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Abstract

Inspired by the nervous system, analog neuromorphic systems integrate computa-
tional models of neural elements to capture the rich temporal dynamics of the neu-
ronal membrane. For the development of the BrainScaleS neuromorphic hardware,
this thesis implements spiking neuron models with accelerated dynamics in a 65 nm
CMOS process. Compact, low-power, highly-tunable continuous-time analog cir-
cuits are developed and characterized over three prototype chips. The first design
emulates a Leaky Integrate-and-Fire (LIF) model implemented as an array of neu-
rons. The measured results demonstrate the availability of a vast range of time
constants and a one-to-one correspondence with the dynamics of the mathematical
model. The LIF neuron circuit is enhanced to the Adaptive-Exponential Integrate-
and-Fire (AdEx) model where the circuits for exponential and adaptation are de-
signed. The AdEx implementation results demonstrate a variety of firing patterns
typically known from cortical neurons. The neuron circuit will provide the end-users
with biologically plausible spiking dynamics and is to be integrated as the fundamen-
tal computational element in the second-generation BrainScaleS hardware.

Zusammenfassung

Inspiriert vom Nervensystem spiegeln analoge neuromorphe Systeme die vielseitige
Dynamik biologischer Neuronen und Synapsen wider. Für die Weiterentwicklung
des neuromorphen Systems „BrainScaleS“ wird in dieser Arbeit ein beschleunigtes,
spikendes Neuronenmodell in einem 65-nm-CMOS-Prozess umgesetzt. Kompakte,
hoch konfigurierbare, zeitkontinuierliche analoge Schaltungen mit niedrigem
Energieverbrauch werden entwickelt und mit Hilfe von drei Prototypen-Chips
charakterisiert. Das erste Design emuliert ein Leaky-Integrate-and-Fire-Modell
(LIF). Die Messergebnise zeigen, dass ein grosser Bereich von Zeitkonstanten
eingestellt werden kann und eine gute Übereinstimmung mit dem mathematischen
Modell erreicht wird. Das LIF-Modell wird dann zu einem Adaptive-Exponential-
Integrate-and-Fire-Modell (AdEx) erweitert, wofür zusätzliche Schaltungen für
den Exponential- und Adaptionsterm implementiert werden. Die Ergebnisse des
AdEx-Prototyp-Chips zeigen, dass eine Vielzahl typischer Feuermuster, wie sie bei
kortikalen Neuronen beobachtet wurden, mit der Schaltung emuliert werden können.
Der in dieser Arbeit entworfene Neuronenschaltkreis wird den Benutzern ein der
Biologie ähnliches, spikendes Neuron bieten und als fundamentale Einheit in die
zweite Generation des BrainScaleS-Systems eingehen.
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Chapter 1

Introduction: Neurons and
Synapses

The human brain is a massively parallel and highly flexible organ consisting of
neurons that are interconnected through synaptic connections. Weighing just about
three pounds, the brain contains on the order of 1011 neurons and 1014 synapses
[1, 2]. Organized in specialized regions and as ensembles, each neuron within a
population receives thousands of synaptic inputs through neighboring cells [3, 4],
and communicates using electrical signals called action potentials or spikes. At
the system level, the different patterns of interconnections give rise to perceptions
and motor actions [5]. The communication between neurons is modified by expe-
rience, leading towards learning and development. The foremost goal towards the
understanding of the nervous system has been to elucidate, how such neural en-
sembles compute and lead to the cognitive states and behavior that we experience
as individuals.

The digital microprocessor processes information, just like the brain does. The
accuracy of numerical calculations it may achieve is 32 or 64 significant figures.
In contrast, a neuron signaling in terms of average firing rate, offers at best a few
significant figures [6]. Further, while the brain consumes only 20 W of average
power [7, 8], similar information processing abilities require orders of magnitude
higher power consumption in modern microprocessors [9, 10]. The architecture
of the microprocessors have traditionally been based on a so-called von Neumann
architecture, where the CPU accesses data and program memory using shared re-
sources [11]. Further, they utilize the digital logic gates as elementary primitives
and have little to no fault tolerance.

A fundamentally different kind of computing architecture has evolved from
the late eighties that takes strong inspiration from the architecture of the ner-
vous system. Termed neuromorphic systems [12, 13], they radically depart from
von-Neumann architectures by collocating memory close to the computational ele-
ments. They are massively parallel and flexible with high fan-in and fan-out capa-
bilities. They offer a high degree of reconfigurability and are far more energy effi-
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1. INTRODUCTION: NEURONS AND SYNAPSES

cient than conventional computing architectures. Above all, they integrate compu-
tational models of neural elements as computational units. They are realized using
standard CMOS technologies, allowing integration at a very large scale [12, 14].

Figure 1.1: An illustration of neuron emulation. Image © Spike Gerrell, published
in Economist [15].

This thesis is about the emulation of the neuron circuit – the primary com-
putational element of any neuromorphic substrate. The neuron is designed as a
continuous-time processing element that emits a binary event (spike) in analogy
to the nervous system. The neuron circuit emulates biophysically inspired spiking
neuron models through the use of analog and mixed-signal circuit techniques. It
features high tunability, a modular architecture and an implementation realized for
large-scale integration. An artist’s view of neuron emulation is depicted in Fig. 1.1.

Before proceeding with this emulation, we review the basic architecture and
models of neurons and synapses.
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1.1. NEURONS

1.1 Neurons

The main anatomical and computational units in the nervous system are the
neurons. The structure of a typical neuron is depicted in Fig. 1.2. The morpho-
logical form and this discrete cell structure was not known until the late 1800’s
when Ramón y Cajal discovered it with the aid of a staining method developed
by Camillo Golgi [16, 17]. The neuron structure can be divided into four distinct
regions: the cell body, the dendrites, the axon and the synaptic terminals. At
the center is the cell body or soma that contains the nucleus. From the soma
emerge tree-like branches that are the dendrites. These let the cell receive synaptic
inputs and integrate them on the cell body. When the potential at the axon hillock
exceeds a threshold, an action potential is initiated, that propagates down along
the axon. Axon is a specialized structure that transmits the action potential over a
long distance and is typically covered with myelin sheath. Myelin is an insulating
material that reduces the capacitance between cytoplasm and the extra-cellular
fluid. The sheath is interrupted at regular intervals by the nodes of ranvier that help
regenerate and restore the action potential repeatedly. The axon further divides
into fine branches, where it makes contact with other neurons at specialized zones
of communication called synapses [5]. Fig. 1.2 shows this structure with dendrites
at the top and axon terminating with synaptic terminals at the bottom.

.

Figure 1.2: The structure of a typical neuron. Image from OpenStax College,
Biology (CC BY 4.0) [18], as modified by [19].

The rapid change in neuron’s cell membrane that leads to an action potential
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1. INTRODUCTION: NEURONS AND SYNAPSES

is mediated by ion channels and pumps. The cell membrane that separates the
extra-cellular fluid from the interior is a thin phospholipid bilayer. Of the various
ion species, the permeable ions responsible for electrical signaling are Na+, Cl−

and K+. The distribution of these ions varies across the membrane, and Na+ and
Cl− have higher concentration outside the membrane, whereas inner cytoplasm has
higher concentration of K+ compared to the outside.

.

Figure 1.3: An equivalent circuit schematic of the neuronal membrane [5].

The equilibrium potential for any permeable ion present across the membrane
can be calculated via the Nernst equation, named after the German chemist Walther
Nernst. This is the Nernst potential and given by Erev = −kT

q lnNinNex
. Where Nex

and Nin are the external and internal ion densities, k is the Boltzmann constant
and T is the absolute temperature. A positive current flows into the cell, if the
potential inside the membrane is below the Nernst potential. Conversely, an out-
ward positive current flows if the membrane potential is greater than Erev. Since
the direction of current is reversed, this potential difference is also referred to as
the reversal potential of a specific ionic current. At rest the membrane potential
is approximately –70 mV and the cell membrane is said to be in a polarized state.
This resting potential is maintained by the sodium-potassium (Na+/K+) pump that
flushes Na+ out and takes K+ in, as well as the membrane’s selective permeability
to K+ which leaves behind a net negative charge.

The electrical properties of the neuron membrane help derive an equivalent cir-
cuit schematic, shown in Fig. 1.3. The lipid bilayer endows the membrane with
an electrical capacitance, whereas the conductances reflect the membrane perme-
ability of a given ion channel. The batteries represent the reversal potential of a
particular ion. For example, considering the sodium current, by virtue of Ohm’s
law, it is expressed as INa = gNa · (Vmem − ENa). The contribution of various
ions to the resting membrane potential can be quantified using the Goldman equa-
tion [20–22]. Alternatively, by solving the equivalent circuit schematic one can
calculate the resting potential of the cell membrane [5].
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1.2. NEURON MODELS
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Figure 1.4: A typical shape of an action potential generated in a resting neuronal
membrane as a result of input stimulus. Figure taken from [23].

If the membrane is charged more negatively than its resting potential, it is said
to be hyperpolarized and its input electrical signal is inhibitory. Conversely, an
excitatory input depolarizes the membrane increasing the likelihood of evoking an
action potential. When the cell membrane is depolarized, resulting in a rise from
resting potential, it is more permeable to Na+ than to K+. The resulting influx
of positively charged Na+ neutralizes the negative charge inside, causing a sharp
rise in membrane to about +40 mV. This is the action potential, which lasts a short
interval of approximately 1 ms and is drawn in Fig. 1.4. The membrane then returns
to its resting state and back to the higher permeability to K+.

The foregoing description briefly outlines the passive electrical properties of
the neuronal membrane. A more comprehensive discussion can be found in [5,24].

1.2 Neuron Models

The computational models of neurons are typically classified into two categories.
The phenomenological models that include the threshold models [25], and the bio-
physical models. The McCulloch-Pitts neuron [26] and the Perceptron [27] are
examples of the first, since they only model the I/O behavior of the neuron unit
using simple math. The biophysical models on the other hand, describe ion chan-
nels with the goal to model the electrophysiological behavior. Hodgkin and Hux-
ley model [28] and others [29, 30] are prime examples. The threshold models or
integrate-and-fire models [31–36] are a good compromise between the complexity
of biophysical models and the simplification of linear threshold units. They are
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1. INTRODUCTION: NEURONS AND SYNAPSES

mathematically tractable [37], easier to tune than the biophysical models and lend
themselves well for hardware implementations [38].

This section reviews the dynamics of the leaky integrate-and-fire model as well
as its extended two variable variant, the Adaptive Exponential Integrate-and-Fire
(AdEx) model.

1.2.1 The Leaky Integrate and Fire Model

The Leaky Integrate-and-Fire (LIF) model [31, 32, 39] is one of the simplest com-
putational models, that is described with two separate components. First, is the
subthreshold behavior of the cell membrane described as

C
dVmem

dt
= −gleak · (Vmem − Vleak) + I (1.1)

where Cmem is the membrane capacitor that integrates the input current I , and
gleak · (Vmem − Vleak) is the current that leaks out of the membrane, making it an
imperfect integrator. Vleak models the potential towards which the membrane leaks
away in the absence of input activity, while gleak is the leak conductance. The input
current I is the sum of synaptic excitatory (IsynExc) and inhibitory (IsynInh) currents
as well as externally injected current Istim, such that, I = IsynExc + IsynInh + Istim.
This LIF model is visualized in Fig. 1.5.

Figure 1.5: The ideal model of the Leaky Integrate-and-Fire model. Adapted from
[40].

The second part of the model describes the output event generation. When the
membrane potential described by Eq. 1.1 reaches a well-defined threshold Vthresh,
the neuron outputs a binary signal and the membrane Vmem is reset to a potential
Vreset. Since LIF model does not incorporate the detailed time-course of an action
potential, information is contained in the presence or absence of an event output
that marks the spike occurrence. This digital output pulse marks the model’s all-or-
none spike events, followed by a relative refractory period – a time duration when
the neuron is less excitable.

10



1.2. NEURON MODELS

1.2.2 Adaptive Exponential Integrate and Fire Model

The AdEx neuron model [36] adds an exponential activation mechanism and a sec-
ond variable for adaptation to describe the membrane dynamics of the integrate-
and-fire neuron. The model builds upon the exponential integrate-and-fire model
[34] and the two variable Izhikevich model [41]. Along with spike-triggered adap-
tation, the model can reproduce electrophysiologically known firing patterns such
as the fast and regular spiking, phasic and tonic bursting, post inhibitory spiking
and bursting, delayed spike and burst initiation [42]. It is defined by the set of
equations

Cmem
dVmem

dt
= I − w − gleak(Vmem − Vleak)

+gleak∆T exp
(
Vmem − VT

∆T

) (1.2)

τw
dw
dt

= a(Vmem − Vleak)− w (1.3)

where Vmem is the membrane potential, Cmem is the membrane capacitance, gleak is
the leak conductance, Vleak is the resting or leak potential, ∆T is the slope threshold
and VT is the effective threshold potential. I the input current, w is the adaptation
current, and τw is the adaptation time constant. As the input current pulls the mem-

Figure 1.6: The membrane potential (top) in an AdEx model showing exponential
spikes coupled with an adapting behavior. The adaptation occurs as a result of the
evolution of the second variable w (bottom). Image taken from [43].

brane beyond the threshold VT, the exponential non-linearity triggers, leading to
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1. INTRODUCTION: NEURONS AND SYNAPSES

the upswing of the action potential. The downswing is replaced by a fixed reset.
When spike is triggered the membrane is reset to Vreset, while the adaptation vari-
able is increased by an amount b, such that w → w + b. The second equation
describes the evolution of the adaptation current with a decaying time constant τw.
Voltage is coupled to the second adaptation variable w. The update of w to w+b is
referred to as spike-triggered adaptation, while the linear coupling of voltage via a
is referred to as subthreshold adaptation [43] – since the current is active regardless
of a spike. When a > 0, the membrane gets increasingly hyperpolarized, leading
to a decelerating spike behavior. The coupling with a < 0 leads to a depolarizing
current and eventually to an accelerating spiking response.

The response to an input stimulus of the AdEx neuron model is shown in
Fig. 1.6. The top figure shows the exponentially rising membrane followed by
repeated resets. The firing adapts with a decelerating response as a result of hy-
perpolarizing membrane due to spike-triggered adaptation. The evolution of the
variable w is shown in the lower plot.

Out of the nine parameters, five are classified as scaling parameters, while the
remaining four are bifurcation parameters. The scaling parameters are Cmem, gleak,
Vleak, ∆T and VT, as they scale the time axis or stretch the state variables [42].
The bifurcation parameters are a, b, τw and Vreset. One can modify these to evoke
different spike patterns. The role of bifurcations is best explained in texts for dy-
namic systems and phase plane analysis, such as [44] and are not covered here.
The work from [42] shows at least eight firing patterns known from cortical neu-
rons that can be reproduced using the AdEx model. Fig. 1.7 reproduces these firing
patterns along with the phase space representation against each of them. This is a
two-dimensional space of variables – membrane voltage and the adaptation cur-
rent. The nullclines of both variables represent the set of points where their time
derivative is zero, i.e., V-nullcline represents dVmem

dt = 0 and the w-nullcline are the
set of points where dw

dt = 0. In the figure, the membrane is shown as a blue trace,
while the V-nullcline is shown as black dashed curve (prior to input stimulus) and
as solid line (after current stimulation). The w-nullcline is shown in green. As the
firing trajectories are plotted the blue cross indicates the resting state, while the
blue square denotes the sequence of reset values one after the other. The intersec-
tion of the two nullclines define stable or unstable fixed points. When a bifurcation
occurs these fixed points change, leading the system to show a different (spiking)
behavior.

Of the shown patterns tonic spiking occurs when spike-triggered adaptation
is not playing any role, i.e., a = b = 0; a case like that of the simple LIF model.
The AdEx model can produce sharp and broad spike after-potential (SAP). In
initial bursting, spiking starts with one or more sharp resets, followed by a broad
reset (long low curvature). In delayed acceleration, a stimulus close to the spiking
threshold (rheobase) is injected and the value of a < 0. This eventually leads
the neuron to spike after a time interval. After the initial spike, the negative a
increases the spike rate. Transient spikes occur in response to a sudden increase in

12



1.3. SYNAPSES

current, where the adaptation current is slow enough to fully compensate for the
sharp change in current – eventually leading to a spike. The behavior has a close
resemblance to rebound spikes. Irregular spiking is an aperiodic change of sharp
and broad resets – and according to [42], is valid for a limited set of parameters.
More details on the dynamics of AdEx model can be found in [36, 38, 42, 43].
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Figure 1.7: The eight spike patterns known from the AdEx model upon current
stimulation, together with their phase plane representations (2D space of mem-
brane voltage and the adaptation current shown at left side of each pattern). These
are classified as: a) tonic spiking, b) adaptation, c) initial bursting, d) regular burst-
ing, e) delayed accelerating, f) delayed regular bursting, g) transient spiking, h)
irregular spiking. Image taken from [42].

1.3 Synapses

Synapses are specialized structures responsible for information transfer between
any two neurons in the central nervous system. Most synapses are chemical in
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1. INTRODUCTION: NEURONS AND SYNAPSES

nature, i.e., an action potential from a pre-synaptic neuron activates ion channels
in the post-synaptic neuron, essentially changing the excitability of the later.

The inset in Fig. 1.2 shows the synapse formed between a pre- and post-
synaptic cell. As an action potential invades a synapse, a series of biochemical pro-
cesses lead to the release of neurotransmitter in the synaptic cleft – a gap between
the terminals of a pre-synaptic and post-synaptic cell membranes. The neurore-
ceptors in the post-synaptic cell membrane detects this neurotransmitter, leading
specific channels to open, that causes an inflow of ions into the cell. This ion-flow
brings about a transient change in the post-synaptic neuron membrane voltage –
the post-synaptic potential(PSP).

If the PSPs increase the likelihood that the post-synaptic cell evoke an action
potential they are excitatory PSPs or (EPSP), and if they decrease this likelihood,
they are inhibitory PSPs (IPSP). The EPSPs have a reversal potential Erev more
positive than the threshold, while the IPSPs have it more negative compared to the
firing threshold. The exact nature of a synapse depends upon the neurotransmit-
ter and receptors it activates. Excitatory synapses have typically glutamate as the
neurotransmitter, and the receptors are either AMPA where channels open faster,
or the voltage-gate N-Methyl-D-Aspartat (NMDA) which are typically much slow.
Examples of inhibitory synapses are the fast GABAA and the slower GABAB, both
of which use Gamma-Aminobutyric Acid (GABA) as the neurotransmitter [38].

1.3.1 Models of Synaptic Interaction

The ion-channels activated by the neurotransmitters are defined by the time depen-
dent conductance gsyn(t), which opens upon arrival of a pre-synaptic spike [38].
The current that is put out onto the membrane in Eq. 1.1 from the synapses is
described in terms of the conductance as

Isyn = gsyn(t) · (Vmem − Esyn) (1.4)

where Esyn is the reversal potential. The equation expresses that the current in a
conductance-based model depends on the difference of reversal potential and the
membrane potential. The difference of these two potentials also defines if the type
of synapse is excitatory or inhibitory. The time dependent conductance gsyn is
typically expressed as the superposition of exponentials, where its time course is
an exponential decay

gsyn(t) =
∑

f

wsyne
−(t−tf)/τsynΘ(t− tf) (1.5)

where wsyn denotes the weight that quantifies the amplitude of the post-synaptic
response, τsyn is the synaptic time constant of the decay, tf denotes the arrival time
of the pre-synaptic spike and Θ is the Heaviside step function. By substitution we
obtain

Isyn(t) =
∑

f

wsyne
−(t−tf)/τsynΘ(t− tf)(Vmem − Esyn) (1.6)
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Alternatively, the synaptic interaction models can also be expressed as current-
based kernel, which is expressed as

Isyn(t) =
∑

f

wsyne
−(t−tf)/τsynΘ(t− tf) (1.7)

which indicates that a linear sum of PSPs is possible, as opposed to the conductance
based sum of Eq. 1.6 where the difference from reversal potential makes it non-
linear [24].

1.3.2 Plasticity

Learning and memory in the nervous system is widely attributed to synaptic plas-
ticity. Synapses are able to modulate their strength depending upon the activity.
Typically, the induction of such changes are classified over different timescales
and referred to as Short-Term Plasticity (STP) or Long-Term Plasticity (LTP). The
changes brought about during STP last only a few hundred milliseconds [45] and
the successive pre-synaptic spikes evoke smaller (depression) or larger responses
(facilitation) in the post-synaptic cell [46]. A recovery to normal amplitudes oc-
cur within a second. A popular phenomenological model implementing short term
dynamics is the Tsodyk-Markram model, where depression [47] as well as its ex-
tension for facilitation [45] is modeled.

Long term plasticity occurs in the form of potentiation or depression, and the
changes are more persistent – spanning from minutes to hours or longer. One exam-
ple is the Spike-Timing-Dependent Plasticity (STDP) [48–51], where the induction
time can still be brief, e.g., a few seconds, but change is persistent for more than
an hour [46]. Additionally, homeostatic plasticity where the activity of synapses is
regulated, is also on the timescales that extend from minutes to hours [52].

1.4 Dendrites

Neurons compute by transforming a complex set of dynamical inputs into a se-
quence of output spikes [53]. McCulloch and Pitts argued that, by adding memory
to a network of linear threshold units, all fundamental operations of a digital com-
puter can be computed [54]. Similarly, the threshold-based models (discussed in
Sec. 1.2) introduce a non-linearity provided by the threshold, and can compute
logical functions, such as the AND operation. However, these models provide a
simplified behavior of the computational aspects, for example, by assuming that
the synaptic inputs do not interact with each other, or by not capturing the prop-
erties of the dendritic tree. In biology the dendrites appear in diverse shapes and
sizes, with morphologies varying widely from the depiction shown in Fig. 1.2. For
example, some well-studied neuron types are shown in Fig. 1.8 [40, 55].

The development of linear cable theory by Wilfrid Rall in the late 50’s [57] to-
gether with experimental findings showed, that neuronal dendrites are electrically
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a b c

d e f

Figure 1.8: Neurons from different brain regions with varying morphological
shapes and sizes: a) Vagal motoneuron, b) Olivary neuron, c) L2/L3 pyramidal
cell, d) L5 pyramidal cell, e) Purkinje cell, f) αmotoneuron. Scale bars are 100 µm
long. Image taken from [40, 55].

distributed rather than being isopotential elements, and that post-synaptic poten-
tials undergo voltage attenuation and significant temporal delay in the dendritic
tree [40]. In passive dendrites, dependent upon the initiation site, the sum of post-
synaptic potentials of two synapses can be less than the linear sum of their separate
responses. The non-linear effects are contributed by shunting inhibition, where the
synaptic reversal potential is close to the cell’s resting potential – and the channel
increases the local conductance, thereby reducing the effect of subsequent incom-
ing EPSPs. In the equivalent schematic of the cell membrane shown in Fig. 1.3, the
chloride ions are one such example, since their reversal potential are typically close
to the resting potential. More examples of passive dendritic computation include,
for example, the auditory neurons in the chicken brainstem and barn owls. Their
bipolar dendrites form coincidence detectors [58–60], firing strongly only if the
input from the two ears coincide in time – with a time window of 10 – 100 µs. An-
other example are the direction selective retinal ganglion cells, that respond to the
movement of the stimulus in only one direction and not the opposite way [61, 62].

The active properties of dendrites contribute with a backpropagating action
potential that goes back from the soma into the dendrites. This implies that sin-
gle neurons provide an internal feedback – not restricting it only as a network
property [63, 64]. This backpropagating action potential induces LTP in CA1 and
Layer 5 neurons [49, 65]. Further, it evokes a broad Ca2+ spike in apical dendrites
and multiple somatic action potentials [66] when dendritic and somatic input co-
incide. In this way, the active properties of dendrites help amplify the synaptic
inputs attenuated by the passive dendritic tree [64]. This is further supported since
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Figure 1.9: Somatic and dendritic spikes and their regions of initiation in a cor-
tical pyramidal neuron. A) NMDA spike and plateau potential is shown together
with the subthreshold EPSP evoked in the thin dendrites. Upon sufficient stimu-
lation the NMDA spike transforms into a plateau potential, initiating with an Na+

spikelet and followed by a plateau phase and an abrupt collapse. B1–B3) Neuronal
spike types and their corresponding initiation region. The nominal action poten-
tial is initiated in the axon, whereas the Ca2+ spike typically occurs in the apical
dendrites. The NMDA spikes are elicited in the basal/oblique/tuft regions. Figure
taken from [56].
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studies [67, 68] suggest that conductances of distal synapses are scaled according
to their distance from the soma. The active properties also evoke local dendritic
spikes triggered by the co-activation of synaptic inputs and mediated by voltage-
gated ion channels [69, 70].

