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Abstract 

Nuclear waste is planned to be embedded in deep underground facilities within suitable host 

rock formations. In the post-operational phase, ground water may intrude from the 

surrounding rock and saturate the repository. The present cementitious materials, used 

frequently for construction and waste conditioning purposes, will buffer the pH in the alkaline 

range (10 ≤ pH ≤ 13.3) over a very long time-scale, whereas strongly reducing conditions are 

expected to simultaneously evolve in the system due to the anaerobic corrosion processes of 

steel and related materials. 

Plutonium in the waste inventory potentially contributes to the long–term radiological risk 

arising from the long half–life of 239Pu (t½ 239Pu = 2.41·104 a). In reducing, aqueous 

environments, the formation of Pu(III) and Pu(IV) is foreseen. However, uncertainties in the 

available thermodynamic data lead to a rather ill–defined redox transition border, especially 

under alkaline to hyperalkaline pH conditions. 

Large quantities of cellulosic materials may also be disposed of along with low- and 

intermediate-level nuclear waste (L/ILW). Under alkaline, Ca(II)-rich aqueous solutions, 

these materials are unstable and observed to decompose into smaller chained organic 

compounds. Alpha-D-isosaccharinic acid (HISA) is generated with a great yield and was 

previously identified as the most relevant ligand resulting from cellulose degradation. The 

strong affinity of ISA for the complexation with An(III) and An(IV) together with the often 

large inventory of cellulose and the lack of experimental studies on the system Cement-Pu-

ISA were the main leading motivations in the development of this study. 

A bottom-up, step-wise approach involving the investigation on four sub-systems was 

considered in the study of the ternary system Cement-Pu-ISA: 

 

1) Firstly, the redox chemistry of Pu was investigated in the absence of ISA (and Ca(II)) 

under alkaline reducing conditions; 

2) Then, the binary system Pu-ISA was studied (in the absence of Ca(II)) via systematic 

solubility experiments. 

3) The binary system Pu-ISA was additionally assessed also in the presence of Ca(II), as 

expected for cementitious environments. The main aim of all solubility studies was to 

derive a comprehensive chemical and thermodynamic model on the Ca(II)-Pu(III/IV)-

OH-ISA system valid under the boundary conditions of interest; 
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4) In the next step, sorption processes prevailing in the binary systems: Cement-Pu and 

Cement-ISA were assessed. Finally, the ternary system Cement-Pu-ISA was analyzed, 

and the knowledge gained in the previous sub-systems was adapted for the 

interpretation of this, most complex system. 

All experiments were conducted under Ar atmosphere with strict control of redox conditions 

using hydroquinone (HQ, with pe + pHm ∼9.5), Sn(II) (with pe + pHm ∼1.5) or Na2S2O4 (with 

pe + pHm ∼0.5) as buffering agents. The moderately reducing conditions imposed by the 

presence of HQ were considered as the reference case, with expected predominance of Pu(IV) 

in the aqueous and solid phases. The strongly reducing conditions defined by Sn(II) and 

Na2S2O4 were taken as representative of the post-closure period in a geological disposal 

facility for L-/ILW. The solubility of an aged 242Pu(IV)O2(ncr,hyd) solid phase was 

systematically investigated in alkaline reducing systems: (i) in the absence of ISA, (ii) in the 

presence of ISA and absence of Ca(II), and (iii) in the presence of ISA and Ca(II). The impact 

of ISA on the uptake of plutonium by cement was investigated using ordinary Portland 

cement (OPC, CEM I 42.5N BV/SR/LA, provided by the Swedish Nuclear Fuel and Waste 

Management Company, SKB). Experiments were performed with various solid-to-liquid 

ratios, Pu and ISA total concentrations. Special emphasis was given to investigate the impact 

of experimental preparation order and the reversibility of the sorption processes governing Pu 

concentrations in the system. The solubility and sorption experiments were complemented 

with characterizations via synchrotron-based techniques (in–situ XRD and Pu LIII  edge 

XANES/EXAFS peformed at the INE–Beamline for Actinide Research at KARA synchrotron 

facility) and Density Functional Theory (DFT) calculations as well. 

 

Topic 1: Solubility and redox behavior of plutonium under reducing, alkaline conditions 

Solubility experiments in the absence of ISA resulted in very low total Pu concentrations in 

solution (m(Pu)tot, as expressed in molal, mol·kgw
–1: m units) (~10–11 m) both for HQ and 

Sn(II) systems. EXAFS, in–situ XRD and XPS results confirmed that PuO2(ncr,hyd) is the 

solid phase controlling the solubility in HQ systems. XANES indicated a significant 

contribution of Pu(III) (30 ± 5%) in the solid phases equilibrated in Sn(II) systems. Two 

hypothesis are proposed to explain these observations in Sn(II) systems: (i) the coexistence of 

PuO2(ncr,hyd) and Pu(OH)3(am) in the retrieved solid phases, or (ii) the presence of a 

homogenous oxygen-deficient, PuO2–x(ncr,hyd) phase. These results provide a sound baseline 

for the interpretation of the solubility of Pu in the presence of ISA. 
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Topic 2: Plutonium solubility investigations in the presence of ISA (absence of Ca) 

A pronounced increase of plutonium solubility by up to 2.5 log–units was observed in the 

presence of ISA (and absence of Ca(II)). In HQ systems, the slope analysis of solubility data 

in combination with solid phase characterization and DFT calculations resulted in the 

developement of a chemical model including the predominance of Pu(OH)3ISA–H
– and 

Pu(OH)3ISA–2H
2– complexes below and above pHm ≈ 12, respectively. The significantly 

higher m(Pu)tot measured in Sn(II) systems with pHm < 12 indicated the formation of  

Pu(III)-ISA complexes under the given conditions. Above this pHm, solubility data in HQ and 

Sn(II) systems were observed to be identical showing the prevalence of Pu(IV)-ISA 

complexes in both cases. A comprehensive thermodynamic model for the Pu(III/IV)-OH-ISA 

system was established using the Specific Ion interaction Theory (SIT) formalism and was 

proven to be valid for the wide-range variation of the applied pHm, total ISA concentration 

(m(ISA)tot) and activity of electron in solution (pe) experimental parameters. Differences 

identified with available literature data for Th(IV)-, U(IV)- and Np(IV)-ISA systems are 

discussed in terms of systematic trends along the actinide series. Although not included in the 

thermodynamic model derived, “Pu-ISA colloids” were found to importantly increase the 

solubility of Pu in the presence of ISA (and absence of Ca(II)) as detected directly in the 

supernatants of the experiments. 

 

Topic 3: Plutonium solubility investigations in the presence of ISA and Ca 

The presence of Ca(II) further enhanced the solubility of Pu(IV) in HQ–buffered  

systems (compared to Ca(II)–free, Pu-ISA system), indicating the formation of quaternary 

Ca(II)–Pu(IV)–OH–ISA aqueous complexes in solution. Chemical and thermodynamic 

models were derived for this system as well, based on the statistical analysis of solubility data 

and on results of solid phase characterizations, which included the formation of two 

quaternary complexes: Ca(II)Pu(IV)(OH)3ISA–H
+ and Ca(IV)Pu(IV)(OH)3ISA–2H(aq), 

dominating below and above pHm ≈ 11, respectively. The proposed model slightly 

overestimates the experimentally measured solubility at pHm ≥ 12.4 and m(ISA)tot ≥ 0.01 m, 

likely due to the formation of a yet undefined Ca(II)-Pu(IV)-OH-ISA(s) solid phase. Data 

collected in Sn(II)–buffered systems do not support the formation of analogous Pu(III) 

quaternary complexes with Ca(II) ions. For the same reducing system with pHm > 11, 

solubility data could be explained by the model derived for Ca(II)–Pu(IV)–OH–ISA in HQ 

systems. In contrast to the Ca(II)-free system, no evidence on the formation of “Pu-ISA 
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colloids” was found in the present case, pointing out the key role of Ca(II) in the 

destabilization of colloidal fractions. The obtained results provide key inputs to understand 

and quantitatively evaluate the solution chemistry (solubility, complexation) of Pu in the 

presence of ISA, under boundary conditions representative of reducing, cementitious systems. 

 

Topic 4: Plutonium retention in the system Cement-Pu-ISA 

Sorption studies performed under reducing conditions in the absence of ISA confirmed the 

strong uptake of Pu(IV) by the OPC solid phase (under conditions simulating cement 

degradation stage II). Distribution ratios (Rd) determined in present work were in good 

agreement with related data available in the literature for An(IV). For the uptake of ISA by 

cement under analogous conditions, a two-site Langmuir-isotherm was developed, which 

provided an empirical tool to evaluate the equilibrium concentration of ISA in solution at 

various S:L ratios. 

Independent solubility experiments with PuO2(ncr,hyd) using the porewater composition in 

equilibrium with cement were conducted at various ISA concentrations (in the absence of 

cement) to set upper concentration limits for Pu, to be considered in the interpretation of 

sorption experiments. These results further confirmed the validity of the thermodynamic 

model on the system Ca2+–Pu4+–OH––Cl––ISA––H2O(l).derived in the course of the solubility 

studies of the present work. 

Sorption experiments conducted in the presence of cement and ISA with the higher initially 

introduced total Pu concentration of log [Pu]in ≈ –5.5 (as expressed in molar units) were 

observed to be solubility controlled, and thus, main conclusions on the uptake of Pu by 

cement were derived from sorption experiments with log [Pu]in ≈ –8.5. Experimental results 

determined a relevant impact for the order of addition of components (Pu / ISA / cement) on 

sorption results (especially at log [ISA]tot = –2), with the sequence “(Pu + cement) + ISA” 

showing significantly higher log Rd values (≈ 1.5 log-units greater) than the other sequence: 

“(Pu + ISA) + cement”. 

Two different cases could be defined based upon experimental results obtained in the 

presence of cement and ISA with log [Pu]in = –8.5: 

 

- Case I shows the strongest sorption and has been observed only in desorption 

experiments and sorption experiments following the sequence “(Cement + Pu) + ISA”. 

Data in Case I represent lowest sorption reduction factors (Fred) and can be explained 

approximately by a simplified sorption model, which considers log Rd,in determined 
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experimentally in the absence of ISA, and assumes a decreased sorption caused only 

by formation of dissolved Ca(II)–Pu(IV)–OH–ISA complexes. Thermodynamic data 

derived in this PhD thesis are used to calculate the concentrations of the complexes 

Ca(II)–Pu(IV)–OH–ISA forming in solution. 

- Case II results in systematically higher Pu aqueous concentrations in solution, and 

accordingly lower Rd and higher Fred. It corresponds to sorption experiments 

performed following the order “(Pu + ISA) + Cement”. These observations are 

explained by a kinetic stabilization of aquatic Ca-Pu-ISA species or modification of 

the cement surface by the adsorbed ISA. 

 

Although a solubility control may appear inconvenient in sorption experiments, note that 

Pu concentrations used in this study (log [Pu]in ≈ –8.5) were targeted to be in the range of 

those potentially expected in a repository for L/ILW [4]. Experiments with lower Pu 

concentrations (possibly using 238Pu or 239Pu) could help in providing a more insightful 

view on the sorption phenomena controlling Pu retention / mobility in cementitious 

systems. 

 

This work demonstrates the significant impact of ISA on the retention of Pu by cement 

under reducing, alkaline conditions, but also reflects the high complexity of the ternary 

system cement-Pu-ISA. Although the results obtained in this PhD thesis represent a sound 

empirical basis to quantitatively assess the impact of ISA on the uptake of Pu by ISA, an 

unequivocal mechanistic understanding of the uptake process(es) is not yet possible. 

 

The present PhD study was conducted in the framework of an international project by 

KIT–INE with Amphos 21 Consulting Agency (Spain). The project was funded by the 

Swedish Nuclear Fuel and Waste Management Company (SKB). 
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1 Introduction 

A widely accepted concept for the disposal of low- and intermediate-level nuclear waste 

(L-/ILW) is its emplacement in underground geological formations. L-/ILW is mostly 

generated during the operation of nuclear reactors, storage facilities and reprocessing plants. 

Sources of L-/ILW can be decommissioning and nuclear research activities as well as 

industrial and medical use of various radionuclides. 

Prior to disposal, L-/ILW is often supercompacted in steel drums and steel containers for 

volume-reduction. In subsequent steps, the containers are filled in with cement (usually 

ordinary Portland cement, OPC) to encapsulate and immobilize the waste, and are placed into 

the engineered concrete vaults of a designated facility. Cementitious materials are favored not 

only for stabilization purposes, but also because they simultaneously act as physical and 

chemical barriers preventing the release of radionuclides. Besides several technical barriers, 

the geological barrier, i.e. the host rock itself provides additional isolation of the waste from 

the biosphere. The main geological formations considered for the construction of repositories 

for nuclear waste disposal are crystalline rock, clay rock and rock salt. A potential 

groundwater intrusion into the repository will interact with the cementitious materials and 

also with steel components and containers in the repository. As a result, pH of the 

groundwater media will be buffered in the alkaline to hyperalkaline range, whereas the anoxic 

corrosion of steel will impose strongly reducing conditions in the system [4]. 

Plutonium is a highly important actinide in the context of nuclear waste disposal, and can be 

also found with low inventory in L-/ILW. Plutonium contributes to the long-term risk of a 

repository as a result of the long half-life of 239Pu (t½ = 2.41·104 a). It can co-exist in up to 

four different oxidation states in solution and accordingly, the redox conditions defined by the 

repository environment have a strong impact on its solution chemistry, solubility and sorption 

behavior. Under the strongly reducing conditions set by the anoxic corrosion process of steel, 

Pu is foreseen to be present primarily as +IV, although the presence of Pu(III) cannot be 

disregarded, especially in weakly alkaline systems [5]. A relevant feature in the solution 

chemistry of Pu(IV) relates to its tendency to polymerize and form stable “colloids”. The 

colloidal species of Pu(IV) (denoted as Pu(IV)coll) exhibit a wide-range of particle size 

(nanometers to microns) and have been called to play a key role in the redox properties of Pu 

in aqueous systems [6-8]. Pu(IV)coll species can also contribute to the overall solubility of Pu 

by an “apparent” increase up to several orders of magnitude, which was extensively discussed 

by Neck and co-workers [9]. 
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Cellulose and cellulosic materials are disposed of in significant amounts along with L-/ILW. 

Under the porewater conditions defined by the degradation of cement (see Section 1.2), 

cellulosic materials are chemically unstable and degrade into certain smaller chained organic 

substances [10, 11]. These compounds are generally named as cellulosic degradation products 

(CDPs). Amongst CDPs, the most relevant ligand, alpha-D-isosaccharinic acid was identified 

to form very stable complexes with actinides (An) and lanthanides (Ln) [12, 13]. These 

species can enhance the solubility and reduce the sorption of An, and accordingly could 

contribute to the potential mobilization of An from the repository into the biosphere. 

Within the analysis of the long-term performance of a nuclear waste repository, it is essential 

to assess the amount of radionuclides which could be mobilized from the facility. Main 

radionuclide retention mechanisms are related to radionuclide solubility equilibria (these are, 

in the case of Pu, strongly dependent upon prevailing redox conditions), and also to 

radionuclide sorption processes onto mineral phases present in the near- and far-field of a 

repository. Analysis is often done by means of geochemical computational tools, which allow 

the comprehensive modelling of specific scenarios, but in turn, highly depend on reliable 

thermodynamic data. With the aim of investigating plutonium retention under cementitious 

environment in the presence of ISA, all these aspects have been systematically studied in this 

work. 
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1.1 Aquatic chemistry of Pu – fundamentals and background 

A fundamental knowledge of the aquatic chemistry of actinides is a necessary basis for 

numerous processes and research areas. Exemplary benefiting fields are the production of 

nuclear fuel from ores, reprocessing of spent nuclear fuel, development of a safe concept for 

the long-term disposal of radioactive wastes or understanding the behavior of actinides in the 

environment. 

In the context of nuclear waste disposal, the knowledge on actinide solution chemistry 

represents a pillar element in the prediction of their potential migration from the repository 

into the biosphere [14]. To be able to describe the main retention processes, to identify path-

ways for their mobilization and to assess the kinetics of their related processes, an in-depth, 

qualitative and quantitative knowledge is required on the competing (geo-)chemical processes 

governing actinide concentrations in solution. As complexation and redox reactions control 

the distribution, speciation, and set the stabilities of actinide-bearing species, precipitation- 

and dissolution-reactions of their solid compounds define upper limit concentrations in 

solution. Physicochemical interactions of the dissolved species with mineral and rock surfaces 

or colloids will further affect their fate within the repository and in the environment as well. 

Actinides represent thirteen elements with atomic numbers of 90 to 103, following actinium 

in the periodic table. Among the series, U, Pu, Np, Am and Cm arise as the most relevant 

actinide elements in the context of nuclear waste disposal. By interrupting the 6d transition 

metals, the electrons fill the 5f orbitals along the actinide row. In comparison with the 4f 

electrons of the lanthanide series, 5f electrons are more exposed, i.e. the corresponding 

valence orbitals have larger radial extensions (also in connection with the increased 

relativistic effects) [15]. Consequently, in contrast to the overall chemical homogeneity 

observed for the lanthanide series (where the increasing number of 4f electrons have a little 

influence on the nature of the chemical bonding), the chemical reactivity of the actinides is 

differing owing to their electronic configurations. The general trend is further disrupted by the 

closer energy states of the f and d electrons [16]. Hence, in the “early actinides”, from Th to 

Am, the ground-state electronic configuration of most actinide atoms consists of one d-

electron. In fact, for Th, the ground-state configuration is [Rn] 6d 27s 2, indicating that the 

energy of the 6d orbital is actually lower than for the 5f orbital. Moving along the series with 

increasing atomic number, the orbital energies invert, 5f becomes lower in energy than 6d and 

this energy-gap further widens. The “early actinides” therefore, exhibit certain chemical 

features that are highly resembling to those of the d-transition metals. This transition-like 

behavior is reflected by the possibility of existence of their higher oxidations states, up to 



 
4 

+VII (or even +VIII, controversially discussed for Pu [17, 18]). As a sub-group, “early 

actinides” display more chemical variety than the “late actinides”, where the 5f n7s 2 (n = 6 – 

14) ground-state configuration becomes “again” stable, analogously to the standard 

configuration of the lanthanides with 4f n6s 2 (an exception is the case of Cm, which has [Rn] 

5f 76d 17s 2 ground-state configuration due to the half-filled f subshell and Lr where the f-shell 

is filled) [16]. All possible oxidation states of the “early actinides” are illustrated in  Figure 1 

(with rectangular symbols), together with their ground-state valence shell configurations. 

 

 

Figure 1.  Possible oxidation states (rectangular symbols) and ground-state valance shell 

configurations of the “early actinides”. The most stable redox states under aqueous 

conditions are indicated by the filled symbols. 

 

1.1.1 Chemical behavior of Pu: historic aspects, challenges, aquatic systems 

Plutonium has had a substantial impact on the modern history of mankind. Only 3 years after 

its first production and isolation in 1940 by a deuteron bombardment of 238U in a cyclotron 

facility at the University of California, Berkeley, U.S., its first production reactor generating 
239Pu isotope was set up in Oak Ridge with the objective of constructing the first nuclear 

bomb [19]. 239Pu is a fissile isotope with relatively high thermal neutron cross section. It 
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forms in nuclear reactors from 238U, but it can be purposely added to the fresh nuclear fuel in 

the so-called mixed oxide fuels (MOX). Considering spent nuclear fuel and nuclear wastes in 

general, besides 239Pu, the presence of other isotopes of Pu are also of high importance. These 

are 241Pu and the fertile (to thermal neutrons), even-mass isotopes: 240Pu, 242Pu, generated 

through sequential neutron captures of 238U. 

Plutonium has the most complex chemical behavior amongst all metallic elements in the 

periodic table [20, 21]. Due to its electropositive nature, the Pu atom can easily loose its 

valance electrons to form positively charged cations. Provided its electronic configuration, 

five formal oxidations states are energetically stable under aqueous conditions: Pu(III), 

Pu(IV), Pu(V), Pu(VI), Pu(VII) [21]. Due to their close standard redox potentials, up to four 

of them (+III to +VI) can be simultaneously present in the same aqueous solution. This 

reflects a feature that makes Pu aquatic chemistry very complicated and outstandingly unique. 

Under highly acidic conditions and in absence of other complexing ligands than water, tri- 

and tetravalent Pu exist in hydrated forms, i.e. as aquo ions. As a result of the high number of 

valence shell orbitals, coordination numbers for Pu3+ and Pu4+ aquo ions are 8, 9 and 10, 

depending mostly upon the ligand and the ionic strength of the media [21]. In case of the 

Pu(V) and Pu(VI) ions, the determinant trait is the actinyl structure, which can be traced back 

to the highly charged central Pu ions formally stripping oxo-anions from the water molecules 

to evolve into the energetically favorable, linear, trans-dioxo cation form. Pu(V) and Pu(VI) 

aquo ions as well as related complexes usually exhibit a pentagonal bipyramid coordinational 

structure, where the donor atoms (depending upon the ligand and the prevailing ionic strength, 

with a maximum number of 5) of the ligands bond in the equatorial plane of the cation core 

[21]. The substantial difference in structures between the Pu(III)/Pu(IV) and Pu(V)/Pu(VI) 

ion-couples is also reflected in the redox transition reactions and in their related parameter-

dependence. Since the redox transformation between the “bold” aquo ions of Pu3+ and Pu4+ 

does not require any structural re-arrangement, the reaction is highly reversible and the rate is 

found to be independent upon the free proton concentration in solution [21, 22]. This is also 

valid for the Pu(V)/Pu(VI) couple, as the plutonyl structure is a permanent feature in both 

ends of the transition. On the other hand, the redox reaction between Pu4+ and PuO2
+ aquo 

ions is referred to as “irreversible”, given that it involves the breakage / formation of the 

trans-dioxo structure and hence, it is also strongly dependent on the pH. The term 

“thermodynamical irreversibility”, however mostly indicates that the reaction proceeds with 

much slower kinetics and often calls for a strong (electro-)chemical influence. 
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Pu aquo ions bear with high effective charge (Zeff) density (low polarizability) and are 

considered as “hard”, class A acids according to Pearson’s “hard–soft acid–base”, HSAB 

theory. Consequent to the relatively tightly held valance electrons present in the Pu aqua ions, 

the metal–ligand interaction, “bonding” possesses a high degree of ionic character with a 

preferential tendency towards the complexation with “hard bases”, i.e. ligands with O– or N–

donor atoms (and with F–, Cl– ions). The nature of the bonding strongly affects the stability of 

related complexes and it can be also correlated with the charge-to-ionic-radius ratio order 

within the Pu aquo ions [23], as follows: 

Pu4+ > Pu3+ ≈ PuO2
2+ > PuO2

+. 

The relative trend displayed before directly shows the order of many related overall stability 

constants of Pu ions with “hard bases”. The first hydrolysis constant is a typical demonstrative 

example of this kind: while Pu4+(aq) ion forms the Pu(OH)3+ species already above pH ~ 0, 

the first hydrolyzed species of Pu(V), PuO2OH(aq) becomes predominant only above pH ~ 

9.5. It is, however also worth mentioning, that partly due to the ionic character of the bonding, 

the step-wise formation constants can be further influenced by several factors such as steric or 

coulombic repulsion between the coordinating ligands. 

As a consequence of the latter discussion, it can be clearly stated that the oxidation state of Pu 

determines its chemical behavior in solution. For instance, Pu(IV) and Pu(III) are (especially 

under alkaline aqueous conditions) relatively insoluble, whereas Pu(V) and Pu(VI) are in 

general, more soluble. The complexity of the aqueous speciation of Pu is further increased by 

the possible dis- and synproportionation reactions of the different ions and oxidation states. 

A relevant feature of the aqueous chemistry of plutonium is the colloid formation reaction of 

Pu(IV). As Pu4+(aq) undergoes hydrolysis, it readily forms even under acidic conditions, 

mononuclear hydroxo-complexes with the general formula of Pu(OH)n
+(4–n) with n = 1 – 4. At 

high alkalinity and / or at high total concentration of the metal, the hydrolysis is coupled with 

oligomerization reactions resulting in the generation of polynuclear clusters [8, 21, 24]. These 

clusters can exhibit hydroxo-bridged as well as oxo-bridged structures. The degree of poly-

nuclearity depends upon several parameters, and can evolve into the production of colloidal 

suspensions with micron-sized particles [7]. The latter form resemble to the structure of 

hydrated Pu(IV)-dioxide, the most stable solid phase of Pu(IV) in aqueous solutions. 

Colloidal fractions of Pu(IV) are proven to play a relevant role in the redox reactions of Pu [6, 

25]. However, the governing force leading to their formation and the thermodynamic aspects 

of their stability in solution are not yet fully understood or described [9]. Their presence is 



 

 
7 

definitely important as they can also contribute with an overall increase in Pu(IV) solubility 

by ≈ 2 log-units [5]. 

Pu(V) and Pu(VI) display an amphoteric behavior involving the formation of anionic 

hydroxo-species with stoichiometries Pu(V)O2(OH)2
– or Pu(VI)O2(OH)4

2–, which increase the 

solubility of their solid phases under alkaline conditions [21]. In case of Pu(VI), it has also 

been shown that at higher Pu total concentrations, it is capable of forming a dimer, 

(PuO2)2(OH)2
2+ and a trimer, (PuO2)3(OH)5

+ as well, exhibiting µ–hydroxo–bridged, pseudo 

pentagonal bipyramid structures [26, 27]. Analogous polyatomic species have been also 

described for U(VI) and Np(VI). 

Despite that the knowledge on the aquatic chemistry of Pu is considerably elaborate, there are 

many gaps to be filled and in some cases, the prevailing uncertainties may lead to the 

incorrect assessment of Pu solubility behavior and complexation phenomena. It is the aim of 

the thermodynamic database (TDB) project of the Nuclear Energy Agency (NEA) to provide 

the most up-to-date and precise compilation of the thermodynamic data for actinides and 

fission products. Partly based on the latest NEA-TDB update book on Pu [9], Table A1 and 

A2 of the Appendix summarize some fundamental thermodynamic properties of Pu aqueous 

species and compounds relevant in the context of the this PhD thesis. These thermodynamic 

data are used to calculate the Pourbaix diagram (pe vs. pH) of Pu, as shown in  Figure 2. 

Pourbaix diagrams in general, display the “map” of possible stable (equilibrium) phases 

within an electrochemical system in an aqueous media, where the predominant species are 

separated by solid lines. These types of diagrams are useful tools in helping to understand the 

main tendencies regarding the relative stabilities of aqueous species and solid compounds. 

In  Figure 2, the solid lines represent the calculation results on the system Pu–Na+–Cl––OH–

H2O(l) for both, aqueous species and solid compounds of Pu (in this case, names of the 

dominant species and compounds are also shown), whilst the dashed lines are calculated by 

assuming the presence of only aqueous species in the system. 

Figure 2 shows that the impact of hydroxide complexation, in other words hydrolysis: 

following the effective charge correlation, the predominance of Pu(IV) aqueous species is 

promoted with increasing pH under purely aqueous conditions. An interesting feature is 

represented by the differences in the predominance fields of the aqueous species of the 

different redox states. In this case, the aqueous species of Pu(III) (green), Pu(V) and Pu(VI) 

(red dashed lines) exhibit an extended in-solution stabilization, pointing out the possibility for 

the existence of reductive or oxidative dissolution equilibria for the PuO2(am,hyd) solid phase 

over a wide-range of parameters (if provided a large inventory of Pu, i.e. in case of solubility 
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experiments). Accordingly, it is obvious as well, that without controlled redox conditions, 

different Pu oxidation states can contribute to the overall solubility and the speciation could 

instantly change, resulting in an incorrect assessment of solution equilibria. 

 

 

Figure 2.  Pourbaix diagram of Pu calculated for m(Pu)tot = 10–5 M and I = 0.10 M NaCl 

using thermodynamic and (SIT) activity models as described in the text. Solid lines designate 

the stability fields when both, aqueous species and solid compounds are included, whilst the 

dashed lines are indicating the calculation results when the presence of only aqueous species 

are taken into account. The stability borderlines of water at pe + pHm = 20.77 and pe + pHm 

= 0, the “redox-neutral” line at pe + pHm = 13.8 are shown for comparison reasons. 

 

Compared to the analogous Pourbaix diagrams of other actinides, substantial differences can 

be identified with Pu [28]. For instance, in case of Am and Cm, the dominant oxidation state 

is mainly the +3, already depicting the “lanthanide-like” behavior in the series. U(III) is found 

to be unstable and rapidly oxidizes to U(VI) under most conditions, whilst U(V) also readily 

disproportionates to U(IV) and U(VI). On the other hand, the predominance field of Np(III) is 

located close to the lower border line of water stability field, and therefore its existence is 
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limited to strongly reducing, acidic conditions. For Pu, under alkaline conditions, the redox 

transitions: Pu(IV)s/aq / Pu(III)s/aq are found to be heavily impacted by the prevailing 

uncertainties associated to related thermodynamic data [9]. A comprehensive discussion on 

the experimental studies and results available in the literature regarding the given system is 

provided in Section 1.1.2. 

The predominance fields displayed in  Figure 2 of Pu aqueous species can be significantly 

affected by complexing ligands such as carbonate, which can be present in significant 

concentrations in natural waters or repository environments [28]. For instance, upon 

complexation with carbonate, the stability field of Pu(V) is largely increased compared to 

carbonate-free systems. 

Based on the discussion above, it can be concluded that due to the close proximity of the 

stability fields for the various oxidation states of Pu (as aqueous species and solid 

compounds), in addition to the potential formation of Pu(IV)coll species (in the alkaline pH-

range), the aquatic chemistry of Pu is highly complex and needs special experimental effort 

for characterization. While drawing chemical analogies with other actinides of same redox 

states could provide moderately accurate predictions for related overall stability constants, the 

redox behavior of Pu cannot be simulated by any element from the periodic table. 

 

1.1.2 Solubility and redox equilibria of Pu under alkaline, reducing conditions 

The number of experimental works studying the solubility and hydrolysis of Pu(III/IV), 

focusing specifically on reducing conditions is very limited [29] and are particularly lacking 

in the alkaline pH region below (pe + pH) = 4. As a consequence, relevant uncertainties are 

associated to the thermodynamic data on Pu(III) aqueous species and solid compounds 

forming in the alkaline to hyperalkaline pH-range, and conversely to the redox transition: 

Pu(IV) / Pu(III). The most relevant previous investigations on this system are discussed in the 

following paragraphs. 

Felmy et al. [30] investigated the solubility of Pu(OH)3(s) within 6.5 ≤ – log[H+] ≤ 13 in 

deionized water and two types of Waste Isolation Pilot Plant (WIPP) related brines. Redox 

conditions were buffered by the presence of Fe(0) powder. Eh values were only reported for 

the pH-range: 6.6 ≤ –log[H+] ≤ 8.1, and confirmed the reducing conditions imposed by Fe(0) 

(pe + pH = 2 ± 1). Experimental solubility data at –log[H+] ≥ 9 were below the detection limit 

of LSC (Liquid Scintillation Counting), and thus were disregarded in the thermodynamic 

interpretation by the authors. The experimentally measured total concentrations of Pu was 
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fully attributed to be only Pu3+(aq) species, i.e. the unhydrolized aqua ion. Data at pHm ≤ 9 

were used to derive log*K°s,0 for the solubility reaction: 

 

Pu(OH)3(am) + 3 H+ ⇔ Pu3+ + 3 H2O(l) (1) 

 

The NEA-TDB review team accepted [31] the reported solubility product (log*K°IIIs,0 = 15.8), 

but assigned a very large uncertainty (± 1.5 log-units) to account for the large associated 

errors in the pH measurements (the latter values are provided in Table A1 and Table A2 of the 

Appendix). Apart from the experimental uncertainties, other relevant shortcomings appear in 

the study of Felmy and co-workers. For an example, the solubility limiting solid phase was 

not characterized but was only assumed to be predominantly Pu(OH)3(s). As it was pointed 

out by Neck et al. [5], the oxidation of this solid phase to PuO2(am,hyd) cannot be completely 

excluded under aqueous conditions. Since the recorded redox potentials were in the range of 

(pe + pH) = 2 ± 1, obviously above the stability line of Pu(OH)3(s) at (pe + pH) = 0.4, the 

solid phase transformation is of particular interest in the context of their work. Nevertheless, 

the short equilibration time (24 days) within their investigation may prevent a significant solid 

phase transformation. On the other hand, their reported thermodynamic model and the basis of 

their fitting exercise was not consistent with the hydrolysis scheme currently selected in the 

NEA-TDB [9]. According to the valid model, calculations show that Pu3+(aq) is dominating 

only at –log[H+] ≤ 6.5 and under their given experimental conditions, PuOH2+ species 

represent ~20% up to ~70% of the total Pu concentrations quantified. Consequently, the data 

evaluation procedure performed by Felmy et al. is impacted with a non-constant systematic 

error throughout the entire data series. These shortcomings are acknowledged with a large 

uncertainty assigned by the NEA-TDB group, and the work by Felmy and co-workers remains 

as the most reliable solubility study on Pu(OH)3(s) published to date. 

Nilsson et al. [32] studied the solubility of Pu within 3 ≤ –log[H+] ≤ 10 in autoclaves with a 

H2(g) pressure of 50 bar, in the presence of Pt wire. Pu(OH)3(s) was expected to control the 

solubility of Pu under these strongly reducing conditions. The initially gained blue solid phase 

supported this hypothesis, but the change in color towards a greenish precipitate and the 

unexpectedly low detected Pu total concentrations indicated the formation of a PuO2±x solid 

phase and a solubility equilibrium governed by the reductive dissolution reaction, as 

expressed in Equation (2). 

 

PuO2(am,hyd) + 4 H+ + e– ⇔ Pu3+(aq) + 2 H2O(l) (2) 
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This was also consistent with the mildly reducing redox potentials measured by the authors at 

the end of their experiments with (pe + pH) values of (8.5 ± 2). 

In a recent combined solubility and spectroscopic study [33], Cho and co-workers determined 

the solubility product of freshly precipitated Pu(OH)3(am) phase and re-evaluated the first 

hydrolysis constant of Pu(III). A blue Pu(OH)3(am) precipitate was obtained by coulometric 

titration of a Pu(III) stock solution. The pH was varied between 3.10 ≤ –log [H+] ≤ 6.44 

(spectroscopic experiments) and 6.29 ≤ –log [H+] ≤ 8.42 (solubility experiments). Plutonium 

was retained in the +III redox state electrochemically throughout the experiments. Solid phase 

characterization by XRD indicated the amorphous character of the solid phase used in the 

solubility experiments. Based on their UV-Vis measurements, the authors reported a greater 

value for the first hydrolysis constant of Pu(III) than the current selection in the NEA-TDB 

[9]. Although reporting solubility data mostly consistent with the previous solubility study by 

Felmy et al. [30], Cho and co-workers determined a significantly lower constant, 

log *K°s,0(Pu(OH)3(am)) as a result of a different hydrolysis scheme considered in their 

calculations. The results presented in Cho et al. [33], suggest that Pu(OH)3(am) is stable 

within the stability field of water, and converts to PuO2(am,hyd) only above (pe + pH) = (0.8 

± 0.5). 

The reductive dissolution of PuO2(am,hyd) was more frequently investigated [29, 34-36]. 

This is probably due to the relatively large coexistent stability field for PuO2(am,hyd) and 

Pu(III)aq. All these studies were performed within the pH-range 4–9, and provided an accurate 

control of the redox conditions by using hydroquinone (C6H6O2), Na2S2O4 or Fe(0) powder. 

As a result of this experimental effort and due to the well-defined (pe + pH) conditions in 

these studies, the thermodynamic data available for the redox equilibrium Pu(IV)s + e– ⇔ 

Pu(III)aq from mildly acidic to mildly alkaline pH conditions can be considered to be rather 

accurate. However, similar investigations under alkaline to hyperalkaline conditions are 

missing so far, reflecting the challenge that the stability field of Pu(III) aqueous species is 

expected to be smaller. Indeed, the hydrolysis of Pu(III) was only investigated under acidic to 

near-neutral pH conditions where the first hydrolysis species (PuOH2+) forms [37-39] (for 

further details see the critical review provided in the recent NEA-TDB update book [9]). 

Thermodynamic data for higher hydrolysis species of Pu(III) are normally estimated based on 

data for Am(III) and Cm(III) [9]. 

Due to the relatively large coexistent stability field for PuO2(am,hyd) and Pu(III)aq, the 

reductive dissolution of PuO2(am,hyd), expressed as in Equation (2) for the formation of the 

aqua ion, has been more extensively investigated ([29, 34, 36], among others). Within all 
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these reported studies, the conducted experiments focused on the acidic to slightly alkaline 

pH-range (4 ≤ –log [H+] ≤ 9), coupled with an accurate control of the redox conditions by 

using either hydroquinone, Na2S2O4 or Fe powder. As a result of the experimental effort, 

well-defined (pe + pH) conditions are present in all cases. Hence, the thermodynamic data 

available for the redox equilibrium (2) of the reductive dissolution of PuO2(am,hyd) is 

considered to be sufficiently accurate, bearing with a low associated uncertainty as well. 

Both the solubility of Pu(III) and the reductive dissolution of Pu(IV) were comprehensively 

discussed by Neck and co-workers [5]. The authors concluded, based upon the published 

experimental evidences, with special focus on available (pe + pH) measurements, that in the 

latest NEA-TDB review work [9] a satisfactory explanation of the experimental observations, 

together with the thermodynamic data selection is provided. Neck and co-workers also 

highlighted the relevant role of Pu(IV) colloids in the solubility and redox chemistry of Pu 

under near-neutral to alkaline pH conditions. 

In a recent, extensive study by D. Fellhauer [40], redox equilibria of Pu(IV)s / Pu(III)aq was 

evaluated over a broad range of (pe + pH) conditions, within 3.3 ≤ – log[H+] ≤ 7.8 and by 

using a large variety of redox buffers (hydroquinone, FeCl2 / FeCl3, Na2S2O4, Fe(CN)6
4– / 

Fe(CN)6
3– and AH2QDS / AQDS). The author concluded that the abovementioned redox 

equilibrium can be properly described with the available thermodynamic data. However, 

based on the solubility and solid phase characterization data collected for one of the most 

reducing samples at –log[H+] = 6.6, Fellhauer outlined that the solubility of Pu(OH)3(s) 

reported in Felmy et al. [30] might be overestimated but still lies within the larger uncertainty 

range assigned by the NEA-TDB review team [9]. 

Besides solubility studies, numerous experimental investigations [40-47], among others, are 

focusing on the redox chemistry of Pu in two-phase ternary systems, most commonly 

involving the interaction with various iron-containing solid phases (particularly magnetite, 

Fe3O4(cr)). These experiments are mainly performed under acidic to weakly alkaline pH 

conditions. 

Kirsch et al. [43] reported a qualitative agreement between thermodynamic calculations and 

experimentally measured Pu redox distribution in magnetite, mackinawite and chukanovite 

systems with 6 ≤ – log[H+] ≤ 8, based on a combination of XAFS and wet-chemistry 

measurements (pH, pe and [Pu]tot). In the magnetite system the formation and predominance 

of a very stable Pu(III) surface complex was observed, whereas PuO2(am,hyd) prevailed in 

the presence of mackinawite and chukanovite. 
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In the work of González-Siso et al. [47], the stabilization of Pu(III) was supported in 

magnetite systems under strongly alkaline (–log[H+] = 12.8) and highly reducing conditions 

imposed by the addition of Sn(II) (pe + pH = 2 ± 1). Despite the fact that the presence of 

Fe(II)–Fe(III) surface is certainly playing a decisive role in the reduction of Pu in the given 

systems, this observation opens the possibility of the stabilization of Pu(III) under 

hyperalkaline, reducing conditions, relevant in certain repository concepts. 

 

1.1.2.1 Thermodynamic background 

In case of assuming the presence of Pu(OH)3(s) as a solubility controlling solid phase under 

reducing, alkaline conditions in the absence of any complexing ligand besides water or 

hydroxide-ion, the corresponding equation, governing the activity of free Pu3+(aq) at the 

reference state is expressed as in Equation (3). 

 

log *K°IIIs,0 = log aPu3+(aq) + paH+ = (15.8 ± 1.5) (3) 

 

The given constant, log *K°IIIs,0 is the solubility product of Pu(OH)3(s) at zero ionic strength, 

according to Equation (1), originally reported by Felmy and co-workers [30] but recognized 

with an increased uncertainty by the latest NEA-TDB update book [9]. The determinative 

redox conditions, i.e. (pe + pH) values, that are defining the solid phase transformation of 

Pu(III)s ↔ Pu(IV)s, in Equation (8) can be calculated by the combination of Equations (3), 

(5), (7) through the related chemical reactions (1), (4), (6), according to the thermodynamic 

data from NEA-TDB [9]: 

 

PuO2(am,hyd) + 4 H+ ⇔ Pu4+(aq) + 2 H2O(l) (4) 

log *K°IVs,0 = log aPu4+(aq) + 4 paH+  = –(2.33 ± 0.52) (5) 

 

Pu3+(aq) ⇔ Pu4+(aq) + e– (6) 

log *K°IIIaq/IVaq = log aPu4+(aq) + log aPu3+(aq)  – pe = –(17.69 ± 0.04) (7) 

 

Pu(OH)3(am) ⇔ PuO2(am,hyd) + H2O(l) + H+ + e– (8) 

log *K°IVs/IIIs = log aw – (pe + paH+) = 

 = log *K°IIIs,0 + log *K°IIIaq/IVaq – log *K°IVs,0 = (0.4 ± 1.6) (9) 
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Consequently, the Pu(OH)3(s) is expected to be thermodynamically stable only below the 

lower border line of the stability field of water: (pe + pH) = 0.0, i.e. under strongly reducing 

conditions, where (pe + pH) ≤ –(0.4 ± 1.6) applies. Hence, Pu(OH)3(s) is often considered as a 

metastable solid phase in aqueous systems [5]. Nevertheless, taken into account the large 

associated uncertainty, originating from the propagation of the reported value for log *K°IIIs,0 

[9], a final conclusion cannot be drawn regarding the stability of this phase under aqueous 

conditions. 

If the solubility of Pu under reducing, alkaline conditions is controlled by PuO2(am,hyd), the 

following dissolution equilibrium reaction (10) and redox equilibria (12), (14), (16) in the 

aqueous and mixed phases with corresponding stability constants (11), (13), (15) and (17) can 

be defined in the view of the thermodynamic selection from [9]: 

 

PuO2(am,hyd) + 2 H2O(l) ⇔ Pu(OH)4(aq) (10) 

log *K°IVs,4 = log aPu(OH)4(aq) = –(10.8 ± 0.7) (11) 

 

Pu(OH)4(aq) + 3 H+ + e– ⇔ Pu(OH)2+ + 3 H2O(l) (12) 

log *K°IVaq/IIIaq,1 = log aPu(OH)2+ + 3 log aw – log aPu(OH)4(aq) + 3 paH+  + pe = (19.3 ± 0.6) (13) 

 

Pu(OH)4(aq) + 2 H+ + e– ⇔ Pu(OH)2
+ + 2 H2O(l) (14) 

log *K°IVaq/IIIaq,2 = log aPu(OH)2
+ + 2 log aw – log aPu(OH)4(aq) + 2 paH+  + pe = (11.1 ± 0.9) (15) 

 

Pu(OH)4(aq) + H+ + e– ⇔ Pu(OH)3(aq) + H2O(l) (16) 

log *K°IVaq/IIIaq,3 = log aPu(OH)3(aq) + log aw – log aPu(OH)4(aq) + paH+  + pe = (0.0 ± 0.7) (17) 

 

In the only presence of water or hydroxide-ion as complexing ligands, in alkaline systems, the 

concentration of Pu(IV) is controlled by the formation of Pu(IV)-hydroxo-complexes, 

expressed through Equation (3) using the the related formation constants: β°IV,n = 

[Pu(IV)(OH)n
4–n]·[Pu4+(aq)]–1 [OH–]–n. In dilute, basic solutions with ~7.5 ≤ –log[H+], where 

the activity of the 1,4 hydrolized species: γPu(OH)4(aq) is approximately equal to 1, the 

predominating Pu(IV)–bearing aqueous species is Pu(OH)4(aq), thus for the total 

concentration of Pu(IV), the value of the related constant (11) provides a relatively good 

estimate in log–units over a wide pH–range. In cases, when the aqueous media has a 

sufficiently strong reducing influence, the total Pu concentration, i.e. the solubility of Pu can 
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be further enhanced by the formation of Pu(III)aq species through Equations (12), (14) and 

(16). In Equations (13), (15) and (17), the calculations involve the use of the corresponding 

cumulative constants for the second and the third hydrolysis of Pu(III) (β°III,n) adapted from 

analogous data of Am(III) [9]. Consequently, the solubility of Pu through the reductive 

dissolution of PuO2(am,hyd), as expressed in Equation (2) is affected by relevant uncertainties 

under alkaline to hyperalkaline conditions, where Pu(OH)2
+ and Pu(OH)3(aq) complexes are 

the prevailing Pu(III) aqueous species (already from ~7.0 ≤ –log[H+]). 

As it is indicated in the discussion above, the significant uncertainties associated to 

log *K°IVs/IIIs, log *K°IVaq/IIIaq,2 and log *K°IVaq/IIIaq,3 hinder the correct assessment of Pu 

chemistry under alkaline, reducing conditions. Furthermore, the propagation of these errors 

will affect the evaluation / prediction of the impact of any complexing ligand on the solubility 

of Pu. 

 

1.2 Cement systems: chemical composition and degradation path-ways 

Generally, the cementitious materials used to immobilize radioactive waste are composed of 

significant amounts of Portland-type cement [48]. Portland cements normally comprise four 

main clinker components: 50 – 70 w% alite (tricalciumsilicate: Ca3SiO5), 20 – 30 w% belite 

(dicalciumsilicate: β–Ca2SiO4), 5 – 10 w% aluminates (mainly as tricalcium aluminate: 

Ca3Al 2O6), 5 – 12 w% ferrite (calcium aluminoferrite: Ca2(Fe2O3Al 2O3)5 and ~ 2% gypsum 

(calcium sulfate: CaSO4). An important aspect in the characteristics of the ordinary Portland 

cement is the chemical balance, which is typically differing from those of other cement types. 

As the initial Ca:Si ratio is relatively high, at about ~ 2.5, not all Ca content can be combined 

into the calcium silicate hydrate (C-S-H) or aluminoferrite hydrate and sulfoaluminate phases 

during the hydration process. This feature enacts the excess of Ca to form a relevant fraction 

of portlandite, Ca(OH)2(s) within the system. Thus, the two main co-existing phases in the 

hydrated OPC are the amorphous C-S-H phases and the crystalline Ca(OH)2(cr). Minor 

phases are usually Ettringite (aluminoferrite trisulfate, Aft), monosulfate (aluminoferrite 

monosulfate, Afm), hydrogarnet and hydrotalcite. Although all these solid phases provide 

potential sorption surfaces for radionuclides dissolved in the pore fluids, C-S-H phases are 

considered to be the most important amongst them. The large surface area of C-S-H phases 

(for instance: 148 m2/g at Ca:Si ratio of ~1.7, provided by Tits et al. [49]), together with its 

high sorption affinity results in high surface densities of sorption sites (mol·m-2 or as “number 

of sites·nm-2”) and consequently for hydrated OPC pastes, large sorption capacity is expected 

for radionuclides and other contaminants. 
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The interacton of OPC with (intruding) water will result in the degradation of the material and 

corresponding chemical buffering of the porewater composition. The latter is a key feature in 

the development of the main parameters governing the chemical equilibria of the 

radionuclides within the near-field of a disposal facility. In the distinct states of the OPC 

degradation process, pH and the concentrations of various metal ions in solution will exhibit a 

wide range of levels controlled by different solid phases [50-53]. 

In general, three main degradation stages can be defined for cement. In the degradation stage 

I, the pore fluid of hardened OPC will feature hyperalkaline pH conditions (13 < pH) and a 

chemical composition that is dominated by alkali metal ions (Na+, K+). At this initial stage, 

Ca(II) total concentration in the pore solution is relatively low (~ 10-3 M) due to the limited 

solubility of portlandite at high pH. After the quantitative removal of the alkali ions, the 

degradation stage II is reached, where both, the pH and the Ca(II) ion concentration of the 

porewater will be controlled by the solubility equilibria of portlandite, leading to pH = 

constant = ~ 12.5 and [Ca2+] tot = constant = 0.020 M. Stage III virtually starts when 

portlandite is completely removed from the system. In this stage, pH and also Ca(II) ion 

concentration are controlled by the incongruent dissolution processes of C-S-H phases. 

Depending on the Ca:Si ratio of the these phases, pH of the porewater will be set in the range 

of 12.5 – 10, whilst [Ca2+] tot will be subsequently decreased to the millimolar level. At the end 

of this period, with the disappearance of the C-S-H phases from the system, pH will be fixed 

at ~10 [50]. After the latter stage of the cement degradation process, as the main constituents 

of the hydrated cement phases are already removed, pH and Ca(II) ion concentration of the 

pore fluid will be controlled by the remaining aggregate minerals (mainly by calcite, 

CaCO3(cr)) and also by the initial conditions of the intruding water. The resulting pH is 

further decreased below pH = 9, whilst Ca(II) concentration in solution is buffered within the 

10-3 – 10-4 M range. (In some review studies [50], this period, with pH < 9, is often referred to 

as stage IV.) 

 
1.3 α-D-isosaccharinic acid: generation, complexation, stability, sorption 

In Ca(II)-rich alkaline solutions, the main degradation product of cellulose was found to be 

the isosaccharinic acid with an approximate total yield of 80 % [10, 11, 54, 55] and with the 

equal proportions of the alpha(α)- and beta(β)-diastereomer forms [56] (see additional 

information on the structure of these diastereomers in Section 1.4). Previous investigations 

attributed stronger complexing capabilities towards metal ions to alpha-D-isosaccharinate 

compared to the beta-form. The latter observation was based on the phenomena that the 
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observed stability of the beta-isosaccharinate–Eu(III) complex was determined to be two 

orders of magnitude lower than the analogous species with the alpha–form. Furthermore the 

influence of a mixture of cellulose degradation products and the pure alpha-D-isosaccharinic 

acid on the sorption of Eu(III) (onto feldspar resin at pHc = 13.3) was detected to be identical 

[57]. 

Important to mention that for hemicellulose (expected to be present in wood-related 

conglomerates), the alkali degradation process results in the substantial generation of 

xyloisosaccharinic acid (a sugarcarboxylic acid, structurally related to isosaccharinic acid) as 

it was pointed out by [58]. In a recent comprehensive work [59], solubility studies attributed 

high complexing capabilities for the deprotonated form of xyloisosaccharinic acid towards 

Th(IV) and Eu(III) under alkaline conditions. Randall et al. concluded that since the ligand is 

not present at high enough concentrations within the various synthetically produced leachates, 

the effect of CDPs on radionuclide behavior can be represented by assuming alpha-D-

isosaccharinic acid as the only dominant complexing ligand in all investigated systems. 

Furthermore, in contrast to their solubility results, xyloisosaccharinic acid was shown to have 

only a minor impact on the sorption of radionuclides onto NIREX Reference Vault Backfill 

(NRVB) material, haematite and kaolinite. Then again, alpha-D-isosaccharinate depicted in 

all cases a significant effect as it decreased the distribution ratios by a factor of 103 for Eu(III) 

and Th(IV) across the range of investigated conditions. 

Owing to its stronger complexing properties (and its high abundance in CDPs), the alpha-D-

isosaccharinic acid (C6H12O6, hereafter denoted as HISA, or in the deprotonated form, alpha-

D-isosaccharinate denoted as ISA) is of great relevance because of its potential capability for 

radionuclide mobilization [11, 57, 60, 61]. In a recent study [62], applying the kinetic model 

proposed by [10], the degree of cellulose degradation was estimated over time. The original 

model, based on a 12-year-long degradation experiment of 4 different cellulosic material 

under artificial cement porewater conditions was extrapolated to repository conditions and 

timescales (> 5000 years), using the reported reaction rate constants. Calculations show, that 

the cellulose content of Tela tissue and paper will be completely degraded (~99%) after 5000 

years, whilst in the case of cotton, the simulation indicated a lower degradation rate, 

suggesting its virtual completion only after 25’000 years. Concentrations of alpha-D-

isosaccharinic acid were also estimated [62], with and without considering the sorption of the 

ligand onto the available hydrated cement. In most of the relevant waste packages, the mass of 

produced HISA exceeds the amount that can be removed by the available hydrated cement, 

suggesting that sorption processes do not play a decisive role in controlling the concentrations 
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of the free ligand in solution. Upper limit calculations show that after 1000 years of cellulose 

degradation, in the pore and void volume inside the majority of the waste packages, the 

concentrations of alpha-D-isosaccharinic acid reaches the solubility limit of Ca(ISA)2(s) 

(2·10-2 M) during the degradation stage II of cement. Even considering further sorption 

processes of isosaccharinate in the different compartments/caissons, the dissolved 

concentrations are only reduced to a maximum of 1.2·10-2 M (including both, alpha- and beta-

forms). Further details on the behavior of ISA under cementitious environment are discussed 

in Section 1.3.2. 

Taking into account its high affinity towards metal ions, together with its potential 

concentrations present, alpha-D-isosaccharinic acid is of fundamental importance to assess the 

long-term radionuclide release into the near field of a geological disposal facility for L-/ILW. 

Another important aspect is the presence of Ca2+ in cement porewater, which could give a rise 

to the possibility of enhanced radionuclide-ISA complex stability through the formation of 

Ca(II)-containing ternary (or quaternary) complexes [12]. 

In general, the stability of the metal ion-ISA complexes (i.e. the formation constants) is 

closely correlated to the effective charge (Zeff) of the cation. Accordingly, the sequence 

An(IV) (Zeff = +4) > An(VI) (Zeff = +3.2) > An(III) (Zeff = +3) > An(V) (Zeff = +2.3) is 

expected for the complex formation constants of complexes between ISA and actinides of 

redox state +III to +VI. A detailed summary is provided in Section 1.3.3 on the main 

experimental studies available in the literature regarding complexation of ISA with actinides 

and lanthanides in the absence and presence of Ca(II) ions. Due to the expected predominance 

of Pu(IV) and Pu(III) in the experimental conditions investigated in this study, focus has been 

given to studies dealing with (Ca(II)–)An(IV)– and An(III)/Ln(III)–ISA systems. 

 
1.3.1 Structure and complexation with calcium(II): the Ca(II)–OH–ISA system 

Isosaccharinic acid (2-(hydroxymethyl)-3-Deoxy-D-pentoic acid) has 2 diastereomers: the 

erythro-form: alpha-D-isosaccharinic acid (2S,4S) (see  Figure 3) and the threo-form: beta-D-

isosaccharinic acid (2R,4S). As it belongs to the polyhydroxycarboxylic acids (like alpha-D-

gluconic acid: HGLU), isosaccharinic acid has also a carboxyl group but only four aliphatic 

hydroxyl groups on the rest of the carbon-chain (HGLU has 5, see  Figure 3 for details). 
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Figure 3. Schematic structures (with the designation of carbon-atom numbers and related 

absolute configurations) of α-D-isosaccharinic acid (HISA), α-D-isosaccharinate-1,4-lactone 

(HISAL) and α-D-gluconic acid (HGLU). 

 

Both HISA and HGLU could form complexes with metal ions, through the coordination of the 

deprotonated carboxyl group (in acidic solutions) or, in a bidentate mode, through both the 

carboxylate and the hydroxyl group(s), when the media is more alkaline and/or the metal ion 

has a sufficiently large positive charge. The main solution parameters which can exert an 

impact on the free concentration of the ligand in cementitious environment are the pH and the 

free Ca(II) ion concentration. As it was indicated before, the alpha-form of the isosaccharinic 

acid exhibits stronger complexing capabilities towards metal ions than the beta-form [57]. 

Hence, the acid-base properties and the complexation reactions with Ca(II) are only discussed 

for the alpha-form (HISA). The considered stability constants at the reference state are listed 

in  Table 1. 

In the absence of complexing metal ions, within the acidic pH-range, there are two types of 

reactions which affect the speciation of the free ligand itself: a, the lactonization reaction of 

the original acid (HISA), resulting in the α-D-isosaccharinate-1,4-lactone (denoted as HISAL 

on  Figure 3) and b, the deprotonation reaction of the carboxylic group of HISA. The two 

processes are overlapping in the function of pH, making the pure protonation, as an intrinsic 

constant, hard to be determined individually. Hummel et al. pointed out [63], that the 

protonation constants, obtained by any methodology other than nuclear magnetic resonance 

spectroscopy (NMR) are composite values. These constants, due to the incorrect calculation 

of the mass balance of the ligand are always higher than the “real”, intrinsic values. 
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Considering the discrepancies within the reported values of the lactonization constant of 

HISA, the review of [63] selected an average, composite protonation constant for HISA with 

an enlarged uncertainty to cover the range of expectation (see  Table 1). The equilibrium 

constant for the lactonization reaction of HISA was taken from a very recent reevaluation of 

the available constants, provided in [64]. As in the case of HGLU, under extremely alkaline 

conditions, further deprotonation(s) of the alcoholic hydroxyl group(s) is/are also possible. 

Based upon potentiometric titrations, an estimation for the second deprotonation constant (as 

a conditional value, listed in  Table 1) was provided by [65]. The analogous value for GLU is 

considerably higher (approximately by one logarithmic unit), which can be traced back to the 

structural differences between the two ligands: due to the vicinity of another hydroxyl group 

(on the third C-atom, that is lacking in the case of ISA) the resulting alcoholate functional 

group is gaining further stability through H-bonding in the case of GLU. However, the 

deprotonation of alcohol groups in HISA and HGLU can also take place at lower pH values, 

in the process of complex formation with strong Lewis acids such as actinides [66, 67]. 

In view of the current study, it must be kept in mind that small variations of the listed values 

for the acid-base properties of HISA have no effect on the assessment of the ligand on any 

solubility data, conducted under alkaline (to hyperalkaline) pH conditions (8 < pHc < 13), 

given that the existing aqueous species of the free ligand itself is the deprotonated form (ISA) 

alone. 

The complex formation reactions between Ca(II) and ISA have been investigated through the 

solubility equilibrium of Ca(ISA)2(s) in several publications [68-74]. The comprehensive 

work of Hummel et al. [63] summarizes all the undertaken studies (except the most recent one 

[74]) and provides a reevaluation of the available experimental data [63]. The thermodynamic 

interpretation concluded by Hummel and co-workers, originally suggested by [70] can explain 

all the observed tendencies and the behavior of the system within the available experimental 

data sets. Consequently, the given model, presented by [63] is being favored for the Ca(II)-

ISA-OH system (also applied in [12]) and it has been directly adapted in the course of data 

evaluation within the framework of the current study. 

In summary, the Ca(II)-ISA-OH system in the pH-range from 1 to 13, can be described with 

the following chemical processes: 1. dissolution equilibria of Ca(ISA)2(s), 2. deprotonation 

and lactonization reactions of HISA (limited to the acidic pH-range), 3. the pH-independent (6 

< pH < 12), weak complexation of Ca(II) with ISA (with 1 to 1 ratio), 4. formation of the 

Ca(OH)+ species 5. formation of the deprotonated Ca(II)-ISA complex species with the 

formula of Ca(ISA–H)0(aq), present under higher alkalinity and furthermore: 5. the solubility 



 

 
21 

equilibrium of Ca(OH)2(s), expected to precipitate only in the hyperalkaline pH-range. The 

collection of thermodynamic constants (at the reference state), corresponding to the 

abovementioned equilibria are listed in  Table 1. It is of interest that in more recent studies 

[64, 74], the equilibrium constants for the deprotonation, lactonization of ISA and the stability 

of its complexes with Ca(II) has been re-evaluated / re-measured and found to be in an 

excellent agreement with the recommended values provided in [63]. 

 
Table 1. Adapted thermodynamic model for the Ca(II)-OH-ISA system. 

Equilibrium log K°(I →0; 298.15K) Reference 

HISA(aq) ↔ HISAL(aq) + H2O (0.49 ± 0.09) [64] 
H+ + ISA– ↔ HISA(aq) (4.0 ± 0.5) [63] 

H+ + ISA–H
– ↔ ISA– 14.31 (at I ~ 2 M) [65] 

Ca2+ + 2 ISA– ↔ Ca(ISA)2(s) (6.4 ± 0.2) [63] 
Ca2+ + ISA– ↔ Ca(ISA)+ (1.7 ± 0.3) [63] 

Ca2+ + ISA– ↔ Ca(ISA–H)0(aq) + H+ –(10.4 ± 0.5) [63] 

Ca2+ + OH– ↔ Ca(OH)+ 1.22 [75] 
Ca2+ + 2OH– ↔ Ca(OH)2(s) –5.19 [75] 

 
 
1.3.2 The fate of ISA in cementitious environment: stability and Cement-ISA system 

The key processes governing the effective, free concentration of ISA ([ISA]free) in pore fluids 

in a cementitious environment are as follows: i, in-solution reactions (speciation-changes 

through deprotonation, complexation with metal ions, etc.), ii, degradation processes 

(chemical or microbial) and iii, heterogeneous equilibria (with hydrated cement phases: 

chemi- and/or physisorption of the ligand onto the available sorbing sites or precipitation of 

the ligand in the form of Ca(ISA)2(s)). 

