
for the C cycle. Counter to a priori expectations, for tropi-
cal and temperate forests and for shrublands, the difference
between P20 and C20 is usually higher than between P60
and C60 or P100 and C100 (Fig. 6c). Pasture duration is rel-
evant for speed of soil C recovery in most ecosystems and,

apart from in the tropics, a longer duration usually delays
recovery, mainly due to substantial initial depletions after
long pasture durations (Fig. 2). For croplands, longer dura-
tions tend to delay recovery in temperate and boreal forests
but accelerate soil C recovery in the (sub)tropics. This is
somewhat unexpected for the tropical forest biome, where
longer cropland durations usually do not increase N avail-
ability upon abandonment in our simulations (Fig. 5). How-
ever, while tropical soils lose large amounts of C during the
first decades of cropland use, slow C accumulation takes
place thereafter, resulting in higher soil C values at the end
of the agricultural period for C100 than for C20 in large
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Figure 4. Average net N mineralization rates (kg N ha−1 yr−1) in
the soil for the reference simulation (full simulation period) and
during the first 100 years of regrowth for the P20, P100, C20, and
C100 simulations.

parts of eastern Africa. This occurs because tillage-driven
C losses in more labile soil pools, which dominate the sys-
tem’s response during the first decades, are eventually sup-
planted as the dominant process by accumulation in more
stable pools. This is different to temperate and boreal forest,
where soil C decreases throughout the entire cropland period.
Overall, the greatest sensitivity of soil C recovery times to
different LU histories is found in boreal forests and grass-
lands, where maximum differences across simulations are
often several centuries (Fig. 6c). The maximum differences
across all simulations (P20/P60/P100/C20/C60/C100) in bo-
real forests are mainly due to differences across simulations
of same LU type but different duration (e.g., P20/P60/P100),
whereas the sensitivity of grasslands mainly reflects differ-
ences across simulations of different LU type but same dura-
tion (e.g., P100/C100), emphasizing the importance of dura-
tion and type of agriculture in a range of biomes.

3.5 NBP recovery

NBP switches from being a C source to the atmosphere dur-
ing the period of land management to a C sink after recon-
version to natural vegetation (Fig. 2). The sink capacity of
the recovering ecosystem is greatest during the first decades
and then gradually returns to the NBP levels of the refer-
ence simulation. P20 and, to a lesser extent, C20 act as a
smaller sink than the other simulations at least during the first
100 years of regrowth. Recovery generally occurs slower in
temperate and boreal regions than in the tropics for all sim-

Figure 5. Average N limitation on vegetation RuBisCO capacity
(and thus on gross primary production) for the reference simulation
(full simulation period) and during the first 100 years of regrowth
for the P20, P100, C20, and C100 simulations. N limitation is a
number scaling from 0 (completely N-limited) to 1 (no N limitation)
(Smith et al., 2014).

ulations (Fig. 3). Apart from boreal forests, standard devia-
tions of mean differences in recovery times are very small in
all biomes compared to the other variables (Fig. 6d). Recov-
ery times are often somewhat lower than those which would
be expected from vegetation and soil C recovery times. This
is because the greater standard deviation of NBP in our ref-
erence simulation (Fig. 2) reduces the threshold value in our
recovery definition, thereby making it easier to reach recov-
ery levels for NBP. We discuss the implications of this further
in Sect. 4.2.

Differences in NBP recovery times between simulations
are relatively small (typically a few years to decades; see Ta-
ble 1). The largest differences in recovery times are found in
the boreal forests between the cropland simulations, and, as
for soil C, the differences are often greater between P20 and
C20 than between P100 and C100 (Fig. 6d).

4 Discussion

4.1 Comparison to observations and previous studies

The effects of forest conversion to croplands or pastures are
relatively well studied. Tilled croplands typically show large
depletions of soil C compared to natural forest vegetation, but
the picture for pasture is more diverse (Davidson and Acker-
man, 1993; Don et al., 2011; Guo and Gifford, 2002). Table 2
summarizes recent reviews about observed soil C changes
in agriculture compared to our results. LPJ-GUESS tends
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Figure 6. Maximum difference in recovery time (longest recovery time minus shortest recovery time of all selected simulations) for the
dominant PFT, vegetation C, soil C, and NBP. Black dots show maximum differences across all six simulations (P20, P60, P100, C20,
C60, C100), green squares differences across 20-year pasture and cropland simulations (P20, C20), blue squares differences across 60-year
pasture and cropland simulations (P60, C60), red squares differences across 100-year pasture and cropland simulations (P100, C100), orange
triangles differences across pasture simulations (P20, P60, P100), and purple triangles differences across cropland simulations (C20, C60,
C100). Background colors indicate associated biomes, arrows one standard deviation, and the dashed line 0 years’ difference. Thus, the black
dots show the sensitivity of recovery times to LU history across all simulations for each biome. The red, blue and green squares indicate
the relative contribution of LU type for a specific LU duration to this sensitivity, and the orange and purple squares indicate the relative
contributions of pasture and of cropland duration. For example, if recovery times for one variable in one grid cell were to be 50, 60, 65,
90, 100, 110 years (for P20, P60, P100, C20, C60, C100), the maximum difference in recovery time across all simulations (black) would be
60 years, across the 20-year simulations (green) 40 years, across the 60-year simulations (blue) 40 years, across the 100-year simulations
(red) 45 years, across the pasture simulations (orange) 15 years and across the cropland simulations (purple) 20 years.

to simulate lower C loss in croplands than commonly re-
ported in observations. We attribute this to a combination of
the observation’s focus on the top soil (while in LPJ-GUESS
soil C is implicitly averaged over the whole soil column) and
our relatively high fertilizer rates increasing productivity and
thereby C input to the soil. Pugh et al. (2015) studied the
C dynamics of soils in managed lands in LPJ-GUESS and
found C accumulation even after 100 years of grazed pas-
ture at some locations, especially for low atmospheric CO2
concentrations. However, they used the C-only version of the
model, thereby neglecting C–N interactions and increased
N limitation on grass growth with time due to N removal by
harvest. Croplands were explicitly represented by a number
of managed, but unfertilized, crop functional types in Pugh et
al. (2015). They found soil C reductions in Europe and Africa
of∼ 50 % after 100 years of cultivation, whereas in our study
C losses were much smaller (∼ 12 %), possibly partly due to
different tillage effects in the two soil models applied.

In contrast to studies of LU effects compared to previ-
ously natural ecosystems, the regeneration of ecosystems af-
ter agricultural abandonment has been studied less, and a
direct comparison to our simulations is challenging, either
because limited information about former LU or reference
conditions was provided in these studies or because there
are important differences from our setup in terms of man-
agement and LU duration or other site-specific characteris-
tics. Additionally, most of the available studies were con-

ducted in Amazonia or North America (Don et al., 2011)
and there is large variability in physical and biotic charac-
teristics as well as in land management (Kauffman et al.,
2009). Many studies focus on the recovery of biodiversity or
species richness (Cramer et al., 2008; Queiroz et al., 2014),
but these variables cannot be adequately captured by our
large-scale PFT approach. It is often assumed that the ecosys-
tem will gradually return to its previous state and that inten-
sive LU delays recovery but the timescales are widely un-
known and differ across variables and regions, e.g., tropical
species composition recovers much slower than forest struc-
ture and soil nutrients (Chazdon, 2003). Different recovery
processes are strongly interlinked, e.g., vegetation accumu-
lation and turnover are key factors in the replenishment of
soil quality and nutrients which in turn determine plant pro-
ductivity, and post-agricultural soil C and N dynamics have
been shown to correlate during the regeneration of ecosys-
tems (Knops and Tilman, 2000; Li et al., 2012).

Table 2 includes several studies about ecosystem vegeta-
tion and soil recovery after agricultural abandonment. Over-
all, the studies that looked at vegetation recovery upon aban-
donment indicate that biomass accumulation slows down af-
ter some decades and that accumulation rates correlate neg-
atively with agricultural duration. Our simulations show that
the rate of vegetation C sequestration indeed declines over
time and that longer LU durations delay recovery in each of
the analyzed biomes. Observations also indicate that use of
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Table 1. Average recovery times and standard deviations per biome and for each simulation. Recovery times are depicted in Fig. 3.

Biome Simulation

P20 P60 P100 C20 C60 C100

Dominant PFT recovery time, averaged per biome

Tropical forest 90± 55 112± 48 121± 50 113± 54 125± 52 126± 51
Temperate forest 102± 74 96± 63 93± 57 99± 71 89± 61 92± 69
Boreal forest 47± 89 52± 97 53± 90 47± 95 60± 111 145± 178
Savanna 47± 71 57± 74 62± 77 50± 65 57± 73 59± 76
Shrub 95± 93 104± 101 108± 100 103± 100 109± 112 109± 112
Grassland 76± 108 102± 109 115± 109 45± 77 55± 97 58± 100
Total 80± 85 93± 84 99± 84 77± 78 83± 85 90± 95

Vegetation C recovery time, averaged per biome

Tropical forest 106± 50 137± 61 150± 65 121± 65 138± 73 139± 74
Temperate forest 84± 24 93± 31 108± 46 91± 29 124± 59 149± 79
Boreal forest 102± 47 113± 57 127± 71 111± 55 144± 79 187± 107
Savanna 49± 37 61± 44 66± 46 35± 40 42± 43 43± 44
Shrub 73± 40 86± 48 96± 51 60± 38 69± 48 73± 54
Grassland 96± 136 119± 140 126± 138 40± 98 43± 102 45± 105
Total 88± 80 106± 87 117± 90 75± 74 92± 87 101± 98

Soil C recovery time, averaged per biome

Tropical forest 74± 60 69± 43 66± 45 80± 46 64± 46 49± 43
Temperate forest 207± 98 229± 105 241± 117 237± 108 261± 133 260± 144
Boreal forest 327± 107 381± 122 421± 140 362± 112 425± 132 454± 161
Savanna 84± 132 132± 191 162± 233 85± 112 83± 125 74± 126
Shrub 107± 140 129± 161 135± 168 137± 173 139± 183 125± 183
Grassland 286± 234 366± 262 422± 283 239± 227 219± 229 198± 228
Total 182± 176 220± 209 245± 236 182± 171 183± 186 174± 194

NBP recovery time, averaged per biome

Tropical forest 57± 37 65± 26 71± 27 56± 28 64± 24 65± 24
Temperate forest 97± 29 108± 29 113± 31 102± 30 112± 31 119± 36
Boreal forest 136± 55 146± 56 152± 58 139± 54 151± 59 169± 71
Savanna 31± 40 34± 30 36± 26 29± 18 32± 17 33± 17
Shrub 51± 37 58± 31 59± 29 52± 27 58± 26 59± 25
Grassland 25± 37 31± 31 35± 30 27± 15 34± 20 36± 22
Total 59± 51 66± 49 71± 49 60± 45 68± 47 72± 52

land for pasture delays recovery in the tropics upon pasture
abandonment compared to cropping, but in our simulations
this seems to be the case only after long agricultural dura-
tions. For studies about soil C dynamics after agricultural
abandonment, interpretation is often hindered by combining
different soil layers or aggregating different LU types (Li
et al., 2012) and by large variations observed across studies
(Post and Kwon, 2000). Nevertheless, most of the observed
patterns are reproduced in our simulations, suggesting that
LPJ-GUESS captures the salient processes: after abandon-
ment, croplands accumulate C faster than pastures, and re-
covery often takes more than a century. The impact of LU
duration has rarely been studied; however, our results sug-
gest that even though longer agricultural durations mostly re-
sult in greater initial soil C depletions, recovery can occur at

similar or even faster speed in the subtropics and tropics. In
temperate and boreal forests long LU durations tend to delay
recovery.

The LPJ-GUESS model has been successfully tested
against a range of observations and observation-based prod-
ucts, including vegetation distribution and dynamics and
soil C response to changes in vegetation cover (Hickler et
al., 2004; Miller et al., 2008; Pugh et al., 2015; Smith et al.,
2014). In our simulations, we used only two different agri-
cultural land cover types (intensive grazing and fertilized,
tilled crops). Our analysis would therefore not identify ef-
fects of, for instance, clearing technique (e.g., burning com-
pared to mechanical removal) or different land management
practices (e.g., repeated burning or irrigation) within one land
cover type. For example, recovery of species richness and
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Table 2. Observations and LPJ-GUESS results of soil C changes during agriculture (cropland and/or pasture) and vegetation and soil C
recovery after abandonment.