So far we have mostly described the dendritic properties related to thick api-
cal dendrites. The thin basal, oblique and tuft dendrites in cortical pyramidal cells
receive a high density of glutamatergic synaptic inputs, whose subset of 10–50
synchronous activation can trigger a local dendritic regenerative potential, referred
to as the NMDA spike or plateau potential [56]. The name NMDA refers to the
ionic contributor which is the NMDA receptor current [71]. In contrast to the cal-
cium spikes, these are truly local to the dendritic branch [72, 73]. Compared to
sodium spikes they are characterized by significant amplitude (40–50 mV) and du-
ration [71]. Models predict that they are evoked by an initial fast local sodium
spikelet, giving rise to a slower calcium-mediated regenerative response, which
elicits a full-blown NMDA spike [71]. These three spike shapes as well their initi-
ation region in cortical pyramidal neuron is depicted in Fig. 1.9.

Upon sufficient (glutamatergic) stimulation the step-like depolarizing NMDA
spikes broaden into plateaus, without an effect on the amplitude – demonstrating
their strong non-linear behavior [56, 74, 75]. The local NMDA dendritic spikes/-
plateau potentials have been implicated to have a role in cortical information pro-
cessing and memory consolidation [56, 76].

1.5 Outline of this work

This thesis is about the implementation of two spiking neuron models – namely the
LIF and the AdEx, defined for integration in the second-generation BrainScaleS
hardware. This work is carried out as part of the design and development of the
BrainScaleS analog neuromorphic computing hardware. The BrainScaleS hard-
ware design project has previously been carried out in European projects such as
the FACETS and the BrainScaleS. Since late 2013, the project is funded under
the Human Brain Project, where development of the second generation neuro-
morphic platform has been initiated. The project is strongly driven by previous
design experience and end-user requirements – which in large part is the compu-
tational neuroscience community. The BrainScaleS design approach is to emulate
the computational models of neural elements as analog and mixed-signal circuit
implementations. The thesis is structured as follows:

Chapter 2 explains the system architecture of the second generation neuromor-
phic platform, which is still under design phase. The architectural description is
an update only until the time of the compilation of this thesis. Since the second-
generation wafer-scale system is not yet existent, a description of the existing first
generation system is provided for overview.

Chapter 3 starts with the design approach. The requirements and target specifi-
cations, the used CMOS technology, the description and measurement framework
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of the prototype chips are explained.
Chapter 4 and 5 describe the detailed design and implementation of the two

spiking neuron models, their individual circuits, their measured and simulated re-
sults.

Chapter 6 summarizes the achieved results and concludes the thesis. The lim-
itations of the current implementation together with improvement suggestions are
listed.

The author worked in a team of analog and digital designers, where close col-
laboration especially during chip design runs was necessary. This resulted in a
group effort for the targeted goal. The production of successful mixed-signal chips
is therefore an achievement of all designers involved during the different phases –
from specification, design, verification as well as lab measurements.

Two theses have been supervised during the course of this work. The first
Bachelor thesis carried out by Gerd Kiene, was just prior to the design of the first
prototype chip. It evaluated the performance of the synaptic input circuit of the
first generation HICANN neuron, with the help of circuit simulations [77]. The
second Bachelor thesis carried out by Yannik Stradmann measured and character-
ized the neuron array on the second prototype of the HICANN-DLS chip [78]. The
work started after the initial measurements on the designed neuron circuit looked
promising and a detailed characterization was necessary. Yannik Stradmann also
worked as a scientific assistant later under the supervision of the author, and cali-
brated the neuron circuit over multiple dies. The multi-chip results shown from the
second prototype of the chip are a result of this work and has been submitted for a
publication [79].

Apart from thesis supervision, the author also assisted for teaching an electron-
ics course for three semesters.

1.5.1 Publications

Most of the work compiled in this thesis is either already published or is under
review. The following is a list of journal papers and conference contributions made
by the author:

• S. A. Aamir, P. Müller, A. Hartel, J. Schemmel and K. Meier, “A Highly
Tunable 65-nm CMOS LIF Neuron for a Large Scale Neuromorphic Sys-
tem”, in Proceedings of the 42nd European Solid-State Circuits Conference,
September 2016, pp. 71-74.

• S. A. Aamir*, P. Müller*, L. Kriener, G. Kiene, J. Schemmel and K. Meier,
“From LIF to AdEx Neuron Models: Accelerated Analog 65 nm CMOS
Implementation” in Proceedings of the 13th IEEE Biomedical Circuits and
Systems Conference, October 2017, pp. 1-4.

• S. A. Aamir*, Y. Stradmann*, P. Müller, C. Pehle, A. Hartel, A. Grübl, J.
Schemmel and K. Meier, “An Accelerated LIF Neuronal Network Array for
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a Large Scale Mixed-Signal Neuromorphic Architecture”, article under re-
view, submitted to IEEE Transactions for Circuits and Systems I: Regular
Papers.

• S. A. Aamir, P. Müller, G. Kiene, L. Kriener, Y. Stradmann, J. Schemmel
and K. Meier, “A Mixed-Signal Structured AdEx Neuron for Accelerated
Neuromorphic Cores”, article under review, submitted to IEEE Transactions
on Biomedical Circuits and Systems.

• J. Schemmel, S. A. Aamir, S. Billaudelle, T. Demirci, A. Grübl, A. Hartel,
G. Kiene, Y. Leblebici, C. Pehle, K. Schreiber, Y. Stradmann and K. Meier,
“An Analog Neuromorphic Hardware System Combining Structured Neu-
rons with Hybrid Learning”, article in preparation.
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Chapter 2

Second Generation BrainScaleS
Hardware

The BrainScaleS hardware is a mixed-signal wafer-scale neuromorphic system
with an analog physical neuron model implementation. In analogy to the nervous
system the local neural computation is analog, whereas the spike communication
over the network is digital. The system operates faster than biological real-time –
with an acceleration factor of 103 to 105 times. Since the neuromorphic substrate
is wafer-scale, the CMOS wafer is not diced into individual dies. Instead, the entire
post-processed wafer is used for large-scale integration by interconnecting multi-
ple, identical on-wafer dies through vertical and horizontal connections [80]. This
allows for the large neuronal count, not realizable within the geometry of a single
ASIC.

The first generation BrainScaleS hardware has a 180 nm CMOS wafer of 20 cm
diameter with a total of 48 functional reticles. Each reticle contains eight HICANN
neuromorphic dies as the basic building blocks, resulting in a total of 384 on-
wafer dies. Within each die, the neuron array and synapse matrix are arranged
in a columnar architecture referred to as Analog Network Core (ANC). On the
wafer-scale substrate, the adjacent ANCs are interconnected through horizontal
and vertical lanes of the Layer 1 (L1) bus that spreads out over the entire wafer.
The L1 routing is responsible for wafer-wide event communication, whereas the
Layer 2 (L2) bus provides high-speed external routing to host FPGAs. Fig. 2.1
highlights a single reticle with eight first-generation HICANN chips as well as the
vertical and horizontal routing. Fig. 2.2 shows a single HICANN chip bonded
directly on a test measurement setup.

The second generation BrainScaleS hardware – currently under development,
will replace the HICANNs with the 65 nm HICANN-DLS1 chips. HICANN-DLS
is designed in a way that it fits into the existing hardware and software framework
– namely the main wafer PCB as well as being compatible with the software stack.
Compared to the HICANN architecture, the HICANN-DLS also integrates a digital

1High Input Count Analog Neural Network with Digital Learning System.
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Figure 2.1: A drawing of the 180 nm CMOS wafer with highlighted reticle bound-
aries. A single reticle is zoomed-in to show the arrangement of eight on-wafer dies.
Vertical (red) and horizontal (blue) connections pass through individual ANCs and
created during the post processing stage. Image taken from [81].

Figure 2.2: The first generation 5 mm × 10 mm HICANN die bonded on a mea-
surement board. Two different ANC quadrants are visible in the two halves of the
chip. Photo by Matthias Hock.
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Plasticity Processing Unit (PPU), specialized for learning and plasticity [82–84].
Since the chip is a mixed-signal design, it is divided into the digital logic core and
the PPU units on one hand, and the ANC and analog peripherals on the other. The
acceleration factor in the HICANN-DLS is reduced (and fixed) to 103 – this entails
new analog architectures for the ANC circuits that include neuron, synapses, etc.

2.1 The HICANN-DLS Chip

HICANN-DLS is a mixed-signal 65 nm CMOS neuromorphic system on-chip so-
lution with analog and digital cores. The chip architecture accelerates all biolog-
ical timescales with a fixed factor of 1000 times compared to real-time. The chip
is currently under development phase2 and several smaller prototypes have tested
the features and individual circuit blocks. A first prototype of the larger HICANN-
DLS ASIC is planned as a 4 µm × 8 µm die whose finalized version will replace
the HICANN ASIC of Fig. 2.2. The HICANN chip had been designed with two
ANC quadrants whereas HICANN-DLS is tiled into four quadrants.

The ANC is a columnar architecture of an edge-connected neuron array and
synapse matrix and forms the core of the BrainScaleS computational units. A
generalized architecture of the ANC is sketched in Fig. 2.3. Within each column
a single neuron compartment is connected to M synapses which forms the den-
dritic input of each neuron. The input pre-synaptic network events arrive at the
synapse drivers via the L1 buses in the larger system, and directly via Synchronous
Parallel Layer 1 (spL1) in the single-chip prototypes from the left or right edges.
Each synapse driver drives two synapse rows, one in each adjacent quadrant. Each
synaptic column of M synapses provides the neuron compartment with excitatory
and inhibitory synaptic input pulses of 4 ns duration on two separate lines. The
neuron integrates the input current on its membrane, and produces a digital output
event when the membrane reaches a threshold. This output is routed to the synapse
as the post event via the digital neuron control. Each of these digital neuron blocks
get output spikes from N /2 neurons. A total of eight such digital blocks are there-
fore integrated. To serialize the output data from N /2 inputs, a priority encoder
arbitrates access to the output bus inside each of them. Every neuron in the column
is provided with 24 dedicated capacitive storage parameters for analog configura-
tion. These are physically placed between the neuron compartments and the digital
control blocks.

The system features an implementation of the STDP learning rule for which it
stores the temporal correlation of pre- and post-synaptic events as voltages on two
capacitors inside each synapse. This correlation data (voltage on the two capaci-
tors) is digitized by two Analog-to-Digital Converter (ADC) channels per column
and then read by the PPU which implements the learning rule. These ADC chan-
nel are located at the top half of each synapse matrix. The chip implements 512

2as of December 2017
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Figure 2.3: The columnar architecture of the analog network core.

neurons in four separate quadrants as shown in Fig. 2.4. Each of the four quadrants
implements N = 128 columns taking input from M = 256 synapse rows.

The chip contains two PPU units [82] located at the top and bottom edges of
ANC. The PPU is a general purpose microprocessor implementing a 32-bit Power
Instruction Set Architecture (ISA) with a specialized vector processor in a parallel
Single Instruction Multiple Data (SIMD) organization. It can modify the synaptic
weights based on the implemented learning rule and is geared to implement STDP
[85].

The chip features a separate on-chip Membrane ADC (MADC) to digitize the
neuron’s membrane prior to external read-out. A Phase-Locked Loop (PLL) gen-
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erates four clocks from an external input clock of 50 MHz. It provides 750 MHz
to the MADC, 500 MHz to the PPU units, 1 GHz to the Serializer/Deserializer
(SerDes) and 250 MHz to the spL1 bus respectively. A JTAG interface can con-
figure the PLL control registers. Four SerDes channels are realized to ensure high
speed serial communication. For reading out analog voltages externally two 50Ω
output buffers are integrated. The left/right and top/bottom edges of the chip are
endowed with horizontal and vertical L1 repeaters. They restore the signal levels
and timing in the larger system, since the L1 bus lane length in each chip can be as
long as 8 mm and signal quality due to crosstalk, etc. can degrade. Fig. 2.4 shows
the potential floorplan containing the edge L1 repeaters, the MADC, the PLL as
well as the SerDes units.
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Figure 2.4: The preliminary sketch of the floorplan of HICANN-DLS chip. Image
modified and used with permission from [86].

The event communication interfaces and various components of the ANC are
described below, followed by a brief overview of the first-generation wafer system.
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2.1.1 Communication Interfaces

In the absence of L1 routing, digital event communication in the single chip pro-
totypes occurs via the spL1 interfaces. A merger matrix merges the input events
from the digital neuron control and the off-chip interface, and generates either local
events for the synapse drivers or for the host via the L2 interface. Host (external)
communication is performed via the L2 interface which communicates via eight
serial transceivers with the FPGA. The total communication bandwidth is shared
between spL1 events, the OMNIBUS and the PPU’s memory interfaces and is ar-
bitrated by the L2. All slow control, for example, the configuration of neuron and
Capacitive memory (Capmem) occurs via the OMNIBUS, including the inputs to
ANC from the PPU. This event communication routing controlled by the merger
matrix is sketched in Fig. 2.5. The synapse drivers receive input events from the
Parallel Debug Input (PADI) bus (not shown) in the absence of L1. The PADI
arbitrates between the inputs from merger matrix or from the OMNIBUS.

Figure 2.5: A simplified architectural sketch of event communication interfaces.
Image adapted from [86].

2.1.2 Synapse Drivers

Pre-synaptic input events enter the synapse matrix via the synapse drivers from its
left edge or right edge [87]. The input arrives either from the L1 bus, or alternately
from the OMNIBUS. Synapse drivers either relay the input events directly or add
a dynamic behavior governed by STP dynamics. When enabled, the circuit imple-
ments Short-Term Facilitation (STF) or Short-Term Depression (STD) according
to a modified Tsodyk-Markram model [47] resulting in a facilitating or depressing
pre-synaptic input. The synapse driver achieves this by modulating the pulse width
of the signal that enables the synapse. A detailed description of synapse drivers
can be found in [87].
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Figure 2.6: A simplified block-level schematic of a single synapse. Adapted from
[83].

2.1.3 Synapse Matrix

Each synapse stores a pre-synaptic address in its local SRAM that determines the
neuron it responds to. The synapse circuit consists of an address comparator, a 6-
bit DAC and a correlation sensor circuit, all with associated SRAM memories. The
comparator compares the locally stored 6-bit address to that of incoming received
address. Upon address match, the comparator enables the output of a 6-bit DAC
for a 4 ns duration (modulated by the STP circuit). This marks an output current
pulse event, whose amplitude is modulated by a 6-bit synaptic weight (DAC code).
The synapse schematic is shown in Fig. 2.6. The amplitude of each event can be up
to 10 µA. The generated output pulse can be taken to either the excitatory synaptic
input line or the inhibitory one, common to all synapses in a column.

The comparator output pre (pre-synaptic event) is compared with a post (post-
synaptic event) signal provided by the (post-synaptic) neuron via the digital con-
trol. The correlation sensor finds the temporal correlation between a pre and post
events. It determines the time difference of the two signals and depending upon
the polarity, stores an exponentially weighted time-difference on the causal or anti-
causal storage capacitors. The stored values can be simultaneously read-out for all
synapses in a row. The PPU iterates over all rows of synapses sequentially and
performs the weight updates.

2.1.4 Correlation ADCs

These are 8-bit single-slope ADC converters which digitize the analog voltage on
causal and anti-causal storage capacitors of the synapse columns. Also known as
integrating ADCs, the architecture provides good accuracy for slow moving signals
[88]. Each column within the ANC contains two such ADC channels and each
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ANC quadrant on the chip has 256 channels. A global ramp generator distributes
a voltage ramp to all channels. Inside the array the ramp voltage is compared with
the correlation input from synapses. The time it takes for the voltage ramp to reach
the input voltage is simultaneously counted by an 8-bit counter in terms of clock
cycles. Upon a comparator hit, the counter value is latched as a converted digital
value. An 8-bit digital register is used to compensate for the input offset of each
comparator. The ADC runs within the clock domain of the PPU and therefore has
a maximum conversion time of about 28 · 1/fclk = 0.5 µs corresponding to a rate of
2 MSps.

2.1.5 Capacitive Memory

Every single neuron circuit in the columnar ANC architecture is endowed with
a block of 24 Capmem cells [89, 90]. Each one of them can store tunable and
reconfigurable voltage or current bias to tune the neuron circuit. The 24 cells are
distributed as 16 current biases and 8 voltage biases. These are the dedicated or
local biases, since they are individually tunable for every neuron. In addition to
this, there exists a global block of 24× 2 biases that may not be tuned individually,
but are meant to be common to all neurons (or other circuits in the ANC). These
are the global or shared biases. Each bias can also be read out via a debug interface.
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Figure 2.7: Example traces for the current and voltage biases, being programmed
with a 10-bit digital code as their corresponding analog output is read-out.

Within each voltage bias cell a digital target value is programmed in a 10-bit
SRAM memory. A global voltage ramp is generated that rises from 0 to 1.8 V
and is distributed along the entire Capmem array. A 10-bit digital counter starts
counting simultaneously, and every time it hits the maximum value, it resets the
voltage ramp. A comparator compares the digital counter with that of the target
SRAM value and upon a match, the ramp voltage is sampled on a capacitor. In the
current cells, the voltage ramp is converted to generate a linearly rising current, and
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using a circuit similar to the voltage cells, the sampled voltage generates current
from an output PMOS transistor.

The Capmem provides a bias storage from 200 mV to over 1.6 V for the voltage
cells and 15 nA to 1 µA in the current cells. This range is tunable with a 10-bit
resolution. The current cells have a PMOS output stage tied to a 2.5 V supply.
This means additional mirroring if the receiver circuit (that uses the bias) does not
have an NMOS based input current mirror. This may entail more variation due to
device mismatch. Further, if the receiver circuit has a thin-oxide circuit directly
biased with such current cells, then the design should ensure that no low-voltage
nodes exceed 1.2 V. Due to the high output impedance, in most cases this should
not be a problem. From the software interface the user programs a digital 10-bit
DAC value, against which an equivalent voltage and current bias is programmed.
Once a target value is programmed, it may take one or more ramp refresh cycles
until the target value is reached. The refresh rate is typically set at 1–2 kHz.

Fig. 2.7 shows plots for voltage and current cells where the digital programmed
value is swept for both types of cells. The analog output of both voltage and current
cells are read-out for every LSB increase over the entire 10-bit range and is plotted
for all cells. More details on the design and specifications of the capacitive memory
can be found in [89, 90].

2.1.6 Membrane ADC and PLL

The high-speed ADC that digitizes the membrane (MADC) is a 10-bit time-
interleaved successive approximation register architecture. It has a 125 MSps
maximum conversion rate with two channel time-interleaving, each with a rate
of 62.5 MSps and consuming about 2 mW power. The membrane input signal
is converted to a differential signal and connected to both ADC channels with
different sample and hold phases. An on-chip phase generator generates separate
phases from an externally supplied input clock.

The PLL is a two channel all-digital architecture with three output clocks per
channel. It takes an input clock fclk,ext of 50 MHz to provide a maximum of
N ·P0·fclk,ext

P2
from the first output, and N ·P0·fclk,ext

P1M0,1
from the other two outputs. Where

N is the loop divider and P0,1,2 are the pre-dividers. These pre-dividers can be set
between 2, 3 or 4, whereas M0,1 can be set between 0 and 31. The loop divider N
can have values between 2 and 31. The PLL can generate a maximum output clock
frequency of 1 GHz.

The PLL and the MADC have been designed by project partners at TU-Dresden
and EPFL.

2.1.7 Neuron Array

Each column within an ANC quadrant integrates a single neuron circuit and a total
of 128 columns lead to a 128 × 4 neurons on a single HICANN-DLS die. The
neuron circuit emulates an AdEx neuron model as a point neuron [91] that can be
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extended to multiple compartments. Along with the equivalent of Sodium (Na+)
spikes, it can be configured to evoke broad spikes, such as NMDA plateau poten-
tials and calcium (Ca2+) spikes [92]. The point neuron which takes a synaptic
fan-in of 256, can merge its membrane with other neuron compartments to realize
larger neurons with a higher fan-in of greater than 10 thousand. A larger neuron
(combined membrane) however decreases the size of individual Post Synaptic Po-
tential (PSP)s. Each point neuron circuit is configured via 16 current biases and
8 local voltage biases for analog control, as well as 40-bit SRAM for digital con-
figuration. The neuron circuit can be reduced to the LIF model due to its modular
architecture [91, 93]. The configurable pulse intervals, for example, the tunable
refractory period, the adaptation pulse-width are controlled by a digital block [94].

The neuron integrates the current pulses from the dendritic input provided by
excitatory and inhibitory synaptic input lines. Each excitatory input causes the
membrane potential to rise and decay with a time constant towards a resting poten-
tial. It evokes a digital event once the integrated analog voltage reaches a specified
threshold. This output digital pulse fire marks a single spike, that is routed to
other pre-synaptic inputs in the network through the digital neuron control and the
merger matrix. The analog voltage can be read-out using a voltage buffer. Fig. 2.8

Na Ca NMDA NMDA

Neuron Array

Synapse Array

S S S S

S S S S
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& inhibitory

synaptic
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pre-synaptic

inputs

Soma interconnect

tunable inter-compartmental

conductance

tunable membrane

Intercompartment/

membrane switch

Figure 2.8: An illustration of the realized multi-compartment columnar array as
highlighted in [92]. Each neuron compartment in the array can be configured to
elicit different types of spike responses. The Na+ compartment realizes a high-
conductance path (direct connection) to the soma. The soma forms connections to
other compartments via a tunable inter-compartment conductance.

shows a block diagram of the synaptic array connected in the columnar architec-
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Figure 2.9: Spiking response in different compartments and ion channels upon
stimulation. Top) A sodium exponential spike (blue) and its coupling effect in a
neighboring compartment (red). Bottom) Na+ spikes (blue) at 100 µs and 120 µs
and an NMDA plateau potential (red). Figure adapted from [92].

ture to the neuron compartmental array. Four columns are shown, where only Na+

compartment is connected directly to the soma. The other compartments, config-
ured to evoke Ca2+ spikes/NMDA Plateau Potentials, are connected to the soma
via a tunable conductance. Every single compartment may also be configured as a
single point neuron, or alternatively, as a single large neuron where the membrane
capacitance of all columns/compartments is connected via the membrane switch.
The membrane capacitor of each compartment is in turn tunable.

Fig. 2.9 (top, blue line) shows a circuit simulation where an exponential spike
is evoked in one neuron compartment, as a result of strong input stimulus applied
at 15 µs. A neighboring connected compartment (top, red trace) passively follows
the main compartment and responds with a subthreshold behavior. The bottom
figure shows example spike shapes and their duration. Two Sodium spikes (bottom,
blue trace) are shown at about 100 µs and 120 µs respectively and a broad NMDA
plateau potential (red trace) is evoked between 78 µs and 145 µs when stimulated
by input synaptic current.

This thesis covers the implementation of single compartment neuron models.
The emulation and analysis of multi-compartment emulation is not covered. Inter-
ested readers for multi-compartment realization are directed to read [92].
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2. SECOND GENERATION BRAINSCALES HARDWARE

2.2 Existing Wafer-Scale System

As mentioned above, the BrainScaleS system does not dice the CMOS wafer and
chip-to-chip communication can occur by staying on the wafer. Compared to a
standard PCB solution with multiple chips, this approach helps address the high
data rate requirement, reduces the switching energy due to lower line capacitance
(shorter on-wafer traces), and simplifies the signal integrity and matching issues
[80].

Figure 2.10: A 3D rendered drawing of individual parts that constitute the wafer
module [80].

Fig. 2.10 shows a rendered drawing of the integrated wafer module in the first-
generation wafer system (A). The foundry CMOS wafer is post-processed to create
links between adjacent dies as well as to provide mating structures to connect the
wafer to its main PCB (D) via the elastomeric connectors. An opening in passi-
vation layer is created to connect top metal layer to two copper routing layers –
the fine-pitched routing for interconnection between the adjacent reticles, and the
coarse intermediate routing to connect to the reticle pads. Two elastomeric connec-
tors are shared between every two dies, and are used to communicate high-speed
clock and data signals, JTAG I/O and read-out data as well as the supply voltages.
To align the 384 elastomeric connectors during the assembly stage, a positioning
mask (C) with 384 slots is cut out from an FR4 sheet [80]. Beneath the wafer is
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2.2. EXISTING WAFER-SCALE SYSTEM

another PCB that hosts up to 48 Xilinx Kintex-7 FPGA boards, one per reticle (B).
This FPGA board communicates with eight HICANN dies via the Low-Voltage
Differential Signaling (LVDS) interface, as well as to the host PC via the Gigabit
Ethernet interface. It can also communicate to other FPGA boards using the Xilinx
Gigabit Transceivers (GTX). The board provides an I/O interface for configuration
and spike data from the host PC and contains DDR3 memory for storage of Ether-
net frames, stimulation pulses and output pulse activity during an experiment. The
Gigabit Ethernet connectors (H) are available at the bottom edges and provide con-
nectivity to the compute cluster as well as to other wafers. An aluminum frame (J)
provides mechanical stability to the system. On the top there are separate PCBs (E,
F, G) that provide power supply to the system, as well as the analog read-out ca-
pability. A photograph of the fully assembled wafer module is shown in Fig. 2.11.

Figure 2.11: A photograph of a single fully assembled wafer module [80, 95].