Several studies have reported the chemical stability of Ca- and Na-salts of both α- and β-ISA 

up to 125°C [76, 77]. Two independent research groups identified the possible degradation of 

ISA in aqueous solutions under oxidizing conditions, also at low temperatures (25 °C) [78, 

79]. 

Greenfield and co-workers investigated [78] the degradation of ISA saturated Ca(OH)2 

solutions flushed with O2, N2 or air at T = 25 and 80°C. After 10 months of equilibration time, 

only a small fraction of the ISA was degraded at T = 25°C in the systems purged with O2 and 

air. In the same oxidizing conditions but at T = 80°C, the degradation occurred to a larger 

degree. Anaerobic conditions resulted in no significant loss of ISA from the systems, neither 
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at 25°C nor at 80°C. These results highlight the relevant role of oxygen in the process of ISA 

degradation. 

In the comprehensive study by Glaus et al. [79], the key role of O2 in the fast decomposition 

reaction of ISA in aqueous media was again underlined. In the absence of oxygen, minor loss 

of ISA was also detected by the conversion into smaller chain organic acids (glycolic, formic 

and lactic acid) in solutions with pH > 12. Through individual batch experiments, the 

transformations of 1 µmol of ISA per gram of solid Ca(OH)2(s) or OPC powder were 

observed in the heterogeneous systems under anaerobic conditions up to 542 days of 

equilibration time. The observed loss of ISA from the anaerobic experiments (at 28 and 90 °C 

as well) were not fully understood and attributed to a potential surface-related decomposition 

reaction, taking place independently of the applied solid phase. Nonetheless, when the total 

concentration of ligand exceeded the 1 µmol limit, ISA was shown to be apparently stable for 

even longer observations times. 

No experimental studies on the degradation of ISA under reducing alkaline conditions are 

available in the literature. In contrast to the processes driving degradation of ISA under 

oxidizing conditions, the reducing conditions of interest in the present work may promote the 

reduction of the –COOH or –OH functional groups of ISA. 

Another aspect for potential loss of ISA is its biological degradation in solution. Although the 

effect of microbial activities on the stability of ISA (especially under conditions expected in 

the near-field of a cementitious deep geological disposal facility) have been recently in the 

focus of related research-fields [80-83], discussions of these studies are out of the scope of the 

present work. Even so, it is worth mentioning that due to the high alkalinity of pore fluids, 

strong microbial degradation of ISA may not be expected under repository-relevant 

conditions, as in some specific cases above pH = 11, significant loss of biomass was 

witnessed from the system, indicating the instability of these microorganisms under 

hyperalkaline conditions [80]. Any degradation process of ISA under the anticipated 

boundary conditions and timeframe investigated within the present work (resulting in the loss 

of ISA from the system) has not been considered. 

The uptake of ISA by hardened cement pastes under conditions related to the early stages of 

cement degradation was studied by a PSI research group [57, 84]. The average size-

distribution fraction of 100 – 400 µm was used of the crushed and sieved cement (CEM I, 

52.5 N HTS), which was then let in contact with filtered artificial cement porewater (ACW, 

with an equilibrium composition of 110.5 mM Na+, 176 mM K+, 1.75 mM Ca2+ and a pH of 

13.3) under controlled N2 atmosphere in the presence of ISA (with varying total 
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concentrations of the ligand: 10-5 M < [ISA] tot < 0.3 M). Solid-to-liquid ratios (S:L ratio) in 

the range of 25 to 500 gdm-3 were applied for the individual batch experiments (teq = 1 day – 9 

months). The amount of ISA sorbed on the cement phases, [ISA]sorbed (mol·kg-1) was 

calculated using the initial concentration [ISA]tot (often referred to as [ISA]in) (M) and the 

equilibrium concentration [ISA]eq (M) of the ligand (remaining in the liquid phase), by 

Equation (18). 

 

[ISA] sorbed = ([ISA]tot – [ISA]eq)·VL·(porewater, dm3)·m(cement, kg)-1. (18) 

 

The maximum relative error was found to be ~20%, following the uncertainty of the detection 

of [ISA]eq. An important feature of the sorption process was the evolution of ISA 

concentration in solution with equilibration time, in most cases the authors experienced a fast 

decrease in [ISA]liq, usually reaching equilibrium within 1 day. 

Van Loon et al. fit a two-site Langmuir isotherm to their experimental sorption data, 

expressed as in Equation (19) for ISA sorption onto hardened cement pastes (HCP): 

 

[ISA] sorbed = K1·q1·[ISA] eq·(1 + K1·[ISA] eq)
-1 + K2·q2·[ISA] eq·(1 + K2·[ISA] eq)

-1, (19) 

 

where q1 and q2 represent the sorption capacities for the two hypothetical sorption sites 

available on the hydrated cement phases (in mol·kg-1) and K1 and K2 parameters are the 

related adsorption affinity constants (in dm3
·mol-1). The optimized best-fit values of the 

parameters for the two sites were as follows: 

 

q1 = (0.10 ± 0.01) mol·kg-1, K1 = (1730 ± 385) dm3mol-1 and 

q2 = (0.17 ± 0.02) mol·kg-1, K2 = (12 ± 4) dm3mol-1. (20) 

 

The total sorption capacity derived by the authors [57, 84] for the used cement with regard to 

ISA (q1 + q2) = 0.27 molkg-1 was found to be in close agreement with the estimate of 0.32 

molkg-1, provided in the work of Bradbury and Sarott [85]. The Freundlich isotherm was not 

able to properly explain sorption data. 

Despite the lack of an exact chemical explanation for the sorption reaction, Van Loon et al. 

proposed, based on the fast nature of the process, the existence of strong specific interactions 

between ISA and the surface sites (of the C-S-H phases). This specific interaction was then 

believed to be the reason why the ligand bearing with one negative charge can overcome the 
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electrostatic repulsion against the negatively charged surface, allowing it to sorb on the 

surface of the hydrated solid phase. 

The latter argumentation was later debated by the work of Pointeau et al. [86, 87]. Prior to the 

investigations with ISA, the authors also assessed the evolution of the surface potential of 

hydrated cement pastes (CEM I and CEM-V) and the chemical composition of cement 

porewaters as a function of the cement degradation [88]. In the latter study, Pointeau et al. 

demonstrated through zeta potential (ζ) measurements in cement suspensions that two 

isoelectric points exist in the function of the HCP leaching process: 1. for pH 13.3 to pH 

12.65 (fresh HCP states) zeta potential increases from −17 to +20 mV and decreases from 20 

to −8 mV for pH 12.65 to 11 (degraded HCP states). Applying the diffuse double-layer theory 

(DLM) with surface complexation model (SCM) [89] for the present C-S-H phases, the 

authors developed a model, providing a good prediction of the surface potential evolution for 

both HCP. According to their model, the surface charge is controlled by the deprotonation of 

surface silanol- and silanidol-groups (>SO−) and by the surface complexation of calcium 

(>SOCa+), causing a positive charge-balance. On the other hand, the calcium concentration 

was controlled by portlandite or calcium silicate hydrate (C-S-H) solubility equilibria. 

Under similar experimental conditions but at different S:L ratios using the CEM-I type 

hydrated cement paste suspensions, sorption studies were also performed by Pointeau et al. in 

the presence of various anionic (36Cl–, 125I–, 14CO3
2–, 75SeO3

2–) radionuclides and organic 

ligands (ISA and EDTA) [86, 87]. The cement phases were equilibrated with porewater 

leachates corresponding to 12 different states (pH conditions ranged from 11.5 to 13.3) of the 

cement degradation process. 

Concerning the experiments with organic ligands, the authors concluded that the sorption 

process of ISA (and EDTA) was fast, usually reaching equilibrium within 3 days. The 

behavior of the ISA uptake was found to be correlated to the evolution of Ca(II) concentration 

in solution (and to the zeta potential as well): increased sorption was determined with 

decreasing pH from 13.2 to 12.5 (Rd = 4 to 100 cm3g-1, respectively), following the 

degradation stages of the cement system, then the Rd values suffered gradual decrease (till 

Rd = 25 cm3g-1) by the further decrease of pH condition till 11.8 in the pore fluids. 

Based on the fast nature of the process, Pointeau et al. modelled the sorption of ISA onto HCP 

as an adsorption reaction applying the DLM with SCM [89] theories together with the surface 

equilibria previously proposed for the chemical modeling of the C-S-H phases. Speciation 

calculations for ISA in solution were performed by applying the corresponding data set for the 

system Ca(II)-ISA-OH summarized in the work of Hummel et al. [63]. 
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The representation of the experimentally determined Rd values were found to be probable 

only with the assumption of the mixed surface complexation equilibria, where Equation (22) 

depicts the best fit values of the formation constant corresponding to the chemical reaction 

(21). 

 

>SiOH + Ca2+ + ISA–
↔ >SiOCaISA + H+ (21) 

log K° = –7.5 (22) 

 

In this respect, uptake of ISA by HCP was interpreted as a mixed surface complexation 

reaction rather than being a selective chemisorption process via specific sorption sites as 

originally reported by the PSI team. 

It has to be emphasized, that the Rd values corresponding to ISA sorption onto HCP taken 

from the work of Pointeau et al. [87] are highly differing from those which can be calculated 

using the Langmuir isotherm reported by the PSI team [57, 84]. Applying identical 

experimental conditions as in the study of Pointeau et al. [87], where at pH = 13.2 Rd = ~4 

cm3·g-1 was predicted for [ISA]tot = 8.5 10-3 M at relatively low applied S:L ratio (unreported, 

but presumably 1 gdm-3 as in their previous work), the two-site model of the Langmuir 

isotherm (obtained at pH = 13.3) results in the significantly higher value of Rd = ~66 cm3·g-1. 

Experimental details, such as for instance: differences in the characteristics of the cement 

phases applied between the two studies (specific surface areas were not reported) or 

differences in the investigated experimental conditions could explain this large discrepancy. 

In the work of Pointeau et al. a relatively small S:L ratio (1 g·dm-3) was applied for all 

investigations, whilst the investigations by the PSI team were carried out at larger S:L ratios 

(25 to 500 g·dm-3). Consequently, the applicability of the two-site Langmuir isotherm for 

different conditions can be criticized, although the predictions within the investigated 

parameter-range are in excellent agreement with the experimental data points collected. On 

the other hand side, the comprehensive surface complexation model provided by Pointeau et 

al. is based on multiple parameters obtained partly from previous experimental studies (ζ, 

[Ca]tot vs. pH) and some are extracted from averaged structural properties of C-S-H phases or 

simply just assumed. Though the latter given model provides a proper explanation for the 

chemical behavior and tendency for ISA uptake by HCP with regard to the evolution of pH 

(and [Ca]tot) in the leached porewater fluids, it is inapplicable under significantly differing 

experimental conditions than those of the original study. 
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The conclusion drawn from the discussions above is that the only relevant process, capable of 

reducing the free concentration of ISA in cement porewater solutions is the potential sorption 

of the ligand on hydrated cement phases (if the total concentration of the ligand is below its 

solubility limits). In this aspect, for a specific sorption study involving the use of ISA and a 

metal ion (M), it appears to be necessary to assess the free ligand concentration in solution as 

an addition to the study targeting the ternary system cement–M–ISA. 

 
1.3.3 Review of previous experimental studies on the complexation behavior of ISA 

with tri- and tetravalent actinides 

This section summarizes the main experimental studies available in the literature on the 

complexation of ISA with actinides and lanthanides. For all these systems, the NEA-TDB 

review on the complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands 

[63] is taken as the most authoritative reference. 

One of the open questions affecting the complexation of ISA with actinides (and with metal 

cations in general) is the possible role of the alcohol groups of ISA on the chelation of the 

metal cation. Although the pKa of the α–OH group of ISA has been estimated [65] to be 

≈ 14.3 (see  Table 1 in Section 1.3.1), the enhanced acidity of this alcohol group caused by the 

complexation with a metal cation is expected to result in the deprotonation of the α– (and 

even β–) alcohol group under significantly less alkaline conditions. Hence, the protons 

released in the complex formation under alkaline conditions can be assigned to both 

hydrolysis of the metal cation and deprotonation of alcoholic groups: 

 

Mn+ + x H2O(l) + ISA– ⇔ M(OH)xISAn–x + x H+ (23) 

Mn+ + y H2O(l) + ISA– ⇔ M(OH)y(ISA–zH)n–z–y + (y + z) H+ (24) 

 

where x = (y + z) and ISA–zH
–(1+z) corresponds to an ISA ligand with the deprotonated 

carboxylic and with z as the number of alcohol groups. The choice of one or the other 

complexation mode has no implications in the mass-action laws and, therefore they do not 

affect the calculated equilibrium constants either. For the sake of simplicity and consistency 

with previous studies and reviews [12, 90], the first option (H+ released assigned to hydrolysis 

of metal cation) is initially favored in the course of the present work (if no further knowledge 

available). This must not be taken as an indication of the correct stoichiometries of prevailing 

chemical processes. 
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1.3.3.1 Pu(IV)–ISA 

The number of studies directly assessing the interaction between Pu(IV) and ISA under 

alkaline conditions is limited [78, 91-93]. These studies were conducted in the framework of 

the NIREX Safety Assessment Research Programme (NSARP). The derived models are 

mostly based on solubility experiments, conducted from oversaturation state in the presence 

of ISA, except in [92], where the reduction effect of ISA on the sorption of Pu(IV) was 

determined on a specific, NIREX Reference Vault Backfill (NRVB) material. 

Solubility experiments were performed under nitrogen atmosphere in the absence of a redox 

controlling reductant at I = 0.01 M (NaCl). The starting Pu solid phases were freshly 

precipitated from a Pu(IV) stock solution in the form of Pu(OH)4(am) and were directly added 

to ISA-containing matrix solutions with pHc = 12 – 12.5. Redox potentials were not measured 

experimentally, and the Eh values were only assumed to be in the range of 0 to +100 mV, due 

to the applied inert atmosphere. As it was pointed out by Neck et al. [5, 6] even under a 

well-controlled inert Ar-atmosphere, traces of oxygen can be scavenged by the 

Pu(IV)O2(am,hyd) solid phase, resulting in the mixed valent PuO2+x(s,hyd) phase, that may be 

simultaneously in equilibrium with Pu(IV)(aq) and Pu(V)(aq), given the kinetically hindered 

redox reaction between Pu4+ and PuO2
+. Due to these experimental shortcomings and the lack 

of solid phase characterization throughout the reported studies, the redox state of Pu in the 

precipitated solid phases and in the aqueous phases remains unclear. Furthermore, since no 

information on the applied phase separation method is given within the studies, the presence 

of polynuclear Pu(IV)-bearing colloids cannot be ruled out. A reevaluation of the data 

conducted in [12] showed that the observed Pu total concentrations are clearly falling in the 

concentration range of Pu(IV) colloidal species as reported by [5], indicating the presence of a 

Pu(OH)4(col,hyd) solid phase with a comparatively high solubility. According to these 

observations, solubility data at pHc = 12 reported in [91] and [78] were then recalculated, 

proposing the formation of Pu(OH)4(ISA)– and Pu(OH)4(ISA)2
–2 complex species in the range 

of 10–6 to 10–2 M ISA total concentrations at pHc = 12. The derived log*β° values are also 

shown in  Table 2 (extrapolated to infinite dilution, by using SIT formula), along with the 

other formation constants of further to-be-discussed complex species. The large uncertainty (± 

1.6) assigned in [12] accounts for these experimental shortcomings. The stoichiometry of the 

species, however remains undefined as the speciation model originally proposed by the 

authors was not supported by other type of experiments (e.g. series of solubility experiments 

with Pu in the function of pHc at a constant ISA total concentration). 
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Sorption experiments of Pu(IV) onto NRVB material were carried out by [92] under N2 

atmosphere and hyperalkaline conditions, in the presence of 0.01 M ISA. Assessment of the 

redox state of Pu is again missing from the study and furthermore, the individual sorption of 

the ligand onto the used material was also neglected. Using the derived speciation model from 

the solubility data and the corresponding formation constants of the Pu(IV)–ISA–OH system, 

the reproduction of the observed sorption reduction factor was achieved in [12]. The good 

agreement between the calculated and the experimentally determined values of the defined 

constant served as an additional confirmation on the speciation and the stability constants of 

Pu(IV)-ISA species, resulting from the reevaluation procedure. 

 

1.3.3.2 Np(IV)–ISA 

Rai and co-workers published the only available experimental work on the Np(IV)-ISA 

system [72, 94, 95]. The basis of the derived comprehensive chemical model were series of 

independent undersaturation solubility experiments with NpO2(am) in the presence of ISA at 

different ionic strengths, conducted either at a constant pHc (approximately 5 and 12) with the 

variation of the ISA total concentration (10–4 – 0.1 M) or at a fixed ISA total concentration 

(0.0016 and 0.008 M) with different pHc (~2 – 14). Reducing conditions were attained using 

Na2S2O4 (0.01 M) as buffering chemical. The oxidation state of Np in solution was also 

monitored for all the samples using a liquid-liquid extraction method, involving 

thenoyltrifluoroacetone (TTA) under acidic conditions. The reducing conditions maintained 

by the presence of sodium-dithionate were confirmed by the detected Np(IV) content, 

representing the 70 to 98 percentage of the total Np in solution. As a consequence, regardless 

of the lack of solid phase characterization methods, the predominance of Np(IV) redox state 

both in aqueous and solid phase is most probably a valid case. Uncertainty of the data can also 

originate to a certain extent from the preparation method of the NaISA stock solution, used 

for the solubility batch experiments. The initially dissolved Ca(ISA)2(s) was claimed to be 

dissolved quantitatively via addition of 2 M NaOH solution and the gained Ca(OH)2(s) was 

then removed by centrifugation. The supernatant, containing NaISA, together with the portion 

of unreacted NaOH in solution was used for the subsequent preparations. In this context, 

considering the solubility of Ca(OH)2(s) in concentrated NaOH solutions, ranging from 0.7 to 

0.5 mM in 1.0 M and 2.0 M NaOH solutions [96], the remaining quantity of Ca(OH)+ 

together with Ca(ISA)+ and Ca(ISA–H)0 complex species in the separated supernatant may 

have resulted in non-negligible concentrations of available Ca (especially with increasing ISA 
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total content) throughout the conducted experiments. In this respect, depending upon the 

original Ca(ISA)2(s) to added NaOH quantity ratio, the yielding total Ca(II) to ISA 

concentration could vary significantly, which can eventually lead to the formation of possible 

ternary species involving Np4+, ISA and Ca2+, providing additional enhancement to the 

solubility of NpO2(am). Given, that no data were reported on the Ca(II)-content of the used 

NaISA stock solution of interest, the total concentrations of Ca(II) are unquantifiable in the 

corresponding study [72]. According to a former data in [94], the author detected less than 

0.002 M Ca(II)-content in the prepared 0.05 M NaISA stock solution, which gives a hint 

towards the possible presence of relevant Ca(II) concentrations in the majority of the batch 

solubility experiments. 

Applying the Pitzer model to account for the ionic strength corrections, Rai and co-workers 

conducted a comprehensive fitting of all the gained solubility data. The thermodynamic model 

suggested the presence of 4 Np(IV)-ISA complex species, dominating under different 

boundary conditions: 

 

- Under acidic conditions: Np(OH)3(ISA)0(aq) and Np(OH)3(ISA)2
– 

- Under alkaline conditions: Np(OH)4(ISA)– and Np(OH)4(ISA)2
2– 

 

At higher ISA concentrations (≥ 0.10 M) the complex species with Np(IV):ISA ratio of 1:2 

prevail. Despite of the systematic relevant differences between the calculated and the 

experimentally measured solubility values of Np at the majority of applied ionic strengths, the 

proposed model describes the observed tendencies in the data and provides an overall good 

prediction of the influence of ISA in a wide range of total ISA concentrations and pHc 

conditions on NpO2(am) solubility. Stability constants, originally provided by Rai et al. for 

the complex species, forming under alkaline conditions were recalculated (and extrapolated to 

infinite dilution, using SIT formalism) by Gaona and co-workers [12] (see table 2), applying 

the updated thermodynamic database of NEA-TDB for Np(IV) aqueous species and solid 

compounds [9]. 

 

1.3.3.3 U(IV)–ISA 

The influence of ISA on the solubility of UO2.2H2O has only been investigated in two studies 

[92, 97]. Relevant experimental shortcomings were identified in [92] by [12] such as the lack 
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of solid phase characterization and the absence of redox controlling agents, therefore the 

aforementioned work was disregarded from the reevaluation process. 

The undersaturation solubility experiments with UO2⋅2H2O(am), reported in [97] were 

performed in the presence of Fe powder and Na2S2O4 as redox-buffering agents at different 

pHc values from acidic (3.25 and 6.21) to alkaline conditions (13.5) with the variation of the 

total concentration of ISA and GLU (either at 0.04 M or 0.06M). The author concluded that 

the dominating species in the conditions of the experiment was U(OH)4ISA– (or rather 

U(ISA-4H)–). Considering the mathematically questionable interpretation of the data and the 

lack of solubility enhancement of ISA at pHc = 3.51, along with a wrong chemical model (the 

deprotonation and the lactonization reaction of ISA was not included and inconsistent 

speciation scheme for U(IV) was used), the derived stability constants are not reliable. Gaona 

and co-workers however undertook a reevaluation of the experimental data of Warwick et al., 

by assuming the analogy with other An(IV)ISA systems the author proposed the formation of 

the U(OH)4(ISA)– and U(OH)4(ISA)2
2– complex species. On one hand, the stability constant 

of the U(OH)4(ISA)– species was estimated via Linear Free-Energy Relationships with other 

tetravalent actinides and on the other, the stability constant of the U(OH)4(ISA)2
2– complex 

species was calculated upon a single experimental point. Both constants (listed in table 2) 

were extrapolated to zero ionic strength via the SIT formula. Provided, that the speciation 

scheme of U4+ in the presence of ISA is ill-defined and the reevaluation by [12] is based on a 

pure hypothesis, the information on the U(IV)-ISA system is insatisfactory. 

 

1.3.3.4 Th(IV)–ISA 

The available thermodynamic data on the Th(IV)-ISA binary system are either originating 

from solubility [59, 92, 95, 98], sorption [71, 99, 100] or liquid-liquid extraction studies [101, 

102]. 

The extensive solubility study, performed by Rai and co-workers was aimed to assess the 

influence of ISA on the solubility of Th(OH)4(am) solid phase with series of independent 

undersaturation solubility batch experiments. Within the different series, conditions were set 

either to a constant pHc (~6 or 12), while the total ISA concentration was varied (2·10–4 – 0.2 

M) or at fixed [ISA]tot (0.008 or 0.08 M) the pHc was ranging from ~4.5 to 12 (at I = 0.1 M, 

NaClO4). In case of systems with higher ISA total concentrations (0.08 M) steady state 

[Th(IV)] tot concentrations were reached already within 15 days, whereas in the experiment set 
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at low ISA concentration (0.008 M), where the pHc condition was varied equilibrium was 

only reached within 55 days. 

In order to develop a reliable model for Th(IV)-ISA complexes, several combinations of 

monomeric, multi-ligand and mixed-hydroxo-ISA species were used by Rai and co-workers 

to represent their experimental data. The initial set of species and corresponding stability 

constants were determined through the thermodynamic analyses of the series of 

ThO2(am,hyd) solubility data at fixed ISA total concentrations in the function of pHc. In a 

later step, the model was tested to predict the experimental Th(IV) solubility data as the 

function of ISA total concentrations under constant pHc conditions. The speciation scheme, 

that provided the best fit for the entire data set included the complex species: Th(OH)ISA2+, 

Th(OH)3(ISA)2
2– and Th(OH)4(ISA)2

2– with the stability constants (at reference state), listed 

in  Table 2 (only for the species forming under alkaline conditions: Th(OH)3(ISA)2
2– and 

Th(OH)4(ISA)2
2–). For ionic strength corrections, Rai et al. used the SIT model with certain 

estimates of ion interaction parameters for the newly formed species. Independent solubility 

data for the Th(IV)-ISA system, provided by [92], gained under similar conditions but only 

with the variation of the total ISA concentration (2·10–4 – 0.2 M) at pHc = 12 were also in 

close agreement with the experimental results of [98]. 

In the formerly discussed comprehensive study of [59], oversaturation solubility experiments 

with ThO2(am) in the presence of various synthetically produced CDPs (and Ca(OH)2(s)) 

under alkaline conditions were performed. Despite the extensive work involving ISA, the 

authors did not assess the higher obtained Th solubility of the freshly precipitated solid phase 

and furthermore the questionable interpretation of the results, using an internally determined 

solubility product for ThO2(am) led to the systematic overestimation of the stability of the 

suggested Th(IV)-ISA species. Regardless of the experimental shortcomings and the problems 

with the interpretation of the solubility data, the study verified the predominance of the 

previously reported complex, Th(OH)4(ISA)2
2–, at pHc = 9 and 12 as well in a wide range of 

applied total ISA concentrations, underlining the model proposed by [98]. 

Liquid-liquid extraction studies by [101, 102], reported the formation of three Th(IV)-ISA 

complexes (Th(ISA)n
4-n, with n = 1, 2 and 3), using 0.025 M acetylacetone in toluene as an 

extracting agent from equilibrated solutions (with < 5·10-5 M total 234Th(IV) concentrations) 

at pHc = 8.3 and I = 1.0 M (NaClO4) and at three different temperatures (15 °C, 25 °C, 35°C). 

Considering the applied alkaline pHc conditions, achieved via the slow titrations of the ISA-

free solutions with 1.0 M NaOH solution and the relatively high initial total concentrations of 

Th(IV), the formation of Th(OH)4(am) as a colloidal precipitate can be reasonable in many of 



 
32 

the performed experiments. Nonetheless, the authors did not document any experimental 

effort to account for the formation of such species throughout their investigations. As it was 

pointed out by [98], the most serious limitation of the study is the data interpretation itself. 

The authors evaluated their results, assuming the formation of Th(ISA)n
4-n species, by 

neglecting the hydrolysis of Th(IV), which then led to the large overestimations of the 

corresponding stability constants. As a consequence, the representation of the solubility data 

of ThO2(am,hyd) in the function of [ISA]tot or pHc with the model proposed by [101, 102] 

results in large deviations by several orders of magnitude from the data, presented in [98] or 

[92]. The reevaluation of the liquid-liquid extraction data, carried out by [98], through the 

calculations of the distribution factors for Th(IV) showed, that the proposed speciation model, 

along with the determined stability constants not only describes their data, but it also provides 

an equally good representation of the extraction results within the given uncertainties. 

Vercammen and co-workers [71, 99, 100] investigated the sorption of the Th(IV) onto 

different materials (feldspar, polyallomer, BioRad resin) in the presence of ISA (10–8 – 

10-2 M), at pHc = 10.7 – 13.3 (at I = 0.3 M). (Similar experiments in the presence of Ca were 

also conducted within the abovementioned studies, those are discussed separately in Section 

1.3.4.2.2.) The authors, based on the slope analyses of their sorption data (logRd vs. 

log[ISA] tot), proposed the formation of only one complex in their experiments with the 

formula Th(OH)4(ISA)–. Due to the lack of data at [ISA]tot > 10–3 M, formation of higher ISA 

complexes cannot be confirmed. Gaona et al. pointed out, that the thermodynamic model, 

published by Vercammen and co-workers [100], gives a systematic overestimation on the 

effect of ISA on Th(OH)4(am) solubility at pHc = 12 [12]. An unequivocal explanation for the 

observed inconsistency could not be assigned. However, with regard to the relatively low 

applied total concentrations of Th(IV) (in the range of 1.2 – 1.6·10–13 M) and the possibility of 

the inefficient separation of the solid-liquid phases, together with the allowed rapid 

equilibration times (3 days), sorption data can be affected by relevant uncertainties. Further 

discussion and comparison of the findings, obtained by solubility and sorption studies on the 

Th(IV)-ISA system is out of the scope of the current work. 

 

1.3.3.5 Ca(II)–Th(IV)–ISA 

The available thermodynamic data on An(IV)-ISA-Ca(II) ternary systems are limited to the 

case of Th(IV) and are based mostly on sorption experiments [100, 103-105], whilst only a 

single work [59] reported solubility results on the system. 
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Vercammen and co-workers [100] investigated the sorption of 234Th(IV) onto different 

materials (feldspar, polyallomer, BioRad) in the presence of ISA (10–8 – 10–2 M) and Ca(II) 

ions (7·10–4 – 1.8·10–3 M) in the pH-range of 10.7 – 13.3 (at I = 0.3 M, NaClO4). The authors 

reported the formation of the notably stable quaternary complex CaTh(OH)4(ISA)2(aq). The 

equilibrium constant determined in their study [100] was later re-calculated in [12] 

consistently with a more recent thermodynamic data for Th(IV) hydrolysis equilibria reported 

in the work of Altmaier and co-workers [106]. 

Tits, Wieland and co-workers [103, 105] investigated the sorption of 228Th(IV) onto calcite 

and hardened cement paste in the presence of ISA and α-D-gluconate (GLU). Experiments 

were conducted with artificial cement porewater (pH = 13.3; [Ca]tot ~1.6·10–3 M). Special care 

was taken to avoid the formation of colloidal species, and the possible sorption of ISA/GLU 

onto the solid phases was thoroughly evaluated. Due to constant pH and [Ca]tot used in their 

experiments, the authors could not evaluate the stoichiometry of the Th(IV)–ISA complex 

forming, but assumed the predominance of the complex CaTh(OH)4(ISA)2(aq) as previously 

proposed by Vercammen et al. [100]. (As a sidenote: Tits, Wieland and co-workers proposed 

the formation of an analogous, quaternary complex with GLU.) One of the main 

inconsistencies with the model reported [105] on the Ca(II)-Th(IV)-OH-ISA system is in 

connection with the comparison of the prevailing species in solution with the initial 

assumptions and the experimental parameters applied. Under the conditions investigated (pH 

= 13.3, 10-6 M < [ISA] tot < 10-3 and [Ca]tot = 1.6·10-3 M), the authors evaluated their Th(IV) 

sorption data by disregarding the formation of the Th(IV)(OH)4ISA- species previously 

reported by Vercammen et al. [100]. Using the combination of the thermodynamic constants 

(based on all the sorption studies performed by the PSI team) the dominating species under 

the conditions of interest is predicted to be indeed, the Th(IV)-OH-ISA species. In this 

context, the thermodynamic model and data reported by Tits et al. [105] are affected by 

relevant uncertainties. 

Randall and co-workers [59] performed solubility experiments with ThO2(am) in the presence 

of ISA and porewater at pH ≈ 9 and 12 previously equilibrated with Ca(OH)2(s). 

Unfortunately, the authors did not report [Ca]tot after the corresponding equilibration with 

Ca(OH)2(s), and thus this parameter remains ill-defined in the evaluation of their results. 

Slope analysis of their solubility data indicated the formation of a complex with Th(IV):ISA 

ratio of 1:2. The calculation of the solubility of ThO2(am) using the equilibrium constant 

reported in the work of Vercammen et al. [100] for the complex CaTh(OH)4(ISA)2(aq) 

resulted in a large overestimation of the experimental observations. It is also unclear which 
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Ca(II) total concentrations were used in the given study for such calculations [59]. In a similar 

context but using GLU instead of ISA, Colàs [107] reported a similar impact of GLU in the 

solubility of Th(IV) in the absence and presence of Ca(II), thus challenging the detection of 

quaternary Ca(II)–Th(IV)–GLU complexes previously reported in the study of Tits and 

co-workers [105]. For the stability constant of the Ca(II)–Th(IV)–GLU species, Colàs [107] 

derived an upper limit value which is in good agreement with independently determined value 

of Tits et al. [105], as later recalculated by Gaona et al. [12]. However, analogous 

investigations with ISA are missing from the work of Colàs et al. 

The possible formation of quaternary complexes Ca(II)–An(IV)–ISA has relevant 

implications in the context of L/ILW disposal, where large amounts of ISA (through cellulose 

degradation) and Ca(II) (through cement materials) are expected. Thermodynamic 

calculations using data on the quaternary complex CaTh(OH)4(ISA)2(aq) reported by 

Vercammen and/or Tits, Wieland and co-workers [100, 103-105] result in a significant 

enhancement of the solubility of Th(IV) in cementitious environments. The possible 

formation of analogous complexes with other An(IV) is thus expected to have important 

implications in the source term of key radionuclides such as Pu. However, the sparse 

experimental data available, and the controversial results reported by different studies, 

represent a call to cautiousness. Further experimental studies are needed before making any 

definitive claim on the relevance of such, analogous quaternary complexes involving other 

tetravalent actinide ions. 

 
1.3.3.6 Ca(II)–An(III)/Ln(III)–ISA systems 

The interaction of trivalent actinides and lanthanides with ISA was investigated in a number 

of experimental studies [57, 59, 100, 103, 105, 108]. 

Analogously to the studies with Th(IV), the PSI team performed sorption experiments with 

different solid materials (feldspar, polyallomer, BioRad resins and calcite) to evaluate the 

interaction of ISA with 152Eu(III) and 241Am(III) under alkaline to hyperalkaline pH 

conditions, both in the absence and presence of Ca [57, 100, 103, 105]. Although the chemical 

model for Eu(III) under alkaline conditions and absence of ISA was different in [57],[100] 

(predominance of Eu(OH)4
–) and in [105] (predominance of Eu(OH)3(aq)), experimental 

sorption data for Eu(III) in all these studies were in moderate agreement and indicated the 

predominance in solution of the complex Eu(OH)3ISA–. Tits and co-workers conducted 

analogous sorption experiments with Am(III). Experiments were only conducted at pH = 

13.3, and thus the authors assumed the formation of a complex with the same stoichiometry as 
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for Eu(III), Am(OH)3ISA–. Due to the poorer statistics of the results compared to those with 

Eu(III), the reported equilibrium constants was considered to be only a first estimate. 

Equilibrium constants reported in [105] for the formation of the complexes Eu(OH)3ISA– and 

Am(OH)3ISA– are summarized in  Table 2. 

The possible formation of ternary Ca(II)–An(III)/Ln(III)–ISA complexes under alkaline to 

hyperalkaline pH conditions (10.7 ≤ pH ≤ 13.3) was also evaluated in [100] and [105] 

considering 1.8⋅10–3 M ≤ [Ca] ≤ 1.0⋅10–2 M. Within these boundary conditions, the authors 

found no experimental evidence on the participation of Ca(II) in the complex formation of 

ISA with Eu(III) or Am(III). 

Zhernosekov and co-workers determined the step-wise equilibrium constants for the 

formation of Tb(III)(L)x complexes at pH = 7.0 (L = glycolate, GLU or ISA) using an 

electromigration technique [108]. Experiments were performed in 0.10 M NaClO4 with 

1.0⋅10–6 M ≤ [ISA] ≤ 1.0⋅10–2 M. The authors (correctly) assumed that unhydrolyzed Tb3+ 

prevailed at this pH, and proposed the formation of the complexes TbISA2+, Tb(ISA)2
+ and 

Tb(ISA)3(aq) based on the fit of the measured ion mobility. Only three experimental points 

were collected within 10–3 M ≤ [ISA] ≤ 10–2 M, although the thermodynamic model derived 

indicates the predominance of Tb(III)–ISA complexes stricktly above [ISA] = 10–3 M. This 

suggests a strong overparametrization of the fit by [108], and thus the reported 

thermodynamic model is disregarded in this work. 

Randall and co-workers conducted oversaturation solubility experiments with Eu(III) under 

alkaline to hyperalkaline pH conditions in the presence of ISA and Ca(II) [59]. Preliminary 

solubility experiments at pH = 12 in the absence of ISA resulted in log [Eu(III)] between –4.5 

and –7, clearly indicating the predominance of colloidal Eu(III). The tendency of Ln(III) to 

form colloids when approaching solubility from oversaturation conditions is well-known. 

Addition of ISA (10–4–10–2 M) to the system resulted in a slight increase of the solubility at 

the highest ISA concentration. However, because of the large dispersion of the acquired data 

(both in absence and presence of ISA) and the expected predominance of Eu(III) colloidal 

species in solution, any quantitative interpretation of this study is disregarded in the present 

work. 
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Table 2. Speciation scheme and corresponding equilibrium constants, according to 

Equation (23), reported by various authors for Ln(III)/An(III)/An(IV)-ISA complexes, forming 

under alkaline conditions (see text for more details). 

Species 
log*β° (I → 0, 298.15K) 

Pu(IV) Np(IV) U(IV) Th(IV) Eu(III) Am(III) 

M(OH)3(ISA)–     –(20.9 ± 0.2)i, –(21.4 ± 1.0)i, 

M(OH)4(ISA)– 
–(3.8 ± 1.6) 

a,b, 
(4.06 ± 0.62) 

a,c, 
–(6.8 ± 0.9) 

a,d, 
–13.20e, 

–(11.5 ± 1.5)a,f, 
  

M(OH)4(ISA)2
2– 

(0.4 ± 1.1) 
a,b, 

–(2.20 ± 0.62) 
a,c, 

–(4.9 ± 1.0) 
a,d, 

–10.40e, 
–(11.2 ± 1.5)a,g, 

  

CaM(OH)4(ISA)2(aq)    –(4.0 ± 0.4)a,f,h,i,   

a, revaluated in [12]; b, [78, 91]; c, [72]; d, [97]; e, [107]; f, [100]; g, [95]; h, [103]; i, [105] 
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1.3.4 Literature overview of experimental studies on cement-An(IV)(-ISA) systems 

This section is intended to give an overview of available literature data on the system cement-

Pu(IV)(-ISA) system. A special emphasis is given to the experimental details of the discussed 

studies in order to gain useful insights in the development of the experimental program in this 

PhD thesis. 

Data available on the binary system cement-An(IV) are shortly discussed in Section 1.3.4.1, 

including recommended distribution ratios. Concerning the ternary system, the so far 

available literature work is found to be scarce, except for the case of Th(IV). The only study 

reported on the cement-Pu(IV)-ISA system is separately discussed in Section 1.3.4.2.1. More 

attention was dedicated to discuss the sorption reduction effect of ISA on Th(IV) uptake by 

hydrated cement phases. The available literature data on the system are summarized in 

Section 1.3.4.2.2. 

 
1.3.4.1 Cement–An(IV) system 

Tetravalent actinides are in general strongly sorbed by hydrated cement phases. The most 

important interacting cementitious solid phase, responsible for the uptake of An(IV) is the 

amorphous C-S-H phase [13, 50, 109]. Quantitatively, the sorption process is expressed, 

through the detection of the loss of radionuclide from the solution in terms of (solid-to-liquid) 

distribution ratios (Rd in dm3kg–1 or in m3kg–1), as in Equation (25). Rd values depict the 

partitioning of the nuclide between the cement porewater and the cementitious material: 

 

Rd = [An(IV)] sorb / [An(IV)] eq
 , (25) 

 

where the [An(IV)]sorb is the molar amount of the sorbed actinide ion per unit mass of cement 

and [An(IV)]eq is the equilibrium concentration of An(IV) in the porewater in molar units. 

Although the majority of the published sorption studies on cement-An(IV) systems do not 

report any specific information on the mechanism of the process, the fast kinetics together 

with the reversibility of the sorption reaction (as it is suggested for Th(IV) [110]) could be 

potential indications for the control by surface equilibria. 
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In the context of cement-An(IV) sorption studies, the following equilibria have influence on 

the experimentally measured Rd values: 

 

1. Precipitation processes (precipitation or surface precipitation as a separate, pure solid phase 

and co-precipitation with other metal ions) 

2. Solid-solution formation (lattice incorporation or diffusion into a present solid phase) 

3. Adsorption onto available surfaces (physisorption, chemisorption) 

 

If precipitation and solid-solution formation can be excluded via experimental findings, 

distribution ratio is equal to the distribution coefficient, Kd, which in this case represents 

purely the adsorption equilibrium between the solid and liquid phases in the system. The 

evolution of the sorption process is also proven to be relevant to the net effect of the hydrated 

cement phases, since subsequent to a fast adsorption process onto the surface sites, partly 

through solid phase re-crystallization processes, metal cations can also be taken up into the 

structure of the C-S-H phases. Recent studies revealed clear evidences for the uptake of 

trivalent (Eu3+) [111] and tetravalent (Np4+) [112] actinides by structural incorporation into 

the C-S-H phases. 

The uptake of plutonium by HCP is influenced by the degradation stage of the cement (and 

the chemical conditions prevailing within the porewater) and also by the oxidation state/s of 

Pu. Under the boundary conditions of interest in this PhD thesis, Pu(IV) is expected to be the 

predominating state of Pu with minor contributions of Pu(III). Concerning the high alkalinity 

in porewater solutions, given that the solubility of Pu under the anticipated conditions is very 

low (log [Pu]tot ~ -10.83), the exclusion and the assessment of the potential Pu(OH)4(am) 

phase precipitation in the course of sorption studies is a critical experimental point. 

The available literature data on the cement-Pu(IV) system is very limited. A closer inspection 

of these studies reveals that either of them has applied redox-buffering agents within the 

executed experiments, thus, the contribution of other redox states of Pu to the quantified 

distribution ratios cannot be fully ruled out. 

For the sake of consistency, considering the different review works on cement-An(IV) 

sorption studies provided in the literature [13, 50, 85, 109, 113], the most recent, 

comprehensive work of Ochs et al. [50], together with the references therein has been taken as 

the reference study. 

Ochs and co-workers critically reviewed the available sorption data for Pu in the presence of 

different cementitious materials (crushed concrete, CEM I, CEM V-type HCP, OCP, C-S-H 
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phases, Nirex reference vault backfill material: NRVB, Ettringite and other minor crystalline 

phases) with regard to the different states of cement degradation (I to III). The authors also 

took into account crucial experimental details such as the potential appearance of 

precipitation, colloid formation, application of different filtration methods, prevailing redox 

conditions, etc. In their work, selected, averaged Rd values for Pu(IV) sorption on cement 

phases at degradation stages I to III are also provided, which are found to be in good 

agreement with the estimates of previous reviews [13, 109]. The most relevant aspects 

concerning the cement-Pu(IV) system discussed by Ochs et al. are as follows: 

 

1. Stage I: The similar sorption behavior for Pu(IV) in analogy with Th(IV) across the 

entire pH-range of interest (pH ~ 8 – 13.5) was not supported by the summarized data, 

where the reported Rd values [114, 115] corresponding to Pu(IV) uptake by HCP at 

state I (pH ~ 13.5 – 12.6) were systematically lower than for state II and III. Hence, 

the Ochs and co-workers selected a conservative Rd value of 5·103 dm3kg-1 for this 

stage of cement degradation. 

2. For stages II and III, based on the analysis of the available sorption data, one single Rd 

value was assigned. This unified value is in line with the constant aqueous speciation 

of Pu(IV) within the pH-range (pH ~12.6 – 9), provided also that for other tetravalent 

actinides the same tendency was observed. Nevertheless, in view of the high scatter 

within the literature data, an uncertainty of 1.5 orders of magnitude was associated to 

the best estimate value of 3·104 dm3kg-1 in the work of Ochs et al. [50].  

 

In contrast to the above listed values, Wieland et al. provided a higher value with Rd = 105 

dm3kg-1 for An(IV) uptake by HCP for all the three stages of the degradation process, based 

on the analogy with the Th(IV) system [13]. 

It can be considered as clear experimental evidence that Pu(IV) sorption onto hydrated cement 

phases is the strongest at Stages II and III of the cement degradation process. However, in 

view of all the available experimental data, the Rd values typically detected in the range of 

pH = 12 – 12.6 particularly show a huge variation. The values at pH ~12.6 determined by 

Bayliss et al. for Pu(IV) sorption on cement with different compositions and NRVB material 

[116, 117], were found to be strongly influenced by the applied phase separation methods: 

derived Rd values increased when a filtration step was also performed and a further, large 

increase (from 103 to 7·104 dm3kg-1 on NRVB) was identified when the pore size of the used 

filter was decreased from 5 µm to 30’000 Da MWCO [116]. In comparison, significantly 
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higher Rd values (3·105 dm3kg-1) were obtained by Aggarwal et al. for Pu(IV) sorption on 

OPC blends and C-S-H phases in the pH-range of 12.2 – 12.6 [118]. The authors also 

concluded that the sorption of Pu(IV) on HCP is mainly due to the sorption on C-S-H phases. 

In accordance with the values of Aggarwal et al., Pointeau and co-workers also reported a 

stronger uptake of Pu(IV) by hydrated CEM I-type cement pastes for a broad pH-range (10 – 

12) [119]. In spite of this, as the phase separation method is not indicated in their work and 

the applied S:L ratios were also low (0.5 gdm-3), reliability of their determined distribution 

ratios (laying within the Rd = 104 – 106 dm3kg-1 range, ~ 8·104 dm3kg-1 at pH = 12.4) is 

questionable. 

Sorption of Pu (and Am) onto a series of repository, backfill and geological relevant materials 

(including OPC based concrete and mortar) was studied in the context of the Rokkasho-Mura 

site by Baston et al. [120]. The authors performed additional experiments to investigate the 

impact of organic ligands (ISA among them) on the system (see Section 1.3.4.2.1 for related 

discussions on the ternary system). Batch experiments were prepared at S:L = 20 or 200 gdm-3 

using the crushed and sieved material (< 250 µm) with porewater solutions (generated by pre-

equilibrating the concrete or mortar powders with synthetic groundwater, resulting in pH = 

12.2 with [Ca]tot = 2 mM or pH = 12.4 with [Ca]tot = 8 mM, respectively). Solutions were 

spiked with a stock solution of 236Pu to reach a total Pu concentration of (5 ± 1)·10-12 M. 

Initial redox state of Pu was not reported by the authors (presumably +4 was dominating), and 

just as in all other studies, no buffering agents were applied and the valence state of Pu was 

not assessed either. Prior to quantification (method not indicated) a centrifugation and a 

filtration step was also performed (through a 0.45 µm and in some cases through a 30’000 Da 

MWCO filter as well). Reported Rd values for cement and concrete at 20 gdm-3 S:L ratio for 

both pH conditions were significantly higher (1.4 – 6.4·106 dm3kg-1) than the results of 

previously published studies. Sorption processes were interpreted using an equilibrium diffuse 

layer model in combination with a surface complexation model. In the absence of Pu, at high 

pH values and Ca(II) concentrations, the authors assumed the formation of three calcified 

silanol surface-species on the C-S-H phases. The related parameters were fitted during the 

modelling exercise. Surface equilibria for Pu was adapted from a former, unpublished work 

by the same authors. It was based on the experimentally measured Eh values in the system (as 

the experiments were performed under non-reducing conditions) and assumed the generation 

of a mixed Ca(II)-Pu(V)-surface complex, forming between the Pu(V)O2(OH)2
– species and 

the positively charged, calcified silanol groups, as expressed in Equation (26). 
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>SiOH + 2 Ca2+ + Pu4+ + 6 H2O ↔ >Si(OCa)2OHPuO2(OH)2 + e– + 9 H+ (26) 

 

The surface density of available sites were adjusted to give a good representation of data 

obtained in concrete and mortar equilibrated systems at 200 gdm-3 S:L ratios. Calculated Rd 

values (3.8·106 dm3kg-1 at pH = 12.2 and 6.9·106 dm3kg-1 at pH = 12.4) were found to be in 

relatively good agreement with the experimental data. Nonetheless, the assumptions 

considered in the modelling exercise were not supported by any experimental characterization 

results and the in-solution oxidation of Pu(IV) with the subsequent surface complexation 

involving the Pu(V)O2(OH)2
– species could not be explained either. Thus, the basis of the 

comprehensive modelling attempt and its justification cannot be taken as reliable. Since redox 

potentials were not assessed systematically during the sorption experiments with Pu, the 

expectedly faster and stronger sorption of Pu(IV) onto the available C-S-H phases could have 

possibly taken place rather than sorption of Pu(V) with its lower effective charge. On the 

other hand, the nature of the uptake process (assumed to be a rapidly reversible surface 

sorption) was not underlined either by any experimental evidence. This is again strongly 

questionable in the context of the available mechanism for Np4+ sorption onto C-S-H phases, 

where irreversible sorption was stated? [112]. Considering the lack of experimental details, 

data provided by Baston et al. can only be taken as orientative estimates. 

 Figure 4 shows an overview on recommended Rd values for Pu(IV) (An(IV)) sorption onto 

various cementitious materials as function of the cement degradation stages. In view of all 

available data, the value of approximately 105 dm3kg-1 reported by Wieland et al. [13, 113] for 

stage II seems to represent a realistic average. 
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Figure 4.  Reported data on distribution ratios for Pu(IV)/Th(IV) uptake by various hydrated 

cement phases with regard to the state of the cement degradation process. 

 

1.3.4.2 Cement–An(IV)–ISA systems 

Complexing ligands in general could cause several processes that will influence positively or 

negatively the (ad)sorption of radionuclides onto hydrated cement phases. These processes 

can occur separately, but (likely) also simultaneously: 

 

1. Complex formation in the aqueous phase 

2. Formation of mixed ligand-radionuclide-surface complexes 

3. Non-competitive adsorption of the ligand onto available surface sites  

4. Competitive adsorption of the ligand onto available surface sites 

5. Surface precipitation of the ligand onto the available solid-liquid interfaces 

6. Precipitate formation of the ligand with the radionuclide 
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Concerning the above raised points and the currently available literature data, the impact of 

ISA on radionuclide uptake by cementitious materials is mostly limited to complex formation 

with cationic radionuclides in the aqueous phase (causing reduction in the associated Rd 

values). As for anionic species, Pointeau et al. demonstrated that the adsorption of ISA onto 

C-S-H phases is a competing reaction to the adsorption of SeO3
2- in cement paste suspensions. 

This implies that the adsorption processes of the two negatively charged species take place on 

the same type of surface sites on the C-S-H phases. 

Literature data on the Cement-An(IV)-ISA systems are almost completely constrained to 

studies dealing with Th(IV) (see Section 1.3.4.2.2 for the discussion of these data). The only 

work involving other tetravalent actinide than Th(IV) (with Pu) was published by Baston and 

co-workers [120]. 

 

1.3.4.2.1 Cement–Pu(IV)–ISA system 

Prior to their investigations with ISA, Baston et al. assessed the sorption of Pu(IV) onto the 

crushed and sieved (OCP based) hydrated concrete and mortar powders at highly alkaline pH 

and various S:L ratios [120]. (for further details see Section 1.3.4.1) Under analogous 

conditions, Baston et al. also conducted identical sorption experiments in the presence of ISA 

with a total ligand concentration of 2·10-3 M to study the effect of the ligand on the uptake of 

Pu by different materials. Detected Rd values on concrete (quantified after performing 

centrifugation and filtration steps) were found to be significantly decreased by the ligand, to 

the level of Rd = 68 – 190 dm3kg-1 under highly alkaline conditions with pH ~ 12.4. These 

results indicate a large sorption reduction factor (Fred), as expressed in Equation (27) for ISA 

with an approximate value of ~ 2·104 (at 20 gdm-3 and [ISA]tot = 2·10-3 M) on Pu(IV) uptake 

by the hydrated concrete powder: 

 

Fred = Rd,in / Rd,ISA
 , (27) 

 

where Rd,in·is the determined distribution ratio for Pu in the absence of ISA and Rd,ISA is the 

value collected under identical conditions with the presence of ISA in porewater (at [ISA]tot = 

2·10-3 M). 

Data interpretation was attempted using of the formerly established DLM with SCM models 

(validated in the absence of ISA), involving an additional complexation equilibrium for Pu(V) 

interaction with ISA in solution, as expressed in Equation (28): 
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Pu4+ + ISA– + 2 H2O ↔ Pu(V)O2ISA–2H
2– + 6 H+ + e– (28) 

 

The overall stability constant related to Equation (28) was fitted during the modeling exercise 

of the sorption data. Calculated Rd values were in good agreement with the experimentally 

determined ones. Just as in the absence of ISA, redox potentials in the solution were not 

measured and the redox state of Pu was not characterized either at any stage of the sorption 

experiments with the ligand. In this respect, possible contributions of Pu(IV)-ISA species to 

the quantified total Pu-contents in solution cannot be excluded (and should even be expected). 

Hence, the reliability of the established surface complexation model and its applicability 

under any conditions other than the investigated ones is highly uncertain. Regardless of the 

latter observation, Baston et al. demonstrated the strong sorption reduction capabilities of ISA 

towards Pu, providing experimentally determined Rd values and sorption reduction factors for 

the ligand under highly alkaline conditions in the presence of (OPC based) crushed concrete 

material. 

Important to note that the derived Fred values for ISA at the applied [ISA]tot = 2·10-3 M 

concentrations are close to the sorption reduction factors reported by Bradbury et al. (Fred = 

2·104 at [ISA]tot = 10-3 M) calculated using the model for the Pu(IV)-OH-ISA system 

provided by Moreton and Greenfield et al. [91-93], under reducing conditions related to the 

state II of cement degradation process [85]. This points out the possible predominance of 

Pu(IV)aq/sorb species throughout the experiments performed by Baston et al. and again strongly 

questions the reliability of the established model involving the presence of Pu(V)aq/sorb 

species. 

 

1.3.4.2.2 Cement–Th(IV)–ISA system 

One of the first studies on the cement-Th(IV)-ISA system was reported by Holgersson et al. 

[121]. Within their work, the authors investigated the impact of ISA (in pure form and also 

within cellulose degradation leachates) on Cs(I), Ni(II), Pm(III) and Th(IV) sorption onto and 

diffusion into hydrated cement pastes. A synthetic fresh concrete porewater was prepared by 

dissolving NaOH, KOH in Milli-Q water and saturated with portlandite to set the Ca(II) total 

concentration in solution at a constant level (4·10-5 M). Sorption batch experiments were 

prepared (under N2 atmosphere) using a crushed and sieved ordinary Portland cement powder 

(with the average size fraction of d = 63 – 125 µm) at a constant S:L ratio of 50 gdm-3. A 

pre-equilibration time of 3 months were allowed for the cement pastes with the synthetic 
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cement porewater before the supernatants were replaced with identical porewater solutions 

containing the radionuclides and the organic additives. The total concentrations of ISA in the 

porewater solutions were 3·10-3 M at pH = 13.40, 5·10-3 M at pH = 13.42 and 2.7·10-2 M at 

pH = 12.67, all with a final [Ca(II)]tot value below 10-5 M. Samplings were systematically 

performed up to a contact time of 3 months. Quantification of total radionuclide concentration 

in solution was assessed by liquid scintillation counting (phase separation method not 

reported). Rd values for Th(IV) uptake by HCP in the absence of ISA were found to be high 

(below the level of the detection limit, denoting Rd > 103 dm3kg-1). ISA appeared to have a 

significant effect on Th(IV) sorption onto HCP: Th(IV) total concentrations in solution with 

[ISA] tot = 2.7·10-2 M remained high throughout the entire sampling period, showing a 

constantly reduced Rd value (Rd = 10 – 20 dm3kg-1, Fred ~100) for the uptake by the hydrated 

cement pastes. 

The uptake of Th(IV) by HCP and various C-S-H phases in the presence of ISA at pH = 13.3 

(corresponding to state I of HCP degradation process, using the APW as discussed previously 

in Section 1.3.4.1) was reported in multiple studies by the PSI team [13, 57, 61, 104]. Before 

conducting the uptake studies with Th(IV), Wieland et al. also assessed the stability of HCP 

in the presence of ISA, to determine the dissolution of Ca-bearing hydrated cementitious 

phases with regard to the total ligand concentration in solution [104]. For sorption 

experiments with HCP, the average size-distribution fraction d < 70 µm (Brunauer–Emmett–

Teller surface area using N2 gas: N2-BET surface area = 46 ± 4 m2g-1) was applied at S:L 

ratios of 0.1 and 5 gdm-3 from the crushed and sieved cement solid phase (CEM I, 52.5 N 

HTS) and was let in contact with the filtered ACW, at pH = 13.3, I = 0.3 M (under controlled 

N2 atmosphere) in the presence of ISA with 10-5 M < [ISA] tot < 0.3 M. Analogous sorption 

experiments with synthetic C-S-H phases were also conducted by Wieland et al., investigating 

the effect of Ca:Si ratio on the uptake of Th(IV) [13]. These phases were also used in the 

course of experiments with ISA at 0.1, 1 and 10 gdm-3 S:L ratios. The stability tests with ISA 

and HCP were conducted at a slightly higher S:L ratio of 12.5 gdm-3. 

In order to avoid precipitation of ThO2(am,hyd), Th(IV) was introduced to the sample at a low 

initial total concentration (in the range of 10-11 – 10-8 M). Up to 1 month of equilibration time 

was allowed for all experiments. Quantification of Na, K, Ca, Al, Si and S total 

concentrations was performed by ICP-OES, whilst for assessing the 228Th(IV) total 

concentrations, gamma counting and LSC was applied after a phase separation via 

ultracentrifugation (at 95’000 g for 1 hour). Special care was taken during the quantification 
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of Th(IV)-content to account for the amount of the radiotracer sorbed on the walls of the 

storage vials. 

Wieland et al. showed [104] that the effect of ISA on the chemical composition of the 

porewater (concerning [Ca(II)]tot and pH) in contact with the OPC paste can be modelled by 

assuming portlandite solubility equilibrium together with the formation of Ca(II)-ISA-OH 

species in solution (for [ISA]tot = 10-5 M – 10-2 M, [Ca]tot was ranging from 1.6·10-3 to 

2.8·10-3 M). Based on a chosen limit of weight reduction for the HCP (∆max = 5 w/w%), the 

authors set the maximum “allowed” total ISA concentrations (to be applied for the sorption 

experiments) at 10-3 M with a S:L ratio of 0.1 gdm-1 and at 5·10-2 M with a S:L ratio of 5 

gdm-1. 

Sorption data collected in the HCP systems were indistinguishable from those of the 

experiments conducted with synthetic C-S-H phases, depicting the key role of C-S-H phases 

in the uptake process of tetravalent actinides. 

Th(IV) total concentrations in solutions were remarkably enhanced when 10-4 M < [ISA] tot 

was present in porewater. Thus, a “no effect concentration” of 10-4 M was assigned to ISA 

under conditions related to state I and II of the cement degradation process with regard to 

An(IV) uptake by HCP [13, 122]. Although Ca(II) total concentrations and pH conditions 

were different within the two studies, Rd values obtained by Holgersson et al. (especially for 

2.7 10-2 M [ISA] tot, pH = 12.67, [Ca(II)]tot < 10-5 M and S:L ratio = 50 gdm-3) were in good 

agreement with the sorption data of Wieland et al. [121]. However, the fading impact of ISA 

on Th(IV) sorption with increasing equilibration time at lower total concentration of the 

ligand (3·10-3 M at pH = 13.40, 5·10-3 M at pH = 13.42) cannot fit in the overall trend 

observed by Wieland and co-workers. The higher limit of detection for the measurement of 

[Th(IV)] tot performed by Holgersson et al. using LSC could serve as a reasonable explanation. 

Under the given conditions, Rd values higher than 103 dm3kg-1 were not quantifiable in their 

experiments and according to the dispersion of the data set reported by Wieland et al., these 

values are predicted to lie in the range of 0.5 – 50·103 dm3kg-1, which is then matching with 

the data of Holgersson et al. 

Wieland and co-workers, observed a rather fast kinetics for the process, i.e. [Th(IV)] tot in 

solution usually reached steady state value within 2 days, which hinted towards that the 

sorption reaction mainly involves surface equilibria. As a consequence, it was concluded that 

the uptake of Th(IV) and its complexation with ISA and Ca(II) in solution are counteracting 

reactions. Assuming the CaTh(OH)4(ISA)2(aq) complex as the only predominating species in 

solution, adapted from elsewhere [100, 103], the authors reproduced the reduction effect of 
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ISA on Th(IV) sorption in a semi-empirical way using a simplified sorption model, as 

expressed in Equation (29) [13, 104]. 

 

log Rd = log Rd,in·– log (1 + β’1,2,1·[Ca2+]·[ISA–]2·A–1·[H+]–4) , (29) 

 

where Rd,in is the initial distribution ratio, describing Th(IV) uptake by HCP in the absence of 

ISA, β’1,2,1·is the related stability constant of the solution species under the given condition 

(adapted from [103]) and the A term (denoted as the “side-reaction coefficient”) accounts for 

the hydrolysis of Th(IV) as shown in Equation (30): 

 

A = 1 + β’1,4 ·[OH–]4 , (30) 

 

where β’1,4 is the hydrolysis stability constant for the formation of the Th(OH)4(aq) species at 

the certain ionic strength. Considering the prevailing high pH condition in solution, deviation 

between the value of A and the free [Th4+] concentration is negligibly small. 

The presented simplified model in the form of Equation (29) is based on a representative Rd,in 

value and allows to quantify the reduction effect of the ligand on Th(IV) uptake by HCP, 

through the formation of solution species with high stability. Within their presented model, 

Wieland et al. did not implement the separate sorption of ISA onto the hydrated cementitious 

phases (which decreases significantly ISA equilibrium concentrations in solution at low 

[ISA] tot applied) and furthermore, the formation of Ca(II)-OH-ISA and the binary 

(Th(IV)-ISA) complex species were also neglected, i.e. [ISA–] was set equal to [ISA]tot 

(which again causes high deviations with regard to the existing free concentrations of 

Ca2+(aq) and ISA– ions). 