Observation Biome Observation value Closest Average model value Reference
type simulations for the specific biome

in terms of
LU history

Soil C changes during agriculture

Soil C change global 42 % loss for forest– P20, P60, 7–17 % loss in forest Guo and Gifford
averaged over cropland conversions, P100, C20, biomes for croplands, (2002)
different depths 8 % gain for forest– C60, C100 2 % gain to 7 % loss

pasture conversions for pastures

Soil C change at tropical 25 % loss for cropland, C20, C60, 11–12 % loss for Don et al. (2011)
36 cm forest 12 % loss for pasture/ P20, P60 croplands, 2 % gain to

grassland 4 % loss for pastures

Soil C change at temperate new equilibrium after C100 C loss throughout the Poeplau et al. (2011)
29 cm forest 23 years entire cropland

duration

Vegetation recovery after agricultural abandonment

ag∗ vegetation tropical 189 years C20 121 years Saldarriaga et al.
recovery time forest (1988)

ag vegetation tropical slowdown with time, P20, P60, (slight) slowdown, Silver et al. (2000)
recovery rate forest recovery slower for P100, C20, pasture recovery

pasture than for C60, C100 slower only for long
cropland durations (P100/C100)

Total and temperate linear with time P60, P100 (slight) slowdown Hooker and Compton
vegetation C forest (2003)
recovery rate

Vegetation temperate linear with time C20, C60 (slight) slowdown Poulton et al. (2003)
recovery rate forest

ag vegetation tropical recovery speed P20, P60, recovery speed Uhl et al. (1988)
recovery rate forest inversely related P100 inversely related

to LU duration to LU duration

ag vegetation tropical 73 years, recovery C20, C60, 121–139 years, Hughes et al. (1999)
recovery rate forest speed inversely related C100 recovery speed
and time to LU duration inversely related

to LU duration

Maximum tree tropical recovery speed C20, C60, recovery speed Randriamalala et al.
height recovery forest inversely related C100 inversely related (2012)
rate to LU duration to LU duration

Vegetation tropical slower for pasture P20, P60, slower only for long Moran et al. (2000)
height recovery forest than for cropland P100, C20, durations (C100/P100)
rate C60, C100

ag vegetation tropical slower for pasture P20, C20 faster for P20 than for Wandelli and
recovery rate forest than for cropland C20 Fearnside (2015)

Soil C recovery after agricultural abandonment

Soil C recovery global large variation across P20, P60, tendency to lose C in Paul et al. (2002)
at up to 30 cm studies, tendency to P100, C20, the first years for

lose C in the first years C60, C100 pastures, immediate
for pastures, immediate accumulation for
accumulation for croplands
croplands

∗ ag= aboveground.
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Table 3. Observations and LPJ-GUESS results of soil C changes during agriculture (cropland and/or pasture) and vegetation and soil C
recovery after abandonment.

Observation Biome Observation value Closest Average model value Reference
type simulations for the specific biome

in terms of
LU history

Soil C recovery global more accumulation for P20, P60, more accumulation for Laganiere et al.
at 34 cm croplands than for P100, C20, croplands than for (2010)

pastures, no C60, C100 pastures, slower
accumulation in boreal accumulation in boreal
zone zone

Soil C recovery temperate linear accumulation, no C20 linear accumulation, no Poeplau et al. (2011)
at 28/40 cm forest equilibrium after equilibrium after

120 years 120 years

Soil C recovery grassland 158 years C100 198 years Potter et al. (1999)
time at 0–60 cm

Soil C recovery savanna/ 230 years C20 85 (savanna)/237 Knops and Tilman
time at 0–60 cm temperate (temperate forest) years (2000)

forest

Soil C recovery temperate > 100 years C20, C60, 237–261 years Foote and Grogan
time 0–10 cm forest C100 (2010)

Soil C recovery tropical 50–60 years P20, P60, 49–80 years Silver et al. (2000)
time 0–25 cm forest P100, C20,

C60, C100

maximum tree height of secondary forests occurs faster un-
der no tillage compared to heavy tillage (Randriamalala et
al., 2012).

Our study is intended as an idealized experiment to high-
light the importance of LU history on ecosystem state and
fluxes across biomes. Still, some processes with the poten-
tial to affect post-agricultural ecosystem recovery, at least
regionally, are not currently included in LPJ-GUESS. One
aspect is the phosphorus cycle, which is not implemented in
LPJ-GUESS, even though it can be significantly altered by
LUC (MacDonald et al., 2012; McLauchlan, 2006). More-
over, while C and N cycles interact in LPJ-GUESS (Smith et
al., 2014), the uniform annual fertilizer rate we applied in this
study might be realistic in some regions, such as parts of Eu-
rope, but exceeds present-day fertilizer use in Africa (Potter
et al., 2010). Seed availability, remnant trees and resprout-
ing from surviving roots are important factors during initial
stages of tree colonization following agricultural cessation
(Bellemare et al., 2002; Cramer et al., 2008). While LPJ-
GUESS does not account for these effects explicitly, seedling
establishment is limited by a suitable growth environment,
such that effects like re-sprouting or remnant trees as seed
sources are mimicked. The model has been shown to, for ex-
ample, reproduce vegetation recolonization in northern Eu-
rope during the Holocene well (Miller et al., 2008), as well as
canopy structural changes as a function of forest age (Smith
et al., 2014). What is more, by using a prescribed climate in

our simulations, hydrological biosphere–atmosphere interac-
tions and feedbacks are not captured (Eltahir and Bras, 1996;
Giambelluca, 2002), which could alter regional climate in
response to land cover change, potentially affecting recov-
ery rates, especially in tropical regions. Biophysical effects
are not restricted to modifications of the water cycle but also
include changes in surface albedo and roughness length as
a function of ecosystem structure and composition, thereby
affecting air mixing and heat transfer. While forests gener-
ally absorb more sunlight than grasslands (e.g., Culf et al.,
1995), differences amongst tree species and age classes exist
as well. Substantial impacts related to realistic land-use have
been found on local-to-regional scales (Alkama and Cescatti,
2016; Peng et al., 2014). Whether or not the locally observed
changes translate to a significant global radiative forcing is
still debated as the direction of change differs across regions
in some climate models, which may cancel when integrated
globally (Pielke et al., 2011). Additionally, while we focus on
C sequestration rates in our analysis, there might be biogeo-
chemical implications beyond C. For instance, the emissions
of biogenic volatile organic compounds (BVOCs) to the at-
mosphere vary greatly amongst plant species (Kesselmeier
and Staudt, 1999). BVOCs affect atmospheric composition
and climate via ozone production, lengthening the lifetime
of atmospheric methane, and contributing to secondary or-
ganic aerosol formation (Penuelas and Staudt, 2010; Wu et
al., 2012). BVOC emission factors might also be drastically
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influenced by wildfires (Ciccioli et al., 2014), which in turn
are driven by species composition and vegetation density.
Thus, different successional trajectories of ecosystem struc-
ture and composition recovery have the potential to directly
modify air quality and climatic conditions under which re-
growth occurs, potentially creating positive or negative cli-
mate system feedbacks.

4.2 Implications of recovery definition

The term recovery is subjective and, in the absence of a uni-
versal definition amongst ecologists, several definitions cur-
rently exist. The definition used in this study examines recov-
ery from a C sequestration perspective which does not cap-
ture situations, for example, where the system approaches a
new equilibrium (as soil C did in some regions in the crop-
land simulations). In order to obtain a better understanding
of the uncertainties related to our definition we therefore ex-
plored four alternative plausible recovery definitions.

When applying a mean minus 2σ threshold (instead of
a mean minus 1σ threshold), recovery times are generally
shorter, e.g., on average 75 instead of 106 years for vegeta-
tion C in P60, but the overall geographic patterns are very
consistent across both definitions (not shown). For all vari-
ables and simulations, notable differences between both def-
initions occur in regions with longest recovery times, espe-
cially for subtropical soil C in the pasture simulations.

Recovery based on percentage change (Fig. A4) results
in more heterogeneous patterns across variables when com-
pared to our standard recovery definition. Applying a thresh-
old of 95 % of the mean, instead of a mean minus 1σ thresh-
old, produces slightly longer dominant PFT recovery times
in parts of the temperate and tropical forests, and shorter re-
covery times in grasslands, especially for the pasture simu-
lations. Vegetation C shows similar patterns to the dominant
PFT; however, the differences to our standard definition are
more pronounced. Soil C recovery times generally decrease
dramatically, especially outside the tropics. NBP recovery
times generally increase, particularly in forest ecosystems.

By expanding our standard recovery definition by an up-
per threshold (reference mean plus 1σ ), and with the “min-
imum rule” also applied to the maximum (see Sect. 2.4),
one can test whether some ecosystems recover from higher
rather than lower values than in the reference simulation.
Mostly grasslands are affected by this alternative definition
(Fig. A5). Dominant PFT recovery under this definition takes
slightly longer throughout the African grasslands for the pas-
ture simulations, and considerably longer in parts of northern
and southern Africa for the cropland simulations. Patterns are
similar for vegetation C, but the increase in vegetation C re-
covery times is often larger than the increase in dominant
PFT recovery times, especially for croplands. Soil C recov-
ery is notably longer in subtropical and eastern African grass-
lands. The recovery times of NBP are hardly affected. How-
ever, we do not use an upper threshold in the primary defi-

nition used in this study because in this case the ecosystem
is already operating at a level of service above that which
the undisturbed ecosystem would have provided and our aim
here was to investigate recovery from a depletion perspec-
tive.

Finally, when using the mean± 1σ definition and ad-
ditionally checking whether the variable is still in the
mean± 1σ range at the end of the simulation period (not
shown), many grid cells did not recover even within the set
maximum cut-off of 800 years. Elements of random fluctu-
ations due to natural variability arising from stochastic pro-
cesses and disturbances and responding C, N, and water dy-
namics made a clear identification of recovery period difficult
in that case. In particular for soil C, no recovery is found for
parts of eastern and subtropical Africa. The system converges
towards a new equilibrium state in these regions which lies
above reference values. NBP stays within background levels
everywhere.

Altogether, the alternative recovery definitions agree on
the general findings when applying our standard definition,
especially in terms of relative recovery rates. For all defini-
tions, vegetation C and dominant PFT recover faster in grass-
lands than in forest-dominated ecosystems, and soil C recov-
ery takes much longer in higher latitudes. However, some
areas, especially in the subtropics, “recover” from values
higher than in the reference simulation, and these cases are
not captured by our standard definition. Additionally, in the
tropics, soil C accumulation sometimes does not stop once
background values are reached and soil C leaves the refer-
ence range. When recovery is defined based on standard de-
viation, NBP recovery is often quicker than recovery of the
C pools. This inconsistency emphasizes the importance of
both recovery definition and selected variables when study-
ing the recovery of ecosystems (Jones and Schmitz, 2009).
This is particularly relevant for flux tower measurements,
where an underlying long-term trend caused by the recovery
from previous, often unquantified or unknown LU change,
might be overlooked due to a large interannual variability in
net ecosystem exchange.

5 Conclusions

Most studies which have explored the effects of distant hu-
man activities on present-day ecosystems were restricted by
sampling difficulties, small spatial scales, short time periods
since abandonment, and little information about background
conditions or the specific LU history of the site. Here, we use
a model-based approach to study the legacy effects of agri-
cultural LU history (type and duration) on ecosystem regen-
eration and C sink capacity after the cessation of agriculture
in a range of biomes across Europe and Africa. The model re-
produces qualitatively the response found at study locations,
including distinct differences in recovery between different
variables of the terrestrial carbon cycle. Long-lasting legacy
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effects of former agricultural intensity emerge as important
for present-day ecosystem functions. These findings have im-
plications for various scientific applications:

1. Long-term monitoring sites (e.g., FLUXNET) and Earth
observation systems need to collect and maintain de-
tailed information about past and present land cover and
land management to adequately interpret their data.

2. Assessments of trends in data from sites that seek to
identify impacts of climate change and/or increasing at-
mospheric CO2 concentration need to make sure that
legacy effects of past LU are not confounding the ob-
served trends.

3. Simulation experiments need to move beyond defor-
estation but also represent, in a more detailed man-
ner, re-growth dynamics following agricultural aban-
donment at the sub-grid level. At the moment a few
DGVMs have started to do so (Shevliakova et al., 2009;
Stocker et al., 2014; Wilkenskjeld et al., 2014) based on
model products of tropical shifting cultivation (Hurtt et
al., 2011), but accounting for gross land cover changes
is also important in other regions like Europe (Fuchs
et al., 2015). Failure to consider LU history may lead
to errors in the simulation of vegetation properties, po-
tentially resulting in biases in carbon sequestration or
energy balance calculations, with subsequent implica-
tions for simulations of regional and global climate. Our
study suggests that, for vegetation and soil C studies,
accounting for LUC over the last 100–150 years is suf-
ficient in the tropics, while more than 200 years might
be necessary in the temperate and boreal zone; studies
restricted to vegetation should not have to account for
LUC more than 150 years ago in any major climatic
zone.