An output event generated from one neuron on a chip, takes a path that is
specified in Fig. 2.12. A neuron marked N1 fires and a priority encoder arbitrates
its access to the network. The neuron with highest (and fixed) priority is selected.
The 6-bit neuron identifier is streamed out by the serializer, and sent out to the L1
bus via an output driver that caters for L1 voltage levels. As the signal traverses the
vertical and horizontal L1 buses, each chip inserts repeaters at its boundaries for
signal and timing restoration. A repeater consists of an input differential amplifier
to restore signal levels. Timing restoration is done with a serializer and a Delay-
Locked Loop (DLL). A crossbar switch connects the horizontal and vertical L1
lanes. The event may go through several repeaters before being received at the
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2. SECOND GENERATION BRAINSCALES HARDWARE

Figure 2.12: The event route over the horizontal and vertical L1 lanes in the wafer-
scale system [81].

target site where it is de-serialized. The resulting output address is decoded and
enters the target neuron through the respective synapse driver. More information
on BrainScaleS wafer-scale system integration can be found in [80, 81].
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Chapter 3

Design and Measurement
Framework

This chapter introduces the pre-considerations, design environment and the mea-
surement framework available for the HICANN-DLS neurons. In this context, we
review the implemented neuron models and the parameter ranges they target to
motivate the circuit specifications. An overview of the CMOS process technology,
operating characteristics of MOS devices used in this work, introduction to the
fabricated chips as well as their measurement setups are provided.

3.1 Models for Hardware Implementation

The choice of a hardware neuron model is dictated by the trade-off between the
rich template and computational power of a biological neuron, versus the design
complexity, power consumption and on-chip area requirements. This implies that
the neuron models should be able to replicate most computational studies, yet be
simple enough such that a prototype ANC integrates a sizable number of neurons
to prove and realize small functional networks. This opinion has also been en-
dorsed, e.g., in [96, 97] as a means to envision large-scale neuromorphic systems.
We therefore rely on low-dimensional integrate-and-fire neuron models, described
previously in Sec. 1.2.

The LIF model can be directly realized in hardware, as the membrane equa-
tion and the reset condition (reproduced in Eq. 3.1 and Eq. 3.2) require current
integration on a capacitor and a non-linear pulse generation circuit that resets the
membrane as it reaches a threshold. Mathematically this can be expressed as

Cmem
dVmem

dt
= −gleak · (Vmem − Vleak) + I (3.1)

and if Vmem ≥ Vthresh

Vmem → Vreset (3.2)
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3. DESIGN AND MEASUREMENT FRAMEWORK

where Vmem is the membrane potential, Cmem is the membrane capacitance, Vreset
and Vthresh are reset and threshold potentials, Vleak models the leak potential and
gleak is the leak conductance. I is the sum of the externally injected current (Istim),
the synaptic excitatory (Isyn,exc) and inhibitory (Isyn,inh) currents. The synaptic
inputs integrating these currents are exponentially decaying current-based inputs,
whose time course can be defined as

Isyn(t) =
∑
i

∑
f

wie
−
(
t−tf

i
τsyn

)
Θ(t− tfi ) (3.3)

where wi is the weight of the synapse connecting a pre-synaptic neuron to a post-
synaptic neuron, tfi denotes the f th spike at a synapse i, Θ(x) is the Heaviside step
function and τsyn is the synaptic time constant.

The first implementation in the prototype chips has featured the LIF model,
extended to the AdEx model [91] in the last revision. The AdEx model previously
described in Sec. 1.2.2 is defined by

Cmem
dVmem

dt
= I − w − gleak(Vmem − Vleak)

+gleak∆T exp
(
Vmem − VT

∆T

) (3.4)

τw
dw

dt
= a(Vmem − Vleak)− w (3.5)

where in addition to the Eq. 3.1 we have w as the adaptation current, and the
last term in Eq. 3.4 models the exponential current. Where a is the subthreshold
conductance, VT is the exponential threshold and ∆T is its slope factor. At spike
time, the membrane is reset to a specified reset potential like the LIF model, but
additionally the adaptation variable w is updated by a current b, such that w →
w + b.

To simplify the hardware realization of the adaptation term [98, 99], its output
current is equated as

w = a(Vw − Vleak) (3.6)

whose substitution modifies Eq. 3.5 as

−τw
dVw

dt
= a(Vw − Vmem) (3.7)

Further, as τw = Cw/gw, one can solve to obtain

−Cw
dVw

dt
= gw(Vw − Vmem) (3.8)

In the realized adaptation term, Eq. 3.6 and Eq. 3.8 are implemented. Similarly,
for the exponential term (last term of Eq. 3.4), the circuit exploits the subthreshold
MOS dynamics to generate the exponential current dependent on the membrane
potential Vmem. The exponential slope factor ∆T as well as the scaling parameter
gleak∆T in the model are determined by the transistor dynamics.
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3.2. SPECIFICATIONS AND PARAMETER RANGES

3.2 Specifications and Parameter Ranges

The target specifications of the designed neuron circuit and the tunable range of
its parameters have been identified from a selected set of computational studies
[36, 42, 99–109]. The selection has been done on the basis of model networks that
are expected to be realized on the prototypes and wafer-scale systems. They have
been compiled by Paul Müller [110] and reproduced here in Table 3.1.

variable min. max. unit
τmem 7 50 ms
τsyn 1 100 ms
τref 0 10 ms
Vleak −100 −56 mV
Vthresh −57 −40 mV
Vreset −72.5 −46 mV
Erev,E 0 0 mV
Erev,I −90 −70 mV
a −11 56 nS
b 0 250 nA
τw 16 600 ms
∆T 0.8 5.5 mV

Table 3.1: The selected set of parameter ranges collected from a number of com-
putational modeling studies [110]. These define the target specifications for the
neuron circuit.

In the BrainScaleS model the hardware dynamics are accelerated. The voltage
level is dictated by the used supply voltage and designed circuits. It can be scaled
with a chosen factor αv and shifted with an offset ωv. Denoting the speed-up factor
as αt, the hardware voltages can be related to the biological potentials as

Vhw(t) = V (αt) · αv + ωv (3.9)

The target time constants in the hardware domain are scaled by αt fixed to one
thousand times. From Eq. 3.9 one can derive the hardware-based conductances
leading to

ghw =
Chw

Cbio
αt + gbio (3.10)

The equivalent hardware conductances, e.g., the leak conductance gleak as well
as the subthreshold adaptation conductance ga are obtained from the biological
quantities (Cbio, gbio) using Eq. 3.10.
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3. DESIGN AND MEASUREMENT FRAMEWORK

3.3 MOS Devices and the 65 nm CMOS Process

The neuron circuits have been designed in a low-K 1P9M 65 nm low power digital
CMOS process. The technology offers 1.2 V thin oxide (core) devices as well as
2.5 V thick-oxide (I/O) transistors. For the core devices, a number of variants are
available. For example, devices with high, low and standard threshold voltages Vth,
as well as those for high speed are provided. The technology features 9 metal layers
and a single poly layer and offers two different metal capacitors, namely the Metal-
Insulator-Metal Capacitors (MIMCAP) and the Metal-Oxide-Metal (MOMCAP).
Monte Carlo and Corner models are available to simulate device mismatch and the
process corners.

The previous neuron designs for BrainScaleS hardware used a 1.8 V 180 nm
CMOS process [99]. The neuron circuits were designed with an acceleration factor
of 104 or faster. With a change in technology node and different time constants (due
to a different acceleration factor) new circuit architectures were to be explored and
evaluated in the current 1.2/2.5 V 65 nm CMOS process.

The neuron circuit in this thesis evaluates new circuits inspired from previous
neuron designs and targets the specification ranges listed in Table 3.1. Wherever
the design allows, a low-voltage (1.2 V) solution is targeted with the additional
benefit of reduced silicon area (thin-oxide devices). As a whole, it remains a com-
bination of both supplies (1.2/2.5 V) designed using thin- and thick-oxide devices.

Figure 3.1: The voltage designations and symbols for PMOS (left) and NMOS
(right) used in this thesis.

Fig. 3.1 shows a PMOS (left) and NMOS device (right) where the voltage
designations are marked, as used in the course of this thesis. The four terminals
are marked together with their potential difference labels. A distinction between
1.2 V (core) or 2.5 V (I/O) devices is not explicitly shown by the transistor symbols
and is to be understood from the power supply lines, unless otherwise stated. Bulk
terminals in schematics are only shown, when they are not tied to ground (for
NMOS) and voltage supply (for PMOS).

The output characteristic curves of the minimum length transistor with a de-
vice threshold (Vth) of about 0.52 V is shown in Fig. 3.2a. For VGS > Vth, if
VDS < VGS − Vth, the device is in linear (ohmic/triode) region where the current is
expressed by
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3.3. MOS DEVICES AND THE 65 NM CMOS PROCESS

ID = µnCox
W

L

[
(VGS − Vth)VDS −

V 2
DS
2

]
(3.11)

where µn is the carrier mobility of an NMOS device, Cox is the gate oxide ca-
pacitance per unit area and W/L is the ratio of channel width and length. As
VDS � VGS−Vth, the transistor enters a deep triode region where the drain current
is

ID = µnCox
W

L
(VGS − Vth)VDS (3.12)

which emphasizes a more linearized relationship between the drain current and the
drain potential with respect to the grounded source. For the sake of simplicity only
NMOS case is discussed. The threshold voltage Vth of a device is modeled as

Vth = Vth0 + γ(
√
|2φF + VSB| −

√
|2φF|) (3.13)

where Vth0 is the threshold voltage at VSB = 0, and is a function of the manufactur-
ing process. γ =

√
2qεSiNA/Cox is the body-effect coefficient and φF = kT

q ln
NA
ni

is
the Fermi potential, q is the electron charge, NA is the doping concentration of the
substrate, εSi is the dielectric constant of silicon and ni is the carrier concentration
of intrinsic silicon.

For analog design we mostly bias the transistors in saturation region where
VDS ≥ VGS − Vth. The drain current there can be expressed as

ID =
µnCox

2

W

L
(VGS − Vth)2(1 + λ · VDS) (3.14)

where λ is the channel length modulation parameter inversely proportional to the

0.0 0.2 0.4 0.6 0.8 1.0 1.2
VDS [V]

0

15

30

45

60

I D
[µ

A
]

VGS [V]
1.0
0.9
0.8
0.7
0.6

(a) ID vs. VDS with swept VGS.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
VGS [V]

101

102

103

104

105

106

107

108

lo
g
I D

[µ
A

]

(b) log ID vs. VGS with fixed VDS.

Figure 3.2: The simulated output and input characteristics of a short-channel (min-
imum length) NMOS device.

channel length ( λ ∝ 1
L ). The larger λ is evident from the slope of the curves for

various values of VGS shown in Fig. 3.2a. Fig. 3.2b shows the input characteristic
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at a fixed value of VDS = 0.5 V and plotted on the log-scale. The Vth of the device
is 0.52 V, below which the device exhibits an exponential increase in current with
an increase in gate-source potential VGS.

As the channel length is increased from 60 nm to 1 µm, λ decreases and the
saturated output characteristic curves show a reduced slope, as shown in Fig. 3.3a.
A longer than minimum channel length is therefore a typical choice for analog
circuits.
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Figure 3.3: The output characteristics of a long-channel NMOS device.

The output characteristics of a long-channel NMOS device biased below
threshold voltage (VGS < Vth) is further shown in Fig. 3.3b. The device threshold
here is 0.38 V and the plot shows four curves with VGS between 0.2 V and 0.3 V. It
shows an exponential relationship of the drain current as a function of gate-source
potential. Notice how the current increases linearly for up to a UT of VDS, where
it is proportional to VDS

UT
for a fixed VGS. As VDS is increased more than 3 – 4UT,

the current saturates. In subthreshold or weak inversion the drain current [111] of
a MOS device is given as

ID = I0e
VGB−Vth0
nUT (e

−VSB
UT − e

−VDB
UT ) (3.15)

where I0 = 2nµCox
W
L U

2
T . The parameter n is a technology parameter equivalent to

Cox+Cj0
Cox

. Here Cj0 is the junction-depletion capacitance per unit area of a reversed
bias diode (0 V bias), specified in units of fF/µm2. It increases as the technology
nodes are scaled and is usually between 1.5 (old technologies like 0.8 µm CMOS)
to 1.85 (45-nm CMOS) [88]. For the 65 nm CMOS process node, the estimated
value is around 1.8. For details one can look into the predictive technology model
cards [112].

If the bulk and source terminals are shorted, i.e., VBS = 0, Eq. 3.15 is reduced
to

ID = I0e
VGS−Vth
nUT (1− e

−VDS
UT ) (3.16)
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when VDS > 4UT, this approximates to

ID = I0e
VGS−Vth
nUT (3.17)

Since a MOS device acts as a voltage controlled current source, its transconduc-
tance in saturation region is defined as

gm =
∂ID

∂VGS

∣∣∣
VDS

(3.18)

= µnCox
W

L
(VGS − Vth) (3.19)

=

√
2µnCox

W

L
ID =

2ID

Veff
(3.20)

where Veff = VGS − Vth. Similarly the output conductance gDS is defined as

gDS =
∂ID

∂VDS
= λID (3.21)

In the triode region the transconductance and output conductance are

gm = µnCox
W

L
VDS (3.22)

gDS = µnCox
W

L
(Veff − VDS) (3.23)

as the transistor moves to deep triode region, the negative VDS in Eq. 3.23 drops
out, giving us a linearized relationship.

The MOS gate oxide capacitance contribution varies with the biasing condi-
tions. When VGS > Vth a channel is formed between the drain and source terminals
and the total gate capacitance is

Cox = C ′ox · WL (3.24)

where WL is the device area and C ′ox = εox/tox is the oxide capacitance per area
with εox = εrε0. The relative dielectric constant of SiO2 is εr equal to 3.9, and ε0
is the vacuum permittivity equal to 8.85 × 10−18 F/µm. Fig. 3.4 shows the capac-
itance contribution of a core (thin-oxide) device, sized to match an ideal capacitor
of 1 pF. Note the gate-oxide contribution varies non-linearly with the biasing con-
ditions. However, when biased in inversion region the capacitance contribution is
nearly linear. For an I/O device, due to its greater oxide thickness, the capacitance
contribution is about half of the core devices. Further discussion on MOS gate
capacitors can be found in Sec. 4.7.
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Figure 3.4: The capacitance to gate voltage curves for core (thin-oxide) device
compared to an ideal capacitor, and an I/O (thick-oxide) device of the same size.

3.4 Prototype Chips

A total of three prototype chips have been designed in this thesis to test the neuron
circuit arrays. In the course of this thesis, the chips are labeled DLS-1, DLS-2
and DLS-3 – where the number indicates the tape-out sequence. The first two
chips implement the LIF neuron model, while the third one implements the AdEx
model. All three prototypes have a digital backend implemented together with the
ANC and the PPU, and an upstream software programmability for chip parameters
(biases) has been provided. All prototypes have had routing capabilities to realize
small networks – and therefore the basic functionality of the larger enhanced chip
per se.

The DLS-1 chip is a 1.7 mm × 2.2 mm MPW run, with a total of 64 neurons
in the array. Being the first prototype in 65 nm CMOS technology, the designed
circuits take inspiration from the HICANN neuron circuits. A notable shortcoming
is however the architecture of the synaptic input, which targets a novel architec-
ture. The circuit is not robust to device mismatch, which make the synaptic inputs
unusable. The other sub-circuits within the neuron are qualitatively tested. A die
photograph of the DLS-1 chip is shown in Fig. 3.5. In order to correct the errors
encountered in DLS-1, a revised synaptic input architecture has been designed in a
second mini@sic tape-out, which also fixes other circuits of the ANC. A 1.9 mm
× 1.9 mm chip is designed with an overall similar chip architecture and no new
major components. The chip features 32 columns within the ANC, and therefore
32 neurons in the array. The circuit has been measured in considerable detail [79],
described further in Chapter 4.

The third prototype chip DLS-3 enhances the neuron circuit significantly,
emulating the AdEx model, multiple compartments and a conductance-based
reset. It features digital control for the configurable timing of refractory period
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Figure 3.5: The first prototype of the HICANN-DLS chip bonded on a setup daugh-
terboard. Photo by Matthias Hock.

and adaptation pulses. The author implemented the AdEx analog neuron, while
multi-compartment/conductance-based reset have been implemented by Johannes
Schemmel. The digital control for the neuron is an implementation from Gerd
Kiene. During the measurement of the DLS-3 chip, significant crosstalk has been
detected that affects the neuron operation during certain firing regimes. Details are
provided in Chapter 5.

3.5 Measurement Framework

The measurement framework comprises of a daughterboard that directly bonds the
chip die and is mounted atop the main setup carrier PCB. The PCB hosts a Xilinx
Spartan-6 XC6SLX150T FPGA board equipped with DDR3 SDRAM memory.
The FPGA communicates with the digital chip interface over a SerDes link for
control and event data. The FPGA also communicates with a host PC via a USB
2.0 link. The data communicated with the chip is first buffered into the DDR3
memory to maintain precise timing control. The system can be operated up to a
clock frequency of 500 MHz [83]. The FPGA board also hosts a 12-bit 125 MSps
ADC. The schematic diagram in Fig. 4.2 shows the arrangement where the digital
interface of the chip communicates with the FPGA on the PCB. The description of
the chip architecture is described in Chapter 4.

On the setup PCB power supplies of 2.5 V and 1.2 V are derived from low
drop-out (LDO) voltage regulators. The debug outputs from the chip are selected
by three SP3T analog switches, and are digitized by the Flyspi ADC via an on-
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Figure 3.6: Architecture of the DLS-2 chip together with the off-chip components
integrated on the PCB.

board programmable gain amplifier. The board hosts sixteen 12-bit DAC channels
that are interfaced to the Flyspi FPGA via the I2C interface for input settings. The
voltage outputs of three DAC channels are used to generate bias currents for the ca-
pacitive memory global current biases. The board further hosts LVDS transceivers
for communication between the chip’s digital backend and the FPGA board. The
board has been designed by Matthias Hock and shown in Fig. 3.7.

In the revised board for the third prototype, more features have been added.
This board has been designed by Korbinian Schreiber and is shown in Fig. 3.8. A
JTAG interface is featured to program the on-chip PLL. A fully differential buffer
is added to test the MADC directly using the external interface. To support network
access, a Gigabit Ethernet transceiver is integrated onboard. For characterization
of the chips, the Keithley 2635B sourcemeter is used to measure or source nano
to microampere currents. This is, for example, useful to record OTA output cur-
rents, their residual output offsets on the membrane or inject external stimulus cur-
rent in the membrane. The analog voltage measurements are taken using LeCroy
Wavesurfer 44Xs 400 MHz oscilloscope in conjunction with LeCroy active probes,
e.g., ZS1000 with a specified impedance of 0.9 pF‖1 MΩ. The Hewlett Packard
50 MHz HP8116A is used as a signal generator for the large and small signal mea-
surements, for example to test the read-out buffer.
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Figure 3.7: The chip measurement setup used to measure the first two prototypes
of the chip. Shown in the figure is a setup PCB that hosts the chip carrier board as
well as the FPGA board that communicates with the PC over a USB link [93].

Figure 3.8: The enhanced measurement board designed for the third prototype.
Photo by the Author.
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3.6 Calibration

The design of the neuron ensures that all individual sub-circuits can be calibrated
[113] against the non-ideal effects, caused for example due to device mismatch
or corner effects. This is possible due to the presence of tunable Capmem cells
and it increases the accuracy of individual circuits in the neuron array. Calibra-
tion is performed at two levels. Initially, the pre tape-out netlist is calibrated using
Monte-Carlo device models, for example as described in [110]. Furthermore, dur-
ing measurements the entire array is calibrated and a database is maintained for
every available die under use. For the chip prototypes described in this thesis, the
pre tape-out calibration has been verified by Paul Müller, whereas the post tape-
out calibration for DLS-2 chip has been done by Yannik Stradmann. Calibration is
done by taking polynomial fits for the individual response of the circuit blocks in
the entire array, as described in [79].
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Chapter 4

Emulation of the Leaky Integrate
and Fire Model

This chapter describes the emulation of the leaky integrate-and-fire model. The
implemented neuron circuit as well as the design of individual subcircuits are de-
scribed and the results from chip measurements as well as circuit simulation are
presented.

As already described in the previous section, the subthreshold dynamics of the
leaky integrate and fire model with current based synapses is described as

Cmem
dVmem

dt
= −gleak · (Vmem − Vleak) + IsynExc + IsynInh + Istim (4.1)

where Cmem represents the membrane capacitor, gleak and Vleak are the leak con-
ductance and leak potential, IsynExc and IsynInh represent the incoming integrated
excitatory and inhibitory currents from the synaptic inputs, while Istim denotes the
possibility of an externally injected current which can stimulate the membrane.

4.1 Neuron Circuit

The circuit conceived to implement the LIF neuron model of Eq. 4.1 is shown in
Fig. 4.1. The left half of the schematic shows the synapse array which is exter-
nal to the neuron circuit, while the right side sketches the neuron circuit. In the
columnar ANC architecture of the HICANN-DLS chip, a multitude of synapses
give out current to a single neuron circuit. The schematic shows a single synapse
column feeding short current pulse events on two synaptic lines labeled IsynExc and
IsynInh. These lines relay input events to a single neuron circuit in every column.
The output stage of the synapse is a 6-bit Digital-to-Analog Converter (DAC) that
modulates the size (amplitude) of these pulse events, 4 ns in duration. At the neuron
side, the two synaptic input subcircuits, an excitatory and an inhibitory one inte-
grate these current pulses, before integration onto the membrane capacitor Cmem.
Every incoming pulse event increases the integrated membrane potential Vmem. A
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Figure 4.1: The full circuit schematic of the implemented LIF neuron model.

transconductor in unity gain feedback models the leak circuit and pulls the mem-
brane towards a leak potential Vleak. A pulse generating circuit labeled SpikeGen
generates a digital output pulse fire, as the membrane potential reaches a voltage
threshold Vthresh. The pulse marks the emission of a single spike event, and at the
same time resets the membrane Vmem to the reset potential Vreset via the Reset cir-
cuit. Along with membrane reset, this reset circuit also adds the refractory period
duration τrefr, during which the membrane is clamped to Vreset.

A debug buffer amplifier reads out the input synaptic activity or the membrane
potential externally, at the pin labeled VreadOut. Another pin labeled Istim can stim-
ulate the membrane with an externally applied current, or hold it at a certain spec-
ified potential from the external environment. The debug block is labeled Analog
I/O in Fig. 4.1.

Notice the presence of twelve different switches labeled S0−11 in the neuron
schematic. These either disconnect the individual circuit blocks from the mem-
brane Vmem or act as select lines, and are controlled digitally through the digital
back-end of the chip. Finally the output fireout pulse that goes to the digital back-
end, may also arrive from the bypassed synaptic inputs via tri-state inverters con-
trolled by switches S9,10. This happens when a bypass mode is enabled, where the
analog current integration is disabled and the incoming synaptic input pulses from
synapse array (column) directly drive the tri-state buffers to generate output pulse
events.
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Figure 4.2: The simplified architecture of the second HICANN-DLS prototype.

Figure 4.3: The micrograph of the second HICANN-DLS prototype chip (DLS-2).
Photo by the Author.
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4.2 Prototype Chips

The emulated leaky integrate-and-fire model circuit described in Sec. 4.1 has been
developed over two prototype chips. The schematic of Fig. 4.1 has been identical
for both prototypes, however, internally the sub-circuits have had significant dif-
ferences. The second tape-out improved and fixed the circuits of the first version.
The following changes have been made between the two prototypes:

• The architecture and sub-circuits of the synaptic input

• The circuit designed for the leak OTA

• The number of integrated neurons on the chip

• Re-adjustment of achievable refractory period range

The architecture of the synaptic input circuit was completely revised, whereas
the leak OTA was improved. The refractory period range adjustment was a minor
change. The number of integrated neurons were changed mainly because DLS-1
was an multi-project wafer (MPW) run, while DLS-2 was a mini@sic where the
allowed die area is limited.

In both prototypes, the neuron array was embedded in the ANC that comprised
of a synapse matrix, the capacitive memory parameter arrays as well as correla-
tion ADCs. This architecture in its simplified form is shown in Fig. 4.2. An array
of 32 neurons is connected to a 32 × 32 synapse matrix. The ANC has in total
32 columns, one per neuron, in which each neuron takes 18 individual (local) pa-
rameters and one globally tunable parameter. The capacitive memory that stores
these biases is located right at the bottom of the neuron array. At the top each col-
umn in synapse matrix gives out current pulse events on two synaptic lines, each
for excitatory and inhibitory current. The system also features an implementation
of the STDP rule, for which it stores two analog voltages inside each synapse on
two capacitors. These two voltages are digitized by the Correlation ADC (CADC)
channels shown on the top edge of synapse matrix. The digitized weights are read
by the plasticity processor which implements the learning rule and modifies the
synaptic weights stored in a 6-bit SRAM inside each synapse accordingly. In this
prototype, the digital output events generated by the neuron were taken off-chip via
the SerDes to the FPGA, from where they were routed back in the synapse matrix.
All data transfer is carried out in the form of packets using OMNIBUS [82]. The
packets encode synaptic addresses, synapse enables as well as spike events. The
die micrograph of the taped-out chip is shown in Fig. 4.3.