Collected Th(IV) sorption data with ISA and HCP was able to be successfully modelled by 

Equation (29), only when the initial Rd,in was set to 6·106 dm3kg-1 (as supported by uptake 

measurements carried out at a S:L ratio of 0.01 gdm-3). Conversely, using Rd,in with a value of 

3.5 105 dm3kg-1, quantified in the ISA-free systems at S:L ratio = 0.10 gdm-3, the sorption 

reduction effect of ISA was overestimated by one order of magnitude with increasing [ISA]tot 

in solution. As the sorption studies on Th(IV) uptake by C-S-H phases also suggested the 

lower Rd,in value to be used within the model, the authors described such deviations by a 

potential surface complexation reaction. The reaction supposedly involves Th(IV) and ISA, 

additionally delimiting the dissolution of Th(IV) [104]. 
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Felipe-Sotelo and co-workers also studied the effect of ISA (within generated cellulose 

degradation products) on Th(IV) uptake by NRVB material and also separately by its 

individual components: OPC, limestone and hydrated lime [123]. Porewater was generated by 

equilibrating the powdered NRVB material with deionized water at S:L ratio = 20 gdm-3 for 8 

days. Ca(II) total concentration was determined to be (8.7 ± 0.1)·10-3 M and pH = 12.8 – 12.9. 

Cellulose degradation leachate was prepared by mixing deionized water with cut-up Kimwipe 

tissues and powdered NRVB material in a stainless steel canister and put as closed in a 

heating-oven for 30 days at 80 °C. The amount of ISA within the CDPs were quantified to be 

1.5·10-3 M. The yielding leachate had a similar final chemical composition as the porewater 

itself: pH = 12.7 – 12.8 and [Ca]tot = (8.6 ± 0.2)·10-3 M. 

Sorption experiments were performed at a S:L ratio of ~ 2.4 gdm-3 by mixing the porewater or 

the CDP leachate with crushed and sieved (average size fraction of d = 250 – 500 µm, 

N2-BET surface area = (17.07 ± 0.12) m2g-1) NRVB material which was followed by the 

addition of the radionuclide (Th(NO3)4). An equilibration time of 8 days was allowed for all 

sorption experiments. Total concentrations of Th(IV) were quantified by ICP-MS after a 

filtration step (0.22 µm membrane). 

As the individual sorption data of CDP leachates with the NRVB material did not show any 

distinct trend, the authors did not account for the loss of ISA in the subsequent experiments. 

Th(IV) sorption data showed significant retention in the presence of OPC and NRVB material 

as well with Rd ~ 6·106 dm3kg-1 and 4·106 dm3kg-1, respectively. However, observations 

revealed that the main sorbing solid phase within NRVB is the OPC and the other 

constituents: limestone flour and hydrated lime simply dilute the effect of the latter phase, 

causing a slightly lower uptake for Th(IV). CDPs appeared to have only a small impact on 

Th(IV) sorption onto OPC and NRVB material with newly detected Rd values of 1.9 – 

3.7·106 dm3kg-1. These determined distribution ratios (depicting a sorption reduction effect of 

Fred ~ 2) at the given [ISA]tot = 1.5·10-3 M for Th(IV) uptake by OPC are found to be 

significantly differing from the values previously reported at [ISA]tot = 10-3 M with Rd ~ 

103 dm3kg-1 (Fred ~ 100) [104] and also from the data provided by Holgersson et al. at 

[ISA] tot = 2.7·10-3 M with Rd ~ 20 dm3kg-1 (Fred  ~100, not well-defined) [121]. An 

unambiguous explanation for the observed discrepancies was not provided by Felipe-Sotelo 

and co-workers. 
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In the general context of studies on cement-An(IV)-ISA systems, dealing with radionuclides 

strongly sorbing onto HCP with simultaneously occurring stable complex formation 

reaction(s) in solution, it can be concluded that the experimental window for the assessment 

of such a system is rather narrow [13]. It is found to be limited by many constraints, such as: 

 

1. Maximum quantifiable Rd,in in the absence of the ligand. This is influenced by the 

maximum total initial concentration of the radionuclide to be introduced into the 

system (hereafter denoted as [An(IV)]in) as well as by the performed phase separation 

method coupled with the detection limits of applied analytical techniques. 

2. Optimum total ligand concentration and S:L ratio to be applied, without affecting the 

composition of HCP and still maintaining the free concentration of the ligand at a 

considerably high level (i.e. sorption of the ligand onto HCP shall not be too extensive 

or it has to be accounted for under identical conditions as in the ternary system) 

3. Solubility of the An(IV) under the given conditions. This sets the theoretical 

maximum value of [An(IV)]in in order to assess Rd values which are purely related to 

sorption (reduction) processes. (It is also important that below saturation level, surface 

precipitation can be still witnessed.) 

4. Allowed equilibration time. Whilst the sorption processes of tetravalent actinides onto 

HCP are kinetically fast reactions, complexing ligands tend to prohibit and slow down 

this reaction. 

 

The final interpretation of sorption data collected for Cement-An(IV)-ISA systems, as shown 

by the literature data on the Th(IV) uptake studies, strongly relies on the solution speciation 

scheme applied for the Ca(II)-An(IV)-OH-ISA system as well as it is also highly dependent 

on the correct assessment of the binary sorption equilibria with regard to the Cement-An(IV) 

and Cement-ISA systems. 
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1.4 Definition of Objectives 

This study aims at providing a fundamental and quantitative description of the system cement-

Pu-ISA under conditions relevant in the context of nuclear waste disposal. Performed 

experiments were either solubility- or sorption-type of investigations. The study is 

conceptualized following a bottom-up approach, starting with a redox study on Pu, building-

up with the binary system Pu-ISA (in absence and presence of Ca(II)), and concluding with 

the ternary system Cement-Pu-ISA, where the lessons learnt in steps I and II are implemented 

(and strictly necessary) in the interpretation of the results: 

 

1. Solubility and redox behavior of plutonium in alkaline, reducing aquatic systems 

(Chapter 3.1): 

This part of the study aims at reducing uncertainties affecting the redox chemistry and 

solubility of Pu under reducing, alkaline conditions. A special emphasis is given to the 

characterization and assessment of Pu redox states in aqueous phases as well as within the 

solubility controlling solid phases. As a very important milestone of this part of the PhD, 

this solubility study intends to set the proper baseline for the interpretation of later 

solubility experiments in the presence of ISA.  

 

2. Solubility, speciation and redox chemistry of Pu in the presence of ISA under 

reducing, alkaline conditions (Chapter 3.2): 

The solubility of Pu in the presence of ISA was investigated under reducing, alkaline 

conditions in a comprehensive approach including the systematic variation of pHm and ISA 

concentration. In combination with extensive solid phase characterization and DFT 

calculations, this study aimed at providing realistic Pu solubility upper limits in the 

presence of ISA under repository-relevant conditions and, further, to derive chemical and 

thermodynamic models for the system Pu3+–Pu4+–Na+–ISA––Cl––OH––H2O(l). Because of 

the direct implications in this solubility study, but also considering its relevance in the 

context of waste disposal, the stability of ISA in alkaline, reducing solutions was evaluated 

using different techniques within a timeframe of 2 years. 

 

3. Solubility, speciation and redox chemistry of Pu in the presence of ISA and Ca(II) 

under reducing, alkaline conditions (Chapter 3.3): 

Building-on the solubility study targeted in the previous chapter, this study aimed at 

evaluating the impact of ISA on the solubility of Pu in the presence of Ca(II), i.e. under 
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conditions representative of cementitious systems. One of the main motivations is the 

possible formation of quaternary complexes Ca(II)–Pu(IV)–OH–ISA, which may 

importantly enhance the solubility of Pu and that have been controversially discussed in 

the literature for the analogue system with Th(IV). The final goal is the development of 

chemical and thermodynamic models for the system derive chemical and thermodynamic 

models for the system Pu3+–Pu4+–Na+–Ca2+–ISA––Cl––OH––H2O(l), which can be 

implemented in thermodynamic databases (TDB) and geochemical calculations within 

boundary conditions of relevance in the context of nuclear waste disposal (and in particular 

in the framework of cementitious systems).  

 

4. Uptake of Pu by cement in the presence of ISA (and Ca(II)) under reducing, alkaline 

conditions (Chapter 3.4): 

This study focused on the conditions simulating Stage II of the cement degradation 

process. Investigations were conducted in a step-wise approach: firstly targeting the binary 

systems Cement-Pu and Cement-ISA, and finally the ternary system Cement-Pu-ISA. 

Initial experiments on the Cement-Pu system were assigned to set the baseline for the 

uptake of Pu by the ordinary Portland cement phase. Sorption of ISA onto the cement was 

assessed separately with the aim of quantifying the concentration of ligand remaining in 

solution. 

Aside from the sorption experiments, the formerly derived thermodynamic model on the 

Ca-Pu-OH-ISA system was also tested by a newly conducted solubility experiment series 

in order to verify its validity range concerning the parameters related to Stage II of the 

cement degradation process. 

The evaluation and modelling of the Cement-Pu-ISA system benefitted from the 

quantitative descriptions and models set for the binary systems as well as from the 

thermodynamic model on the Ca-Pu-OH-ISA resulting from the comprehensive solubility 

study. A special emphasis was put on the reversibility of the observed sorption processes 

and also on the redox speciation of Pu prevailing in various systems. The final aim is to 

provide experimentally determined Rd values and accordingly calculated sorption 

reduction factors (Fred) representing the effect of ISA on the uptake of Pu by cement. Due 

to the complexity of the system investigated, this study targets the development of a semi-

empirical model describing the sorption of Pu in the presence of ISA under reducing 

conditions simulating stage II of the cement degradation process. 
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2 Experimental 

Experiments involving plutonium were performed in specialized α-laboratories within the 

controlled area of KIT–INE. All experiments were prepared, stored and executed in controlled 

gloveboxes at T = (22 ± 2) °C under Ar-atmosphere with O2 concentration below 2 ppm, 

except otherwise indicated. 

 
2.1 Chemicals 

All solutions were prepared with ultra–pure water purified with a Milli–Q apparatus 

(Millipore, 18.2 MΩ, 22 ± 2 °C) and purged for several hours with Ar before use. The Milli–

Q water used for the preparation of ISA stock solution was further boiled for several hours 

with simultaneous purging by Ar gas. C8H17NO3S (CHES; p.a.), diethyl–ether (C4H10O, p.a.), 

NaCl (p.a.), NaOH (Tritrisol), KOH (p.a.), HCl (Tritrisol), Na2S2O4 (> 87%), hydroquinone 

(p.a.), Propan-2-ol (> 99.9 %, for spectroscopy ®Uvasol) xylene (isomeric mixture, p.a.) and 

toluene (p.a.) were obtained from Merck. C4H11NO3–C4H11NO3·HCl (TRIS–TRIS·HCl; p.a.) 

and SnCl2 (p.a.) were purchased from Sigma–Aldrich. 1-phenyl-3-methyl-4-benzoyl-pyrazol-

5-one (PMBP) and Di-(2-ethylhexyl)-phosphoric acid (HDEHP) were obtained from Fluka 

(purum). Carbonate impurities in fresh 1.0 M NaOH (Titrisol) were quantified as (3 ± 1)·10–5 

M using a Shimadzu TOC5000 equipment. Ca(ISA)2(s) [CaC12H22O12] was purchased from 

Alfa Aesar. NaISA(s) was generated by an ion exchange method from commercial 

Ca(ISA)2(s) using an ion exchange resin (Chelex® 100, Na-form, Sigma Aldrich, analytical 

grade purity) and diethyl-ether (C4H10O, ACS reagent grade, VWR BDH Prolabo®). A 

detailed description of the synthesis, purification and characterization of NaISA(s) is provided 

in the Appendix (Section 5.2). The resulting NaISA stock solution applied throughout the 

present work as well was characterized as (0.16 ± 0.02) M NaISA at pHm = 8.9 with an excess 

of 0.18 M NaCl. 

The isotopic composition of Pu stock solution and solid phases applied in this study was 99.4 

wt. % 242Pu, 0.58 wt. % 239Pu, 0.005 wt. % 238Pu and 0.005 wt. % 241Pu. The use of the long-

lived 242Pu isotope (t½ = 3.75·105 a) avoids redox processes induced by radiolysis effects. 

Hydrated cement paste rods were obtained from the Swedish Nuclear Fuel and Waste 

Management Company (SKB). The specimens were casted from a mixture of Swedish 

structural Portland cement for civil engineering (CEM I 42.5N BV/SR/LA) and deionized 

water at a water-to-cement weight ratio of 0.5. Chemical composition of the cement as 

provided by the manufacturer is listed in  Table 3. 
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Table 3. Chemical characteristics of Swedish CEM I 42.5N BV/SR/LA 

 
 
2.2 Measurements of pH and Eh 

Combination pH–electrodes (type Orion Ross, Thermo Scientific), freshly calibrated against 

standard pH buffers (pH = 3 – 13, Merck) were used to determine the total free concentration 

of proton in molar (pHc = –log [H+]) or molal units (pHm = –log mH
+). In aqueous solutions of 

ionic strength Im ≥ 0.1 mol·kg–1, the measured pH value (pHexp) is an operational, apparent 

value related to mH+ ([H+]) by pHm = pHexp + Am (pHc = pHexp + Ac), where Am (Ac) is an 

empirical parameter including the activity coefficient of the proton (γH
+) and the liquid 

junction potential of the electrode for a given background electrolyte and ionic strength (and 

temperature, pressure). The empirical Am (Ac) values for NaCl were taken from the literature 

[124]. In NaCl–NaOH solutions with mOH– > 0.03 m, the H+ concentration was calculated 

from the given mOH– and the conditional ion product of water (K’ w) at the ionic medium 

concentration used in the experiments. The latter was calculated from the standard state 

constant (K°w) extrapolated by the SIT approach using the parameters from NEA-TDB 

compilations [9]). In general, experimental pH values related to solubility studies are provided 

in molal units as pHm, whilst in the course of the sorption part, these are displayed in molar 

units, denoted as pHc. 

The redox potential was determined with combined Pt or Au and Ag/AgCl reference 

electrodes (Metrohm). The measured potentials were converted to Eh (versus standard 

hydrogen electrode: SHE) by correcting for the potential of the Ag/AgCl inner-reference 

electrode with 3 m KCl and T = 22 °C (+207 mV). Eh values were finally transformed to the 

negative logarithm of electron activity, pe = –log ae
– according to Equation (31): 

 

Eh = –RT ln(10) F –1 log ae– , (31) 

 

where R is the ideal gas constant (8.31446 J·mol−1
·K−1), F is the Faraday constant (96485.33 

C·mol−1) and ae
– is the activity of the electron. Eh values of the solutions were collected 

following the protocol described by Altmaier et al. [125], which involved approximately 15 

Chemical 
formulation 

CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O SO3 ‘Cl’ 

w% 64 22.2 3.6 4.4 0.94 0.07 0.72 2.2 0.01 
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minutes of equilibration time. Sufficiently stable Eh readings were obtained in HQ− and in 

many of the Sn(II)-containing samples, when the absolute drift of the electrode was observed 

to be < 0.5 mV/min after the indicated time. The uncertainty of Eh values collected within 15 

mins of equilibration time ranged between ± 15 and ± 30 mV (calculated as 2σ of repeated Eh 

readings). Eh measurements in Sn(II)-buffered systems with pHm < 11 normally required 

longer equilibration times. This is mostly due to the sparingly soluble Sn(II)-oxides and -oxy-

hydroxides forming in these conditions[126] (SnO(cr), or Sn6O8H4(s) / Sn6O4(OH)4(s)), and 

the accordingly low Sn(II) total concentration in solution. For these critical samples, Eh values 

were collected repeatedly with increasing equilibration times (15 minutes, 1, 2 and 6 hours). 

Longer equilibration times resulted in significantly lower absolute drift of the redox potential 

(< 0.08 mV/min), leading also to clearly lower numerical deviations in the measured values 

(± 10 to ± 16 mV, calculated as 2σ of repeated Eh readings, see  Table 7 in Section 3.1.2.1). 

This was considered to be a satisfactory compromise between the accuracy of the Eh readings 

and the time-frame of the solubility experiments. 

 
2.3 Pu solubility experiments 

The solid phase, PuO2(am,hyd) used throughout the entire study was originally prepared at 

KIT–INE facilities in 2006 and stored to date under controlled Ar-atmosphere. The plutonium 

used for the preparation of the solid phase consists of an isotopic composition of 99.4 wt. % 
242Pu, 0.58 wt. % 239Pu, 0.005 wt. % 238Pu and 0.005 wt. % 241Pu. The original solution was 

purified from the daughter nuclides and characterized by α–, γ–spectrometry and inductively 

coupled-mass spectrometry (ICP–MS). The resulting Pu stock solution (in 1.0 M HClO4, 

containing a mixture of different oxidation states) was quantitatively reduced on a platinum 

cathode at Ecathode = – 0.2 V to Pu(III) followed by a partial oxidation to Pu(IV) at Eanode = + 

0.8 V. UV-Visible / Near Infrared (UV–Vis/NIR) spectroscopy revealed a ratio for Pu4+:Pu3+ 

of approx. 3:1 in the final solution. Slow addition of 0.10 M NaOH yielded a dark green 

precipitate of Pu(IV)-hydrous-oxide, which was washed several times with water and stored 

in 0.1 M NaCl for two weeks. The precipitate was then distributed to 6 samples, 0.1 M NaCl 

solutions with 3 ≤ pH ≤ 6. After the initialization of the experiments, the samples have been 

regularly monitored for pH, Eh values and Pu concentrations after 10 kD ultrafiltration (pore 

size ≈ 2 nm) (Nanosep ®, Pall Life Sciences). The very last sampling of this series was 

conducted in the context of the current study and corresponds to an equilibration time of 2886 

days (7.9 years). For the determination of the redox state distribution of Pu in selected 

samples of the latter series, a certain liquid-liquid extraction method [5] and capillary 
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electrophoresis hyphenated (CE-) sector-field-ICP-MS technique was applied (see Section 

2.5.2 and 2.5.3, respectively). 

 

2.3.1 Experiments under alkaline, reducing conditions 

Two series of batch experiments were prepared differing in the redox conditions, which were 

either buffered by 2 mM hydroquinone or Sn(II). The former defines mildly reducing 

conditions (pe + pHm ~ 9.5) where Pu(IV) is the only oxidation state of Pu in the system. 

Whilst, in the case of applying Sn(II), redox potentials were adjusted close to the border of 

water reduction (pe + pHm ~ 2) [127, 128]. Owing to the large uncertainties in thermodynamic 

data available for Pu aqueous species and compounds forming in these alkaline and very 

reducing conditions, both Pu(III)s/aq and Pu(IV)s/aq might be stable (relevant) in the samples 

buffered with Sn(II). 

Ionic strength was maintained constant in all the samples with 0.1 M NaCl–NaOH solutions. 

In both series (hydroquinone and Sn(II), pHm values of the matrix solutions were adjusted 

between 8 and 13. Systems at pHm = 8 and 9 were buffered with 20 mM of TRIS and CHES, 

respectively. Whenever necessary, pHm was further adjusted with HCl and NaOH solutions of 

same ionic strength. After achieving constant readings of pHm and Eh values (within the 

related given uncertainties), PuO2(am,hyd) solid phase was added to the system. 

The aged Pu solid phase ( ~8 years) at pHm = 5.93 was newly characterized for this study 

using powder X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and X-ray 

absorption near edge spectroscopy (XANES) (see Section 2.6). Approximately 0.2 mg of this 

solid phase were added to each of the batches. A larger amount (ca. 1 mg) was added to four 

selected samples with pHm = 9 and 12 (of both hydroquinone and Sn(II) systems) aiming at a 

later solid phase characterization. 

Subsequently to the introduction of the Pu solid phases, pHm, Eh and m(Pu)tot of all the 

samples were regularly monitored. (Characterization procedures performed to quantify Pu 

total concentrations in the aqueous phase are detailed in Section 2.5.) After reaching 

equilibrium conditions (constant pHm, Eh and m(Pu)tot, with an allowed equilibration time of 

150 d), selected solid phases from the solubility series in hydroquinone and Sn(II) were 

characterized by XPS, XAFS and in-situ XRD as described in Section 2.6. 
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2.3.2 Experiments in the presence of ISA: Pu–ISA system 

The system Pu–ISA was investigated in four experimental series with a total of 34 

independent batch samples. Redox conditions were set by using 2 mM of either HQ (with pe 

+ pHm ∼ 9) or Sn(II) (with pe + pHm ∼ 1). 

In the presence of each redox buffering agent, two series of solubility experiment were 

prepared: 

 

a. pHm was varied from 8 to 12.9, and [ISA]tot = constant = 10–3 M. For the HQ system, 

an additional series with [ISA]tot = 0.01 M was prepared. 

b. pHm = constant = 12, and [ISA]tot was varied from 10–5 to 0.10 M. 

 

Solutions with pHm = 8 and 9 were buffered with 20 mM of TRIS and CHES, respectively. 

The ionic strength of the solutions was kept constant at 0.10 M NaCl, except for the sample 

with the highest ISA concentration (0.10 M), where the individual ionic strength of the NaISA 

stock solution set the overall ionic strength to a slightly higher value, I = 0.23 M. Whenever 

necessary and before the addition of the Pu solid phase, the pHm values of the matrix solutions 

were adjusted with HCl and NaOH solutions of same ionic strength. After achieving constant 

readings of the pHm and Eh values, approximately 0.25 mg of the initial, Pu(IV)O2(am,hyd) 

solid phase were added to the each individual batch sample. A larger amount (1.5 – 2.5 mg) 

was inserted into six samples with pHm = 9 and 12 ([ISA] = 10–3 M) and with [ISA] = 0.10 M 

(pHm = 12) (for both, HQ- and Sn(II)-buffered systems), aiming at a later solid phase 

characterization. After the addition of the solid phase, pHm, Eh and [Pu]tot were regularly 

monitored for 90 days. (Characterization procedures performed to quantify Pu total 

concentrations in the aqueous phase are detailed in Section 2.5.) Equilibrium conditions 

(constant pHm, Eh and [Pu]tot values) were attained within 30 days of contact time. 

As a separate investigation, complementing the solubility study, stability of ISA under 

alkaline, reducing aqueous conditions was also tested (details can be found in the Appendix, 

Section 6.3). All results unequivocally underlined the stability of the ligand and its prevalence 

in the free form within the boundary conditions applied. Hence, trends (such as speciation 

changes and complexation reactions) later to be observed can be clearly assigned to the the 

ISA– species itself, as the original structure and the concentration of the free ligand as well are 

proved to remain the same throughout the experimental series. 
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2.3.3 Experiments in the presence of ISA and Ca(II): Ca–Pu–ISA system 

The system Ca–Pu–ISA was investigated in six experimental series of independent 

undersaturation solubility batch samples (with total volumes of 25 mL). Redox conditions 

were set by using 2 mM of either HQ or Sn(II). Solutions with pHc = 8 and 9 were buffered 

with 20 mM of TRIS and CHES, respectively. The ionic strength of the solutions was kept 

constant at 0.10 M with NaCl. 

In the presence of each redox buffering agent, three series of solubility experiment were 

prepared: 

 

a. pH was varied from 8 to 12.4, [ISA]tot = constant = 10–3 M and 

[Ca]tot = constant = 0.01 M. 

b. [ISA] tot was varied from 10–5 to 0.01 M, pH = constant = 12 and 

[Ca]tot = constant = 0.01 M. 

c. [Ca]tot was varied from 3·10–4 to 2·10–2 M, pH = constant = 12 and 

[ISA] tot = constant = 10–3 M. 

 

Before the addition of the Pu-bearing solid phase, pHm values of the matrix solutions were 

adjusted with HCl and NaOH solutions of same ionic strength until attaining constant pHm 

and Eh readings. The concentration ranges considered for Ca(II) and ISA was based upon 

preliminary thermodynamic calculations, with the aim of maintaining constant ionic strength 

(I = 0.10 M NaCl–NaOH–NaISA–CaCl2) within the series and to avoid the unwanted 

precipitation of Ca(ISA)2(s) and/or Ca(OH)2(s) phases. Although the saturation indices of 

both solid phases in the conditions of experiments were calculated to be negative, aliquots of 

the supernatants (of selected systems with high Ca– or ISA–contents) were further analyzed 

for [Ca]tot (ICP–MS) and [ISA]tot (NPOC) after two weeks of equilibration time prior to the 

initialization of the Pu solubility experiments. In all cases, [Ca]tot and [ISA]tot were found to 

be identical to the initial values, thus confirming the absence of any precipitation phenomena. 

After achieving constant readings of pHm and Eh, approximately 0.25 mg of the initial, 

Pu(IV)O2(am,hyd) solid phase was added to each individual batch sample. With the aim of a 

comprehensive solid phase characterization, larger amounts (1.5 – 2.5 mg) were introduced to 

selected samples with pH = 9 and 12 (for both, HQ- and Sn(II)-buffered systems). The 

structural properties and solubility behavior (in the absence of ISA and Ca in solution) of the 

initially used material are published elsewhere [1]. After the addition of the Pu solid phase, 

experimental parameters pHm, Eh and m(Pu)tot of each sample were regularly monitored for 90 
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days (characterization procedures performed to quantify Pu total concentrations in the 

aqueous phase are detailed in Section 2.5). Equilibrium conditions (constant pHm, Eh and 

m(Pu)tot values) were normally attained within 30 days of contact time. 

 

2.4 Sorption experiments 

The aqueous supernatants of all sorption experiments were prepared by using synthetic 

porewater. The solution, simulating Stage II of the cement degradation process, was generated 

by mixing the cement powder (dav < 100 µm) and Milli-Q water after removing the alkali 

content of the cement with a pre-washing step. Experimental details on the preparation and 

characterization of the porewater are discussed in Section 2.4.1. This leachate was then later 

used (avoiding further dilution to the highest possible extent) in combination with the 

original, dry cement powder (at various S:L ratios) for the preparation of all batch sorption 

experiments involving Pu and/or ISA.  

In order to assess the free ligand concentration, before performing investigations on the 

ternary Cement-Pu(IV)-ISA system, separate batch sorption experiments on the Cement-ISA 

system were carried out. Aliquots of the formerly characterized ISA-stock solution (see 

Appendix and reference [2] for more details) were added to porewater solutions and the ISA-

containing porewater was mixed with the dry, cement powder at different S:L ratios and total 

concentrations of ISA (see Section 2.4.3 for further details). 

The series of performed sorption experiments involving 242Pu can be separated into three 

different cases: 

 

a. binary, “Cement–Pu system” experiments, 

b. ternary, “Cement–Pu–ISA system” experiments and 

c. “Complementary experiments”. 

 

The source of Pu was a Pu(VI) stock solution. The consideration of introducing Pu in its 

hexavalent state to all sorption experiments was set to avoid oversaturation conditions for 

Pu(IV) which may lead to the formation of colloidal species. The stock was prepared by 

acidic dissolution of a Na2Pu2O7⋅xH2O(am) solid phase (~5 mg) synthetized and characterized 

formerly in-house at KIT-INE as reported elsewhere [129]. Details on the preparation of the 

stock solution are discussed in Section 2.4.4. Very small aliquots of the diluted stock solution 

(10 – 50 µL) were introduced to the matrix solutions with or without ISA and the hydrated 

cement pastes. 
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Two series of experiments were conducted for the binary system cement-Pu: “screening 

experiments” and “redox experiments”. The initial, screening sorption experiments (Section 

2.4.5) were conducted only in the presence of HQ as redox-buffering agent. These batch 

experiments aimed at assessing the kinetics of the sorption processes and the analytical 

detection limit of Pu in the system with regard to added initial Pu total concentrations ([Pu]in) 

and to the S:L ratios to be applied for later investigations. 

The more extensive experiments on the binary, cement-Pu system, denoted as the “redox 

experiments” involved the use of three redox-buffers in solution: HQ, Sn(II) and Na2S2O4. 

Experimental description on this system is also detailed in Section 2.4.5. These experiments 

served also for comparison purposes with regard to the HQ-buffered case, where Pu(IV)aq/s is 

expected to dominate speciation of Pu. Furthermore, in the course of this investigation, at two 

fixed S:L ratios and [Pu]in concentrations, the uptake of Pu(III/IV) by the hydrated OPC phase 

was evaluated to set general Rd values applicable to the specific conditions of the present 

study (in the absence of ISA, denoted as Rd,in). 

Series of sorption batch experiments on the ternary system Cement-Pu-ISA were conducted at 

various S:L ratios and at two total ligand concentrations [ISA]tot = 10-3 M and 10-2 M in the 

presence of the previously used redox buffers with two different orders of preparation. 

Related experimental details are listed in Section 2.4.6. These investigations were aimed to 

assess the impact of ISA on the uptake of Pu by the OPC pastes. 

Preparation details on the complementary experiments are discussed in Section 2.4.7. In the 

course of these investigations, desorption experiments and undersaturation solubility 

experiments coupled with sorption experiments were conducted. Desorption experiments 

were performed with selected samples of the HQ-buffered, well-equilibrated initial screening 

experiments by replacing the supernatant solutions with ISA-containing porewater solutions. 

These experiments were intended to test the reversibility of the ternary system in the sense of 

evaluating the potential incorporation processes of Pu(IV) into the hydrated phases of the 

cement pastes with extended allowed equilibration times and its impact on the sorption 

reduction capabilities of ISA. 

As a complementary experiment, undersaturation solubility experiments were also prepared 

by introducing the previously well-characterized initial, PuO2(am,hyd) solid phase (see 

Section 2.3.1 and reference [1] for details) into the porewater solutions with ISA at different 

total concentrations of the ligand. After reaching equilibrium conditions, the validity of the 

formerly established thermodynamic, solubility model on the Ca(II)-Pu(IV)-OH-ISA system 

was examined upon the collected data. The later separated supernatants of these solutions 
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were applied in the course of additional sorption experiments as well. These solutions were 

mixed at different S.L ratios with fresh cement powder, aiming at strictly investigating 

sorption excluding the possibility of precipitation of a Pu(IV) solid phase. 

In the course of all sorption experiments with Pu, a systematic sampling method was 

followed. Related experimental details on the undertaken procedures are discussed in Section 

2.5. 

 

2.4.1 Initial cement powder 

The first step in the powdering process of the received cement specimens was a manual 

crushing. Further reduction of the particle size was achieved by the use of an agate-ball (m = 

0.50 kg, diameter of 70 mm) mill (®pulverisette 0, Fritsch Gmbh) under ambient conditions. 

Different particle-size fractions were gained through a continuous-flow, vibrational sieving 

mill (®pulverisette 0, Fritsch Gmbh) equipped with stainless steel sifters. The fraction with an 

average particle diameter-size of dav < 100 µm was used for all sorption experiments 

performed (hereafter it is generally denoted as the initial cement powder) and for the 

generation of the leached porewater solution as well (simulating stage II of the cement 

degradation process, for further details see Section 2.4.2). The resulting powder was analyzed 

by means of different solid and (after acidic digestion) liquid phase characterization methods, 

namely: X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), 

thermogravimetric analysis coupled with differential scanning calorimetry (TG-DSC), 

inductively coupled plasma–optical emission spectrometry and –mass spectrometry (ICP–

OES and ICP–MS). Experimental details on the application of these methods are given in 

Section 2.5. As the later data evaluation did not involve the use of thermodynamic parameters 

related to the present cementitious phases within the hydrated pastes, the performed solid 

phase characterization campaign was limited to the qualitative identification / detection of the 

major phases (focusing mainly on Portlandite). 

 

2.4.2 Cement porewater 

For the synthesis of the cement porewater solution, simulating Stage II of the cement 

degradation process, Milli-Q water (1.8 dm3) was combined with the powdered cement solid 

phase at 25 gdm-3 S:L ratio. The solution was systematically analyzed (after a centrifugation 

step at 4’020 g for 15 mins) for the prevailing pH condition and the quantity of the major (Na, 

K, Ca, Mg) and minor (Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Ba, Pt) component-

concentrations by ICP-OES and ICP-MS techniques. Equilibrium conditions, i.e. steady major 
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metal ion concentrations and constant pH values were observed to be reached within 1 week 

of contact time. 

This initial leachate, after one month of allowed contact-time, was separated via 

sedimentation from the HCP and replaced with fresh Milli-Q water to gain the final porewater 

solution. 

For the generation of sorption experiments, various amounts of the newly gained porewater 

were firstly separated from the main stock and centrifuged (at 4’020 g for 15 mins) for the 

removal of unwanted cement particles. The resulting clear supernatant solutions were serving 

as the porewater (liquid phase) in the course of all sorption experiments performed. The pH 

value of this solution was frequently measured and it was also analyzed for the minor and 

major elemental components in solution as well as for TOC/TIC contents. A small quantity 

(~0.1 g) of the cement phase in equilibrium with the porewater was taken in a suspension and 

separated by centrifugation (at 4’020 g for 15 mins) after ~10 months of equilibration time 

(after the preparation of the sorption experiments). Hydration stoppage was achieved with 

propan-2-ol and the dried powder was characterized by means of XRD, XPS and TG-DSC 

methods (see Section 2.6 for details). 

 

2.4.3 Cement–ISA system 

The uptake of ISA by the OPC paste used in this study was investigated in two series of 

independent batch experiments (with Vliquid = 5 cm3 and 11 batches in total). In one case, at a 

constant S:L ratio of 4 gdm-3, [ISA] tot = 10-2, 10-3, 10-4, 10-5 M were set and in the other, at 

fixed [ISA]tot = 10-3 M, S:L ratios of 2, 4, 8, 15, 20 and 50 gdm-3 were applied. Furthermore, 

to assess the organic carbon content leaching from the HCP (originating from the presence of 

various additives in the material), an analogous series of experiments with identically set S:L 

ratios was also prepared in the absence of ISA. 

The pH conditions were systematically monitored for all samples. After 7 days and 14 days of 

allowed contact time for the ISA-containing experiments, aliquots of the supernatant solutions 

subsequent to a centrifugation step performed (at 4’020 g for 15 mins) were pipetted in 

diluted HNO3 solutions (2 w/w%) and were analyzed for non-purgeable organic carbon-

content (NPOC) by the use of the previously applied Shimadzu TOC5000 instrument. To 

assess the proper background organic carbon content (related to impurities within the HCP), 

bigger volumes were analogously separated from the experiments without ISA and measured 

for NPOC. 
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As the main condition of interest for the Cement-Pu-ISA system was at 2 gdm-3  S:L ratio, the 

sample with [ISA]tot = 0.01 M concentration was characterized (at teq = 14 days) more 

extensively to ensure the retainment of Portlandite in the system at high ISA total 

concentrations. The supernatant was also analyzed for major (Na, K, Ca, Mg) and minor (Al, 

Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Ba, Pt) component-concentrations by ICP-OES and ICP-

MS techniques and furthermore the treated cement solid phase was retrieved by centrifugation 

(hydration stoppage was achieved by the use of propan-2-ol) and characterized with XRD, 

XPS and TG-DSC techniques as described in Section 2.6. 

 

2.4.4 Pu(VI) stock solution 

The source of Pu was an acidic stock solution of Pu(VI) prepared by the dissolution of an 

electrochemically synthetized Na2Pu2O7⋅xH2O(am) solid phase. (Details on the exact 

preparation procedure and the characterization results of the latter solid phase are reported 

elsewhere [129].) A small quantity of this solid phase was compacted and separated from the 

supernatant solution (0.005 M NaClO in approx. 1.5 M NaOH) via four centrifugation steps at 

(4’020 g for 15 mins). The paste was washed with a NaOH solution of pHc = 11 (300 µL) to 

remove the hypochlorite-content of the remaining supernatant. After an additional separation 

by centrifugation (at 4’020 g for 15 mins), 1.50 cm3 of 0.01 M HCl solution was added to the 

solid phase and it was further titrated with 1.00 M HCl solution until complete dissolution 

(total volume required: 110 µL). In order to maintain the strongly acidic conditions within the 

stock (pHc = 0.72 – 1.2), 180 µL of the 1.00 M HCl were added to the solution. The resulting 

stock solution was characterized and further monitored by means of spectrophotometric 

measurements, in the wavelength range of λ = 200–1020 nm using a UV-Vis-NIR 

spectrophotometer (Carl Zeiss AG, MSC-500 system, double-beam instrument). Measurement 

of the sample (in PMMA cuvettes with 1 cm light-path length, Brand Gmbh & Co.) within the 

glove-box under protective Ar-atmosphere was enabled by an optical fiber and a mobile 

sample-holder (Harrick, FiberMateTM). Data collection was performed in a single-beam mode, 

with 0.1 nm data interval at a scan-rate of 50 nmmin-1 and a slit-width of 0.5 nm. Baseline 

correction was executed using the spectra of a Pu-free reference solution with identical ionic 

strength and acidity. Recorded spectra were not used for quantification purposes, but only 

served as a qualitative identification of prevailing redox states of Pu in the stock solution 

before and after the preparation of the sorption experiments (teq = “0 d” and 1.2 years, 

respectively). Final total Pu concentration of the stock solution after dilution with 2 % HNO3 

solution was quantified by ICP-MS and LSC methods, as described in Section 2.5. Details on 
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the preparation and characterization results of the main stock solution is provided in the 

Appendix (section 6.4). The Pu(VI) stock solution was diluted for further use and aliquots of 

the less concentrated stock solutions were introduced to batch sorption experiments to reach 

an approximate total initial Pu concentration of ~10-6 or ~10-9 M. 

 

2.4.5 Cement–Pu system 

Experiments on the binary cement-Pu system can be separated into two series: “screening 

experiments” and “redox experiments”. 

 

Screening experiments 

In the course of the screening experiments (11 individual batches with total aqueous phase 

volume: Vtot = 10 cm3), the weighted cement powder was added to the porewater containing 

HQ in solution (with 2 mM total concentration applied) at varying S:L ratios of ~0.1 gdm-3 – 

4 gdm-3. Prior to the introduction of Pu, samples were let to equilibrate for 2 days and pHc, Eh 

values in the centrifuged supernatants were collected. Very small volumes (10 – 20 µL) of the 

diluted Pu stock solutions were pipetted into these systems, aiming at log [Pu]in ~ -6 or -9. 

After the addition of Pu, the values of pHc, Eh and total Pu concentrations in the aqueous 

phase, [Pu]aq, were monitored for 3 months. [Pu]aq was measured after centrifugation at 4’020 

g for 15 mins, either as clear supernatant solution or after sub-sequent phase separation 

(ultrafiltration or ultracentrifugation). Characterization procedures performed to quantify Pu 

total concentrations in the aqueous phase are detailed in Section 2.5. 

Well-equilibrated solid phases of selected samples were separated (by centrifugation at 4’020 

g for 15 mins) at teq = 167 d and applied as pastes in the course of desorption experiments 

with ISA to test the reversibility of the uptake process. Details on the preparation of these 

batch experiments are given in Section 2.4.7. 

 

Redox experiments 

In the second set of experiments (12 batches, with Vtot = 10 cm3), the cement powder was 

mixed with porewater solutions at two S:L ratios = ~0.1 gdm-3 or ~2 gdm-3 in the presence of 

HQ or Sn(II) or Na2S2O4 in solution (with 2 mM total concentrations). In all cases, 2 days of 

pre-equilibration time was allowed for the systems, before Pu was inserted as small aliquots 

of the stock solutions to reach log [Pu]in = -6 or -9 under each reducing conditions. 
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After the addition of Pu, pHc, Eh values in the clear solutions and [Pu]aq concentrations were 

collected in the time-frame of ~4 months (characterization procedures performed to quantify 

Pu total concentrations in the aqueous phase are detailed in Section 2.5.) 

To assess the prevailing redox state and the potential precipitation of Pu in selected systems 

(S:L ratio = 2 gdm-3, log [Pu]in = -6, teq = 132 d) the cement pastes were retrieved by 

centrifugation (at 4’020 g for 15 mins) and analyzed in-situ by Pu LIII-edge XANES 

measurements (for Sn(II)- and HQ-buffered systems). A fraction of dry solid (without 

hydration stoppage) was also characterized by XPS (only for the HQ-buffered sample). 

 

2.4.6 Cement–Pu–ISA system 

Experiments on the ternary, Cement-Pu-ISA system are classified in three different series as a 

function of the applied solid-to-liquid ratios: 1. “0.2 gdm-3 S:L” series; 2. “2 gdm-3 S:L” series 

and 3. “0.2 – 50 gdm-3 S:L” series. 

All batch experiments were set up following two orders of preparation (see  Figure 5 for 

clarification): (i), the hydrated cement phase was let in equilibrium with the introduced Pu and 

redox buffer in the porewater solution (for teq = 2 d) and then the ISA was added to this 

system as pipetted from a stock solution or (ii), Pu and ISA were allowed to equilibrate in the 

porewater solution (together with the redox buffer) for 2 days and then the given, weighted 

amount of fresh cement powder was added to this solution to reach the aimed S:L ratio. The 

sorption experiments conducted using the former order of preparation are hereafter referred to 

as the “(Pu + Cement) + ISA” experiments, whilst in the latter case, “(Pu + ISA) + Cement” 

order is used to denote the differences in the applied preparation order. 
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Figure 5. Illustration for the order of addition followed in the course of sorption experiments 

on Cement-Pu-ISA system: “(Pu + Cement) + ISA” or “(Pu + ISA) + Cement”. 

 

0.2 gdm-3 S:L series 

Across the 0.2 gdm-3 S:L series of experiments (24 in total), a constant value with 0.2 gdm-3 

was applied as S:L ratio with regard to the weighted cement powder and the volume of the 

used porewater solution (with Vtot = 10 cm3). ISA was added by pipetting from the 

corresponding stock solution to reach either [ISA]tot = 10-2 or 10-3 M in the porewater matrix 

solution. At each ligand total concentration, samples were conducted with all the three 

different previously used redox-buffers (HQ or Sn(II) or Na2S2O4 in solution at 2 mM total 

concentrations). Before introducing Pu into the system, pHc and Eh values in the matrix 

solutions were measured to ensure that the reducing conditions are maintained and constant. 

Aliquots of Pu stock solutions were added aiming at a log [Pu]in = -6 or -9. After the 

introduction of Pu to the samples, they were let to equilibrate for 2 days (in both experimental 

preparation order) and then the aimed sorption experiments were initialized by introducing the 

third part into the system (either the ISA, pipetted from the stock solution or the weighted 

fresh cement powder), as discussed above. 

After the initialization of the sorption experiments, pHc, Eh values in the clear solutions and 

[Pu]aq concentrations were collected in the time-frame of ~4 months (characterization 
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procedures performed to quantify Pu total concentrations in the aqueous phase are detailed in 

Section 2.5). 

The redox state of Pu in selected samples of this series (S:L ratio = 0.2 gdm-3, log [Pu]in = -6, 

teq = 130 d) was further investigated by means of Pu LIII-edge XANES measurements. For this 

purpose the cement pastes were compacted by a centrifugation step (at 4’020 g for 15 mins) 

and analyzed as in-situ by Pu LIII-edge XANES measurements (for Sn(II)- and HQ-buffered 

systems) and as dried powders (without hydration stoppage) by XPS method (only for the 

HQ-buffered sample). 

 

2 gdm-3 S:L series 

The 2 gdm-3 S:L series of batch experiments (18 samples in total) were conducted similarly as 

the 0.2 gdm-3 S:L series, except for a few differing experimental parameters. In the present 

series the applied S:L ratio was increased to 2 gdm-3, and only two redox-buffers were 

investigated (HQ or Na2S2O4, (2 mM in each case). Total ligand concentrations were 

[ISA] tot = 10-2 or 10-3 M. Before the insertion of Pu, pHc and Eh values were collected within 

the matrix solutions. Initial total plutonium concentrations were set to log [Pu]in = -6 or -9, 

just as previously. 

Further experimental details as the order of preparation and the sampling procedure are also 

identical to those of the former, 0.2 gdm-3 S:L series. Allowed equilibration time was teq = ~4 

months in the course of this series as well. 

 

0.2 – 50 gdm-3 S:L series 

Within the 0.2 – 50 gdm-3 S:L experimental series (12 samples in total), at a constant total 

ligand concentration of [ISA]tot = 10-2 M in the matrix solutions with Vtot = 5 cm3, the applied 

S:L ratio was modified between the batches to reach the values of 4, 5, 8, 10, 20 and 50 gdm-

3. Only HQ was used as the redox-buffering agent. Prior to the initialization of the 

experiments applying the two different preparation order, pHc and Eh values of the porewater 

solutions were collected to determine the prevailing redox conditions. Initial total Pu 

concentration was set to log [Pu]in = -6 in all cases. 

Further related experimental details on the preparation and on the sampling procedure 

followed in the present experiments are identical to those of the previously discussed two 

cases (0.2 and 2 gdm-3 S:L series). 
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2.4.7 Complementary experiments 

The complementary experiments consisted of two series: i. “undersaturation solubility 

coupled sorption” experiments, and ii. “desorption experiments”. 

Undersaturation solubility coupled sorption experiments 

The sorption experiment series denoted as “Undersaturation solubility coupled sorption” 

consisted of two main steps. 

Firstly, a series of HQ-buffered (2 mM), cement porewater matrix solutions (a total number of 

11, each with Vtot = 10 cm3) were prepared with [ISA]tot ranging from 10-5 M to 10-2 M. The 

formerly well-characterized PuO2(ncr) solid phase was introduced in the matrices, identically 

as in the course of the solubility studies [1, 2]. After 54 days of allowed contact time 

(equilibrium conditions with regard to collected pHc, Eh values and [Pu]aq were attained at teq 

of 2 - 3 weeks), a centrifugation step was performed (at 4’020 g for 15 mins) and 5 cm3 of the 

supernatant solutions (saturated with PuO2(cr)) were pipetted onto different amounts of the 

weighted fresh, initial cement powder. The conducted sorption experiments were aimed to 

reach either a constant S:L ratio of 4 gdm-3 where [ISA]tot was applied at 10-5, 10-4, 10-3 or 10-2 

M concentrations (4 samples) or to maintain at a constant level of [ISA]tot = 10-3 M 

concentration, varying S:L ratios with 0.2, 2, 4, 8, 15, 20, 50 gdm-3 values (7 samples). 

After the insertion of the cement phases, pHc, Eh values in the clear solutions and [Pu]aq 

concentrations were collected in the time-frame of 1 months (characterization procedures 

performed to quantify Pu total concentrations in the aqueous phase are detailed in Section 

2.5). 

 

Desorption experiments 

Desorption experiments were conducted using the well-equilibrated solid phases separated 

from the supernatant solutions of selected samples from the screening experiments (see 

Section 2.4.5). The solid phases were retrieved by centrifugation (at 4’020 g for 15 mins) at 

teq = 167 d from 6 individual batches with S:L ratios of 0.2 – 2.5 gdm-3 and log [Pu]in = -6 or -

9 and applied as pastes within the present experimental series. After phase separation, the 

previous supernatants were immediately replaced with HQ-buffered (2 mM), ISA-containing 

porewater solutions at [ISA]tot = 10-3 M or 10-2 M, whilst keeping the original container. 

After the initialization of the experiments, pHc, Eh values in the clear solutions and [Pu]aq 

concentrations were collected in the time-frame of 4 months (characterization procedures 

performed to quantify Pu total concentrations in the aqueous phase are detailed in Section 

2.5). 
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2.5 Characterization of aqueous phases 

The quantification of total Pu concentrations in the aqueous phase of the Pu solubility and 

sorption experiments was performed in a well-defined, systematic procedure. 

Exclusively for the sorption experiments, samples (as stored in 10 mL Sarstedt vials) were 

firstly centrifuged at 4’020 g for 15 mins, in order to gain better separation between the 

aqueous and solid phases present. In the course of the solubility experiments, the samples 

were let standing for 1 day, avoiding any mechanical influence to facilitate the sedimentation 

process. In each case, aliquots of 100 – 350 µL were carefully taken from the clear 

supernatants, avoiding any external mechanical influence (causing the potential resuspension 

of Pu-solid phases or cement particles) and either transferred to vial with a 10 kDa filter (pore 

size ≈ 2–3 nm, Nanosep ®, Pall Life Sciences) or directly acidified with 2% HNO3 solution. 

Note that the measurements conducted on the supernatants aimed at evaluating the possible 

presence of Pu(IV) intrinsic colloids in the system. Phase separation was achieved at 4’020 g 

(15 mins) on the given 10 kDa filter and the resulting solutions were immediately acidified 

(using 2% HNO3 solution). For selected samples, phase separation was (also) performed using 

a bigger volume of the supernatant solution (3 – 4 cm3) by ultracentrifugation (Beckman XL-

90, rotor type 90Ti) at 90’000 rpm (694’000 g) in welded vials for one hour. In each case, the 

acidic solutions were analyzed for the aqueous total concentration of Pu using liquid 

scintillation counting (LSC, see Section 2.5.1), standard inductively coupled plasma mass 

spectrometry (ICP–MS) or sector field inductively coupled plasma mass spectrometry (SF–

ICP–MS). The detection limits (DL) of the latter two techniques for Pu in the conditions of 

the present study are ~10–10.5 M (ICP–MS) and ~10–13 M (SF–ICP–MS). 

The quantified plutonium concentrations in molar units (M) (and potentially other 

concentrations evaluated in this study as well) were often converted to the molal scale (m, 

mol⋅kgw
–1) using the conversion factors reported for NaCl solutions in the NEA-TDB [9]. 

Total concentrations of Pu collected in the course of the solubility studies are referred to as 

m(Pu)tot (in molal units), whilst values related to sorption experiments are denoted as [Pu]aq 

(in molar units, given the ill-defined ionic strength). 

 

2.5.1 Liquid Scintillation Counting of 242Pu 

Liquid Scintillation Counting (LSC) was used for the quantification of [Pu]tot in those samples 

with higher concentration of plutonium in solution (> ~10–9 M). The isotopic composition of 

Pu stock solution and solid phases used in this study includes α-(242Pu, 239Pu, 238Pu) and β-
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(241Pu) emitters (see Section 2.1), as well as traces of the α-emitter 241Am resulting from the 

decay of 241Pu (t1/2 = 14.35 a). Due to the very close energy of the α-peaks of 242Pu, 239Pu, 
238Pu and 241Am and the uncertainty associated to the contribution of 241Am to the total 

counts, the concentration of Pu in solution was quantified using the signal of the low-

energetic β-emitter 241Pu. 

Aliquots of the untreated supernatant (including potential colloidal fraction) and of the 10 kD 

ultrafiltered sample were acidified with 2% HNO3 and mixed with 10 mL of LSC cocktail 

(Ultima Gold XR, Perkin Elmer). LSC measurements were performed on a low-level LSC 

equipment type Quantulus 1220 (LKB WallacOy, Turku, Finnland, currently PerkinElmer) 

for 30 minutes. Standard addition with 50 µL of a well-defined Pu stock solution (4.36·10–7 M 

or 3.18·10–7 M) with the same isotopic composition was used to overcome the effect of the 

matrix solution on the counting efficiency of 241Pu of unknown samples. 

The detection limit of the LSC technique in the conditions of this study is about ~10–9.2 M, 

clearly above the expected solubility of PuO2(am,hyd) under alkaline pH conditions. Thus, the 

quantification of Pu concentration in most of the samples was performed using ICP–MS and 

SF–ICP–MS techniques with the variation of different phase separation methods (see Section 

above). 

 

2.5.2 Liquid-liquid extraction 

The oxidation state of Pu in the aqueous phase was determined for selected samples using a 

liquid-liquid extraction method described in [5]. The method is a combination of previously 

reported approaches [130-134], and allows the quantification of Pu(III), Pu(IV), Pu(V), 

Pu(VI) and colloidal Pu(IV) with an uncertainty of 20% (for the Pu concentration-range 

evaluated in this study). Owing to the slower redox transformation kinetics of Pun+ ↔ PuO2
z+ 

reaction, the method itself is proven to be more reliable for the relative quantification of Pu 

redox states in groups, as follows: (Pu(III) + Pu(IV)) and (Pu(V) + Pu(VI)). 

The extraction was performed after 10 kD ultrafiltration for those samples with m(Pu)tot ≥  

10–7 m (acidic series, pHm = 3.76, 3.86). The used extractants were PMBP dissolved in xylene 

and HDEHP dissolved in toluene for the separation of Pu(IV) and (Pu(IV) + Pu(VI)), 

respectively. The combination of both extraction steps with an additional oxidation step 

(using K2Cr2O7) of Pu(III) to Pu(IV) and Pu(V) to Pu(VI) reveals the complete redox state 

distribution of Pu in the aqueous phase (see  Table 4 for details). 

 

 



 
70 

Table 4. Distribution of Pu oxidation states in the organic and aqueous phases according 

to the extraction method used in this work (see text for more details). 

Method 
Oxidation State Distribution 

Organic Phase Aqueous phase 

PMBP extraction 

at pH = 0 
Pu(IV) 

Pu(III), (IV)coll*, (V), 
(VI) 

PMBP extraction 

at pH = 0, with K2Cr2O7 Pu(III), (IV) Pu(IV)coll*, (V), (VI) 

HDEHP extraction 

at pH = 0 Pu(IV), (VI) Pu(III), (IV)coll*, (V) 

HDEHP extraction 

at pH = 0, with K2Cr2O7 Pu(III), (IV), (V), (VI) Pu(IV)coll* 

 *Pu(IV)coll refers to the colloidal species of Pu(IV) 

 

After the separation of the aqueous and organic phases, both aliquots were added to 10 mL of 

LSC cocktail and the Pu concentration was determined by LSC. The same extraction 

procedure was carried out with MilliQ water to correct for the contribution of changes in the 

background electrolyte solutions within the LSC measurements. This is especially important 

due to the presence of organic solvents and colored reagents that can eventually lead to 

quenching effects. 

 

2.5.3 CE-SF-ICP-MS 

For the validation of the liquid-liquid extraction method and for the analysis of further 

selected samples (supernatant solutions or after 10kD ultrafiltration), the oxidation state 

distribution of Pu was also investigated by capillary electrophoresis hyphenated sector-field-

ICP-MS technique (CE-SF-ICP-MS). All separations were carried out using a commercial 

Beckman Coulter P/ACE MDQ capillary electrophoresis system. Conventional fused-silica 75 

µm internal diameter capillary with 73 cm length was used for separation. Prior to application, 

the capillaries were conditioned for several hours by rinsing with 0.1 M HCl (Merck, 

Suprapur), 0.1 M NaOH (Merck, Titripur), Milli-Q water and with the background 

electrolyte: 1.00 M acetic acid (BGE). During the separation, the temperature of the capillary 

was kept constant, at 15 °C by the use of a surrounding liquid cooling agent within the 
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instrument. Under the given experimental conditions, the temperature gradient across the 

capillary’s cross section was estimated to be 0.7 °C. The hyphenation of the CE to the SF-

ICP-MS (Thermo Element XR) instrument was achieved via using a Mira Mist CE nebulizer 

(Burgener Research, Mississauga, ON, Canada). 

The capillary was washed with the BGE for 5 min at 20 psi before each measurement. 

Separations were performed with +30 kV applied potential at a constant pressure of 0.4 psi 

and accomplished within 20 min. The rinsing sequence after each separation was 5 min (1 

min 0.1 M HCl, 1 min 0.1 M NaOH, 3 min BGE). The sample injections (with volumes of 

appr. 2.3 nL) were achieved hydrodynamically at 2 psi for 10 seconds. In order to exclude 

redox phenomena induced by oxygen, the CE apparatus was placed in a N2 glovebox with O2 

< 5 ppm. A more detailed description of the installation and the implementation of the 

performed measurements is given in [135]. 

 

2.6 Characterization of solid phases 

For selected cases, solid phases retrieved from various experiments were analyzed by means 

of complementary characterization techniques as listed in this section. 

In the case of solubility experiments, the Pu(IV) hydrous oxides were first compacted by 

centrifugation at 4’020 g for 15 minutes, then retrieved from the samples and washed four 

times with ethanol under Ar-atmosphere in order to remove the traces of background 

electrolyte (NaCl). The resulting solid was re-suspended with 25 µL ethanol and used further 

for analysis. (for in-situ XRD and Pu LIII-edge measurements, the pre-treatment was not 

applied, see related section for further details.) 

The initial cement powder as well as equilibrated cement solid phases were characterized by 

means of various techniques listed below. For selected, equilibrated samples (only in the 

absence of Pu) the cement solid phases (with mcement = 0.08 – 0.5 g) were treated with propan-

2-ol (20 cm3) to stop the hydration process. The retrieved paste after a centrifugation step (at 

4’020 g for 15 min) was soaked in the organic phase for 20 minutes, then the suspension was 

filtered through a PTFE membrane with 5 µm pore size (Millipore) using a vacuum pump 

(Becker). In order to obtain the well-dried powder for analysis, it was additionally placed in a 

heating oven for 20 minutes at 40 °C and, if necessary, the samples were further stored in 

sealed vials under Ar atmosphere. 
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2.6.1 Quantitative and semi-quantitative chemical analysis 

Quantification of the minor (transition metal-content) and major elemental components (Ca, 

Si, Al, Na, Mg, S, Fe) were performed for the initial cement powder to validate the retainment 

of the chemical composition as provided by the manufacturer after the powdering and sieving 

procedure. For this purpose, 200 mg of the cement powder were dispersed in 1500 mg of 

melted KOH. The molten mixture was then let cool down and was dissolved in 30 cm3 of 

concentrated HCl solution. The clear solution was then filled up to 250 cm3 with Milli-Q 

water. The dissolved contents of Ca, Si, Al, Na, Mg, S, Fe were quantified by ICP–OES 

(Optima 8300 DV, Perkin Elmer), whilst the concentration of minor components were 

determined by ICP–MS (X-Series II, Thermo Scientific) in a semi-quant mode (up to 60 

elements included in the scan). The accuracy of the scanning-type, semi-quantitative 

characterization is approximately ± 50%. As KOH was involved the preparation of the cement 

material for the characterization, the method did not allow the quantification of K in the 

original sample. 

 

2.6.2 Standard X-ray powder diffraction 

For standard XRD analysis of Pu-hydrous-oxides, ~0.5 mg of the pre-treated solid phase was 

placed on a single crystal silicon waver and dried up at room temperature under Ar 

atmosphere. In case of hydrated cement samples, approximately 50 mg of the dried cement 

powder (initial powder, or pre-treated equilibrated phases) were placed on the waver. XRD 

measurements were performed using a D8 Advance diffractometer (Bruker AXS) equipped 

with a Cu radiation tube (Cu K-α, λ = 0.15418 nm, current: 25 mA, voltage: 40 kV), Ni filter 

and a Sol–X detector. For Pu-hydrous-oxide samples, the XRD pattern was recorded in the 

range of 5 ≤ 2 Θ ≤ 80° with a step size of 0.015° and a counting time of 6 seconds per step. 

For cement solid phases, the measurement was executed with 15 rpm horizontal spin-rate in 

the range of 2 ≤ 2Θ ≤ 98° with a step size of 0.01° and a counting time of 15 seconds per step. 

Data processing was performed using the Bruker AXS DiffracPlus EVA software (Bruker 

AXS, Germany, version 3.1). The resulting diffractograms were compared to the XRD 

patterns of the possible relevant solid phases available in the JCPDS database [136]. Rietveld 

refinement of selected diffractograms was performed with the Bruker DiffracPlus TOPAS 

software package (Bruker AXS, Germany, version 4.2). 
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2.6.3 X-ray photoelectron spectroscopy 

Selected solid phases (pre-treated equilibrated, hydrated cement solid phases or pre-treated 

Pu-hydrous-oxides) for XPS analyses were prepared (in concentrated suspensions) onto an 

indium foil and mounted on a sample holder under anoxic conditions (Ar atmosphere). XPS 

measurements were performed using a PHI 5000 VersaProbe II (ULVAC-PHI Inc.) system 

equipped with a scanning microprobe X-ray source (monochromatic Al Kα (1486.7 eV) 

X-rays) in combination with an electron flood gun and a floating ion gun generating low 

energy electrons (1 eV) and low energy argon ions (6 eV) for charge compensation at 

isolating samples (dual beam technique), respectively. Survey scans were recorded with an X-

ray source power of 31 W and pass energy of 187.85 eV. Narrow scans of the elemental lines 

were recorded at 23.5 eV pass energy of the analyzer which yields an energy resolution of 

0.69 eV full width at half maximum (FWHM) on the Ag 3d5/2 elemental line of pure silver. 

Calibration of the binding energy scale of the spectrometer was performed using well-

established binding energies of elemental lines of pure metals (monochromatic Al Kα: 

Cu 2p3/2 at 932.62 eV, Au 4f7/2 at 83.96 eV) [137]. C 1s of hydrocarbon at 284.8 eV is used as 

charge reference. Error of binding energies of elemental lines is estimated to be ± 0.2 eV. 

Data analysis was performed using ULVAC-PHI MultiPak program, version 9.6.0. 