4. Assessing the efficiency of climate mitigation through
large-scale reforestation or afforestation projects will
require knowledge about the type and duration of pre-
vious LU. Our simulations suggest that the potential
to rapidly sequester C in biomass and soil is great-
est in tropical forests following short periods of crop-
land, while boreal forests accumulate C slowest, espe-
cially when previously used for pasture. Special atten-
tion should be paid to monitoring changes in below-
ground C, as in most places the accumulation of soil C is
much more sensitive to LU history than C accumulation
in re-growing trees.

5. In terms of soil C, our results suggest that some sub-
tropical regions might not recover at all on timescales
relevant for humans. However, given the low absolute
amounts of C “missing” in these soils, implications for
the global C cycle are expected to be small.

6 Data availability

Researchers interested in the LPJ-GUESS source code
can contact the model developers (http://iis4.nateko.lu.se/
lpj-guess/contact.html). The CRU TS 3.21 climate data
can be downloaded from http://browse.ceda.ac.uk/browse/
badc/cru/data/cru_ts/cru_ts_3.21. The LPJ-GUESS simula-
tion data are stored at the IMK-IFU computing facilities and
can be obtained on request (andreas.krause@kit.edu).
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Appendix A: Additional tables and figures

Table A1. Plant functional types used in this study.

BNE Boreal needleleaved evergreen tree
BINE Boreal shade-intolerant needleleaved evergreen tree
BNS Boreal needleleaved summergreen tree
TeBS Shade-tolerant temperate broadleaved summergreen tree
IBS Shade-intolerant broadleaved summergreen tree
TeBE Temperate broadleaved evergreen tree
TrBE Tropical broadleaved evergreen tree
TrIBE Tropical shade-intolerant broadleaved evergreen tree
TrBR Tropical broadleaved raingreen tree
C3G Cool C3 grass
C4G Warm C4 grass

Figure A1. Soil C for the six simulations after conversion to natural vegetation at one single example site to illustrate how recovery time
was calculated according to our definition. The cyan-shaded area corresponds to reference simulation mean± 1σ . When soil C exceeds the
mean− 1σ threshold and the time of the minimum (which in this case is located in the first 200 years and below the mean− 1σ threshold
for all six simulations) is passed, recovery is achieved.
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Figure A2. Histograms of recovery times for the dominant PFT, vegetation C, soil C, and NBP for the six experiments. Colors indicate
different biomes.
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Figure A3. Annual ratio of C removed by harvest and C stored in vegetation, averaged over the whole agricultural period and for P60. As
only aboveground biomass is harvested, lower values indicate increased C allocation to roots compared to leaves due to limited water supply.

Figure A4. Maps of recovery time for the dominant PFT, vegetation C, soil C and NBP with an alternative recovery definition for the P60
and C60 simulations. The definition is the same as our standard definition but with a mean · 0.95 threshold instead of mean− 1σ .
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Figure A5. Maps of recovery time for the dominant PFT, vegetation C, soil C and NBP with an alternative recovery definition for the P60
and C60 simulations. The definition is the same as our standard definition but with a mean± 1σ threshold and the minimum check also
applied to the maximum instead of a mean− 1σ threshold and only checking the minimum.
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Abstract. Land management for carbon storage is discussed
as being indispensable for climate change mitigation because
of its large potential to remove carbon dioxide from the at-
mosphere, and to avoid further emissions from deforestation.
However, the acceptance and feasibility of land-based mit-
igation projects depends on potential side effects on other
important ecosystem functions and their services. Here, we
use projections of future land use and land cover for differ-
ent land-based mitigation options from two land-use mod-
els (IMAGE and MAgPIE) and evaluate their effects with a
global dynamic vegetation model (LPJ-GUESS). In the land-
use models, carbon removal was achieved either via growth
of bioenergy crops combined with carbon capture and stor-
age, via avoided deforestation and afforestation, or via a
combination of both. We compare these scenarios to a ref-
erence scenario without land-based mitigation and analyse
the LPJ-GUESS simulations with the aim of assessing syn-
ergies and trade-offs across a range of ecosystem service in-
dicators: carbon storage, surface albedo, evapotranspiration,
water runoff, crop production, nitrogen loss, and emissions
of biogenic volatile organic compounds.

In our mitigation simulations cumulative carbon storage
by year 2099 ranged between 55 and 89 GtC. Other ecosys-
tem service indicators were influenced heterogeneously both
positively and negatively, with large variability across re-
gions and land-use scenarios. Avoided deforestation and af-

forestation led to an increase in evapotranspiration and en-
hanced emissions of biogenic volatile organic compounds,
and to a decrease in albedo, runoff, and nitrogen loss. Crop
production could also decrease in the afforestation scenar-
ios as a result of reduced crop area, especially for MAgPIE
land-use patterns, if assumed increases in crop yields cannot
be realized. Bioenergy-based climate change mitigation was
projected to affect less area globally than in the forest expan-
sion scenarios, and resulted in less pronounced changes in
most ecosystem service indicators than forest-based mitiga-
tion, but included a possible decrease in nitrogen loss, crop
production, and biogenic volatile organic compounds emis-
sions.

1 Introduction

If the trend in global carbon dioxide (CO2) emissions ob-
served over the last 2 decades continues, the atmospheric
CO2 concentration is expected to exceed 900 ppm at the
end of the 21st century, resulting in a surface temperature
increase of several degrees (Friedlingstein et al., 2014; Le
Quéré et al., 2015; Peters et al., 2013). However, during the
COP21 climate conference in Paris 2015, participating par-
ties agreed to limit global warming to 2 ◦C or less relative to
the pre-industrial era, and by today, 169 countries have rat-
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ified the agreement (http://unfccc.int/paris_agreement/items/
9485.php, accessed 2 November 2017). The < 2 ◦C warm-
ing goal requires greenhouse gas (GHG) concentrations to
approximately follow or stay below the representative con-
centration pathway 2.6 (RCP2.6, van Vuuren et al., 2011),
which will require serious reductions in CO2 (and other
GHG) emissions across all sectors. Present projections indi-
cate that (1) without substantial net negative CO2 emissions
later this century, the Paris goal will not be achievable (Fuss
et al., 2014; Rogelj et al., 2015), and (2) some negative emis-
sions need to be realized in 10–20 years (Anderson and Pe-
ters, 2016).

The total carbon dioxide removal (CDR) necessary to
achieve the 2 ◦C target is typically around 100–230 GtC (Ro-
gelj et al., 2015; Smith et al., 2016) depending on the fu-
ture CO2 emission pathway and including the need to avoid
carbon (C) emissions from further land clearance. Two main
strategies of land-based climate change mitigation are com-
monly discussed for CDR: growth of bioenergy crops in
combination with carbon capture and storage (BECCS), and
avoided deforestation in combination with afforestation and
reforestation (ADAFF) (Humpenöder et al., 2014; van Vu-
uren et al., 2013; Williamson, 2016). BECCS involves the
planting of bioenergy crops or trees, which are burned in
power stations or converted to biofuels, and the released CO2
being captured for long-term underground storage in geolog-
ical reservoirs. ADAFF utilizes the natural C uptake of forest
ecosystems in biomass and soil by maintaining and expand-
ing global forest area.

The total land demand and spatial patterns of these mitiga-
tion strategies are highly uncertain due to strong dependen-
cies on underlying assumptions about future environmental
and socio-economic changes (Boysen et al., 2017; Popp et
al., 2017; Slade et al., 2014). BECCS and ADAFF will likely
increase pressure on food-producing agricultural areas and,
in the case of BECCS, natural ecosystems. Moreover, similar
to other mitigation technologies, the feasibility and effective-
ness of BECCS and ADAFF are debated (Keller et al., 2014;
Williamson, 2016). For instance, in boreal and many temper-
ate regions tree cover reduces surface albedo, thereby caus-
ing local warming (Alkama and Cescatti, 2016). Addition-
ally, reduced CO2 emissions through forest protection and
expansion might be counteracted by cropland expansion in
non-forest areas (Popp et al., 2014). BECCS includes sub-
stantial economic costs in its CCS component (Smith et al.,
2016) and is currently far from being deployable at the com-
mercial scale (Peters et al., 2017; Reiner, 2016). It will also
require sufficient safe geologic C storage capacities (Scott
et al., 2015). Additionally, the efficiency of BECCS might
diminish when C emissions from deforestation (Wiltshire
and Davies-Barnard, 2015) or nitrous oxide (N2O) emissions
from bioenergy crops (Crutzen et al., 2008) are considered
(with the latter often being accounted for in BECCS scenar-
ios, e.g. Humpenöder et al., 2014).

But even if land-based measures were to be successful
with respect to their primary goal of permanently and sub-
stantially reducing atmospheric CO2 levels to mitigate cli-
mate change, impacts on ecosystems and societies are likely
to be complex (Bennett et al., 2009; Creutzig et al., 2015;
Foley et al., 2005; Smith and Torn, 2013; Smith et al., 2013;
Viglizzo et al., 2012) and include effects far away from the
original land-use (LU) location (DeFries et al., 2004; Ro-
driguez et al., 2006). The multiplicity of environmental im-
plications caused by large-scale CO2 removal have so far
been largely neglected (Williamson, 2016). The relevance
of negative emission technologies, combined with our lim-
ited knowledge of their feasibility and risks, encourages the
exploration of potential synergies and trade-offs between
terrestrial ecosystem services (ESs, defined as benefits that
people obtain from ecosystems; MEA, 2005) that are af-
fected in land-based mitigation projects. Such work will fa-
cilitate decision-making as to whether the realization of such
projects is desirable for society.

In this study, we utilize projections of future LU from one
integrated assessment model (IAM, IMAGE) and one LU
model (MAgPIE), that are created based on three large-scale
land-based mitigation options (BECCS, ADAFF, and a com-
bination of both). Each of these target a CDR of 130 GtC
(only CO2 carbon, omitting other greenhouse gases) by the
end of the century, which is approximately equivalent to the
cumulative deforestation CO2 emissions from the late 19th
century to today, or around 60 ppm (Le Quéré et al., 2015).
We use these spatially explicit LU patterns as input for sim-
ulations with the LPJ-GUESS dynamic vegetation model to
analyse effects on a variety of ecosystem functions that serve
as indicators for important ecosystem services. By using LU
patterns from two different LU models we explore some
of the uncertainty in indicators of ESs arising from differ-
ent model assumptions concerning the land demand of land-
based mitigation. The main research questions we address in
this study are as follows.

1. What are the impacts of land management for carbon
uptake on other ecosystem service indicators?

2. Do the effects of land-based climate change mitigation
on ecosystem service indicators differ based on the mit-
igation approach (BECCS, ADAFF, or a combination of
both)?

3. If so, can a mitigation approach be identified in which
trade-offs between other ecosystem service indicators
are less pronounced than in the other approaches?

4. What are the spatial and temporal patterns of the im-
pacts of land-based mitigation on ecosystem service in-
dicators?

This is to our knowledge the first time that global LU sce-
narios are being used as input to a process-based ecosystem
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model to assess changes in ecosystem function and effects on
multiple ES indicators.

2 Methods

2.1 LPJ-GUESS

The process-based dynamic global vegetation model
(DGVM) LPJ-GUESS simulates vegetation dynamics in re-
sponse to climate, land-use change (LUC), atmospheric CO2,
and nitrogen (N) input (Olin et al., 2015a; Smith et al., 2014).
The model distinguishes between natural, pasture and crop-
land land-cover types (Lindeskog et al., 2013), all of which
include C–N dynamics (Olin et al., 2015a; Smith et al.,
2014). Vegetation dynamics in natural land cover are char-
acterized by the establishment, competition, and mortality of
12 plant functional types (PFTs, 10 groups of tree species,
C3 and C4 grasses) in a number of replicate patches (10 in
this study for primary vegetation, 2 for abandoned agricul-
tural areas). Vertical forest structure is accounted for by the
use of different age classes for woody PFTs. When forests
are cleared for agriculture, 20 % of the woody biomass en-
ters a product pool (turnover time of 25 years), with the rest
being oxidized (74 %) or transferred to the litter (6 %). Pas-
tures are populated by C3 or C4 grasses which are annually
harvested (50 % of above-ground biomass) (Lindeskog et al.,
2013). Croplands are represented by prescribed fractions of
five crop functional types (CFTs, see Table S1 in the Supple-
ment), which are moderately tilled, fertilized, and harvested
(Olin et al., 2015a), and are prescribed to be either irrigated
or rain-fed (Lindeskog et al., 2013). Specific bioenergy crops
are currently not represented. While LPJ-GUESS does not
assume yield increases due to technological progress (in con-
trast to IMAGE and MAgPIE), climate change adaption is
simulated by using a dynamic potential heat unit (PHU) cal-
culation (Lindeskog et al., 2013). The PHU sum needed for
the full development of a crop determines its harvesting time.
For irrigated crops, water supply is assumed to be available
as required to fulfil the plant’s water demand. Unmanaged
cover grass (C3 or C4 type depending on climate) is allowed
to grow in croplands between growing seasons.