The following sections describe the individual sub-circuits of the taped-out
neuron circuit, their design, simulation and measurement results as well as the
modifications between the prototype chips.
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Figure 4.4: The synaptic event pathways between the synapse array and the synap-
tic inputs of each neuron.

4.3 Synaptic Input

The synaptic input circuit provides exponential synaptic dynamics to incoming
excitatory or inhibitory current pulse events from shared synaptic lines, prior to
their integration on the neuron membrane. The synaptic event path between the
synapse array and the synaptic inputs of the neuron is visually illustrated in Fig. 4.4.
The output stage of each synapse circuit within the synapse array consists of a 6-
bit DAC, whose analog output controls the maximum amplitude of the pulse event
that each synapse emits. The 6-bit input DAC code is hence the weight of the
synapse circuit and the amplitude (size) of each pulse is directly modulated by
it. The DAC output is connected to either of the two synaptic input lines within
the synapse, and depending on the connection the input events are designated as
excitatory or inhibitory events. The voltage on these lines (labeled IsynInh, IsynExc)
is 1.2 V, unless the DAC emits a pulse event which pulls it lower. In the latter
case, the integrator architecture at the neuron side recovers the voltage back with
a time constant. These lines also have substantial parasitic capacitance (labeled
Cpar in Fig. 4.4), which grows with the number of synapses in the column. Further,
shown in Fig. 4.4 are switches in the input event path – these are transmission gate
switches and are controlled digitally by signals ensadj0, ensadj1 for the excitatory and
inhibitory inputs. Together with two other switches enradj0, enradj1, these switches
help debug the synaptic interface, e.g., in measuring the synaptic current at the
output pins syntestexc and syntestinh. Alternately, they facilitate measurements of
the input stage of synaptic inputs. In the nominal setting, the switches enradj0,
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enradj1 are kept open, whereas the switches ensadj0, ensadj1 are kept closed.
The following subsections first describe the initial architecture of DLS-1 briefly

from the first chip, followed by a more detailed discussion on the modified solution
of DLS-2 chip.

4.3.1 Initial Architecture

The synaptic input architecture needs to first integrate the current pulses using
an integrator, before integrating equivalent current onto the neuron membrane. A
straightforward architecture to realize the current-based synaptic input, is to first in-
tegrate using an opamp based integrator circuit and then convert the output voltage
into an equivalent current. The integration stage can simply be a leaky integrator
with a floating tunable resistor Rsyn parallel to the integrating capacitor Csyn. This
is shown in Fig. 4.5.

Figure 4.5: A tunable leaky integrator circuit used in many applications.

Such an integrator architecture would however require a metal capacitor or
metal-finger capacitors, which are more area consuming on the chip compared to
MOS capacitors. Furthermore, to realize the desired time constants either large
capacitors or large values of tunable resistor would be required. Typical on-chip
capacitors such as MIMCAP or MOMCAPs require a large die area1, and since
the two synaptic inputs may consume only up to 25% of the final neuron area,
use of larger metal capacitors is kept to a bare minimum. An alternate is to use
MOS based capacitors, which usually reduce substantial area compared to a metal
capacitor, but they have certain known non-ideal effects, for example

• their capacitance value varies across different regions with the applied gate
voltage,

• to bias them in inversion region, a gate-voltage greater than the MOS thresh-
old voltage Vth is required.

1This CMOS process utilizes the metal layers 3-to-5 to form MOMCAPs, whereas MIMCAPs
block metal layer 7 of the routing stack. To prevent reduction of routing resources, MOMCAPs were
not used anywhere in the neuron.
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Figure 4.6: The schematic of the synaptic input circuit for DLS-1 neuron.

These two properties have already been shown in Sec. 3.3. Further discussion
on MOS capacitors is deferred until Sec. 4.7. These two considerations for utiliza-
tion of MOS based capacitor give rise to the synaptic integrator architecture shown
in Fig. 4.6. This integrator has several differences. First, it creates a voltage drop
between the Gate-Source voltage of the MOS capacitor Csyn, since the voltage at
node Isyn,exc is 1.2 V, while node Vinteg is dropped by the drain-source voltage of
transistor M1. Secondly, it uses two grounded tunable resistors, as opposed to a
resistor floating between two nodes. The upper resistor Rsyn tunes the synaptic
time constant τsyn (with a fixed capacitor), whereas the lower resistor helps set the
DC offset at the output node Vinteg of the integrator.

While the proposed integrator does work in the ideal case, it has an obvious
flaw. The gate voltage of transistor M1 is actually being driven by the output
common-mode of the amplifier. The output common mode is typically set by the
design at mid-range of the 2.5 supply, i.e., at about 1.2 V. This 1.2 V gate volt-
age is applied to the transistor M1, which ensures a saturation region in the ideal
case. However, since the amplifier is in open loop, the input-referred offset voltage
between the two amplifier terminals will be amplified by the open loop amplifier
gain. This will shift the output common-mode point towards either of the supply
rails, depending on the offset polarity. This will in turn shift the output node Vmem
of integrator towards either of the supplies. The resistor Roff in principle could
compensate and tune this effect, but it does not cover all statistical samples. To
effectively trim the input offset using the parameter Vsyn, it requires higher resolu-
tion than the 10-bit available from the current implementation of voltage parameter
cells. The circuit limitations were known from the simulation results prior to chip
tape-out.
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4.3.2 Amplifier

The amplifier designed for the initial synaptic input integrator was a current mirror
OTA shown in Fig. 4.7. There are a few advantages in using this design. First, it
does not require a compensation capacitor, which saves significant area. Second,
if we derive expressions for gain, bandwidth and slew-rate, we find out how the
mirroring factor plays a role on in determining these quantities. The open loop
DC-gain of the amplifier is given by

AOL ≈
gm1

gm3
· gm9

gDS8 + gDS9
= K · gm1

gDS8 + gDS9
(4.2)

whereK = gm9/gm3 is the ratio of transconductances formed by the current mirror
transistorsM3,M9. The unity gain bandwidth is therefore ωu = K ·gm1/CL, where
CL is the output load capacitance. Further, the slew rate SR = K · Itail/CL, where
Itail is the current from tail current source formed by transistor M5. The designed
amplifier achieves 58.3 dB DC gain, a unity gain frequency of 1.1 MHz and an
input-referred offset of 6.1 mV.

Figure 4.7: The amplifier used in the synaptic input circuit in DLS-1 neuron.

4.3.3 Tunable Resistor Architectures

A literature study was carried out before implementing the MOS tunable resistors
for HICANN-DLS prototypes. There is a plethora of tunable CMOS resistor ar-
chitectures, most of which linearize the resistive range, as well as enhancing the
available tuning range. Both floating resistors [114–118] as well as their grounded
counterparts are proposed [119–121] with varying area and power consumption
figures. For a neuromorphic large-scale integration application, a resistor which is
ultra lower power and consumes minimal area is desirable. Linear tuning in the
range of specified synaptic time constants is required. Note that grounded resis-
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tor are simple in architecture due to their supply (ground) connection. The initial
integrator architecture also requires a grounded resistor as shown in Fig. 4.6.

Implemented Resistor
The resistor architecture for the integrator is inspired from [121]. The architecture
mainly relies on the resistance provided by a single transistor in triode region, and
linearizes its non-linearity by adding a saturated transistor in parallel, as shown in
Fig. 4.8. Transistor M1 is the main triode device, while M2, a diode configuration

Figure 4.8: The tunable grounded resistor used in the synaptic input circuit for
DLS-1.

is in parallel and obeys a squared current law equation. If we neglect the branch
that steals the current through mirror M3/M4, then Id = Id1 + Id2, where Id1 and
Id2 are currents through the triode transistor M1 and the saturated transistor M2.
Adding them results in

Id = Vin [K1(Vb1 − Vth1)−K2Vth2] + Ioff (4.3)

where K = µCox
W
L of each device and Ioff = K2

2·V 2
th

is the offset residual current.
This offset current is further canceled by the presence of another saturated device
M5 which steals this current through the current mirror formed by M3 and M4,
which was initially neglected. Therefore a linear characteristic is obtained. The
resulting resistance is then given as

R = [K1(Vb1 − Vth1)−K2Vth2]−1 (4.4)

The terminal Vd is the input of the resistor, while Vb1 allows to tune the resistance.
This resistor implements the two tunable resistors Rsyn and Roff in the architecture
(see Fig. 4.6). Roff is an NMOS based architecture, identical to Fig. 4.8 whereas
Rsyn is a PMOS based complementary implementation.
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4.3.4 Modified Architecture

The synaptic input architecture is modified in the second chip prototype DLS-2 to
simplify the design, as well as to reduce area and possibly also power consumption.

Figure 4.9: The synaptic input circuit schematic designed for DLS-2.

This architecture replaces the active integrator with a passive one, and utilizes
the parasitic line capacitance to integrate incoming input current pulses. The volt-
age to current conversion is the same as in the last case, i.e., with the use of a
linear source-degenerated transconductance amplifier. The resulting architecture is
shown in Fig. 4.9. The parasitic capacitance multiplies with the number of input
synapses in each row – which in the DLS-2 prototype is 32. The total parasitic
capacitance for 32 input synapses is approximately 50 fF. Therefore, to ensure
the time constants2, 950 fF per synaptic line is placed as a metal capacitor. The
synaptic time constant τsyn is the product of tunable resistor Rsyn and this fixed
(but lumped) capacitor Csyn. A final prototype of this chip will be scaled up and
the number of input synapses will grow from 32 to 256 per neuron. In that case,
the parasitic line capacitance will be at least four times larger contributing 400 fF.
The tunable resistor designed for this synaptic input is a novel architecture inspired
from the bulk-drain connected devices [122–126] described in the next subsection.
The realized transconductance amplifier architecture in Fig. 4.9 also has additional
current biases namely, IbiasOff and IbiasSd. The former cancels the effect of input
offset at the output of the OTA, while the latter is used to provide a separate bias
for the source degeneration devices, meant to linearize the response. This is further
elucidated in Sec. 4.4 which describes the transconductance amplifiers.

Each incoming current pulse event on the synaptic input line IsynExc pulls the
line voltage lower, proportional to the size of input synaptic pulse. Since the tun-
able resistor Rsyn pulls the line up, it recovers the voltage level back with a time
constant τsyn to its initial potential of 1.2 V. An event of 10 µA (4 ns long) event
drops the line potential by about 100 mV. The incoming input synaptic events and
their resulting integrating response on the membrane is shown in the measured

2calculated with a 1 pF fixed capacitor
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result of Fig. 4.10.
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Figure 4.10: Measured results from the DLS-2 chip [79]: a train of incoming synap-
tic input events (lower trace) pulls the Isyn,exc low successively, recovered with a
time constant τsyn. The upper trace reflects the corresponding response on the
membrane.

4.3.5 Bulk Drain Connected Devices

The resistor designed for the modified synaptic input architecture uses the bulk-
drain connected devices [122] – where the bulks are connected to the drains, instead
of the source terminals. When biased in weak-inversion regime, the output device
characteristics of the nominal bulk-source connected PMOS devices express ohmic
region only up to a few UT. Compared to this, the bulk-drain connected devices,
due to a finite (and controllable) output resistance, exhibit linear behavior up to
a few hundred millivolts in their output device characteristics IDS-VDS [122, 124].
This allows for the realization of large value tunable resistive loads [123–126]. The
output characteristics of a bulk-drain device are depicted in Fig. 4.11. Each of the
curves are plotted for a different value of gate-source potential VGS and therefore
represent a controllable resistance. The channel length of this device is 2 µm. A
conventional MOS device would have a much longer channel length to implement
these large resistances.

The devices are usually implemented in a p-substrate CMOS technology where
separate n-wells are embedded in a p-type substrate, which forms the ground plane.
To realize these devices with “wrong” bulk connection, instead of the larger sub-
strate, isolated wells are required. One can utilize either n-wells, or p-wells from
the triple-well devices, which usually consume significant area given the process
rules for triple-wells and the long channel lengths for resistor design. Note that
MOS devices from physical design assembly are symmetric, and the convention of
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Figure 4.11: The output characteristics of the bulk-drain connected device.

source or drain terminals are based on their relative potential. The source terminal,
for a PMOS transistor therefore needs to stay at higher potential than drain (con-
nected to bulk), otherwise the source/drain terminals swap, and the device switches
to a nominal mode with a source-bulk connection. Further, in the nominal (source-
bulk) configuration, the PMOS (NMOS) are tied to highest (lowest) potential (sup-
ply voltage), which ensures the parasitic diode stays shut off. In the bulk-drain
connection, the PMOS bulk is not tied to supply, but to the drain, therefore to pre-
vent this diode from turning on, the drain voltage shall stay below the threshold of
the parasitic diode. Mathematically 0 < VSD < Vth,par. Fig. 4.12 shows a cross
section of a bulk-drain connected device where this parasitic diode between drain
and bulk inside the n-well is shown. Note that the drain-bulk diode is off due to
the shorted connection. As source-bulk voltage VSB 6=0, the device is prone to

Figure 4.12: The bulk-drain connected PMOS device and its cross-section view
during implementation.

body-effect due to a constantly changing Vth of the transistor. Using MOSFET de-
vice models based on BSIMv4.5 for the given technology, one can demonstrate the
variation of threshold voltage Vth with varying source-bulk potential VSB, shown
in Fig. 4.13. The selected device is a thin-oxide PMOS transistor with dimensions
W/L = 0.2/0.4. As VSB increases, the threshold decreases – something the designer
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should be aware of, to ensure proper biasing regions. Multiple bulk-drain devices
may also be used in series so that the eventual source-drain drop VSD can be re-
duced. Alternatively, one can arrange two PMOS bulk-drain devices back to back
in series, such that the drain terminals of the two devices are directly connected.
This prevents the source-drain drop limitation which can possibly swap terminals
and allows to realize floating resistors3. The former approach has been adopted
to realize the resistor in the modified synaptic resistor, while the latter is used to
realize a much higher value resistor within the adaptation term, and explained later
in Sec. 5.3.1.
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Figure 4.13: The device threshold voltage changes with increasing source-bulk
voltage drop.

4.3.6 Synaptic Resistor

The resistor designed in the modified synaptic input architecture is based on a
series of bulk-drain connected PMOS devices discussed in Sec. 4.3.5 and shown in
Fig. 4.14. Between the two terminals VinP and VinN are four bulk-drain connected
PMOS devices labeled M1,2,3,4, each of them operating as a bulk-drain connected
resistive device. The devices connect their drain to the bulk, instead of the nominal
bulk to source connection. Compared to the original concept, they are all biased in
linear region rather than subthreshold region, to contribute lower overall resistance.
This was necessary to adjust for the requirements of synaptic time constants, given
a 1 pF capacitor. All four devices are biased from cascode current mirrors formed
by devices M5,6 and M1b,1a, M2b,2a, M3b,3a, M4b,4a respectively. The pull-up
devices M1c,2c,3c,4c set the bias points of each bulk-drain device. When simulated
with a 200 mV voltage drop across the terminals and an Ibias of 100 nA, all four
devices drop 43 to 57 mV across their terminals, each providing between 740 kΩ

3such that even if source-drain drop VSD of first device becomes negative, the second device
maintains a positive drop.
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to 980 kΩ resistance. All devices stay in linear region, as the applied bias is varied
from 1 µA to as low as 28 nA. Decreasing further shifts the device regions to
subthreshold, eventually driving all four to subthreshold when biased below 20 nA.
The measurement results of a single synaptic resistor tuned over its full resistive
range are shown in Fig. 4.15. The family of curves plotted are the current versus
the applied potential difference across the resistor terminals, by varying the resistor
bias current Ibias. The equivalent bias current and the achieved resistances are
shown. The measurements have been taken by applying a potential difference of
0.2 V, which is the worst case scenario, as the synaptic input line does not typically
drop beyond 150 mV for strong synaptic events. Note the presence of finite offset
voltage, as the plotted traces cut the 0 nA current at a potential difference of about
15 mV. This is likely due to the supply voltage drop, since a direct measurement
through the debug pin measures a resistor pull-up voltage of 1.185 V in the chip.
The resistance values start a linear increase as the bias is swept, and show more
exponential increase with lower bias currents.

The entire synaptic array, both consisting of inhibitory and excitatory synaptic
inputs are characterized next. Fig. 4.16a shows 64 traces of resistors from both
synaptic inputs integrated on a single chip. The tunable bias is fixed at a mid-
range value, which in this case provides a resistance of about 1.5 MΩ. The traces
show a mismatch which is more evident beyond a potential difference of 100 mV.
This is mainly due to the variations among individual bias stages, where the current
mirrors formed byMXa,Xb together with the biasing devicesMXc define the biasing
points in individual bulk-drain devices (X represents the respective stage from 1 to
4).

The range of available synaptic time constants τsyn as tuned by the resistor’s
bias are further measured and plotted in Fig. 4.16b. The figure plots traces from
three separate dies for both synaptic input circuits, leading to a total of 192 sam-
ples. The bias current in the traces are being swept from a mid-range bias value
of 500 nA down to 15 nA. It is evident that the increase in the time constant τsyn

Figure 4.14: The tunable resistor designed for the synaptic input for DLS-2.
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Figure 4.15: Tuning of the synaptic resistor by changing its current bias [79].
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synaptic resistors on a single chip tuned for
their mid-range resistance [79].

100 200 300 400 500
Resistor Bias Current [nA]

1

10

R
C

Ti
m

e
C

on
st

an
t[

µs
] Chips 20, 22, 24

(b) Tuning the synaptic time constants by vary-
ing the resistor bias current. Data has been ac-
quired from 192 synaptic input circuits from
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Figure 4.16: Variation in synaptic resistor and available time constants among mul-
tiple samples.

is more linear up until 150 nA with decreasing bias current, followed by an ex-
ponential behavior in the low-current regime. This aligns well with the resistor
tuning curves shown in Fig. 4.15, where the achieved resistances start with a linear
increase with decreasing bias, followed by an exponential behavior.

In order to derive the range of available synaptic time constants τsyn, a distribu-
tion of minimum and maximum synaptic time constants is plotted in Fig. 4.17. It
can be seen that longer time constants (set by tuning very low bias currents) have
more variation compared to shorter time constants which have a linear increase, as
evident from Fig. 4.16b.

4.3.7 Calibration

The input-referred offset of the synaptic OTA can result in unwanted output synap-
tic current in the absence of input synaptic events. If not compensated, this can
cause the membrane to integrate this input ”leakage” current, and lead the neuron
to eventually spike. This input offset therefore is the prime candidate to be com-
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Figure 4.17: A distribution of the minimum and maximum range of the achieved
synaptic time constants [79].

pensated for. Since the second OTA terminal is a tunable voltage parameter (from
Capmem cells), this can be reasonably trimmed within the given 10-bit resolution.
Secondly, the synaptic OTAs are also equipped with output offset cancellation that
trims this residual current. These biases are labeled IbiasOff and shown in Sec. 4.4.
The distributions of Fig. 4.18 show the synaptic input leakage current as a result of
input offset before and after calibration.
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Figure 4.18: Calibration results of 64 synaptic inputs on a single die. Left his-
togram: offset current with Vsyn at 1.2V for all OTAs; Right histogram: residual
current after individually adjusting Vsyn and IbiasOff [79].

The input offset is calibrated in a two stage process. First, IbiasOff is set half way
of the bias tuning range and Vsyn is tuned to minimize the output leakage current.
The residual leakage is then fine-tuned for, by using IbiasOff by taking a linear fit.
The family of curves showing the achievable time constants shown in Fig. 4.16b
are next calibrated for. In this case, the only calibratable parameter is the resistor
tuning bias, so the curves are fitted with a polynomial which lead to a reduced
spread. The pre- and post-calibration results for three different time constants are
shown in the distributions of Fig. 4.19. Although the distribution in the 5 µs time
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constant is not too large compared to longer ones, as a result of polynomial fitting,
the overall spread is reduced among all three time constants. This data is taken
from [79] from measurements performed by Yannik Stradmann.
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Figure 4.19: Spread of synaptic time constants with a mean of 5 µs, 10 µs and
20 µs. Left: The resistor bias sets three different time constants and plots the
statistical variations from three different dies. Right: The resulting time constants
are processed through individual polynomial fits, resulting in a reduced spread [79].

4.4 Transconductance Amplifier

The transconductor designed for synaptic input as well as the leak circuit is a
source-degenerated OTA architecture. The output current of the OTA has a lin-

Figure 4.20: The generic schematic of the operational transconductance amplifier
architecture used within synaptic input and leak circuits.
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Feature Leak OTA Syn. OTA Realized by
Output stage multiplier X - M2h,4h,14h,16h

Input level shifter X - not shown
Output offset tuning - X M19−26
Forced offset - X M27

Table 4.1: The architectural differences and feature set of the two OTAs.

ear dependence on input differential voltage within a limited operational range, as
Iout = Gm(Vin+ − Vin-), where Gm is the OTA transconductance.

The OTA schematic in its generic form is shown in Fig. 4.20. The designed
OTA not only strives to widen the input operational range by reducing gain, but
also features output offset compensation, output current multiplication, and forced-
offset in one branch. The input differential pair is formed by devices M9,10, to-
gether with the cascode current mirror loads formed by M1−4 and M5−8. The
devices M11,12 act as degeneration resistors controlled by a separate bias current
labeled IbiasSd. They are implemented in a deep n-well to avoid the body effect. The
mirror M13−16 completes the symmetric design on the lower side, while M17,18

forms the tail current source biased by input current Ibias. In parallel to the output
stage formed by devices M2,4,14,16, there are wider devices labeled M2h,4h,14h,16h,
which when enabled via enHicon, give out approximately ten times more output
current. This output stage multiplication is a useful feature for high-conductance
mode when the membrane needs short time constants. The cascode current mir-
rors formed by devices M19−26, trim the residual offset current at the OTA output
by tuning the parameter bias Ioffset. Note the presence of another device M27 that
makes the output stage asymmetric, as it sinks more current in one branch. This is
the forced-offset mentioned above, and its purpose is to create output offset in one
direction, such that at zero differential voltage input, the output current is positive
and non-zero.

The architectures of the two OTAs differ as far as the implementation of these
features are concerned. Table 4.1 summarizes the features and their implementa-
tion in both OTAs. Note the presence of an input level shifter in the leak OTA.
Compared to the synaptic input OTA, which has an input voltage range between
1 V – 1.2 V, the typical leak values are centered around 600 mV. Therefore for a
2.5 V supply, it is reasonable to shift the range up by using a source-follower based
level shifter (not shown in Fig. 4.20). The output offset tuning and forced offset is
implemented in synaptic input OTA only.

The input referred offset of the OTAs have been simulated using Monte Carlo
device models shown in Fig. 4.22. The 1σ variation is 30.9 mV from both OTAs
with Ibias = IbiasSd = 1 µA. Note that the mean for the synaptic OTA is centered
around 33.4 mV due to forced offset. The mean of the leak OTA is -1.5 mV. The
input offset increases as IbiasSd is lowered. For example, at a bias current of 0.4 µA
the input offset increases to approx. 36 mV. Lowering further however, makes the
distribution non-normal with wider spread and the offset uncalibratable.
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Figure 4.21: The measured traces showing the OTA output current from the leak
term versus swept membrane voltage with Vleak fixed to 0.55 V [79].
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Figure 4.22: The input offset of OTAs used within the synaptic input as well as to
realize the leak term.

4.5 Leak Circuit

The leak term in the neuron has been realized using an OTA in unity gain feedback
as shown in Fig. 4.23. In this configuration the transconductance Gm of the OTA
acts as the leak conductance of the neuron circuit. The membrane time constant
can then be defined as τmem = Cmem/Gm. As described earlier in Sec. 4.4, the
two biases Ibias, IbiasSd help tweak the resulting transconductance. Ibias sets the
maximum OTA current where its output current saturates, while IbiasSd alters the
gain to linearize the response. Fig. 4.21, plots measured traces of the output current
as a function of membrane voltage, when the leak potential Vleak is set at 0.55 V.
The traces sweep both biases in the nanoampere range one at a time, i.e., first three
curves sweep IbiasSd while keeping Ibias constant, and the next three sweep Ibias
while keeping IbiasSd constant. It can be seen that small values of degeneration
bias result in very flat and wide ranged curve due to little gain. This is a case
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where the degeneration resistors formed by transistors M11, M12 are pushed into
subthreshold region where they contribute a large resistance. The transconductance
of the degeneration stage approximates to Gm = gm/(1 +gmRSD), where gm is the
input pair’s transconductance and RSD is the resistance contributed by the source-
degeneration transistors. With large degeneration resistors the transconductance
curve linearizes itself as Gm ≈ 1/RSD. This case is highlighted in Fig. 4.21 when
IbiasSd is set to its lowest setting.

Figure 4.23: The leak term realized using a transconductance amplifier.