 

2.6.4 Thermogravimetric analysis, differential scanning calorimetry 

TG-DSC was performed with a STA409 (Netzsch Gerätebau GmbH) on 20 – 50 mg of the 

(treated or untreated) dry cement powder samples, applying a heating rate of 10 °C/min from 

25 to 1200 °C under N2 atmosphere. The crucibles are made of Al2O3 (corundum) and the 

sample holder is a type S Pt 10% / Pt-Rh. The high temperature Pt oven can be operated in the 

range of RT to 1500°C. 

 

2.6.5 Brunauer–Emmett–Teller surface area measurements 

The specific surface area of the initial cement powder was measured by means of the 

Brunauer–Emmett–Teller method. The used instrument was a Quantachrome Autosorb 

Automated Gas Sorption System with N2(g) adsorbate. Analysis was performed on ~0.5 g of 

the freshly grinded, well-homogenized powder for 70 mins at an outgas temperature of 105 

°C applying a multi-point method. 
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2.6.6 In-situ XRD and Pu LIII -edge XANES measurements 

XAFS (X-ray Absorption Fine Structure) spectra and Laue-type diffractograms were recorded 

on various, selected samples as in-situ under the protective, supernatant solutions at the INE–

Beamline for Actinide Research at KARA, KIT Campus Nord [138]. The KARA storage ring 

was operated at 2.5 GeV electron energy with a mean electron current of 120 mA. 

The tunable monochromatic beam was delivered by a double crystal monochromator (DCM), 

equipped with a pair of Ge(422) crystals (2d = 2.310 Å). Possible higher harmonic radiation 

was suppressed by detuning the parallel alignment of the crystals to obtain 70% of photon 

flux peak intensity at the rocking curve maximum. 

All samples for XAFS and (synchrotron-based) in-situ XRD measurements were prepared in 

400 µL polyethylene vials. A suspension containing ≈ 1 mg (for pure Pu-hydrous-oxides) or 

≈10 – 20 mg of material (for equilibrated, hydrated cement pastes, without any pre-treatment) 

were transferred to the vial and centrifuged for 10 min at 4’020 g. For Pu-hydrous-oxide 

samples (when in-situ XRD measurements were also performed), the vials were heat sealed in 

a plastic bag (polyethylene). All samples were mounted in a gas-tight cell inside the Ar-

glovebox and transported to the INE-Beamline. During the XAFS measurements, Ar was 

continuously flushed through the cell to ensure the presence of an inert atmosphere. Data 

collection was performed at T = (22 ± 2) °C. 

XANES spectra of the Pu LIII-edge (E (2p3/2) Pu(0): 18,057 eV) were recorded in fluorescence 

yield detection mode using a 5-pixel low energy Ge solid-state fluorescence detector 

(Canberra-Packard Ultra-LEGe, Olen, Belgium) and an Ar-filled ionization chamber at 

ambient pressure to record the incident beam intensity. 8–10 scans were collected for each Pu 

sample. The spectra were calibrated against the first inflection point in the K-edge spectrum 

of a Zr metal foil (E (1s) Zr(0): 17,998 eV) and averaged to reduce statistical noise. XANES 

and EXAFS data reduction were performed with the ATHENA program package [139], 

following standard procedures for edge jump normalization and EXAFS χ(k) extraction. E0, 

the origin for calculating the EXAFS χ(k)-function, was fixed at the ‘white line’ (WL) peak 

maximum in the XAFS spectra at ≈ 18,068 eV. The Pu LIII-edge XANES spectra obtained in 

this work were compared with Pu(III) and Pu(IV) reference spectra collected at the INE-

Beamline under the same experimental conditions and data analysis procedure [1, 7, 140]. 

EXAFS data analysis was based on standard least squares fit techniques using the UWXAFS 

program package [141] (The procedure was executed by Dr. Jörg Rothe). Metric parameters 

(i.e., neighboring atom distances Ri, EXAFS Debye-Waller factors σ
2
i, coordination numbers 

Ni for the different coordination shells i) were determined using the feffit code (v2.98). 
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Backscattering amplitude and phase shift functions for single scattering paths in a 45-atom 

PuO2 cluster with fluorite structure were obtained from FEFF8.2 calculations [142]. All fit 

operations were performed in R-space over the individual radial distance ranges given in 

Table 3. The amplitude reduction factor: S0
2 was fixed at 1.0. 

After completing the XAFS data accumulations, for selected, purely Pu-hydrous-oxide 

samples, the sealed vials in the double-containment were individually taken out of the Ar-

flushed sample cell, and the in-situ diffractograms were collected as well. The double 

containment (vial and an outer plastic bag) in addition to the redox buffers in the protecting 

solution (hydroquinone and Sn(II)) underneath the Ar atmosphere are considered to be 

sufficient to avoid any redox transformation of the bulk material within the timeframe of the 

XRD measurements (approximately 5-10 minutes). 

The 2D XRD patterns were recorded in Laue transmission geometry using radiation sensitive 

high efficiency storage phosphor screens (V×H: 125mm × 252mm) with a high dynamic 

range (MultiSensitive Phosphor Screen, PerkinElmer, Germany). The screen was mounted 

perpendicular to the incident beam (E = 17.0 keV, λexc = 0.7 Å, size (V×H) 200µm × 500µm) 

at a distance of 20 cm from the sample. An indium metal disk, mounted on the tip of a plastic 

rod was used as central beam-stop. The irradiated phosphor screen was scanned by a laser 

based read-out system (Cyclone Plus Phosphor Imager, PerkinElmer LAS, Rodgau-

Jügesheim, Germany), transforming the diffracted 2D X-ray intensity into a high resolution 

digitized image (600 dpi) with quantitative data as an image file (OptiQuant™ software). 

The collected frames were transformed into one-dimensional diffraction patterns by using the 

XRDUA software package [143]. The images were corrected for dark-current, spatial 

distortion and detector pixel response. The XRD pattern of an Y2O3 powder sample was used 

as reference for calibration [144]. After correcting and calibrating the images, azimuthal 

integration was performed and the resulting diffractograms were normalized for the incident 

beam intensity. The background subtraction was achieved with a cubic spline polynomial 

fitting of the baseline. 

The set-up available at the INE–Beamline for the in-situ XRD characterization of active 

samples is a unique, non-invasive tool for the investigation of redox-sensitive solid phases. 

 

2.7 Evaluation and modelling methods of solubility data 

After deriving the corresponding chemical models, experimental solubility data sets were 

evaluated using the Solver tool of Microsoft Excel, and with the PhreePot – PhreeqC 

(PP-PQC) program packages (version 3.3.5, svn 10806) [145-147]. For ionic strength 
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corrections, the Specific Ion-interaction Theory (SIT) [148] adopted within the NEA-TDB 

project was used. The ion-interaction parameters (εi,j) of the newly formed complex species 

were estimated based on the charge correlation approach described in [149]. Worth noticing, 

that due to the relatively low ionic strength in all the experiments (I = 0.10 m NaCl), the main 

contribution to the activity corrections results from the Debye–Hückel term rather than the 

ion-interaction parameters. Hence, the use of estimated εi,j values has a limited impact on the 

calculated values of log K°. Although simultaneously maximum two parameters were 

optimized, the reproducibility of the resulting values were further tested by the systematic 

variation of the initial input values. To gain further confidence on the obtained results the 

corresponding objective functions were minimized by the use of both, gradient-based 

(modified Levenberg-Marquardt, [150]) and non-gradient-based (SIMPLEX, [151]) methods. 

 

2.8 Theoretical methods 

The structures of the Pu(IV)–OH–ISA and Pu(III)–OH–ISA complexes were investigated by 

R. Polly of KIT-INE via density functional theory (DFT) calculations [152, 153]. DFT 

calculations were performed using TURBOMOLE (version 7.0, 2015) [154-160] with the 

BP86 functional [161] and the def2-SVP basis set [160] on C, O and H. The use of 5f-in core 

pseudo potentials (PP) for Pu(III) [162] and Pu(IV) [163] allowed to circumvent several 

problems arising with DFT calculations involving actinides: (i) difficulties due to open shells 

can be avoided, (ii) multi reference effects do not occur and (iii) the number of electrons and 

thus the computer time is greatly reduced. This leads to a theoretical task suited for DFT, and 

avoids complex and computational very demanding multi reference ab initio methods.  

For a more realistic description of the Pu(III/IV)–OH–ISA systems investigated, several water 

molecules saturating the alcohol groups of the ISA and the Pu ion were considered in the 

calculations. A second step in the calculations included the aqueous media approximated with 

the conductor-like screening model (COSMO) [164, 165]. Considering the first water shell 

explicitly and dealing with the additional solvation effects by means of COSMO provides a 

realistic model to investigate species in aqueous solution. 
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3 Results and discussion 

This section is divided into two main parts with the aim of discussing the results of the 

performed: solubility studies (Section 3.1) and sorption investigations (Section 3.2). 

 

3.1 Plutonium solubility studies 

Results of solubility studies can be separated into three main chapters, where redox and 

solubility behavior of Pu were investigated under alkaline, reducing conditions: in the absence 

of ISA and Ca(II) (Section 3.1.1), in the presence of ISA and absence of Ca(II) (Section 

3.1.2), and finally in the presence of ISA and Ca(II) as well (Section 3.1.3). 

 

3.1.1 Pu solubility and redox behavior under alkaline, reducing conditions 

3.1.1.1 Characterization of the starting PuO2(am,hyd) solid phase 

This section summarizes the results of the characterization by XRD, XANES and XPS of the 

PuO2(am,hyd) solid phase used as starting material in all the solubility experiments under 

alkaline to hyperalkaline pH conditions. After preparation (cf. Section 2.3.1), PuO2(am,hyd) 

was aged for ~ 8 years in a 0.1 M NaCl solution with pHm ~ 6. The relatively long pre-

equilibration time of the solid ensures that solubility experiments are not impacted by short-

term alterations of the solid phase, e.g. by changes in crystallinity, and consequently, also in 

solubility. 

The XRD pattern of the starting material perfectly matches the diffractogram of PuO2(cr), 

corresponding to the PDF 41–1170 in the JCPDS database [136] ( Figure 9 in Section 3.1.1.4). 

The widths of the diffraction peaks are consistent with a nanocrystalline structure of the solid 

phase. Rietveld refinement (on Fm-3m space group) of the collected pattern revealed the 

mean value for the crystal domain size of (4 ± 1) nm and an average cell parameter of (5.405 

± 0.005) Å (Rp = 12.18 %, Rwp = 15.53 %). The latter is in good agreement with the reference 

value reported by [166] and [167] (5.396 Å). Since the oxygen deficiency results in unit-cell 

expansion, the slight difference is probably due to a minor substoichiometry (PuO1.98) in the 

investigated solid phase [167]. In the subsequent parts of the study this solid phase is referred 

to as the “starting material”. 

The white line energy position in the Pu LIII  XANES spectrum of the starting material is in 

excellent agreement with the Pu(IV) reference spectrum reported in Brendebach et al. [140] 

( Figure 10 in Section 3.1.1.4). Differences in amplitude observed between both spectra are 
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related to the state of Pu in the sample (solid in the present work, aqueous in the reference 

[140]), as previously discussed in Rothe et al. [168]. The EXAFS fit parameters obtained for 

this sample (cf.  Table 5) are in good agreement with those obtained for Pu(IV)(OH)4(am)* 

precipitate in reference [169] (i.e., 4.3 (4.0) oxygen atoms at RPu-O = 2.33 (2.32) Å and 2.3 

(2.4) plutonium atoms at RPu-Pu = 3.84 (3.87) Å). The apparently low coordination numbers 

for both next neighbor shells reflect the strongly distorted Pu coordination in these materials 

with different Pu to –O2–, –OH2, –OH– distances and a high density of voids and dislocations, 

while this phase is still sufficiently ordered to exhibit a regular Pu-Pu second next neighbor 

interaction. Note that the fit significantly worsens when fixing the first shell coordination 

number to 8 (cf.  Table 6 and the discussion in Section 3.1.1.4).  

The X-ray photoelectron spectrum of the starting material is also in accordance with the 

findings of XRD and XANES measurements. Pu 4f photoemission peak exhibit a spin–orbit 

doublet for the Pu 4f7/2 peak at about 426.2 eV, in line with previously reported values [170-

172]. A satellite is observed at approximately 6.9 eV higher binding energy than the Pu 4f 

main line. The difference in energy between the main line and the satellite is in agreement 

with data previously reported [170] for PuO2(cr). 

All experimental evidences collected for the starting material (XRD, XANES, EXAFS, XPS) 

are consistent with the predominance of PuO2(ncr,hyd). This solid phase is therefore 

established as the anchor point in the interpretation of the solubility data obtained under 

alkaline to hyperalkaline pH conditions. It has to be clarified however, that thermodynamic 

data selected for Pu(IV) hydrous oxide generally quotes PuO2(am,hyd) (see [9] and [5]). 

Calculations involving the latter solid phase are indicated consistently with the original 

publication / thermodynamic selections. 

 
3.1.1.2 pH and Eh measurements 

The experimentally measured pHm and Eh (converted into pe) values of all the evaluated 

samples are shown in the Pourbaix diagram of Pu in  Figure 6. Thermodynamic solubility and 

hydrolysis constants for plutonium reported in [5] were taken for the calculations. SIT ion 

interaction parameters estimated in [173] were used to account for ionic strength corrections 

of Pu(IV), whereas ε(i,j) values reported in [174] for Am(III) and Nd(III) were taken for the 

                                                 
* The notation Pu(IV)(OH)4(am) corresponds to a freshly precipitated Pu(IV) amorphous phase. Both 

Pu(IV)(OH)4(am) and Pu(IV)O2(am,hyd) are considered in the NEA-TDB reviews for amorphous, hydrous 
Pu(IV) oxides. The latter is nevertheless preferred, and has been also adopted in the present work. 
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corrections of Pu(III) aqueous species. ε(i,j) values reported in [175] for Np(VI) were taken 

for the SIT corrections of the analogous Pu species. 

Experimentally measured pHm and Eh values for redox unbuffered samples (prepared 

previously to this study, see Section 2.3.1) under acidic conditions (symbols ● and ○ in  Figure 

6) scatter around the redox neutral line at pe + pHm = 13.8, where hypothetical partial 

pressures of log(2*P(O2(g))) = logP(H2(g)) = –27.6 are calculated for the reaction of H2O(l) 

↔ H2(g) + 0.5 O2(g), with logK° = –41.55. These measured Eh values are considered less 

reliable due to the low concentration of plutonium in solution (below 10–5 M, see also  Figure 

7), which is considered to control the redox potential in the absence of other redox couples in 

the system. 

Pu solubility samples in the presence of HQ and Sn(II) prepared within the current study 

showed stable readings of pHm (± 0.05) and Eh values (± 30 – 50 mV, depending upon pH-

region) within the time frame (~ 9 months) of the solubility experiment (symbols are ■ for 

HQ- and ▲ for Sn(II)-systems in  Figure 6). HQ sets moderately reducing conditions with pe 

+ pHm = (9.5 ± 1), which clearly fall within the stability field of Pu(IV)s and Pu(IV)aq. This 

system serves as the reference, Pu(IV)s/aq-case for further points of the investigation. Tin(II) is 

well-known to be a strong reducing agent which buffers the redox condition of the system, 

with pe + pHm = (2 ± 1), very close to the border line of water reduction [40, 127, 176]. Under 

these conditions, currently available thermodynamic data predict the predominance of Pu(IV) 

both in the aqueous and solid phases above pHm = 9. Below this pHm, the predominance of 

Pu(III) aqueous species (with the consequent increase in the solubility of PuO2(am,hyd), 

according to Equation (2)) could be expected (see  Figure 6). As discussed in Section 1.1.1, 

associated uncertainties to the available thermodynamic data are affecting the prediction of 

redox processes prevailing under these conditions, overall leading to an ill-defined Pu(IV) / 

Pu(III) redox border, especially for pHm > 9 systems. 
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Figure 6.  Pourbaix diagram of Pu calculated for m(Pu)tot = 10–5 M and I = 0.1 M NaCl 

using thermodynamic and (SIT) activity models as described in the text. pHm and Eh values 

experimentally determined for Pu(IV) solubility experiments in the absence of redox buffers 

(○: 940 days, ●: 2886 days), and in the presence of HQ (■) and Sn(II) (▲). The stability 

borderlines of water at pe + pHm = 20.77 and pe + pHm = 0, the “redox-neutral” line at 

(pe + pHm) = 13.8 and the lines at (pe + pHm) = 2 and 9.5 are shown for comparison 

reasons. 

 

3.1.1.3 Solubility measurements 

Total concentrations of plutonium in equilibrium with PuO2(ncr,hyd) in the absence and 

presence of redox buffers (hydroquinone, Sn(II)) are shown in  Figure 7. The figure also 

shows the thermodynamically calculated solubility of PuO2(ncr,hyd) in equilibrium with 
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Pu(IV)aq species and for (pe + pHm) = 2 (Sn(II) system, both Pu(IV) and Pu(III) aqueous 

species contributing to solubility). Although not expected according to the Pourbaix diagram 

of Pu in  Figure 6,  Figure 7 includes also the thermodynamically calculated solubility of 

Pu(OH)3(am) in equilibrium with Pu(III)aq species. 

 

Acidic pH region, unbuffered systems 

The two sets of experimentally measured solubility data (in  Figure 7) of PuO2(ncr,hyd) at the 

acidic 3.8 ≤ pHm ≤ 6 region with equilibration time of 940 (○) and 2886 (●) days are showing 

consistent values, indicating that thermodynamic equilibrium has been reached. Note that only 

the latter data collection (corresponding to teq = 2886 days) was undertaken within the context 

of this work. 

The total concentration of Pu in this system is higher (more than 2 orders of magnitude) than 

thermodynamic calculations conducted for the equilibrium of PuO2(am,hyd) ↔ Pu(IV)aq, 

using the thermodynamic data selection in [9] (see black solid line in  Figure 7). On the other 

hand, Pu concentrations measured in these samples are clearly below the solubility of 

PuO2+x(s,hyd) reported in [177]. Since the average crystal domain size: d = (4 ± 1) nm, 

determined by Rietveld analysis of the collected solid from sample with pHm = 5.93, agrees 

well with the particle size distribution of PuO2(am,hyd) [6], the observed discrepancy in Pu 

total concentrations cannot be caused by the differences in the degree of crystallinity of the 

presently used, aged solid phase. Hence, the only explanation remaining for the higher 

observed solubility of Pu within the unbuffered systems is the contribution of different redox 

states of Pu in solution, through oxidative or reductive dissolution and consequent redox 

reactions of the given aqueous species. 
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Figure 7. Plutonium total concentration in solution at I = 0.10 m NaCl in equilibrium with 

PuO2(ncr,hyd) for redox unbuffered (○: 940 days, ●: 2886 days) and redox buffered systems 

(■: hydroquinone; ▲:Sn(II)). Red crosses (X) show the concentration of Pu(IV)aq for selected 

unbuffered systems (* ) as quantified by liquid-liquid extraction. Solid lines correspond to the 

thermodynamically calculated solubility of PuO2(am,hyd) in equilibrium with Pu(IV)aq (black 

line) and for (pe + pHm) = 2 (grey line, predominance of Pu(III)aq at pHm ≤ 9). Green, purple 

and light blue lines show the solubility lines of Pu(OH)3(am) as calculated with log *K°IIIs,0 

values selected in the NEA-TDB [9] and reported in Fellhauer’s work [40] and in Cho et al. 

[33], respectively. Horizontal dashed lines indicate the lowest limits of Pu quantification in 

solution for LSC, ICP–MS and SF–ICP–MS techniques, respectively. 

 

To assess the possible contribution of other redox states of Pu to the total Pu solubility under 

acidic conditions, liquid-liquid extraction and CE-ICP-MS measurements were performed 

with the two most concentrated redox-unbuffered samples at pHm = 3.76 and 3.86. Both redox 

speciation analysis showed the predominance of Pu(V)aq ( ~98 % of the total Pu 

concentration) in the investigated solutions after 10kD ultrafiltration.  Figure 8 shows the 

electropherogram of the supernatant of the unbuffered sample with pHm = 3.76. The first 

intense response at ~470 s retention time, peak (1) with an electrophoretic mobility of 1.6·10-4 
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cm2V-1s-1 corresponds to the presence of Pu(V)aq while the second signal, peak (2) at ~600 s 

with 1.2·10-4 cm2V-1s-1 electrophoretic mobility, followed by a tailing at t > 600 s indicates 

contributions from Pu(IV) aqueous monomeric and polynuclear, colloidal species [135]. In 

addition, liquid-liquid extraction of the given ultra-filtrated solutions quantified relevant 

contribution of Pu(VI) species (log m(Pu)tot = –7.3 and –7.9, respectively) and showed clearly 

lower, but non-negligible Pu(IV)aq concentrations as well (in  Figure 8: log m(Pu)tot = –8.0 and 

–8.3, respectively). The presence of Pu(V) and (to less extent) Pu(VI) in the aqueous phase is 

thus responsible for the observed increase in Pu solubility, and reflects the complexity of the 

redox chemistry of Pu. This is especially true in acidic conditions, where Pu(III), Pu(IV), 

Pu(V) and Pu(VI) have their own predominance field within a very narrow pe-range 

(see  Figure 6). 

The determination of m(Pu(IV))tot by liquid-liquid extraction allows the direct assessment of 

the equilibrium PuO2(ncr,hyd) ↔ Pu(IV)aq, independently of the contributions by Pu(V) and 

Pu(VI). Although, the depicted m(Pu(IV))tot values in  Figure 7 show already an excellent 

agreement with thermodynamic calculations for this equilibrium reaction, the results of the 

liquid-liquid extraction have been used in combination with the hydrolysis scheme and 

corresponding thermodynamic constants reported in [9] to slightly adjust the log*K°IVs,0 of the 

solid phase PuO2(ncr,hyd) used in the present study (see Section 3.1.1.7). 

 

 

Figure 8. Electropherogram of supernatant solution of unbuffered Pu solubility experiment 

with pHm = 3.76. Peak (1) corresponds to Pu(V)aq, peak (2) indicates Pu(IV)aq,coll species, 

with characteristic tailing at t > 600 s. 

 



 
84 

Alkaline to hyperalkaline pH region, under reducing conditions 

In the alkaline pH region, total concentration of Pu in equilibrium with PuO2(ncr,hyd) 

measured by LSC after 10 kD ultrafiltration remains mostly below or close to the detection 

limit of the technique (10–9.2 m) for both, the hydroquinone and the Sn(II) system. Therefore, 

these data were considered to be excluded from the corresponding figures. Pu solubility data 

quantified by ICP–MS and SF–ICP–MS after ultracentrifugation are shown in  Figure 7 for 

hydroquinone (■) and Sn(II) (▲) systems (equilibration time: teq ≤ 173 days and teq ≤ 261 

days, respectively). Above pHm > 9, very low concentrations of Pu (10-9.9 m ≤ m(Pu)tot ≤ 

10-11.4 m) are measured for both redox systems, consistently with the solubility control by 

PuO2(am,hyd) in equilibrium with Pu(IV)(OH)4
0 species. In systems with pHm ≤ 9, under the 

redox-influence of hydroquinone again low solubility is determined, whereas in the case of 

Sn(II) systems, discrepant values are obtained. 

In spite of the dispersion in the measured log m(Pu)tot (~1.5 log-units) caused by the very low 

concentration of Pu and the predominance of neutral species in solution, data collected for the 

hydroquinone system are in perfect agreement with the solubility expected for PuO2(am,hyd) 

in equilibrium with Pu(IV) aqueous species (black solid line in Figure 4). This observation 

also underlines thermodynamic expectations, originating from the experimentally measured 

(pe + pHm) values, that are in the case of the hydroquinone series plotting in the stability field 

of Pu(IV)aq/s. 

A more complex picture arises in the case of Sn(II) systems, where both the reductive 

dissolution of PuO2(am,hyd) (grey line in  Figure 7) and the solubility equilibrium 

Pu(OH)3(am) ⇔ Pu(III)aq (green [9, 30], purple [40] and light blue [33] lines in Figure 4) 

would explain the experimental observations obtained in this study. A more detailed 

discussion in combination with the results obtained by in-situ XRD, XANES, EXAFS and 

XPS is provided in Section 3.1.1.8. 

For selected supernatant solutions of the Sn(II)-buffered system, CE-ICP-MS measurements 

were also performed. In all cases, due to the very low total Pu concentrations the resulting 

electropherogram showed an indistinct picture of the redox speciation of Pu (not shown). The 

only visible feature was an unusually elongated tailing of the electrophoretic peak of Pu(IV) 

aqueous species at t > 600 s, characteristic to the formation of Pu(IV) colloidal species with a 

partial sorption onto the wall of the capillary. Since the expected concentrations of the 

hydrolyzed species of Pu(IV) (or eventually Pu(III)) is in the range of 10–8.5 to 10–11 m for the 

given samples, the detection of the different redox states of Pu is highly influenced by the 

minor changes in the media. The stabilization of a redox state in the investigated system is 
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directly depending on the total Pu in solution to available Sn(II) hydrolyzed species 

concentration ratio, which is in the case of the separation by CE might be affected by the 

eluent (1.0 M acetic acid), due to the formation of highly stable Sn(II)-acetate complexes 

[178]. This has possibly led to changes in the redox condition of the analyte solution and thus 

facilitated the oxidative alteration of the low Pu content by traces of oxygen in the system 

(under N2 atmosphere with O2 content < 5 ppm). As a consequence, CE-ICP-MS method 

could not provide relevant input on the redox speciation of the buffered samples. 

 

3.1.1.4 Solid phase characterization 

XRD 

 Figure 9 shows the in-situ XRD patterns of the solid phases controlling the solubility of Pu in 

hydroquinone and Sn(II) systems at pHm = 9 and 12 (teq = 146 days), collected at the 

INE-Beamline as described in Section 2.6.2. The figure also shows the diffractogram of the 

empty double containment used in the synchrotron-based measurements, as well as the XRD 

patterns of the starting material collected with a conventional diffractometer. 

Highly resolved diffractograms are obtained for all samples investigated at the INE-Beamline. 

A perfect match with PuO2(cr) patterns previously reported [166] is obtained for the solid 

phases equilibrated in hydroquinone solutions, thus confirming that the initial nanocrystalline 

PuO2(ncr,hyd) remains stable and controls the solubility of Pu in these systems. Although 

showing a weaker signal, a very good agreement with PuO2(cr) patterns is also obtained for 

the solid phase recovered from the Sn(II) system at pHm = 12. Besides the pattern of PuO2(cr), 

a number of additional reflections are observed in the Sn(II) system at pHm = 9. The latter 

show moderate agreement with the diffractogram of Sn6O4(OH)4(s) (PDF 14-0140) and 

SnO(s) (PDF 13-0111), which are the expected [126] solid phases controlling the solubility of 

Sn(II) at this pHm. At pHm = 12, Sn(II) is completely dissolved due to the formation of anionic 

hydrolysis species, in good agreement with the lack of reflexes corresponding to Sn(II)-

containing phases in the Sn(II) buffered system at this pHm. 

These results confirm the presence of PuO2(ncr,hyd) in both hydroquinone and Sn(II) 

systems. Note, however that both cubic Pu2O3(cr) (PDF 06328) and PuO2–x(cr) (PDF 

41-1171) share similar reflections with PuO2(cr), and thus cannot be ruled out from the 

findings gained by XRD. 
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Figure 9. Powder diffractogram of the starting PuO2(ncr,hyd) phase collected with a 

conventional spectrometer (top), and in-situ XRD patterns collected at the INE–Beamline for 

the empty double containment and Pu solid phases recovered from solubility experiments at 

pHm = 9 and 12 in hydroquinone and Sn(II) systems (teq = 146 days). Squares indicate peak 

positions and relative intensities reported [166] for PuO2(cr). Triangles correspond to peak 

positions and relative intensities of the double containment used for in-situ XRD 

measurements. 
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XPS 

XPS spectra of solid phases recovered from the hydroquinone and Sn(II) systems after an 

equilibration time of 126 days indicate the predominance of PuO2(ncr,hyd) in all cases, 

confirming that the structure of the starting material is retained. However, the spectra 

collected in Sn(II) systems with pHm ≤ 11 exhibit poor quality, likely due to the significant 

presence of Sn(II)–containing phases and consequently lower Pu atomic concentration on the 

surface of the evaluated samples. 

The identification of minor contributions of other Pu redox states (e. g. +III) can also be 

hindered by the relatively broad range of Full Width at Half-Maximum (FWHM) observed for 

the Pu 4f7/2 elemental lines (2.27 eV ≤ FWHM ≤ 2.87 eV). Variations in the FWHM are likely 

to be related to structural disorder characteristics of amorphous phases, but also to 

inhomogeneous surface charging due to the presence of salts such as NaCl or Sn(II) oxy-

hydroxides.  

 

XANES 

Pu LIII–edge XANES spectra collected for the solid phases controlling the solubility of Pu in 

hydroquinone and Sn(II) systems at pHm = 9 and 12 are shown in  Figure 10. The figure 

includes also the XANES spectra of the starting material, as well as the reference spectra 

reported in Brendebach et al. [140] for aqueous Pu(III) and Pu(IV) species in acidic 

conditions. 
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Figure 10. Pu LIII–edge XANES spectra of solid phases recovered from HQ (blue line) and 

Sn(II) systems (green line) at pHm = 9 and 12 (teq = 146 days). The spectra of the starting 

material (black) used in this study and the given references for the aqueous species of Pu(III) 

(purple line, position of WL = 18062.5 eV) and Pu(IV) (red line, position of WL = 18067.6 

eV) reported in Brendebach et al. [140] are shown for comparison. 

 

The edge energies of the XANES spectra (listed in Table 2) collected for Pu solid phases in 

hydroquinone systems are in excellent agreement with the Pu(IV) reference spectrum [140]. 

Furthermore, these spectra perfectly match the XANES spectrum collected for the starting 

material, and clearly show the existence of a PuO2 fluorite-like structure in the analyzed solid. 

The shift in the white line position to lower energy (≈ 1.2 eV,  Figure 10) observed for Pu 

solid phases in Sn(II) systems is beyond the typical energy calibration error margin (≈ 0.5 

eV), and unequivocally confirms a significant contribution of Pu(III). The reproduction of 

these spectra as a linear combination of Pu(III) and Pu(IV) reference spectra indicates an 

average Pu(III) content of (30 ± 5) %, both at pHm = 9 and 12. Since the predominance of 

Pu(IV) was confirmed in the starting material, this observation indicates the reduction of the 

initial Pu(IV) and further stabilization of Pu(III) under these (pe + pHm) conditions. It has to 
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be emphasized that a beam induced reduction in the Sn(II)-buffered samples is ruled out 

accounting for the confirmed predominance of Pu(IV) in the hydroquinone samples, which 

were measured under exactly the same experimental conditions. Two hypotheses are 

considered to explain the presence of Pu(III) in the solid phases controlling the solubility of 

Pu in Sn(II) systems: (i) the coexistence of PuO2(ncr,hyd) and Pu(OH)3(am), or (ii) the 

formation of a sub-stoichiometric PuO2–x(s) phase. Both options are discussed in the 

following sections in connection with EXAFS and solubility data. 

 

Table 5. Pu LIII–edge inflection points and white-line positions of the XANES spectra 

in  Figure 10: starting material used in the present study, solid phases recovered from the 

hydroquinone and Sn(II) systems at pHm = 9 and 12 (teq = 146 days) and Pu(III)aq and 

Pu(IV)aq references [140]. 

Sample 
First inflection point*‡ 

[eV] 

White line (WL)* 

[eV] 

PuO2(ncr,hyd), 
starting material 

18060.3 18068.3 

HQ, pHm = 9 18060.9 18067.9 

HQ, pHm = 12 18060.7 18068.1 

Sn(II), pHm = 9 18059.9 18066.6 

Sn(II), pHm = 12 18059.3 18066.7 

Pu(III)aq (HCl, pH = 0) [140] 18059.9 18062.5 

Pu(IV)aq (HCl, pH = 3) [140] 18062.4 18067.6 

Pu(IV)(OH)4(am) 
(sample H) [169] 

18060.5 18068.4 

* Energy calibration relative to first infection point of Zr K-edge XANES assigned to 17998 eV (E 1s) Calibration error 
(due to DCM motor encoder step uncertainty): ± 0.5 eV 

‡ Note that the position of the first inflection point is affected also by the Pu aggregation state (i.e., aqua ion vs. colloidal 
oxy-hydroxide species or solid precipitates. 

 
 
EXAFS 

The Fourier-Transformed (FT) representation of the k2-weighted EXAFS data depicted 

in  Figure 11 for hydroquinone and Sn(II) systems (left panel: FT magnitude, imaginary part 

and fit results in R-space, right panel: raw data, Fourier-filtered data and fit results in k-space) 

corresponds to a radial pair distribution function uncorrected for photoelectron phase-shifts of 
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the central and neighboring atoms. Two coordination shells are discernible for all samples 

investigated in the present work: the first one around 1.75 Å (R−∆), which typically reflects 

Pu bonding to bridging oxygen atoms and to oxygen from terminal water and hydroxide units. 

These different oxygen neighbors, if simultaneously present in a compound, exhibit a spread 

of bond distances generally leading to large Debye–Waller factors or requiring inclusion of an 

asymmetry parameter (3rd cumulant) in the fit - or even a second oxygen neighbor shell (cf., 

e.g. to Rothe et al. [169]). The second shell around 3.6 Å (R−∆) reflects backscattering from 

second next Pu neighbors in the solid precipitates. All metric parameters evaluated are listed 

in Table 3. The fit results obtained for both Pu phases equilibrated in hydroquinone systems 

are almost identical and very similar to those obtained for the untreated starting material 

discussed in Section 3.1. The apparent disagreement between the PuO2 fluorite-type structure 

observed in the XRD patterns and the reduced O and Pu coordination numbers in the Pu LIII  

EXAFS fits is actually in line with previous results obtained for Pu oxy/hydroxide phases or 

amorphous colloids: a rather rigid –Pu–O–Pu– ‘backbone’ or fluorite structure type lattice 

gives rise to the clear XRD signature, while the local order around individual Pu centers can 

be significantly distorted - leading to strongly reduced coordination numbers (fluorite-type 

PuO2: RPu−O = 2.32 Å, NO = 8; RPu−Pu = 3.81 Å, NPu = 12) due to destructive interference of 

the backscattered photoelectron waves. This discrepancy merely reflects the different 

sensitivity of EXAFS as a short range structural probe for order/disorder phenomena in solid 

materials compared to XRD, where the latter is prone to be blind to local deviations from a 

long range ordered structure. Interestingly, Pu samples equilibrated in Sn(II) systems (at both 

pHm values) exhibit a significant and consistent shrinking of both Pu-O and Pu-Pu distances 

by about 0.04–0.05 Å compared to the two hydroquinone samples (fit errors are estimated to 

0.01 Å for RPu-O and 0.02 Å for RPu-Pu).  

The impact of the possible coexistence of PuO2(ncr,hyd) and Pu(OH)3(am) on the average Pu-

O distances (measured by EXAFS) in the Pu solid phases equilibrated in Sn(II) systems is 

unclear. Virtually no information is available on the structure of the amorphous phase 

Pu(OH)3(am), which should be probably better defined as PuOx(OH)3–2x⋅yH2O(am). Pu(III)–

OH bonds are expectedly shorter than Pu(IV)–O or Pu(IV)–OH2, considering rOH– = 1.22 Å, 

rO2– = 1.40 Å and rOH2 = 1.38 Å reported previously [179-181]. However, as the number of 

Pu(III)–OH bonds in PuOx(OH)3–2x⋅yH2O(am) is unknown, the impact on the Pu-O distances 

cannot be properly assessed. 

The shrinking of Pu-O and Pu-Pu distances in the solid phases containing Pu(III) is 

unexpected because of the larger size of the Pu3+ ion (1.12 ± 0.02 Å, CN = 8) compared to 
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Pu4+ (1.01 ± 0.02 Å, CN = 9) [173]. Only a limited number of experimental studies [167, 182-

186] have investigated the structure and stability of sub-stoichiometric phases PuO2–x(s). Most 

of these studies focused on the behavior of PuO2±x(s) phases at elevated temperature, and 

reported the destabilization of PuO2–x(s) below 300°C. Haschke et al. [184] investigated the 

reaction of Pu metal (both α-phase and δ-stabilized alloy) with water at 25°C, and reported 

the formation of several PuO2–x(s) phases (PuO1.714, PuO1.778, PuO1.8 and PuO1.833) besides 

Pu2O3, PuO2 and two Pu(III) oxo-hydrides (PuOH and Pu7O9H3). Recent publications [185, 

186] by the same research team combining their own experimental results with the re-

interpretation of data available in the literature concluded that the Pu-O system is not 

accurately described by the currently accepted Pu phase diagram, and that the formation and 

predominance of PuO2–x(s) phases should be also expected at room temperature. Both 

experimental and theoretical studies report however the expansion of the unit cell in PuO2–x(s) 

compared to PuO2(s), which expectedly should correlate with an elongation of the Pu-O 

distance [167, 187]. It is evident from the discussion above that relevant uncertainties still 

affect to this system, especially in the conditions investigated in the present study, i.e. in 

aqueous systems at room temperature. 

Although, the presence of up to 30% of Pu(III) has been confirmed in the Pu solid phases 

equilibrated in Sn(II)-buffered systems, based upon the structural changes associated with the 

partial reduction of Pu(IV)s, the currently available XAFS data cannot unambiguously 

differentiate between the following two cases: 

 

1. Formation of a homogeneous phase, PuO2–x(s), with reduced lattice constant 

2. Mixture of predominantly fluorite type Pu(IV)O2 and amorphous Pu(III)(OH)3 phase. 

 

Further experimental efforts are definitely needed to elucidate these uncertainties (see Section 

3.1.1.8 for related discussion). 
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Table 6. Data range and metric parameters extracted by least-squares fitting of EXAFS 

spectra to the EXAFS equation. 

Sample 

k-range 
[Å-1] 

fit-range 
[Å]  

shell N 
R 

[Å]  
∆E0 
[eV] 

σ
2 

[Å2] 
r-factor 

[%] 

PuO2(ncr,hyd), 
starting material 

1.85-12.13 O 4.3 
(8.0f) 

2.33 2.06 g 0.0046 C3 
(0.0140) 

2.9 

 

1.29-4.17 Pu 2.3 3.84  0.0004  

Pu(IV)(OH)4(am) 
(sample H) [169] 

1.71-12.5 

 

O 4.0 2.32 2.38 0.0104 1.6 

1.35-3.99 Pu 2.4 3.87 1.84 0.0066  

HQ 
pHm = 9 

1.65-12.23 O 5.2 

 

2.32 0.09 g 0.0068 C3 

 

1.3 

 

1.01-4.08 Pu 3.2 3.83  0.0021  

HQ 
pHm = 12 

1.60-12.10 O 5.0 

 

2.33 2.32 g 0.0044 C3 

 

1.2 

 

1.01-4.08 Pu 3.2 3.83  0.0027  

Sn(II) 
pHm = 9 

1.90-12.22 O 6.2 2.28 -1.43 g 0.0071 C3 2.5 

       
0.83-4.17 Pu 3.7 3.78  0.0014  

Sn(II) 
pHm = 12 

1.90-12.18 O 4.9 2.28 -1.34 g 0.0061 C3 2.9 

       
0.83-4.17 Pu 3.2 3.78  0.0014  

    S0
2 = 1.0 fixed (slightly underestimating N in all fits) 

g   global parameter for both shells 
f   fixed parameter 
C3 asymmetry parameter (3rd cumulant) applied in fit 
    errors: RPu-O  0.01 Å, RPu-Pu 0.02 Å 
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Figure 11. Pu LIII–edge EXAFS fit results for hydroquinone and Sn(II) systems in R-space - 

left panel: FT magnitude (solid line), fit magnitude (open circles), FT real part (thin solid 

line) and fit real part (open triangles); right panel: Fourier-filtered data (solid line), raw data 

(thin solid line), back-transformed fit (open circles). 
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3.1.1.5 Thermodynamic calculations 

Chemical reactions (32), (35) and (38) are expected to control the solubility of Pu within the 

experimental conditions considered in this study. The corresponding Equations (33, 34), (36, 

37) and (39, 40) have been used in combination with stability constants and SIT ion 

interaction coefficients summarized in Table A1 and Table A2 of the Appendix to calculate 

the solubility lines in  Figure 7 and  Figure 12: PuO2(am,hyd) in equilibrium with Pu(IV) 

aqueous species (black line); PuO2(am,hyd) in equilibrium with Pu(IV)aq and Pu(III)aq at pe + 

pHm = 2 (grey line); and Pu(OH)3(s) in equilibrium with Pu(III)aq (green and purple lines). 

The two solubility curves plotted for Pu(OH)3(s) have been calculated using log *K°IIIs,0 = 

15.8 and 14.35, as reported in [9] (taken from [30]) and [40], respectively. 

 

Pu(III)(OH)3(am) + n H+ ⇔ Pu(III)(OH)3–n
n+

 + n H2O(l) (32) 

log *K°IIIs,(3–n) = log *KꞌIIIs,(3–n) + log γPu(III)(OH)3–n
n+ + n log aw – n log γH+ (33) 

log *KꞌIIIs,(3–n) = log mPu(III)(OH)3–n
n+ + n pHm (34) 

 

Pu(IV)O2(am,hyd) + n H+ ⇔ Pu(IV)(OH)4–n
n+

 + (n–2) H2O(l) (35) 

log *K°IVs,(4–n) = log *KꞌIVs,(4–n) + log γPu(IV)(OH)4–n
n+ + n log aw – n log γH+ (36) 

log *KꞌIVs,(4–n) = log mPu(IV)(OH)4–n
n+ + n pHm (37) 

 

Pu(IV)O2(am,hyd) + (1+n) H+ + e– ⇔ Pu(III)(OH)3–n
n+

 + (n–1) H2O(l) (38) 

log *K°IVs/III,(3–n) = log *KꞌIVs/III,(3–n) + log γPu(III)(OH)3–n
n+ + pe +  

 + (1+n) log aw – (1+n) log γH+ (39) 

log *KꞌIVs/III,(3–n) = log mPu(III)(OH)3–n
n+ + (1+n) pHm (40) 

 

 

3.1.1.6 Redox conditions in unbuffered systems 

The redox-unbuffered systems after an equilibration time of ca. 8 years are considered to be in 

a well-established steady state with constant redox potential values. Liquid–liquid extraction 

method on the ultra-filtrates determined Pu(V) as the prevailing redox state of Pu in the 

investigated systems at pHm = 3.76 and 3.86. The quantified Pu(V)aq concentrations 
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(log m(Pu)tot = –5.63 and –6.18) together with the contributions of Pu(VI)aq (log m(Pu)tot = 

–7.3 and –7.9) and Pu(IV)aq (log m(Pu)tot = –8.0 and –8.3, respectively) are suitable to 

calculate the theoretical redox potentials of the solutions, based on the corresponding redox-

equilibria: Pu(IV)s ↔ Pu(V)aq and Pu(V)aq ↔ Pu(VI)aq. According to the hydrolysis scheme 

of Pu(V) and Pu(VI) [9], the dominant species of the given oxidation states of Pu in solutions 

at pHm = 3.76 and 3.86 were found to be the oxo-cations: PuO2
+ and PuO2

2+. Hence, the 

theoretical pe values were then derived from redox-reactions (28) and (31), through the 

corresponding Equations (30) and (33), respectively, by using the thermodynamic values (29) 

and (32), reported in [5] and [9], corrected to 0.1 m NaCl via the SIT formulism. 

 

Pu(IV)O2(am,hyd) ⇔ Pu(V)O2
+(aq) + e– (41) 

log *K°IVs/Vaq = –(19.78 ± 0.89) (42) 

pe(IVs-Vaq)  = –(log *KꞌIVs/Vaq – log mPu(V)O2
+(aq)) (43) 

 

Pu(V)O2
+(aq) ⇔ Pu(VI)O2

2+(aq) + e– (44) 

log *K°Vaq/VIaq = –(15.82 ± 0.09) (45) 

pe(Vaq-VIaq) = –(log *KꞌVaq/VIaq – log mPu(V)O2
+(aq) – log mPu(VI)O2

2+(aq) (46) 

 

The experimentally measured redox potential values: pe = 12.39, 11.35 in the unbuffered 

samples at pHm = 3.76 and 3.86, respectively were found to be remarkably lower than those, 

calculated by the corresponding equilibria: Pu(IV)s/Pu(V)aq with pe(IVs-Vaq) = 13.94, 13.39 and 

the Pu(V)aq/Pu(VI)aq with pe(Vaq-VIaq) = 13.75, 13.74. In the absence of other redox buffers, the 

redox potential is directly controlled by the available plutonium in solution. In this 

framework, measured Eh values of systems with relatively low Pu total concentrations (below 

10–5 M) are affected by large uncertainties and shall be treated carefully. Nonetheless, the 

good agreement in the pe values measured for the couples Pu(IV)s/Pu(V)aq and 

Pu(V)aq/Pu(VI)aq gives further confidence in the quantitative evaluation of the different redox 

states of Pu in solution. 

 

3.1.1.7 Determination of log *K°IVs,0 for PuO2(ncr,hyd) starting material 

The accurate characterization of the PuO2(ncr,hyd) solid phase and the quantification by 

liquid-liquid extraction of m(Pu(IV))tot in equilibrium with this phase under acidic conditions 

allows the quantification of log *K°IVs,0 of the starting material used in the solubility 
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experiments under alkaline to hyperalkaline pH conditions. Solid phase characterization 

(Section 3.1.1.4) has also confirmed the predominance of the same solid phase in 

hydroquinone systems, and thus the solubility data in this system expressed by the same 

log *K°IVs,0. The case of Sn(II)-buffered systems, where XANES has confirmed the presence 

of Pu(III) in the solid phase is discussed in detail in Section 3.1.1.8. 

Total concentration of Pu(IV) in equilibrium with PuO2(ncr,hyd) at pHm = 3.76 and 3.86 was 

quantified by liquid-liquid extraction. Based on the experimentally measured m(Pu(IV))tot, the 

concentration of free Pu4+(aq) was calculated using Equation (47): 

 

mPu4+(aq) = m(Pu(IV))tot · (1 + ∑
 4

n = 1
(*βꞌ1,n · mH+–n))

–1 , (47) 

 

where log *βꞌ1,n are the hydrolysis constants of Pu(IV) (corresponding to the reactions: 

 Pu4+ + n H2O(l) ⇔ Pu(IV)(OH)n
(4–n)+ + n H+ with n = 1 – 4) corrected to 0.1 m NaCl using 

the SIT formalism. Based on the calculated mPu
4+

(aq) and according with chemical reaction 

(35) for n = 4, the conditional solubility product of PuO2(ncr,hyd) in 0.1 m NaCl (log *KꞌIVs,0) 

can be calculated based on Equation (47), and corrected to the standard state (log *K°IVs,0) 

using Equation (36). 

The resulting mean value of the solubility product of the PuO2(ncr,hyd) phase used in this 

study was determined as log *K°IVs,0 = –(58.1 ± 0.3), which is in excellent agreement with the 

selected reference value of –(58.3 ± 0.5), reported in Neck et al. [5] and NEA-TDB [9].  

 

3.1.1.8 On the role of Pu(III)s/aq under alkaline reducing conditions 

According to the current thermodynamic data selection, provided by NEA-TDB [9] for 

Pu(IV) and Pu(III) solid compounds and aqueous species, the redox transition for the 

transformation of PuO2(am,hyd) + e– ↔ Pu(OH)3(s) lays at (pe + pH) = –(0.4 ± 1.6), is just 

below the lower border line of the stability field of water (see Section 1.1.1 for more details). 

Consequently, Pu(OH)3(s) is not foreseen to form under the redox-influence of Sn(II) in 

aqueous systems, defined by the mildly higher (pe + pHm) values (see  Figure 6). It has to be 

emphasized however, that taken into account the uncertainty of ± 1.6 log-units assigned to the 

log *K°IIIs,0 solubility product, the redox conditions defining the given transition are very ill-

defined. 

In contrast to the above mentioned thermodynamic expectations, XANES results provide 

evidence on the presence of relevant fractions of Pu(III) in the solid phases, controlling the 
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solubility of Pu in Sn(II)-buffered systems at pHm = 9 and 12. Under the given conditions at 

pHm = 9 the solubility of Sn(II) (originally: m(Sn(II))tot = 2 mM) is controlled by the 

Sn6O4(OH)4(s) and SnO(s) phases, limiting m(Sn(II))tot to ~10–6 m, whilst at pHm = 12, Sn(II) 

is quantitatively dissolved by the formation of Sn(OH)2
0 and (mostly) Sn(OH)3

– [126]. 

Reproduction of the observed Pu LIII-edge XANES spectra by the linear combination of 

Pu(III)aq and Pu(IV)aq reference spectra from [140] determined an overall average Pu(III)s 

content of (30 ± 5) n% for both retrieved solids from the Sn(II)-buffered systems, regardless 

of the present pHm condition in the supernatant solutions. Based on these observations, the 

influence of different Sn(II)-containing solid phases on the redox state of Pu within the 

investigated solids (through possible sorption effects) can be discarded. Furthermore, 

provided the different hydrolysis speciation and thus, the chemical behavior of Sn(II) at the 

given pHm within the investigated systems, the detected reduction of Pu(IV)s to Pu(III)s (in 

comparison with the identical HQ system) could only be imposed by the lower (pe + pHm) 

conditions, i.e. by the more reducing nature of the media. 

Previously reported experimental observations [33, 40] point towards the greater stability of 

Pu(OH)3(s) compared to the current thermodynamic NEA-TDB selection [9]. According to 

Equation (34) using the log *K°IIIs,0 for Pu(OH)3(s) reported by Fellhauer and co-workers [40] 

the depicted calculation results in less reducing conditions for the given redox transition with 

(pe + pHm) values of +1.05, consistently with the presence of Pu(III) in the solid phases of the 

Sn(II)-buffered solubility experiments. However, in the case of the simultaneous presence of 

two solid phases containing the same cation, the phase with the higher solubility (and thus 

less stable) controls the concentration of the cation in solution until its complete 

transformation into the thermodynamically stable solid phase (if equilibration processes 

between the solid and liquid phases are not kinetically hindered). In this context, the 

coexistence of two solid phases (PuO2(ncr,hyd) and Pu(OH)3(am)) along a broad pH-range 

(9–12, in the present study) is feasible but unlikely from a thermodynamic point of view. It 

requires ∆rG = 0 within the considered (pe + pHm) boundary conditions for the chemical 

reaction PuO2(am,hyd) + H2O(l) + H+ + e– ⇔ Pu(OH)3(am). This observation suggests that 

the coexistence of both solid phases, if confirmed, would possibly correspond to a kinetically 

transient state evolving towards the complete transformation into a single phase, either 

PuO2(ncr,hyd) or Pu(OH)3(am), or a mixed-valent oxide forming. 

For comparison reasons, the Pu solubility results of this study, gained in the Sn(II)-buffered 

system are plotted together in  Figure 12 with the similar (above the given detection limit) data 

on Pu(OH)3(s) solubility, conducted in distilled water by Felmy and co-workers [30].  Figure 
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12 also includes all the previously calculated Pu solubility curves corresponding to solutions 

in equilibrium with PuO2(am,hyd) or Pu(OH)3(s) solid phases. 

The green line in  Figure 12, showing the solubility of Pu(OH)3(s) calculated with the NEA-

TDB selection [9] clearly overestimates the experimentally measured Pu solubility in Sn(II)-

buffered systems with pHm < 11, supporting the hypothesis that the selected log *K°IIIs,0 for 

this solid phase, reported in [30] is too large. Moreover the published raw data points of 

Felmy et al. also exhibit systematic differences (with negatively signed residuals) from the 

above mentioned solubility line. Worth mentioning also, that the corresponding solubility 

curve is corrected to 0.1 m (NaCl) ionic strength by the SIT formalism. Hence, changes in the 

residuals with respect to the “real” curve at infinite dilution are indeed expected, (since the 

experiments were conducted in distilled water by Felmy et al.), but the effect is irrelevant to 

the overall trend. This phenomena implies that the optimized solubility product of Pu(OH)3(s) 

(log *K°IIIs,0) is overestimated, which is partly originating from the incorrectly applied 

hydrolysis scheme of Pu(III) (see Section 1.1.1 for more details). The possible reevaluation of 

the raw data reported in [30], using the selected hydrolysis constants from the latest NEA-

TDB review [9] for Pu(III)aq, would already provide a moderately lower log *K°IIIs,0 by 

approximately 0.6 log-units, also in accordance with the work of Cho et al. [33]. 

On the contrary, the identical solubility curve (purple line in Figure 9) of Pu(OH)3(s), 

calculated with the log *K°IIIs,0 determined in [40] provides a more consistent fit of the 

solubility data gained in this work at pHm ≥ 9. However, the large dispersion in the 

determined Pu concentrations under the near-neutral pHm conditions does not allow us to 

refine theoretically the corresponding log *K°IIIs,0 value of Pu(OH)3(s) for the Sn(II)-buffered 

system. 
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Figure 12.  Plutonium total concentrations in solution in equilibrium with Pu(OH)3(am) in 

distilled water (Felmy et al. [30], symbol: □), in 0.10 m NaCl (Fellhauer [40], symbol: ♦), in 

0.10 m NaClO4 (Cho et al. [33], symbol: ●) or with PuO2(ncr,hyd) in Sn(II)-buffered systems 

at I = 0.10 m NaCl (present study, symbol:▲). Solid lines correspond to the 

thermodynamically calculated solubility of PuO2(am,hyd) in equilibrium with Pu(IV)aq 

species (black line) and for pe + pHm = 2 (grey line, predominance of Pu(III)aq at pHm ≤ 9). 

Green, purple and light blue lines show the calculated solubility lines of Pu(OH)3(am) using 

log *K°IIIs,0 values reported in NEA-TDB [9], in Fellhauer et al. [40] and in Cho et al. [33], 

respectively. Ionic strength corrections were performed using SIT formalism as described in 

Section 3.1.1.5. 

 

One plausible explanation for the presence of both Pu(IV) and Pu(III) in the solid phase 

controlling the solubility of Pu under alkaline to hyperalkaline reducing conditions would be 

the formation of the substoichiometric plutonium dioxide: PuO2–x(s). It is widely accepted [5, 

6, 177, 188-190] that the fluorite-type structure of PuO2 can easily accommodate additional 

oxygen atoms to charge-balance the presence of Pu(V) in PuO2+x(s), which readily forms in 

the presence of traces of O2. A far more limited and discrepant literature is available on the 
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formation of the sub-stoichiometric phase PuO2–x(s). Most of the available studies [167, 182, 

183] deal with dry solid material synthesized and characterized at elevated temperature (300–

1000°C), and thus, are hardly comparable to the present work. The study by Haschke and co-

workers [184] dealing with the corrosion of Pu metal with water at room temperature provides 

a somehow closer basis to be compared with the material obtained in the presently. The 

authors could not explain their observations with the formation of either Pu(OH)3(s) or 

PuO2(s) solid phases plus H2, but claimed the formation of several PuO2–x(s) phases. 

Unfortunately, no structural data was reported for such phases and no information on the Pu 

concentrations in solution were provided either. 

In spite of the multiple experimental evidence collected in the present work (solubility, (pe + 

pH) measurements, extensive solid phase characterization, redox speciation), this still does 

not allow us to formulate a final conclusion on the role of Pu(III) in the solid phases 

controlling the solubility of Pu under alkaline reducing conditions. However, the solubility 

behavior of Pu(IV) and Pu(III) solid phases in the presence of strongly complexing ligands 

(such as ISA) is expected to provide additional insights on the character of the solid phases 

controlling the solubility of Pu under these boundary conditions. 
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3.1.2 Pu–ISA system 

3.1.2.1 pH and Eh measurements 

The experimentally measured pHm and Eh (converted into pe) values of all the evaluated 

samples are shown in the Pourbaix diagram of Pu in  Figure 13. The thermodynamic 

calculations for the construction of the diagram were executed identically as it was detailed 

before in Section 3.1.1.2. 

Solubility experiments in HQ or Sn(II) redox buffered systems in the presence of ISA showed 

stable pHm (± 0.05) and Eh (± 15–30 mV, depending upon pH-region) readings within the 

time frame of this study (3 months). 

In accordance with the findings of the present study conducted in the absence of ISA (see 

Section 3.1.1), the use of HQ as a redox buffering agent set moderately reducing conditions 

with (pe + pHm) = (9 ± 1). These conditions fall within the stability field of Pu(IV)s and 

Pu(IV)aq, and thus this system is considered as the reference case to assess the interaction of 

Pu(IV)aq,s with ISA. The presence of Sn(II) maintained strongly reducing conditions in 

solution. Redox potentials observed in all Sn(II)-buffered systems with shorter measurement 

time (approximately 15 mins) could be described by the correlation of (pe + pHm) = (1 ± 1). 

However, as discussed in Section 2.2, longer allowed contact time for the measurements of Eh 

values resulted in a more stable mean value at each investigated pHm condition. The obtained 

values showed significantly smaller uncertainty after 1 hour of measurement time.  Table 7 

summarizes the average of the Eh values (versus Ag/AgCl reference electrode) together with 

the associated uncertainties (2σ) collected in the Sn(II) system at different pHm conditions 

with more than 1 hour of equilibration time. The small absolute drift for the measurements of 

the values listed in  Table 7 (below < 0.08 mV/min) together with the clearly lower associated 

uncertainties (± 15 mV) ensured the validity of the obtained conditions. 
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Figure 13. Pourbaix diagram of Pu calculated for m(Pu)tot = 10–5 m and I = 0.1 m NaCl 

using thermodynamic and (SIT) activity models as described in the text. pHm and Eh values 

experimentally determined for Pu(IV) solubility experiments in the presence of ISA and redox-

buffering agents: HQ (■) and Sn(II) (▲).Thick lines correspond to redox borderlines between 

Pu(IV) and other Pu redox states: solid line is the borderline between Pu solid phases; 

dashed line is the borderline between Pu aqueous species. Colored regions indicate 

equilibrium between Pu(IV)s and Pu(III)aq (green), Pu(V)aq (orange) and Pu(VI)aq (blue). The 

borderlines of the stability field of water at (pe + pHm) = 20.77 and (pe + pHm) = 0, the 

“redox-neutral” line at (pe + pHm) = 13.8 and the lines at (pe + pHm) = 1.54 and 9 are 

shown for comparison. 
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Table 7. Mean pHm and Eh values (versus Ag/AgCl reference electrode) with associated 

uncertainties collected in Sn(II)-buffered systems with extended measurement times (for 1, 2 

and 6 hours). 

pHm 
Eh (mV) 

vs. Ag/AgCl ref. electrode 

Associated 
uncertainty, 2σ 

(mV) 

8.05 –580.0 14.5 

9.15 –657.9 9.2 

10.02 –714.8 14.2 

10.85 –771.2 14.2 

 

Using the results of 1, 2 and 6 hours of Eh measurements, an averaged redox condition with 

(pe + pHm) = (1.54 ± 0.14) can be derived. This is considered to be the overall valid 

thermodynamic value and adapted for the interpretation of the data gained in the Sn(II) 

system (see Section 3.1.2.4.2 for further details on the evaluation procedure of the given 

results). Under the redox-influence of Sn(II) findings of the previous study conducted in the 

absence of ISA indicated the coexistence of Pu(IV) (~70%) and Pu(III) (~30%) in the solid 

phases recovered from experiments at pHm = 9 and 12 after 146 days of contact time. 

 

3.1.2.2 Solubility measurements 

Total concentrations of plutonium in equilibrium with PuO2(ncr,hyd) and in the presence of 

NaISA measured after phase separation (ultrafiltration and ultracentrifugation) are shown 

in  Figure 14 (pHm = 8 – 12.9; m(ISA)tot = constant = 10–3 m) and  Figure 15 (pHm = constant = 

12; m(ISA)tot = 10–6 – 0.10 m). Figure 12 also includes the total Pu concentration measured 

(without any phase separation applied) in the supernatant of the solubility experiments. The 

latter data give insight on the possible presence of colloidal Pu(IV) species. The solubility of 

PuO2(ncr,hyd) in equilibrium with Pu(IV)aq (HQ system) and for (pe + pHm) = 1.54 (reductive 

dissolution), as well as the solubility of Pu(OH)3(am) using log *K°IIIs,0 reported in Cho et al. 

[33], are appended to the figures for comparison purposes. 
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3.1.2.2.1 Series with constant ISA total concentrations 

 Figure 14 shows that very stable values of m(Pu)tot are obtained for both HQ and Sn(II) 

systems after 90 days, indicating that thermodynamic equilibrium has been attained within 

this timeframe. The trends observed in the solubility curves in HQ and Sn(II) systems can be 

divided into three different cases: 

 

1) pHm = 8 – 11 in HQ-buffered systems: moderate and pHm-independent enhancement in 

the solubility of PuO2(ncr,hyd) is detected, indicating that no H+ are involved in the 

equilibrium reaction controlling the solubility of Pu. The increase in solubility with 

respect to the ISA-free systems is attributed to the formation of Pu(IV)–ISA aqueous 

complexes. 