2.2 The IMAGE and MAgPIE models and the
provided land-use scenarios

IMAGE is an IAM model framework that includes sev-
eral sub-models representing the energy system, agricultural
economy, LU, natural vegetation, and climate system (Ste-
hfest et al., 2014). Socio-economic parameters are usually
calculated for 26 world regions, and most environmental pa-
rameters are modelled on a 0.5◦× 0.5◦ grid at annual time
steps. LU dynamics are driven by demand for and supply of
crops, animal products, and bioenergy. Bioenergy demand to
achieve a specific CDR target is determined by the energy
system sub-model which uses land availability from the LU

sub-model following a set of sustainability criteria (Hoog-
wijk et al., 2003). For this study, bioenergy crops are in-
cluded as fast-growing C4 grasses (Doelman et al., 2017) as
these produce higher yields than woody plants in many lo-
cations. The level of agricultural intensification required to
free up land for afforestation to achieve a specific CDR target
is estimated using a stepwise approach of increasing yields
and livestock efficiencies. This implies that reduced crop and
pasture areas go with higher yields and livestock efficiencies,
thereby allowing the same food production as in the baseline.
Afforestation is assumed to occur first in grid cells with high
potential for forest growth. IMAGE also represents degraded
areas (calibrated so that, together with areas cleared for agri-
culture, FAO deforestation statistics are met) which can be
reforested as part of the afforestation activities (Doelman et
al., 2017). Natural vegetation regrowth trajectories as well
as crop yields, C, and water dynamics are modelled dynam-
ically by the internally coupled DGVM LPJmL (Bondeau et
al., 2007; Stehfest et al., 2014).

MAgPIE is a global multi-regional partial equilibrium
model of the agricultural sector (Lotze-Campen et al., 2008;
Popp et al., 2014). The model aims to minimize the global
costs for agricultural production throughout the 21st century
at a 5-year time step (recursive dynamic optimization) and is
driven by demand for agricultural commodities and associ-
ated costs in 10 world regions. The cost minimization is sub-
ject to various spatially explicit biophysical factors such as
land and water availability as well as crop yields (provided by
LPJmL). Major options to fulfil increasing demand are inten-
sification (yield-increasing technologies), expansion (LUC),
and international trade. Demand for CDR enters the model at
the global scale, while the spatial distribution of bioenergy
production or afforestation is derived endogenously in the
model (involving economic and biophysical factors). Bioen-
ergy demand is fulfilled chiefly through the growth and har-
vest of grassy energy crops; woody bioenergy in this study is
grown only on less than 1 % of the area used for bioenergy.
Actual bioenergy yields are derived from potential LPJmL
yields (using information about observed LU intensity and
agricultural area for initialization) but can exceed LPJmL
yields over time due to technological progress (Humpenöder
et al., 2014). Afforestation is assumed to occur as managed
regrowth of natural vegetation according to parameterized
s-shaped growth curves towards a maximum potential nat-
ural vegetation C density as provided by LPJmL, with soil
C increasing linearly towards its potential maximum within
20 years (Humpenöder et al., 2014). For simplicity, we refer
to both IMAGE and MAgPIE as LU models (LUMs) in the
following.

As input to our study we use the baseline projections
(without land-based mitigation) from IMAGE and MAgPIE,
and three land-based mitigation scenarios, each calculated by
both LUMs, based on the assumption of a cumulative CDR
target of 130 GtC by the year 2100. In the “BECCS” sce-
nario this is achieved via bioenergy plant cultivation and sub-
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sequent CCS, the “ADAFF” scenario involves maintaining
and expanding global forest area, and in “BECCS-ADAFF”
the CDR demand is fulfilled in equal parts via both options.
While the CDR target in ADAFF is achieved via terrestrial C
uptake (CDR=1 vegetation C+1 soil C+1 product pool),
in BECCS it is fulfilled solely via CCS (CDR= cumulative
CCS) and thus did not account for changes in vegetation and
soil C. The baseline scenario (“BASE”) involves no land-
based mitigation but LUC takes place in response to, among
other factors, increasing food demand, dependent on popu-
lation and GDP growth. LUC was provided by the LUMs
as net land-cover transitions. Wood harvest was not ac-
counted for in the data provided by the LUMs. All scenarios
were developed with RCP2.6 climate produced by the IPSL-
CM5A-LR general circulation model (GCM), bias corrected
to the 1960–1999 historical period (Hempel et al., 2013). The
LU scenarios were created using harmonized assumptions
about climate change, atmospheric composition, and socio-
economic development and thus did not include C cycle feed-
backs. As it seems currently unlikely that the RCP2.6 path-
way can be achieved without any land-based mitigation (Fuss
et al., 2014), the BASE scenario should rather be regarded as
a diagnostic scenario to isolate the LU effects induced by
the mitigation scenarios from other factors. CO2 fertilization
effects on plant growth were simulated in the LUMs’ crop
growth and vegetation models. Both LUMs harmonized their
cropland and pasture LU patterns to the spatially explicit
HYDE 3.1 dataset (Klein Goldewijk et al., 2011) in the year
1995 (MAgPIE) or 2005 (IMAGE), with small deviations in
the area of the land-cover classes occurring due to differ-
ent land masks and calibration routines. The simulation pe-
riod was 1970–2100 in IMAGE and 1995–2100 in MAgPIE.
Socio-economic developments as input to the LUMs were
based on the Shared Socioeconomic Pathway 2 (SSP2, “Mid-
dle of the Road”) (O’Neill et al., 2014; Popp et al., 2017). We
only used spatially explicit LU and land management (irriga-
tion and synthetic plus organic N fertilizer) patterns from the
LUMs as input to the LPJ-GUESS simulations; other vari-
ables also available from the LUMs (e.g. C stocks or crop
production) were calculated with LPJ-GUESS. Details about
the conversion of IMAGE and MAgPIE-LU data to LPJ-
GUESS input data can be found in Supplement Sect. S1.

Even though MAgPIE and IMAGE derive crop yields and
C densities from the same DGVM (LPJmL; Bondeau et al.,
2007), the land demand to meet the same CDR target is larger
in IMAGE than in MAgPIE. This reflects different model ap-
proaches: while in IMAGE bioenergy cultivation can only
be established in unproductive regions not needed for food
production, in MAgPIE there is a competition for land be-
tween food production and land-based mitigation. Concern-
ing afforestation, managed regrowth (according to prescribed
growth curves) is assumed in MAgPIE while in IMAGE nat-
ural regrowth dynamically calculated within LPJmL is im-
plemented. Consequently, bioenergy production in MAgPIE
is located in regions with mostly higher yields compared to

IMAGE, and forest regrowth occurs at a faster rate, result-
ing in less LUC and mitigation actions starting later in the
MAgPIE scenarios (Fig. 1, Table S2). In the BASE scenario,
the area under natural vegetation decreases throughout the
future for both IMAGE and MAgPIE (Fig. 1, Table S2), but
more so for IMAGE due to the representation of degraded
forests (which are treated as grassland in IMAGE; see Sup-
plement Sect. S1). Substantial regional differences between
both LUMs exist by the end of the century in the BASE sce-
nario (Fig. 2a). Avoided deforestation and afforestation in the
ADAFF scenarios is chiefly located in the tropics (Fig. 2b)
and afforestation typically takes place on pastures or de-
graded forests in IMAGE but on croplands in MAgPIE (Ta-
ble S2). Bioenergy production area in BECCS is increased
mainly at the expense of natural vegetation in IMAGE but
taken also from existing agricultural land in MAgPIE. To-
tal cropland area increases in the scenario combining both
strategies (BECCS-ADAFF) compared to BASE for IMAGE
but decreases for MAgPIE BECCS-ADAFF (Fig. 1). IMAGE
uses a slightly larger grid list than MAgPIE and accounts
for the water fraction of a grid cell; but as the impacts on
land-based mitigation in LPJ-GUESS turned out to be small
(< 2 GtC over the simulation period) we only included grid
cells in our simulations for which LU data were provided by
both LUMs (assuming 100 % land cover) to facilitate com-
parison of the results.

2.3 Simulations setup

The LPJ-GUESS simulations were forced by daily atmo-
spheric climate variables (surface temperature, precipitation,
shortwave radiation) extracted from bias-corrected simulated
IPSL-CM5A-LR RCP2.6 climate (1950–2099) from the first
phase of ISI-MIP project (Warszawski et al., 2014). For the
historical period we randomly chose years from the period
1950–1959 to generate climate data for the years 1901–1949.
A repeating climate cycle from the 1901–1930 period was
used for the model’s spin-up. The global average surface
temperature increase in IPSL-CM5A-LR is 1.3 ◦C (1.6 ◦C on
land) by the end of the century (2070–2099) compared to
present-day (1980–2009) for RCP2.6. This value is in the
middle of an ensemble of a wider range of GCM models
used in ISI-MIP (Warszawski et al., 2014). Historical (1901–
2005) and future (RCP2.6, 2006–2099) atmospheric CO2
mixing ratios were taken from Meinshausen et al. (2011).
The year 1901 value (296 ppmv) was used for the spin-up.
Future atmospheric CO2 mixing ratio peaks at 443 ppmv in
year 2052 and drops to ∼ 424 ppmv by the end of the cen-
tury (Meinshausen et al., 2011). Gridded N deposition rates
were available as decadal monthly averages for the historical
and future (RCP2.6) period (Lamarque et al., 2010, 2011). N
deposition for year 1901 was used for the spin-up. Spatially
explicit LU patterns and N fertilization were adopted from
IMAGE and MAgPIE (see also Supplement Sect. S1). We
used the year 1901 land-cover map for the spin-up, thereby
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Figure 1. Time series (2000–2100) of area under natural vegetation (including afforested area), pasture (including degraded forest area for
IMAGE), and cropland (including bioenergy production area) for the different scenarios, for IMAGE (a) and MAgPIE (b).

omitting LUC occurring before the 20th century as we as-
sumed legacy effects from pre-1901 LUC on the future C
cycle to be small.

2.4 Analysed ecosystem service indicators

We analysed the implications of future LU patterns for the
following ES indicators: C storage (as an indicator for global
climate change mitigation), surface albedo and evapotranspi-
ration (indicators for regional climate effects in response to
land-cover change), annual runoff (indicator for water avail-
ability), peak monthly runoff (indicator for flood protection),
crop production (excluding cotton, forage crops, and pas-
ture harvest; indicator for food production), N loss (in LPJ-
GUESS currently not differentiated into dissolved N vs. N
lost to the atmosphere; indicator for water or air quality,
or GHG losses), and emissions of the most common bio-
genic volatile organic compounds (BVOCs) – isoprene and
monoterpenes (indicator for air quality). With the exception
of C storage and crop production these variables were not
available from the LUMs. Most variables are direct outputs
from LPJ-GUESS simulations. Calculations for ES indica-
tors not taken directly from model outputs (C storage via
CCS, crop production scaled to EarthStat, albedo) or differ-
ent from the standard model setup (BVOCs) are provided in
the Supplement Sects. S2–S5.

The analysed ES indicators can serve as proxies for sev-
eral ESs linked to human well-being. Table 1 gives a qualita-
tive overview of how these ES indicators and corresponding
ESs are interlinked. We do not aim to value and rank indi-
vidual ES indicators and thus do not assess here how relative
changes could be differently prioritized in decision-making
for land management. While this is certainly too simple of
a generalization for fully assessing the implications of such

scenarios, ranking or prioritizing individual ES indicators is
a substantial challenge, which is beyond the scope of this
study. A given relative change can be more crucial for some
indicators than for others, and their importance can also vary
across regions and parties concerned. ESs will be influenced
by changes in climate, atmospheric chemistry, and LU even
in the absence of land management for C mitigation. To sep-
arate these non-mitigation effects from those effects associ-
ated with a mitigation approach, we compared changes in ES
indicators in the BASE simulations over the 21st century to
the changes that occur when a mitigation approach is imple-
mented. Land-based mitigation may thus potentially enhance
or degrade ESs to human societies.