Fig. 4.24a shows the transconductance Gm as a function of Ibias, as IbiasSd
is swept. At the highest setting of IbiasSd = 1 µA, the transconductance varies
near-linearly. However, this leads to a reduced linear voltage range, as shown in
Fig. 4.21. Decreasing IbiasSd below 0.5 µA makes the traces non-linear, such that
the transconductance only rises up to 2·IbiasSd – and further Ibias increase reduces
the transconductance. In the unity-gain configuration with an applied potential ∆V
= Vmem - Vleak between the input and output, current flows through one branch of
the input differential pair. With small IbiasSd, the increase in output current can go
only up to a limit - and further increase in IbiasSd entails a current flow from both
branches of the differential pair. As Ibias is increased further, current in the second
branch increases to the point that net output current is eventually zero. Since Gm
is proportional to the bias current for a fixed potential difference, it follows the
same behavior. This is for example shown in Fig. 4.24a when IbiasSd is 208 nA.
Fig. 4.24b shows the performance of the source-degeneration biasing stage, com-
paring VGS of source degeneration transistor as IbiasSd is varied. It can be seen that
it is almost linear above the threshold Vth. Below threshold, the resistanceRSD gets
large (as expected) and varies with Ibias. Fig. 4.24d shows this effect, where as Ibias
is lowered, the transistor shifts from linear to saturation, and then to subthreshold
contributing a few MΩ resistance. Finally Fig. 4.24c shows the transconductance
Gm as a function of IbiasSd as Ibias is swept. With RSD varying in linear region, we
obtain the flat part of the traces, which shifts to saturation and subthreshold upon
decreasing IbiasSd. The traces can in principle be used for tuning the leak conduc-
tance Gm, if wide linear range is required, however less than 0.4 µA of IbiasSd will
entail large offset, which may not be calibratable – and the available range of Gm,
above 0.4 µA in Fig. 4.24c is not too large.
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Figure 4.24: a) The leak conductance as a function of the OTA bias Ibias. b) The
gate source potential across the source degenerating MOS transistors as a function
of their control bias IbiasSd. c) The leak conductance as a function of the OTA
source degeneration bias IbiasSd. d) The resistance contributed by the source de-
generation (SD) MOS transistors, as a function of their control bias IbiasSd.
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Figure 4.25: A distribution of minimum and maximum achievable membrane time
constants [79].

The membrane time constant is therefore tuned by varying the adjustable ca-
pacitorCmem, and by tuning the bias Ibias. We trade linear-range with robustness by
not decreasing IbiasSd below 0.4–0.5 µA. The measured results of the minimum and
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maximum achieved time constants from two separate dies are shown in Fig. 4.25.
The neuron can set the time constants between 0.35 µs, up to 16.6 µs, given a
1σ variation. The circuit has been calibrated by measuring the relation between
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Figure 4.26: The pre- and post-calibration distribution of τmem for settings of 1 µs,
10 µs and 20 µs respectively.

membrane time constant τmem and Ibias, for a voltage decay from 0.6 V to its leak
potential of 0.4 V [79]. The resulting curves are fitted by second degree fractional
polynomials. The pre- and post-calibration results are depicted in Fig. 4.26 for a
setting of 1 µs, 10 µs and 20 µs respectively. The post-calibration results show that
while shorter time constants have very small spread, not all neurons can achieve
the maximum 20 µs time constant.

4.6 Spike Generator and Reset Circuits

The spike generator evokes a digital pulse event once the membrane potential
reaches a specified voltage threshold. This digital event further triggers a refractory
reset circuit, initiating the refractory duration of the membrane trace. The circuit to
achieve this is shown in Fig. 4.27. A two-stage comparator compares the voltages
Vmem and Vthresh and asserts the logic levels VOH or VOL depending upon the input
levels. These output logic levels are delayed by a programmable finite time tdelay,
before resetting the output stage of the very comparator. This delayed resetting
creates a pulse event fire that indicates a single spike event.

The left half of Fig. 4.27 shows the refractory reset circuit. In this circuit, the
membrane potential Vmem can be connected to a fixed reset potential by a pass-
transistor switch S1. The control of this switch is triggered by an inverter, which
is in turn controlled by the voltage on a 110 fF capacitor Crefr. The capacitor
integrates a current Irefr constantly, due to which the inverter input is at a saturated
voltage, eventually disconnecting the switch S0. The inverter output is toggled
when a fire pulse resets the voltage on the capacitor. This connects the membrane to
the reset potential Vreset for a duration that lasts until the inverter toggles again. The
input current linearly charges the capacitor and as soon as its trip point is reached,
the switch S0 turns off, indicating the end of refractory period. The membrane is
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Figure 4.27: The spike event generator and the refractory circuit.

then free to respond to input activity again. The measured trace of Fig. 4.10 show
the refractory period duration of about 10 µs during which the membrane is reset
to 0.2 V.

4.6.1 Delay Element

The delay element used inside the spike generator circuit is a current starved in-
verter circuit whose schematic is shown in Fig. 4.29. The transistors M3, M4

operate as an inverter, while M2, M5 operate as current sources. They are meant
to limit the current that is available to the inverter and are controlled by the current
mirrors formed by M7, M5 and M1, M2. The capacitor Cdelay is a 58 fF MOS
gate-oxide capacitor, that will be charged and discharged by the current sources
M2 or M5 depending upon the input signal. The incoming digital signal can then
be delayed by a time interval equal to trise = Ctot · Vmid/IM5. Where Vmid is the
voltage to be reached, e.g., VDD/2 and Ctot = Cdelay + Cpar. Cpar is the parasitic
capacitance contribution at the drains of the inverter transistors M3, M4. IM5 is the
current through the source formed by M5. As the two current sources multiply the
main bias current IbiasDelay, it directly tunes the delay interval as shown in Fig. 4.28.

The time delay within the spike generator circuit has a direct impact on the
maximum firing rate of the neuron. If the neuron is to fire at higher rates of 1 MHz
(assuming a 1 kHz maximum biological firing rate), then long delay times should
be avoided. The capacitor Cdelay has been sized considering its charging/discharg-
ing time and mismatch in delays, such that the circuit works in all cases.

Looking back at the pulse generation mechanism of Fig. 4.27, one may notice
the presence of T0, whose output is connected to intermediate node, between the
two stages of the comparator circuit. The circuit T0 is an inverter whose NMOS
stage is enabled by the comparator’s output node Vcmp, shown in Fig. 4.30. This
ensures that the pulse is evoked only when Vmem ≥ Vthresh. This further makes
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Figure 4.28: Simulated data showing how the bias current can be changed to tune
the time delay.

Figure 4.29: The schematic of the cur-
rent starved delay element used inside
the spike generator circuit.

Figure 4.30: The intermediate resetting
stage within the spike generator circuit.

it evident that the falling edge tfall of the delay element tdelay matters and not the
rising edge delay. The duration of the falling edge delay will therefore determine
the pulse width of the generated fire output pulse.

4.6.2 Refractory Period

The refractory period circuit (shown in Fig. 4.27) in DLS-2 implementation allows
for a much longer time duration compared to DLS-1, first due to a slightly larger
capacitor Crefr, but mainly due to the pre-scaling of input bias current that divides
Irefr by a factor of ten (not shown in schematic). This essentially reduces the 15 nA
input bias from the Capmem to 1.5 nA. The integration of smaller current on the
capacitor allows longer refractory times, as its takes longer to reach the trip point
of the inverter that toggles the switch S1 (see. Fig. 4.27). The range of tunable
refractory times as the bias current Irefr is swept in terms of equivalent 10-bit digital
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code is plotted in Fig. 4.31.
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Figure 4.31: Measured results from a single neuron showing the available refrac-
tory times as a function of its bias current.
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Figure 4.32: A distribution of minimum and maximum measured refractory times
[79].

Note that at very low currents, one can get very long refractory periods.
Fig. 4.32 shows measured results showing distribution of minimum and maximum
possible refractory periods for all neurons on a single die. The distribution
therefore comprises of 32 samples. Note that the small currents and consequently
long refractory periods have more mismatch, compared to large current with
short refractory periods. Yannik Stradmann has calibrated the refractory periods
duration by applying a second order fractional polynomial fit for each neuron. The
pre- and post-calibration results are shown in Fig. 4.33. It can be seen that the
residual spread for the refractory periods is reduced considerably for ranges below
5 and 15 µs, our specified range from Table 3.1. A maximum refractory period of
about 104.5 µs is available from the measurement data from two dies, if calculated
with 3σ single-sided quantiles [79].
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Figure 4.33: Pre- and post-calibration refractory times for three different time con-
stants [79].

4.7 Membrane Capacitor

The membrane capacitor in the DLS-2 prototype is realized as two-bit adjustable
MOS gate oxide capacitor contributing a total of 2.36 pF. This is implemented as
four parallel and equal transistors of size W/L = 9.9/10.4 µm allowing 590 fF each.
In this configuration, the user may use them as 590 fF, 1.77 pF or an accumulated
2.36 pF. Together with leak conductance, the membrane time constant is there-
fore also configurable via this capacitor since τmem = Cmem/Gm. Eq. 3.24 relates
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Figure 4.34: Capacitance vs. gate voltage (CV) of MOS gate-oxide capacitor sim-
ulated over several Monte-Carlo samples.

the contribution of a MOS gate capacitor per unit area. The C ′ox values for thick-
oxide transistors is, to a rough estimate between 5.5 and 6.5 fF/µm2 for PMOS and
NMOS, and 12 to 13.5 fF/µm2 for core PMOS and NMOS respectively4. The ca-
pacitance contribution of a device with a dimension W/L = 9.9/10.4 can be verified

4In the used process technology, the oxide thickness for thick-oxide transistors is approx. 5.5 –
6 nm, whereas for the thin oxide it is 2.5 – 3 nm, with a relative dielectric model parameter of 3.9.
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to a first order by plugging in numbers, such that C ′ox · W L = 5.75 × 9.9/10.4 =
597 fF. One can further simulate the capacitance to gate-voltage (CV) curve of the
MOS capacitor using foundry device models. This is shown in Fig. 4.34 where 500
Monte Carlo samples are included to check the extent of possible mismatch. The
figure also highlights the various MOS capacitor regions. Note that thick-oxide
transistors are utilized, although they provide half as much capacitance compared
to the core (thin-oxide) counterparts. This ensures that there is always a sufficient
VGS drop of 1.3 V or more and the device is biased in inversion region, as shown in
Fig. 4.34. Note that despite inversion region, the transistor mismatch can lead up to
5% variation in the eventual capacitance. The area benefit one obtains, as opposed
to using metal capacitors is still more than twofold, hence this is a minor concern,
and the mismatch arising is to be calibrated for.

Fig. 4.34 shows the three device regions determined by the biasing condition.
Although accumulation and inversion regions seem to contribute approximately
equal capacitance, inversion is preferred because the gate-bulk capacitance in accu-
mulation region can have large series parasitic substrate resistance [127]. However,
the use of accumulation region has also been reported in literature [128]. While
designing the integrator architecture of Sec. 4.3.1, the depletion mode compensa-
tion schemes were visited [129, 130]. Parallel and series compensation schemes
broaden the depletion region of the MOS CV curve by utilizing the substrate bias.
However, in order to avoid additional biasing complexity as well as bulk-driven
compensation schemes, their implementation was not pursued.

4.8 Analog Input/Output

The analog I/O block shown in Fig. 4.1 enables the read-out of internal node volt-
ages externally or inject stimulus directly from the pad interface in the first two LIF
prototype chips.

Figure 4.35: The architecture of the analog I/O block used as read-out and debug
interface, terminating at shared output lines.
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The two pins labeled Istim and VreadOut terminate directly at the chip pads and
are shared between all integrated neurons. The block schematic highlighting this
is shown in Fig. 4.35. A multiplexer reads out either of the four different voltage
signals from among membrane voltage Vmem, the voltage on the two input synap-
tic lines VsynExc, VsynInh, as well as the digital fire pulse. Vsyn,exc and Vsyn,inh are
buffered via source followers labeled in Fig. 4.35 as A2 and A3. The source fol-
lowers are NMOS based and share their biasing circuit with the two-stage read-out
amplifier. The schematic of the source follower, together with the shared bias is
shown in Fig. 4.36. The input transistor M1 is embedded in a deep n-well to pre-
vent body-effect and keep the follower gain close to unity at the expense of more
area. In the presence of body-effect the follower gain is given as:

Vout

Vin
=

gm1

gm1 + gDS1 + gDS2 + gmb1
≈ gm1

gm1 + gmb1
(4.5)

where gm1 and gmb1 are the transconductance and body-effect transconductance
( ∂ID
∂VBS

) of the input transistor M1, whereas gDS1, gDS2 are the output conductances
of transistors M1 and M2 . Note that gmb = η gm, where η is between 0 (no body
effect) and 0.5. The source follower creates a drop of about 0.63 V as the shared
cascode bias sets a drain current of 1.7 µA. The static synaptic input line voltage
of 1.2 V therefore drops to about 0.57 V after the read-out. Note that when the

Figure 4.36: The source follower used to read out the synaptic input lines, and its
shared bias circuit.

read-out amplifier is disabled digitally, it grounds the gates of transistorsM10,2 and
M8 (not shown in schematic). This disables the operation of the source follower as
well as the read-out amplifier.

The multiplexer is a 4x1 transmission gate multiplexer with two digital select
lines. The output of multiplexer is either sent out to the pad pin VreadOut via an
opamp based buffer A1 and S5 or is directly connected to output pin Istim via an-
other transmission gate switch labeled S4. The direct connection can inject current
into the membrane or hold it to a reference voltage potential. The realized opamp
is described in Sec. 4.8.1. The switches S4, S5 are thick-oxide (I/O) transmission
gates as they directly connect to the pads, whereas those within the multiplexer are
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thin-oxide (core) transistors since the internal nodes are not meant to rise above
1.2 V.

4.8.1 Two-Stage Opamp

The read-out buffer A1 used within the analog I/O block of Fig. 4.35 is a two-stage
opamp whose schematic is shown in Fig. 4.37. The amplifier was originally de-
signed for DLS-1 where the maximum input bias current from capacitive memory
was specified at 2 µA. The maximum bias in DLS-2 Capmem is reduced to 1 µA
– however the design of the amplifier has remained unaltered. The initial buffer
is designed for a total current consumption of 100 µA. When the bias was scaled
the total consumption halved to approximately 50 µA. The opamp schematic in
Fig. 4.37 shows this bias being fed as Ibias to an n-type input cascode current mir-
ror, since the capacitive memory only has PMOS output stage and must be mir-
rored. The current mirror formed by M8−11 multiplies the input current 6 times,
which is further multiplied twice and five times in mirrors formed for tail current
source M12,5 and the output stage M12,7 respectively. The opamp is a two-stage
architecture with indirect compensation scheme. It realizes a p-type input stage
to sense lower common-mode levels, and a standard class-A output stage. It uses
indirect compensation scheme to stabilize itself using split length transistors.

Figure 4.37: The two-stage amplifier designed for the membrane read-out buffer.

Two-stage amplifiers are typically compensated by Miller compensation where
a compensation capacitor connects the outputs of the two gain stages [131]. How-
ever, as a result of this connection a Right Hand Plane (RHP) zero appears in the
frequency response which decreases the phase margin. This is due to the feedfor-
ward current that flows through this compensation capacitor. Several circuit tech-
niques have been proposed in literature that compensate for this RHP zero. These
include, for example, dominant pole compensation, where higher phase margin is
achieved by pushing the dominant pole towards the origin, splitting the dominant
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Supply 1.2 V
Power 127.6 µW
DC Gain 62.6 dB
CMRR 65.1 dB 1

PSRR 67.8 dB 1

Compensation Cap 600 fF
UGF (fu) 149.6 MHz
Phase Margin 2 89 °

1 evaluated at 5 kHz
2 CL=3 pF ‖ 10 MΩ

Table 4.2: Open loop opamp specifications.

and non-dominant poles at the expense of bandwidth. Lead compensation is an-
other common compensation scheme that uses a series resistor to either eliminate
the zero altogether or to cancel the LHP non-dominant pole. Active techniques
include a feedback voltage buffer [132] or current buffers [133, 134] that block
the feedforward component that passes directly from input to output avoiding gain
stage inversion. Such buffers therefore allow only feedback current. Alternatively
one can embed such buffer stages within the input stage, e.g., using common gates
with cascode topology [135,136]. For low-voltage design an even better technique
is the use of splitting the channel length of the input differential pair [137], thereby
creating low impedance nodes. An indirect connection to the internal node by a
connection through an internal low impedance node forms the basis for indirect
compensation schemes. Indirect compensation can be very useful in stabilizing
multi-stage low-voltage amplifiers, for example as shown previously by the author
in [138, 139].

A MOS device can split its length into half, as shown in Fig. 4.37 (seeM1a,1b).
Of the two input devices, the upper PMOS is then in triode region, while the
lower one is in saturation. Their mid-node where the two devices connect is a
low-impedance node, first because the connection is to a source terminal, but also
since one device is in triode region. The low impedance node can hence be used to
feed the compensation current back to the output of the first gain stage. In the de-
signed amplifier, a single transistor with 2· Lmin was initially designed for the input
differential pair, and later the device was split-up for compensation with each split
device having a minimum channel length (Lmin) – 280 nm for the I/O thick-oxide
transistors in the given technology.

The simulated achieved specifications of the amplifier are listed in Table 4.2.
The listed results are with a bias setting of 1 µA. Since the amplifier is designed
from thick-oxide transistors, a 2.5 V supply is used with a total power consumption
of about 127 µW. The open loop DC-gain in the current implementation is about
62.6 dB. The common mode rejection, defined typically as a ratio of differential to

76



4.8. ANALOG INPUT/OUTPUT

common-mode gain, Adiff
Acm

is 65.1 dB in the ideal case. The negative and positive
supply rejection are also simulated. PSRR is typically defined as min( Adiff

AVdd
, Adiff
AVss

)
and the lesser of the two is 67.8 dB for the current architecture. These results are
summarized at a signal frequency of 5 kHz and the frequency response is shown
in Fig. 4.38c. Table 4.3 shows the pole and zero locations of the uncompensated
amplifier, as well as the results after compensation. The two uncompensated poles
given by gDS2+gDS4

Cpar
and gDS6+gDS7

CL
are located close to each other, thereby deteriorat-

ing the phase margin. With indirection compensation the dominant pole is pushed
lower on the frequency axis, while two conjugate poles typically appear higher up
the frequency axis. Where gDS2 = gDS1 and gDS3 = gDS4, Cpar is the parasitic capac-
itance at the output node of first gain stage and CL is the output load capacitance
at node Vout.

The compensated split pole locations can be approximated [137] to be at
−2

gmIIR2R1Ccomp
, where R1 = 1

gDS2+gDS4
, R2 = 1

gDS6+gDS7
, and the real part of the

conjugates poles as Re(p2,3) = gmII
CL

√
gmpCL
gmIICpar

. The node impedance at the mid-node

is 1/gmp, where gmp =
√

2gmI, and gmI is the equivalent transconductance from the
first stage. Further, instead of an RHP zero, a Left Hand Plane (LHP) zero appears
at a frequency 2

√
2

3 ωu, which in the implemented amplifier actually helps improve
the phase margin. The bode plots in Fig. 4.38a,b show the compensated gain and
phase plots overlaid on the uncompensated ones. Note that for the compensated
phase plot, the phase shift from –90° decreases due to the zero, followed by
the sharp cutoff. The resulting bandwidth is therefore increased and the two
conjugates poles are pushed much forward, so that they appear almost at the UGF
– and therefore do not deteriorate the phase margin. The unity gain frequency for
the compensated case is fu ≈ 2gmI

2πCcomp
, which is further increased due to the zero

that appears at about 0.94fu.
In the close loop configuration, the buffer encounters a low pass filter right

at the output of close loop amplifier. This is formed by the output transmission
gate switch together with the large off-chip load capacitance, since the pin labeled
VreadOut directly drives the output pad. An off-chip parasitic is estimated using

Uncompensated Compensated
Phase Margin 1 14 ° 89 °
fu 131 MHz 149.6 MHz
fp1 –321 kHz –17.7 kHz
fp2,3 – 39 M – 63.1 MHz ± j141 MHz
fz1 - – 28.6 MHz

1 CL = 3 pF ‖ 10 MΩ

Table 4.3: Pole and zero locations of the uncompensated and compensated two-
stage open loop opamp.
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Figure 4.38: Frequency response of the open-loop opamp. a) The uncompensated
and compensated gain curves. b) The respective phase plots for the two gain curves.
c) Common-mode and power supply rejection. d) The close loop buffer bandwidth
with and without the output transmission gate (shown as S5 in Fig. 4.35). The
output load here is 16 pF ‖ 10 MΩ.
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Figure 4.39: The input-referred offset measured from 96 amplifiers buffers over
three chip dies [79].

direct measurement on the PCB using an LCR meter as well as from the slope of
the large signal. It is concluded that around 16 pF is encountered on the DLS-2
measurement board. Fig. 4.38d shows the close loop amplifier bandwidth with CL
of 16 pF with and without the transmission gate. It can be seen that the close loop
–1 dB bandwidth reduces from 63.6 MHz to 1.15 MHz. However, this low pass
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Output range 0.1–2.1 V
Load ≥ 16 pF ‖10 MΩ1

–3-dB bandwidth 2.4 MHz
–1-dB bandwidth 1.15 MHz
Input offset 14 mV
Slew rate 2 V/µs

1 Estimated off-chip load

Table 4.4: Measured results of the read-out buffer [79].

filter helps increase the stability in the presence of large off-chip load. The buffer
has been characterized during chip measurements and the results are summarized in
Table 4.4. The output range and input offset correlate very well with the simulated
results. The slew rate of the amplifier is limited by the charging of the output node
via the source transistor M7 and given by I7/CL. A slew rate of 2 V/µs is deemed
sufficient for readout measurements although it can be improved by tweaking the
current source formed by M7. Fig. 4.39 shows the distribution of input offset
of the buffer, measured from 96 amplifier instances on three different chips and
summarized in Table 4.4.

4.9 Switches

The neuron circuit uses switches to interconnect individual subcircuits from the
neuron membrane and spike generator, as well as inside the analog I/O debug sub-
circuit. These switches are transmission gate switches made by a parallel combi-
nation of NMOS and PMOS devices. Those that connect directly to the membrane
are realized with 1.2 V core devices (these also include those inside debug mul-
tiplexer in the analog I/O). The switches that connect the neurons to the external
interface, e.g., the two pins VreadOut and Istim are 2.5 V I/O devices.

The on-resistance of a MOS pass transistor is given by

Ron =
L

µCoxW (VGS − Vth)
(4.6)

which indicates that larger resistance requires longer channel length. The equation
also indicates that the maximum voltage an NMOS transistor can allow is VDD−Vth,
whereas the lowest voltage a PMOS can pass is limited by its Vth. A transmission
gate chooses both in parallel to enable a rail-to-rail swing, and with an overall
lower resistance over the entire range, such that Req = RonP ‖ RonN. It can be
shown that if µCoxW/L of both transistors are the same, and the variation in Vth is
neglected, then Req is independent of the input level [140]. The channel resistance
of various switches used in the neuron design are plotted in Fig. 4.40. The top
trace simulates the resistance for the 1.2 V core transistors, while the bottom trace
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Figure 4.40: The channel resistance of various switches used in the design. The top
figure shows the core transistor switches (gray curve for membrane switches, black
curve for debug multiplexer), while bottom shows the 2.5 V thick-oxide transistors
used at the two output pins.

plots the same for 2.5 V transistors. Note the gray curve, which is for the switches
that connect the individual circuits to the membrane capacitor has slightly higher
resistance, compared to the black curve (top subplot) for switches in the debug
multiplexer (Analog I/O). This was done to minimize off-state leakage, especially
from circuits like synaptic inputs, where leakage current is more crucial. Since the
membrane voltage in the neuron is restricted to 1.2 V, the maximum resistance seen
by the I/O switches is approximately 4 kΩ.

All switches are enabled by the digital backend configuration. The digital sig-
nals for a 2.5 V I/O transistors are up-converted to 2.5 V with a level-shifter. Ap-
pendix A enlists these digital configuration bits as well as their description.

4.10 Bypass Mode

The neuron includes an option to bypass the analog integration and evoke a single
spike per input synaptic event. This mode is mainly integrated for debugging the
system without worrying to configure the neuron circuit, for example, to test event
routing. The short input pulse event arriving at the synaptic input pulls the synaptic
line voltage lower, in proportion to the pulse amplitude (or total equivalent current).
If the input event is made strong enough, the line drop increases to the extent that it
triggers the bypass buffer. The schematic of the bypass link is shown in Fig. 4.41,
together with a tri-state inverter. Two inverters are cascaded, where the first one is
raised by a diode-connected transistor. This increases the trip point of the inverter
by a few hundred millivolts. The input line is pulled up by another transistor to
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4.10. BYPASS MODE

Figure 4.41: Schematic diagram of the bypass link together with a cascaded tri-
state inverter.

avoid a floating connection when the link is disabled. The bypass part of the circuit
was conceived by Johannes Schemmel.