2) pHm = 8 – 11 in Sn(II) systems: compared to the HQ system, a greater impact of ISA on 

the solubility of PuO2(ncr,hyd) is observed. The solubility shows also a clear pH-

dependency. Such differential behavior can only be attributed to the formation of Pu(III)–

ISA aqueous complexes. Although these observations do not provide any direct insight on 

the solid phase controlling the solubility, the lower m(Pu)tot measured at pHm = 8 

compared to the calculated solubility line of Pu(OH)3(am) (light blue line in  Figure 14) 

hints towards the possible retainment of the initial Pu(IV)O2(am,hyd) phase within these 

boundary conditions. 

3) pHm > 11 for both HQ and Sn(II) systems: a clear increase in the total Pu concentrations is 

observed with a slope (log m(Pu)tot vs. pHm) ≈ +1, indicating that one H+ is released in the 

equilibrium reaction controlling the solubility of Pu. The identical behavior observed in 

HQ and Sn(II) suggests that Pu(IV)s and Pu(IV)aq prevail in both systems. 
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Figure 14. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) in 0.10 m 

NaCl for redox buffered systems with HQ (■) and Sn(II) (▲) at pHm = 8 – 12.9 and m(ISA)tot 

= 10–3 m. Solid lines correspond to the thermodynamically calculated solubility of 

PuO2(am,hyd) in the absence of ISA in equilibrium with Pu(IV)aq (black line) and for pe + 

pHm = 1.54 (grey line, predominance of Pu(III)aq below pHm ≈ 10.5, see text for more details), 

and for Pu(OH)3(am) (light blue line) in equilibrium with Pu(III)aq species (calculated by 

using log *K°IIIs,0 reported in Cho et al. [33]). Red line with a slope of +1 is shown for 

comparison purposes. 

 

3.1.2.2.2 Series at constant pH conditions 

 Figure 15 shows the solubility of Pu at pHm = 12 as a function of increasing m(ISA)tot in 

solution after various applied phase separation methods and in the supernatants as well. 

Virtually identical solubility behavior is observed for the HQ- and Sn(II)-buffered systems, 

indicating that the same chemical equilibrium is controlling the solubility in both systems. 

Consistent values were obtained using ultrafiltration and ultracentrifugation as phase 

separation technique. A large scattering in m(Pu)tot is observed at m(ISA)tot < 10–3 m, in line 

with the results gained in the absence of ISA. More precise values of m(Pu)tot are visible at 

m(ISA)tot ≥ 10–3 m, indicating the formation of a new Pu(IV)-ISA complex. The latter 
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phenomena: increasing precision of solubility measurements upon the formation of charged 

aqueous complexes was previously reported for the Th(IV)–carbonate system as well [106]. 

 

 

Figure 15. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) in 0.10 m 

NaCl for redox buffered systems with HQ (■) and Sn(II) (▲) at pHm = 12 and 10–6 m ≤ 

m(ISA)tot ≤ 0.10 m. Open symbols mark the total concentrations of Pu in the supernatants of 

the Sn(II)– (∆) and HQ–buffered (□) systems (measured without any phase separation method 

applied). Black, filled circles (●) correspond to experimental solubility data reported in [93] 

obtained from undersaturation conditions at I = 0.01 m NaCl. Red line with a slope of +1 is 

shown for comparison purposes. 
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At m(ISA)tot ≥ 10–3 m, the solubility of Pu increases with a well-defined a slope of +1, 

indicating that the Pu:ISA stoichiometry of the complex at pHm = 12 is 1:1. 

Quantification of Pu in the supernatant solutions without any phase separation method (open 

symbols in  Figure 15) show a significantly greater m(Pu)tot than the values obtained after 

ultracentrifugation or ultrafiltration, indicating the gradually larger fraction of colloidal 

Pu(IV) aqueous species in solution with increasing m(ISA)tot. Special care was taken to avoid 

artefacts caused by the re-suspension of solid particles. The reproducibility of these 

observations was counterchecked with independent samples prepared with different total 

volumes and types of containers. Although m(Pu)tot values obtained after phase separation are 

representative of the thermodynamic equilibrium between the solid phase and monomeric 

aqueous species, the colloidal fraction must be also considered when assessing the impact of 

ISA on the mobilization of Pu under repository-relevant conditions. 

Solubility data of Pu(IV) in the presence of ISA previously determined in [93] are also shown 

for comparison purposes in  Figure 15. Substantial discrepancies arise between these data and 

the Pu solubility determined in the present work (for both, HQ- and Sn(II)-buffered systems). 

Relevant experimental shortcomings identified in [93] (see Section 1.3.3.1) could explain 

these observations, such as: the use of oversaturation approach without phase separation for 

the quantification of m(Pu)tot, non-redox buffered conditions, among others. Indeed, the 

m(Pu)tot concentrations measured in the present work in the absence of phase separation 

already point out that the presence of colloids might represent a relevant contribution to the 

overall solubility measured by Moreton and co-workers. Because of these limitations, the data 

reported in [93] are disregarded in the development of chemical and thermodynamic models 

for the system Pu(IV)–ISA. 

 

3.1.2.3 Solid phase characterization 

Synchrotron-based in-situ XRD 

 Figure 16 and  Figure 17 show the in-situ XRD patterns of the solid phases controlling the 

solubility of Pu in HQ and Sn(II) systems, respectively, equilibrated in solutions with 

m(ISA)tot = 10-3 m, pHm = 9 or m(ISA)tot = 0.10 m, pHm = 12 for 260 days.  Figure 16 also 

shows the diffractogram of the empty double containment used in the synchrotron-based 

measurements at the INE–Beamline as described in Section 2.6.6. 
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Figure 16. In-situ XRD patterns collected at the INE-Beamline for the Pu solid phases 

recovered from HQ-buffered solubility experiments with m(ISA)tot = 10-3 m, pHm = 9 and 

m(ISA)tot = 0.1 m, pHm = 12 (teq = 260 days) and for the empty double containment. Squares 

indicate peak positions and relative intensities reported for PuO2(cr) [166]. 
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Figure 17. In-situ XRD patterns collected at the INE-Beamline for the Pu solid phases 

recovered from Sn(II)-buffered solubility experiments with m(ISA)tot = 10-3 m, pHm = 9 and 

m(ISA)tot = 0.1 m, pHm = 12 (teq = 260 days). Square and circle marks show peak positions 

and relative intensities reported for PuO2(cr) [166] and for Sn6O4(OH)4(s) (PDF 14-0140 

from JCPDS database [136]), respectively. The triangle marks indicate the corresponding 

signals of the empty double containment used. 

 

All collected diffractograms of the retrieved Pu solid phases equilibrated in the presence of 

ISA are perfectly matching with the reference pattern of PuO2(cr) reported in [166]. Under 

identical conditions to those of the present work, previous experimental study conducted in 

the absence of ISA found the signals of the PuO2(cr) reference pattern significantly decreased 

in the solid phases retrieved from the Sn(II)-buffered samples at pHm = 9 and 12, in 

comparison with the analogous data obtained in the HQ system. The Pu LIII-edge XANES 

spectra indicated a relevant contribution of Pu(III) in the solid phases treated with Sn(II), but 

the presence of the cubic Pu2O3(cr) (PDF 06328) and/or PuO2–x(cr) (PDF 41-1171) phases 

could not be ruled out. However, in the course of the current study, all XRD pattern collected 

on the solid phases equilibrated in the presence of ISA are identical and such differences are 

not observed between the data of different redox buffered systems. These results are hinting 
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towards the retainment and predominance of Pu(IV)O2(am,hyd) in both the HQ- and Sn(II)-

buffered Pu-ISA system. Besides the pattern of PuO2(cr), a number of additional reflections 

are also observed in the Sn(II) system at pHm = 9. The latter show moderate agreement with 

the diffractogram of Sn6O4(OH)4(s) (PDF 14-0140, as identified solid phase available in the 

JCPDS database [136]) and SnO(s) (PDF 13-0111), which are the expected solid phases 

controlling the solubility of Sn(II) at this pHm [126]. Just as previously (Section 3.1.1.4), 

Sn(II)-containing solid phases in the retrieved solid phases of the Sn(II)-buffered system at 

pHm = 12 were not detected, due to the complete dissolution of Sn(II) under this condition. 

 

XANES 

Pu LIII–edge XANES spectra collected for the solid phases controlling the solubility of Pu in 

HQ and Sn(II)-buffered solutions with m(ISA)tot = 10-3 m, pHm = 9 or m(ISA)tot = 0.10 m, 

pHm = 12 (teq = 260 days) are shown in  Figure 18. The figure also includes the XANES 

spectra of the reference spectra reported in [140] for aqueous Pu(III) and Pu(IV) species under 

acidic conditions. 

The edge energies of the XANES spectra collected for all the retrieved Pu solid phases are in 

excellent agreement with the Pu(IV) reference spectrum reported in [140]. Furthermore, these 

spectra perfectly match the previously XANES spectrum collected for the starting material, 

and clearly show the existence of a PuO2 fluorite-like structure in the analyzed solid. 
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Figure 18. Pu LIII–edge XANES spectra of solid phases recovered from HQ- (blue lines) and 

Sn(II)-buffered (green lines) systems equilibrated in solutions with m(ISA)tot = 10–3 m, pHm = 

9 and m(ISA)tot = 0.10 m, pHm = 12 for 260 days. The spectra of the references for the 

aqueous species of Pu(III) (purple line, position of EWL = 18062.5 eV) and Pu(IV) (red line, 

position of EWL = 18067.6 eV) reported in Brendebach et al. [140] and the spectra of the 

initially characterized Pu(IV)O2(am,hyd) phase (starting material, also used for the present 

study, see section 3.1.1.1 and references [1, 2]) 

 

Experimental evidences from in-situ XRD and XANES measurements unequivocally confirm 

that the initial nanocrystalline Pu(IV)O2(am,hyd) remains stable and controls the solubility of 

Pu in all system in the presence of ISA. 

As the redox conditions imposed by HQ fall within the stability field of both, Pu(IV)s and 

Pu(IV)aq, the predominance of Pu(IV) in the retrieved solid phases were a priori expected 

upon predictions of thermodynamic calculations. Previous solubility study conducted in the 

absence of ISA under identical redox conditions and ~8.0 ≤ pHm ≤ ~13 showed very low 

(~10–10.5 m) and pH-independent Pu solubility values, consistent with the control of the 

solubility equilibrium: PuO2(am,hyd) + 2 H2O(l) ⇔ Pu(OH)4(aq). Hence, the HQ-buffered 

Pu-ISA series are treated as the reference case to separately assess the interaction of Pu(IV)aq,s 
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with ISA. Findings of in-situ XRD and XANES gained on the retrieved Pu solid phases in the 

Sn(II) system show significant differences between the two cases: i, in the absence (teq = 146 

days) and ii, in the presence of ISA (present work, teq = 260 days). The predominance of the 

tetravalent state of Pu, i.e. the complete lack of the previously detected Pu(III)-content in the 

retrieved solid phases dictates to evaluate the Pu-ISA solubility data of the Sn(II) system by 

the use of a reductive dissolution model. Under such circumstances, the concentrations of the 

free hydrolyzed Pu(III)-species are driven by the present redox condition, with (pe + pHm) = 

(1.54 ± 0.14) in solution, through the chemical equilibrium: Pu(IV)O2(am,hyd) + (1+n) H+ + 

e– ⇔ Pu(III)(OH)3–n
n+ + (n–1) H2O(l). 

 

EXAFS 

The Fourier-transformed (FT) representation of the k2-weighted EXAFS data depicted 

in  Figure 19 for HQ and Sn(II) systems (upper panel: FT magnitude, imaginary part and fit 

results in R-space, lower panel: raw data, Fourier-filtered data and fit results in k-space) 

corresponds to a radial pair distribution function uncorrected for photoelectron central and 

neighbor atom phase-shifts. Two coordination shells are discernible for all samples 

investigated in the present work: the first one around 1.75 Å (R−∆) reflects Pu bonding to 

bridging oxygen atoms and to oxygen from terminal water and hydroxide units. These 

different oxygen neighbors exhibit a spread of bond distances generally leading to large 

Debye–Waller factors or requiring inclusion of an asymmetry parameter (3rd cumulant) in the 

fit - or even a second oxygen neighbor shell (cf., e.g. to Rothe et al. [169]). The second shell 

around 3.6 Å (R−∆) reflects backscattering from second next Pu neighbors in the solid 

precipitates. All metric parameters are listed in  Table 8.  

As observed in the previous Pu solubility study in the absence of ISA [1], all solids 

investigated in the present work show a fluorite type signature as well. No clear trends are 

observed with pHm (9 and 12) or with reducing agent (HQ and Sn(II)). In all cases, RPu–O 

scatters around 2.30 Å and RPu–Pu around 3.80 Å, whereas coordination numbers: NO scatters 

around 6 and NPu around 4. As extensively discussed in previous publications [1, 179-181], 

the nanocrystalline character of the PuO2(ncr,hyd) material used in this work leads to a 

significantly distorted local order around individual Pu centers, which importantly reduces the 

coordination number reported for ideal fluorite-type PuO2: RPu−O = 2.32 Å, NO = 8; RPu−Pu = 

3.81 Å, NPu = 12. This is attributed to destructive interference of the backscattered 

photoelectron waves. 



 

 
113 

In summary, experimental evidences from in-situ-XRD, XANES and EXAFS measurements 

unequivocally confirm that the initial material, nanocrystalline Pu(IV)O2(ncr,hyd) remains 

stable and controls the solubility of Pu in all systems in the presence of ISA. This observation 

was considered in Section 3.1.2.4 for deriving chemical and thermodynamic models for the  

Pu–ISA system in HQ- and Sn(II)-buffered systems. 

 

Table 8. Data range and metric parameters extracted by least-squares fitting of EXAFS 

spectra to the EXAFS equation.  

Sample 

name 

k-range 

[Å-1] 

fit-range 

[Å] 

shell N 
R 

[Å] 

∆E0 

[eV]g 

σ
2 

[Å2] 

r-factor 

[%] 

HQ 1.80-13.28 O 5.9 2.30 -0.44 0.0081 2.7 

pHm = 9 0.95-4.14 Pu 3.4 3.81  0.0021  

        

Sn(II) 1.75-13.46 O 6.6 2.28 -2.28 0.0081 2.4 

pHm = 9 0.98-4.11 Pu 4.3 3.78  0.0030  

        

HQ 1.70-13.29 O 5.9 2.30 -1.11 0.0082 6.6! 

pHm = 12 1.04-4.11 Pu 4.1 3.80  0.0030  

        

Sn(II) 1.75-13.47 O 5.2 2.29 -2.31 0.0060 1.6* 

pHm = 12 0.90-4.06 Pu 3.5 3.80  0.0025  

S0
2 = 1.0 fixed (slightly underestimating N in all fits) 

g  global parameter for both shells 
! worst fit in series, reason unclear, low frequency contribution not reproduced  
* best fit in series 
   errors: RPu-O 0.01 Å, RPu-Pu 0.02 Å 
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Figure 19.  Pu LIII–edge EXAFS fit results for Pu(IV)O2(ncr,hyd) solid phases recovered from HQ and Sn(II)-buffered systems in the presence of 

ISA in R-space - upper panel: FT magnitude (solid line), fit magnitude (open circles), FT real part (thin solid line) and fit real part (open triangles); 

lower panel: Fourier-filtered data (solid line), raw data (thin solid line), back-transformed fit (open circles). 
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3.1.2.4 Thermodynamic calculations 

As discussed in Section 3.1.1.5, Chemical reactions (32), (35) and (38) are expected to control 

the solubility of Pu within the experimental conditions considered in this study. The 

corresponding Equations (33, 34), (36, 37) and (39, 40) have been used in combination with 

stability constants and SIT ion interaction coefficients summarized in Table A1 and Table A2 

of the Appendix to calculate the solubility lines in  Figure 20,  Figure 21,  Figure 22 and 

in  Figure 28: PuO2(am,hyd) in equilibrium with Pu(IV)aq (black line); PuO2(am,hyd) in 

equilibrium with Pu(IV)aq and Pu(III)aq at (pe + pHm) = 1.54 (grey line); and Pu(OH)3(am) in 

equilibrium with Pu(III)aq (light blue line). The solubility curve plotted for Pu(OH)3(am) were 

calculated using log *K°IIIs,0 = 14.58, as reported in Cho et al. [33]. These thermodynamic and 

activity models and accordingly calculated solubility lines are the basis for the 

thermodynamic description of the systems Pu(IV)–OH–ISA and Pu(III)–OH–ISA, which are 

derived in Sections 3.1.2.4.1 and 3.1.2.4.2 based upon solubility data and solid phase 

characterization discussed above. 

 

3.1.2.4.1 Chemical and thermodynamic model of the system Pu(IV)-OH-ISA 

The solubility data obtained in HQ-buffered experiment series with m(ISA)tot < 0.10 m were 

used for the development of the chemical and thermodynamic models on the Pu(IV)–OH–ISA 

system. As demonstrated in the Pu solubility experiments in the absence of ISA (see Section 

3.1.1) and also confirmed by the results of the solid phase characterization session in this 

chapter (see Section 3.1.2.3 for details), it can be safely assumed that HQ stabilizes the +IV 

redox state of Pu in both the aqueous and solid phases. 

Based on the slope analyses described in Sections 3.1.2.2.1 and 3.1.2.2.2 (log m(Pu)tot vs. pHm 

and log m(Pu)tot vs. log m(ISA)tot), chemical reactions (48) and (49) are proposed to control 

the solubility and solution chemistry of Pu(IV) in the presence of ISA within the conditions 

investigated (–6 ≤ log m(ISA)tot ≤ –2 and 8 ≤ pHm ≤ 13) in HQ-buffered systems. 

 

Pu(IV)O2(am,hyd) + ISA
–
 + 2 H2O(l) ⇔ Pu(IV)(OH)4ISA

–
 (48) 

Pu(IV)O2(am,hyd) + ISA
–
 + 3 H2O(l) ⇔ Pu(IV)(OH)5ISA

2–
 + H

+
 (49) 

 

The species Pu(OH)4ISA– is predominant at pHm = 8 – 11, whereas Pu(OH)5ISA2– forms in 

systems with pHm > 11. Note, that the proposed stoichiometries for the Pu(IV)–ISA 
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complexes assume highly hydrolyzed Pu(IV) moieties (“Pu(OH)4” and “Pu(OH)5
–“) 

coordinated to one ISA– ligand. Analogous reactions can be proposed by assuming instead the 

deprotonation of one or more alcohol groups of the ISA ligand. Such uncertainty does not 

affect the mass action law in reactions (48) and (49) (except for the number of water 

molecules), and thus has no impact on the accordingly determined equilibrium constants. (In 

view of  general knowledge on Pu coordination chemistry, however, it can already be clarified 

that the formation of the complex with the moiety of “Pu(OH)5
–“ should involve the 

simultaneous deprotonation of minimum one alcoholic groups of ISA.) The structures of the 

complexes forming are further investigated via quantum chemical calculations, as discussed 

in Section 3.1.2.5.1. 

Internal data evaluation, using the non-linear regression analysis method of least-squares 

involved the application of the following model function: 

 

f(KꞌIVs,4+x1
,y1

…, KꞌIVs, 4+xi,yi
) = (∑

 m

i = 1
[(log m

exp
(Pu)tot,m – log m

calc
(Pu)tot,m)

2
]·(n – 1)

 –1
)

 0.5 
, (50) 

 

where m
exp

(Pu)tot,m is the experimentally determined total concentration of Pu in solution (at a 

certain conditions, considering m number of data points in total). The parameters: *K´IVs,4+xi,yi 

(with i = 1, 2) are the conditional equilibrium constants (at I = 0.10 m NaCl) corresponding to 

the solubility reactions (48) and (49), which can be expressed as in Equation (51): 

 

log *KꞌIVs,4+x,y = log mPu(IV)(OH)4+x(ISA)y
–(x+y) + x log mH+ – y log mISA–  , (51) 

 

where (y1 = y2 = 1 and) x1 = 0 for the first, (Pu(OH)4ISA–; log*K´IVs,4,1) or (x2 =) 1 for the 

second species (Pu(OH)5ISA2–; log *K´ IVs,5,1). The dependent variable: m
calc

(Pu)tot,m is the 

total concentration of Pu in solution calculated according with Equation (52) and considering 

the total concentration of ISA (m(ISA)tot) with the experimentally measured pHm (converted 

to mH
+) value at each experimental point. Taking into account the significantly higher total 

concentrations of ISA compared to the solubility of Pu, free concentration of ISA in solution: 

mISA
–, was set equal to the total: m(ISA)tot. 

 

m
calc

(Pu)tot,m = ∑
 4

n = 1
(*KꞌIVs,(4–n) (mH+)

n
) + ∑

 2

i = 1
(*KꞌIVs,4+xi,yi

 (mISA–)
yi

 (mH+)
–xi

) (52) 
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In order to minimize the object function (Equation (50) - the square root of the averaged, 

squared residuals), firstly, the SIMPLEX method was applied [151]. 

In a second step, the gained, optimized values of *K´IVs,4,1 and *K´IVs,5,1 were then extrapolated 

to reference state, I = 0 using Equation (53) and SIT ion interaction coefficients with the 

values of ε(Pu(OH)4ISA–; Na+) = –(0.05 ± 0.10) mol·kg–1 and ε(Pu(OH)5ISA2–; Na+) = –(0.10 

± 0.10) mol·kg–1, estimated according to empirical correlations with the charges of the newly 

forming complex species as described in [149]. 

 

log *K°IVs,4+x,y = log *KꞌIVs,4+x,y + log γPu(IV)(OH)4+x(ISA)y
–(x+y) + x log γH+  –  

 – y log γISA– – x log aw (53) 

 

As a last step, the resulting solubility constants log K°IVs,4,1 and log K°IVs,5,1 were converted 

(in accordance with chemical Equation (54) into the corresponding formation constants 

log *β°1,4,1 and log *β°1,5,1 using the log K°IVs,0 reported in the NEA-TDB [9] for 

PuO2(am,hyd). As shown in analogous investigations conducted in the absence of ISA (see 

Section 3.1.1), this is consistent with the solubility control of the initial Pu(IV)O2(ncr, hyd) 

phase used in this study as well. 

 

Pu4+(aq) + x ISA
–
 + (4+y) H2O(l) ⇔ Pu(IV)(OH)4+yISA

–(x+y)
 + (4+y) H

+
  (54) 

log *β°1,4+x,y = log aPu(IV)(OH)4+x(ISA)y
–(x+y) + (4+x) log aH+ – log aPu4+ – y log aISA

– (55) 

 

To validate the simplified fitting process described above, an independent data evaluation 

approach was also performed using the PHREEPLOT – PHREEQC (PP–PQC) program 

packages (see also Section 2.7). For this purpose, a database was constructed containing all 

necessary equilibrium constants and SIT ion interaction coefficients (including 

ε(Pu(OH)4ISA–; Na+) and ε(Pu(OH)5ISA2–; Na+) as summarized in Table A1 and Table A2 of 

the Appendix. With this database, the software package was used to optimize the values of 

log *β°1,4,1 and log *β°1,5,1. The applied objective function was the square root of the averaged 

sum of squared residuals (corresponding to the parameters). The refinement of the defined 

cumulative equilibrium constants (as in Equation (55), at the reference state) was combined 

with the internal calculation of the ionic strength, based upon the initially set m(NaCl), 

m(ISA)tot and pHm values. In this case, the modified Levenberg-Marquardt method 

implemented in PP-PQC was used to optimize the constants [150]. 



 
118 

 Table 9 shows the values of log *
β°1,4,1 and log *β°1,5,1 obtained with the two different data 

evaluation approaches. The nearly identical results from the two procedures provide further 

confidence in the optimized log *
β°1,4,1 and log *β°1,5,1 values. Because of the higher internal 

consistency and the more accurate calculation of ionic strength, the outcome obtained with the 

PP–PQC software package was adopted as the final set of thermodynamic constants and 

uncertainties for the Pu(IV)–OH–ISA system. 

 

Table 9. Fitting results for the equilibrium constants (at I = 0, as expressed in Equation 

(55) for Pu(OH)4ISA– with log*
β°1,4,1 and Pu(OH)5ISA2– with log*

β°1,5,1) obtained through the 

non-linear regression analysis method of least–squares (“LS-method”) or by using the 

PHREEPLOT – PHREEQC software package (“PP–PQC”). 

log*
β°1,4+x,1 Parameters of evaluated  

data sets (HQ system) 
Approach Fitting result 

Pu(IV)(OH)4+xISA–(1+x) m(ISA)tot  [m] pHm (name) (I → 0) 

log*
β°1,4,1 < 0.10 8 – 12.9 LS–method –5.03 

log*
β°1,5,1 < 0.10 8 – 12.9 LS–method –16.98 

log*
β°1,4,1 < 0.10 8 – 12.9 PP–PQC –(5.03 ± 0.12) 

log*
β°1,5,1 < 0.10 8 – 12.9 PP–PQC –(16.92 ± 0.13) 

 

The solubility of Pu(IV)O2(ncr,hyd) in the presence of ISA calculated using the chemical and 

thermodynamic models derived in the present work are shown in  Figure 20 and in  Figure 21 

a, b, c, along with the corresponding experimental data sets obtained in this study. For 

comparison reasons,  Figure 20 and  Figure 21 also include experimental solubility data 

obtained in Sn(II) systems at pHm > 11. 

 Figure 21 (a, b, c) show that the solubility of Pu(IV)O2(am,hyd) in the presence of ISA 

calculated using the chemical and thermodynamic models derived in this work are in excellent 

agreement with the experimentally measured solubility in HQ systems. Although 

experimental data obtained in Sn(II) systems were not used for the refinement of the 

parameters, chemical and thermodynamic models derived from HQ systems properly explain 

solubility data in Sn(II) systems as well, where pHm > 11. This observation further confirms 

the findings of the solid phase characterization as the chemical reaction controlling the 

solubility of Pu, i.e. PuO2(ncr,hyd) ⇔ Pu(IV)–ISA(aq) is the same in both systems under the 

outlined conditions. 
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Figure 20. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) at I = 0.10 

m NaCl in HQ-buffered systems with pHm = 8 – 12.9 in the presence of m(ISA)tot = 10–3 m  

(■) or m(ISA)tot = 0.01 m (■) and in Sn(II)-buffered systems (▲), at pHm > 11 with m(ISA)tot 

= 10–3 m. Solubility lines (solid and dashed) in blue (with m(ISA)tot = 10–3 m) and in orange 

(with m(ISA)tot = 0.01 m) for Pu(IV)O2(am,hyd) in the presence of ISA are calculated (at I = 

0.10 m NaCl) using the chemical and thermodynamic models derived in this work. Black solid 

line corresponds to the thermodynamically calculated solubility of PuO2(am,hyd) in the 

absence of ISA. 
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Figure 21. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) at I = 

0.10 m NaCl in HQ-buffered systems (■) or in Sn(II)-buffered systems (▲) at constant pHm = 

8 (b), 11 (c) or 12 (a) with 10–6 m ≤ m(ISA)tot = 0.10 m. Solubility lines (solid and dashed) in 

blue for Pu(IV)O2(am,hyd) in the presence of ISA are calculated (at I = 0.10 m NaCl) using 

the chemical and thermodynamic models derived in this work. Straight lines are showing the 

individual contributions of the selected complex species. 
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3.1.2.4.2 Chemical and thermodynamic model of the system Pu(III)–OH–ISA 

The solubility data obtained in Sn(II)-buffered experiment series with m(ISA)tot = 10–3 m 

were used for the development of chemical and thermodynamic models on the Pu(III)- 

-ISA-OH system. In comparison with the HQ series, the higher Pu solubility values obtained 

in the Sn(II)-buffered systems at pHm = 8 – 11 supports the predominance of Pu(III)–ISA 

complex(es) in solution. As the solubility controlling phase (at pHm = 9 and 12) was identified 

to be the initial Pu(IV)O2(ncr,hyd) phase, the present Pu(III)-bearing ISA-complex species in 

solution originate from the reductive dissolution reaction of the initial Pu(IV)s phase. Hence, 

under such conditions, the concentration of free hydrolyzed Pu(III)-species are defined by 

Equations (39) and (40) through chemical equilibrium (38). The basis of data evaluation is the 

formerly determined chemical and thermodynamic model of the system Pu(IV)–OH–ISA. 

Considering that the observed increase in Pu solubility with regard to the ISA-free case, i.e. 

solubility at (pe + pHm) = 1.54 is pronounced within the near neutral pH-range, the formation 

reaction must undergo by involving either of the present hydrolyzed species: Pu(III)(OH)2+, 

Pu(III)(OH)2
+ and Pu(III)(OH)3. The trend observed in the data set as function of the pHm 

conditions however shows clear correlation with a slope of –1 (log m(Pu)tot vs. pHm), pointing 

towards the formation and predominance of only one, doubly hydrolyzed Pu(III)–ISA 

complex species: Pu(III)(OH)2ISA(aq). Nevertheless, the possible formation of a second 

species with several proposed stoichiometries as Pu(III):OH:ISA with values of 1:1:1, 1:3:1, 

1:1:2, 1:3:2, 2:1:1 and 2:3:1 was also tested to represent the observed tendencies in the data 

set. However, as the overall fit throughout these procedures did not improve significantly 

(compared to the case of involving only the Pu(III)(OH)2ISA(aq) species), the existence of a 

second Pu(III)-ISA complex was finally disregarded (differences between the absolute values 

of the objective functions corresponding to the various fitting procedures were observed to be 

negligibly small: ∆∑(σ2) < 1%). Hence, the established speciation model consisted of only 

one species to be forming under the boundary conditions through chemical equilibrium (56). 

 

Pu(III)(OH)2
+ + ISA

–
 ⇔ Pu(III)(OH)2ISA(aq) (56) 

 

The newly defined species, Pu(III)(OH)2ISA(aq) is expected to be predominant under 

strongly reducing conditions at relatively wide range of pHm values (8 < pHm < 10, at 

m(ISA)tot = 10–3 m), whereas in solutions with 10 < pHm, the formerly identified 

Pu(IV)(OH)5ISA2– complex gains relevance. (Just as previously, the proposed stoichiometry 
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for the Pu(III)–OH–ISA complex remains at a hypothetical level, provided that an analogous 

reaction can also be constructed by assuming instead the deprotonation of one or more alcohol 

groups of the ISA ligand. This again would not affect the mass action law or change the 

derived equilibrium constants related to the chemical reaction itself.) 

The internal data evaluation, using the non-linear regression analysis method of least-squares 

involved the use of an analogous model function as previously established (see Equation (50) 

in Section 3.1.2.4.1). The optimized parameter in the present case was the conditional 

equilibrium constant (*K´III,2,1; at I = 0.10 m NaCl), corresponding to the chemical reaction 

(21), expressed as in Equation (57). 

 

log *KꞌIII,2,1 = log mPu(III)(OH)2(ISA)(aq) – log mISA– – log mPu(III)(OH)2
+ (57) 

 

The total concentration of Pu in solution (m
calc

(Pu)tot,m) was calculated as expressed in 

Equation (58), considering the total concentration of ISA (m(ISA)tot) with the experimentally 

measured pHm (converted to mH
+) and pe values as –log ae-, calculated from the (pe + pHm) = 

1.54 correlation, also taking into account the chemical model and the corresponding 

equilibrium constants of the system Pu(IV)–OH–ISA (*K´IVs,4,1 and *K´IVs,5,1 at I = 0.10 m 

NaCl calculated using the estimated SIT coefficients) optimized by the PP–PQC software 

package. Based on similar assumptions as formerly discussed, the free concentration of ISA in 

solution, mISA
–, was set equal to the m(ISA)tot. 

 

m
calc

(Pu)tot,m = ∑
 4

n = 1
(*KꞌIVs,(4–n)·(mH+)

n
) + ∑

 3

n = 1
(*KꞌIVs/III,(3–n)·(mH+)

n
) + 

 + ∑
 2

i = 1
(*KꞌIVs,4+xi,1

 (mH+)
–xi

·(mISA–)) + *KꞌIII,2,1 (mISA–)·(mPu(OH)2+y
) (58) 

 

Minimization of the object function (optimization of the *KꞌIII,2,1 parameter) was again 

performed using the SIMPLEX method [151]. 

The optimized value of *KꞌIII,2,1 was then extrapolated to the reference state (I = 0) using 

Equation (59) where the SIT ion interaction coefficient was ε(Pu(OH)2ISA(aq); Na+/Cl–) = 

0.00 mol·kg–1, as given by definition for neutrally charged species within the SIT formalism. 

 

log *K°III,2,1 = log *KꞌIII,2,1 + log γPu(OH)2ISA(aq) – log γISA– (59) 
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In the final stage, the resulting solubility constant log *K°III,2,1 was converted (in accordance 

with chemical Equation (60) into the corresponding cumulative formation constant: 

log *β°1,2,1, expressed in Equation (61) using the second hydrolysis constant of Pu(III)aq, 

log *K°III,2 = 15.1 as reported in NEA-TDB [9]. 

 

Pu3+(aq) + ISA
–
 + 2 H2O(l) ⇔ Pu(III)(OH)2ISA(aq) + 2 H

+
  (60) 

log *β°1,2,1 = log aPu(OH)2ISA(aq) + 2 log aH+ – log aPu3+ – log aISA
– (61) 

 

By the use of the previously established database for the system Pu(IV)–OH–ISA, the 

parameter log *β°1,2,1 was also optimized with the PP–PQC program packages. The procedure 

was executed analogously as previously described in Section 3.1.2.4.1, but in the present case 

the measured redox condition in solution with (pe + pHm) = 1.54 also had to be taken in 

consideration as a second independent variable. 

Provided that the measured Eh values were largely scattered, accounting for the uncertainty of 

the optimized parameter was executed using an optimized Monte Carlo approach. For this 

purpose, the following initial assumptions were set: 1. the mean pe values and the assigned 

uncertainties represent the final values and the statistical errors of the redox conditions present 

in solutions, 2. dependent (log m(Pu)tot) and independent (pe, pHm) variables follow Gaussian 

distribution when the number of variables is sufficiently large. In the course of the estimation 

procedure, the inverse Gaussian distribution function was applied together with the Monte-

Carlo method to generate new sets of pe and log m(Pu)tot input values randomly scattered 

around the respective mean values (uncertainties assigned to the measured pHm conditions are 

considered negligible). The standard deviations implemented in the functions were directly 

adapted from the errors assigned to the measured pe values and from the variance of the input 

log m(Pu)tot values corresponding to the best fit result of the initial data set. A total of 1000 

new data sets were generated and independently re-fitted one by one using the PP–PQC 

program packages. The correctness of the used approach was attested through the re-

calculation of the given standard deviations related to the new sets of the two variables, which 

were in perfect agreement with those of the initially collected data. Furthermore, as expected, 

the mean value of the optimized log *β°1,2,1 parameter was also found to be identical to the 

given best fit value. The uncertainty assigned to the log *β°1,2,1 parameter was finally 

calculated as the weighted average of all newly calculated uncertainties. The use of the latter 

approach enabled us to estimate coupled uncertainties accounting for individual errors of 

independent and dependent variables in strict correlation with the optimized parameter. 
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 Table 10 shows the optimized values of the log *
β°1,2,1 obtained with the two different data 

evaluation procedures applied. Although small deviations arose between the two values, the 

one resulted from the internal data treatment still lay within the large uncertainty-range 

assigned by the Monte Carlo method. Due to the higher internal consistency and the more 

accurate calculation of ionic strength, the outcome obtained by the use of PP–PQC software 

package was again adopted as the recommended final thermodynamic constant together with 

the uncertainty calculated with the Monte Carlo method for the Pu(III)–OH–ISA system. 

The solubility of Pu(IV)O2(ncr,hyd) in the presence of ISA under strongly reducing condition 

with (pe + pHm) = 1.54 calculated using the chemical and thermodynamic models derived in 

the present work are shown in  Figure 22, along with the corresponding experimental data sets 

obtained in the Sn(II)-buffered system. For the sake of comparison,  Figure 22 also includes 

experimental solubility data obtained in HQ systems at pHm > 11. The excellent agreement 

between the calculated and all the measured log m(Pu)tot provides further confidence in the 

optimized parameter. 

 

Table 10. Fitting results for the equilibrium constants (at I → 0), as expressed in Equation 

(61) for Pu(III)(OH)2ISA(aq) with log*β°1,2,1 obtained through the non-linear regression 

analysis method of least–squares (“LS-method”) or by using the PHREEPLOT – PHREEQC 

software package (“PP–PQC”). 

Parameters of evaluated  
data sets (Sn(II) system) 

Fitting 
approach 

log*
β°1,2,1 Uncertainty 

estimation 

m(ISA)tot  [m] pHm (name) (at I → 0) (description) 

10–3 8 – 12.9 LS–method –10.73 - 

10–3 8 – 12.9 PP–PQC –(10.96 ± 0.10) “± 3σ”  

10–3 8 – 12.9 PP–PQC –(10.96 ± 0.28) “Monte Carlo”  
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Figure 22. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) at I = 0.10 

m NaCl in Sn(II)-buffered systems (▲) with pHm = 8 – 12.9 in the presence of m(ISA)tot = 10–

3 m and in HQ-buffered systems (■), at pHm > 11 with m(ISA)tot = 10–3 m. Solubility curves 

(solid and dashed) in green (with m(ISA)tot = 10–3 m) for Pu(IV)O2(am,hyd) in the presence of 

ISA are calculated (at I = 0.10 m NaCl) using the chemical and thermodynamic models 

derived in this work. Black solid line corresponds to the thermodynamically calculated 

solubility of PuO2(am,hyd) in the absence of ISA. Straight lines are showing the individual 

contributions of the selected complex species. 

 

3.1.2.5 Quantum chemical calculations 

3.1.2.5.1 Pu(IV)(OH) 4ISA– and Pu(IV)(OH)5ISA2– complexes 

Based on experimental observations, the complexes Pu(IV)(OH)4ISA
–
 and Pu(IV)(OH)5ISA2- 

were identified in Section 3.1.2.4.1 to dominate the aqueous speciation of Pu(IV) in HQ 

systems at m(ISA)tot ≥ 10–3.5 m and 8 ≤ pHm ≤ 13. The analysis of solubility data provides 

only information on the stoichiometry of these complexes, in terms of Pu:OH:ISA ratios. 

DFT calculations summarized in this section allow a further insight on the structure of these 

complexes, with focus on the hydrolysis of Pu4+ vs. deprotonation of OH-groups of the ISA 
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molecule. Because of the aqueous character of the complexes under investigation and as a 

simplified model for the solvent, a number of water molecules were included in the 

calculations (i) saturating the alcoholic groups of ISA and (ii) close to the metal ion in the first 

coordination shell of Pu4+. Additional, a total of 8 water molecules were considered in a first 

approach, 4 at the ISA and 4 in the first coordination shell of Pu4+. In a second step, 

DFT+COSMO was used to investigate the structure of the species in solution. 

For both complexes under investigation, 8 oxygen atoms (belonging to ISA, water or to an 

OH-group) coordinated to Pu4+ in its first coordination shell. Formerly, through CASPT2 

calculations, it was shown that coordination numbers of 8 and 9 are energetically similar for 

Pu(IV) [191]. Whilst keeping the charge of the complex constant, several configurations 

involving different number of hydrolysis groups (OH–) and deprotonated alcohol groups of 

ISA (-C-O–) were attempted: (i). Pu(IV)(OH)4ISA–, Pu(IV)(OH)3ISA–H
–, Pu(IV)(OH)2ISA–2H

– 

and Pu(IV)(OH)ISA–3H
–; (ii) Pu(IV)(OH)5ISA2–, Pu(IV)(OH)4ISA–H

2–, Pu(IV)(OH)3ISA–2H
2– 

and Pu(IV)(OH)2ISA–3H
2–, where ISA–xH corresponds to an ISA molecule with x deprotonated 

alcohol groups. In each case, several starting geometries were probed to confirm that a 

reasonable local minimum was found for the calculated structures. This procedure was carried 

out both with and without the approximation of the aqueous solution phases with COSMO. 

For the complex “Pu(IV)(OH)4ISA–”, calculations with and without COSMO indicate that the 

α-OH of ISA group (second carbon adjacent to the carboxylate group, see  Figure 23) is 

deprotonated (labelled as ISA(C2) in  Table 11). ISA interacts via the deprotonated α-OH and 

the COO– group with Pu(IV). Additionally, 3 OH-groups and 3 water molecules remain in the 

first coordination shell of the Pu(IV) ion. The same is observed for the “Pu(IV)(OH)5ISA2–“ 

complex, although in this case the alcohol group of the fourth carbon atom (labelled as 

ISA(C4) in  Table 11) was also deprotonated and this O- interacts directly with Pu(IV) and 

consequently one water molecule was removed from the first coordination shell of Pu(IV). 

The resulting structures as optimized by DFT can be described as Pu(IV)(OH)3ISA–H
– and 

Pu(IV)(OH)3ISA–2H
2– (see  Figure 23). For both complexes, DFT calculations confirmed the 

presence of eight O-/O ions / atoms in the first coordination shell of the metal ion. 
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Figure 23. Structures of the complexes (a) Pu(IV)(OH)3ISA–H
– (“Pu(IV)(OH)4ISA–“ in 

Section 3.1.2.4.1) and (b) Pu(IV)(OH)3ISA–2H
2– (“Pu(IV)(OH)5ISA2–” in Section 3.1.2.4.1), as 

optimized in this work by DFT calculations with and without COSMO. 

 

Distances calculated by DFT and DFT+COSMO for the optimized structures of 

Pu(IV)(OH)3ISA–H
– and Pu(IV)(OH)3ISA–2H

2– are summarized in  Table 11. Expectedly, 

shorter distances are found in the complex Pu(IV)(OH)3ISA–H
– for Pu(IV)–OH– (average 232 

pm / 231 pm for DFT / DFT+COSMO) and Pu(IV)–ISA(-C2-O–) (average 231 pm / 230 pm), 

compared to the longer distances calculated for Pu(IV)–ISA(-COO–) (239 pm / 240 pm) and 

Pu(IV)–H2O (259 pm / 259 pm). Similar trends but with overall slightly longer distances are 

obtained in the case of Pu(IV)(OH)3ISA–2H
2–, with average distances Pu(IV)–OH– (233 pm / 

233 pm), Pu(IV)–ISA(-C4-O–) (233 pm / 232 pm), Pu(IV)–ISA(-C2-O–) (240 pm / 237 pm), 

Pu(IV)–ISA(-COO–) (248 pm / 249 pm) and Pu(IV)–H2O (265 pm / 261 pm). The larger 

average distances in Pu(IV)(OH)3ISA–2H
2– reflect the increased electronic density around the 

Pu4+ ion as a result of the additional coordination of the -C4-O– of ISA. The highly 

coordinating environment around Pu4+, with 5 and 6 “-O–“ groups (as hydroxide ions: OH–, 

alcoholate functional groups: -Cn-O– or carboxylate functional group: -COO–) is also 

responsible for the increased Pu(IV)–H2O and Pu(IV)–OH– distances compared to values 

reported in the literature, e.g. d(Pu4+–OH2) = (239 ± 1) pm [173] and d(Pu4+–OH–) = rPu4+ + 

rOH– = 101 + 122 = 223 pm [173, 179]. 
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Table 11. Pu–O distances (in pm) calculated by DFT and DFT+COSMO for the complexes 

Pu(IV)(OH)3ISA–H
–, Pu(IV)(OH)3ISA–2H

2– and Pu(III)(OH)ISA–H(aq) as optimized in this 

work. For discussion on Pu(III) species see next chapter. 

Pu(IV)(OH) 3ISA–H
– 

 DFT +COSMO  DFT +COSMO 
Pu(IV)–OH– 226 227 Pu(IV)–ISA(-COO–) 239 240 
Pu(IV)–ISA(-C2-O–) 231 230 Pu(IV)–OH2 250 251 
Pu(IV)–OH– 233 233 Pu(IV)–OH2 260 259 
Pu(IV)–OH– 236 234 Pu(IV)–OH2 267 267 

Pu(IV)(OH) 3ISA–2H
2– 

 DFT +COSMO  DFT +COSMO 
Pu(IV)–OH– 227 230 Pu(IV)–ISA(-C2-O–) 240 237 
Pu(IV)–ISA(-C4-O–) 233 232 Pu(IV)–ISA(-COO–) 248 249 
Pu(IV)–OH– 234 235 Pu(IV)–OH2 264 260 
Pu(IV)–OH– 237 235 Pu(IV)–OH2 266 261 

Pu(III) (OH)ISA–H(aq) 
 DFT +COSMO  DFT +COSMO 
Pu(III)–ISA(-C2-O–) 232 235 Pu(III)–OH2 262 259 
Pu(III)–OH– 242 243 Pu(III)–OH2 265 261 
Pu(III)–ISA(-COO–) 249 251 Pu(III)–OH2 266 263 
Pu(III)–OH2 261 259 Pu(III)–OH2 266 264 

 
 
3.1.2.5.2 Pu(III)(OH) 2ISA(aq) complex 

The same approach as described in the previous section was used in the optimization of the 

structure of the Pu(III)(OH)2ISA(aq) complex. Here also several configurations with the same 

charge were evaluated: Pu(III)(OH)2ISA(aq), Pu(III)(OH)ISA–H(aq) and Pu(III)ISA–2H(aq). 

Both DFT and DFT+COSMO resulted in Pu(III)(OH)ISA–H(aq) as the energetically favored 

configuration. The optimized structure and resulting Pu–O distances are provided in  Figure 24 

and  Table 11, respectively.  
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Figure 24. Structure of the complexes Pu(III)(OH)ISA–H(aq) (“Pu(III)(OH)2ISA(aq)” in 

Section 3.1.2.4.2) and  as optimized in this work by DFT calculations with and without 

COSMO. 

 

Pu–O distances summarized in  Table 11 for the complex Pu(III)(OH)ISA–H(aq) are 

systematically longer than the Pu(IV) counterparts, consistently with differences in the ionic 

radii of Pu4+ (101 pm for CN = 9) and Pu3+ (112 pm for CN = 8) [173] and the reduced charge 

at the metal ion. The distance calculated for Pu(III)–ISA(-COO–) (251 pm) is in line with 

distances Cm(III)–L(-COO–) reported in the literature for L = oxalate (239 – 251 pm)[192] 

and succinate (236 – 247 pm)[193] with side-on coordination, considering also differences in 

size between Pu3+ (112 pm) and Cm3+ (109 pm) [173]. 

 

3.1.2.6 Summary of the new Pu(III/IV)–OH–ISA thermodynamic model 

 Table 12 summarizes the equilibrium constants derived in the present work for the formation 

of Pu(III)–OH–ISA and Pu(IV)–OH–ISA complexes in alkaline to hyperalkaline pHm 

conditions.  Table 13 lists SIT ion interaction coefficients estimated for these complexes. 

Stoichiometry of these chemical reactions is provided by the combination of solubility data 

and solid phase characterization, whereas chemical formula for Pu(III/IV)–OH–ISA 

complexes are based upon DFT calculations. 

 

 

Table 12. Chemical equilibria and related equilibrium constants derived (for reference 

state, I → 0 m) in the present study for the Pu(III/IV)–OH–ISA system. 
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Chemical equilibria log*β° (I → 0) 

Pu4+ + ISA
–
 + 3 H2O(l) ⇔ Pu(IV)(OH)3ISA

–H

–
 + 4 H

+
 –(5.03 ± 0.12) 

Pu4+ + ISA
–
 + 3 H2O(l) ⇔ Pu(IV)(OH)3ISA

–2H

2–
 + 5 H

+
 –(16.92 ± 0.13) 

Pu3+ + ISA
–
 + 2 H2O(l) ⇔ Pu(III)(OH)ISA

–H
(aq) + 2 H

+
 –(10.97 ± 0.28) 

 
 
Table 13. SIT ion interaction coefficients estimated for the Pu(III/IV)–ISA–OH species. 

species i species j ε(i,j) [mol·kg–1] 

Pu(IV)(OH)3ISA
–H

–
 Na+ –(0.05 ± 0.10)a) 

Pu(IV)(OH)3ISA
–2H

2–
 Na+ –(0.10 ± 0.10)a) 

Pu(III)(OH)ISA
–H

(aq) Cl
–
 / Na+ 0.00 b) 

a) estimated values based on [149]. 
b) defined to be zero by definition within SIT formalism. 
 
 
The chemical and thermodynamic models derived in this work provide the most accurate 

description available to date for the solubility of Pu in the presence of ISA. Thermodynamic 

data provided by Moreton and co-workers [93] are clearly superseded by the more accurate 

control of the experimental conditions achieved in the present study (especially in terms of 

phase separation techniques applied and monitored Eh values), as well as for the systematic 

variation of pHm. The latter parameter was kept constant in the study by Moreton et al. [93], 

and thus the stoichiometry of the complexes proposed by the authors remains only at a 

speculative level. 

 Figure 25 a and b show the Pourbaix diagrams of Pu aqueous species in the presence of 

log m(ISA)tot = –4 and –2, respectively, calculated for m(Pu(IV))tot = 10–11 m and I = 0.1 m 

NaCl using the thermodynamic and (SIT) activity models derived in the present work. It is 

worth mentioning again that the formerly identified “Pu(IV)–ISA” colloids were not included 

in the present thermodynamic model. 
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Figure 25. Pourbaix diagram of Pu calculated for m(Pu)tot = 10–11 m and log m(ISA)tot = –4: 

a, –2: b, (blue lines) and without ISA (grey lines) at I = 0.1 m NaCl using thermodynamic and 

(SIT) activity models as described in the text. Only aqueous species of Pu are displayed in the 

diagram. Dashed lines correspond to the borderline of water reduction to H2(g) at the given: 

(pe + pHm) = 0 value. 

 

 Figure 25 shows that the presence of ISA at m(ISA)tot ≤ 10–4 m has a minor impact on the 

aqueous speciation of Pu, and the predominance of the complex Pu(IV)(OH)3ISA
–2H

2– is only 

predicted at pHm > 12. However, at m(ISA)tot = 10–2 m, Pu(III/IV)–OH–ISA species become 

predominant within 9 ≤ pHm ≤ 13. At this m(ISA)tot and for pHm < 11.5, the stability field of 

Pu(III)aq is slightly increased towards higher pe values compared to ISA-free systems. Above 

this pHm, the complex Pu(IV)(OH)3ISA–2H
2– becomes again predominant and is the only Pu–

ISA complex forming above the border of water reduction. Note, however that other Pu(III)–

ISA complexes beyond Pu(III)(OH)ISA–H(aq) possibly form under hyperalkaline conditions. 

For instance, the species Eu(OH)3ISA– and Am(OH)3ISA– (expectedly Eu(OH)2ISA
–H

– and 

Am(OH)2ISA
–H

–) were proposed [100, 103, 105] to control the solution chemistry of Eu(III) 

and Am(III) in the presence of ISA at pH = 13.3. 

 

3.1.2.7 Comparison with thermodynamic data available in the literature 

Due to the absence of reliable thermodynamic data for the binary system Pu(IV)–ISA, the 

new chemical and thermodynamic models derived in the present work are compared to data 

available for Np(IV)–ISA and Th(IV)–ISA ( Figure 26 a, b, c Figure 26 ) for a systematic 
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comparison. In both systems, data obtained in undersaturation solubility studies for Np(IV) 

[72] (re-evaluated in [12]) and Th(IV) [98, 107] were preferred2, although the thermodynamic 

data derived in Vercammen et al., 2001 [100] for the Th(IV)–ISA system from sorption 

studies (with large discrepancies to the work of Rai et al. [98] and also Colàs et al. [107]) are 

shortly discussed as well. 

 Figure 26 (a, b, c, d) shows the predominance diagrams of Pu(IV)–ISA, Np(IV)–ISA and 

Th(IV)–ISA calculated for –6 ≤ log m(ISA)tot ≤ –1 and 9 ≤ pHm ≤ 13 with I =  0.10 m NaCl 

using the thermodynamic data derived in the present work ( Table 12) and summarized 

in  Table 2 for Np(IV) and Th(IV). In spite of the clear insights gained by DFT on the structure 

of Pu(IV)–ISA complexes and for the sake of comparison with data reported in the literature, 

the notation assuming the hydrolysis of the An(IV) cation instead of the deprotonation of OH-

groups of the ISA ligand has been used in the predominance diagram of Pu shown in  Figure 

26 d.  

 Figure 26 (a, c, d) shows significant differences in the calculated aqueous speciation of 

Pu(IV)–ISA, Np(IV)–ISA and Th(IV)–ISA systems. Thermodynamic data of the present work 

suggest the predominance of the 1:1 complex in the Pu(IV)–ISA system with pHm < 11.5 and 

m(ISA)tot > 10-3.5 m. On the contrary, thermodynamic calculations conducted for Th(IV) show 

the predominance of the 1:2 complex above m(ISA)tot = 10-3 m, whereas the Np(IV) case 

results in the predominance of the 1:1 complex for m(ISA)tot ≤ 10–2 m, and the predominance 

of the complex 1:2 above this m(ISA)tot. Such observations could be rationalized by 

differences in the size of the An4+ cation, with Th4+ and Pu4+ having the largest (1.08 ± 0.02 

Å) and smallest (1.01 ± 0.02 Å) size, respectively [173]. Hence, the formation of chelate 

complexes with An(IV):ISA ratio of 1:2 might be consequently favored for the largest cation 

as steric repulsions between the coordinated ligands are less pronounced. It has to be stressed, 

however that the uncertainties associated to these calculations are large and the number of 

An(IV)–ISA systems available are very limited, and thus the argumentation above does not 

represent any strong claim and must be only taken as a plausible hypothesis. 

The predominance diagram in  Figure 26 b calculated for the system Th(IV)–ISA using the 

equilibrium constants reported in Vercammen et al., 2001 [100] shows a significantly 

different species distribution compared to  Figure 26 a. Calculations in  Figure 26 b predict the 

predominance of the species Th(OH)4ISA– at m(ISA)tot ≥ 10–5.9 m, whereas this species 

becomes only predominant at m(ISA)tot ≥ 10–4.2 m ( Figure 26 a). Vercammen and co-workers 

did not report the formation of the 1:2 complex Th(OH)4(ISA)2
2–, which therefore does not 

                                                 
2 Sidenote: Colàs performed solubility experiments from both over- and undersaturation conditions. 
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appear in calculations shown in  Figure 26 b, although they conducted their experiments with 

m(ISA)tot ≤ 10–2 m. The use of the speciation scheme and equilibrium constants in  Figure 26 b 

importantly overestimate experimental solubility data obtained from under- and 

oversaturation conditions in Rai et al. [98] and in Colàs et al. [107]. Although sorption 

experiments performed with ultra-trace concentrations of 228Th or 234Th may appear more 

susceptible to artefacts than solubility studies with macroscopic amounts of 232Th, the 

discussion remains open and a final proof of concept for the proposed hypothesis is still 

missing. 

 Figure 26 a, c, d also show significant differences in the aqueous speciation of the systems 

An(IV)–ISA as a function of pHm. Both Np(IV)–ISA and Th(IV)–ISA show a pH-

independent behavior of the aqueous speciation at 9 ≤ pHm ≤ 13, whereas the formation of the 

complex: Pu(OH)3ISA–2H
2– is predicted for the system Pu(IV)–ISA at pHm ≥ 11.5. Some 

relevant notes on these observations: 

 

- Th(IV) solubility experiments in Rai et al. [98] and in Colàs et al. [107] were 

performed at pHm ≤ 12. Consequently, these authors may simply have missed the 

formation of the complex “Th(OH)5ISA2–“, which according to the Zeff of Th(IV) may 

form at greater pH values. 

- Due to differences in the ionic radii of the An4+ ions, the effective charges (Zeff) of the 

An(IV) systems under consideration follow the pattern Pu4+ ≥ Np4+ > Th4+. Such 

differences are for instance responsible for the much weaker hydrolysis observed for 

Th4+, compared to both Np4+ and Pu4+. It can be hypothesized that differences in Zeff 

are also responsible for the differences in the aqueous speciation of the Np(IV)–ISA 

and Pu(IV)–ISA systems. 

- Np(IV) solubility experiments in Rai et al., 2003 [72] were performed over a relatively 

short timeframe (≤ 20 days). A close inspection of their solubility data suggests that 

the authors may have not attained equilibrium conditions in their experiments. Hence, 

Figure 5 in Rai et al., 2003 [72] shows systematic and very relevant differences (0.3 to 

0.5 log-units) between solubility data at t = 12 days and t = 20 days (the latter showing 

systematically greater solubility). Solubility data reported at pHm = 13 and 13.8 were 

only collected for t = 5 and 13 days (Figure 4 in [72]). These experimental 

shortcomings may cast some doubts on the speciation scheme proposed by Rai and co-

workers. 
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Figure 26. Predominance diagrams of An(IV) in the presence of ISA (–6 ≤ log m(ISA)tot ≤ –1) 

with m(An(IV))tot = 10–11 m, 9 ≤ pHm ≤ 13 and I = 0.10 m NaCl, calculated for a, Th(IV) 

using thermodynamic data in Colàs et al. [107]; b, Th(IV) using thermodynamic data in 

Vercammen et al., 2001 [100], as recalculated in [12]; c, Np(IV) using thermodynamic data 

in Rai et al., 2003 [72] as recalculated in [12] and d, Pu(IV) using thermodynamic data 

derived in the present work. 

 

The discussion above does not provide a definitive explanation for the differences observed in 

the trends of An(IV)–ISA complexation with pH. As the current study (using a combination 

of solubility studies including XAFS techniques and theoretical DFT methods) in the system 

Pu(IV)–ISA represents the most comprehensive effort to characterize the systems and 

complexes forming under alkaline to hyperalkaline pH conditions, further experimental 

studies following a similar systematic and strategic approach like the one applied in the 

present work on the systems Th(IV)–ISA, U(IV)–ISA and Np(IV)–ISA would prove very 



 

 
135 

helpful in understanding the overall picture of An(IV)–ISA complexation under conditions 

relevant for L/ILW disposal. 

The only thermodynamic data available for the system An(III)–ISA under alkaline conditions 

was reported by Tits et al. [105] for Am(III) based upon sorption experiments with calcite 

(see discussion in Section 1.3.3.4). Experiments were performed only at pH = 13.3, and thus 

the stoichiometry of the complex forming (Am(OH)3ISA–) was proposed in analogy with 

Eu(III) [100]. 

 Figure 27 shows the predominance diagrams of Am(III)–ISA (a,) and Pu(III)–ISA (b,) 

calculated for –6 ≤ log m(ISA)tot ≤ –1 and 9 ≤ pHm ≤ 13 at I =  0.10 m NaCl using the 

thermodynamic data derived in the present work ( Table 12 and  Table 13) and summarized 

in  Table 2 for Am(III). 

 

 

Figure 27. Predominance diagrams of An(III) in the presence of ISA (–6 ≤ log m(ISA)tot ≤ –1) 

with 9 ≤ pHm ≤ 13 at I = 0.10 m NaCl, calculated for a, Am(III) : m(Am(III))tot = 10–10 m 

using thermodynamic data reported by Tits et al. [105] and b, Pu(III) : m(Pu(III))tot = 10–10 

m, using thermodynamic data derived in the present work. 

 

 Figure 27 displays different speciation schemes for Am(III)–ISA and Pu(III)–ISA systems, 

which basically reflect the experimental conditions in which the corresponding 

thermodynamic models were derived (pH = 13.3 for Am(III)–ISA in Tits et al. [105], pHm ≤ 

11.5 for Pu(III)–ISA in this work). As the sorption study by Vercammen et al. [100] on the 

system Eu(III)–ISA (basis for the chemical model proposed by Tits et al. [105]) was 

performed at pH > 10.7, these authors could not observe the formation of the complex 
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Eu(III)(OH)2ISA(aq) proposed in the present work for Pu(III). Indeed, the combination of 

chemical and thermodynamic models available for Am(III)–ISA and Pu(III/IV)–ISA provides 

a satisfactory explanation of the present solubility data collected in Sn(II) systems (see  Figure 

28). 

Although the incorporation of the species 1:3:1 in the model did not result in a significantly 

improved fit for the solubility data of the present work, the consideration of log *β°1,3,1 =  

–(21.4 ± 1.0) as reported in Tits et al. for the chemical reaction Am3+ + 3 H2O(l) + ISA– ⇔ 

Am(OH)3ISA– + 3 H+ can be adapted as a reasonable upper limit for the Pu(III) as well. In the 

case of Pu(III), however, the predominance of this complex is limited to strongly alkaline and 

reducing conditions with pHm > 11.5 and (pe + pHm) < 1.5. 
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Figure 28. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) at I = 0.10 

m NaCl in Sn(II)-buffered systems (▲) with pHm = 8 – 12.9 in the presence of m(ISA)tot =  

10–3 m and in HQ-buffered systems (■), at pHm > 11 with m(ISA)tot = 10–3 m. Solubility curves 

(solid and dashed) in green (with m(ISA)tot = 10–3 m) for Pu(IV)O2(ncr,hyd) in the presence of 

ISA are calculated (at I = 0.10 m NaCl) using the chemical and thermodynamic models 

derived in the present work and additionally including the formation of the Pu(III)(OH)3ISA– 

species (not detected in the p. w.) where the equilibrium constant (log *β°1,3,1 = (–21.4 ± 1.0)) 

reported by Tits et al. [105] was adapted (purple line indicates the individual contribution of 

this species to the overall calculated Pu total concentrations). Black and grey solid lines 

correspond to the thermodynamically calculated solubility of PuO2(am,hyd) in the absence of 

ISA, calculated using equilibrium constants reported in NEA-TDB [9]. 