3 Results

In the following, the expressions “LPJGIMAGE” and
“LPJGMAgPIE” refer to results from LPJ-GUESS simulations
driven by LU patterns from IMAGE and MAgPIE, plus cli-
mate, CO2, and N deposition from RCP2.6. At some points
we refer to output directly taken from the IMAGE and MAg-
PIE scenarios, in which case this is explicitly stated (“in the
original results/directly from the LUMs /the LUMs report”).

3.1 Carbon storage

Total global C pools simulated with LPJ-GUESS are gener-
ally lower for LPJGIMAGE than for LPJGMAgPIE for all sce-
narios (Table 2, Fig. S1a). This difference is mainly a re-
sult of the representation of degraded forests as grasslands in
IMAGE-LU patterns (see Table S2), while MAgPIE does not
include degraded forests. Moreover, some temperate crop-
lands that are specified in the MAgPIE-LU patterns to grow
fodder are represented in LPJ-GUESS by rain-fed or irri-

www.biogeosciences.net/14/4829/2017/ Biogeosciences, 14, 4829–4850, 2017



4834 A. Krause et al.: Global consequences of afforestation and bioenergy cultivation

Figure 2. (a) Fraction of grid cell under natural vegetation (including afforested area but not degraded forests) by the end of the century
(2090–2099) in the BASE scenario for IMAGE (left) and MAgPIE (right). (b) Difference in the natural vegetation fraction between the
ADAFF and the BASE scenario by the end of the century (2090–2099). (c) Same as panel (b) but between the BECCS and the BASE
scenario.

gated, harvested grass. This crop type increases soil C rela-
tive to cereal crops because the larger below-ground / above-
ground biomass ratio results in less C being removed dur-
ing harvest and thus more C input to the soil. C sequestra-
tion is calculated by LPJ-GUESS for both BASE simulations
within the 21st century, resulting in total C pools of 1995
(LPJGIMAGE) and 2047 (LPJGMAgPIE) GtC by 2090–2099
(Table 2). The combined effects of LU, changing climate, N
deposition, and atmospheric CO2 levels thus enhance total C
pools by 1.7 and 3.2 % (33 and 64 Gt) between the beginning
and the end of the century (Fig. 3a).

As expected from the overall scenario objective, total, veg-
etation, and soil C pools are higher in the ADAFF simula-
tions relative to the respective BASE at the end of the century

(Table 2, Fig. S1a–c). The additional C uptake for ADAFF is
larger for LPJGIMAGE (3.6 % or 72 GtC in year 2090–2099,
76 GtC in year 2099) than for LPJGMAgPIE (2.4 % or 49 GtC
in year 2090–2099, 55 GtC in year 2099, Fig. 3b). This re-
flects the larger afforestation area and earlier afforestation
activities in IMAGE (Figs. 1, 2b). The largest changes in to-
tal C are found in tropical regions, especially in Africa (+15
and +9 %, Fig. 4b) and/or tropical forests (+13 and +8 %,
Fig. S2b), mostly due to increases in vegetation C.

The BECCS scenario focusing on bioenergy crops and
CCS as a climate change mitigation strategy removes slightly
less C from the atmosphere than ADAFF for LPJGIMAGE
but removes more C for LPJGMAgPIE (Table 2, Fig. 3c). In-
terestingly, LPJGIMAGE ADAFF accumulates more C than
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Table 1. Linking ecosystem functions to ecosystem services (ESs). An increase in an ecosystem function can be interpreted positive (+),
negative (−), zero (0), or either positive or negative (+/−), depending on the background conditions or perspective. Effects can be small
(+ or −) or large (++ or −−). Regional effects are shown without brackets and global effects, where relevant, in brackets. Indirect effects
that are more directly represented by another ecosystem function considered here are not shown. The table is based on evidence from the
literature in cases where the link is not directly clear (see footnotes).

Ecosystem function ES – climate change ES – water ES – flood ES – water ES – air ES – food
mitigation availability protection quality quality production

C storage ↑ ++ (++)

Surface albedo ↑ ++ (+)a

Evapotranspiration ↑ ++ (+/− )b

Annual runoff ↑ ++ − 0/+c

Peak monthly runoff ↑ 0/+d
−− 0/−e 0/−f

Crop production ↑ ++ (++)

N loss ↑ +/− (+/− )g
−−

g
− (−)g

BVOC emissions ↑ +/− (+/− )h 0/−− (0/−)i

a The global effects of LU-driven albedo changes seem to be small (e.g. de Noblet-Ducoudre et al., 2012).
b Local surface cooling as heat is needed to evaporate water. On larger scales, the effect could be either a warming due to increases in atmospheric water vapour
(Boucher et al., 2004) or a cooling due to increased planetary albedo resulting from more cloudiness (Bala et al., 2007; Ban-Weiss et al., 2011).
c High flows imply more volume for dilution, prevent algae growth, and maintain oxygen levels (Whitehead et al., 2009).
d Effect of peak monthly runoff on water availability is dependent on seasonal rainfall distribution and regional water storage capacity. Annual runoff is the
clearer indicator.
e Soil erosion and associated remobilization of metals is enhanced during flood events (Whitehead et al., 2009).
f Due to flood damage in croplands (Posthumus et al., 2009).
g LPJ-GUESS at present calculates total N loss and does not differentiate between leaching and gaseous loss. Thus, we indicate several effects that would arise
from N emitted as N2O (a greenhouse gas), as NOX or NH3 (affecting air quality and aerosol formation), or as dissolved N. The net effect of N loss on climate
has been estimated to be a small cooling (Erisman et al., 2011), but uncertainties are large.
h The net impact of BVOC emissions is very uncertain. On the global scale, increased BVOC emissions might result in a warming (Unger, 2014).
i BVOCs often increase ozone and aerosol formation, primarily locally (Rosenkranz et al., 2015), with principally opposite warming and cooling effects (Unger,
2014).

Figure 3. Global relative changes in analysed ecosystem functions simulated by LPJ-GUESS for different LU scenarios from IMAGE and
MAgPIE. Changes are capped at ±40 % for clarity reasons, and values exceeding 40 % are written below the bar. (a) Changes in the BASE
simulation from 2000–2009 to 2090–2099. (b) Changes from BASE to ADAFF by the 2090-2099 period. (c) Same as panel (b) but from
BASE to BECCS. (d) Same as panel (b) but from BASE to BECCS-ADAFF.

LPJGIMAGE BECCS within the first half of the century, while
BECCS catches up during the second half of the century
(Fig. S1a); this acceleration of the BECCS sink is related to a
steady increase in bioenergy area throughout the century. The
additional total C storage achieved by the period 2090–2099
(compared to BASE 2090–2099) is 66 GtC (74 GtC in year

2099) for LPJGIMAGE and 61 GtC (69 GtC in year 2099) for
LPJGMAgPIE. Within these totals, cumulative C storage via
CCS (harvested C from bioenergy crops) is 100 and 74 GtC
by the end of the century (Table 2), but total C uptake is less
than cumulative CCS as LPJ-GUESS simulates a loss of veg-
etation and soil C from expanded agricultural land. C stor-
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Table 2. Global net-total values ± standard deviations (over 10 years) of all analysed ecosystem functions as simulated by LPJ-GUESS for
all scenarios and different time periods and for LPJGIMAGE (top) and LPJGMAgPIE (bottom). Total C is the sum of vegetation C, soil C,
product C (wood removed during deforestation but not immediately oxidized), and cumulative CCS.

Ecosystem function BASE ADAFF BECCS-ADAFF BECCS

2000–2009 2090–2099

Vegetation C 380± 1 415± 2 478± 4 444± 3 391± 2
(GtC) 393± 2 459± 2 496± 5 476± 3 450± 2

Soil and litter C 1575± 1 1578± 1 1588± 1 1580± 1 1567± 1
(GtC) 1585± 1 1587± 1 1599± 2 1592± 2 1583± 1

Product C 5.7± 0.4 1.5± 0.1 0.4± 0.0 1.0± 0.1 2.4± 0.2
(GtC) 4.6± 0.2 0.3± 0.0 0.4± 0.0 0.3± 0.0 0.6± 0.1

Cumulative CCS – – – 52.1± 3.4 100.0± 6.6
(GtC) – – – 34.7± 2.5 73.5± 5.6

Total C 1961± 2 1995± 3 2067± 5 2077± 7 2060± 7
(GtC) 1983± 2 2047± 3 2096± 7 2103± 7 2108± 8

January albedo 0.250± 0.004 0.240± 0.002 0.237± 0.002 0.238± 0.002 0.241± 0.002
0.249± 0.004 0.240± 0.002 0.238± 0.002 0.240± 0.002 0.240± 0.002

July albedo 0.182± 0.001 0.179± 0.001 0.177± 0.001 0.178± 0.001 0.180± 0.001
0.182± 0.001 0.179± 0.001 0.177± 0.001 0.178± 0.001 0.179± 0.001

Evapotranspiration 58.6± 0.7 57.9± 1.2 59.1± 1.2 58.6± 1.2 57.7± 1.2
(1000 km3 yr−1∗) 58.9± 0.7 58.8± 1.2 59.5± 1.2 59.3± 1.2 58.9± 1.2

Annual runoff 52.5± 3.1 55.1± 2.8 53.9± 2.8 54.4± 2.8 55.3± 2.8
(1000 km3 yr−1) 52.2± 3.1 54.3± 2.8 53.7± 2.8 53.9± 2.8 54.2± 2.8

Peak monthly runoff 17.9± 1.0 18.9± 1.2 18.7± 1.2 18.8± 1.2 19.0± 1.2
(1000 km3 month−1) 17.9± 1.0 18.8± 1.2 18.6± 1.2 18.7± 1.2 18.8± 1.2

Crop production 28.9± 0.5 35.9± 0.5 34.7± 0.5 34.0± 0.5 33.5± 0.5
(Ecal) 27.5± 0.9 45.2± 0.4 29.3± 2.0 35.5± 0.7 40.8± 0.5

N loss 60.3± 7.1 109.7± 13.2 102.3± 12.5 103.6± 12.3 98.4± 11.5
(TgN yr−1) 73.3± 6.8 119.0± 8.0 103.2± 8.4 108.1± 7.9 110.0± 7.0

Isoprene emissions 477± 8 419± 9 529± 11 469± 10 382± 8
(TgC yr−1) 503± 9 495± 10 578± 13 532± 11 483± 10

Monoterpene emissions 40.7± 0.6 38.9± 0.9 40.2± 1.0 39.4± 0.9 38.2± 0.9
(TgC yr−1) 41.9± 0.7 40.5± 0.9 41.6± 1.0 40.9± 0.9 40.4± 0.9

∗ 1000 km3 are equal to 1 Eg of water.

age in the combined bioenergy–avoided deforestation and af-
forestation case (BECCS–ADAFF) mostly lies between the
BECCS and the ADAFF case but for LPJGIMAGE exceeds
both ADAFF and BECCS by the end of the century (Table 2,
Figs. 3d, S1a, S3).

3.2 Albedo

Globally averaged January albedo under present-day con-
ditions is significantly higher (∼ 0.25) than July albedo
(∼ 0.18) due to the extensive northern hemispheric snow
cover in January. Both values decrease throughout the 21st

century in the BASE simulations, but more so for January
(−4.1 and −3.7 % for LPJGIMAGE and LPJGMAgPIE, respec-
tively) than for July (−1.7 and −1.8 %) as a result of north-
ward vegetation shifts and reductions in snow cover (Ta-
ble 2, Figs. 3a, S1d–e). Regionally, for both months and
both LUMs, the greatest reductions occur in high latitudes
(Fig. 4a).

An increase in forested area as in the ADAFF scenario re-
sults in further albedo reductions that are – at least for July
albedo – comparable in magnitude to the changes in BASE
throughout the century (Table 2, Fig. 3b). Only small in-
creases compared to BASE occur in the BECCS simulations
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Figure 4. Regional relative changes in analysed ecosystem functions as simulated by LPJ-GUESS for IMAGE-LU (left) and MAgPIE-LU
(right). Changes are capped at ±50 % for clarity reasons, values exceeding ±50 % are written upon or below the bar. Regions are aggregated
Global Fire Emissions Database regions (Giglio et al., 2010) and are North America, South America, Europe, Middle East, Africa, North
Asia, Central Asia, South Asia, and Oceania. (a) Changes in the BASE simulation from 2000–2009 to 2090–2099. (b) Changes from BASE
to ADAFF by the 2090–2099 period. (c) Same as panel (b) but from BASE to BECCS.
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(Fig. 3c) as the land demand for bioenergy crop cultivation
is relatively small. BECCS-ADAFF results in a decrease in
January and July albedo for both LUMs.