The simulated behavior of the bypass link is shown in Fig. 4.42. The strength
of incoming input event is increased to the point that it triggers the bypass link. In
the simulation setup, up to 10 µA amplitude with a minimum pulse-width of 29 ns
is required to achieve this. The plot shows that the synaptic input line drops to
about 920 mV to trigger the shifted inverter trip point. The lower plot shows the
output spike event (fire) evoked not through spike generator, but the bypass link.
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Figure 4.42: Simulation results of the bypass-mode of the neuron circuit. a) A
large incoming synaptic current pulse on the synaptic input line. b) The resulting
voltage drop during the pulse interval on the input line, followed by a recovery
with a time constant. c) The voltage drop triggers the bypass link, which evokes a
digital output event.
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4.11 Power Consumption

The neuron circuit is simulated to estimate its total power consumption. The full
circuit draws its current mainly from 2.5 V supply line, but also from 1.2 V sup-
ply. The total static current it draws (outside the spiking interval) is about 6 µA
for a typical set of biases, given both synaptic inputs are enabled, and debug am-
plifier is disabled. The static supply current from the 2.5 V and 1.2 V supply are
around 5.6 µA and 400 nA respectively - leading to a power consumption of about
14.4 µW. When the inhibitory input is disabled (since its not used) the power con-
sumption is reduced to 10 µW. The dynamic power is increased during operation
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Figure 4.43: a) Membrane potential as a result of input synaptic activity. b) Cor-
responding 2.5 V output digital spikes that initiate the refractory period. c) The
current consumption from the 2.5 V supply – notice the spike due to the switch-
ing in SpikeGen circuit and the increase/decrease in consumption due to the slow
inverter in refractory period circuit.

due to inverter leakage, especially when its input is a slowly increasing voltage.
During the refractory period, the leakage current due to the slow inverter (see in-
verter of S1 in Fig. 4.27) increases until the refractory period ends – after which
it decreases. This leakage is therefore proportional to the duration of refractory
period. Similarly the second stage (gm2) of the spike comparator as well as the
two inverters in Fig. 4.27 contribute to leakage during the pulse fire interval or at
edges. This is a strong reason to not use inverters for slow signals when power con-
sumption is important. The dynamic current consumption is shown in Fig. 4.43.
The membrane in Fig. 4.43a builds up due to the input synaptic activity, evoking
spikes twice. The 2.5 V digital fire signal is plotted in Fig. 4.43b, which initiates
the refractory period duration. Fig. 4.43c shows the current consumption from the
2.5 V supply. Note the initial spikes that are due to the leakage from SpikeGen
circuit, followed by the leakage in the refractory period that lasts as long as neu-

82



4.12. PHYSICAL NEURON IMPLEMENTATION

31.3 31.4 31.5 31.6 31.7 31.8 31.9
Time [µs]

0

100

200
C

ur
re

nt
[µ

A
]

Spike in current consumption (VDD =2.5 V)

Figure 4.44: A zoomed-in version of a current spike in Fig. 4.43c.

ron is in refractory state. After refractory period ends, the leakage decreases. The
slow inverter leakage mentioned above also gives extra current consumption within
the fire pulse duration in the delay element circuit (Fig. 4.29), due to the presence
of output inverter. This is visible in Fig. 4.44 which is a zoomed-in version of a
current spike in Fig. 4.43c. Notice that along with the two spikes the base current
consumption increases followed by a decrease.

The energy per output spike can be determined by stimulating a neuron with
strong synaptic input current, setting a short refractory period of 1 µs and dividing
the average power consumption from the two supplies by the output spike rate.
For an output rate of 14.2 kEvents/sec, such that 71 events are evoked per 5 ms,
and 7 input events (each of 1 µA amplitude, 32 ns long) lead to a single output
event, with disabled inhibitory synaptic input, the energy consumption is 907 pJ
per spike. This decreases with high output rate resulting in 193 pJ per spike for a
rate of 290 kEvents/sec.

4.12 Physical Neuron Implementation

On the physical level, the neurons are arranged vertically in an array embedded
in the analog network core of the prototype chip. Each neuron in the DLS-2 chip
is 11.76 µm wide and 200 µm in height. The prototype chip integrates a total
of 32 neurons in an array occupying 11.76 µm × 32 = 376 µm. This neuron
array arrangement from external routing perspective and top-level view is further
sketched in Fig. 4.45. The local parameters from the capacitive memory enter each
neuron from the bottom of the array, while the global parameters enter from the left
edge. The global input/output pins Istim and VreadOut enter and leave the array from
the left edge. The array is edge-connected at the top with the synapse matrix where
the lines IsynExc, IsynInh from a single synapse column enter the neuron. The signals
postIn and postOut enter (leave) each neuron from the bottom and top respectively
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Figure 4.45: The physical architecture of the neuron array, together with vertical
and horizontal routing lines. On the right is the layout view of a single physical
instance.

too. The output fireout as well as the input configuration bus ctrlTgNeuron coming
from the digital backend leaves and enters each neuron from the bottom too. All
global circuit blocks are placed on left of the array – e.g., in Fig. 4.45 a level shifter
for the comparator reset sits on the left side and is common to all neurons. The
power distribution lines enter the array from the right side and further distribute
inside each neuron in vertical lanes, together with parameter biases and digital
signals. The right inset in Fig. 4.45 shows the physical layout view of a single
neuron circuit.
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4.13 Bias Parameters

As described earlier, the neuron circuit is configured by a set of global and local
voltage and current parameters, provided by the capacitive memory. The complete
set of these voltage and current biases are listed in Table 4.5. The table lists every

Parameter Circuit Type Typical Values
Vthresh SpikeGen local/voltage 0.6 V – 1.2 V
Vleak Leak local/voltage 0.2 V – 1.2 V
Vreset Reset global/voltage 0.2 – 1 V
IbiasSpkCmp SpikeGen local/current 0.6 µA
IbiasDelay SpikeGen local/current 100 nA
IbiasLeak Leak local/current 15 nA – 1 µA
IbiasLeakSd Leak local/current 0.5 µA – 1 µA
IbiasReadOut Analog I/O local/current 1 µA
Irefr Reset local/current 15 nA – 1 µA
VsynExc Syn. Input (Exc.) local/voltage 1.05 – 1.25 V
IsynResExc Syn. Input (Exc.) local/current 15 nA – 1 µA
IbiasSynGmExc Syn. Input (Exc.) local/current 15 nA – 1 µA
IbiasSynSdExc Syn. Input (Exc.) local/current 0.5 µA – 1 µA
IbiasSynOffExc Syn. Input (Exc.) local/current 15 nA – 1 µA
VsynInh Syn. Input (Inh.) local/current 1.05 – 1.25 V
IbiasSynResInh Syn. Input (Inh.) local/current 15 nA – 1 µA
IbiasSynGmInh Syn. Input (Inh.) local/current 15 nA – 1 µA
IbiasSynSdInh Syn. Input (Inh.) local/current 0.5 µA – 1 µA
IbiasSynOffInh Syn. Input (Inh.) local/current 15 nA – 1 µA

Table 4.5: A summary of tunable analog neuron parameters and their operating
range. A total of 18 local (individual) parameters and 1 global parameter tune the
neuron.

parameter, the circuit it is used in, its type, as well as the typical tuning range. Note
that the range of allowed values sometimes depend mutually on a set of parameters,
and the given parameter range does not cover possible corner cases. The values
of Vsyn parameters are set together with IbiasSynOff biases (excitatory/inhibitory)
to cancel the synaptic offset, therefore they typically depend on the calibration
algorithm. The voltage values are dependent on the dynamical behavior one wants
to reproduce. The source degeneration values are advised to be set higher, since
low IbiasLeakSd values give large input offset and the leak conductance varies non-
linearly with IbiasLeak. The parameters IbiasSpkCmp, IbiasDelay, IbiasReadOut are analog
circuit parameters (i.e., they do not change the biological behavior) and should be
set only once.
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4.14 Full Circuit Characterization

The complete neuron circuit is characterized next by stimulating the membrane
with incoming synaptic input pulses. Fig. 4.10 showed one case, where strong
incoming events drop the synaptic input line by approximately 170 mV in the lower
trace, recovered back with a short time constant of a few µs. The upper trace
showed the resulting membrane potential, which requires three or four incoming
events to spike. Spike threshold and reset potential are set at roughly 0.58 V and
1.2 V.
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Figure 4.46: A comparison of the on-chip neuron vs. software simulation [79].
Both neurons are stimulated with a random spike train stimulus and their mem-
brane voltages are plotted. The corresponding synaptic input current (for software
neuron) and the proportional voltage drop for synaptic input line (for the hardware
neuron) is plotted.

This section demonstrates the use of random spike train stimulus as input and
neuron modeling parameters from a computational study [107]. Further a side-by-
side comparison is made with the ideal response of the LIF model simulated in
Brian spiking neural network simulator [141]. The on-chip neuron here is uncali-
brated and is only manually tuned to cancel the effect of non-ideal effects, e.g., by
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tuning VsynExc. Further, time constants are tuned to match the spike times of soft-
ware simulation. The synaptic and membrane time constants (τsyn, τmem) are set
as 1.5 µs and 10 µs respectively, with a refractory period (τref) of 2 µs (1000 times
faster than biological real-time). The spiking threshold is 870 mV, while leak and
reset potentials are set at 600 mV. The random spike train stimulus containing 32
× 20 events is injected into both the on-chip neuron as well as the software model
neuron. The event number here indicates that 20 events are evoked by each synapse
connected to a single neuron. The input stimuli as well as the resulting membrane
response is plotted in Fig. 4.46. The gray traces are the inputs, while the blue ones
are the membrane responses. For the software model the synaptic input current
is shown, whereas for the emulated hardware neuron, the synaptic input line is
monitored, since the line voltage drop is proportional to the charge of each incom-
ing synaptic event. For the on-chip neuron, therefore, ∆Vsyn = Vsyn − VsynExc is
plotted. The analog I/O circuit allows us to trace this voltage line or membrane
potential one at a time. A comparison of the membrane response of the two neu-
rons shows that both neurons evoke exactly four spikes, having similar spike times
as well as the time course that develops as a result of various time constants. This
demonstration has originally been done for [93] together with Andreas Hartel and
reproduced with Yannik Stradmann [79]. The network parameters are provided by
Paul Müller.

4.15 Discussion

This chapter presented the silicon implementation and design of the first spiking
neuron model targeted for the HICANN-DLS’s ANC architecture. The LIF emula-
tion is characterized in detail, realized as a modular circuit architecture. Individual
subcircuits have been characterized and presented with measurements from a sin-
gle or multiple chip dies. The measured statistical data from various subcircuits
conformed to the pre-taped-out Monte Carlo samples acquired from simulation
results. This verifies the accuracy of the technology model files as well as the
statistical variation models.

These prototypes also tested the ANC architecture shown in Fig. 4.2. More
specifically, the arrangement of local voltage and current cells distributing biases as
well as digital bus in vertical columns in a narrow space of 11.76 µm is prototyped
and tested. Although the bias lanes are closely packed, no noticeable crosstalk
detrimental to neuron operation has been noticed. Further a comparison of the
on-chip neuron with a software model neuron shows a close correspondence in
the spiking dynamics. On the circuit level, the capacitive memory’s 10-bit tunable
resolution has been found to be beneficial for tuning various circuits within the
neuron. The reduction of bias currents available from current cells to sub 60 nA
range (up to 15 nA) has remarkably improved the tuning ability of time constants
for various subcircuits, e.g., short synaptic time constants. For the voltage cells, the
possibility of stable neuron potentials have been verified as well as the available
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range for reliable neuron operation. In the work towards [79] a winner-take-all
network has also been demonstrated.

On the subcircuit level, the neuron presented the synaptic input which reduces
the capacitor area by realizing it from line parasitics alone. An architecture which
realizes a passive RC integrator with a transconductance stage made manifold
improvement compared to the first generation BrainScaleS implementation [99].
First, the architecture uses a grounded resistor which is simpler in terms of design
complexity, compared to a floating resistor. Secondly, it saves the area, power, and
eventually the unwanted input-offset that would come from an integrator amplifier
in the active RC solution. The use of bulk-drain connected devices allow a com-
pact and high-value tunable resistor, with moderate power consumption compared
to other solutions. The current implementation however relies on current-based
synapses to avoid a complex design in the first phase. Conductance-based synapses
have been explored in the next revision (although not implemented in the DLS-3
chip). Linearized transconductance amplifiers are used both in synaptic input as
well as the leak term. However, due to the limited input differential range at synap-
tic input (maximum 0.2 V) and the less critical role of synaptic OTA in determining
the synaptic time constant (compared to the leak OTA for tuning τmem), it turns out
to be a more suitable solution.

The enhanced OTA provides a separate bias for source-degeneration MOS tran-
sistor. An independent control of the device is to evaluate the results from the de-
creasing gain, trading it off for wide linear range. From the results presented one
can conclude that very wide linear range comes at the cost of increased offset and
inability to calibrate the leak OTA. Therefore a revised architecture is required for
wide linear operating range. The achieved neuron circuit specifications including
the range of time constants are summarized in Table 4.6.

While a very large range of refractory period τrefr has been implemented, the
range of achieved synaptic time constant τsyn is limited compared to the targeted
specifications of Table 3.1. The residual statistical spread for longer synaptic time
constants after calibration is still large, which can lead to large variation at the
network level. The range of synaptic time constants (τsyn) and this variation needs
a design improvement in a future revision. The synaptic output offset cancellation,
however, has been demonstrated using Vsyn and the offset correction bias IbiasSynOff,
reducing the residual output offset below 4 nA from each synaptic input.

The read-out amplifier in the LIF prototypes directly drives the pad. Since it
is a 2.5 V amplifier, the output-range is more than desired. On the lower side it
achieves 0.1 V which is lower than the specified 0.2 V. Its large power consump-
tion is less of a concern, since it is usually switched-off and is only enabled for
neurons whose voltages are to be read-out. The same holds for the source fol-
lowers that buffer the voltage levels from the synaptic input lines. The read-out
amplifier has an input offset of 14 mV, which can be improved by slight design
optimization, e.g., the amplifier in synaptic input of DLS-1 trims the input-offset
to 6 mV. To ensure stability under most conditions, the two-stage amplifier uses a
large 600 fF compensation capacitor with indirection compensation scheme. The
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Neuron model Leaky I&F
No. of neurons 32
Voltage supply 2.5/1.2 V
Process 65-nm CMOS
Speed-up (acceleration) factor ×1000
Global parameters 1 voltage bias 1

Local (individual) parameters 18 (14 I-bias, 4 V-bias) 1

Configurability 15-bit digital bus
Membrane capacitor (max.) 2.36 pF (2-bit configurable)
Input synaptic event (max.) 10 µA, 4 ns pulses 2

Area (single neuron) 11.76 µm × 200 µm
Area (array of 32 neurons) 376 µm × 200 µm
τrefr (min./max. range) 3 [1.11, 1.24] µs – [137.5, 104.5] µs
τsyn (min./max. range) 3 [1.24, 1.41] µs – [20.5, 13.6] µs
τmem (min./max. range) 3,4 [0.35, 0.39] µs – [16.4, 14.1] µs

1 available from on-chip tunable capacitive memory cells
2 amplitude and length of each current pulse emitted by the synap-
tic circuit
3 single-sided [1σ, 3σ] quantiles of 84.13% (99.86%)
4 measured using Cmem = 2.36 pF; the min./max. τmem (1σ, 3σ) for
Cmem = 570 fF is estimated to be 0.08, 0.09 µs and 4.11, 3.54 µs
respectively

Table 4.6: The achieved specifications of the LIF neuron array.

large compensation capacitor is kept for large off-chip loads. Indirect compen-
sation reduces power and increases bandwidth, with a potential to reduce area by
choosing a smaller compensation capacitor. The revision in DLS-3 restricts the size
of this capacitor to 92 fF with the introduction of two stage buffering scheme.

The pulse generation architecture for digital spike generation is mostly similar
to the one reported in [99], except for the delay element. The slow moving signal at
the input of inverters results in leakage current during output pulse generation in-
terval. This is similar to what is shown in the refractory reset circuit, which causes
leakage current consumption, reducing the reported energy efficiency. This power
consumption therefore increases with long refractory times. The same holds for the
output inverter inside the delay element. Slow inverters should therefore be avoided
to conserve energy. The revised refractory period circuit in DLS-3 is therefore a
digital counter based implementation, where no slow analog integration occurs.
Finally, the addition of membrane integration bypass as reported in Sec. 4.10 adds
a very useful debug feature in the system – especially for the initial digital tests
for event routing, for example, during the evaluation of STDP mechanism together
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with the PPU.
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Chapter 5

Emulation of the Adaptive
Exponential I&F Model

This chapter describes the implementation of the AdEx circuit designed as an ex-
tension of the existing LIF architecture. The modular architecture of the LIF neu-
ron allows us to seamlessly add the adaptation and exponential circuits.

5.1 Neuron Circuit

The emulated neuron circuit in the third prototype of the chip (DLS-3) is not only an
upgrade to the AdEx model, but also incorporates a number of other enhancements
and modifications to the LIF circuits. They include:

• adaptation circuit

• exponential circuit

• integrated SRAM array

• 6-bit tunable membrane capacitor

• extended analog I/O

• fixed current bias distributor

• spike comparator and membrane offset input

The circuit also goes through the following modifications which are imple-
mented outside the AdEx neuron array by other designers:

• conductance-based reset by using merged leak/reset concept and multi-
compartment extensions (designed by Johannes Schemmel)

• digital neuron control for configuration of refractory period, adaptation
pulses as well as SRAM decoder (designed by Gerd Kiene)
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Figure 5.1: The full circuit schematic of the implemented AdEx neuron model.

The schematic of the neuron circuit designed for the DLS-3 prototype is shown
in Fig. 5.1. In addition to the main circuit components of the LIF neuron, the cir-
cuit integrates the exponential and adaptation circuits. The exponential circuit is
controlled by a single 3-bit digital VT parameter (calledWVT ) and connected with a
switch S13 to the membrane. The adaptation circuit uses a current source Iw to in-
tegrate charge on the adaptation capacitor during the input pulse duration fireadapt.
It is endowed with its separate leak potential VleakAdapt. A 6-bit tunable capacitor
selected by S0-5 forms the neuron membrane. On the left side, the circuit integrates
input synaptic current pulses (excitatory, inhibitory) as in the LIF architecture. Be-
tween the two is the Imem,off current bias switched by S8. This is an output offset
trimming input previously implemented as an output offset canceling bias inside
the synaptic OTAs. This has been moved outside onto the membrane, where addi-
tionally, it may inject input current to the membrane. The analog I/O circuit reads
out the membrane Vmem and the input synaptic potentials Vsyn,exc (excitatory) and
Vsyn,inh (inhibitory) via a source follower. Additionally, in this revision, it can read
out Vw, the voltage on the adaptation capacitor. The read-out buffer A0 designed
for the LIF implementation reduces its size, since it does not drive the off-chip load
directly anymore. The output VreadOut is buffered via a read-out chain and described
later in Sec. 5.5. This neuron circuit (and the entire neuron array) is therefore only
connected to the output with a single pin Istim. Istim is a shared input to all neurons
in the array. The output of the read-out buffer can also be connected to the corre-
lation ADC. The output labeled VCADC, prior to the transmission gate, terminates
at the input of the correlation ADC and allows, for example, to digitize the neu-
ron membrane on a per-column basis. A voltage comparator circuit replaces the
spike (pulse) generator circuit of DLS-2 implementation, where it outputs voltage
levels VOH or VOL. This output level fireout is interfaced directly to a digital neuron
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control block, where it triggers a counter-based programmable delay. This digital
input is fed back from the digital interface and is used to reset the membrane to the
reset potential Vreset. The delay interval of the programmable counter, initiated by
the comparator toggle, therefore implements the refractory mechanism. The details
of the circuit can be found in [94]. The DLS-3 neuron circuit introduces a merged
leak and reset circuit. During neuron integration interval, the counter input is low,
which connects the neuron membrane to the Vleak potential via the leak term. Once
the input from the counter is high – an indication of a digital spike event, the neuron
is reset to Vreset via the same transconductor. This transconductor is introduced in
the reset path to realize a conductance-based reset. To enable a high conductance
path to reset potential, the OTA enables its high-conductance mode during the reset
interval (see high-conductance mode in Sec. 4.4). The merged leak/reset circuit is
not covered in this thesis and the details can be found in [92, 110].

The digital configuration bits of the neuron circuit in this implementation are
stored locally in an SRAM array. A 4×10 array has been provided in each neuron
circuit. The analog control is provided by 6 local voltage biases as well as 14 local
current biases. The current biases in the neuron that do not require tuning, have
been generated from a fixed analog bias called IrefAnalog to save current parameters.
The input IrefAnalog is itself a tunable bias that generates and distributes current
biases for fixed bias circuits. These include the read-out buffer, the buffer in the
adaptation circuit and the spike comparator. The circuit utilizes level shifters to
shift the voltage levels from 1.2 V to 2.5 V, for example, to translate 1.2 V digital
enable signals for 2.5 V transistors.

Before describing the individual circuits, we take a brief look at the chip archi-
tecture.

5.2 Chip Architecture

A simplified schematic of the DLS-3 chip architecture is shown in Fig. 5.2. The
schematic is divided into two parts – analog full custom implementation and the
digital logic core including the PPU. On the top left half, we see synapse drivers
which feed the pre-synaptic input events from the digital OMNIBUS into the 32
column ANC array. Each synapse driver controls two rows in the synapse matrix.
Each of the synapse circuits in the matrix modulates events through an output DAC
and feeds them on either of the two shared excitatory and inhibitory event lines. At
the top end, correlation ADCs read-out two correlation voltages per synapse for
implementation of STDP together with the PPU. Each of the AdEx neurons in the
array (edge-connected to the synapse matrix) integrates input current from the two
lines in each column. The membrane of the neuron is reset via the digital neuron
control which sits beneath the Capmem arrays. The digital neuron control transmits
the digital event via a priority encoder to the digital backend for event routing and
controls the duration of adaptation pulses. The merged leak/reset circuit as well
as inter-compartment switches are implemented in the leak/MC extension of the
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Figure 5.2: The architecture of the third prototype of the HICANN-DLS chip
(DLS-3). The block level implementation is simplified to provide a general
overview.

Figure 5.3: The third prototype of the HICANN-DLS chip. Photo by the Author.
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neuron and the AdEx analog neuron provides it with SRAM configuration bits and
routes the membrane voltage line. The chip features an extended read-out scheme
and two simultaneous voltages from the neuron array can be read out off-chip.
This is implemented in the analog read-out block, which multiplexes debug inputs
from the neuron array as well as the synapse drivers. The neuron membrane can
be digitized by the high-speed MADC and can in turn be read by the PPU via the
digital interface. Out of the twenty local biases per neuron, seven are used in the
leak/MC block, while the remaining 13 tune the AdEx analog neuron circuit. Three
current biases are tunable globally (shared among all neurons).

5.3 Adaptation Circuit

The adaptation circuit implements the spike triggered adaptation and subthreshold
conductance given by Eq. 3.8 and Eq. 3.6 and is shown in Fig. 5.4. The circuit
is inspired by the first generation BrainScaleS neuron [99]. However, it modifies
the architecture significantly and realizes both positive and negative values of the
model parameters a and b. In the implemented circuit, the adaptation current w
is generated as the output of a source degenerated OTA, with its input terminals
sensing the difference between Vleak and Vw. The OTA conductance ga implements
the subthreshold adaptation conductance a. The two input terminals of the OTA
can be flipped using a digital enable bit enVa to realize negative values of a. This is
implemented by adding two 2×1 transmission gate multiplexers at the OTA inputs
with enVa as their select line.

Eq. 3.8 is realized by connecting a tunable conductance gw between the
buffered membrane and the node Vw, the voltage across the adaptation capacitor
Cw. This is shown in the lower right half of Fig. 5.4. A tunable floating resistor
realizes the conductance gw and a compact 1.2 V OTA has been designed for
the buffer Aw. When a spike occurs, the adaptation circuit gets a digital input
fireadapt with an adjustable pulse-width duration tfireAdapt. This triggers the spike
frequency adaptation part of the circuit implemented by a charge pump [142,143].
Every incoming pulse integrates a small charge q equivalent to Iw · tfireAdapt on
the adaptation capacitor. The current Iw is a local Capmem parameter that can be
tuned to set the ∆q. Additionally, the charge q can either be integrated or removed
from the membrane, depending upon the digital configuration bit enVw. When
enVw bit is asserted, the current Iw is integrated on the capacitor Cw via the switch
Sp, while Sn is held low. In case of charge removal (enVw is low), the current Iw is
mirrored via the cascode current mirror (transistors M1-4) and sinks the charge via
the enabled switch Sn. This implementation lets us enable both accelerating and
decelerating spike triggered adaptation.