 



 
138 

3.1.3 Ca–Pu–ISA system 

3.1.3.1 pH and Eh measurements 

The collected pHm and Eh (converted into pe) values of all evaluated samples are shown in the 

Pourbaix diagram of Pu in  Figure 29. The thermodynamic calculations for the construction of 

the diagram were performed as indicated in Section 3.1.1.2. 

Solubility experiments with HQ or Sn(II) redox buffered systems in the presence of ISA and 

Ca(II) show stable pHm (± 0.05) and Eh (± 15–30 mV, depending upon pH-region) readings 

within the time frame of this study (~3 months). 

In accordance with the findings of work conducted in the absence and presence of ISA [1, 2], 

HQ in solution imposed moderately reducing conditions. However, the obtained (pe + pHm) 

values in the present case were found to be at a slightly lower level (~8.5 ± 0.5) than those of 

the previously[2] determined values: (pe + pHm) = 9 ± 1 (whilst also having lower associated 

uncertainties), but still within the range of the expected values considering the originally 

assigned uncertainty. Apart from the latter minor discrepancy, the newly assessed redox 

conditions are again clearly located within the stability field of Pu(IV) for both, aqueous 

species and solid Pu compounds. Evaluation of Pu solubility data collected in the HQ system 

under the presence of only ISA in solution, formerly resulted in the identification of two 

Pu(IV)–OH–ISA species: Pu(IV)(OH)3ISA–H
–, Pu(IV)(OH)3ISA–2H

 2– [2]. Hence, the HQ-

buffered system of the present study is considered as the reference case to investigate the 

interaction of Pu(IV)aq,s with ISA and Ca(II) in solution. 

As it was also discussed in Sections 3.1.1.2 and 3.1.2.1, the presence of sparingly soluble 

Sn(II)-oxides and -oxy-hydroxide precipitates forming under pHm < 11 conditions (SnO(cr), 

or Sn6O8H4(s) / Sn6O4(OH)4(s)) [126], dictates longer equilibration times for Eh 

measurements in these Sn(II)-buffered systems. The formerly established redox condition 

with (pe + pHm) values of (1.54 ± 0.14) for the Sn(II)-buffered system were found to be 

slightly higher but agreeing within the uncertainties with the average values measured in the 

presence of Ca(II), (pe + pHm) = (1.0 ± 0.5). However, it has to be highlighted that the 

thermodynamic evaluation of the Sn(II) solubility data collected in the current case for the 

presence of Ca(II) did not necessitate the acquired pe values to be included as input values in 

the development of the thermodynamic model. Hence, Eh values were not measured further 

with longer equilibration times. In this sense, the determined log K° values were not affected 

by the newly set conditions in the presence of Ca(II) ions in solution. In the absence of Ca(II) 

in solution, reductive dissolution reaction: PuO2(ncr, hyd) ⇔ Pu(III)(aq) + Pu(IV)(aq) was 
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determined formerly as the Pu solubility controlling reaction in the Sn(II) system (see Section 

3.1.2.4.2) [2]. In this aspect, the Sn(II)-buffered solubility experiment series in the presence of 

Ca(II) was aimed to assess the impact of Ca(II) ions on the latter equilibria, where below pHm 

= 11, the predominance of the Pu(III)-ISA species was observed. 

 

 

Figure 29. Pourbaix diagram of Pu calculated for m(Pu)tot = 10–5 m and I = 0.1 m NaCl 

using thermodynamic and (SIT) activity models as described in the text. pHm and Eh values 

experimentally determined for Pu(IV) solubility experiments in the presence of ISA and Ca(II) 

ions in solution with redox-buffering agents: hydroquinone (■) and Sn(II) (▲). Thick lines 

correspond to redox borderlines between Pu(IV) and other Pu redox states: solid line is the 

borderline between Pu solid phases; dashed line is the borderline between Pu aqueous 

species. Colored regions indicate equilibrium between Pu(IV)s and Pu(III)aq (green), Pu(V)aq 

(orange) and Pu(VI)aq (blue). The borderlines of the stability field of water at (pe + pHm) = 

20.77 and (pe + pHm) = 0, the “redox-neutral” line at (pe + pHm) = 13.8 and the lines at (pe 

+ pHm) = 1.54 and 9 are shown for comparison. 
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3.1.3.2 Solubility measurements 

 Figure 30 shows the experimentally measured total concentrations of Pu in equilibrium with 

PuO2(ncr,hyd) at m(ISA)tot = constant = 10–3 m and m(Ca)tot = constant = 0.01 m with pHm = 

8 – 12.5 in HQ-buffered system (■). The analogous Sn(II)-buffered system (▲) is displayed 

in  Figure 31.  Figure 32 summarizes the solubility of Pu in HQ- (■) and Sn(II)-buffered (▲) 

systems at pHm = 12 with m(Ca)tot = constant = 0.01 m and 10–5 m ≤ m(ISA)tot ≤ 10–2 

m.  Figure 33 shows the solubility of Pu determined at pHm = 12 in the presence of m(ISA)tot = 

constant = 10–3 m with 3·10–4 ≤ m(Ca)tot ≤ 2·10–2 m, for both HQ- (■) and Sn(II) (▲) systems. 

All figures also display the solubility curves of Pu(IV)O2(am,hyd) in the presence of ISA (and 

absence of Ca), calculated for identical conditions (at I = 0.10 m) applying chemical and 

thermodynamic models derived in the present study as well as reported in [2]. (For further 

details regarding the calculations of the reference solubility curves, see Section 3.1.1.5.) 

 

3.1.3.2.1 Series at constant m(ISA)tot and m(Ca)tot 

 Figure 30 shows a clear and systematic increase in the solubility of PuO2(ncr,hyd) in HQ 

systems (■) with m(ISA)tot = 10–3 m and m(Ca)tot = 0.01 m, compared to the solubility of the 

ternary Pu(IV)-OH-ISA system in the absence of Ca (blue line in the figure). This observation 

strongly supports the formation of quaternary Ca(II)–Pu(IV)–OH–ISA aqueous complexes in 

HQ systems. For this redox buffer, same/similar pH-dependency of the solubility is observed 

in the absence and presence of Ca(II), suggesting that Pu(IV)–ISA complexes in the presence 

of Ca hold similar Pu:OH ratios in their apparent stoichiometries as those reported in the 

absence of Ca: 1:4 and 1:5.  

Less precise data (especially at pHm = 9 – 10) were obtained for the Sn(II)-buffered systems 

( Figure 31), although in general terms experimentally measured m(Pu)tot are of the same order 

than those determined in HQ systems. In both cases, the solubility of Pu remains in all 

samples bellow 10–8 m, suggesting the lack of quaternary species forming between Ca(II) and 

the formerly identified Pu(III)(OH)ISA–H(aq) species. This observation is in line with results 

of previous studies [59, 100] on analogous systems, where the formation of a quaternary 

complex of Eu(III)-ISA species with Ca(II) ion under alkaline conditions was not detected. 

Due to these ambiguities, development of a chemical and thermodynamic model for the 

Ca(II)–Pu–ISA system was based entirely on the HQ-buffered solubility data. 

Considering the limitations existing for the Sn(II) system, the following tendencies can be 

outlined for the solubility of Pu in HQ solutions ( Figure 30): 
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1. pHm = 8 – 11: as in the absence of Ca(II), a clear and pH-independent 

enhancement in the solubility of PuO2(ncr,hyd) is observed. This indicates that 

within this pH-range no protons are involved in the equilibrium reaction 

controlling the solubility of Pu in the presence of ISA and Ca(II). 

 

2. pHm = 11 – 12: a pH-dependent increase of the solubility is observed with a slope 

of (log m(Pu)tot vs. pHm) ≈ +1. This finding suggests that one H+ is released in the 

equilibrium reaction controlling the solubility of Pu. A similar behavior can be 

claimed for the solubility of Pu in Sn(II) systems. Note however that because of 

the limited number of experimental points defining this pHm-region, a slope of +2 

(with the corresponding implications for the stoichiometry Pu:OH in the Ca-Pu-

OH-ISA complex) was also tested in the development of a thermodynamic model 

(see Section 3.1.3.4). 

 

3. pHm = 12.4: experimental data show a clear decrease in the solubility of Pu with 

respect to the sample at pHm = 12. A similar behavior is observed for the 

solubility of Pu in the Sn(II) system. Indeed, the solubility data at this pHm value 

is very similar to the solubility in the absence of Ca(II). TOC and ICP-OES 

measurements performed after 2 weeks of equilibration of the inactive system 

(before the addition of Pu solid phases) indicated that no loss of ISA and/or Ca 

took place. The working hypothesis refers to the possible formation of a 

quaternary, Ca(II)–Pu–OH–ISA solid phase, although so far, no conclusive 

evidence is available in this respect. Consequently, solubility data obtained in the 

presence of Ca at pHm = 12.4 has been disregarded in the development of the 

thermodynamic model for the system Ca(II)–Pu–ISA. 
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Figure 30. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) in 0.10 m 

NaCl at m(ISA)tot = 10–3 m and m(Ca)tot = 0.01 m with pHm = 8 – 12.5 in HQ-buffered 

solutions (■). Blue line (solid and dashed) corresponds to the solubility of Pu(IV)O2(am,hyd) 

at I = 0.10 m NaCl, in the presence of m(ISA)tot = 10–3 m calculated using the chemical and 

thermodynamic models derived in the present work for the system Pu(IV)–OH–ISA [2]. Black 

solid line corresponds to the thermodynamically calculated solubility of PuO2(am,hyd) in the 

absence of ISA, adapted from NEA-TDB [9]. 
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Figure 31. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) in 0.10 m 

NaCl at m(ISA)tot = 10–3 m and m(Ca)tot = 0.01 m with pHm = 8 – 12.5 in Sn(II)-buffered 

solutions (▲). Green lines (solid and dashed) correspond to the solubility of 

Pu(IV)O2(am,hyd) at I = 0.10 m NaCl, in the presence of m(ISA)tot = 10–3 m calculated using 

the chemical and thermodynamic models derived for the binary system Pu(III/IV)–OH–ISA 

(listed in  Table 12) [2]. Black and grey solid lines correspond to the thermodynamically 

calculated solubility of PuO2(am,hyd) in the absence of ISA in equilibrium with Pu(IV)aq and 

for (pe + pHm) = 1.54 (predominance of Pu(III)aq below pHm ≈ 10.5, see Section  details), 

respectively. 

 

3.1.3.2.2 Solubility at constant pHm and m(Ca)tot 

A clear and systematic enhancement of PuO2(ncr,hyd) solubility is observed with increasing 

m(ISA)tot at constant pHm = 12 and m(Ca)tot = 10–2 m. The trend is very similar in HQ and 

Sn(II) systems, suggesting that the chemical reactions controlling the solubility of Pu are the 

same in both systems. The clear increase in the solubility with respect to the Ca(II)-free 

system (solid line in  Figure 32), again supports the formation of a quaternary Ca(II)–Pu(IV)–

OH–ISA complex. Although the formation of binary/ternary Ca(II)–ISA complexes (CaISA+ 

and CaISA–H
0(aq)) hinders a straightforward interpretation of the data, a slope of +1 (and thus 
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a stoichiometry Pu:ISA of 1:1) can be postulated both for HQ and Sn(II) systems. In order to 

further test the validity of the proposed model, a Pu:ISA stoichiometry of 1:2 was also 

considered in the development of the thermodynamic model (see Section 3.1.3.4 for further 

details). 

 

 

Figure 32. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) in 0.10 m 

NaCl at pHm = 12 and m(Ca)tot = 0.01 m conditions with 10–5 m ≤ m(ISA)tot ≤ 10–2 m in HQ- 

(■) or Sn(II)-buffered solutions (▲). Cross, red symbols are the total concentrations of Pu in 

the supernatants (sampled without any phase separation) of the Sn(II)– (×) and HQ-buffered 

(+) systems. Blue lines (solid and dashed) correspond to the solubility of Pu(IV)O2(am,hyd) at 

I = 0.10 m NaCl, in the presence of m(ISA)tot = 10–3 m calculated using the chemical and 

thermodynamic models derived for the binary system Pu(IV)–OH–ISA (listed in  Table 12) [2]. 

 

 

To assess the presence of colloidal Pu(IV) species, total Pu concentrations in the supernatants 

of the samples were additionally measured without any phase separation method applied 

(cross symbols in  Figure 32). The detected Pu concentrations from the directly supernatants 

after an equilibration time of 102 days were virtually the same as the m(Pu)tot values collected 
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after ultracentrifugation or ultrafiltration phase separation methods. This is different from the 

previous findings on the system in the absence of Ca(II) ions in solution, where the enhanced 

formation of Pu(IV) colloidal species was seen with increasing total ISA concentration in 

solution (see  Figure 15 in Section 3.1.2.2.2). Although the mechanism driving to these 

observations is not understood, it points out the relevant role of Ca(II) in the destabilization of 

Pu colloids in ISA containing systems. Similar phenomena was also observed for clay colloid 

suspensions, where the Ca(II) concentration set close to the critical coagulation concentration 

caused the gradual agglomeration of the colloidal particles due to the Ca2+ ion exchange 

against Li+ and Na+ ions at the charged basal clay planes [194]. 

 

3.1.3.2.3 Solubility at constant pHm and m(ISA)tot 

 Figure 33 shows a clear increase in the solubility of Pu with increasing m(Ca)tot. A very 

similar trend in the solubility data is observed for HQ and Sn(II) systems, suggesting again 

that the chemical equilibria controlling the solubility of Pu at pHm = 12 are the same for both 

redox-buffered systems. In solutions with the lowest Ca(II) total concentration (m(Ca)tot = –

3.5) Pu solubility values are in close agreement with the concentration determined in the 

absence of Ca(II) and same m(ISA)tot. This observation further supports the experimental 

results and thermodynamic model derived in Section 3.1.2.4 for the system Pu(III/IV)–OH–

ISA in the absence of Ca(II). 

The increase of log m(Pu)tot with increasing log m(Ca)tot follows a slope ≈ +1, indicating that 

the Ca:Pu stoichiometry of the Pu–ISA complex forming at pHm = 12 is 1:1. As in the 

evaluation process of the previously collected data with pHm = 12 (log m(Pu)tot vs. pHm and 

log m(Pu)tot vs. log m(ISA)tot), the fitting of the data considered also the possible formation of 

complexes with Ca:Pu stoichiometry of 2:1 to test the reliability of the model (see Section 

3.1.3.4 for further details). 
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Figure 33. Experimentally measured total m(Pu)tot in equilibrium with PuO2(ncr,hyd) in 0.10 

m NaCl at pHm = 12 and m(ISA)tot = 10–3 m, with 3·10–4 m ≤ m(Ca)tot ≤ 10–3 2·10–2 m, in HQ- 

(■) or Sn(II)-buffered solutions (▲). Solid blue line corresponds to the solubility of 

Pu(IV)O2(am,hyd) at I = 0.10 m NaCl, in the presence of m(ISA)tot = 10–3 m calculated using 

the chemical and thermodynamic models derived for the binary system Pu–ISA (listed 

in  Table 12) [2]. Black solid line corresponds to the thermodynamically calculated solubility 

of PuO2(am,hyd) in the absence of ISA adapted from NEA-TDB [9]. 

 

3.1.3.3 Solid phase characterization 

Synchrotron-based in-situ XRD 

 Figure 34 shows the in-situ XRD patterns of the solid phases controlling the solubility of Pu 

in HQ and Sn(II) systems, equilibrated in solutions with m(ISA)tot = 10-3 m, m(Ca)tot = 0.01 m 

at pHm = 12 for 150 days. It also displays the diffractogram of the empty double containment 

used in the course of the synchrotron-based measurements at the INE–Beamline as described 

in Section 2.6.6. 
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The collected patterns of the retrieved Pu solid phases equilibrated in the presence of ISA and 

Ca(II) in solution are in perfect agreement with the reference pattern of PuO2(cr) reported by 

Zachariansen [166]. Under identical conditions to those of the present work, previous 

experimental study conducted in the absence of Ca(II) also pointed out the retainment and 

predominance of Pu(IV)O2(ncr,hyd) in both redox-buffered systems after long equilibration 

times (260 days) in contact with 10-3 m and 0.01 m ISA solutions at pHm = 9 and 12 [2]. The 

present observations also conclude that the initially inserted solid phase remained in its 

original state, just as in the case when it was only equilibrated with ISA in solution. 

As stated before (in Sections 3.1.1.4 and 3.1.2.3), Sn(II) is completely dissolved at pHm = 12, 

which was again underlined by the lack of reflexes corresponding to Sn(II)-containing phases 

in the Sn(II)-buffered system at this pHm. Additionally, the absence of any XRD peaks related 

to the Ca(ISA)2(cr) phase (detection limit at ~5-10%) confirms that Ca(II) and ISA 

dominantly exist as solution species in the system. This confirms the previous quantitative 

analysis and also the predictions of thermodynamic calculations made prior to the 

initialization of the solubility experiments, i.e. no differences are to be expected in the 

originally introduced total concentrations of these species. 
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Figure 34. In-situ XRD patterns collected at the INE-Beamline for the Pu solid phases 

recovered from HQ-buffered (blue, top) and Sn(II)-buffered (green, lower) solubility 

experiments solubility with m(ISA)tot = 10-3 m, m(Ca)tot = 10-2 m and pHm = 12 (teq = 150 

days) and for the empty double containment used in the synchrotron-based measurements 

(orange). Squares indicate peak positions and relative intensities reported for PuO2(cr) 

[166]. 

 

XANES 

Pu LIII–edge XANES spectra collected for the solid phases recovered from HQ and Sn(II)-

buffered solubility experiments with m(ISA)tot = 10-3 m, m(Ca)tot = 10-2 m and pHm = 12 (teq = 

150 days) are shown in  Figure 35. The figure also includes the XANES spectra of the 

references reported in Brendebach et al. [140] for aqueous Pu(III) and Pu(IV) species under 

acidic conditions and furthermore it also depicts the spectra of the formerly reported 
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PuO2(IV)(ncr,hyd) solid phase (starting material from Section 3.1.1.1 and previous studies [1, 

2]), which was used as the initial solid phase in the present series of experiments as well. 

The edge energies of the XANES spectra collected for all the retrieved Pu solid phases are in 

excellent agreement with the Pu(IV) reference spectrum reported by Brendebach and co-

workers [140]. The newly collected spectra were also found to be virtually identical to the 

previously reported [1] XANES spectrum of the PuO2(ncr,hyd), starting material. In 

accordance with in-situ XRD data, XANES analysis also unequivocally confirm the 

retainment of the original Pu(IV)O2(ncr,hyd) solid phase introduced to the solubility batch 

experiments with ISA and Ca(II) in solution. 

 

 

Figure 35. Pu LIII–edge XANES spectra of solid phases recovered from HQ- (blue lines) and 

Sn(II)-buffered (green lines) systems equilibrated in solutions with with m(ISA)tot = 10-3 m, 

m(Ca)tot = 10-2 m and pHm = 12 (teq = 150 days). The spectra of the references for the 

aqueous species of Pu(III) (purple line, position of WL = 18062.5 eV) and Pu(IV) (red line, 

position of WL = 18067.6 eV) reported in Brendebach et al. [140] and the spectra of the 

initially characterized Pu(IV)O2(ncr,hyd) phase (starting material, also used for the present 

study, see section 3.1.1.1 and references [1, 2]) are shown for comparison. 

EXAFS 

The k2-weighted EXAFS data shown in  Figure 36 for Pu solid phases recovered from 

solubility experiments in HQ- and Sn(II)-systems (top row: Fourier-transform magnitude, 
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imaginary part and fit results in R-space, bottom row: raw data, Fourier-filtered data and fit 

results in k-space) are perfectly in agreement with our previous results obtained in the absence 

of Ca(II) (see section 3.1.2.3 and reference [2]). The corresponding metric parameters are 

listed in  Table 14. The fit results obtained for both Pu phases are identical within the error 

margins and very similar to those obtained for the “starting material”, PuO2(ncr,hyd) solid 

phase as discussed previously (see section 3.1.1.1 and reference [1]). This observation 

underlines our in-situ XRD and XANES results, confirming that the initial PuO2(ncr,hyd) 

starting material remains stable in the presence of ISA and Ca(II) in solution and it is the solid 

phase controlling the solubility of Pu in given systems. It is also worth mentioning that the 

results obtained by EXAFS indicate the presence of significant local disorder and deviations 

from the ideal PuO2 fluorite-type crystal structure, which are not visible in the XRD pattern. 

 

Table 14. Data range and metric parameters extracted by least-squares fitting of EXAFS 

data on selected retrieved solid phases as shown in  Figure 36. 

Sample 

k-range 

[Å-1] 

fit-range 

[Å] 

shell N 
R 

[Å] 

∆E0
 a 

[eV] 

σ
2 

[Å2] 

r-factor 

[%] 

HQ 1.75-13.58 O 6.2 2.28 -2.19 0.0086 3.1 

 0.92-4.11 Pu 4.6 3.78  0.0047  

        

Sn(II) 1.75-12.92 O 6.0 2.29 -1.90 0.0085 2.9 

 0.92-4.11 Pu 4.3 3.78  0.0039  

  S0
2 = 1.0 fixed (slightly underestimating N in all fits) 

a global parameter for both shells 
  errors: RPu-O 0.01 Å, RPu-Pu 0.02 Å 
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Figure 36. Pu LIII–edge EXAFS fiting results for solid phases recovered from HQ- (blue) and 

Sn(II)-buffered (green) samples equilibrated with m(ISA)tot = 10-3 m, m(Ca)tot = 10-2 m in 

solution at pHm = 12 (teq = 150 days) – top row: FT magnitude (solid line), fit magnitude 

(open circles), FT real part (thin solid line) and fit real part (open triangles); bottom row: 

Fourier-filtered data (solid line), raw data (thin solid line), back-transformed fit (open 

circles). 

 

3.1.3.4 Thermodynamic calculations 

As discussed in Section 3.1.1.5, chemical reactions (32), (35) and (38) are expected to control 

the solubility of Pu within the experimental conditions considered in this study. The 

corresponding Equations (33, 34), (36, 37) and (39, 40) have been used in combination with 

stability constants and SIT ion interaction coefficients summarized in Table A1 and Table A2 

of the Appendix to calculate the solubility lines in  Figure 30,  Figure 31,  Figure 33: 

PuO2(am,hyd) in equilibrium with Pu(IV)aq (black line, calculated using equilibrium constants 
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reported in NEA-TDB [9]); PuO2(am,hyd) in equilibrium with Pu(IV)aq and Pu(III)aq at (pe + 

pHm) = 1.54 (grey line); and Pu(OH)3(am) in equilibrium with Pu(III)aq (light blue line). 

Under identical conditions with the presence of ISA in solution, besides the abovementioned 

hydrolysis equilibria, chemical reactions (54) (with y = 1 and x = 0 or 1) and (55) are 

governing the speciation of Pu in solution. In these cases, Equations (55), (62) (with y = 1 and 

x = 0 or 1) and (61), (63) were used in combination with stability constants and SIT ion 

interaction coefficients summarized in  Table 12 and  Table 13, respectively, together with the 

auxiliary thermodynamic data (Table A1 and Table A2 of the Appendix) to calculate the 

solubility lines in  Figure 30,  Figure 31,  Figure 32,  Figure 33,  Figure 37,  Figure 38,  Figure 39: 

PuO2(ncr,hyd) in equilibrium with Pu(IV)–OH–ISA species (blue lines); PuO2(ncr,hyd) in 

equilibrium with Pu(IV)–OH–ISA and Pu(III)–OH–ISA species at (pe + pHm) = 1.54 (green 

lines). 

 

log *β°1,4+x,y = log *β’1,4+x,y + log γPu(IV)(OH)4+xISA–(y+1) + (4+x) log γH+ – log aPu4+(aq) – 

 – y log γISA– – (4+x) log aw (62) 

log *β°1,2,1 = *β’1,2,1 + log γPu(III)(OH)2ISA(aq) + 2 log γH+ – log aPu3+(aq) – log γISA– – 

 – 2 log aw (63) 

 

3.1.3.4.1 Chemical and thermodynamic model of the system Ca(II)-Pu(IV)-OH-ISA 

Based on the analyses of the data set described in Section 3.1.3.2 (log m(Pu)tot vs. pHm, 

log m(Pu)tot vs. log m(ISA)tot and log m(Pu)tot vs. log m(Ca)tot) and considering PuO2(ncr, 

hyd) as solid phase controlling the solubility of Pu(IV) in all HQ systems with the presence of 

ISA and Ca(II), chemical reactions (13) and (14) are proposed to control the solubility and 

solution chemistry of Pu(IV) under alkaline to hyperalkaline conditions. 

 

Pu(IV)O2(ncr,hyd) + ISA
–
 + Ca2+(aq) +2 H2O(l) ⇔ Ca(II)Pu(IV)(OH)4ISA

+
 (64) 

Pu(IV)O2(ncr,hyd) + ISA
–
 + Ca2+(aq) + 3 H2O(l) ⇔ Ca(II)Pu(IV)(OH)5ISA

0
(aq) + H

+
 (65) 

 

The species Ca(II)Pu(OH)4ISA+ is predominant in solutions with pHm = 8 – 11, whereas 

Ca(II)Pu(OH)5ISA0(aq) forms at pHm > 11. In the present case as well, the proposed 

stoichiometries for the Ca(II)–Pu(IV)–ISA complexes assume highly hydrolyzed metal 

centers (“Pu(OH)4” and “Pu(OH)5
–“) within the quaternary complex species where only the 
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carboxylic group is deprotonated on the ligand. In view of Section 3.1.2.5, the DFT 

calculation results for the stoichiometries of the Pu(III/IV)-ISA species, possibly the 

formation of the newly identified, quaternary complexes also involve the deprotonation of one 

or several alcohol groups of ISA. As of now, no theoretical study has been conducted to 

assess the stoichiometry of the Ca(II)-Pu(IV)-OH-ISA species. Hence, for the sake of 

consistency with the study on the binary system, the nomenclature assuming the retainment of 

the stoichiometries of the existing, binary species was adapted in the present section. 

The limitations and assumptions of the proposed chemical model can be summarized as 

follows: 

 

1. The proposed chemical model is based on solubility data at pHm < 12. Above this 

value of pHm, other phenomena not yet understood affect the solubility 

equilibrium, decreasing (or limiting) m(Pu)tot in solution. The use of this chemical 

model (and the accordingly derived thermodynamic model) beyond this pH value 

seemingly overestimates experimental solubility data (according to so-far 

available data), (thus proving to be conservative when estimating upper-limit 

concentration levels). 

2. Solubility experiments with varying m(ISA)tot and m(Ca)tot were only conducted 

at pHm = 12, thus the stoichiometries Pu:ISA and Pu:Ca in reaction (13) are based 

on the assumption that the same stoichiometry of the Pu-ISA complex in the 

absence of Ca(II) is retained, and that only one Ca2+ ion is attached to this 

structure. The complexation of a second Ca2+ ion to the Ca(II)Pu(IV)(OH)4ISA+ 

moiety appears to be unlikely for evident electrostatic reasons. 

 

The data interpretation of the ternary system Ca(II)–Pu(IV)–OH–ISA was performed taking 

into consideration the chemical and thermodynamic data for the system Pu(IV)–OH–ISA 

derived in Section 3.1.2.6, applying stability constants and SIT ion interaction coefficients 

summarized in  Table 12 and  Table 13, respectively, together with the auxiliary 

thermodynamic data (Table A1 and Table A2 of the Appendix) as well as for the system 

Ca(II)–OH–ISA (see thermodynamic data provided in  Table 1). 

As discussed in the previous sections, to gain further confidence on the proposed model, 

different plausible “apparent” stoichiometries of Ca(II)–Pu(IV)–OH–ISA complexes were 

also evaluated in the fitting procedure of the experimental data. General equilibrium constants 



 
154 

of the newly forming quaternary species (CazPu(IV)(OH)4+x(ISA)y
(2z-x-y), chemical reaction 

(66)) can be calculated according to Equation (67). 

 

Pu4+(aq) + y ISA
–
+ (4+x) H2O(l) + z Ca2+(aq) ⇔  

⇔ CazPu(IV)(OH)4+x(ISA)y
(2z-x-y)

 + (4+x) H
+
 (66) 

log *β°z,1,4+x,y = log aCazPu(IV)(OH)4+x(ISA)y
(2z–x–y) + (4+x) log aH+ – log aPu4+(aq)  

 – y log aISA
– – z log aCa

2+ (67) 

 

The total concentration of Pu in solution at I = 0.10 m NaCl was calculated by PP-PQC 

software packages using Equation (68), which besides the formation of the newly identified 

Ca(II)–Pu(IV)–OH–ISA complexes also took into account the presence of the ternary Pu(IV)–

OH–ISA and Ca(II)–Pu(IV)–OH complexes. 

 

log m
calc

(Pu)tot,m = ∑
 4

n = 1
(*KꞌIVs,(4–n) ·(mH

+)
n
) + 

 + 
*KꞌIVs,0 ·[(*

β’1,4,1 ·(mISA
–) + *β’1,5,1 · (mH

+)
–1

·(m
ISA

–))] + 

 + 
*KꞌIVs,0 ·[∑

 2

i = 1
 (*

βꞌzi,1,4+xi,yi (mH
+)–xi ·(mISA

–)yi ·(m
Ca

2+)zi)] +  

 + 
*KꞌIVs,4,1,8

 (m
H

+)–4 
·(m

Ca
2+)4

 (68) 

 

In the first step of the fitting exercise, the effect of ionic strength for the newly forming 

quaternary species was calculated considering only the Debye–Hückel term within the SIT 

formulism. At the second stage, once the definite chemical model was set, a final fit, 

considering estimated values for SIT ion interaction coefficients of the quaternary Ca(II)–

Pu(IV)–OH–ISA complexes was also performed. 

Although the chemical model involving the formation of the complex species with 

Ca(II):Pu(IV):OH:ISA ratios of 1:1:4:1 (CaPu(IV)(OH)4ISA+) and 1:1:5:1 

(CaPu(IV)(OH)5ISA(aq)) was initially favored based on the slope analysis and chemical 

reasoning discussed previously, several additional stoichiometries: 1:1:6:1, 1:1:5:2, 2:1:5:1, 

2:1:5:2 and 2:1:6:2 were also tested for the second complex (see  Table 15). Due to the limited 

experimental data available under less alkaline conditions (e.g. only data at m(ISA)tot = 

constant and m(Ca)tot = constant), the evaluation of different stoichiometries was disregarded 

for the first species. In this respect, this species remains bound to the given assumptions. For 
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all evaluated chemical models, the values of the two respective equilibrium constants (67) 

were optimized to obtain the best fit of the solubility data set. 

 Table 15 shows values of the R2 and the objective function (fobj(*β°z,1,4+x,y), square root of the 

averaged sum of squared residuals with regard to the measured and calculated m(Pu)tot) 

resulting from the fitting procedures using the different chemical models proposed above.  

 

Table 15. Fitting results: values of the applied objective functions (square root of the 

averaged sum of squared residuals) and the coefficients of determination (R-squared values 

in percentage) provided by the evaluation of the available solubility data on the Ca(II)-Pu-

OH-ISA system at pHm ≤ 12, executed via PHREEPLOT – PHREEQC software packages. The 

values are presented with regard to the applied stoichiometries of the two, newly forming 

Ca(II)–Pu(IV)–OH–ISA complexes. 

 Ca (z) : Pu(IV) : OH (4+x) : ISA (y) ratios 

1st species 1:1:4:1 1:1:4:1 1:1:4:1 1:1:4:1 1:1:4:1 1:1:4:1 

2nd species 1:1:5:1 1:1:6:1 1:1:5:2 2:1:5:1 2:1:5:2 2:1:6:2 

R2 [%] 73.14 73.26 39.46 69.35 39.46 39.46 

fobj(*β°z,1,4+x,y) 0.273 0.273 0.410 0.293 0.410 0.410 

 

 

Chemical models involving the formation of (1:1:4:1 + 1:1:5:1) or (1:1:4:1 + 1:1:6:1) 

complexes gave an almost identical statistical representation of the data set. Although 

acknowledging that both models describe equally well the experimental data, the first option 

is favored for the sake of simplicity and to retain a closer consistency with the chemical 

model reported for the system Pu(IV)–OH–ISA ( Table 12). 

It has to be mentioned also that the correlation coefficient related to the two optimized 

equilibrium constants was sufficiently low in all cases. This indicates that the formation of 

two species is required to describe the data set, and moreover, that the addition of further 

species to the model would only be an overparameterized representation for the given system. 

In the following step, equilibrium constants of the selected two complexes (through chemical 

reaction (66), defined in Equation (67), with y = z = 1 and x = 0 and 1) were optimized to 

obtain the lowest residuals between the calculated, as in Equation (68) and experimentally 

measured total Pu total concentrations. 
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SIT formalism through Equation (69) was used to calculate the effect of ionic strength on the 

equilibrium constants of the related complex species CaPu(IV)(OH)4ISA+ (with x = 0) and 

CaPu(IV)(OH)5ISA(aq) (with x = 1), respectively. The SIT ion interaction parameter of the 

complex CaPu(IV)(OH)4ISA+ with Cl– was estimated as ε(CaPu(IV)(OH)4ISA+, Cl–) = –(0.05 

± 0.10) mol·kg–1, following the charge analogy described in the work of Hummel et al. [149]. 

The ion interaction coefficient of the neutral complex CaPu(IV)(OH)5ISA(aq) is zero as 

defined within SIT formalism. 

 

log *β°1,1,4+x,1= log *β’1,1,4+x,1 + log γCaPu(IV)(OH)4+xISA
(1-x) + (4+x) log γH+–  

 – log γPu4+(aq) – log γISA– – log γCa2+(aq) – (4+x) log aw (69) 

 

The optimization of log *β°1,1,4,1 and log *β°1,1,5,1 resulted in: 

 

log *β°1,1,4,1(CaPu(IV)(OH)4ISA+) = –(1.66 ± 0.10) (70) 

log *β°1,1,5,1(CaPu(IV)(OH)5ISA(aq)) = –(12.70 ± 0.08) (71) 

 

The solubility curves of Pu calculated, using Equation (68) for the system Ca(II)–Pu(IV)–

OH–ISA using the chemical and thermodynamic models derived in this work are shown 

in  Figure 37,  Figure 38 and  Figure 39, together with the corresponding experimental data for 

HQ-buffered systems in the presence of Ca(II) as well as the solubility calculated (described 

in Section 3.1.2.4.1) for the binary system Pu(IV)–OH–ISA. 
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Figure 37. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) in HQ-

buffered systems (■) at pHm = 8 – 12.4 with m(ISA)tot = 10–3 m and m(Ca)tot = 0.01 m. 

Solubility line in orange is calculated with the chemical and thermodynamic models derived 

in this work for the system Ca(II)–Pu(IV)–OH–ISA. Blue lines (solid and dashed) correspond 

to the solubility of Pu(IV)O2(am,hyd) at I = 0.10 m NaCl, in the presence of m(ISA)tot = 10–3 

m calculated using the chemical and thermodynamic models derived for the binary system 

Pu(IV)–OH–ISA (listed in  Table 12). 
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Figure 38. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) in HQ-

buffered systems (■) at pHm = 12 and m(Ca)tot = 0.01 m with 10–6 m ≤ m(ISA)tot ≤ 0.10 m. 

Solubility line in orange is calculated with the chemical and thermodynamic models derived 

in this work for the system Ca(II)–Pu(IV)–OH–ISA. Blue lines (solid and dashed) correspond 

to the solubility of Pu(IV)O2(am,hyd) at I = 0.10 m NaCl, in the presence of m(ISA)tot = 10–3 

m calculated using the chemical and thermodynamic models derived for the binary system 

Pu(IV)–OH–ISA (listed in  Table 12). 
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Figure 39. Experimentally measured m(Pu)tot in equilibrium with PuO2(ncr,hyd) at constant 

pHm = 12 and m(ISA)tot = 10–3 m with 3·10–4 m ≤ m(Ca)tot ≤ 2·10–2 m, in HQ-buffered (■) 

solutions. Solubility line in orange is calculated with the chemical and thermodynamic models 

derived in this work for the system Ca(II)–Pu(IV)–OH–ISA. Blue lines (solid and dashed) 

correspond to the solubility of Pu(IV)O2(am,hyd) at I = 0.10 m NaCl, in the presence of 

m(ISA)tot = 10–3 m calculated using the chemical and thermodynamic models derived for the 

binary system Pu(IV)–OH–ISA (listed in  Table 12). 

 

In all cases, the proposed chemical and thermodynamic model describes equally well most 

experimental data collected within the given boundary conditions. However, relatively large 

deviations are observed at high ISA concentration (m(ISA)tot > 0.01 m), where the model 

overestimates the experimentally measured Pu solubility by ca. 0.5 log-units. Overestimations 

with similar magnitude are also observed for experimental data at pHm = 12.4 (with m(ISA)tot 

= 10–3 m and m(Ca)tot = 0.01 m conditions). Presumably this trend is also progressing above 

this pH. Note that the data points collected within systems at the latter pH value were 

excluded from the fitting process as discussed in Section 3.1.3.2.1. These observations could 

hint to an additional solubility phenomena not yet identified, taking place under these 

conditions (e.g. precipitation of a new solid phase). In view of the so-far available data, the 
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proposed thermodynamic model overestimates the experimentally measured solubility values 

for pH > 12.4 and/or m(ISA)tot > 0.01 m conditions, and thus provides conservative results 

with respect to the potential release of Pu from the repository under these particular 

conditions. Based upon this observation, within the sorption study, separate solubility 

experiments were additionally conducted where the focus was put on the validity of the 

established thermodynamic model under porewater conditions for the system Ca(II)–Pu(IV)– 

–OH–ISA (see Section 3.2.6.6.1 for results). 

It has to be emphasized that the new thermodynamic model in systems with pHm > 11 

provides reasonable predictions for Pu solubility values under strongly reducing conditions as 

well, despite that the experimental points collected in the Sn(II)-buffered solubility series 

were excluded from the input dataset. 

 

3.1.3.5 Comparison of the new Ca(II)-Pu(IV)-OH-ISA model with literature data 

 Table 16 summarizes the equilibrium constants derived in the present work for the formation 

of Ca(II)-Pu(IV)–ISA–OH complexes prevailing under reducing, alkaline to hyperalkaline 

conditions.  Table 17 lists SIT ion interaction coefficients estimated in the present work for the 

newly defined species. 

 
Table 16. Chemical equilibria and related equilibrium constants (at zero ionic strength) 

derived in the present study describing Ca(II)–Pu(IV)–OH–ISA system. 

Chemical equilibria log*β° (I → 0) 

Pu4+(aq) + ISA
–
 + 4 H2O(l) + Ca2+(aq) ⇔ 

⇔ Ca(II)Pu(IV)(OH)3ISA–H
+
 + 4 H

+
 

–(1.66 ± 0.10) 

Pu4+(aq) + ISA
–
 + 5 H2O(l) + Ca2+(aq) ⇔  

⇔ Ca(II)Pu(IV)(OH)3ISA–2H
0
(aq) + 5 H

+
 

–(12.70 ± 0.08) 
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Table 17. SIT ion interaction coefficients used in the present study. 

species i species j ε(i,j) [mol·kg–1] 

Ca(II)Pu(IV)(OH)4ISA
+
 Cl

–
 –(0.05 ± 0.10)a) 

Ca(II)Pu(IV)(OH)5ISA
0
(aq) Cl

–
 / Na+ 0.00 b) 

a) estimated values based on the work of Hummel et al. [149] 
b) zero by definition within SIT formalism 
 

 

The thermodynamic model established for the system Ca(II)–Pu(IV)–OH–ISA can only be 

compared with the analogous data on the Th(IV) system reported in the works of Vercammen 

et al. [100] and Tits et al. [103, 105] (see Introduction, Section 1.3.3.5 for detailed 

discussion).  Figure 40 (a, b, c, d) shows the predominance diagrams of Pu(IV) (based upon 

the results of the present study) and Th(IV) (adapted from Vercammen et al. [100] and Tits et 

al. [103, 105], later re-evaluated in [12]) for conditions: pHm = constant = 9 and 12, with –6 ≤ 

log m(ISA)tot ≤ –1 and –4 ≤ log m(Ca)tot ≤ –1.5 applying thermodynamic calculations as 

described in Section 3.1.3.4. 

 Figure 40 a, b, c, d show significantly different aqueous speciations for Pu(IV) and Th(IV) in 

the presence of ISA and Ca. An interesting feature of the predominance diagrams is the lack 

of equilibrium line between the hydrolyzed Th(IV) species and the quaternary Ca(II)–Th(IV)–

OH–ISA species. The latter observation indicates that under any experimental conditions 

within the displayed window, the increase of ISA total concentration always results in the 

formation and predominance of the Th(IV)–OH–ISA species first, even when there is a 

significant excess of Ca(II) ions (compared to the ligand) in solution. In view of the effect of 

Ca(II) on the Pu(IV)–OH–ISA system, this feature is highly unexpected, as the overestimated 

stability of the Th(IV)–OH–ISA species was also proved by a number of independently 

performed solubility studies [59, 107]. This points out that the thermodynamic data on the 

Th(IV)–OH–ISA system based on the sorption study conducted by Vercammen et al. [100] 

are strongly overestimating Th(IV) solubility limits in the presence of the ligand. The 

predominance of complexes with the same 1:1 An(IV):ISA ratio for both, Pu(IV) and Th(IV) 

is again invalid and it was shown that in solutions with m(ISA)tot > 10-3 m, (within the 

alkaline pH-range) the complex with 1:2 ratio (Th(OH)4(ISA)2
2–) is dominating for the Th(IV) 

case [107]. The former observation was also found to be consistent with literature data 
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available for analogous An(IV)–OH–ISA systems (for further details see discussion in 

Sections 1.3.3 and 3.1.2.7). 

 

 

Figure 40. Predominance diagrams of An(IV) in the presence of ISA (–6 ≤ log m(ISA)tot ≤ –1) 

and Ca (–4 ≤ log m(Ca)tot ≤ –1.5), at I = 0.10 m NaCl, calculated for Th(IV) : m(Th(IV))tot = 

10–9 m, at pHm = 9 (a,); 12 (b,) using thermodynamic data reported by Vercammen et al. 

[100] for Th(IV)-OH-ISA system and Tits et al. [103, 105] for Ca(II)-Th(IV)-OH-ISA system  

recalculated in [12] and for Pu(IV): m(Pu(IV))tot = 10–11 m, at pHm = 9 (c,); 12 (d,) using 

thermodynamic data derived in the present work. 

 

Despite that the results of the present work confirm the role of Ca(II) in stabilizing ternary 

Pu(IV)–OH–ISA complexes, the “enhanced” stability of the resulting quaternary complexes 

does not match the predictions based on Th(IV) data. The clearly increased stability predicted 
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for the Ca(II)–Th(IV)–OH–ISA species compared to the Pu(IV) case is not considered to be 

“thermodynamically real”, but rather caused by differences between solubility and sorption 

experiments. A definitive explanation for this major discrepancy is not yet found. 

Nonetheless, the systematic, wide-range variation of experimental parameters, coupled with a 

combined thermodynamic fit on a collected dataset is the key element in deriving a reliable 

thermodynamic model for such a system. In this aspect, the extensive study on the system 

Ca(II)–Pu(IV)–OH–ISA together with the thermodynamic model derived on the Pu(III/IV)–

OH–ISA system accomplished in this work represent the most comprehensive effort to 

characterize quaternary Ca(II)–An(III/IV)–OH–ISA complexes. However, further 

experimental studies (considering both solubility and sorption experiments) following a 

similar systematic and strategic approach applied in the present work on systems Ca(II)–

Th(IV)–ISA, Ca(II)–U(IV)–ISA and Ca(II)–Np(IV)–ISA would provide essential information 

in understanding the role of Ca(II) on the An(IV)–ISA complexation under conditions 

relevant for L/ILW disposal. 
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3.2 Sorption study 

Prior to the discussion of the obtained data on sorption experiments, characterization results 

on the applied cement powder and porewater are presented in Section 3.2.1. Subsequently, 

results on sorption investigations are provided in four main parts: 

 

(i) Redox conditions prevailing in the investigated systems (Section 3.2.2); 

(ii)  Obtained sorption data and evaluation on the system ISA-Cement (Section 3.2.3); 

(iii)  Sorption data collected on the binary, Cement-Pu system is presented (Section 3.2.4) 

(iv) Experimental results and data evaluation on the ternary, Cement-Pu-ISA system 

(Sections 3.2.5 and 3.2.6). 

 
3.2.1 Characterization of the cement powder and porewater 

3.2.1.1 Initial cement powder 

In view of the solid phase characterization results on the initial cement powder (provided in 

the Appendix, Section 6.5), it can be stated that the chemical composition of the cement 

material has not been modified by the powdering procedure and the main, hydrated solid 

phases present in the generated OPC powder are the amorphous C-S-H phases and the 

Portlandite. Based on the assumption that in the course of the hydration process all Ca-content 

of the clinker-components is consumed by the forming Portlandite and the C-S-H phases, 

while the Si-content is taken up solely by the C-S-H phases, an estimate of 1.7 – 1.9 can be 

calculated for Ca:Si atom-concentration ratio for the present C-S-H phases using the various 

quantification results of ICP-OES/-MS, TG-DSC and XPS techniques. This value is found to 

be in close agreement with the reported data of 1.8, resulting from model calculations on OPC 

pastes with similar chemical characteristics [195-197]. 

In this respect, the generated cement powder to be applied for the sorption experiments can be 

taken as a representative material for the original cement specimens in terms of the main 

chemical properties. 

 

3.2.1.2 Chemical compositions of equilibrated cement pastes and porewater solutions 

Identically as in the case of the initial cement powder, two equilibrated cement pastes were 

also characterized after hydration stoppage by the before mentioned techniques. The solid 

phases were retrieved from: 1. the batch sample used for generating the porewater (which was 
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the solution applied for all sorption studies simulating stage II of the cement degradation 

process) and from 2. a batch sample of the Cement-ISA sorption experiment series (at 

[ISA] tot = 0.01 M and S:L ratio = 2 g⋅dm-3). Data on the sample 1 (named as “porewater 

cement”) was collected after the preparation of all sorption experiments (~1 year of contact 

time), whilst on the 2nd sample (denoted as “ISA-cement”) all analysis were performed after 

an equilibration time of 14 days (final teq of Cement-ISA sorption investigations). In addition 

to the solid phase characterization, equilibrium chemical compositions of the aqueous phases 

were also assessed for the above listed two samples. A more detailed discussion on the results 

are provided in the Appendix (Section 6.6). 

In summary, it can be concluded that the generated porewater to be applied as the liquid phase 

for later sorption experiments is a chemically representative solution of cement pore fluids 

expected at stage II of the cement degradation process. Solid phase characterization results on 

the retrieved cement solid paste coincide with the latter observation. As for the ISA-cement 

sample, the total ligand concentration of 0.01 M in the supernatant with S:L ratio = 2 g⋅dm-3 

was determined to bear with a negligible effect on both: the governing chemical parameters in 

solution of interest (pHc, [Ca]tot) and also on the main chemical composition (presence of 

Portlandite and C-S-H phases) of the HCP. It is of note, that a slightly enhanced calcification 

was observed on the surface of the retrieved specimens.. Observed changes can be modelled 

assuming Portlandite dissolution equilibria in combination with Ca(II)-OH-ISA complex 

formation reactions in solution, which is in agreement with the observation of previous 

studies [104]. 

 Table 18 contains the concentrations of the major and minor elements in the liquid phases of 

the abovementioned two samples: porewater cement sample and the ISA-cement sample as 

quantified by ICP-OES and ICP-MS measurements. 

The initial composition of the porewater together with the determined pH condition of pHc = 

(12.55 ± 0.08) (averaged value of multiple measurements on the porewater) are in good 

agreement with the calculated and the previously reported porewater conditions (with pHc = 

12.50) representing stage II of the cement degradation process [4, 198]. Slightly lower value 

has been quantified for Na(I) concentration, whereas concentration of K(I) was found to be in 

good agreement with reference data, both indicating the successfulness of the pre-washing 

step aimed to remove the alkali-content of the initial cement powder. Reference values for 

Mg(II) and Fe(III) are not provided in the literature, whilst the concentration of Si(IV) is 

below the detection limit of the in-house quantification by ICP-MS, in agreement with the low 

level reported [198]. 
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Table 18. Compositions quantified by ICP-OES/-MS techniques of the liquid phases in 

contact with different cement pastes: “porewater” designates the solution generated by 

equilibrating Milli-Q water with the pre-washed cement powder (teq = 1 year), “ISA-cement 

porewater” is the supernatant of the sample prepared using the latter porewater, the initial 

cement powder and the ISA-stock solution to reach [ISA]tot = 0.01 M at S:L ratio = 2 g⋅dm-3, 

analyzed at teq = 14 days. Reference values are adapted from literature data on analogous 

OPC porewater [4, 198]. 

Sample 
name 

Ca(II) Na(I) K(I) Al(III) Si(IV) Mg(II) Fe(III) 

 [M] [M] [M] [M] [M] [M] [M] 

Porewater 0.02 7·10-5 3·10-4 2·10-6 < D.L.a) 8·10-7 3·10-8 

ISA-cement 
porewater 

0.02 0.02 8·10-4 2·10-5 7·10-5 2·10-6 5·10-6 

Referenceb) 0.02 3·10-3 1·10-4 2·10-6 3·10-6 – – 

a) below detection limit means a concentration of < 1 10-5 M for Si(IV) 
b) reference values are taken from literature data on analogous systems [4, 198] 

 

 

The measured pH value of the ISA-cement porewater sample: pHc = 12.60 ± 0.03 was 

observed to be within the uncertainty-range of the values collected in the absence of ISA 

(calculated theoretical value under identical conditions is: pHc = 12.57). The chemical 

composition of the equilibrated porewater with [ISA] tot = 0.01 M at S:L ratio of 2 g⋅dm-3 show 

distinct changes in the depicted elemental concentrations especially with regard to Na(I) ion 

concentration. These discrepancies are originating from the introduction of ISA-stock solution 

to the system, which was later confirmed by the characterization of identical solutions 

prepared in the absence of cement solid phases. Ca(II) ion concentration was found to be 

negligibly affected by the high ligand concentration in solution, which is in agreement with 

thermodynamic calculations, assuming that the concentration of Ca2+ is governed by the 

dissolution of Portlandite and by its complex formation reactions with ISA in solution (when 

[ISA] tot does not exceed ~0.1 M, i.e. precipitation of Ca(ISA)2(s) does not occur). Accounting 

for the latter chemical equilibria, the calculated theoretical increase (without taking into 

account the sorption of the ligand) in [Ca2+] tot with the level of 2.7·10-3 M is located closely to 
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the uncertainty-range (± 3 10-3 M) associated to the quantification of [Ca2+]tot by ICP-OES 

technique in analogous systems. 

 

3.2.2 Redox conditions 

The redox conditions in terms of averaged (pe + pHc) values collected in all HQ-, Sn(II)- and 

dithionite-buffered batch sorption experiments in the absence and in the presence of ISA are 

summarized in  Table 19. 

A general trend in the collected pHc and pe values as function of [ISA]tot in solution or the S:L 

ratio applied was not found. Measured pH conditions in the course of all sorption studies were 

identical to the previously collected values in pure porewater solutions, indicating the 

retainment of Portlandite as the pH- (and [Ca]tot-) controlling phase in the system. 

Thermodynamic evaluations were used to derive theoretically calculated pHc (and [Ca]tot) 

values, accounting for the given [ISA]tot concentration and Portlandite solubility equilibria. 

 

Table 19. List of averaged pHc values and redox conditions, (pe + pHc) values (with 

associated uncertainties) collected on all HQ-, Sn(II)- and dithionite-buffered batch sorption 

experiments conducted in the present study. 

Redox buffer 
(2mM) 

pHc,av. peav. (pe + pHc)av. 

HQ (12.54 ± 0.16) –(3.5 ± 1.0) (9.2 ± 0.8) 

Sn(II) (12.50 ± 0.16) –(11.6 ± 1.1) (1.0 ± 0.7) 

S2O4
2- (12.50 ± 0.17) –(12.4 ± 1.3) –(0.3 ± 0.6) 

 

 

In agreement with the findings of previous studies performed in the absence and presence of 

ISA and Ca(II) (see results of solubility study Section 3.1 and references [1, 2]), HQ in 

solution imposed moderately reducing conditions. Detected overall conditions with an 

averaged (pe + pHc) value of (9.2 ± 0.8) were in good agreement with the previously assigned 

value of (pe + pHm) = (9 ± 1). The related Eh measurements show fast equilibration times. 

Sorption of HQ on the cement can be excluded based on NPOC data. The redox conditions in 

HQ-buffered systems are within the stability field of Pu(IV) for both, aqueous species and 
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solid compounds. Hence, sorption data of these samples can serve as reference for evaluating 

processes and interactions within the Cement–Pu(IV)(–ISA) system. 

The formerly reported redox conditions (pe + pHm) of (1.54 ± 0.14) for the Sn(II)-buffered 

system were in moderate agreement with the new value of (pe + pHc) = (1.0 ± 0.7). The 

thermodynamic evaluation of Sn(II) sorption data in the course of the present study did not 

necessitate the acquired pe values to be included as input values in the thermodynamic model 

(in the presence of ISA the predominance of Ca(II)–Pu(IV)–OH–ISA species are expected in 

the solution). In this respect, Eh values in the present case were not measured further with 

longer equilibration times. As the reliability of Eh values acquired under short equilibration 

times are sometimes questionable, newly obtained (pe + pHc) values (still overlapping with 

uncertainty field of the formerly detected ranges) should be taken as orientative values. 

Sorption data collected in the presence of Sn(II) under strongly reducing conditions will be 

used as the representative system expected for deep geological repositories. In this study it is 

used to evaluate the chemical interactions within the Cement–Pu(III/IV) and Cement–

Pu(IV)(–ISA) systems. 

Similar but slightly more reducing redox conditions with (pe + pHc) values of -0.3 ± 0.6 were 

obtained in the presence of dithionate in solution. Data plotting below the lower 

decomposition line of water are in close agreement with previous literature data on analogous 

systems [40]. Dithionate ions are unstable in near neutral solutions. However, under highly 

alkaline, anaerobic conditions at T = 22 ± 2°C the decomposition process is known to be 

kinetically hindered [199, 200]. This was confirmed in the course of the present experiments, 

as constant strongly reducing conditions were detected in the investigated systems over the 

entire time-frame of the study. In this aspect, the dithionate-buffered experiments are taken as 

an analogous system to the Sn(II)-buffered experiments, representing strongly reducing 

aqueous conditions but a chemically significantly different redox buffer. 

 

3.2.3 Cement-ISA system 

Prior to the investigations on the cement-ISA system, blank samples in the absence of the 

ligand were analyzed to account for the leaching of organic impurities from the OPC paste 

and the consequent increase in the background-level of NPOC within the porewater solutions 

at various S:L ratios. 

 Figure 41 shows the background-corrected NPOC values obtained (after centrifugation) on 

the supernatants of the porewater samples equilibrated with the initial cement powder at S:L 

ratios of 0.2, 2, 4, 8, 15, 20 and 50 gdm-3. 
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Figure 41. Background-corrected total NPOC values measured in the centrifuged 

supernatant solutions of blank samples without ISA in solution prepared by mixing the 

porewater solution and the initial cement powder to reach S:L ratios of 0.2, 2, 4, 8, 15, 20 

and 50 gdm-3. The dashed blue line depicts the linear fit performed on the data set. 

 

Organic impurities were found to be representing a negligible amount: 1 – 3 ppm of the total 

NPOC values in the S:L ratio-range of 0.2 – 50 gdm-3. Assuming a linear correlation between 

the leached organic-content and the amount of cement powder added to porewater, a fit was 

performed on the data set and the resulting empirical expression: Equation (72) was later 

applied to correct NPOC values quantified at a specific S:L ratio in the cement-ISA system 

under analogous conditions. 

 

NPOCimpurities (ppm) = 0.036·S:L ratio (gdm-3) + 1.22 (ppm) (72) 

 

 Figure 42 summarizes all results in terms of [ISA]sorbed, calculated using Equation (18) as 

function of the equilibrium concentrations of ISA, with [ISA]eq determined from the 

background-corrected NPOC values acquired in the cement-ISA experiments.  Figure 43 
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displays quantified [ISA]eq concentrations within the experimental series with [ISA] tot = 10-3 

M as function of the S:L ratios. 

 

 

Figure 42. Sorption isotherm of ISA on the initial OPC powder collected in porewater 

solutions (pHc = 12.50 – 12.57) with [ISA]tot = 10-2, 10-3, 10-4, 10-5 M and S:L ratios of 0.2, 2, 

4, 8, 15, 20 and 50 gdm-3 at teq = 7 (blue symbols) and 14 d (red symbols). Solid lines 

represent the calculated two-site Langmuir-isotherms, expressed as in Equation (19) based 

on: i. the model reported by Van Loon et al. [57, 84] with values from Equation (20): orange 

line and ii. the results from the combined fitting exercise performed in the present work on the 

displayed data set with values from Equation (76): purple line. 

 

Despite the slightly enhanced sorption of ISA at teq = 14 d, compared to the case of teq = 7 d, a 

definite chronological trend could not be identified within the data set as the associated 

uncertainties of the detected [ISA]eq concentrations were relatively high (~5 – 50 %, 

depending on the absolute value). Considering also that ISA-sorption is known to be a fast 

process [57, 84, 87], taking place usually within 2 days of contact-time with cement pastes, 

both data sets were evaluated and fitted. 
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Figure 43. Concentrations of ISA in porewater solutions (pHc = 12.50 – 12.57) in 

equilibrium with the initial OPC powder at [ISA]tot = 10-3 M (grey line) and S:L ratios of 2, 4, 

8, 15, 20 and 50 gdm-3 at teq = 7 (blue symbols) and 14 d (red symbols). Solid lines represent 

the calculated concentrations using the two-site Langmuir-isotherms from Equation (19), 

based on: (i) the model reported by Van Loon et al. [57, 84] with values from Equation (20): 

orange line and (ii) the results from the combined fitting exercise performed in the present 

work on the displayed data set with values from Equation (76): purple line. 

 

Sorption data on the series with constant [ISA]tot = 10-3 M, a significant decrease in [ISA]eq 

was witnessed with increasing S:L ratios, e.g. in the sample with 51 gdm-3 the determined 

equilibrium concentration of the ligand was found to be 5·10-5 M. The latter value represents a 

high retention for ISA by HCP with Rd = 403, i.e. a four times larger value than as expected 

from the work of Pointeau et al. under the given conditions [87]. This demonstrates that the 

distribution ratios are dependent on the applied S:L ratios and furthermore, the use of a 

surface complexation model may not be applicable to significantly different conditions 

(especially taking into account the variation of available specific surface areas of the applied 

cement phases). The evaluation of the collected sorption data was limited to the isotherm type 

of representation, due to the lack of additional thermodynamic parameters related to the 

conditions of the present study. 
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The isotherm representation (Equation (19)) of the data set, (calculation of [ISA]sorbed from 

[ISA] eq using q1, q2 and K1, K2 parameters as in Equation (20) from values reported by Van 

Loon and co-workers [84], orange line in  Figure 42) provides a good empirical prediction for 

expected [ISA]eq values within a wide-range of [ISA]tot concentrations. The expression 

slightly overestimates [ISA]eq for all the evaluated of S:L ratios ( Figure 43). Also, the 

expression (as in Equation (19)), owing to the strong correlation between the “q” and the “K” 

parameters, fails to provide accurate predictions for [ISA]eq with regard to the variation of S:L 

ratios at a constant total concentration of the ligand. Since the main aim of the study was to 

assess the [ISA]eq values in the function of S:L ratios, evaluation of the data set using the 

Langmuir-isotherm model was executed with a slight modification. The parameter 

optimization procedure was performed simultaneously by the minimization of two separate 

objective functions expressed using Equation (73) (resulting from the combination of 

Equation (18) and (19)): 

 

([ISA] tot – [ISA]eq)·VL·(porewater, dm3)·m(cement, kg)-1 = 

= [ISA]sorbed = K1·q1·[ISA] eq·(1 + K1·[ISA] eq)
-1 + K2·q2·[ISA] eq·(1 + K2·[ISA] eq)

-1 (73) 

 

The expression above raises two possibilities for the determination of q1, q2 and K1, K2 

parameters: (1) correlating measured and calculated [ISA]sorbed values from the Langmuir-

isotherm type of representation (using only the Equation on the right hand side), just as 

described before or (2) correlating measured and calculated [ISA]eq concentrations expressed 

from the combination of the two equations (using both the right and the left expression within 

Equation (73)). The first possibility is proven to be more sensitive to the variation of the 

theoretical sorption capacities of the two sites, whilst option two is more prone to the 

variation of the adsorption affinity constants. 

In Option 1, [ISA]sorbed values were calculated using initial input values for q1, q2 and K1, K2 

parameters (values taken from Equation (20)), as provided by the original Langmuir-isotherm 

and the objective function (F1), expressed as in Equation (74) was minimized in order to gain 

the optimized values of the parameters (given n number of data points). 