3.3 Evapotranspiration

Global evapotranspiration in the BASE simulations de-
creases much more for LPJGIMAGE (−1.2 %) than for
LPJGMAgPIE (0.1 %; Table 2, Figs. 3a, S1f) due to differ-
ent deforestation rates. There is large spatial variability with
evapotranspiration decreasing in some regions but increasing
in others (Fig. 4a), mainly driven by shifting rainfall patterns
(not shown).

As expected from the generally high evapotranspiration
rates of forests, end-of-century evapotranspiration in ADAFF
is 2.1 and 1.3 % higher than in BASE for LPJGIMAGE and
LPJGMAgPIE, respectively (Fig. 3b), with the largest increase
occurring in Africa (Fig. 4b). BECCS results in a change of
−0.4 and +0.2 % for LPJGIMAGE and LPJGMAgPIE, respec-
tively, and BECCS-ADAFF in an increase of 1.3 and 0.8 %
compared to BASE.

3.4 Runoff

In the BASE simulations, global annual runoff increases by
4.9 and 4.1 % by the end of the century for LPJGIMAGE and
LPJGMAgPIE, respectively, with a slightly larger increase of
5.2 and 5.0 % in peak monthly runoff (Table 2, Fig. 3a). This
increase is mainly driven by precipitation changes, but for-
est loss and increased water use efficiency simulated under
elevated CO2 levels also play a role. Similar to evapotran-
spiration, spatial patterns are heterogeneous, with generally
larger changes in annual runoff than in peak monthly runoff
in high latitudes and reverse patterns in parts of the (sub-)
tropics (Figs. 4a, S2a).

Changes in runoff in the mitigation simulations are op-
posite to evapotranspiration changes (Figs. 3b–d, 4b–c), and
the effects of land-based mitigation on annual runoff are of-
ten larger than on peak monthly runoff. ADAFF reduces an-
nual runoff by 2.2 and 1.1 % (LPJGIMAGE and LPJGMAgPIE)

and peak monthly runoff by 1.3 and 0.7 %, while BECCS
increases annual runoff by 0.3 and 0.2 % and peak monthly
runoff by 0.2 and 0.0 %.

3.5 Crop production

Globally, total crop production simulated by LPJ-GUESS
averages ∼ 29 and 27 Ecal yr−1 over the years 2000–2009
and increases by 24 and 64 % to 36 and 45 Ecal yr−1 by
the end of the century for the LPJGIMAGE and LPJGMAgPIE
BASE simulations, respectively (Table 2, Fig. S1i) (for com-
parison, the increase is 78 and 96 % in the original IM-
AGE and MAgPIE results, respectively). The large differ-
ences in crop production increase between LPJGIMAGE and
LPJGMAgPIE can be explained by variations in management
and crop types (e.g. whether the LUMs assume C3 or C4

crops to be grown in certain regions), and the area and lo-
cation of managed land, which differs considerably by the
end of the century, especially in Africa (Fig. 2a). Sensitivity
simulations in which N fertilizer rates, cropland area, atmo-
spheric CO2 mixing ratio, or the dynamic PHU calculation
(i.e. adaption to climate change via selecting suitable crop
varieties, see Sect. 2.1) were fixed at year 2009 levels indi-
cate that around 62 and 39 % (LPJGIMAGE and LPJGMAgPIE,
respectively) of the crop production increase in the BASE
simulations can be attributed to increases in N fertilizer rates,
22 and 74 % to cropland expansion, 26 and 10 % to increased
atmospheric CO2 levels, and 9 and 4 % to dynamic PHU cal-
culation (Fig. S4a). The numbers do not add up to 100 %
due to non-linear effects, interdependencies between vari-
ables (crop area/fertilization), and additional influences we
did not analyse (e.g. climate, N deposition, crop types, and
irrigation).

Crop production calculated with LPJ-GUESS is reduced in
all mitigation simulations compared to BASE, by contrast to
a set requirement in the LUMs to retain annual production at
similar levels to BASE: in the LUMs this is achieved through
further technology increases (for example through improved
management, inputs, pest control, and better crop varieties)
compared to BASE. The decline simulated in LPJ-GUESS,
which is larger for LPJGMAgPIE than for LPJGIMAGE, espe-
cially for ADAFF (LPJGIMAGE −3 % for the 2090–2099 pe-
riod compared to 2090–2099 BASE; LPJGMAgPIE −35 %),
occurs because LPJ-GUESS captures only yield increases
achieved through higher N input, which only covers a part
of the additional technological yield increase assumed by the
LUMs for the mitigation scenarios (and which therefore al-
lows for shrinking production area, see Table S2).

3.6 Nitrogen loss

Global N loss in the BASE simulations increases strongly
over the 21st century by 82 % for LPJGIMAGE and 62 % for
LPJGMAgPIE (Fig. 3a). Most of the increase is caused by
fertilization but increasing N deposition contributes as well
(+19 % over the century). N loss is higher for LPJGMAgPIE
than for LPJGIMAGE at the beginning and end of the 21st
century, but higher for LPJGIMAGE around mid-century (Ta-
ble 2, Fig. S1j). As total fertilizer application is higher
for LPJGMAgPIE throughout the entire century, these differ-
ences can be explained by spatial heterogeneity (e.g. in In-
dia, where fertilization has a large impact on N loss, fer-
tilizer rates are generally higher for LPJGIMAGE than for
LPJGMAgPIE). Increases in N losses correspond roughly to
increases in N application, and to crop production increases
in the original LUMs. This indicates that crops in LPJ-
GUESS approach N saturation, and cannot use the addi-
tional N for higher yields, and thus that N application rates,
while consistent with LUM yield levels, are too high for LPJ-
GUESS yields. Sensitivity simulations indicate that most of
the N loss increase between 2000–2009 and 2090–2099 is in-
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duced by increased fertilizer application and cropland expan-
sions, while increasing atmospheric CO2 and dynamic PHU
calculation reduce N loss (Fig. S4b).

N loss in ADAFF decreases by 6.7 % for LPJGIMAGE
and 13.2 % for LPJGMAgPIE compared to BASE 2090–2099
(Fig. 3b), but with large variability across regions (Fig. 4b).
The decrease can be attributed to lower global fertilizer
amounts in ADAFF than in BASE for both LUMs, as forests
are not fertilized. In the BECCS simulations the decrease
is larger for LPJGIMAGE (−10.3 %) than for LPJGMAgPIE
(−7.6 %), including substantial regional variations, espe-
cially in South America (Fig. 4c). The fertilization of bioen-
ergy crops (for which low fertilizer rates are assumed in the
LUMs) adds N to the system; however, crop N uptake and
subsequent removal during harvest are also enhanced, result-
ing in a net N removal in LPJ-GUESS (and thus less N avail-
able to leave the system via leaching or in gaseous form). N
loss reductions in BECCS-ADAFF lie between ADAFF and
BECCS for LPJGMAgPIE (−9.2 %) but are smallest amongst
all mitigation simulations for LPJGIMAGE (−5.5 %).

3.7 BVOCs

Changes in BVOC emissions are dominated by isoprene
emissions, which are, by weight, an order of magnitude
higher than those of monoterpenes (Table 2, Fig. S1k–l). In
the BASE simulations, total BVOC emissions from 2000–
2009 to 2090–2099 decrease by 11 % for LPJGIMAGE but
only by 2 % for LPJGMAgPIE (Fig. 3a). Spatially, BVOC
emissions generally increase in high latitudes but decrease
in the tropics (Fig. 4a), corresponding to northward forest
shifts and deforestation or forest degradation concentrated in
low latitudes (not shown). The tropics dominate the overall
response due to much higher typical emission rates.

As expected from the generally high emission potential of
woody vegetation (compared with herbaceous), BVOC emis-
sions increase in the ADAFF simulations (24 and 16 % for
LPJGIMAGE and LPJGMAgPIE, respectively). Following the
spatial change in forest cover, the increase mainly occurs
in the tropics (Fig. 4b). In the BECCS simulations, BVOC
emissions decrease by 8 % for LPJGIMAGE and by 2 % for
LPJGMAgPIE (Fig. 3c) due to the low emissions of grassy
bioenergy crops (corn in LPJ-GUESS). BECCS-ADAFF re-
sults in 11 and 7 % higher emissions for LPJGIMAGE and
LPJGMAgPIE, respectively (Fig. 3d).

4 Discussion

4.1 Modelling uncertainties under present-day and
future climate

The ES indicators analysed in this study are subject to uncer-
tainties arising from knowledge gaps, simplified modelling
assumptions, and the need to use parameterizations suited for
global simulations. LPJ-GUESS has been extensively evalu-

ated against present-day C fluxes and stocks, both for natural
and agricultural systems, at site scale and against global es-
timates (e.g. Fleischer et al., 2015; Piao et al., 2013; Pugh et
al., 2015; Smith et al., 2014). The use of forcing climate data
from only one climate model can be a major source of un-
certainty as shown by the large variability in future terrestrial
C stocks introduced by different climate change realizations
even for the same emissions pathway (Ahlstrom et al., 2012).
As we use the low-emission scenario RCP2.6 here, we expect
this effect to be relatively small. The albedo calculation in
this study was not used previously, but patterns simulated by
LPJ-GUESS under present-day conditions (Fig. S5) broadly
agree with Fig. 3 in Boisier et al. (2013). Evapotranspiration
and runoff in LPJ were evaluated by Gerten et al. (2004).
Global total runoff calculated in this study for the 1961–1990
period is 26 % higher than their results. Simulation biases
against global estimates and observations from large river
basins in the Gerten study were mainly attributed to uncer-
tainties in climate input data and to human activities such as
LUC (which is now accounted for) and human water with-
drawal. Spatial runoff patterns as simulated by the current
LPJ-GUESS version (Fig. S6.) seem to reveal some improve-
ments compared to the biases reported in Gerten et al. (2004)
in mid- and high latitudes, but the model still overestimates
runoff in parts of the tropics. With respect to crop production,
simulated crop yields in LPJ-GUESS are constrained by N
and water limitation, but not by local management decisions,
crop varieties or breeds, diseases, and weeds (Lindeskog et
al., 2013; Olin et al., 2015b), and future improvement in plant
breeding are ignored. While we accounted for the additional
restrictions by scaling simulated present-day yields to ob-
servations, applying the unscaled LPJ-GUESS yield changes
into the future might create substantial underestimation of fu-
ture yields and crop production, as the only yield-augmenting
factor for a given crop type in LPJ-GUESS is increased N
input. Global N-leaching rates are highly uncertain but the
annual rate simulated with LPJ-GUESS (if all N losses are
assumed to be via leaching) is within the range of published
studies (Olin et al., 2015a). Future modelled N leaching may
also be affected by ignoring improvements in plant breeds, as
the current representation of crops may not be able to absorb
the N input computed in the LUMs for improved varieties
and management. For BVOCs, global datasets for evaluation
are not available (Arneth et al., 2007; Schurgers et al., 2009).
Spatial emission patterns are in good agreement with other
simulations (Hantson et al., 2017).

While LPJ-GUESS has thus been evaluated as comprehen-
sively as possible, a further next step for multi-process evalu-
ation would be adopting a formalized benchmarking system
that also allows model performance to be scored (Kelley et
al., 2013). Likewise, large uncertainties reside in the actual
LUMs, which differ to a large degree in their estimates of
main land-cover classes for the present day (Alexander et al.,
2017; Prestele et al., 2016), and for which evaluation against
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observations has been identified as a challenge (van Vliet et
al., 2016).

4.2 Climate regulation via biogeochemical and
biophysical effects

Our LPJGIMAGE simulations are slightly more effective than
the LPJGMAgPIE simulations in terms of simulated C uptake,
but all simulations diverge from the CDR target initially im-
plemented in the LUMs (see Sect. 4.7). Land-based mitiga-
tion might also impact the emissions of other GHGs (e.g.
N2O; see Table 1), but future fertilizer application rates and
emissions from bioenergy crops are highly uncertain (David-
son and Kanter, 2014). While N2O contributes to global
warming, the net effect of reactive N might be a cooling
when accounting for short-lived pollutants and interactions
with the C cycle (Erisman et al., 2011). In our LPJ-GUESS
simulations, reductions in N losses suggest a decrease in
gaseous N emissions for both ADAFF and BECCS; however,
no quantifications are possible as LPJ-GUESS does not yet
differentiate between different forms of N losses.