The presence of a level shifter LS indicates that a 1.2 V fireadapt input pulse is
shifted up to 2.5 V, to trigger the thick-oxide pass-transistor switches Sp/Sn. Note
that the Capmem output stages are 2.5 V circuits and when biasing 1.2 V core
(thin-oxide devices) overvoltage protection needs to be considered to prevent drain
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Figure 5.4: The schematic of the implemented adaptation circuit.

leakage. Due to the large output impedance of the Capmem current cells, nominally
this is a not a problem, except when the input impedance of the receiver circuit is
considerably high. In the adaptation circuit, the presence of the diodeMd drops the
output potential of the current cells (two diodes in series, one shown). Alternately,
one can mirror the Capmem current source twice, and tie it to 1.2 V supply in the
second mirror. The solution however has not been adopted to reduce the additional
current mismatch. In the schematic, all circuits are 2.5 V (thick-oxide) designs ex-
cept those marked by the dashed boxes. All switches are thick-oxide transmission
gates, except Sp,n which are 2.5 V pass transistors, and the membrane connecting
Sa0 which is 1.2 V transmission-gate. The buffer, the conductance and the cascode
current mirror of the charge pump are 1.2 V thin-oxide designs. The sizing and re-
sistance of transmission gates are identical to those of Sec. 4.9. The OTA used for
buffering the membrane is a current-mirror OTA with n-type input-stage. A p-type
input stage of the same architecture has previously been described in Sec. 4.4.

Note the presence of enable switches driven by digital configuration bits
enadapt0 and enadapt1, as well as a third switch driven by encapMerge. This switching
scheme was thought out together with Paul Müller during the design phase. The
switch Sa0 is an output enable switch. Switches Sa1, Scm are meant to disconnect
the capacitor from the adaptation, when the latter is not used. In that case,
enadapt0,1 will both be low, whereas encapMerge will be asserted to connect the Cw
to the membrane Vmem. In the nominal case (when adaptation is to be used),
encapMerge is kept low, while the enables enadapt0,1 are asserted. Since the two
enables enadapt0,1 are activated and deactivated together they can be combined in a
single enable bit. Note that when adaptation is disabled, there is still a provision
to inject/sink additional current using the charge pump’s current source Iw. This is
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suggested to sink additional current from the membrane, for example, in case the
conductance-based reset is not strong enough.

5.3.1 Tunable Floating Resistor

The conductance gw of Eq. 3.8 in the adaptation term has been implemented as a
tunable bulk-drain connected resistor. Previously, Sec. 4.3.5 introduced the bulk-
drain connected devices and an implementation of a single-sided resistor for synap-
tic input circuit was discussed in Sec. 4.3.6. The adaptation resistor, on the other

Figure 5.5: The simplified schematic of the floating tunable bulk-drain resistor
used inside the adaptation term.

hand is implemented as a floating resistor – which means that either of the two
terminals can be at a potential higher than the other. Another major difference
from design point of view is the tunable resistive range. According to Table 3.1,
the range of adaptation time constant τw is between 16 µs and 600 µs (equivalent
hardware time). This is indeed a large tuning range and for practical implemen-
tation more importance is given to cover the lower half of this range. Compared
to this, the synaptic resistor implements a lower resistance range (τsyn are of the
order of 1 µs – 19 µs), and to accommodate for lower resistance range, it is biased
in linear region. The adaptation resistor is instead biased in sub-threshold region
as proposed in [122, 125].

The circuit designed for the dual-sided bulk-drain connected resistor is shown
in Fig. 5.5. Between the two terminals of the resistor, VinP and VinN, are two series
PMOS bulk-drain connected devices labeled M1 and M2. Both devices are con-
nected back-to-back, such that their source terminals are connected. This arrange-
ment lets the resistor be dual-sided and depending upon the potential difference,
one device provides higher resistance than the other. The total resistance con-
tributed by the resistor is hence RSD1 + RSD2. Where RSD denotes the resistance
between the drain and source terminal of each PMOS device. When ∆V > 0 V,
RSD2 � RSD1, whereas for ∆V < 0 V the role flips, and RSD1 � RSD2. In this
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way, only one of them contributes to the total resistance in the two conditions. The
gates of both bulk-drain connected devices are controlled by a biasing circuit – a
cascode current mirror formed by devices M3,4 and M5,6, as well as M7 that sets
the eventual bias point.
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Figure 5.6: Simulated I-V characteristics of the adaptation resistor: a) Nominal
corner with swept Ibias. b) Process corner and temperature sweep at Ibias = 0.5 µA.

The resistance RSD realized by the given PMOS device can be derived [124]
using the EKV model [111] as

RSD =
nUT
ISD


(
e
VSD
UT − 1

)
(n− 1)

(
e
VSD
UT + 1

)
 (5.1)

where the resistance is controlled by VSG that varies the current ISD. For a negligi-
ble voltage drop VSD, one can write

RSD

∣∣∣
VSD=0

=
UT
I0
· e
−VSG−Vth0

nUT (5.2)

where the current I0 = 2nµCox
W
L U

2
T , which highlights the dependence of resis-

tance on temperature. The simulated I-V characteristics of the designed resistor is
shown in Fig. 5.6a. The bias current Ibias which tunes the resistance is swept be-
tween 10 nA and 1 µA in equal intervals. One terminal is kept fixed at 0.65 V, while
the other is swept from 0.2 V to 1.1 V. The resistance increases more linearly at
higher bias currents than the lower values, which results in a very large resistance.

The circuit is further simulated for corner variations and temperature differ-
ences in Fig. 5.6b for a fixed bias current of 0.5 µA corresponding to 20.5 MΩ
resistance. Note that the results from skewed process corners (slow-fast and fast-
slow) are at extremes and contribute a very large (125.3 MΩ) or smaller resistance
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(5.7 MΩ) compared to other corners. This is likely due to the presence of an all
NMOS biasing stage that sets the common-mode of the series PMOS transistors.
It needs to be seen how much calibration can help to compensate for the afore-
mentioned variations. Compared to process corners, the resistor is more immune
to temperature changes, as visible by temperature variations to 30°C or 70°C in
Fig. 5.6b.

The resistor has been designed to cover a range between 13 MΩ up to at least
331 MΩ (mean values). The histograms of Fig. 5.7a and Fig. 5.7b show the statis-
tical variation due to device mismatch whose 1σ spread is 2.5 MΩ and 127.1 MΩ.
The reported resistances are evaluated at bias currents of 1 µA and 20 nA respec-
tively.
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Figure 5.7: Statistical variation in the minimum and maximum resistance that can
be tuned in the adaptation resistor.

5.3.2 Low Voltage Buffer

The adaptation circuit needs an amplifier to buffer the membrane potential as
shown in Fig. 5.4. The circuit is meant to be low-power and compact, and there-
fore a current mirror OTA (CM-OTA) is designed using thin-oxide 1.2 V transistors
only. The schematic of the OTA is shown in Fig. 5.8. The OTA is fully symmetric
and has an n-type input stage to allow the range of membrane potential – typically
between 1.2 V and 400 mV. The circuit is different than that of Sec. 4.3.2, which
is a 2.5 V p-type input stage design with low input offset requirement. The input
bias current supplied to the amplifier is distributed via the bias current distributor
block outlined in Sec. 5.7. As described in Sec. 4.3.2, the design does not require
a compensation capacitor, thereby saving area. The amplifier open-loop DC-gain
can be mathematically expressed as

AOL =
Vout

Vin
≈ gm2 · gm6

gm4(gDS6 + gDS7)
=

K · gm2

(gDS6 + gDS7)
(5.3)
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Figure 5.8: The schematic of the opamp circuit used inside the adaptation circuit.

where K is the ratio of transconductances gm6 and gm4 and is kept at 5 times. The
total achieved gain in the amplifier is 31.9 dB. To compare how good the approxi-
mation of Eq. 5.3 is, one can plug in the values from the simulator, which evaluates
to 32.6 dB of open loop gain. The expressions therefore provide a reasonably
good estimate. Due to the usage of thin-oxide transistors (low intrinsic-gain) the
achievable gain is low. The low gain comes from input stage mirror loads, which
reduce input stage gain to approx. gm2

gm4
. A typical solution to increase gain is the

use of cross-coupled input-stage in parallel to the mirror load M3,4. For the current
version this is however not implemented. High gain in buffers is desirable since
ACL = AOL

1+AOL
, where ACL is the close-loop gain.

The unity gain bandwidth of the OTA is K·gm2
CL

and the achieved value with a
capacitive load of 100 fF is 23.5 MHz. In unity-gain configuration the amplifier
achieves a –1 dB bandwidth of 22.5 MHz when loaded with a 100 fF output capac-
itor. In the same configuration it achieves a positive slew rate of 15.7 V/µs and a
negative rate of 11.3 V/µs. This corresponds well toK ·Itail/CL = 5 · 260 nA/100 fF
= 13 V/µs. The amplifier compensates itself using the dominant pole, which en-
tails that a larger output load makes it more stable, at the expense of decreased
bandwidth. An output load of 100 fF forms the dominant pole (gDS6+gDS7

CL
) and re-

ducing it makes the amplifier less stable – as it comes closer to the non-dominant
pole (≈ gm4

Cpar
). The non-dominant pole is contributed by the parasitics Cpar at the

gate of transistors M4,6 (mostly CGS) and drains of M2,4. For a capacitive load of
50 fF, the open loop amplifier achieves a phase margin of 57.5°, which increases
to 70.5° for a 100 fF capacitive load. Note that when placed inside the adaptation
term the amplifier sees the RC filter formed by the tunable resistor and the 2 pF
adaptation capacitor at its output, which improves the phase margin.

Fig. 5.9 shows the input-referred offset voltage of the amplifier simulated using
the device Monte Carlo models. The offset is 15.6 mV estimated for a 1σ (single
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Figure 5.9: The distribution showing input offset voltage of the low voltage ampli-
fier simulated across 500 samples using Monte Carlo device models.

sided quantile) with a mean of 531 µV. In the adaptation circuit, the effect of this
offset can be compensated with the voltage VleakAdapt. The amplifier is biased with
200 nA input current that is multiplied inside. The total current consumption is
about 1.5 µA, corresponding to 1.82 µW. The achieved specifications of the ampli-
fier are summarized in Table. 5.1.

–3 dB bandwidth1 36.4 MHz
–1 dB bandwidth1 22.5 MHz
DC Gain2 31.9 dB
Current consumption 1.5 µA
Power consumption 1.82 µW
Input offset 15.6 mV
Slew rate 11.32 V/µs
Phase margin2 @CL=100 fF 70.5 °
Phase margin2 @CL=50 fF 57.5 °
Compensation capacitor none
Voltage supply 1.2 V
MOS devices core thin-oxide (std./low-Vth)

1 CL = 100 fF
2 Open loop configuration

Table 5.1: The achieved specifications of the OTA used inside the adaptation term.
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5.3.3 Full Circuit Characterization

Having reviewed the internal design of conductance gw and the buffer Aw, the full
circuit performance of the adaptation circuit is discussed in this section.
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Figure 5.10: Simulating the adaptation time constant, controlled with the bias of
the floating resistor.

The adaptation time constant τw is given by Cw/gw = RwCw. Certain de-
viations could however be expected due to the dependency of resistance on the
voltage applied across its terminals, as well as the corner and mismatch variations.
As shown earlier, the adaptation resistance can be tuned to set a range of time con-
stants. Fig. 5.10a shows the voltage curves decaying with a time constant τw from a
held potential of 800 mV towards the resting potential of 700 mV. The bias is swept
between 20 nA and 200 nA which yields time constants between 324 µs and 56 µs.
The ideal tuning curve is plotted in Fig. 5.10b. The minimum and maximum time
constants are further evaluated for device mismatch at the resistor bias of 15 nA
and 1 µA and shown in Fig. 5.11a and Fig. 5.11b respectively. The time constants
are again evaluated by a decay of 100 mV, from 800 mV towards a leak potential of
700 mV. The mean (µ) and 1σ spread for the shorter bias is 25.8±8.2 µs, whereas
for the longest time constant it is 418.5±210.8 µs respectively. The large variation
in longer time constants comes from the variation shown for resistor curves, e.g.,
in Fig. 5.6 and Fig. 5.7.

In the adaptation circuit architecture, accelerating and decelerating spike fre-
quency adaptation is achieved by a charge pump, where the current source Iw inte-
grates on, or removes the charge from the capacitor Cw. Since the current source is
the same, the discharge is via a mirrored current source through the switch Sn. This
leads to more variable amount of charge removal compared to integrated charge
due to device mismatch. Shown in Fig. 5.12 is a distribution of mismatch among
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(a) Minimum τw at Ibias = 1 µA.
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(b) Maximum τw at Ibias = 15 nA.

Figure 5.11: A distribution showing minimum and maximum values of adaptation
time constants.

both mirrors. A direct current from capacitive memory having a mean and standard
deviation [µ±1σ] of 100.2±1.42 nA, yields 105.7±36.5 nA for the mirrored nega-
tive current source. Fig. 5.13 shows the adapting membrane response of the neuron
when stimulated with a constant fixed dc input current. Fig. 5.13a shows how the
membrane adapts over time as a result of the growing voltage on the adaptation ca-
pacitor Cw with each spike event (shown in Fig. 5.13b). Once the configuration bit
enVw is switched off, with all other settings unchanged, the neuron membrane re-
sponds with accelerating adaptation, as shown in the Fig. 5.13c. The figure shows
an accelerating membrane as a result of more net positive current on the membrane,
due to decreasing voltage Vw (Fig. 5.13d).
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(b) Variation in negative Iw.

Figure 5.12: A distribution showing variations of the large negative source varia-
tion in comparison to the positive current source, for a fixed Iw of 100 nA.
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Figure 5.13: Membrane response of the neuron showing spike frequency adapta-
tion in both directions, in response to a fixed DC input current. a) Decelerating
membrane and its positively growing adaptation voltage (b). c) Accelerating mem-
brane and its corresponding decreasing adaptation voltage (d).

Note that the positive and negative Vw in Fig. 5.13 are not symmetric. The step
size ∆Vw between the two varies. This is first due to the non-negligible current
that flows through the resistor and raises the voltage level outside the pulse inter-
val, for both positive and negative Vw (with the chosen parameters). It is more
pronounced at small time constants, compared to large ones, due to smaller resis-
tance. Moreover, it is dependent on the potential difference across the resistor –
which increases, when membrane is raised high by exponential term, close to the
spike threshold and is the expected model behavior. As a result, during charging
integration (positive increase in Vw), it increases the voltage level of Vw by up to a
few millivolts right before a spike. During charge removal (decreasing Vw), it re-
duces the effective voltage drop ∆Vw, attained during the last pulse interval. This
is visible more clearly in Fig. 5.14f and is discussed in the following text.

More importantly, during the pulse interval fireadapt (integration or charge re-
moval), a short glitch occurs on the node voltage Vw as shown in the simulation re-
sults of Fig. 5.14b,e. The glitch is predominantly due to clock feedthrough (but also
due to charge injection) through the pass transistor switches (Sn and Sp), driven by
the pulse input of short transition period of 0.5 – 1 ns. The peak glitch is slightly
higher in amplitude during charging in comparison to discharging, due to the mis-
match of current sources (p-type near-ideal source from Capmem in comparison
to a n-type cascode current mirror for the discharge path). The effect of this glitch
is also visible in Fig.5.14c as an initial pedestal at the start of every pulse increas-
ing Vw. Matched current sources [144] can be employed to remove such non-ideal
effects.

In the linear region, the gate-source and gate-drain parasitic capacitances of a
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Figure 5.14: a) and d) The incoming pulses that enable positive and negative cur-
rent sources via Sp,n. b) and e) The glitches due to the incoming clocks on the
two current sources (sourcing/sinking 20 nA) enabled by Sp,n. c) and f) Resulting
positive and negative increase on Vw changing with every input pulse.

pass switch is

CGS/CGD =
1

2
WLCox +WCov (5.4)

where Cov is the overlap capacitance between gate and source/drain (sometimes
referred to as CGSO). When the input pulse to the switch makes a transition from
logic high to low, the clock voltage (2.5 V) makes a voltage divider between this
parasitic and the adaptation capacitor Cw. If the transistor parasitic CGS is as small
as 1 fF, a maximum voltage pedestal of up to 1.25 mV can appear as error on the
node Vw. Mathematically it is expressed as

Verr,cft = 2.5 · CGS

CGS + Cw
(5.5)

Similarly, the error voltage due to channel charge injection can be written as

Verr,inj = WLCox(2.5− Vw − Vth) (5.6)

where W and L are the channel width and length of the transistor. In the charge
pump implementation, both the pass transistors are prone to body-effect. There-
fore, the error has a non-linear dependence upon the input voltage.

Fig. 5.15 shows the simulation results of swept current source Iw between
20 nA and 200 nA and incremented by 60 nA each time. The results for both
positive (left) and negative Vw (right) are plotted. The small steps correspond to
20 nA, while the largest ones to 200 nA. Vleak is 0.6 V and all parameters are kept
constant between the two runs. The plot shows that while positive Vw increase does
saturate, the negative counterpart continues to decrease until it reaches the ground
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5. EMULATION OF THE ADAPTIVE EXPONENTIAL I&F MODEL

potential. This is clearly due to the membrane that toggles between 0.6 V to 1.1 V,
which in the positive case balances out the currents after multiple spikes, whereas a
large potential difference between the membrane and the adaptation voltage Vw ex-
ists for the negative case. The saturating adaptation voltage Vw shown in Fig. 5.15a
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Figure 5.15: The positive and negative Vw voltage with swept input adaptation
current Iw of 20, 80, 140, 200 nA ({blue, green, red, black}), where τw is fixed.

rises above 1.2 V depending upon the parameter settings. Fig. 5.16 shows two
measured traces showing the read-out voltage on the adaptation capacitor in two
different cases – one with higher input event rate (gray trace) and another with low
input rate (black trace). While the black trace peaks at about 1.05 V, the gray trace
saturates at 1.36 V. A higher than 1.2 V drain voltage may lead to drain leakage in
1.2 V thin-oxide transistors. The voltage rise however effects only during charge
integration via Sp, where the only 1.2 V design is the resistor, whose resistance is
usually hundreds of MΩ. In any case, the circuit should limit the voltage to 1.2 V
by realizing the charge-pump as a 1.2 V circuit.

Several techniques are proposed in literature to compensate for the effects of
charge injection and clock feedthrough [145]. One should avoid sharp clock transi-
tions. Further, a quick solution could be to replace the switches with transmission-
gates, where complementary signals will act to cancel the effect of each other. The
usage of a half-sized dummy switch can also be employed [146]. Finally, one can
also improve the circuit by matching the p- and n-type current sources, in order
to have more symmetric curves. Low-glitch, matching current sources techniques
are proposed in literature, for example in [147,148] which could be employed too.
The potential build-up on the capacitor Cw is limited on the lower end by the cor-
rect operation of the current mirror – since it also determines the minimum output
voltage (common-mode) of the current mirror that will guarantee saturation re-
gions. This lower limit is approximately 250 mV. The upper limit is that it may not
go significantly beyond 1.2 V potential, as that would cause leakage in thin-oxide
transistors of the tunable resistor or reduce its resistance. The off-state isolation of
the pass transistors Sn,p is high, with a maximum leakage current of few tens of
picoamperes, since they are both thick-oxide transistors.
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Figure 5.16: Measured results showing Vw traces in two different neurons. The
neuron with higher input rate saturates the adaptation voltage at approx. 1.36 V
(gray trace). The neuron with low input rate peaks at 1.05 V (black trace).
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Figure 5.17: Measured results showing an erroneous behavior of the neuron, due
to the crosstalk linked to the Capmem update cycle. a) The membrane potential
changing its behavior as a result of the Capmem ramp update. b) The correspond-
ing Capmem ramp measurement.

During chip measurements, significant crosstalk induced by the capacitive
memory’s refresh ramp has been encountered. The effect, as measured by
simultaneous monitoring of the neuron membrane as well as the Capmem ramp
signal is shown in Fig. 5.17. The Capmem ramp updates the stored capacitor value
in voltage cells as well as the current cells (using a voltage-to-current converter).
The figure shows that when the ramp updates the stored current bias value, the
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Figure 5.18: The current consumption of the implemented adaptation circuit. a)
Incoming pulse event from the digital neuron control. b) The current consumed
over time from the 2.5 V supply. c) The current consumed over time from the
1.2 V supply.

membrane behavior changes. The hypothesis for this behavior is the sensitivity
of the current bias that tunes the leak/reset OTA to the Capmem ramp signal.
When the value of the bias is refreshed by the incoming voltage ramps, the leak
conductance changes as a result. This happens also when the ramp is reset. Since
the exponential circuit is active, the abrupt perturbance in the leak conductance
can lead the neuron to a different spiking behavior, than what it is configured
for. The leak/reset circuit is not designed by the author and is outside the AdEx
implementation described in this work. At the time of this writing, the circuit
schematic has already been revised.

The static power consumed in the adaptation circuit is mainly distributed
among the 2.5 V OTA, the 1.2 V adaptation buffer and the 1.2 V resistor. During
the chip layout phase, as a mistake the bias distributed for the amplifier was set at
1 µA, rather than 200 nA. That caused the specified total current consumption of
1.5 µA to increase to 7.1 µA. The OTA current consumption is highly dependent
on the bias settings, with 2.1 µA for Ibias,biasSd of 200 nA/500 nA. The resistor
typically consumes twice its Ibias setting – approximately 200 nA for Ibias =
100 nA. The dynamic current consumption of the circuit increases at the time of
incoming pulse’s rising and falling edges, as shown in Fig. 5.18. This is due to
dynamic leakage in the level-shifters that convert the 1.2 V pulse signal to 2.5 V
pulses (see LS in Fig. 5.4). The total static current consumed from 1.2 V and 2.5 V
supplies in this case is 7.5 µA and 2.2 µA respectively.
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5.4. EXPONENTIAL CIRCUIT

5.4 Exponential Circuit

The exponential circuit emulates the exponential term given by Eq. 3.4. The circuit
generates the exponential current by exploiting the weak inversion characteristics
of a MOS transistor. When biased in the subthreshold domain, i.e., VGS < Vth, and
the drain-source drop (VDS) is greater than 3–4 UT, i.e., VDS > 75 mV (with VS = 0
for NMOS, VDD for PMOS), the drain current is given [88] as

ID = I0
W

L
exp

(
VGS − Vth

nUT

)
(5.7)

where n is the slope factor, UT is the thermal voltage at room temperature, W and
L are the width and length of the device and Vth is the device threshold voltage.

Figure 5.19: The schematic of the exponential cicuit.

The schematic implementing the exponential circuit is shown in Fig. 5.19. In
the circuit the exponential current is generated by the device M3. The neuron
membrane potential Vmem is sensed by the device M1, which together with the
diode-connected pull-up device M2, inverts its input. This inverted output is fed to
the exponential device M3, in a way that for maximum range of Vmem, the transis-
tor M3 stays within the subthreshold domain. This is maximized by choosing M3
as a high-threshold (Vth) device. The exponential output current of M3 is copied
by a current mirror formed by M4,5, before being subjected to three binary-scaled
current mirrors formed by transistor M6 and M7,8,9. The mirroring ratio of M4,5

is 1:1, so no current amplification is done. However, when the current is scaled
using the scaling bits WVT , the design maintains a 1:1 ratio between transistors
M6,9, and decreases in a binary fashion between mirrors M6,8, and M6,7. The 3-bit
tuning weight alters the AdEx exponential threshold VT, and is therefore labeled as
WVT . The output of all current mirrors are connected and the accumulated current
is integrated directly on the neuron membrane. An output transmission-gate switch
controlled by the digital configuration bit enexp toggles the exponential output on
the membrane. Note that when exponential circuit is enabled, the source-drain
drop (VSD) of the output transistors of each current mirror is VDD12 – Vmem. This
specifies the maximum limit up to which the exponential circuit may operate, since
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5. EMULATION OF THE ADAPTIVE EXPONENTIAL I&F MODEL

at Vmem = 1.2 V, the effective source-drain drop and output current is zero. The
current starts to decrease above 1.1 V. In order to ensure correct operation of the
exponential circuit, it is suggested to limit the membrane potential to 1.05 V. An-
other rather soft limit comes from the threshold of the transistor M3, since higher
membrane beyond 1 V, cannot ensure a subthreshold operation of the device M3.
An exponential nature of the current, driven by subthreshold MOS dynamics will
be compromised in that case.

The switches S0-2 in the schematic of Fig. 5.19 are realized as PMOS-based
pass transistors. When a mirror is disabled, the isolated gate nodes are pulled up
towards the 1.2 V supply using another pass transistor (not shown in schematic)
driven by configuration bits complementary to those which drive S0-2. To demon-
strate the functionality, we subject the circuit to a linearly increasing voltage input,
which, given the subthreshold biasing, generates an output current that increases
exponentially [13, 149]. This is shown in Fig. 5.20. The circuit output in Fig. 5.20
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Figure 5.20: a) The exponential term is exposed to a slow voltage ramp (dashed
signal). The resulting output current is swept for its digital input WVT . The output
current is evaluated on a separate load. b) The exponential current output of a) is
shown here on a logarithmic scale.

is evaluated on a separate load instead of the membrane. Therefore, in principle
it can be taken higher than 1.05 V up to 1.2 V. The simulation setup sweeps 3-bit
WVT which is a PMOS input, and is therefore active low. A weight equivalent to
0002 is the highest setting as depicted in the figure. Note that up to approximately
0.45 V the circuit does not contribute with significant output current. Further, the
exponential threshold varies with each setting of WVT . The logarithmic plot shows
the near-exponential region above 10 nA output current that extends to more than
1 µA.