 

F1(q1, q2, K1, K2) = (∑
n

i = 1
(log [ISA]sorbed,calc. – log [ISA]sorbed,meas.)

2 ·(n – 1)–1 )0.5 (74) 

 

Option 2 was based on Equation (73), where [ISA]eq values were calculated using initial input 

values for q1, q2 and K1, K2 parameters in addition to the total volumes of the samples and the 
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applied weights of the cement powder. In this case, objective function, expressed as in 

Equation (75) was minimized to get the best-fit values for the given parameters: 

 

F2(q1, q2, K1, K2) = (∑
n

i = 1
(log [ISA]eq,calc. – log [ISA]eq,meas.)

2·(n – 1)–1 )0.5 (75) 

 

The combined fit was executed by the simultaneous minimization of both objective functions 

(F1 and F2) on all experimental data points. The optimized sorption capacities and affinity 

constants of the two sorption-sites are as follows: 

 

q1 = (0.18 ± 0.02) mol·kg-1, K1 = 2510 ± 500 dm3·mol-1 and 

q2 = (0.17 ± 0.02) mol·kg-1, K2 = 12 ± 2 dm3
·mol-1 (76) 

 

Associated uncertainties were estimated upon the variation of the calculated and measured 

[ISA] sorbed and [ISA]eq values. (Depicted values exceed the associated statistical uncertainties.) 

Model calculations using the best-fit values are shown in  Figure 42 and  Figure 43 as purple 

solid lines. Predictions of the previously published model by Van Loon et al. [84] are 

displayed as orange solid lines for comparison. 

The established Langmuir-isotherm provides good predictions in both representations with 

small deviations from the data points, plotting within the uncertainty-range of NPOC 

measurements. A one-site isotherm was also tested within the fitting procedure, however, in 

accordance with observation formerly made by the PSI team, the presented, two-site model 

appeared to be more precise, especially for high [ISA]sorbed values. (The application of the 

Freundlich-type isotherm has failed in the present case as well.) 

Using the optimized parameters, the maximum uptake of the ISA ligand by the cement 

powder, i.e. the total sorption capacity, can be calculated as q1 + q2 = 0.35 mol·kg-1. The latter 

value is in good agreement with the value of 0.27 mol·kg-1 derived from sorption studies [57, 

84] and also with the estimate of 0.32 mol·kg-1 provided in the work of Bradbury and Sarott 

[85]. The slightly higher value obtained in the present study can be caused by many factors 

such as difference in specific surface area or in the chemical characteristics of the applied 

HCP. Furthermore, as discussed before, ISA sorption is also known to be highly influenced 

by pHc conditions and the [Ca]tot concentration within the porewater. Pointeau et al. formerly 

showed [87] that the uptake of ISA by OPC pastes reaches a maximum at pHc = ~12.5, thus, 

in comparison with the model reported by Van Loon et al. [57, 84], the presently observed 

enhanced sorption of the ligand is reasonable. 
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In the subsequent sections, the newly established cement-ISA sorption model (in the form of 

the two-site Langmuir isotherm with the best-fit parameters, as provided in Equation (76)) is 

used as an empirical formula to account for ISA uptake by the initial cement powder at a 

specific S:L ratio and [ISA]tot concentration. 

 

3.2.4 Cement-Pu system 

Pu sorption data for the Cement-Pu system are presented in two separate sections, according 

to the experimental set-up given in Section 2.4.5: 

 

1. Screening experiments: Section 3.2.4.1, HQ-buffered systems, S:L ratio = ~0.2 gdm-3 – 

4 gdm-3, at log [Pu]in ~ -6 or -9, and  

2. Redox experiments: Section 3.2.4.2, HQ-, Sn(II)-, dithionate-buffered systems, S:L ratio = 

~0.2 gdm-3 and 2 gdm-3, at log [Pu]in ~ -6 or -9). 

 

3.2.4.1 Screening experiments 

 Figure 44 and  Figure 45 show the total concentrations of Pu, log [Pu]aq in centrifuged, HQ-

buffered porewater solutions in contact with the initial cement powder quantified after 

ultrafiltration as function of applied S:L ratios at two total Pu initial concentrations: 

log [Pu]in = -5.3 and -8.3, respectively. 
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Figure 44. Aqueous total concentrations of Pu quantified after ultrafiltration phase 

separation method in HQ-buffered cement powder – porewater systems at teq = 7 d (red), 66 d 

(dark blue) and 98 d (blue symbols) with S:L ratios of ~2 gdm-3 and ~4 gdm-3, at the applied 

initial Pu concentration of log [Pu]in = -5.3. Solid, black line corresponds to the solubility of 

PuO2(am,hyd) in equilibrium with Pu(IV)aq species calculated for porewater conditions (at 

pHc = 12.60) using thermodynamic data reported in NEA-TDB[9] (related calculations are 

adapted from a previous study [1]). 

 

At a high initial total concentration of Pu (log [Pu]in = -5.3), the detected log [Pu]aq values 

were observed to show a significant decrease after 7 days of equilibration time ( Figure 45, red 

symbols). Concentrations quantified after teq = 66 and 98 days (blue symbols) were found to 

be constant and located close to the solubility of PuO2(am,hyd), indicating the potential 

separate precipitation of Pu solid phase from the system. Taking into account the high 

uncertainty associated to Pu(IV) solubility and hydrolysis equilibria (± ~1.1 log [Pu]tot), part 

of the results measured at teq = 7 days with S:L ratio = ~4 and all results at teq = 66 and 98 

days are collectively falling in the range of Pu total concentrations expected for solubility 

controlled concentrations in the presence of PuO2(am,hyd) solid phase in the system. 
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Figure 45. Aqueous total concentrations of Pu quantified after ultrafiltration phase 

separation method in HQ-buffered cement powder – porewater systems at teq = 7 d (red), 66 d 

(dark blue) and 98 d (blue symbols) with S:L ratios of ~0.2 gdm-3 – ~4 gdm-3, at the applied 

initial Pu concentration of log [Pu]in = -8.3. Solid, black line corresponds to the solubility of 

PuO2(am,hyd) in equilibrium with Pu(IV)aq species calculated for porewater conditions (at 

pHc = 12.60) using thermodynamic data reported in NEA-TDB[9] (related calculations are 

adapted from [1]). 

 

Pu in the systems with the lower initial level of log [Pu]in = -8.3 showed steady values 

throughout the entire sampling period, well below the calculated solubility values expected 

for the presence of PuO2(am,hyd). As most Pu concentrations were but slightly higher than 

the detection limit of SF-ICP-MS (at log [Pu]tot ~ -12.8), associated analytical uncertainties 

were rather large (usually with ± 0.5 – 1 log-units). 

All sorption results transformed from concentrations to distribution ratios (Rd values 

calculated according to Equation (25), in dm3kg-1 units) collected in the course of the 

screening experiments are shown in  Figure 46. 
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Figure 46. Distribution ratios (Rd values, in dm3kg-1 units) of Pu quantified after 

ultrafiltration in HQ-buffered cement powder – porewater systems at teq = 7 d (red), 66 d 

(dark blue) and 98 d (blue symbols) with S:L ratios of ~0.2 gdm-3 – ~4 gdm-3, at applied 

initial Pu concentrations of log [Pu]in = -5.3 (opened symbols) and -8.3 (filled symbols). (The 

displayed error bars are originating only from the analytical uncertainties associated to the 

quantification of Pu total concentrations by SF-ICP-MS technique.) 

 

At the S:L ratio of ~0.2 gdm-3, the determined log Rd values were generally larger by 1 – 1.5 

log-units than those corresponding to the analogous systems with higher S:L ratios present. 

However, most results of the series at S:L ratio = ~2 and 4 gdm-3 with log [Pu]in = -5.3 at teq = 

7 days and all results obtained with log [Pu]in = -8.3 at the higher S:L ratios applied were 

found to be consistent (all values are located within the blue shaded area in  Figure 46), 

showing an approximate averaged value of log Rd (dm3kg-1) = ~6.5. 

The steep decrease in concentrations detected in systems with log [Pu]in = -5.3 after teq = 7 

days resulted in a significant shift (illustrated by the red arrows in  Figure 46) for calculated 

log Rd values, reaching an averaged final level of log Rd,av = ~8.5 (located within the red 

shaded area in  Figure 46). As the [Pu]aq concentrations detected at these longer equilibration 

times within the given systems were close to the level of PuO2(am,hyd) solubility, the latter 
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apparent increase in log Rd values might be caused by the precipitation of Pu solid phase from 

the solution.  

The higher log Rd values obtained at low S:L ratios and low initial Pu-concentration are in 

agreement with experimental findings of previous studies on the analogous Th(IV) system 

[13]. As the absolute amount of the cement powder at S:L ratio ~0.2 gdm-3 is relatively small, 

distribution ratios are considered to be more sensitive to factors such as the non-negligible 

sorption of Pu(IV) onto the walls of the sample vials or uncertainties in the homogeneity of 

the weighed amount of cement powder. In this respect, determined log Rd values related to 

low S:L ratios generally feature rather high uncertainties and may as a consequence also be 

strongly overestimated. 

 

3.2.4.2 Redox experiments 

 Figure 47 and  Figure 48 show the total concentrations of Pu in centrifuged, HQ- Sn(II)- and 

dithionate-buffered porewater solutions in contact with the initial cement powder at various 

S:L ratios (~0.2 or ~2 gdm-3) with log [Pu]in = -5.8 and -8.5, respectively. Data were 

quantified at teq ≤ 108 days using ultrafiltration (UF) and/or ultracentrifugation (UC) phase 

separation methods. 

The detected [Pu]aq concentrations in HQ-buffered systems were in accordance with the 

analogous system (at log [Pu]in = -5.3) of the screening experiments, indicating the possible 

presence of PuO2(am,hyd) solid phase and the solubility controlled Pu total concentrations in 

solution. Regardless of the different redox-buffering agents used, all values are located at the 

same concentration level. This suggests the predominance of the Pu(IV)s solid phase even 

under the strongly reducing conditions imposed by Sn(II) and dithionate in solution. Pu total 

concentrations of the latter samples are in excellent agreement with those of the previous 

solubility study (conducted in the absence of ISA [1], see  Figure 7), where identical values 

were determined under the redox control by Sn(II) at pHc = ~12.9 in NaCl media. This 

however, does not exclude the potential formation of Pu(III)aq species in the course of the 

sorption experiments, since Pu LIII-edge XANES results indicated the presence of Pu(III)s in 

the solid phases retrieved from the undersaturation solubility experiments. 
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Figure 47.  Aqueous total concentrations of Pu quantified after ultrafiltration or 

ultracentrifugation phase separation methods in HQ- (blue), Sn(II)- (green) or dithionate-

buffered (purple symbols) cement powder – porewater systems with teq ≤ 108 d at S:L ratios of 

~0.2 gdm-3 and ~2 gdm-3 and initial Pu concentration of log [Pu]in = -5.8. Solid, black line 

corresponds to the solubility of PuO2(am,hyd) in equilibrium with Pu(IV)aq species calculated 

for porewater conditions (at pHc = 12.60) using thermodynamic data reported in NEA-TDB 

[9] (related calculations are adapted from [1]). (The error bars are originating from the 

analytical uncertainties associated to the quantification of Pu total concentrations by SF-ICP-

MS). 

 

To assess Pu precipitation and the Pu redox stages in the systems with high initial Pu total 

concentration (log [Pu]in = -5.3), equilibrated hydrated cement pastes at teq = 132 days were 

retrieved from samples with S:L ratio = 0.2 gdm-3 and characterized in-situ by means of 

XANES analysis (for Sn(II) and HQ-buffered systems) and in the form of dried powders 

(without hydration stoppage) by XPS (for the HQ-buffered sample). Solid phase 

characterization is summarized in Section 3.2.4.3. 
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Figure 48.  Aqueous total concentrations of Pu quantified after ultrafiltration or 

ultracentrifugation in HQ- (blue), Sn(II)- (green) or dithionate-buffered (purple symbols) 

cement powder – porewater systems with teq ≤ 108 d at S:L ratios of ~0.2 gdm-3 and ~2 gdm-3 

and initial Pu concentration of log [Pu]in = -8.5. Solid, black line corresponds to the 

solubility of PuO2(am,hyd) in equilibrium with Pu(IV)aq species calculated for porewater 

conditions (at pHc = 12.60) using thermodynamic data reported in NEA-TDB[9] (related 

calculations are adapted from [1]). (The displayed error bars are originating only from the 

analytical uncertainties associated to the quantification of Pu total concentrations by SF-ICP-

MS). 

 

All Pu total aqueous concentrations quantified in systems with log [Pu]in = -8.5 were showing 

low values within the entire time-frame of the sampling period (see  Figure 48), which is in 

close agreement with the results of the analogous HQ-buffered system from the experimental 

screening series (at least for the series with 2 gdm-3 S:L ratio). Different results in the two 

redox-buffered systems was again not observed, suggesting either, that: (i) the sorption of 



 

 
181 

Pu(III)aq species onto the cement phase are indistinguishable from the case of Pu(IV)aq, or (ii) 

that the contribution of Pu(III)aq species are negligible compared to total Pu concentration in 

solution. As the Pu concentrations in the present case are close to the detection limit of SF-

ICP-MS (mostly below the solubility level of Pu(IV)s expected under porewater conditions, 

see black line in  Figure 48), associated uncertainties are significant and likely exceeding the 

displayed analytical uncertainties as shown in  Figure 48. In this respect, any of the two above 

listed hypotheses can be neither denied nor confirmed. Thus, considering the sorption results 

collected in the HQ-buffered systems, all data of the present series are treated equally to 

represent the uptake of Pu(IV)aq by the present HCP. 

The sorption results obtained within the above described redox experiments, transformed 

from concentrations to distribution ratios (Rd values calculated according to Equation (25), in 

dm3kg-1 units) are presented in  Figure 49. 

The trends observed in the derived distribution ratios are consistent with the results of the 

screening experiments. All experimental results provide Pu aqueous concentrations located 

close to or below expected solubility limits with regard to PuO2(am,hyd). At higher initial 

concentration of Pu, precipitation of the solid phase is considered to be more probable, which 

then determines aqueous Pu concentrations. In those studies with lower log [Pu]in, solution 

concentrations for Pu lie significantly below the solubility line. Assuming that Pu surface 

sorption dominates in the latter systems and that no PuO2(am,hyd) forms, an estimate for the 

distribution coefficient for Pu between aqueous solution and HCP can be derived, as 

expressed in Equation (77). 

 

log Rd,in (dm3kg-1) = (6.3 ± 0.6) (77) 

 

This value together with the high associated uncertainty accounting for the variation of the 

determined Rd values collected at different S:L ratios, considering especially [Pu]aq 

concentrations detected on or close to the detection limit of SF-ICP-MS. Results of the 

screening experiments at S:L ratio = 0.2 gdm-3 with the largest observed deviations were 

omitted from the evaluation process. 
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Figure 49.  Distribution ratios (Rd values, in dm3kg-1 units) of Pu quantified after 

ultrafiltration or ultracentrifugation in HQ- (blue), Sn(II)- (green) or dithionate-buffered 

(purple symbols) with teq ≤ 108 d at S:L ratios of ~0.2 gdm-3 and ~2 gdm-3 with initial Pu 

concentration of log [Pu]in = -5.8 (opened symbols) or -8.5 (filled symbols). (The displayed 

error bars are originating solely from the analytical uncertainties associated to the 

quantification of Pu total concentrations by SF-ICP-MS). 

 

The value of log Rd,in (dm3kg-1) = (6.3 ± 0.6) determined in this work is larger than the 

average log Rd calculated from data reported in the literature for An(IV) (log Rd (dm3kg-1) ≈ 

5, see Section 1.3.4.1 in the Introduction). Such discrepancy may support the hypothesis that 

the value of log Rd,in (dm3kg-1) determined in the present work might be impacted by 

solubility phenomena and thus (slightly) overestimated. Nevertheless, a final conclusion 

cannot be deduced at this point, since certain available literature data (Baston et al. [120] with 

log Rd = ~6.1 – ~6.8) also provided experimentally similar values for the case of Pu under 

analogous conditions. 
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3.2.4.3 Solid phase characterization in cement-Pu systems 

The in-situ Pu LIII–edge XANES spectra collected for the hydrated cement pastes recovered 

from HQ and Sn(II)-buffered cement-Pu sorption experiments with S:L ratio = 0.2 gdm-3 and 

log [Pu]in = -5.8 at teq = 132 days are shown in  Figure 53 (Section 3.2.5.2). The figure also 

includes Pu reference spectra reported by Brendebach et al. [140] for aqueous Pu(III) and 

Pu(IV) species acquired under acidic conditions and the spectra collected on the 

PuO2(IV)(ncr,hyd) solid phase, as taken from a previous study (provided in 3.1.1.1 or in [1]). 

The position of the most intense energy-resonance white line (WL, listed in  Table 20) of the 

XANES spectra collected for the HQ-buffered cement paste sample (“HQ, no ISA”) is in 

excellent agreement with the previously reported XANES spectrum for the Pu(IV)O2(ncr,hyd) 

solid phase [1]. The spectral features (WL position, post-edge resonances) of the Pu(IV) 

XANES reference spectrum reported by Brendebach and co-workers [140] were very close to 

the newly obtained spectra, indicating the predominance of Pu(IV) in the potential precipitates 

and/or sorbed species of Pu in the given systems. Small deviations with regard to the 

absorption edge energy, ∆(first inflection points) = 0.3 eV, can be caused by differences in 

speciation as well as by the lower signal to noise ratios of the newly recorded spectra. 

A notable shift in the WL position to lower energy (≈ 1.0 eV) was observed for Pu present in 

the Sn(II)-buffered cement sample (“Sn(II), no ISA” sample in  Figure 53), which is found to 

be beyond the typical energy calibration error margin (≈ 0.5 eV). This unambiguously shows 

the presence of Pu(III) in the system. Considering the high initial concentration of Pu (with 

log [Pu]in = -5.8) applied in the sample, and the detected [Pu]aq concentrations matching the 

level of analogous undersaturation Pu solubility experiments, the presence of a PuO2(am,hyd) 

solid phase with a similar Pu(III)s contribution of ~30% as formerly determined under 

identical conditions (see Section 3.1.1.4) [1] seems possible. 

The X-ray photoelectron spectrum of the dried, HQ-buffered cement powder at teq = 132 days 

(retrieved from batch sorption experiment with S:L ratio = 0.2 gdm-3 and log [Pu]in = -5.8) is 

displayed with regard to the Pu 4f photoemission peak in  Figure 50. 
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Figure 50. XPS narrow scan of the Pu 4f7/2 elemental line of the dried cement powder sample 

retrieved from cement-Pu sorption experiment at teq = 132 days with S:L ratio = 0.2 gdm-3 

and log [Pu]in = -5.8. 

 

The observed binding energy of the Pu 4f7/2 elemental line at about 425.4 eV is located 

between the reference values of Pu2O3 (424.7 eV) and the previously reported value of 426.2 

eV determined for the PuO2(ncr,hyd) solid phase equilibrated under analogous conditions in 

the course of the former solubility study [1]. The detected binding energy is also in moderate 

agreement with other literature values ranging from 425.0 eV to 426.7 eV for PuO2 solid 

phases [170-172]. A weak-intensity satellite, characteristic for PuO2 is observed at 

approximately 6.7 eV higher binding energy than the Pu 4f7/2 main line. This energy-

difference between the main line and the satellite is found to be in agreement with data 

previously reported  for PuO2(cr) [170]. Relative intensity ratios for the two signals however, 

could not be determined, since the satellite appears to be superimposed by the Ca 2s elemental 

line. The lower binding energy for the Pu 4f7/2 elemental line is possibly originating from the 

presence of sorbed Pu(IV) species, neighboring an atom with lower Pauling’s 

electronegativity (potentially Ca). 

Combining all evidence, it can be clearly concluded that the Pu concentrations in the sorption 

experiments performed at high initial Pu concentrations (log [Pu]in = -5.8) are solubility 

controlled. The dominant presence of Pu(IV) species in the retrieved solid phases confirms 

the complete reduction of Pu(VI) to Pu(IV) in the course of sample equilibration. Information 
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obtained by solid phase characterization methods additionally show that Pu(IV) is partly 

bound to the surface of solid cement phases in the investigated systems. 

 

3.2.5 Cement-Pu-ISA system 

Sorption results for the Cement-Pu-ISA system are presented in three separate sections in 

accordance with the experimental details: 

 

1. 0.2 gdm-3 S:L series (Section 3.2.5.1, HQ-, Sn(II)- or dithionate-buffered systems with 

S:L ratio = ~0.2 gdm-3 and [ISA]tot = 10-3 or 10-2 M at log [Pu]in ~ -6 or -9) 

2. 2 gdm-3 S:L series (Section 3.2.5.4, HQ- or dithionate-buffered systems with S:L 

ratio = ~2 gdm-3 and [ISA]tot = 10-3 or 10-2 M at log [Pu]in ~ -6 or -9) 

3. 0.2 – 50 gdm-3 S:L series (Section 3.2.5.5, HQ- or dithionate-buffered systems with 

S:L ratio = ~0.2  – 50 gdm-3 and [ISA]tot = 10-3 or 10-2 M at log [Pu]in ~ -6). 

 

3.2.5.1 Experiments at 0.2 gdm-3 S:L ratio 

 Figure 51 and  Figure 52 show the total concentrations of Pu in centrifuged, HQ- Sn(II)- and 

dithionate-buffered porewater solutions in contact with the initial cement powder quantified at 

teq ≤ 109 days. Data are measured directly in the supernatant solution or after ultrafiltration 

(UF) / ultracentrifugation (UC) as a function of [ISA]tot (10-3 and 10-2 M) at S:L ratio = 0.2 

gdm-3 using two total Pu initial concentrations log [Pu]in = -5.8 and -8.5, respectively. The 

figures also include the solubility curve of PuO2(ncr,hyd) under the given porewater 

conditions in the presence of ISA and Ca(II) in solution. Calculations were done as in the 

course of the solubility study (see Section 3.1 and references [1, 2] for more details) 

considering experimentally measured parameters (pHc = 12.60, [Ca]tot = 0.02 M, with SIT 

formalism) and the Ca2+–Pu3+–Pu4+–OH––Cl––ISA––H2O(l) thermodynamic data (listed 

in  Table 12,  Table 13,  Table 16 and  Table 17, together with the auxiliary thermodynamic data 

in Table A1 and Table A2 of the Appendix). 

Regardless of the phase separation method applied, detected Pu concentrations in solutions 

were in good agreement for each analyzed sample at a given contact time. Furthermore, 

concentrations measured in the supernatants were matching roughly the data quantified after 

UF or UC methods, indicating the insignificant impact of “Pu(IV)-ISA” colloids under these 

conditions. This observation is in line with previous experimental findings of the solubility 
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study conducted in the presence of Ca(II) ions in solution (see Section 3.1.3.2 for further 

details). 

 

 

Figure 51. Aqueous total concentrations of Pu in HQ- (blue), Sn(II)- (green) or dithionate-

buffered (purple symbols) cement powder – porewater systems with teq ≤ 109 d at S:L ratio of 

0.2 gdm-3 and [ISA]tot = 10-3 or 10-2 M with initial Pu concentration of log [Pu]in = -5.8. 

Concentrations were quantified either without any phase separation method applied (directly 

in the supernatant solutions, opened symbols) or after ultrafiltration / ultracentrifugation 

methods (filled symbols). Values located within the blue shaded area correspond to 

experiments prepared in the “(Pu + Cement) + ISA” order, whilst the rest of the experiments 

were conducted following the “(Pu + ISA) + Cement” order. Solid, blue line corresponds to 

the solubility of PuO2(ncr,hyd) under porewater conditions in the presence of ISA and Ca(II) 

calculated analogously as in Section 3.1 applying SIT formalism (see text for details). 

 

In the sorption data with high initial concentration of Pu, log [Pu]in = -5.8, significant 

deviations were identified with regard to the different sequence of addition in sample 

preparation. The [Pu]aq values collected in experiments following the “(Pu + ISA) + cement” 
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experimental preparation order (meaning Pu and ISA were put together in a first step and only 

later contacted with cement) were found to be located closely to the initially introduced 

concentration values after teq = 109 days (the latter data lie close to the red shaded area 

of  Figure 51), depicting a transient state with concentrations higher than the predicted 

solubility level for the related Ca(II)-Pu(IV)-OH-ISA system. Nonetheless, a slightly 

decreasing tendency in Pu concentration was observed as function of allowed equilibration 

time, indicating a potentially hindered slow formation of a Pu(IV)O2(am,hyd) precipitate in 

the system. 

In selected samples with high initial Pu total concentration: log [Pu]in = -5.3 equilibrated 

hydrated cement pastes at teq = 130 days were retrieved from samples with S:L ratio = 0.2 

gdm-3 with [ISA] tot = 10-2 M and characterized in-situ by means of Pu LIII-edge XANES 

analysis (for Sn(II) and HQ-buffered systems). Solid phase characterization results are 

detailed in Section 3.2.5.2. 

All Pu aqueous concentrations measured in the “(Pu + cement) + ISA” batch experiments 

were in moderate agreement with the expected solubility for the Ca(II)-Pu(IV)-OH-ISA 

system taking into account also the uncertainties of the model. The latter data set 

demonstrates that at the high applied log [Pu]in = -5.8, just as in the analogous binary cement-

Pu sorption investigations, the main chemical equilibria controlling the total concentration of 

Pu in the experiments is the solubility of the PuO2(am,hyd) solid phase. Hence, under these 

conditions the effect of sorption processes on [Pu]aq concentrations cannot be analyzed. 

Results of the sorption studies conducted at lower, log [Pu]in = -8.5 concentration (see  Figure 

52), show no dependence on the experimental preparation order and all [Pu]aq values are near 

to the initially introduced Pu concentration level. In comparison with the concentrations 

measured in the absence of ISA under analogous conditions (shown as solid black line 

in  Figure 52, calculated using logRd,in = 6.3 at S:L = 0.2 gdm-3), the present data set shows a 

significant sorption reduction effect for ISA. 

In view of these experimental observations a simplified sorption model was derived, in order 

to model the effect of the ISA ligand on the uptake of Pu by HCP. The final aim was to 

predict variations in [Pu]aq concentrations as the function of ISA total concentrations and S:L 

ratios, considering also the sorption of the ISA ligand onto the cement paste. Details on the 

model together with the list of the required assumptions are provided in Section 3.2.5.3.  
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Figure 52. Aqueous total concentrations of Pu in HQ- (blue), Sn(II)- (green) or dithionate-

buffered (purple symbols) cement powder – porewater systems with teq ≤ 109 d at S:L ratios of 

0.2 gdm-3 and [ISA]tot = 10-3 or 10-2 M with initial Pu concentration of log [Pu]in = -8.5. 

Concentrations were quantified either without any phase separation method applied (directly 

in the supernatant solutions, opened symbols) or after ultrafiltration / ultracentrifugation 

methods (filled symbols). (Displayed data related to different experimental preparation 

orders, i.e.: “(Pu + cement) + ISA” or “(Pu + ISA) + cement” in the present case are 

indistinguishable.) Solid, blue line corresponds to the solubility of PuO2(ncr,hyd) under 

porewater conditions in the presence of ISA and Ca(II) calculated analogously as in Section 

3.1 applying SIT formalism (see text for details). Solid black line indicates [Pu]aq 

concentrations calculated using logRd,in = 6.3 at S:L = 0.2 gdm-3 (for the absence of ISA). 
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3.2.5.2 Solid phase characterization in cement-Pu systems 

 Figure 53 shows the in-situ Pu LIII-edge XANES spectra of hydrated cement pastes retrieved 

from HQ- and Sn(II)-buffered batch sorption experiments equilibrated for 130 days in the 

presence of ISA ([ISA]tot = 10-2 M) under porewater conditions. Analogous data on 

experiments without ISA in solution are also included in the figure together with the reference 

spectra formerly reported by Brendebach et al. [140] for aqueous Pu(III) and Pu(IV) species 

under acidic conditions and for the PuO2(IV)(ncr,hyd) solid phase, taken from previous study 

[1]. 

The edge energies (listed in  Table 20) of the XANES spectra collected for the HQ- and 

Sn(II)-buffered cement paste samples (“Pu-I+C, HQ, 10-2 M ISA” and “Pu-C+I, Sn(II), 10-2 

M ISA) are in excellent agreement with the analogous data of the HQ-buffered system 

equilibrated in the absence of ISA and also with the previously reported [1] XANES spectrum 

for the Pu(IV)O2(ncr,hyd). 

Small energy differences with regard to the WL positions and first inflection points are 

considered to be due to changes in speciation (see for instance the case of “sample H” from 

the work of Rothe et al. [169] for data on amorphous Pu(OH)4 precipitate) for example caused 

by the possible presence of sorbed Pu(IV) species. However, taking into account the 

uncertainty in the energy calibration (± 0.5 eV) and the low signal to noise ratios of the newly 

recorded spectra, the observed deviations are negligible and unequivocally confirm the 

presence of Pu(IV)s,aq species in the system. 

The almost identical results obtained in systems prepared with different experimental order of 

addition “(Pu + ISA) + cement” in HQ- and “(Pu + cement) + ISA” in Sn(II)-buffered 

samples indicate the predominance of Pu(IV)s/aq under both, moderate and strongly reducing 

conditions applied in course of the sorption study. This observation is in excellent agreement 

with the previous findings from undersaturation solubility experiments with PuO2(ncr,hyd) 

conducted in the presence of ISA and Ca(II) (Section 3.1.2 and 3.1.3). 
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Figure 53. In-situ Pu LIII–edge XANES spectra of cement pastes recovered from HQ- (blue 

lines) and Sn(II)-buffered (green lines) cement-Pu(-ISA) sorption experiments with S:L ratio 

of 0.2 gdm-3 and log [Pu]in = -5.8, equilibrated in solutions in the absence and presence of 

[ISA] tot = 10-2 M for ~4 months. The “(Pu-C)+I” and the “(Pu-I)+C” designates the different 

orders of preparation applied for the Cement-Pu-ISA sorption experiments, as “(Pu + 

cement) + ISA” and “(Pu + ISA) + cement”, respectively. Spectra of the references for the 

aqueous species of Pu(III) (purple line, position of WL = 18062.5 eV) and Pu(IV) (red line, 

position of WL = 18067.6 eV) reported in Brendebach et al. [140] and the spectra of the 

formerly characterized Pu(IV)O2(ncr,hyd) phase used for a previous solubility study adapted 

from [1] are shown for comparison reasons. 
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Table 20. Pu LIII–edge inflection points and white-line positions of the XANES spectra 

in  Figure 53: PuO2(ncr,hyd) solid phase used in former solubility studies [1], HCPs 

recovered from cement-Pu(-ISA) sorption experiments with S:L ratio of 0.2 gdm-3 at 

log [Pu] in = -5.8 equilibrated for ~4 months in the absence and presence of ISA (with 

[ISA] tot = 10-2 M) in HQ- or Sn(II)-buffered porewater solutions. The “PuC+I” and the 

“PuI+C” designates the different orders of preparation applied for the Cement-Pu-ISA 

sorption experiments, following the “(Pu + cement) + ISA” or the “(Pu + ISA) + cement” 

order, respectively. Reference values for Pu(III)aq and Pu(IV)aq species[140] and for 

Pu(OH)4(am) are appended for comparison. 

Sample name 
First inflection point*‡ 

[eV] 
White line (WL)* 

[eV] 

Pu(IV)O2(ncr,hyd) 18060.3 18068.3 

HQ, no ISA 18062.7 18068.3 

HQ, [ISA]tot = 10-2 M, PuI+C 18062.5 18068.4 

Sn(II), no ISA 18061.2 18067.3 

Sn(II), [ISA]tot = 10-2 M, PuC+I 18062.1 18068.0 

Pu(III)aq (HCl, pH = 0) [140] 18059.9 18062.5 

Pu(IV)aq (HCl, pH = 3) [140] 18062.4 18067.6 

Pu(IV)(OH)4(am) (sample H) 
[169] 

18060.5 18068.4 

*Energy calibration relative to first infection point of Zr K-edge XANES assigned to 17998 eV (E 1s). 
Calibration error (due to DCM motor encoder step uncertainty): ± 0.5 eV. 
‡Note that the position of the first inflection point is affected also by the Pu aggregation state (i.e., aqua ion 
vs. colloidal oxy/hydroxide species or solid precipitates. 
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3.2.5.3 Simplified sorption model for the Cement-Pu-ISA system 

Prior to setting up a simplified quantitative model to describe the sorption of Pu(IV) onto 

hydrated cement phases in the presence of ISA, the obtained experimental results are 

discussed. Considering all experimental observations derived in this study, the sorption model 

is bound to the following list of assumptions: 

 

Absence of ISA: 

I. The uptake of Pu(IV) by the OPC paste is a fast process involving the sorption of the 

Pu(OH)4(aq) species. It can be represented by a general distribution ratio, provided in 

Equation (77) (logRd,in) as derived from the results of the cement-Pu sorption 

experiments. 

Presence of ISA: 

II.  Sorption of ISA onto the cement paste involves different sorption sites than those for 

Pu (i.e. non-competitive sorption of ISA and Pu). Total concentration of ISA 

remaining in solution can be properly quantified using the two-site Langmuir-isotherm 

established in the present study in the form of Equation (19) with values from 

Equation (76). 

III.  The in-solution complexation reaction of Pu(IV)aq with ISA (and Ca(II) ions) and the 

sorption process of Pu(IV)aq onto the hydrated cement phases are the only competitive 

reactions governing [Pu]aq concentrations in solution. 

IV.  The aqueous complexes Pu(IV)-OH-ISA and Ca(II)-Pu(IV)-OH-ISA do not sorb on 

cement. 

V. The thermodynamic model on the Ca(II)-Pu(IV)-OH-ISA system derived in the 

previous studies is applicable for the investigated porewater conditions (pHc = 12.60; 

[Ca]tot = 0.02 M; I ~ 0.06 M). Therefore, Pu(IV) speciation calculations for the 

presence of ISA and Ca(II) are executed upon the experimentally determined 

conditions using the Ca2+–Pu3+–Pu4+–OH––Cl––ISA––H2O(l) thermodynamic data 

(listed in  Table 12,  Table 13,  Table 16 and  Table 17, together with the auxiliary 

thermodynamic data in Table A1 and Table A2 of the Appendix). 

 

The simplified sorption model, expressed in Equation (78) following the work of the PSI 

research team [13, 100, 103, 104] (Equation (29)) is aimed to reproduce the reduction effect 

of ISA on Pu(IV) sorption in a semi-empirical way by applying logRd,in (log Rd,in (dm3kg-1) = 
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(6.3 ± 0.6) determined in the absence of ISA and the complex formation constants for the 

Ca(II)-Pu(IV)-OH-ISA system as derived within the previous studies of the present work. 

 

log Rd = log Rd,in – log (1 + *β’1,4,1·[ISA–]·(A·[H+]4)–1 + *β’1,5,1·[ISA–]·(A·[H+]5)–1 + 

 + *β’1,1,4,1·[ISA–]·[Ca2+]·(A·[H+]4)–1 + *β’1,1,5,1·[ISA–]·[Ca2+]·(A·[H+]5)–1) (78) 

 

The overall stability constants *β’1,4,1, *β’1,5,1 and *β’1,1,4,1, *β’1,1,5,1 are corresponding to the 

formation of the previously identified four (Ca(II)-)Pu(IV)-OH-ISA species, whilst the A term 

accounts for the hydrolysis equilibria of Pu(IV) at the ionic strength prevailing under 

porewater conditions: 

 

A = 1 + *β’1,4·[H
+]–4 , (79) 

 

where *β’1,4 is the overall stability constant related to the formation of the Pu(OH)4(aq) 

species under the given condition. 

The free proton concentration in solution was calculated from the experimentally determined 

pHc = 12.60 value. The free concentrations of Ca2+and ISA- ions were obtained from Equation 

(80) and (81), respectively. 

 

[Ca]tot = [Ca2+] + [CaOH+] + [CaISA+] + [CaISA–H
0] + [Ca4Pu(OH)8

4+] +  

 + [CaPu(OH)3ISA–H
+] + [CaPu(OH)3ISA–2H

0] = 0.02 M (80) 

 

[ISA] eq = [ISA–] + [CaISA+] + [CaISA–H
0] + [Pu(OH)3ISA–H

–] + [Pu(OH)3ISA–2H
2–]+ 

 + [CaPu(OH)3ISA–H
+] + [CaPu(OH)3ISA–2H

0] (81) 

 

The contributions of all Pu-bearing species to the total concentrations of the ions were 

neglected. (Related thermodynamic constants on complementary systems: Ca(II)-OH and 

Ca(II)-HISA-OH were adapted from  Table 1 in the present case as well.) The stability 

constants were corrected for the ionic strength present in porewater solutions as provided by 

experimental quantifications, for I = 0.06 M (NaCl) using SIT formalism with ion interaction 

coefficients listed in  Table 17 and  Table 13 and in the Appendix (Table A2). (Further details 

on the calculations performed are provided in previous sections.) In comparison to the Debye-

Hückel term, the contribution of the binary ion interaction coefficients to the overall effect of 

the ionic strength correction is negligible, thus, the latter simplification (assumption of the 
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presence of a pure NaCl media with identical ionic strength) has only been made for the sake 

of consistency with the previous studies. 

The [ISA]eq concentrations were calculated from the initially introduced total concentrations 

of the ligand: [ISA]tot using the two-site Langmuir-isotherm, in the form of Equation (19), 

based on the results from the combined fitting exercise performed in the present work with 

parameters, as provided in Equation (76). 

The application of Equation (78) in combination with Equations (79 – 81), enables to evaluate 

the effect of ISA on the log Rd,in value, accounting solely for the solution speciation and the 

free concentration of the ligand, corresponding to a certain S:L ratio and [ISA]tot 

concentration. The resulting, new log Rd value can be used to re-calculate [Pu]aq 

concentrations for the cement-Pu(IV)-ISA system under a wide-range of experimental 

conditions, independently of the newly collected data set. 

 Figure 54 shows the predictions of the simplified sorption model transformed to [Pu]aq 

concentrations in the function of [ISA]tot concentrations together with the analogous data set 

obtained at log [Pu]in = -8.5 and the S:L ratio = 0.2 gdm-3. 

At [ISA] tot = 10-3 M, a relatively large deviation was observed between the experimentally 

determined values and the simplified model calculations for [Pu]aq  concentrations. For the 

data collected in systems with [ISA]tot = 10-2 M, the sorption model provides a reasonable 

agreement between the derived and the obtained concentrations. However it can be stated, as 

the measured [Pu]aq values were located close to the initially added total concentration of Pu 

in all cases, the simplified model predicts a lower sorption reduction effect of ISA at the given 

S:L ratio of 0.2 gdm-3. This discrepancy can originate from different factors, such as: (i) the 

overestimation of log Rd,in (related to assumption I.), (ii) from the incorrect speciation scheme 

applied for the Ca(II)-Pu(IV)-OH-ISA system (assumption V.), or (iii) from an unidentified 

effect of ISA on the sorption behavior of Pu and/or the HCP (targeting assumption II.). 
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Figure 54. Aqueous total concentrations of Pu in HQ- (blue), Sn(II)- (green) or dithionate-

buffered (purple symbols) cement powder – porewater systems with teq ≤ 109 d at S:L ratios of 

0.2 gdm-3 and [ISA]tot = 10-3 or 10-2 M with initial Pu concentration of log [Pu]in = -8.5. 

Concentrations were quantified either without any phase separation method applied (directly 

in the supernatant solutions, opened symbols) or after ultrafiltration / ultracentrifugation 

methods (filled symbols). Solid lines correspond to the solubility of PuO2(ncr,hyd) (blue) and 

to the simplified sorption model predictions (purple) using Equation (77) and (78) calculated 

for porewater conditions in the presence of ISA and Ca(II) applying SIT formalism (see text 

for details). The dashed purple lines reflect the uncertainty of log Rd,in. 

 

As it was pointed out before, in many sorption experiments with log [Pu]in= –8.5, the 

existence of a solubility control could not be ruled out unequivocally. For clarification, see 

e.g.  Figure 15, where the quantified Pu total concentrations in the solubility experiments 

(m(Pu)tot values at log m(ISA) = –6) considerably overlap with [Pu]aq values detected in the 

course of the latter sorption study (see  Figure 48). Thus, the application of a lower intial value 

for the distribution coefficient of Pu (for instance: log Rd,in = 5 as the reasonable average 
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value from literature data, see Section 1.3.4.1) would significantly change the predictions of 

the simplified model, eventually resulting in a better agreement with the collected data set. On 

the other hand, deviations can also be caused by the unknown impact of ISA on the sorption 

behavior of the system. The latter effect can be apprehended as a competitive sorption 

process, imposing changes in the surface properties of the hydrated cement phases (as steric, 

electrostatic or other effects). Indeed, differences in surface potential are undoubtly expected, 

given the excessive surface-coverage of the cement phases caused by the sorption of the 

ligand. As a consequence, the new, differing surface charge can significantly alter the 

properties of the HCP and could potentially prohibit / limit the uptake of Pu. 

 

3.2.5.4 Experiments at 2 gdm-3 S:L ratio 

 Figure 55 and  Figure 56 show the total concentrations of Pu, log [Pu]aq in centrifuged, HQ- 

and dithionate-buffered porewater solutions in contact with the initial cement powder 

quantified. Data are at teq ≤ 112 days after ultrafiltration as function of [ISA] tot (10-3 and 10-2 

M) at S:L ratio = 2 gdm-3 with two total Pu initial concentrations of log [Pu]in = -5.8 and -8.5, 

respectively. The figures also include the solubility curve of PuO2(ncr,hyd) under porewater 

conditions in the presence of ISA and Ca(II) in solution (see Section 3.2.5.1 for more 

details).  Figure 56 also shows values for [Pu]aq provided by the simplified sorption model, 

expressed in Equation (78) in the function of [ISA]tot concentrations under the given 

condition.  

At log [Pu]in = -5.8, a significant difference was detected in Pu concentrations related to the 

experimental preparation order. As in the data of the previously discussed series (see Section 

3.2.5.1) measured Pu concentrations in the “(Pu + ISA) + cement” samples were located 

significantly higher than the data for the “(Pu + cement) + ISA” system. Although a definite 

decrease was not observed in the data set with increasing equilibration times, the values were 

found to be slightly lower than the initially introduced Pu concentration level, indicating the 

hindered formation of a PuO2(am,hyd) precipitate. 

As in the case of 0.2 gdm-3 (Fig. 57) the data for the “(Pu + cement) + ISA” system at 10-3 M 

ISA show somewhat higher values as predicted by the solubility model which cannot be 

sufficiently explained at the moment. 
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Figure 55. Aqueous total concentrations of Pu quantified after ultrafiltration method in HQ- 

(blue) or dithionate-buffered (purple symbols) cement powder – porewater systems with teq ≤ 

112 d at S:L ratio of 2 gdm-3 and [ISA]tot = 10-3 or 10-2 M with initial Pu concentration of 

log [Pu] in = -5.8. Values located within the blue shaded area correspond to experiments 

prepared in the “(Pu + cement) + ISA” order, whilst the rest of the experiments were 

conducted following the “(Pu + ISA) + cement” order. Solid, blue line corresponds to the 

solubility of PuO2(ncr,hyd) under porewater conditions in the presence of ISA and Ca(II) 

calculated analogously as in Section 3.1 applying the SIT formalism (see text for details). 

 

For log [Pu]in = -8.5, the trend in the data set with time again show an unexpectedly large 

reduction effect of ISA on the uptake of Pu(IV) by HCP. Combining observations from  Figure 

54 and  Figure 56, it can be stated that the simplified model in general underestimates [Pu]aq 

concentrations quantified in the experimental series at both S:L ratios 0.2 and 2 gdm-3. Results 

indicate that the cement-Pu(IV)-ISA system cannot be precisely modelled by the combination 

of the chemical and thermodynamic models set up for the individual systems. As mentioned 

before, such deviations could potentially be caused by the overestimation of logRd,in or by the 

competitive sorption process of the ligand onto HCP. For example, the use of a lower value 

for log Rd,in as an input would already result in a better overall prediction of the obtained 
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sorption data by the simplified model. Taking also into account the excessive surface-

coverage of the ligand on HCP (about 50 % of the maximum ISA loading is observed at 10–3 

– 10–2 M ISA), the imposed changes in the surface properties of the cement phase (steric, 

electrostatic or others) could be significant. However, as the discrepancies are larger at the 

lower total ligand concentration of log [ISA]tot = -3, the influence of the ISA sorption cannot 

be the single reason for the observed phenomena. 

Considering the solubility of PuO2(ncr,hyd) in the presence of ISA at log [ISA]tot = -3 under 

porewater conditions (blue line), the initial concentration of Pu (log [Pu]in = -8.5) is observed 

to be located close to the saturation level. This implies that for the latter experiments as well, 

the solubility control cannot be fully excluded. Regarding systems with log [ISA]tot = -2, the 

theoretical Pu solubility level under analogous condition, however, exceeds the introduced 

concentration of Pu by more than one order of magnitude. Thus, [Pu]aq concentrations 

collected in these systems are not impacted by prevailing Pu solubility equilibria. This is also 

in accordance with the [Pu]aq values quantified to be below the calculated solubility limit. 

The preparation order in experiments with log [Pu]in = -8.5 again has no impact as observed 

for experiments with lower S:L ratio. A distinct difference was only observed at log [ISA]tot = 

-2. For the “(Pu + cement) + ISA” system, all aqueous Pu concentrations in porewater 

solutions for log [ISA]tot = -2 fall within the predicted range of the model, considering also the 

uncertainty-range related to the log Rd,in value (dashed purple lines are indicating the variation 

of the model calculations with regard to parameter, as in Equation (76)). For log [ISA]tot = -3, 

the model underestimates the measured Pu concentrations by about one order of magnitude. 

However, it is important to highlight that the use of lower log Rd,ini (see discussion in Sections 

1.3.4.1 and 3.2.5.3) would improve the agreement of model and experimental data at log 

[ISA] tot = -3, whilst retaining the same agreement for log [ISA] tot = -2. 
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Figure 56. Aqueous total concentrations of Pu in HQ- (blue) or dithionate-buffered (purple 

symbols) cement powder – porewater systems quantified after ultrafiltration method with teq ≤ 

112 d at S:L ratio of 2 gdm-3 and [ISA]tot = 10-3 or 10-2 M and initial Pu concentration of 

log [Pu] in = -8.5. Solid lines correspond to the solubility of PuO2(ncr,hyd) (blue) and to the 

simplified sorption model predictions (purple) using Equation (77) and (78) calculated for 

porewater conditions in the presence of ISA and Ca(II) applying SIT formalism (see text for 

details). The dashed purple lines reflect the uncertainty of log Rd,in. 

 

3.2.5.5 Experiments at 0.2 – 50 gdm-3 S:L ratios 

 Figure 57 shows aqueous total Pu concentrations in centrifuged, HQ-buffered porewater 

solutions at [ISA]tot =10-2 M in contact with the initial cement powder quantified at teq ≤ 112 

days. Data after ultrafiltration as function of S:L ratio = 0.2 – 50 gdm-3 at the total Pu initial 

concentration of log [Pu]in = -5.8. For a better overview, data corresponding to the system 

prepared with the “(Pu + ISA) + cement” experimental addition order are omitted from the 

display as they are all located close to the initially introduced Pu concentration level. The 
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figure also includes the solubility curve (blue solid line) of PuO2(ncr,hyd) under porewater 

conditions in the presence of ISA and Ca(II) in solution including the new cement-ISA 

sorption model, i.e. applying [ISA]eq concentrations (dashed green line) provided by the two-

site Langmuir-isotherms from Equation (19), using the constants from Equation (76) at 

[ISA] tot = 10-2 M with S:L ratios = 0.2 – 50 gdm-3. 

 

 

Figure 57. Aqueous total concentrations of Pu quantified after ultrafiltration in HQ-buffered 

(blue symbols) cement powder – porewater systems with teq ≤ 112 d at [ISA]tot =  

10-2 M in the function of the S:L ratios: 0.2 – 50 gdm-3 with initial Pu concentration of 

log [Pu] in = -5.8. All displayed data are collected in experiments prepared following the “(Pu 

+ cement) + ISA” order. Solid, blue line corresponds to the solubility of PuO2(ncr,hyd) under 

porewater conditions in the presence of ISA and Ca(II) calculated analogously as in Section 

3.1 applying the SIT formalism (see text for details) and using [ISA]eq concentrations (dashed 

green line) accounting the sorption of ligand onto HCP (by Equation (19) with values from 

Equation (76)). 

 

In agreement with the previous findings for sorption experiments at log [Pu]in = -5.8, the 

obtained data related to the present system conducted in the “(Pu + cement) + ISA” 

preparation order indicate [Pu]aq concentrations controlled by the solubility equilibria of a 
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PuO2(am,hyd) solid phase. Additionally, a decreasing trend with time was observed in the 

data set, which has been successfully assigned to the decrease in the equilibrium 

concentrations of the ligand caused by its sorption onto HCP. However, as the changes in 

[ISA] eq is not significant at log [ISA]tot = -2, the consequent effect, i.e. the decreasing ligand 

concentration on the Ca(II)-Pu(IV)-OH-ISA solubility is not pronounced. 

All data lie within the assigned uncertainty range of the solubility model (~ ± 1.0 log [Pu]tot), 

indicating its extended validity-range compared to the originally set limits (with pHm < 12.4). 

 

3.2.5.6 Complementary experiments 

The complementary experiments consisted of two types of investigations: 

 

i. “Undersaturation solubility coupled sorption experiments” (Section 3.2.5.6.1, where 

undersaturation solubility experiments were performed with the previously prepared 

PuO2(ncr,hyd) solid phase equilibrated in HQ-buffered porewater solutions with 

[ISA] tot = 10-5 – 10-2 M. Then coupled with sorption experiments at S:L ratios of ~0.2 – 

50 gdm-3 by using the separated supernatants of the latter experiments), and  

ii.  Desorption experiments (Section 3.2.5.6.2, HQ-buffered systems with S:L ratio = ~0.2 

or 2 gdm-3 and [ISA]tot = 10-3 or 10-2 M at log [Pu]in ~ -6 or -9 using the retrieved 

equilibrated hydrated cement phases of the screening experiments). 

 

The first experimental series was dedicated to validate the applicability of the previously 

established Ca(II)-Pu(IV)-OH-ISA solubility model under the present porewater conditions 

(tackling assumption IV. from Section 3.2.5.3) and to test the sensitivity of the sorption 

process at lower log [Pu]in concentrations, provided by the solubility equilibria of the 

PuO2(ncr,hyd) solid phase. In the course of these experiments, the potential oversaturation of 

Pu in the system is directly excluded. 

The desorption experiments were aimed to the assess the reversibility of the system, i.e. to 

validate the reliability of former results corresponding to systems conducted by following the 

“(Pu + cement) + ISA” experimental preparation order. These experiments are addressing the 

nature of the Pu(IV) uptake process by HCP, testing the reproducibility of the detected 

distribution factors (Rd vs. Kd) and the effect of the potential incorporation of Pu(IV)sorbed 

species into the hosting cement phases (C-S-H phases) with increasing allowed contact time. 

 



 
202 

3.2.5.6.1 Undersaturation solubility coupled sorption experiments 

 Figure 58 shows the total Pu concentrations measured after UF phase separation at teq ≤ 54 

days as function of log [ISA]tot in undersaturation solubility experiments performed with the 

formerly used PuO2(ncr,hyd) solid phase. The figure also includes the solubility curve of 

PuO2(ncr,hyd) under porewater conditions in the presence of ISA and Ca(II) in solution (see 

Section 3.2.5.1 for more details). 

Detected log [Pu]tot values were in good agreement with the predictions of the previously 

established thermodynamic model for the Ca(II)-Pu(IV)-OH-ISA system, indicating its wider 

applicability than originally assigned (pHm < 12.4). 

Despite the slightly overestimated Pu concentrations provided by the model for certain 

conditions, at log [ISA]tot = -3, where results of 7 independent batch experiments are 

displayed together, a large dispersion can be seen in the collected data points. As no definite 

chronological trend was detected within these data, this indicates the high uncertainty for the 

prevailing solubility equilibrium. Deviations observed at log [ISA]tot = -4 and -5 (located 

close to or on the detection limit of ICP-MS in the present case) can be explained by the 

uncertainty of the solubility equilibria under the given condition. In the experiment with the 

lowest ligand concentration applied (log [ISA]tot = -5), Pu total concentrations after teq = 14 

days were quantified at or slightly below log [Pu]tot = -11, showing an unusually large 

deviation from the solubility model. 

Differences between the model calculations and measured [Pu]tot concentrations at 

log [ISA]tot = -2 were already identified in the course of the former undersaturation solubility 

experiments and are clearly confirmed in the present study. A definite explanation for the 

phenomenon cannot be given without further experimental evidences. 

 



 

 
203 

 

Figure 58. Total concentrations of Pu quantified after ultrafiltration in HQ-buffered (blue) 

porewater solutions with teq ≤ 54 d at [ISA]tot = 10-5 – 10-2 M in equilibrium with the formerly 

used PuO2(ncr,hyd) solid phase (without HCP). Solid, blue line corresponds to the solubility 

of PuO2(ncr,hyd) under porewater conditions in the presence of ISA and Ca(II) calculated 

analogously as in Section 3.1 applying SIT formalism (see text for details). 

 

As described before (Section 2.4.7), supernatants were quantified for [Pu]tot concentrations up 

to teq = 54 days, afterwards volumes of 5 cm3 were separated from the PuO2(ncr,hyd) phase 

and used for the coupled sorption experiments. 

[Pu]aq concentrations at teq ≤ 31 d after UF phase separation corresponding to the new sorption 

experiments with [ISA]tot = constant = 10-3 M and S:L ratio = 0.2 – 50 gdm-3 (coupled with 

the undersaturation solubility study) are shown in  Figure 59. The figure also includes the 

solubility curve of a PuO2(ncr,hyd) solid phase in the presence of ISA and Ca(II) ions ([Pu]tot, 

blue solid line). The simplified sorption model predictions, [Pu]aq values under porewater 

conditions in the absence of ISA are displayed as a black solid line, whilst for the presence of 

ISA, it is indicated by a purple solid line. All calculations were performed accounting for the 

sorption of ISA onto HCP by applying [ISA]eq concentrations (shown separately as dashed 

green line) from the two-site Langmuir-isotherm, as in Equation (19) using the constants from 

Equation (76) at [ISA]tot = 10-3 M with S:L ratios = 0.2 – 50 gdm-3. 
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Figure 59. Aqueous total concentrations of Pu quantified after ultrafiltration in HQ-buffered 

(blue symbols) cement powder – porewater systems with teq ≤ 31 d at [ISA]tot = 10-3 M as 

function of the applied S:L ratios: 0.2 – 50 gdm-3 at initial Pu concentration of log [Pu]in = (-

8.5 ± 0.5), as given by the results on the undersaturation solubility experiments. Solid lines 

correspond to: the solubility of PuO2(ncr,hyd) under porewater conditions in the presence of 

ISA and Ca(II) (blue) and to the simplified sorption model predictions for porewater 

conditions in the absence (black) and presence of ISA (purple line). Calculations were 

executed by applying the SIT formalism as described in Sections 3.1 and 3.2.5.3 (see text for 

details) by using [ISA]eq concentrations (dashed blue line) accounting the sorption of ligand 

onto HCP (with Equation (19) with values from Equation (76)). 

 

In the coupled sorption experiments, 21 days after the introduction of the cement phases, all 

measured concentrations showed consistent values with the Ca(II)-Pu(IV)-OH-ISA solubility 

model predictions calculated from [ISA]eq concentrations after ISA sorption onto HCP. This 

observation suggests that even at the low Pu concentrations a similar effect occurs as seen in 

the results of the sorption experiments performed at log [Pu]in = -5.8, where the [Pu]aq 

concentrations did not decrease significantly even after 112 days of equilibration time.  As 
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described before, this effect may be explained by kinetic processes or changes of the cement 

surface properties when ISA is sorbed. Pu might suffer an in-solution stabilization, which will 

result in a further prolonged sorption process in the case of the latter “(Pu + ISA) + cement” 

experiments. Nevertheless, the data set in the present series at S:L ratio = 50 gdm-3 already 

depict a slight concentration decrease by ~ 1 log [Pu]aq unit from teq = 21 d to 31 d, implying 

that at higher S:L ratios the increased availability of the sorption sites on the surface of the 

sorbing phases (with regard to [ISA]tot concentrations) are overcompensating the latter in-

solution stabilization effect. 

 

3.2.5.6.2 Pu desorption experiments 

Prior to the initialization of the desorption experiments, the selected samples (6 batches) taken 

from the screening experiments with S:L ratios of 0.2 – 2.5 gdm-3 and log [Pu]in = -6 or -9, 

were quantified at teq = 167 d for [Pu]aq directly in the supernatant solutions and after UF 

phase separation to ensure steady-state conditions in the systems.  Figure 60 shows sorption 

results of the latter samples at teq = 167 days expressed in the form of log Rd (dm3kg-1) values 

together with the log Rd,in value and its associated uncertainty derived in the cement-Pu 

experiments within the present work (Equation (77)). 

 



 
206 

 

Figure 60.  Distribution ratios (Rd values, in dm3kg-1 units) of Pu quantified at teq = 167 d 

directly in the supernatant solutions (red) or after ultrafiltration phase separation method 

(blue symbols) in HQ-buffered cement powder – porewater systems with S:L ratios of ~0.2 

gdm-3 – ~2 gdm-3, at applied initial Pu concentrations of log [Pu]in = -5.3 (opened) and -8.3 

(filled symbols). The displayed error bars of data points are originating only from the 

analytical uncertainties associated to the quantification of Pu total concentrations after 

ultrafiltration phase separation method: UF or directly in the supernatants of the solutions: 

sn. by SF-ICP-MS technique. Black, solid and dashed lines are corresponding to the 

log Rd,in = (6.3 ± 0.6) value and its uncertainties derived in the present study for the Cement-

Pu system. 

 

In systems with log [Pu]in = -8.3, all newly determined log Rd values using the [Pu]aq 

concentrations quantified after UF phase separation method were in agreement with the 

log Rd,in value of (6.3 ± 0.6), confirming the validity of the initially assigned value for longer 

equilibration times. Data related to S:L ratio = 0.2 gdm-3 were found to be slightly 

underestimated as expected (for explanation see related discussion in Section 3.2.4.2). These 



 

 
207 

data points still fall close to the upper limit of the predicted uncertainty-range. Distribution 

ratios related to [Pu]aq concentrations determined in the supernatants of these experiments are 

also showing a relatively good agreement with the estimates, indicating the lack of a large 

contribution of colloidal Pu(IV) species to the total Pu concentration in the solution. 

In systems with log [Pu]in = -5.3 and S:L ratio = 2 gdm-3, detected [Pu]aq concentrations after 

ultrafiltration were located in the range of the solubility level for the PuO2(am,hyd) phase, in 

agreement with the previous experimental findings for the system. 

As detailed in the related experimental Section (2.4.7), the hydrated cement solid phases of 

the latter samples were separated via centrifugation and the supernatants were replaced by 

identical but ISA-containing porewater solutions with [ISA]tot = 10-3 and 10-2 M.  Figure 61 

shows [Pu]aq concentrations detected after UF phase separation in the time-frame of teq ≤ 

112 days after starting the desorption experiments with log [Pu]in = -5.3 and S:L ratio = 

2 gdm-3 as function of [ISA]tot concentration. The figure also includes the solubility curve of 

PuO2(ncr,hyd) under porewater conditions in the presence of ISA and Ca(II) in solution (see 

Section 3.2.5.1 for more details). 

Similarly as in the Cement-Pu-ISA investigations at S:L ratios of 0.2 and 2 gdm-3 with 

log [Pu]in = -5.3, the analogous desorption experiments conducted in the presence of ISA 

resulted in the “reproduction” of Ca(II)-Pu(IV)-OH-ISA solubility experiments. This is shown 

by the good agreement between the model calculations and the measured values for [Pu]aq 

concentrations in the system. A notably larger discrepancy was observed between the 

predictions and the data collected at log [ISA]tot = -3, but still falling in the assigned 

uncertainty-range of the model (~± 1.0 log [Pu]tot). 
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Figure 61. Aqueous total concentrations of Pu obtained in desorption experiments in HQ-

buffered cement powder – porewater systems with S:L ratio of 2 gdm-3 and the initial Pu 

concentration of log [Pu]in = -5.3 quantified after ultrafiltration phase separation at teq =167 

d (in the absence of ISA in solution, red symbols) and at teq ≤ 112 d with [ISA]tot = 10-3 or 10-2 

M (blue symbols). Solid, blue line corresponds to the solubility of PuO2(ncr,hyd) under 

porewater conditions in the presence of ISA and Ca(II) calculated analogously as in Section 

3.1 applying the SIT formalism (see text for details). 

 

 Figure 62 and  Figure 63 show the results in terms of log Rd values related to the desorption 

experiments with log [Pu]in = -8.3 as function of ISA total concentrations at S:L ratio = 0.2 

and 2 gdm-3, respectively. The [Pu]aq concentrations collected in the presence of ISA were 

determined in ultrafiltrated solutions at teq ≤ 112. The figures also shows log Rd values (and 

associated uncertainties with regard to Equation (77)) predicted by the simplified sorption 

model, expressed in Equation (78) as function of [ISA]tot concentrations for given conditions. 