Climate effects of well-mixed GHG are global, whereas
biophysical effects are primarily felt on the local scale
(Alkama and Cescatti, 2016). Surface albedo in regions with
seasonal snow cover is expected to decrease significantly
for afforestation scenarios (Bala et al., 2007; Bathiany et
al., 2010; Betts, 2000; Davies-Barnard et al., 2014), thereby
opposing the biogeochemical cooling effect. Effects of en-
hanced forest cover are less pronounced in lower latitudes (Li
et al., 2015) and for BECCS scenarios (Smith et al., 2016).
A modelling study by Hallgren et al. (2013) found that while
albedo effects and C emissions from deforestation for bio-
fuel production might balance on the global scale, biophys-
ical effects can be large locally. In our BECCS simulations,
albedo changes are relatively small. However, we find no-
ticeable albedo reductions in ADAFF despite the fact that
for both LUMs afforestation was concentrated in snow-free
regions where satellites rarely observe albedo differences be-
tween forests and open land exceeding 0.05 (Li et al., 2015).

High evapotranspiration rates, often observed in forests,
cool the local surface. In tropical regions, this cooling ef-
fect exceeds the warming effect from lower albedo (Alkama
and Cescatti, 2016; Li et al., 2015). Current anthropogenic
land-cover changes have been estimated to reduce terres-
trial evapotranspiration by ∼ 5 % (Sterling et al., 2013). In
our simulations, impacts of land-based mitigation on global
evapotranspiration range from−0.4 % (LPJGIMAGE BECCS)
to +2.1 % (LPJGIMAGE ADAFF). On the regional scale this
can translate to absolute changes of more than 100 mm yr−1

in some tropical areas (e.g. central Africa). While these
changes seem relatively small compared to the mean dif-
ferences between forests and non-forests reported by Li et
al. (2015) (141 mm yr−1 20–50◦ N, 238 mm yr−1 20–50◦ S,
428 mm yr−1 20◦ S–20◦ N), our results still suggest that re-
ducing emissions from deforestation and forest degradation

(REDD) activities would not only help mitigate global cli-
mate change via avoided C losses but could provide addi-
tional local cooling, serving as a “payback” for tropical coun-
tries. The simulated evaporative water loss due to ADAFF
at the end of the century (∼ 1200 km3 yr−1 for LPJGIMAGE
and 750 km3 yr−1 for LPJGMAgPIE for a C sequestration rate
of ∼ 0.8 and 1.4 GtC yr−1, respectively) is higher than es-
timated by Smith et al. (2016) (370 km3 yr−1 for a C se-
questration rate of ∼ 1.1 GtC yr−1). Furthermore, Smith et
al. (2016) assumed that dedicated rain-fed bioenergy crops
consume more water than the replaced vegetation (with ad-
ditional water required for CCS), while in our simulations
bioenergy crops had little impact on evapotranspiration as
they were represented as corn. LU-driven changes in evap-
otranspiration rates can also modify the amount of atmo-
spheric water vapour and cloud cover, with consequences for
direct radiative forcing, planetary albedo, and precipitation
(e.g. Sampaio et al., 2007, see also Table 1); however, such
interactions cannot be captured by our model setup.

BVOCs influence climate via their influence on tropo-
spheric ozone, methane, and secondary organic aerosol for-
mation (Arneth et al., 2010; Scott et al., 2014), which de-
pend strongly on local conditions such as levels of nitro-
gen oxides (NOX) or background aerosol (Carslaw et al.,
2010; Rosenkranz et al., 2015). BVOC emissions also im-
pact climate directly by reducing terrestrial C stocks, but the
magnitude is small (< 0.5 %) compared to total GPP. While
enhanced leaf-level BVOC emissions are driven by warmer
temperatures, uncertainties arise from additional CO2 effects
(which suppress leaf emissions). On the canopy scale, iso-
prene emissions generally decrease for deforestation scenar-
ios (Hantson et al., 2017) but increase for woody biofuel
plantations, which tend to use high-emission tree species
(Rosenkranz et al., 2015). In our simulations, we find in-
creases in BVOC emissions for ADAFF but not so for
BECCS as bioenergy crops were grown as low-emission
corn. The high spatial and temporal variability of the BVOC
emissions, complications of atmospheric transport, and gaps
in our knowledge of the reactions involved make it difficult
to judge whether an increase in BVOC emissions results in
a warming or cooling. The global effect (assuming present-
day air pollution in 1850 and excluding aerosol–cloud in-
teractions) of historic (1850s–2000s) reductions in BVOC
emissions (20–25 %) due to deforestation has been estimated
to be a cooling of −0.11± 0.17 W m−2 (Unger, 2014). Ac-
cordingly, the substantial increase in BVOC emissions in our
ADAFF simulations (16 and 24 %) might induce a warming
of similar magnitude.

4.3 Water availability

Forests generally reduce local river flow compared to grass-
and croplands. Based on 26 catchment datasets including 504
observations worldwide, Farley et al. (2005) reported an av-
erage decrease of 44 and 31 % in annual stream flow caused
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by woody plantations replacing grasslands and shrublands,
respectively, with large variability across different plantation
ages. Simulations by Sterling et al. (2013) suggest that his-
toric land-cover changes were responsible for a 7 % increase
in total runoff. The reduction in global annual runoff due to
ADAFF (1200 and 600 km3 yr−1 compared to BASE 2090–
2099) corresponds to around 16–32 % of human runoff with-
drawal (Oki and Kanae, 2006), which could be seen as a
potential risk to freshwater supply. Regional changes range
from −5.2 to +0.4 % across all scenarios, but in many cases
impacts on irrigation (the largest consumer of freshwater) po-
tential in fact might be small: modelling work suggests that
renewable water supply will exceed the irrigation demand
in most regions by the end of the century for RCP8.5 (El-
liott et al., 2014). However, Elliott et al. (2014) also found
that regions with the largest potential for yield increases
from increased irrigation are also the regions most likely to
suffer from water limitations. Patterns will be different in
an RCP2.6 world as CO2 fertilization significantly reduced
global irrigation demand (8–15 % on presently irrigated area)
in the Elliott et al. crop models and climate impacts are ex-
pected to be less severe in RCP2.6.

In uncoupled simulations, such as those carried out here,
atmospheric feedbacks related to higher evapotranspiration
cannot be captured. At regional or continental scale, there
is evidence that afforestation might actually increase runoff
as the larger evapotranspiration rates enhance precipitation
(Ellison et al., 2012). However, based on regional climate
modelling, Jackson et al. (2005) concluded that atmospheric
feedbacks were not likely to offset water losses in temperate
regions where the additional atmospheric moisture cannot be
lifted high enough to form clouds.

Changing runoff affects water supply but can also con-
tribute to changes in flood risks. Bradshaw et al. (2007), us-
ing a multi-model approach and data from 56 developing
countries, calculated a 4–28 % increase in flood frequency
and a 4–8 % increase in flood duration for a hypothetical
reduction of 10 % natural forest cover, while van Dijk et
al. (2009), for example, questioned forest potential to re-
duce large-scale flooding and argued that the frequency of re-
ported floods can be mainly explained by population density.
Ferreira and Ghimire (2012) extended the original Bradshaw
sample to all countries (129) that reported at least one large
flood between 1990 and 2009 and included socio-economic
factors in their analyses. They did not find a statistically sig-
nificant correlation between forest cover and reported floods.
In our simulations, peak monthly runoff is generally reduced
for ADAFF; however, given maximum regional changes of
−3.6 % (Africa, LPJGIMAGE ADAFF) and presuming that
floods are largely controlled by other factors than forest
cover, we expect LU effects on flooding to be limited.

4.4 Food production

Increasing food production in a sustainable way to feed a
growing population is a major challenge of the modern world
(Tilman et al., 2002). Population and income growth (in
SSP2 population peaks in 2070 at 9.4 billion people, and per
capita GDP continues to increase until 2100; Dellink et al.,
2017; Samir and Lutz, 2017) are projected to be accompa-
nied by an increased need of total calories and shifts in di-
ets (Popp et al., 2017). For SSP2, economic modelling sug-
gests that global food crop demand will increase by 50–97 %
between 2005 and 2050 (Valin et al., 2014). In the present
study, the corresponding increase reported directly from the
LUMs is 38 % for IMAGE and 52 % for MAgPIE in 2050
(78 and 96 % in year 2100). In our LPJ-GUESS BASE sim-
ulations we find crop production increases of 22 and 45 %
(LPJGIMAGE and LPJGMAgPIE, respectively) by 2050 and 24
and 64 % by the end of the century (corresponding to a per
capita increase for MAgPIE but a decrease for IMAGE).
However, the production increase is significantly reduced
in the mitigation simulations, especially for LPJGMAgPIE
ADAFF, due to production shifts and the abandonment of
croplands for reforestation. Similar results have been re-
ported by Reilly et al. (2012) who found that afforestation
substantially increases prices for agricultural products, while
the cultivation of biofuels has little impact on agricultural
prices due to benefits of avoided environmental damage off-
setting higher mitigation costs. Crop yields in LPJ-GUESS
are a function of environmental conditions, fertilizers, irri-
gation, and adaption to climate change by selecting suitable
varieties. In our BASE simulations, the combined effect is
an average yield increase of ∼ 17 and ∼ 41 % (LPJGIMAGE
and LPJGMAgPIE) between 2000–2009 and 2090–2099. In
the LUMs the mitigation scenarios are characterized by ad-
ditional yield increases compared to BASE, triggered by in-
creased land prices. This intensification is to some extent
reflected in the fertilizer rates (derived from yields) pro-
vided by the LUMs; however, other management improve-
ments and investments in research and development lead-
ing to higher-yielding varieties also impact future yield in-
creases. Additional assumptions about yield increases driven
by technological progress can thus not be captured by LPJ-
GUESS. The simulated decline in productivity in response to
shrinking cropland area in the mitigation scenarios suggests
that, when adapting N fertilization, irrigation and cropland
area, and location from the LUMs, additional yield increases
of up to 6.6 and 35 % (LPJGIMAGE and LPJGMAgPIE) would
be required between the 2000s and the 2090s to produce the
same amount of food crops as in the BASE scenario, equiva-
lent to ∼ 0.07 and 0.33 % per year.

4.5 Water and air quality

Managed agricultural systems directly impact freshwater
quality. Historically, approximately 20 % of reactive N
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moved into aquatic ecosystems (Galloway et al., 2004), caus-
ing drinking water pollution and eutrophication. As N loss
in LPJ-GUESS is largely driven by fertilization (Blanke et
al., 2017), the much higher future fertilization rates com-
pared to present-day (+78 % for LPJGIMAGE; +95 % for
LPJGMAgPIE) lead to an increase in N loss of 82 and 62 % in
BASE. Such a large increase would have severe impacts on
waterways and coastal zones, where current levels of N pol-
lution are already having substantial effects (Camargo and
Alonso, 2006). However, as discussed above, the N appli-
cation rates are derived from crop yields in the LUMs, and
can only be partially utilized by LPJ-GUESS due to its lower
yield levels. Increasing crop yields by increased N inputs
leads to a strong decline in nutrient use efficiency and de-
clining returns on yields (Cassman et al., 2002; Mueller et
al., 2017). In contrast to the BASE simulations, the mitiga-
tion simulations result in somewhat lower N losses because
less fertilizer is applied (ADAFF) or because bioenergy har-
vest removes more N than is added via bioenergy crop fertil-
ization (BECCS). Simulated N losses in LPJ-GUESS are af-
fected by different assumptions about N fertilizers and incon-
sistencies between the models: fertilizer rates in the LUMs
were calculated to support the estimated crop yields (and
hence the ensuing N demand). The resulting grid-cell aver-
ages available to LPJ-GUESS did not take into account dif-
ferences in N application across crop types in a grid cell
(Mueller et al., 2012). Additionally, IMAGE and MAgPIE
simulate further increases in crop productivity and N use effi-
ciency and therefore nutrient recovery in harvested biomass,
which may only be partly captured by LPJ-GUESS (see
Sect. 4.4).

Although we do not explicitly simulate emissions of N
gases, increased N losses suggest an excess of soil N, which
increases the likelihood of gaseous reactive N emissions such
as NOX and ammonia (NH3) pollution, contributing to par-
ticulate matter formation, visibility degradation, and atmo-
spheric N deposition (Behera et al., 2013). The chemical
form and level of these emissions will strongly depend on
soil water status (Liu et al., 2007). Improvements in air qual-
ity, e.g. via reductions in tropospheric ozone (O3), are not
only relevant for human health but can also enhance plant
productivity and crop yields (Wilkinson et al., 2012). The
response of O3 to BVOC emissions changes depends on
the local NOX : BVOC ratio (Sillman, 1999). An increase in
BVOC emissions slightly suppresses O3 concentration in re-
gions of low NOX background but promotes it in polluted
regions (Pyle et al., 2011). Ganzeveld et al. (2010) used a
chemistry–climate model to study the effects of LUC in the
SRES A2 scenario (tropical deforestation) on atmospheric
chemistry. By year 2050, they found increases in boundary
layer ozone mixing ratios of up to 9 ppb (20 %). Changes in
the concentration of the hydroxyl radical resulting from de-
forestation (the primary atmospheric oxidant, and main de-
terminant of atmospheric methane lifetime) are much less
clear due to uncertainties in isoprene oxidation chemistry

(Fuchs et al., 2013; Hansen et al., 2017; Lelieveld et al.,
2008), but O3 concentrations were not sensitive to this un-
certainty (Pugh et al., 2010). ADAFF describes a reverse
scenario, with forest expansion being largely concentrated
in the tropics. The sign of changes in the ADAFF simula-
tions is reverse to changes in Ganzeveld et al. (2010): by
mid-century, global N loss in ADAFF decreases by ∼ 8 and
4 % and isoprene emissions increase by ∼ 14 and 4 % com-
pared to BASE. Consequently, we would expect tropospheric
O3 burden in ADAFF to decrease in the tropics but to in-
crease in large parts of the mid-latitudes. However, changes
in overall air quality will likely be dominated by anthro-
pogenic emissions rather than LUC (Val Martin et al., 2015).
BVOC emissions might also increase in bioenergy scenar-
ios (Rosenkranz et al., 2015) but this does not happen in our
study as the LUMs assumed grasses to be the predominant
bioenergy crop.

4.6 Potential impacts on biodiversity

Global-scale approaches that link changes in LU, climate,
and other drivers to effects on biodiversity are scarce, and
burdened with high uncertainty, though some approaches ex-
ist (Alkemade et al., 2009; Visconti et al., 2011). Biodiver-
sity, whether it is being perceived as a requisite for the pro-
vision of ESs or an ES per se, with its own intrinsic value
(Liang et al., 2016; Mace et al., 2012), has not been con-
sidered in our analysis. Nevertheless, it is evident that bio-
diversity can be in critical conflict with demands for land
resources such as food or timber (Behrman et al., 2015;
Murphy and Romanuk, 2014). LUC has been the most crit-
ical driver of recent species loss (Jantz et al., 2015; New-
bold et al., 2014). This has led to substantial concerns that
land requirements for bioenergy crops would be competing
with conservation areas directly or by leakage. Santangeli
et al. (2016) found around half of today’s global bioenergy
production potential to be located either in already protected
areas or in land that has highest priority for protection, in-
dicating a high risk for biodiversity in the absence of strong
regulatory conservation efforts.

In principle, avoided deforestation and reforesta-
tion/afforestation should maintain and enhance habitat and
species richness, since forests are amongst the most diverse
ecosystems (Liang et al., 2016). Forestation could also
support the restoration of degraded ecosystems. However,
success of large-scale reforestation–afforestation programs
under a C-uptake as well as a biodiversity perspective will
depend critically on the types of forests promoted and so far
show mixed results (Cunningham et al., 2015; Hua et al.,
2016). Likewise, even under a globally implemented forest
conservation scheme there may be cropland expansion into
non-forested regions that could well be C-rich (implying
reduced overall C mitigation) but also diverse such as
savannas or natural grasslands.
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4.7 Role of model assumptions on carbon uptake via
land-based mitigation and implications for other
ecosystem services

Our simulations show that trade-offs between C uptake and
other ESs are to be expected. Consequently, the question of
whether land-based mitigation projects should be realized
depends not only on the effects on ESs, but also on the mag-
nitude of C uptake that will be achieved. However, our study
suggests that potential C uptake is highly model-dependent:
C uptake in the three land-based mitigation options in LPJ-
GUESS is lower than the target value used in the LUMs.
When the underlying reasons for model–model discrepancies
are explored, a number of reasons can be identified such as
bioenergy yields, forest regrowth, legacy effects from past
LUC, and recovery of soil carbon in response to reforesta-
tion. Additionally, in the BECCS scenarios, the CDR target
was implemented as a CCS target which does not account for
additional LUC emissions, partly explaining the lower CDR
values.

For forest regrowth, the current model configuration of
LPJ-GUESS simulates natural forest succession, includ-
ing the representation of different age classes. Krause et
al. (2016) showed that the recovery of C in ecosystems fol-
lowing different agricultural LU histories broadly agreed
with site-based measurements. LPJ-GUESS also has N (and
soil water availability) as an explicit constraint on forest
growth and has been successfully tested against a broad
range of observations (Fleischer et al., 2015; Smith et al.,
2014). These studies indicate an overall realistic rate of
forest growth under natural succession. However, much
of the afforestation may occur with management facilitat-
ing fast built-up of C stocks (as assumed in MAgPIE),
but LPJ-GUESS does not implement plantations and has
thus not been evaluated against this type of regrowth. For-
est (re)growth is simulated very differently in LPJ-GUESS
(where different age classes and their competition are sim-
ulated), IMAGE (where in this study the dynamically cou-
pled LPJmL DGVM simulates natural regrowth in one in-
dividual per PFT) and MAgPIE (where managed regrowth
is prescribed towards potential C densities from LPJmL, see
Sect. 2.2). LPJmL also does not yet consider N constraints on
vegetation regrowth. C losses from deforestation and maxi-
mum C uptake following reforestation depend on potential
C densities which are likely different in LPJmL and LPJ-
GUESS. In the LUMs, the model’s algorithm adopts C pools
from LPJmL and can thus decide to reforest the most suitable
areas, while in LPJ-GUESS other regions might have more
reforestation potential. Finally, soil C sequestration rates are
likely different between LPJ-GUESS and LPJmL, especially
for MAgPIE-LPJmL where the assumption of soil C recov-
ering within 20 years is likely overoptimistic (see Krause et
al., 2016).

For BECCS, LPJ-GUESS simulates CCS rates of ∼ 2.2
and 1.8 GtC yr−1 (LPJGIMAGE and LPJGMAgPIE) by the end

of the 21st century, compared to ∼ 2.8 GtC yr−1 reported
from the LUMs directly. The number from the LUMs is
close to the mean removal rate of 3.3 GtC yr−1 reported in
Smith et al. (2016) for scenarios of similar production area
(380–700, vs. 493 and 363 Mha in our IMAGE and MAg-
PIE BECCS scenarios, respectively) and slightly larger CO2
concentrations (430–480 ppmv vs. 424 ppmv). Discrepancies
between the models arise mainly from differences in assump-
tions about bioenergy crop yields. In our LPJ-GUESS simu-
lations we grew bioenergy crops as corn (i.e. a crop func-
tional type with parameters taken from corn). By the end
of the century, simulated bioenergy yields are higher for
LPJGMAgPIE BECCS (on average 13.8 t dry mass ha−1 yr−1,
10 % of total above-ground biomass remaining on-site) than
for LPJGIMAGE BECCS (12.2 t dry mass ha−1 yr−1) due to
different fertilizer rates and production locations. Bioenergy
crop yields in LPJ-GUESS might be influenced by inconsis-
tencies between the models about fertilization of bioenergy
crops: while the LUMs generally assume high N applica-
tion, fertilizer rates are reduced in areas used for bioenergy
production because bioenergy crops are less N-demanding.
Consequently, the fertilizer rates from the LUMs might be
insufficient to fulfil the N demand of the corn-based bioen-
ergy crop in LPJ-GUESS, which responds strongly to fertil-
ization (Blanke et al., 2017). In contrast, bioenergy crops in
the LUMs are represented by dedicated lignocellulosic en-
ergy grasses. Reported yields of dedicated bioenergy crops
under present-day conditions show large variability (miscant-
hus × giganteus: 5–44 t dry mass ha−1 yr−1; switchgrass: 1–
35 t ha−1 yr−1; woody species: 0–51 t ha−1 yr−1), depending
on location, plot size, and management (Searle and Ma-
lins, 2014). By the end of the century, the LUMs report av-
erage bioenergy yields of ∼ 15.0 t ha−1 yr−1 (IMAGE) and
∼ 20.3 t ha−1 yr−1 (MAgPIE), but how bioenergy yields will
evolve in reality when averaged across regions (including
more marginal land) is highly uncertain (Creutzig, 2016;
Searle and Malins, 2014; Slade et al., 2014).

Legacy effects from historic LU might also impact future
C uptake as the soil C balance continues to respond to LUC
decades or even centuries after (Krause et al., 2016; Pugh
et al., 2015). We assessed the contribution of legacy effects
by comparing an LPJ-GUESS simulation in which LU (but
not climate and CO2) was held constant from year 1970 for
IMAGE and 1995 for MAgPIE (consistent with the scenario
starting years in each model) with a run with fixed LU from
year 1901 on. The differences then seen over the 21st cen-
tury between these two simulations would arise chiefly from
legacy fluxes of 20th century LUC. These were found to be
∼ 17–18 GtC (not shown), accounting for part of the dif-
ference in uptake between LPJ-GUESS and the LUMs. In
the LUMs, harmonization to history has been done with re-
spect to land cover, but this was not possible with respect to
changes in vegetation and soil C pools (prior to 1970/1995).

Our results show that assumptions about forest growth
and C densities, bioenergy crop yields, and timescales of
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soil processes can critically influence the C removal poten-
tial of land-based mitigation. Large uncertainties about for-
est regrowth trajectories in different DGVMs (Pongratz et
al., in preparation) and BECCS potential to remove C from
the atmosphere (Creutzig et al., 2015; Kemper, 2015) have
been reported before, including the importance of second-
generation bioenergy crops (Kato and Yamagata, 2014) and
LU-driven C losses in vegetation and soils (Wiltshire and
Davies-Barnard, 2015). This is clearly an important subject
for future research. Additional analyses about the difference
in C removal between the LUMs and LPJ-GUESS, includ-
ing results from additional DGVMs, are ongoing and will be
published in a separate paper (Krause et al., 2017).

5 Conclusions

Terrestrial ecosystems provide us with many valuable ser-
vices like climate and air quality regulation, water and food
provision, or flood protection. While substantial changes in
ecosystem functions are likely to occur within the 21st cen-
tury even in the absence of land-based climate change miti-
gation, additional impacts are to be expected from land man-
agement for negative emissions. In all mitigation simula-
tions, what might generally be perceived as beneficial ef-
fects on some ecosystem functions and their services (e.g.
decreased N loss improving water and air quality) were coun-
teracted by negative effects on others (e.g. reduced crop pro-
duction), including substantial temporal and regional varia-
tions. Environmental side effects in our ADAFF simulations
were usually larger than in BECCS, presumably reflecting
the larger area affected by land-cover transitions in ADAFF.
Without a valuation exercise it is not possible to state whether
one option would be “better” than the other. All mitigation
approaches might reduce crop production (in the absence of
assumptions about large technology-related yield increases)
but potentially improve air and water quality via reduced N
loss. Impacts on climate via biophysical effects and on water
availability and flood risks via changes in runoff were found
to be relatively small in terms of percentage changes when
averaged over large areas, but this does not exclude the pos-
sibility of significant impacts, e.g. on the scale of large catch-
ments.

Policy makers should be aware of manifold side effects –
be they positive or negative – when discussing and evaluating
the feasibility and effects of different climate mitigation op-
tions, possibly involving the prioritization of individual ESs
at the costs of exacerbating other challenges. Our analysis
makes some of these trade-offs explicit, but there are many
other services offered by ecosystems much more difficult to
quantify, particularly relating to cultural services, which also
need to be considered. Any discussion about land-based cli-
mate mitigation efforts should take into account their effects
on ESs beyond C storage in order to avoid unintended nega-
tive consequences, which would be intrinsically undesirable

and may also affect the effective delivery of climate mitiga-
tion through societal feedbacks.

Data availability. Scientists interested in the LPJ-
GUESS source code can contact the model developers
(http://iis4.nateko.lu.se/lpj-guess/contact.html). Information about
the land-use scenarios are available from the IMAGE and MAgPIE
groups (jonathan.doelman@pbl.nl; florian.humpenoeder@pik-
potsdam.de). The LPJ-GUESS simulation data are stored at the
IMK-IFU computing facilities and can be obtained on request
(andreas.krause@kit.edu).
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