Further details on the performed calculations are provided in previous sections (e.g. 3.2.5.3). 
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Figure 62. Distribution ratios in desorption experiments (Rd values, in dm3kg-1 units) of Pu 

quantified after ultrafiltration phase separation in HQ-buffered cement powder – porewater 

systems at teq = 167 d in the absence of ISA (blue) and at teq ≤ 112 d in the presence of ISA 

(purple symbols) at S:L ratio = ~0.2 gdm-3 and with the applied initial Pu total concentration 

of log [Pu]in = -8.3. (The displayed error bars are reflecting only the analytical uncertainties 

associated to the quantification of Pu aqueous total concentrations by SF-ICP-MS). Solid, 

and dashed purple lines correspond to log Rd values predicted by the simplified sorption 

model and its associated uncertainty through the variation of the log Rd,in parameter. 

Calculations were executed by applying the SIT formalism as described in Section 3.2.5.3 (see 

text for details) by using [ISA]eq concentrations accounting for the sorption of the ISA ligand 

onto HCP. 
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Figure 63. Distribution ratios in desorption experiments (Rd values, in dm3kg-1 units) of Pu 

quantified after ultrafiltration phase separation method in HQ-buffered cement powder – 

porewater systems at teq = 167 d in the absence of ISA (blue) and at teq ≤ 112 d in the 

presence of ISA (purple symbols) at S:L ratio = ~2 gdm-3 and with the applied initial Pu total 

concentration of log [Pu]in = -8.3. (The displayed error bars are reflecting only the analytical 

uncertainties associated to the quantification of Pu aqueous total concentrations by SF-ICP-

MS). Solid, and dashed purple lines correspond to log Rd values predicted by the simplified 

sorption model and its associated uncertainty through the variation of the log Rd,in parameter. 

Calculations were done by applying the SIT formalism as described in Section 3.2.5.3 (see 

text for details) by using [ISA]eq concentrations accounting the sorption of the ISA ligand onto 

HCP. 

 

One important observation was that the desorption data collected at teq = 5 d time already 

showed steady-state conditions in terms of [Pu]aq concentrations and the derived log Rd values 

compared well to the previously obtained data in “(Pu + cement) + ISA” experiments. The 

latter observation, especially at log [ISA]tot = -2, indicates the high reversibility of Pu(IV) 
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sorption onto the HCP, suggesting that the process is rather a surface reaction (reactions with 

incorporation into crystal structures are mostly significantly slower), i.e. can be apprehended 

as an adsorption process taking place on the surface of the hosting phase (Rd vs. Kd). 

In the course of the present experiments, the simplified sorption model for both S:L ratios at 

0.2 and 2 g⋅dm-3 provided only a moderate accuracy in simulating the detected log Rd values. 

A controversial aspect in both cases is that the distribution ratios show an increase in the data 

set from [ISA]tot = 10-3 to 10-2 M, i.e. the aqueous concentrations of Pu were quantified to be 

lower in systems with the higher ISA total concentration of log [ISA] = -2. This contradiction 

points out the possibility of different prevailing chemical equilibria within the two systems. 

As discussed before, in experiments with log [ISA] = -3, the initially introduced level of Pu 

concentration is close to the expected solubility level of PuO2(am,hyd). A different 

perspective for the occurring problem is visualized when sorption and solubility data are 

shown together in concentration units (log [Pu]aq vs. log [ISA]tot).  Figure 64 a and b display 

the desorption data together with previously shown sorption results (taken from Sections 

3.2.6.1 and 3.2.6.4) obtained at 0.2 and 2 g⋅dm-3 S:L ratios and with the undersaturation 

solubility data (taken from Section 3.2.5.6.1) collected under analogous conditions. 

 Figure 64 demonstrates for both cases with 0.2 and 2 g⋅dm-3 S:L ratios that two phenomena 

might occur at the two different log [ISA]tot concentrations. The substantial overlap between 

the [Pu]aq concentrations collected at log [ISA]tot = -3 in the course the solubility and sorption 

experiments show that under this condition a Pu solubility control in the investigated systems 

cannot be excluded. This effect originates from the high initial Pu total concentration, located 

close to the expected solubility limit of PuO2(ncr,hyd). Conversely at log [ISA]tot = -2, 

solubility data are located above all sorption data as well as above the introduced 

concentration level of Pu in the system, underlining that under this conditions a sorption 

reaction is most likely responsible for the observed Pu solution concentrations. 
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Figure 64. Aqueous total concentrations of Pu in HQ-buffered cement powder – porewater 

systems with teq ≤ 112 d at S:L ratios of ~0.2 (a) and 2 gdm-3 (b) without ISA (only for 

desorption experiments teq = 167 d) or at [ISA]tot = 10-3 or 10-2 M with initial Pu 

concentration of log [Pu]in = -8.3 (desorption experiments) and -8.5 (sorption experiments as 

adapted from Sections 3.2.5.1 and 3.2.5.4. Data collected within sorption experiments are 

displayed with regard to the experimental preparation orders, i.e.: “(Pu + cement) + ISA” 

(closed symbols) or “(Pu + ISA) + cement” (opened symbols). 

a, 

b, 
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3.2.6 Sorption reduction factors in the presence of ISA 

In order to the determine sorption reduction factors for the uptake of Pu(IV) by HCP in the 

presence of ISA at different total concentration-levels of the ligand, selected [Pu]aq data were 

combined. Results of the sorption experiments conducted with S:L ratios = ~2 – 4 g⋅dm-3 at 

various [ISA]tot concentrations (10-5 – 10-2 M) with log [Pu]in = -8.3 (or lower) were serving 

as the basis for the calculation. Considering the former observations and discussions on trends 

of collected data points, the data selection was based on the following criteria: 

- Experiments at log [Pu]in = –5.5 were disregarded in this interpretation because 

they are largely oversaturated with respect to PuO2(am,hyd). All data obtained 

for systems with log [Pu]in = –(8.4 ± 0.6) were taken into account to derive the 

respective Fred values, although, as discussed in previous sections, Pu aqueous 

concentrations in some of these systems might also be controlled by solubility 

equilibria. 

- Narrowing the data set of log [Pu]in ≤ –9 systems, experiments only with S:L ≈ 

2 – 4 g⋅dm-3 were considered to be selected for Fred calculation. The 

argumentation is based on the fact that the obtained results in systems with S:L 

= 0.2 g⋅dm-3 may be affected by systematic errors due to the lower amount of 

cement introduced. 

- Previous sections have shown that the order of addition has an impact on 

sorption (especially in systems with log [ISA]tot = –2). Consequently, two log 

Fred have been calculated corresponding to (i) “(Pu + cement) + ISA”, and (ii) 

“(Pu + ISA) + cement”. The present working hypothesis is that (i) likely 

represents equilibrium and (ii) might be kinetically hindered, but both log Fred 

are made available for the interpretation of the impact of ISA on Pu(IV) uptake 

by HCP. 

Selected data were transformed to sorption reduction factors (Fred) of ISA, as expressed in 

Equation (27) using experimentally determined parameters and the log Rd,in (dm3⋅kg-1) = 

(6.3 ± 0.6) value. The calculated factors are displayed in  Figure 65 together with the single 

experimental data point provided by Baston and co-workers [120] and with model 

calculations reported previously by Bradbury and Sarott [85] applying the chemical model 

provided in the works of Moreton and Greenfield et al. [91-93]. The figure also includes the 
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calculated Fred values predicted by the simplified model (with implemented ISA-sorption). 

Further details on the calculations related to the present work are provided in Section 3.2.5.3. 

It is important to be noted that the plotted data in  Figure 65 are originating from the 2 g⋅dm-3 

S:L series, from the 0.2 – 50 g⋅dm-3 S:L series as well as from the complementary 

experimental series (undersaturation solubility coupled sorption and separate desorption 

experiments). The averaged values for the sorption reduction factors (and associated 

uncertainties) with regard to the experimental preparation order and [ISA]tot concentrations 

are provided in  Table 21. The data in Table 22 correspond to data obtained for the selected 

experimental conditions, i.e. log [Pu]in = –(8.4 ± 0.6). 

 

Table 21. Averaged values and associated uncertainties (bold numbers, taken as three times 

the standard deviation of the depicted values at a certain [ISA]tot in  Figure 65) for the 

sorption reduction factors (Fred) of ISA on the uptake of Pu(IV) by hydrated OPC paste under 

generated porewater conditions (pHc = 12.60, [Ca]tot = 0.02 M) with [ISA]tot = 10-3 and 10-2 

M, log [Pu]in = –(8.4 ± 0.6) and at S:L ratios of ~2 – 4 g⋅dm-3. Equilibrium concentration of 

the ligand was calculated upon the sorption model for the cement-ISA system under 

analogous conditions at S:L ratio = 2 g⋅dm-3. Data of the present work are distinguished with 

regard to the applied experimental preparation order. Estimates of the present study are 

calculated upon the simplified sorption model (see Section 3.2.5.3 for details). Reference 

values (considered to be valid under analogous conditions to the p.w.) are adapted from 

elsewhere as indicated. 

log Fred,av ± 3·stand.dev. (p.w.) log Fred (ref.) 

log [ISA] tot log [ISA]eq 
“(Pu + cement) + 

ISA” 
“(Pu + ISA) + 

cement” Th(IV)   Pu(IV)  

-2 -2.01 3.0 ± 0.4 (2.7*) 4.4 ± 0.7 4a 6c 

-3 -3.12 3.3 ± 0.4 (1.6*) 4.6 ± 0.6 2a,b 4.3c / 3d 

-4 -4.25 (0.6*) - 0a,b 2.7c 

-5 -5.28 (0.1*) - 0a,b 1.3c 

* estimated values provided by the simplified sorption model derived in the present work 
a, adapted from Ochs et al. [122] 
b, adapted from Wieland et al. [13] 
c, calculated values as provided by Bradbury and Sarott [85] 
d, suggested by the review work of Wang et al. [109] 
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Figure 65. Sorption reduction factors (Fred) of ISA on the uptake of Pu(IV) by hydrated OPC 

paste under porewater conditions (pHc = 12.60, [Ca]tot = 0.02 M). Displayed values related 

to the present study (blue symbols) are derived via Equation (27) using log Rd,in (dm3⋅kg-1) = 

(6.3 ± 0.6) from the results obtained in systems with S:L ratios of ~2 – 4 g⋅dm-3 at [ISA]tot = 

10-3 or 10-2 M, where log [Pu]in = -(8.4 ± 0.6). The opened and closed symbols are denoting 

the preparation order of the experiments: “(Pu + ISA) + cement” and “(Pu + cement) + 

ISA”, respectively. Literature values are taken from the work of Baston et al. [120] (green 

symbol) and from model calculations provided elsewhere [85] (orange solid line). Solid 

purple line corresponds to Fred values calculated using the simplified sorption model through 

Equation (77) and (78) for porewater conditions in the presence of ISA and Ca(II) applying 

the SIT formalism (see text for further details). 

 

As discussed before, an important parameter affecting the values for Fred at a certain [ISA]tot 

concentration (for S:L ratio = 2 g·dm–3) was found to be the applied preparation order of the 

experiments. In systems where Pu was first put in contact with ISA within the porewater and 
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the cement phase was introduced later, [Pu]aq concentrations were close to the initially 

introduced Pu concentration level, indicating an additional in-solution stabilization (sorption 

hindering) and a consequent potential kinetic effect on the system. As a result, Fred values 

related to the latter experiments might be highly overestimated, i.e. not representative of the 

prevailing adsorption equilibria of Pu(IV)aq species onto HCP in the presence of ISA. 

 

In view of the available Fred values as function of log [ISA]tot, the following discussion arises: 

Fred values derived for [ISA]tot = 10-3 M: 

- The only available experimental Fred value in the literature (for [ISA]tot = 2·10-3 

M, obtained at pH ~ 12.4, using OPC based, hydrated concrete and mortar 

powders with a S:L ratio of 20 g⋅dm-3) is reported by Baston et al. in [120]. 

- The latter value is found to be in good agreement with the results of the “(Pu + 

ISA) + cement” experiments. The closer inspection of their experimental 

details reveals that their investigations were indeed conducted in a similar way 

as in the course of the “(Pu + ISA) + cement” system of the present study. 

Consequently, the relatively high Fred value reported could be considered to be 

caused by the kinetic effect of ISA and it is in line with the observation made 

in the present work as well. 

- The observed differences between the simplified model calculations and 

determined Fred values at [ISA]tot = 10-3 M can be attributed superposition of 

three separate phenomena: (i) the potential control of Pu aqueous 

concentrations by solubility phenomena (see  Figure 64 for interpretation), (ii) 

changes in the physiochemical properties of the hydrated cement surface 

imposed by the excessive surface-coverage of HCP by the ligand and (iii) 

kinetical, in-solution stabilization effect of ISA on Pu aqueous species. 

 

Fred values derived for [ISA]tot = 10-2 M: 

- The “most representative” log Fred values for the impact of ISA might be 

obtained experimentally at log [ISA]tot = –2 in the present work, as calculated 

from sorption and desorption experiments. 

- As the Ca(II)-Pu(IV)-OH-ISA solubility of Pu(IV) is higher than [Pu]in, the 

potential precipitation of PuO2(am, hyd) controling Pu(IV)aq is more unlikely 
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and hence, sorption related processes can be exclusively responsible for the 

decrease in [Pu]aq concentrations in solution. 

- The experimental value corresponding to the “(Pu + cement) + ISA” system 

was found to agree well with the log Fred value (2.7) calculated using the 

simplified model described in Section 3.2.5.3. 

- Quantified Fred values in the “(Pu + ISA) + cement” system show large 

deviations from the results of the “(Pu + cement) + ISA” system and with the 

present model calculations as well. At the current stage of the investigation, the 

nature of the effect is not clear. Fred values in the “(Pu + ISA) + cement” 

system are nevertheless reported as a potential unfavorable situation.  

- Reference values available in the literature for log Fred of An(IV) in the 

presence of log [ISA]tot = –2 (log Fred = 4 in [122]; log Fred = 6 in [85]) are 

clearly higher than the proposed data obtained in the present work. 

- The predictions provided by Bradbury and Sarott in their review work [85] for 

Fred values valid under analogous conditions (cementitious environment, pH 

~12.5, Stage II of the cement degradation process) are calculated using the 

previously reported chemical model by Moreton and co-workers [93]. 

However, the deviation of ~+1.5 log-units from the new experimental Fred 

values observed at log [ISA]tot = -2 reported in this work might at least partly 

be the result of incorrect assumptions related to the aqueous Pu speciation.   

- On the basis of chemical analogy and a more extensive pool of available 

experimental work, previous review studies [13, 122] proposed the general use 

of the ISA sorption reduction factors for Th(IV) to describe cement-An(IV)-

ISA systems (listed in  Table 21). The use of Th(IV) as analogue for Pu(IV) 

results in significant errors regarding the prediction of solubility / speciation of 

Pu(IV) as it was demonstrated in this work. Since Th(IV) and Pu(IV) 

complexes with ISA show differing stoichiometries and stability, exploiting 

this analogy may lead to significant errors in the interpretation of sorption data. 

 

Results of the present work provide important insight into the multiple parameter-dependence 

of the system. A better understanding on the complex Cement-Pu-ISA system has been 

achieved through the more precise chemical knowledge and accurate control of prevailing 

redox conditions, the correct assessment of solution speciation as well as by accounting for 

the sorption processes prevailing in the individual, binary systems. 



 
218 

4 Summary and conclusions 

Within this PhD thesis four fundamental issues affecting the behavior of plutonium in the 

context of low- and intermediate-level radioactive waste disposal were successfully 

addressed: 

 

i. Redox behavior of Pu in alkaline, reducing aquatic systems,  

ii. Solubility, redox behavior and complexation of Pu: presence of ISA, absence of Ca,  

iii.  Solubility, redox behavior and complexation of Pu: presence of ISA, presence of Ca,  

iv. Impact of ISA on the sorption of Pu onto cementitious materials. 

 

These four processes have been comprehensively investigated in experiments under different 

well-controlled redox conditions, using a systematic variation of pHm, ISA and Ca(II) 

concentrations, and in sorption experiments, considering key parameters such as S:L ratio or 

the order of addition of the components. The results are quantified within the concepts of 

equilibrium thermodynamics of aqueous systems, and provide key input for the quantitative 

interpretation of the uptake of Pu by cement in the presence of ISA. This significantly 

contributes to improved safety analysis for related nuclear waste disposal scenarios. The main 

achievements of this study can be summarized as follows: 

 

1. Redox behavior of Pu in alkaline, reducing aquatic systems 

The solubility of the Pu(IV)O2(ncr,hyd) phase used in this study under alkaline, moderately 

reducing conditions (imposed by HQ) is very low (~10–11 m) and pHm-independent. This is 

in good agreement with the solubility of Pu(IV) calculated using thermodynamic data 

currently selected in the NEA-TDB, and with the solubility product calculated for the same 

solid phase using solubility data obtained under acidic conditions. In the very reducing 

conditions defined by Sn(II) and pHm > 9, the solubility of Pu remains low (~10–11 m) and 

pHm-independent. In-situ XRD, XAFS and XPS indicate that Pu(IV)O2(ncr,hyd) is the 

solid phase controlling the solubility of Pu in HQ-system. On the other hand, XANES 

confirms a significant contribution of Pu(III) (~30 ± 5 n%) in the solid phases controlling 

the solubility of Pu in Sn(II) systems. This observation can be explained with the formation 

of substoichiometric PuO2–x(ncr,hyd) or by the transient coexistence of PuO2(ncr,hyd) and 

Pu(OH)3(am) solid phases. The redox and solubility data obtained in this first part of the 

PhD thesis add important input to the discussion of a current “hot-topic” in fundamental 
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plutonium chemistry and also provides a sound baseline for the subsequent quantitative 

experimental evaluation of the impact of ISA on Pu solubility under analogous chemical 

conditions. 

 

2. Solubility, redox behavior and complexation of Pu: presence of ISA, absence of Ca 

The solubility of Pu in the presence of ISA shows a systematic increase compared to the 

ligand-free case discussed above, thus supporting the formation of ternary complexes Pu–

OH–ISA. Long-term experiments on the chemical stability of ISA were conducted in 

alkaline reducing systems in the absence of Pu, confirming that the ISA ligand remains 

stable within the time-frame of the solubility studies. Solid phase characterization confirms 

that, in the presence of ISA, PuO2(ncr,hyd) is the solid phase controlling the solubility in 

HQ and Sn(II) systems. This reflects the potential impact of ISA on the redox chemistry of 

Pu under alkaline reducing conditions. 

Based on slope analysis and statistical evaluation of the solubility data, three Pu–OH–ISA 

complexes were determined to be present under the conditions of interest, namely: 

Pu(IV)(OH)3ISA–H
–, Pu(IV)(OH)3ISA–2H

2– and Pu(III)(OH)ISA–H(aq). Stoichiometries and 

structures of these complexes were optimized via quantum chemical calculations. In mildly 

reducing environment (HQ-systems), Pu(IV)-OH-ISA complexes dominate the aqueous 

speciation of Pu. On the other hand, in strongly reducing solutions (Sn(II)-systems) at pHm 

< 11.5, solubility is controlled by the reductive dissolution of Pu(IV)O2(ncr,hyd) and 

consequent formation of the complex Pu(III)(OH)ISA–H(aq). Above this pHm, the 

Pu(IV)(OH)3ISA–2H
2– complex becomes predominant as in HQ-systems. Based on the 

experimental and theoretical information, a comprehensive and robust thermodynamic 

model for the system Pu(III/IV)-OH-ISA was established using the SIT formalism. The 

new thermodynamic model derived in this work is valid for a wide-range of pHm, pe and 

m(ISA)tot conditions. 

Further experimental observations detected gradually increasing fractions of colloidal 

Pu(IV) species with increasing m(ISA)tot in solution (for both redox-buffered cases), 

indicating that “Pu–ISA colloids” importantly contribute to the total Pu concentration in 

Ca-free solution at high pH values (pHm = 12). The formation of such colloids was not 

parametrized in the thermodynamic model derived for the system Pu(III/IV)-OH-ISA, but 

their contribution must be accounted for to provide realistic upper limit concentrations of 

Pu in the presence of ISA and absence of Ca(II). 
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3. Solubility, redox behavior and complexation of Pu: presence of ISA, presence of Ca 

Analogous Pu solubility investigations performed in the presence of Ca(II) and ISA 

unequivocally confirm the formation of quaternary Ca(II)-Pu(IV)-OH-ISA species in 

addition to the ternary complexes identified under absence of Ca. No direct evidence on 

the formation of analogous Pu(III) quaternary complexes was observed. Slope analysis of 

solubility data in combination with solid phase characterization indicate the formation of 

the complexes Ca(II)Pu(IV)(OH)3ISA–H
+ and Ca(II)Pu(IV)(OH)3ISA–2H

0(aq), which 

prevail below and above pHm ≈ 11, respectively. Chemical and thermodynamic models 

derived for the system Ca2+–Pu4+–OH––Cl––ISA––H2O(l) describe the experimental results 

obtained within this study, although relatively large deviations were observed for the 

highest pHm and ISA concentration. Under these conditions, the formation of a yet 

undefined quaternary solubility controlling phase Ca(II)–Pu(IV)–OH–ISA(s) is suspected. 

It is also of high importance, that the formerly identified fractions of “Pu–ISA colloids” in 

the supernatants of Ca-free systems at pHm = 12 are clearly absent in the studies where 

Ca(II) ions are present in solution. Although the exact mechanism leading to this 

phenomenon is not resolved, it points out the important role of Ca(II) in the destabilization 

of colloids as previously described for clay systems. 

 

4. Impact of ISA on the sorption of Pu onto cementitious materials 

Plutonium is sorbing strongly on cement under reducing conditions and absence of ISA. 

Log Rd values determined in the present work are in good agreement with data available in 

the literature for An(IV) analogs. Sorption experiments conducted under comparable 

chemical conditions but absence of Pu indicate that ISA sorbs significantly on cement in 

the degradation stage II. A two-site Langmuir-isotherm was used to fit the experimental 

data of ISA sorption obtained in this work. This isotherm provides an empirical tool to 

evaluate the concentration of ISA remaining in solution after sorption. 

Solubility experiments conducted with PuO2(ncr,hyd) using the porewater in equilibrium 

with the investigated cement have been conducted for different ISA concentrations. The 

results obtained provide upper concentration limits for Pu in contact with cement. 

All sorption experiments conducted in the presence of ISA with log [Pu]in = –5.5 are likely 

to be solubility controlled and have therefore been disregarded for the interpretation of 

sorption phenomena. Accordingly, the main conclusions of this chapter are derived from 

sorption experiments with log [Pu]in = –8.5. Although some systems at this [Pu]in might be 

as well solubility controlled (especially at log [ISA] = –3), such concentration is realistic 



 

 
221 

value for potential L/ILW repositories. An important feature observed under these 

conditions is that the order of addition of the components (Pu / ISA / cement) appears to 

have a relevant impact on Pu sorption, especially at [ISA] tot = 10-2 M. In the latter systems, 

the sequence “(Pu + cement) + ISA” shows log Rd values ≈ 1.5 log-units greater (or log 

Fred values 1.5 log-units lower) than the sequence “(Pu + ISA) + cement”. 

A simplified, quantitative model has been derived and compared to experimental sorption 

data obtained in this PhD thesis. The model considers log Rd,in as determined 

experimentally in this work for Pu sorption in the absence of ISA, and assumes a decreased 

sorption caused only by formation of dissolved Ca(II)–Pu(IV)–OH–ISA complexes. 

Thermodynamic data derived in this PhD thesis are used to calculate the concentrations of 

the complexes Ca(II)–Pu(IV)–OH–ISA forming in solution. 

 

The outcome of sorption experiments conducted with log [Pu]in = –8.5 in the presence of 

ISA defines two different cases: 

 

- Case I, showing the strongest Pu sorption. This case has been observed only in 

desorption experiments and sorption experiments following the sequence “(Cement + 

Pu) + ISA”. Data in Case I can be explained approximately by the simplified model, 

especially at log [ISA]tot = –2. 

- Case II. This case corresponds to some sorption experiments performed following the 

order “(Pu + ISA) + Cement”. Results in Case II show higher Pu concentrations in 

solution, and accordingly lower Rd and higher Fred. The hypothesis proposed to explain 

these results refers to a strong kinetic stabilization of aqueous Pu species in solution 

and/or the substantial coverage of the cement surface by ISA, which significantly 

affects the properties of this surface and accordingly impacts Pu sorption at least 

temporarily.  

 

The conclusions summarized above highlight that solubility phenomena likely play a role 

in controlling the concentration of Pu for several of the investigated systems in the 

presence of cement. Further experiments with lower Pu concentrations (possibly using 

shorter-lived 238Pu or 239Pu isotopes) could help in providing a more insightful mechanistic 

view on the sorption phenomena controlling Pu retention / mobility in cementitious 

systems. 
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This extensive experimental work reflects the high complexity of the ternary system Pu–

ISA–cement and clearly demonstrates the key impact of ISA on Pu retention on cement 

under reducing conditions. The results and conclusions summarized here represent a 

reasonable empirical basis to quantitatively assess the impact of ISA on the sorption of Pu, 

but so far cannot provide a final mechanistic insight on the uptake process itself. 
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6 Appendix 

 

6.1 Auxiliary thermodynamic data on Pu aqueous species and solid 
compounds 

 
Table A1. Thermodynamic data, used for the equilibrium calculations of Pu. 

Reaction log K° Reference 

Redox processes   

Pu3+  
↔ Pu4+ + e- –(17.69 ±0.04) [5, 9] 

Pu3+ + 2 H2O(l) ↔ PuO2(am,hyd)+ 4 H+ + e- –(15.36 ± 0.52) [5, 9] 

Pu4+ + 2 H2O(l) ↔ PuO2
+ + 4 H+ + e– –(17.45 ± 0.69) [5, 9] 

PuO2
+ 

↔ PuO2
2++ e– –(15.82 ± 0.09) [5, 9] 

PuO2(am,hyd) ↔PuO2
+ + e– –(19.78 ± 0.09) [5, 9] 

Solubility and hydrolysis of Pu(III)   

Pu(OH)3(am) ↔ Pu3+ + 3 OH– –(26.2 ± 1.5)a) [9] 

Pu3+ + OH– 
↔ Pu(OH)2+ (7.1 ± 0.3)b) [5, 9] 

Pu3+ + 2 OH– 
↔ Pu(OH)2

+ (12.9 ± 0.7)b) [5, 9] 

Pu3+ + 3 OH– 
↔ Pu(OH)3

0(aq) (15.8 ± 0.5)b) [5, 9] 

Solubility and hydrolysis of Pu(IV)   

PuO2(am, hyd) ↔ Pu4+ + 4 OH– –(58.33 ± 0.52) [5, 9] 

PuO2(cry) ↔ Pu4+ + 4 OH– –(64.03 ± 0.51) [5, 9] 

Pu4+ + OH– 
↔ Pu(OH)3+ (14.6 ± 0.2) [5, 9] 

Pu4+ + 2 OH– 
↔ Pu(OH)2

2+ (28.6 ± 0.3) [5, 9] 

Pu4+ + 3 OH– 
↔ Pu(OH)3

+ (39.7 ± 0.4) [5, 9] 

Pu4+ + 4 OH– 
↔ Pu(OH)4

0(aq)  (47.5 ± 0.5) [5, 9] 

Solubility and hydrolysis of Pu(V)   

PuO2OH(am) ↔ PuO2
+ + OH– –(9.0 ± 0.5) [5, 9] 

PuO2.5(s,hyd) ↔ PuO2
+ + OH– –(14.0 ± 0.5) [5, 9] 

PuO2
+ + OH– 

↔ PuO2OH0(aq) (2.7 ± 0.7)c) [5, 9] 

PuO2
+ + 2 OH– 

↔ PuO2(OH)2
– (4.4 ± 0.5)c) [5, 9] 

   

Table continues on next page   

   



 
236 

Solubility and hydrolysis of Pu(VI)   

PuO2(OH)2·H2O(s) ↔ PuO2
2++ 2 OH–+ H2O(l) –(22.5 ± 1.0) [5, 9] 

PuO2
2+ + OH– 

↔ PuO2(OH)+   (8.5 ± 0.5) [5, 9] 

PuO2
2+ + 2 OH– 

↔ PuO2(OH)2
0(aq)   (14.8 ± 1.5) [5, 9] 

PuO2
2+ + 3 OH– 

↔ PuO2(OH)3
–   (21.7 ± 0.4) [5, 9] 

2 PuO2
2+ + 2 OH– 

↔ (PuO2)2(OH)2
2+   (20.5 ± 1.0) [5, 9] 

a) value is originally reported in [30], but with an assigned uncertainty of ± 0.8 in log-units 
b) in analogy with Am(III) 
c) in analogy with Np(V) 

 

Table A2. SIT ion interaction coefficients for Pu aqueous species in NaCl solutions. 

species i species j εij [mol.kg-1] Reference 

H+ Cl– (0.12 ± 0.01) [9] 
Na+ Cl– (0.03 ± 0.01) [9] 
Na+ OH– (0.04 ± 0.01) [9] 
Pu3+ Cl– (0.23 ± 0.02) [174] 
Pu(OH)2+ Cl– –(0.04 ± 0.07) [174] 
Pu(OH)2

+ Cl– –(0.06 ± 0.08) [174] 
Pu(OH)3

0(aq) Cl– 0.00 a)  
Pu(OH)3

0(aq) Na+ –(0.17 ± 0.10) [174] 
Pu4+ Cl– (0.4 ± 0.1) [173] 
PuOH3+ Cl– (0.2 ± 0.1) [173] 
Pu(OH)2

2+ Cl– (0.1 ± 0.1) [173] 
Pu(OH)3

+ Cl– (0.05 ± 0.1) [173] 
Pu(OH)4

0(aq) Na+/Cl– 0.00 a)  
PuO2

+ Cl– -(0.09 ± 0.05)b) [9] 
PuO2OH(aq) Na+/Cl– 0.00 a)  
PuO2(OH)2

– Na+ –(0.01 ± 0.07)b) [9] 
PuO2

2+ Cl– (0.21 ± 0.02)c) [9] 
PuO2OH+ Cl– (0.05 ± 0.1)c) [149] 
PuO2(OH)2(aq) Na+/Cl– 0.00 a)  
PuO2(OH)3

– Na+ –(0.09 ± 0.05)d) [175] 
(PuO2)2(OH)2

2+ Cl– (0.69 ± 0.07)c) [9] 

a) by definition in SIT formalism 
b) in analogy with Np(V) 
c) in analogy with U(VI) 
d) in analogy with Np(VI) 
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6.2 Synthesis, characterization and stability of NaISA(s) 

The Na-salt of ISA was synthesized from commercial Ca(ISA)2(s) using a cation exchange 

resin (Chelex® 100, Na-form). The complete description of the method is reported elsewhere 

[11, 86, 107, 201]. Briefly, 2 g of commercial Ca(ISA)2(s) were suspended in 500 mL of 

Milli-Q water in the presence of 25 g of resin. The mixture was agitated with a magnetic 

stirrer for approximately 1 hour, and then filtered with filter paper (Whatman blue ribbon, < 2 

µm). The filtrate was evaporated on a heating plate at T = 60 °C until a brown viscous liquid 

was obtained. The remaining water-content was removed using water-free diethyl-ether. The 

combination of repeated addition/evaporation of diethyl ether with a cooling step (9 °C, in 

laboratory fridge) resulted in a pale yellow NaISA(s) solid phase. The yield of the synthetis 

ranged between 50 and 90 n% (average yield = 68 n%). Both commercial Ca(ISA)2(s) and 

synthesized NaISA(s) salts were thoroughly characterized using several techniques: 1H and 
13C nuclear magnetic resonance spectroscopy (NMR, Bruker Avance III 400 spectrometer, 

operating at 400.18 MHz for 1H and 100.63 MHz for 13C), X-ray powder diffraction (XRD, 

D8 Advance diffractometer, Bruker AXS), quantitative and semi-quantitative chemical 

analysis (by inductively coupled plasma–optical emission spectroscopy: ICP–OES, Optima 

8300 DV, Perkin Elmer or standard inductively coupled plasma–mass spectroscopy: ICP–MS, 

X-Series II, Thermo Scientific), total organic and inorganic carbon measurements (TOC and 

TIC, respectively, Shimadzu TOC5000) and ion chromatography (IC, ICS-3000 equipped 

with an AS9HC column, Thermo Scientific). 

Figure A1 and Figure A2 show the 1H and 13C NMR spectra, respectively of commercial 

Ca(ISA)2(s) and NaISA(s) synthesized in the present work (dissolved in D2O). All main peaks 

observed in both, the 1H and the 13C NMR spectra can be unequivocally assigned to the H- 

and C- atoms in the ISA molecule [202]. XRD pattern collected for commercial Ca(ISA)2(s) 

were found to be in good agreement with data previously reported by Rai and co-workers [68] 

and furthermore by the comparison with the reference patterns [203] of lactose hydrate and 

calcite, presence of these phases were excluded above the detection limit (DL, ~10 w%) of the 

technique (see Figure A3). IC results (not shown) clearly disregarded the presence (above the 

DL, ~10-4 – 10-5 M of the technique) of chloride, bromide, fluoride, nitrate, phosphate and 

sulfate in the analyzed commercial Ca(ISA)2(s) and synthetic NaISA(s). The combination of 

quantitative chemical analyses, TIC and TOC measurements showed an excess of Na and Ca 

with respect to ISA, which was associated to a large impurity of carbonate. With the aim of 

obtaining a carbonate-free NaISA stock solution, the synthetic NaISA(s) was dissolved in 

Milli–Q water and acidified to pHm ≈ 3 with 1 M HCl. The solution was then heated to T = 80 
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°C (in order to avoid the potential decomposition of the ligand [78]) for 3 hours with a 

continuous purge of Ar gas to facilitate the CO2(g) degassing. The resulting solution was 

transferred to Ar atmosphere whilst still hot. The stock was allowed to cool down, and was 

titrated slowly with 1 M carbonate-free NaOH solution to obtain a weakly alkaline solution 

(pHm ≈ 9). The final stock solution was characterized as (0.16 ± 0.02) M NaISA with pHm = 

8.9. Because of the titration steps required to remove carbonate impurities, the stock solution 

contained an excess of Na+ in the form of 0.18 M NaCl. Total carbonate content in the NaISA 

stock solution was quantified as < 3·10–4 M (DL of TIC considering the dilution factors in the 

measurements). Subsequent 1H and 13C NMR analysis confirmed the presence of only ISA in 

the system. The well-characterized NaISA stock solution was stored in a sealed glass 

container under Ar atmosphere and used in the preparation of all samples involving the use of 

ISA. 

 

 
Figure A1. 1H NMR spectra of commercial Ca(ISA)2 (bottom, red spectrum) and NaISA 

synthesized in the present work (black spectrum, top), at m(ISA)tot = 0.01 m in D2O. 
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Figure A2. Proton-decoupled 13C direct excitation NMR spectra of commercial Ca(ISA)2 

(bottom, red spectrum) and NaISA synthesized in the present work (black spectrum, top), at 

m(ISA)tot = 0.01 m in D2O. 

 

 

Figure A3. XRD patterns collected in the present work for commercial Ca(ISA)2(s). 

Reference data reported for Ca(ISA)2(s) [68], calcite (PDF 86-0174) and lactose hydrate 

(PDF 27-1947) are appended for comparison. 
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6.3 Stability of ISA under reducing, alkaline conditions 

The stability of ISA under alkaline reducing conditions was also investigated in a series of 

batch experiments in the absence of Pu. A constant ISA total concentration of 0.01 M was 

maintined at I = 0.10 M (NaCl). Reducing conditions were fixed with 2 mM or 10 mM HQ, 

Sn(II) or S2O4
2- at pHm = 9 (buffered by CHES) or 12. Two additional samples were prepared 

with the same matrix compositions (pHc, I, [ISA] tot) but in the absence of reducing chemicals. 

Although not used as reducing agent in the solubility experiments with Pu, Na2S2O4 was also 

included in this series of experiments to evaluate the possible impact of Sn(II) on the 

speciation and chemical behavior of ISA. The reducing capacity of Sn(II) (pe + pHm ≈ 1 – 2) 

and Na2S2O4 (pe + pHm ≈ 0 – 1) are observed to be similar. In the course of 5 months, pHm 

and Eh values of the solutions were monitored, and aliquots of supernatants were taken for 1H 

and 13C NMR measurements. 

Within the investigated time-frame, all NMR spectra (not shown) remained identical (as the 

original ones collected for the stock solution), thus, supporting the stability of ISA under 

alkaline and reducing conditions. To assess the possibility of long-term degradation processes, 

the experiments are still on-going. Nevertheless, after appr. 2 years of allowed equilibration 

time, results confirm the prominent stability of ISA (even well-beyond the timeframe of the 

solubility experiments with Pu). 

The same set of samples were also serving as subjects to assess the role of Sn(II)–ISA 

complexation. Visible features, such as chemical-shifts, intensities of 1H and 13C NMR signals 

(associated to ISA) in the spectra were obtained to be virtually the same for the cases of 

absence and presence of Sn(II). This observation does not disregard the presence of Sn(II)–

ISA complexes (if yes, only minor), but it clearly confirms that ISA exists predominantly in 

the free ligand form within the conditions of the solubility study consucted in the present 

work. 
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6.4 Pu(VI) stock solution 

The UV-VIS-NIR spectra of the synthetized Pu(VI) stock solution at 1 day after the complete 

dissolution of the original Na2Pu2O7.H2O(am) solid phase (before the initiation of sorption 

experiments) and at 14 months (after the finalization of all sorption experiments) are shown 

in  Figure 66. Since the most intensive absorption-line corresponding to Pu(VI)aq species at λ = 

~832 nm (with a molar extinction coefficient of ε = 555 dm3mol-1cm-1) [204] is not fully 

depicted, the display-range of the spectral window has been re-adjusted for a better overview. 

All features of the initially collected spectra perfectly match the absorption spectra of the 

PuO2
2+(aq) ion in HClO4 solution reported by Cohen et al. [204], indicating the predominance 

of Pu(VI) in the stock solution. Applying the Lambert-Beer law on the detected absorption 

value at λ = ~953 nm by using ε = 24 dm3mol-1cm-1 [204], the calculated concentration of 

Pu(VI)aq with a value of [Pu(VI)aq] = 0.011 M is found to be in good agreement with the 

quantified total Pu concentration of [Pu]tot = (0.0116 ± 0.0001) by SF-/ICP-MS techniques. 

The spectra recorded on the same stock solution after the finalization of all sorption 

experiments (14 months) clearly indicates the presence of Pu(IV)aq ions besides Pu(VI)aq. 

Accounting for the presence of Pu(IV)aq ion on the subtracted spectra (red curve in  Figure 66) 

using the absorption value at λ = 665 nm and the ε = 31 dm3mol-1cm-1 [204], a Pu(IV) total 

concentration of [Pu(IV)aq] = 2·10-3 M can be determined, which, in combination with the 

quantifiable Pu(VI)aq-content (at λ = 953 nm with ε = 24 dm3mol-1cm-1) results in a total 

concentration of Pu identical to the initial value: [Pu]tot = (0.0116 ± 0.0001) M. These results 

show the slow reduction of Pu(VI)aq within the time-frame, resulting in 20 mol% contribution 

of Pu(IV)aq in the stock solution after 14 months. Pu(VI)aq is expected to be quickly reduced 

to Pu(III/IV)aq in the presence of reducing agents such as HQ, Sn(II) or dithionate within the 

supernatant solution after the introduction to the system. The UV-Vis-NIR absorption spectra 

(not shown) of the stock solution collected during and directly after the preparation of all Pu 

sorption batch experiments, showed the only presence of Pu(VI)aq in solution, indicating the 

constant, well-defined composition of the stock solution during the preparation procedure. 
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Figure 66.  Background-corrected UV-VIS-NIR spectra of the synthetized Pu(VI) stock 

solution (quantified by SF-/ICP-MS techniques as [Pu] tot = (0.0116 ± 0.0001) M at pH = 0.8 

in 0.075 M NaCl media) collected 1 day (blue curve) and 14 months (green curve) after 

preparation. The red curve depicts the subtraction result of the latter two spectra normalized 

to the concentration of the Pu(VI)aq ion within the two sample, using the absorption values at 

λ = 953 nm with ε = 24 dm3mol-1cm-1 [204]. 
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6.5 Characterization of the initial cement powder 

 Figure 67 shows the background-subtracted XRD pattern of the initial cement powder, 

together with the identified major and minor phases as adapted from JCPDS database [136]. 

The collected diffractogram on the powdered material indicates the presence of two major 

phases: C-S-H phases with highly amorphous character (causing an intensity-increase in 

baseline level) and the crystalline Portlandite (PDF 04-0733). Calcite was found to be not 

highly abundant in the sample, however its presence with minor contribution (~10 %) can be 

unequivocally underlined. The lack of reflections associated to non-hydrated clinker 

components (such as Alite PDF 85-1378 and Belite PDF 09-0351) indicates the fully hydrated 

state of the solid specimen (and the generated powder as well). As certain low-intensity 

reflections may also indicate the presence of other minor phases, such as Ettringite (AFt) or 

calcium-aluminoferrite (Brownmillerite), an unambiguous identification of the phases was not 

possible due to low data quality (even within the extended data acquisition time of > 40 

hours). 

TG-DSC curves collected on the initial cement powder are displayed in  Figure 68. The 

weight-loss of the material within the temperature range 0 – 300 °C can be partly attributed to 

the loss of surface-bound water, dehydration reactions of C-S-H phases and also the 

dehydration and dehydroxylation processes of Ettringite [205]. The relatively small 

endothermic peak at 392 °C possibly corresponds to the water-loss of a hydrated Fe2O3 solid 

solution, originally forming through the hydration process of calcium-aluminoferrite [206]. 

The second major peak observed at ~494 °C can be assigned to the dehydroxylation reaction 

of Ca(OH)2(cr). Given that the decomposition reaction of Portlandite is a well-defined, 

distinct chemical reaction, the weight of the evaporated water can be used to calculate the 

amount of Ca(OH)2(cr) present in the sample. As the total weight-loss until 600 °C (–26.55 

w/w%) provides the anhydrous weight of the cement powder, the –5.75 w/w% weight-loss 

determined for the dehydroxylation reaction gives a value of 32.2 w/w% Portlandite with 

regard to the anhydrous weight of the original material. This value is obviously highly 

overestimated since it is referred to the “dry” weight of the powder, nevertheless, it can be 

used as a standardized value for comparison purposes. 

 



 
244 

 

Figure 67. XRD pattern collected for the initial cement powder generated in the present 

work. Reference data reported for Portlandite: Ca(OH)2(cr) (PDF 04-0733), calcite: 

CaCO3(cr) (PDF 86-0174), Ettringite (syn.): Ca6Al2(SO4)3(OH)12.26H2O (PDF 37-1476) and 

calcium-aluminoferrite (Brownmillerite): Ca2(Al,Fe)2O5 (PDF 30-0226) are appended for 

comparison. 

 
As the weight-loss observed at a higher temperature-range (700 – 720 °C) is strictly related to 

the decarbonation reaction of the calcite present in the material, the mass of CaCO3(cr) can be 

determined via the measured generation of CO2(g). With regard to the anhydrous weight of 

the cement powder, calcite was found to be present with ~3 w/w% of the initial material, 

indicating a slightly lower contribution to the hydrated cement phase than shown by XRD. It 

is of note as well, that these values have rather high uncertainties (~5 – 10 w/w%), generally 

associated to the heterogeneity, the small total amount of the analyte and also the 

deconvolution procedure of TGA curves. 

The last clearly distinguishable feature (exothermic reaction) in the TGA curve at around 

810 °C corresponds to the decomposition (dehydroxylation) of C-S-H phases to wollastonite 

(CaSiO3) [205]. 
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Figure 68. TG-DSC data recorded on the initial cement powder: differential scanning 

calorimetry (DSC) signal (blue curve) as specific heat-flow (mW·mg-1) and loss of sample 

mass (green curve) in normalized weight-percentage (w%) unit. 

 

The calculated chemical composition of the cement powder (with regard to the oxide-contents 

normalized to the anhydrous weight of the material) obtained after the digestion of the sample 

by quantitative analysis and as measured by XPS on the dry powder are summarized in  Table 

22 along with the original data provided by the manufacturer. 
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Table 22. Chemical composition of the cement specimens as provided by the manufacturer 

and the transformed data on the generated cement powder obtained from the results of the 

quantitative elemental analysis by ICP-OES and ICP-MS after the digestion of the sample and 

calculated values from the elemental atomic concentrations measured by XPS on the solid 

material. Values derived within the present study were normalized with regard to the 

anhydrous weight of the cement powder provided by TG-DSC measurements. 

Analysis 
method 

CaO 
w% 

SiO2 

w% 
Al2O3 

w% 
Fe2O3 

w% 
MgO 
w% 

Na2O 
w% 

K2O 
w% 

SO3 

w% 

Original mat. 64.00 22.20 3.60 4.40 0.94 0.07 0.72 2.20 

ICP-OES/-MS 60.6 20.0 3.6 3.6 0.9 0.1 - 1.7 

XPS 61.3 24.3 6.7 2.8 2.4 - - 1.4 

 

 

The quantitative analysis of the chemically digested material provides more of a bulk 

information, i.e. representative values for the overall chemical composition of the material, 

whilst XPS is a surface-specific technique. Thus, the relatively good agreement between the 

latter two results attests the obtained high homogeneity within the generated powder. As 

discussed before, the digestion of the sample could not provide any information on the K-

content of the material and as for the XPS both, the Na- and the K-atom concentrations were 

found to be below the detection limit of the technique. The grinding and sieving procedures 

affected the Ca-content of the material only to a limited extent as a deviation of –3 w/w% is 

witnessed between the manufacturer information and the result of digestive quantification by 

ICP-OES (but it is beyond associated uncertainties). This however, indicates the slight loss of 

Ca in the course of the powdering process. Atomic concentrations determined by XPS are also 

found to be in good agreement with the latter values, except for the minimal increase for Si, 

Al and Mg. Since the uncertainties associated to the quantification results by XPS method 

exceed the magnitude of these deviations, further conclusion cannot be drawn from the 

observations. Despite the good agreement between the oxide composition of the original and 

the powdered material, additional, minor alteration effects caused by the exposure to air and 

by the mechanical heat generated during the milling and sieving process cannot be excluded. 

 Figure 69 shows an exemplary narrow scan of C 1s XPS spectrum collected for the freshly 

grinded and sieved cement powder. The displayed curve fit accounts for the contribution of 
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the carbonate, potentially present as calcite: CaCO3(cr) and of the ‘C-O’ and the adventitious, 

‘CxHy’ (hydrocarbon) functional groups related to organic impurities. 

 

 

Figure 69. C 1s XPS spectrum collected for the freshly grinded and sieved cement powder, 

together with the fit performed accounting for the contribution of carbonate-, potentially 

present as calcite: CaCO3(cr) and of ‘C-O’ and the adventitious, ‘CxHy’ (hydrocarbon) 

functional groups (corresponding to organic impurities). 

 
The distribution of the chemical groups related to the C 1s elemental line in combination with 

the atomic concentration of carbon provided by the survey scan indicates the presence of 7.0 

w/w% CaCO3(cr) on the surface of the generated powder (the converted value with regard to 

the anhydrous weight of the cement powder is ~9.0 w/w%). This slight carbonation on the 

surface of the sample may originate from the powdering procedure as well as from the sample 

preparation procedure undertaken before XPS data collection. 

BET-N2 measurements provided a high specific surface area with a value of 79.2 m2g-1 for the 

well-homogenized, initial cement powder. Since the majority of the expected hydrated solid 

phases present in OPC have relatively low specific surface areas (1 – 10 m2g-1), except for C-

S-H phases (148 m2/g at Ca:Si ratio of ~1.7, provided by Tits et al. [49]), the determined 

value unambiguously indicates the presence of the latter phases. 

In summary, combining all solid phase characterization results for the cement material it can 

be stated that the chemical composition of the powdered material has not been modified by 

the preparation procedure and the main, hydrated solid phases present in the OPC powder are 

the amorphous C-S-H phases and Portlandite. Considering the plausible assumption that in 

the course of the hydration process all Ca-content of the material are either consumed by the 
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forming Portlandite or the C-S-H phases, and all the Si-content will be solely taken up by the 

C-S-H phases, an estimate of 1.7 – 1.9 can be calculated for Ca:Si atom-concentration ratio 

for the present C-S-H phases based on the ICP-OES/-MS, TG-DSC and XPS results. This 

value is in close agreement with the reported data of 1.8 resulting from model calculations on 

OPC pastes with similar chemical characteristics [195-197]. The cement powder used in the 

sorption experiments can be taken as a representative material for the original cement 

specimens. Small deviations such as surface carbonation (~3 – 10 w/w%) and the potential 

dehydration of minor phases originating from the powdering process and from the storage of 

the sample is considered to have negligible effect on the sorption properties of the material. 
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6.6 Chemical compositions of equilibrated cement pastes and porewater solutions  

 Figure 70 shows the background-subtracted XRD patterns of equilibrated cement paste 

samples (treated with propan-2-ol) retrieved from: (1) the solid phase in equilibrium with the 

generated porewater (used for all sorption studies simulating Stage II of the cement 

degradation process) and from (2) a batch sample of the Cement-ISA sorption experiment 

series (at [ISA]tot = 0.01 M and S:L ratio = 2 gdm-3). Data on the Sample 1 (named as 

“porewater cement”) was collected after the preparation of all sorption experiments (~1 year 

of contact time), whilst the diffractogram on the 2nd sample (denoted as “ISA-cement”) was 

recorded after an equilibration time of 14 days (final teq of Cement-ISA sorption 

investigations). XRD patterns are shown together with the identified major and minor phases 

as adapted from JCPDS database [136]. 

Both raw XRD patterns originally depicted a highly increased baseline-level, confirming the 

predominance of amorphous C-S-H phases in the retrieved pastes. The collected 

diffractogram on porewater cement indicates the presence of crystalline Portlandite (PDF 04-

0733) in the paste, however the decreased intensities show that the phase has been partly 

washed out through the procedure. The liquid phase used for the preparation of all sorption 

experiments is saturated with regard to Portlandite solubility equilibrium. More intensive 

reflections for Ca(OH)2(cr) were detected in the sample equilibrated with porewater solution 

with [ISA] tot = 0.01 M, demonstrating that the dissolution of the phase was not substantial at 

the highest total concentration of the ligand. As for the initial cement material, calcite was 

found to be present in both of the analyzed samples with a minor contribution above the 

detection limit of the technique (~10 w/w%). The latter identification is however purely 

qualitative, as certain XRD reflections of Ca(OH)2(cr) are highly sensitive to preferred 

orientation effects. Furhter, minor hydrated phases were not possible to be detected. 
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Figure 70. XRD patterns collected in the present work for cement pastes: “porewater 

cement” indicates the retrieved cement paste, at teq = 1 year used for the generation of the 

porewater for sorption investigations, “ISA-cement” is a cement solid phase equilibrated in 

porewater with [ISA]tot = 0.01 M at S:L ratio = 2 gdm-3 for 14 days. Hydration stoppage on 

the samples was achieved by the use of propan-2-ol. Reference data reported for Portlandite: 

Ca(OH)2(cr) (PDF 04-0733), Calcite: CaCO3(cr) (PDF 86-0174) are appended for 

comparison. 

 

TG-DSC curves collected on the above described two cement samples are displayed in  Figure 

71. All identified features are matching the TG-DSC data recorded for the initial cement 

powder. The concurring weight-losses of the two specimens in the temperature-range of 0 – 

300 °C (porewater cement: –15.35 w/w%, ISA-cement: –16.51 w/w%) and the almost 

identical anhydrous weight (calculated from the total weight-loss till 600 °C) are indicating 

the reliability of the applied hydration stoppage method. Using the anhydrous weight of the 

sample and the weight-losses attributed to the dehydroxylation reaction of Ca(OH)2(cr) phase 

provide values of 26.91 w/w% and 25.19 w/w% for the contributions of Portlandite in the 
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porewater cement and ISA-cement samples. Compared to the analogous value of the initial 

cement material, both values depict a small loss (with relative values of 5.3 w/w% and 7 

w/w%, respectively) of Portlandite from the samples. 

 

 

Figure 71. TG-DSC data recorded on equilibrated cement pastes: “porewater cement” 

indicates the cement paste, at teq = 1 y, used for the generation of the porewater for sorption 

investigations (blue and green curves), “ISA-cement” is a cement solid phase equilibrated in 

porewater with [ISA]tot = 0.01 M at S:L ratio = 2 gdm-3 for 14 days (red and orange curves). 

Hydration stoppage on the samples was achieved by the use of propan-2-ol. Differential 

scanning calorimetry (DSC) signal (continuous curve) is displayed as specific heat-flow 

(mWmg-1) and loss of sample mass (dashed curve) is in weight-percentage (w/w%) unit. 

 

Accounting for the presence of calcite, using the weight-loss observed at the temperature-

range of 700 – 720 °C, relative weight-percentages of CaCO3(cr) with regard to the anhydrous 

weight of the cement powder was calculated to be ~15.1 w/w% for the porewater cement and 

~12.34 w/w% for the ISA-cement sample, indicating a higher contribution than for the initial 

material. These values are in good agreement with the qualitative experimental findings of the 
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XRD method as well. The relative differences between the values of the equilibrated samples 

and of the initial material show only a negligible carbonation effect, which is considered to 

have almost no influence on the chemical composition of the porewater or on the sorption 

properties of the material under the given conditions. 

 Table 23 shows the calculated chemical characteristics of the cement powder (with regard to 

the oxide compositions normalized to the anhydrous weight of the material) as measured by 

XPS method on the equilibrated cement phases described above and on the initial cement 

powder as well. 

 

Table 23. Chemical characteristics of the cement specimens with regard to oxide 

compositions determined by XPS on the initial cement powder, the “porewater cement” 

sample (indicating the cement paste, at teq = 1 y, used for the generation of the porewater for 

sorption investigations) and on the “ISA-cement” (depicting a cement solid phase 

equilibrated in porewater with [ISA]tot = 0.01 M at S:L ratio = 2 gdm-3 for 14 days). 

Hydration stoppage on the samples was achieved by the use of propan-2-ol. All values are 

normalized with regard to the anhydrous weight of the cement powder provided by TG-DSC 

measurements. 

Analysis 
method 

CaO 
w% 

SiO2 

w% 
Al2O3 

w% 
Fe2O3 

w% 
MgO 
w% 

Na2O 
w% 

K2O 
w% 

SO3 

w% 

Original mat. 61.3 24.3 6.7 2.8 2.4 - - 1.4 

Porewater 
cement 

52.2 24.8 8.0 0.9 1.3 - - 7.6 

ISA-cement 47.9 19.8 6.8 4.9 0.7 - - 1.5 

 

 

Compared to the initial material, the chemical compositions of both retrieved specimen show 

a pronounced decrease in Ca-content, indicating the loss of Portlandite from the system, in 

accordance with the findings of TG-DSC analysis. 

Accounting for the carbonate-group contribution from the deconvolution results on the narrow 

scan of C 1s XPS spectrum collected for the “porewater cement” ( Figure 72) in combination 

with the atomic concentration of carbon provided by the survey scan on the sample indicates 

the presence of 11.8 w/w% CaCO3(cr) on the surface (calculated using the hydrated weight of 
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the cement powder). This slightly enhanced calcite-content, compared to the analogous data 

on the initial material is in agreement with the observations made by TG-DSC measurements.  

 Figure 73 shows the exemplary narrow scan by C 1s XPS spectrum collected for the  

ISA-cement sample. For the purpose of quantification, binding energies of the elemental lines 

were charge referenced to Si 2p3/2 at 101.5 eV and the binding energy of Si 2p3/2 was 

determined by charge referencing to the C 1s elemental line of adventitious hydrocarbon at 

284.8 eV using the XP spectra of an analogously prepared sample without ISA in solution 

(not shown). 

 

 

Figure 72. C 1s XPS spectrum collected for the “porewater cement” sample (indicating the 

cement paste, at teq = 1 y, used for the generation of the porewater for sorption 

investigations), together with the fit performed accounting for the contribution of carbonate-, 

potentially present as calcite: CaCO3(cr) and the adventitious, CxHy (hydrocarbon) 

functional groups. 
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Figure 73. C 1s XPS spectrum collected for “ISA-cement” (depicting a cement solid phase 

equilibrated in porewater with [ISA]tot = 0.01 M at S:L ratio = 2 gdm-3 for 14 days), together 

with the fit performed accounting for the contribution of carbonate-, potentially present as 

calcite: CaCO3(cr), adventitious, CxHy (hydrocarbon) and ISA-related functional groups. 

 

The presence of ISA on the cement surface is clearly confirmed upon the displayed curve fit 

as the contributions of the carbonate-, the ‘C-O’ and the adventitious, ‘CxHy’ (hydrocarbon) 

functional groups alone cannot represent all the features of the given elemental line. 

Based upon the stoichiometric contributions of the different carbon functional groups present 

in the ISA molecule together with the latter two signals and the atomic concentration of 

carbon provided by XPS indicates the presence of 18.0 w/w% CaCO3(cr) and 12.3 w/w% 

“HISA” on the surface of the retrieved cement phase (with regard to original weight analyzed 

by XPS method). Calculated values depict an extensive carbonation on the surface, compared 

to the results provided by TG-DSC measurements. However, due to the loss of Ca-content 

from the analyzed material these contributions can only be compared in relative terms, since 

they are normalized to the elemental composition on the surface of the hydrated sample. 

Hence, considering the surface-sensitivity of the technique and the preparation procedure of 

the sample for measurement, carbonate-contents derived by XPS method are highly 

overestimated with regard to the real bulk information provided by TG-DSC method. Yet, it 

can be stated, that a formation of calcite on the surface is definitely occurring. The performed 

hydration stoppage did not remove ISA bound to the potential sorbing sites on the cement 

phase and hence, it was detectable and quantified to be present with 1:3 molar ratio to the 

surface concentration of carbonate ion on the surface of the analyzed sample. 
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 Table 18 (provided in Section 3.2.1.2) summarizes the concentrations of the major and minor 

elements in the equilibrium solutions of the abovementioned two samples: (i) porewater 

cement sample and (2) the ISA-cement sample as quantified by ICP-OES and ICP-MS 

measurements. 

The initial composition of the porewater together with the determined pHc = (12.55 ± 0.08) 

(averaged value of multiple measurements on the porewater) are in good agreement with the 

calculated and the previously reported porewater conditions (pHc = 12.50) representing Stage 

II of the cement degradation process [4, 198]. A slightly lower value has been quantified for 

the Na concentration, whereas concentration of K was found to be in good agreement with 

reference data, both indicating the successful pre-washing step aiming to remove the alkali-

content of the initial cement powder. Reference values for Mg and Fe) are not provided in the 

literature, whilst the concentration of Si is below the detection limit of ICP-MS, in agreement 

with the low level reported. 

The measured pH value of the ISA-cement porewater sample (pHc = 12.60 ± 0.03) was 

observed to be within the uncertainty-range of the values collected in the absence of ISA (the 

calculated theoretical value under identical conditions is pHc = 12.57). The chemical 

composition of the equilibrated porewater with [ISA] tot = 0.01 M at S:L ratio of 2 gdm-3 show 

distinct changes in the depicted elemental concentrations especially with regard to Na ion 

concentration. These discrepancies are originating from the introduction of ISA-stock solution 

to the system, which was later confirmed by the characterization of identical solutions 

prepared in the absence of cement solid phases. Ca ion concentration was found to be 

negligibly affected by the high ligand concentration in solution, which is in agreement with 

thermodynamic calculations, assuming that the concentration of Ca2+ is governed by the 

dissolution of Portlandite and by its complex formation reactions with ISA in solution (when 

[ISA] tot does not exceed ~0.1 M, i.e. precipitation of Ca(ISA)2(s) does not occur). Accounting 

for the latter chemical equilibria, the calculated theoretical increase (without taking into 

account the sorption of the ligand) in [Ca]tot with the level of 2.7·10-3 M is close to absolute 

value of the uncertainty-range (± 3 10-3 M) associated to the quantification of [Ca]tot by the 

applied ICP-OES technique. 

In summary, it can be clearly stated that the generated porewater to be used as the liquid 

phase in the later Pu sorption experiments is a chemically representative solution of cement 

pore fluids expected at the second stage of the cement degradation process. Solid phase 

characterization results on the retrieved cement solid phase coincide with the latter 

observation. Moreover, the ISA concentration of 0.01 M in the supernatant with S:L ratio = 2 
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gdm-3 was neither affecting the main chemical parameters of interest (pHc, [Ca]tot) in solution 

and nor the main chemical composition (presence of Portlandite and C-S-H phases) of the 

HCP. The main changes determined can be modelled by assuming Portlandite dissolution 

equilibria in combination with Ca(II)-OH-ISA complex formation reactions in solution, which 

is in agreement with the observation of previous studies [104]. 