The circuit is prone to device mismatch and the output current indeed varies as
a result. Fig. 5.21 shows the variation in peak output current as simulated using
device Monte-Carlo models. The output current has a mean around 1.7 µA, with
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a single-sided 1σ deviation of about 0.57 µA. The variation in exponential drain
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Figure 5.21: Variation in the peak output current of the exponential circuit with the
maximum setting of WVT .

current is expected due to the subthreshold biasing. Further, it has a significant
dependence on the mobility and the device threshold as well as on absolute tem-
perature. The circuit is simulated for variations due to process corners, as shown
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Figure 5.22: Corner and temperature sweeps of exponential circuit for the highest
setting of WVT .

in Fig. 5.22a. As expected the fast corners generate higher currents as compared
to typical or slow corners. The variations caused as a result of temperature change
are depicted in Fig. 5.22b. Note how higher temperatures cause output currents
to increase as seen by the 70 °C trace. The variations caused by the process and
temperature variations as well as device mismatch can eventually be tuned for by
the digital configuration bits (WVT ). The current version of the circuit is tunable by
a 3-bit configuration. This resolution needs to increase with controlled mismatch
to compensate for the mentioned variations.
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Taking a look at the emulated parameters of the AdEx exponential term, be-
sides the exponential threshold VT, the slope factor ∆T is emulated by the tran-
sistor weak inversion parameter nUT (see Sec. 3.3). The slope threshold ∆T is
therefore not meant to be a tunable parameter but is a fixed value. The value of
slope threshold parameter ∆T is estimated during [91], by fitting the output cur-
rent with an exponential function. The typical value is around 156 mV and does
not vary with values of WVT . The plot in Fig. 5.23b shows ∆T as a function of the
WVT .

The circuit has been simulated to estimate its current consumption. The static
current consumption when the membrane is at resting potential of 600 mV is about
955 nA. To estimate the dynamic power a slowly rising input voltage is subjected
to the input once again. Fig. 5.23a shows the current dissipation as a function
of membrane potential. With WVT = 0002 the current consumption rises from
955 nA for the membrane at 600 mV to its peak value of 8.7 µA for membrane at
1.05 V. The two curves correspond to minimum and maximum WVT code and the
difference in their peak current values is the current flowing onto the membrane.
This highlights that during the brief time interval when the membrane peaks at
1.05 V, the current consumption shoots up to 7.5 µA, independent of theWVT value.
If the membrane threshold is set lower, indeed a reduction of dynamic power can
be achieved. About 80% of this current is consumed in the input inverting stage via
transistor M1 due to its sizing and the rest in the current mirror formed by M4,5.

Fig. 5.24 plots measured traces from a single on-chip neuron that was tuned to
evoke tonic spiking with exponential term enabled. The leak and reset potential are
set around 0.78 V. The exponential term pulls the membrane up exponentially until
the neuron spikes around the specified threshold of 1.03 V. The parameter WVT is
swept during successive runs and the plot overlays the tonic spikes on top of each
other. Note that the order in which the exponential strength increases is as expected,
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Figure 5.23: a) The dynamic current consumption of the circuit as a function of
time-varying input voltage, as well as the minimum and maximum values of WVT .
b) The slope threshold ∆T as a function of the digital parameter WVT .
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Figure 5.24: Measured results from the exponential term on a single neuron. The
3-bit digital WVT is swept from its minimum value 1102 to the maximum 0002.

starting from the weakest value 1102 and growing with every increasing bit. One
needs to expect considerable mismatch in the successive samples, as visible by the
significant difference between 1012 and 1002. The traces have been acquired after
applying the oscilloscope’s built-in linear-phase FIR low-pass filter to cancel out
the high frequency noise.

In comparison to the implementation of [99], the exponential term is realized
without using an OTA/Opamp and therefore saves significant area. The exponential
circuit consumes 47.7 µm2 compared to approximately 358 µm2 area of [99]. The
power consumption however increases during dynamic activity and can be further
improved by optimizing the input stage. The circuit has been designed with thin-
oxide transistors and with 1.2 V supply only. The modular architecture and the
digital control allows to completely turn the circuit off, and the exponential current
switches-off by itself before reaching 1.2 V. The implementation in [99] does allow
for the tunability of ∆T , which is not possible in the current implementation. The
tunability using a digital parameter has been preferred and if more bits are allocated
for WVT , calibration of corner variations could be possible. This may however
be limited by the maximum achieveable Integral Nonlinearity (INL) in that case.
The digital WVT saved an analog (Capmem) parameter as an additional benefit.
In the thesis work of Mitja Kleider [150] it is shown that the exponential current
range in [99] lasts only about 100 mV, to pull the membrane up only in the initial
duration. This circuit, on the other hand, gives an exponential current for a few
hundred millivolts of the membrane. Lastly, a circuit that utilizes weak inversion
dynamics will be prone to variations nonetheless, although at a low implementation
cost.
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5.5 Analog Input/Output

The neurons within the array of the DLS-2 chip directly drive the shared output line
as highlighted in Fig. 4.35. This is replaced with a distributed, multiplexed read-out
scheme in DLS-3 chip as shown in Fig. 5.25. The top half of the figure shows the
neuron array where it highlights the analog I/O circuits of each neuron. In addition
to the neuron membrane Vmem and the voltage on the two synaptic lines Vsyn,exc/inh,
the voltage Vw on the adaptation capacitor can be read out via the multiplexer. The

Figure 5.25: The distributed membrane read-out interface of the DLS-3 chip.

size of the neuron buffer is reduced due to a smaller compensation capacitor, pos-
sible by virtue of the chosen compensation scheme and a decreased output load.
This is described in the next subsection. The output of the reduced buffers (marked
A0,1,2 in Fig. 5.25), are connected to two separate read-out lines. Out of the 32 neu-
rons in the array, the odd-numbered buffers are all connected to the first line, while
the even ones to the second. The two read-out lines are again multiplexed through
two transmission-gate multiplexers. These multiplexers are identical to those used
inside the analog I/O of the neuron circuit. With this multiplexing, alongside the
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neuron inputs, the debug input from the STP circuit can also be selected. Outputs
of both multiplexers can be read-out simultaneously through two read-out buffers
connected to the pads (through an always-on switch). These output-buffers are the
ones designed for DLS-2 neuron described in Sec. 4.8.1. The output of the two
multiplexers are also routed to the MADC through a Programmable Gain Ampli-
fier (PGA) and active multiplexers, described further in [94]. Note that the output
of the reduced buffer is also directly routed to the CADC via the synapse matrix
(see output VCADC in Fig. 5.25). This provides us with digitized membrane voltage
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Figure 5.26: Superposition of measured results from a single on-chip neuron. The
membrane potential Vmem (top) is being read-out simultaneously together with the
adaptation voltage Vw (bottom) of the neighboring neuron circuit firing with the
same dynamics. The spiking membrane shows the broad SAP possible from the
AdEx models.

per column (neuron), directly readable via the PPU. Notice a switch Sw between
the multiplexer input and Vw. This is a thick-oxide transmission-gate placed in the
read-out path to prevent potential leakage, since Vw voltage rises above 1.2 V and
4×1 multiplexer is made up of 1.2 V core transistors. The Istim input is common
to all neurons and terminates at the pad, as in the DLS-2 implementation.

Fig. 5.26 shows the membrane potential Vmem (top) read simultaneously from
the chip together with the adaptation voltage Vw (bottom). The adaptation voltage
in this case is that of an adjacent neuron, which fires with the same dynamics.

115



5. EMULATION OF THE ADAPTIVE EXPONENTIAL I&F MODEL

5.5.1 Read-Out Buffer

As described in Sec. 4.8.1, an advantage of using indirection compensation scheme
is the reduction in the size of compensation capacitor without any extra circuits,
such as the nulling resistor or feedback buffer. The neuron read-out amplifier de-
signed in the DLS-3 scaled the compensation capacitor of DLS-2 read-out amplifier
from 600 fF to 92 fF, without any further change in the design. This impacts pri-
marily the frequency response of the circuit with a change in phase margin and the
unity gain bandwidth. The DC-gain, common-mode and supply rejection at low
frequencies remain unchanged. Table 5.2 summarizes the phase margin and unity
gain bandwidth as the output capacitive load is decreased fromCL = 3 pF to 100 fF.
Note that the current amplifier has a lower phase margin than that achieved in DLS-
2 read-out amplifier forCL = 3 pF ‖ 10 MΩ. The implemented circuit is in a buffer

CL
1 Phase Margin fu

3 pF 57.4° 115.2 MHz
1 pF 68.7° 217.4 MHz
100 fF 83.3° 714.6 MHz

1 ‖ 10 M Ω

Table 5.2: Phase Margin and unity gain bandwidth of the open loop OTA, without
the output transmission gate.
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Figure 5.27: a) Transient large signal response of the DLS-3 read-out buffer. b)
Frequency response of the buffer before and after the transmission gate.

configuration, where it drives the input line connected to CADC (connected prior
to transmission gate), and a connection to the read-out chain (through the transmis-
sion gate) as shown in Fig. 5.25. Assuming the parasitic load imposed by these two
connections (the CADC line and the read-out line that terminates at static multi-
plexers) is 100 fF and 250 fF, the transient and frequency response of the close loop
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amplifier is shown in Fig. 5.27. The transient settling response shown in Fig. 5.27a
shows high stability of the amplifier for the chosen load. Note that the unfiltered
bandwidth (Fig. 5.27b) shows some peaking at frequencies over 600 MHz. This is
load-dependent and typically occurs in close loop amplifiers when conjugate poles
are shifted towards the origin.

5.6 Membrane Capacitor

The membrane in the DLS-3 neuron is a 6-bit adjustable MOS capacitor. The
schematic of its implementation is shown in Fig. 5.28. The capacitors are realized

Figure 5.28: The schematic of the 6-bit selectable membrane capacitor.

using standard 2.5 V thick-oxide transistors as described previously in Sec. 4.7
and shown as inset in Fig. 5.28. The capacitance contributed by the MOScaps are
summarized in Table 5.3. For layout reasons, capacitors C5 and C3 are chosen as
2× and 0.5× the size of C4 (10.4 µm × 9.94 µm). Similarly, the sizes of C2 and
C0 are twice and half of C1 (3.55 µm× 3.55 µm). The total membrane capacitance
sums up to 2.36 pF. The variation of MOScap when biased in inversion region has
been previously shown in Fig. 4.34. Note that when adaptation is not used, an
additional 2 pF of adaptation capacitor (MIMCAP) can be added in parallel, which
will increase the membrane to 4.36 pF.

C5 C4 C3 C2 C1 C0

1.18 pF 590 fF 295 fF 148 fF 74 fF 37 fF

Table 5.3: The capacitance of the individual MOScaps that realize the membrane
capacitor in DLS-3 neuron.

5.7 Fixed Bias Distribution

The circuits within the DLS-3 AdEx neuron that do not require tunable current bi-
ases have been provided with a fixed bias. This is essential to utilize the Capmem
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Figure 5.29: Schematic of the circuit that distributes current biases to readout am-
plifier, spike comparator and the adaptation buffer.

parameters efficiently. Since all such biases are current-based, no voltage fixed
voltage biases are generated. The circuit to produce fixed biases is shown in
Fig. 5.29. A cascode current mirror (devices M1-4) takes its input reference current
IrefAnalog from a tunable Capmem based current cell. The mirror provides three
different outputs for three different fixed bias circuits in the neuron. These include
the read-out opamp, the spike comparator and the low voltage buffer used inside
the adaptation term.

Current/Voltage µ 1σ
IspikeCmp 511 nA 110 nA
IadaptAmp 252 nA 50 nA
IreadOut 1.01 µA 199 nA
VoutSyn 570.4 mV 27 mV

Table 5.4: The mean and 1σ variation due to the device mismatch in current biases
produced. Since the output of the synaptic read-out source follower depends on
IreadOut, the variation on its output voltage level is also listed.

The typical (fixed) value for IrefAnalog is reduced to 250 nA, which is multiplied
twice to provide 500 nA for spike comparator, and four times to provide 1 µA bias
current for read-out amplifier. The membrane buffer inside the adaptation term is a
1.2 V circuit, therefore the cascode mirror (M13-16) giving out IadaptAmp = 250 nA
is a 1.2 V circuit.

Note that the Capmem current cells have a PMOS based output stage – as a
result the current needs to be mirrored twice, which introduces more variation in
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(a) Bias current of spike comparator.
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(b) Bias current of adaptation buffer.

Figure 5.30: Variation in generated input bias currents for spike comparator and
adaptation buffer.
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(a) Bias current of read-out amplifier.
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Figure 5.31: Variation in generated bias current of readout amplifier as well as
its result on output voltage of read-out source follower that reads synaptic input
activity.

the output bias current. This variation due to device mismatch simulated using
Monte Carlo models is shown in Fig. 5.30 for IspkCmp and IadaptAmp. Note that the
synaptic activity on the synaptic lines is sensed by the source followers, as previ-
ously described in Sec. 4.8. As shown in the circuit of Fig. 4.36, the bias current
for read-out amplifier IreadOut also provides a shared bias through a cascode cur-
rent mirror (devices M8,10 in Fig. 4.36) to the source follower. This determines
the common-mode of the source follower bias load device M2 (see Fig. 4.36). A
variation in IreadOut will therefore result in a change of gate voltage, which in turn
will alter the output DC-level VoutSyn of the source follower. The variation of the
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5. EMULATION OF THE ADAPTIVE EXPONENTIAL I&F MODEL

read-out bias as well as its influence at the output level of source follower is shown
in Fig. 5.31. Table. 5.4 summarizes the result of device mismatch histograms in
tabular form as mean (µ) and 1σ single sided quantiles. Note that the output bias
currents show about 20% 1σ variation from their mean value. The circuits in ques-
tion are in any case robust and the variation does not alter their functionality.

5.8 SRAM Array and Level Shifters

The digital configuration bits used within the neuron circuit are stored in a 4×10
SRAM array. Four words, each containing 10 bits are integrated per neuron, for
which four word-line signals are generated by the decoder implemented in the
digital neuron control block. The arrangement of the SRAM array is shown in
Fig. 5.32. The word-lines are shown entering from the left side labeled WL, while
the bit-lines BL/BLB from the top. Each SRAM bit-cell is a standard 6T cell
equipped with a minimum-sized output buffer to improve the driving strength. Of
the 40 bits, 30 are used in the main neuron circuit, while the last 10 bits are routed
outside for use by the merged leak/reset/MC circuit. Five out of these 10 bits are
dual polarity as indicated in the figure (DATA/DATAB<39:35>).

Figure 5.32: The 4×10 SRAM array implemented within each neuron circuit.

The configuration bits stored in the SRAM array have logic levels VOH of 1.2 V.
To drive an input of a 2.5 V transmission-gate or pass transistor, level conversion is
achieved using the circuit shown in Fig. 5.33. The circuit operates as follows: when
it encounters logic high (1.2 V) at the input ofM1, it turns onM1 and turns offM2.
The input node toM4 is pulled down as a result ofM4 turning on, pulling the output
node Vout to VDD25. As Vout rises to VDD25, M3 is turned off. The opposite happens
when Vinput is at logic low (0 V) turning M2 on, eventually turning M4 off. This
causes Vout to output logic level low (VOL). An inverter formed by M5,6 produces
the opposite polarity, since the transmission gates need both signals.
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5.9. ON CONDUCTANCE-BASED SYNAPTIC INPUT

Figure 5.33: The level shifter used to convert 1.2 V signals to 2.5 V.

5.9 On Conductance-Based Synaptic Input

In order to extend the synaptic input to conductance-based inputs, an architecture
is conceived that realizes both current-based and conductance-based inputs in par-
allel. The idea is to let the end-user select which type of synaptic input circuit he
wants to use in the neuron circuit, one at a time. As shown in Fig. 5.34, in addition
to the DLS-2 synaptic input, another OTA with the conductance gm2 converts the
voltage on synaptic input line into an equivalent current. The output current of this
OTA controls a conductance element gsyn, such that output current integrated on
the membrane is gsyn·(Vmem - Esyn) (see Eq. 1.4). A digital enable input en selects
between the outputs of the two synaptic inputs, as well as switching the input bi-
ases Ibias and IbiasSd between the two variants. The latter saves current parameters
by sharing them between the two circuits.

The circuit realizes a source-follower buffer to shift input voltages Vrev to the
synaptic reversal potential Esyn – which can be excitatory reversal potential or the
inhibitory reversal potential. In the excitatory case the source-follower is p-type,
such that Vrev is shifted up, and Esyn is tunable between 1.2 V to 2 V. This provides
the relevant range of Esyn in the excitatory case and reversal potentials higher than
the range of Capmem voltage cells can be provided. In the inhibitory case, an n-
type source follower shifts the voltage range lower. Due to the lack of design and
verification time, the circuit is however not implemented in the DLS-3 neuron. The
maximum range of the conductance gsyn has been determined (by Paul Müller) to
be from 10 nS to 9.5 µS (biological scale) in various modeling studies. Since the
current-based input has already been silicon tested, the dual architecture targets
a completely separate path (via OTA gm2) to test the initial conductance-based
design.

121



5. EMULATION OF THE ADAPTIVE EXPONENTIAL I&F MODEL

Figure 5.34: A dual synaptic input architecture that can switch between current-
based and conductance-based synaptic inputs.

5.10 Spike Comparator and Membrane Offset

The SpikeGen circuit described in Fig. 4.27 is modified in the AdEx implementa-
tion. The circuit here acts as a voltage comparator that compares the membrane
Vmem against the spiking threshold Vthresh, and the feedback loop formed via tdelay
and T0 has been removed. The fire output is therefore only a voltage level, that
is sensed by the digital control. The digital control implements a programmable
delay (refractory period) and resets the membrane via the conductance-based re-
set. Further, the synaptic input OTA does not implement output offset cancella-
tion (Sec. 4.3.4). The offset is instead directly canceled at the membrane using a
Capmem current source. The bias parameter Imem,off tunes the offset via a 2.5 V
thick-oxide transmission-gate. Additionally, it may be used to stimulate the mem-
brane.

5.11 Spike Patterns

Being a two-variable neuron model the AdEx circuit can reproduce a wide variety
of spiking behaviors. The AdEx firing patterns have been introduced in Sec. 1.2.2.
These are mostly evaluated for by the neuronal response of a current step stimulus,
while tuning the hardware bifurcation parameters. During the design phase of the
neuron, the circuit netlist has been simulated to evaluate for firing regimes by Laura
Kriener [151], in conjunction with known model behavior from [42]. Due to the
crosstalk during measurements (Fig. 5.17), all firing patterns are not evaluated on
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Figure 5.35: Firing patterns of the designed AdEx neuron. From a) to f) are those
simulated on a circuit netlist [91,151], whereas g) and h) are measured results from
the prototype chip.

the prototype chip since the firing regimes switch with every Capmem update cycle.
However, tonic spiking and regular bursting are demonstrated. Fig. 5.35 shows the
six simulated firing patterns from [91,151] together with the measured results from
the chip. Fig. 5.35a-f demonstrate the tonic spiking, transient spiking, adaptation,
delayed accelerating as well as initial and regular bursting from the simulations.
Fig. 5.35g-h show tonic spiking and regular bursting as measured on the prototype
chip. Fig. 5.26 shows the broad SAPs together with the adaptation variable Vw.
Appendix C enlists the parameters used to reproduce the firing regimes in hardware
shown in Fig. 5.35g as well as in Fig. 5.26. The parameters for Fig. 5.35a-f are
listed in [151].
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5.12 Bias Parameters

A description of current and voltage parameters used in the neuron circuit is given
in Table 5.5. The SRAM bit-line bus is labeled 10-bit configSramIn together with

Parameter Circuit Type Typical Range

Vthresh SpikeCmp local/voltage 0.6 V – 1.1 V
Vleak Leak/Reset1 local/voltage 0.3 V – 1 V
Vreset Leak/Reset1 global/voltage 0.2 – 1 V
IbiasLeak Leak/Reset1 local/current 15 nA – 1 µA2

IbiasLeakSd Leak/Reset1 local/current 15 nA – 1 µA
IbiasReset Leak/Reset1 local/current 15 nA – 1 µA 2

IbiasResetSd Leak/Reset1 local/current 15 nA – 1 µA
IrefAnalog Ampl./SpkCmp local/current 0.25 µA
ImemOff – local/current 15 nA – 1 µA
VsynExc Syn. Input (Exc.) local/voltage 1.05 – 1.25 V
IbiasSynResExc Syn. Input (Exc.) local/current 15 nA – 1 µA
IbiasSynGmExc Syn. Input (Exc.) local/current 15 nA – 1 µA
IglobSynSdExc Syn. Input (Exc.) global/current 0.5 µA – 1 µA
VsynInh Syn. Input (Inh.) local/voltage 1.05 – 1.25 V
IbiasSynResInh Syn. Input (Inh.) local/current 15 nA – 1 µA
IbiasSynGmInh Syn. Input (Inh.) local/current 15 nA – 1 µA
IglobSynSdInh Syn. Input (Inh.) global/current 0.5 µA – 1 µA
IAdaptW Adaptation local/current 15 nA – 1 µA
VleakAdapt Adaptation local/voltage 0.2 V – 1.2 V
IglobAdapt Adaptation global/current 15 nA – 1 µA
IbiasAdaptSd Adaptation local/current 0.5 µA – 1 µA
IbiasAdaptRes Adaptation local/current 15 nA – 1 µA
configSramIn<9:0> SRAM array digital bits –
configSramInB<9:0> SRAM array digital bits –
writeSram<3:0> SRAM array digital bits –

1 Circuits are implemented externally to the AdEx circuit. See [92, 110] for
details
2 Typically set at 1 µA

Table 5.5: A summary of DLS-3 neuron parameters and their typical operating
range.

its inverted counterpart. The word-line is the 4-bit wide writeSram. The range of
all synaptic input biases are similar to the LIF circuit of DLS-2 neuron, except for
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5.13. POWER CONSUMPTION

its source-degeneration bias IglobSynSd (both excitatory/inhibitory) which is halved
due to the intermediate scaling in the fixed bias mirror. The adaptation OTA bias
current follows the range of the leak OTA (DLS-2 circuit), while the adaptation
resistor bias IbiasAdaptRes and the adaptation current IAdaptW take a full-scale current
range. In addition to the two OTA leak biases, two separate reset OTA biases are
also listed, and the DLS-3 implementation switches between them, depending upon
if its refractory interval or leak interval. The bias for analog components that do
not require tuning is IrefAnalog, designed to be kept fixed at 250 nA. The membrane
offset canceling (current injection) input is the ImemOff. A separate leak potential
VleakAdapt parameter in the adaptation is provided, in case the user wants to de-
couple it from the main Vleak potential. Appendix B summarizes the corresponding
digital configuration stored in the SRAM for each neuron circuit.

5.13 Power Consumption

With increasing number of OTAs and overall more circuits compared to the DLS-2
neuron, it is pertinent to mention that power consumption is highly dependent on
the bias settings within each neuron subcircuit. For a low power setting where all
circuits would reliably work, the neuron draws approximately 18 µA of current
from the 2.5 V supply and 9.5 µA from the 1.2 V supply. This sums up to approxi-
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Figure 5.36: The current consumption of the implemented neuron circuit. a) The
integrating neuron membrane, evoking spikes as a result of input events. b) The
current consumed over time from the 2.5 V supply. c) The current consumed over
time from the 1.2 V supply.

mately 46.4 µW of static power consumption. Fig. 5.36 shows the average current
consumption over time from both supply lines, as the membrane toggles and spikes
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due to incoming synaptic events (not shown). The membrane here is set for a weak
conductance-based reset as seen in Fig. 5.36a. Spikes in current consumption are
both visible during spike time as well as at the end of the refractory period. The
latter is due to the OTA switching from high-conductance reset to low-conductance
leak.

The spike-triggered level shifters in adaptation and merged leak/reset circuit
cause a spike in current consumption from the 2.5 V supply. Further, the average
current consumption from 2.5 V supply increases by 2.5 µA for the chosen bi-
ases during reset interval, since the (leak/reset) OTA switches to high-conductance
mode. The fixed bias distribution and current mirrors also contribute to quiescent
power consumption due to mirroring. The 1.2 V power consumption is higher than
expected due to the high fixed bias in the adaptation buffer, which causes approx-
imately 4–5 µA additional current consumption. Further consumption from 1.2 V
comes from the membrane dependent current consumption of the exponential cir-
cuit, which, in the current setup is less pronounced due to the threshold being set
at 0.8 V.

5.14 Physical Neuron Implementation

The total area occupied by the physical implementation of each neuron is 243.5 µm
× 11.76 µm. The array of 32 neurons takes 243.5 µm × 403.6 µm. This space
does not include the merged leak/reset block which occupies approx. 16.38 µm ×
11.76 µm per neuron. Similarly, the digital neuron part is also not included which
takes approximately 26.9 µm × 11.76 µm per neuron. The laid out view of the 1 ×
32 array of neuron circuits is shown in Fig. 5.37.

Figure 5.37: The layout view of the implemented array of 32 AdEx neuron circuits.
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5.14. PHYSICAL NEURON IMPLEMENTATION

Figure 5.38: A schematic of the physical implementation of the AdEx neuron array
along with its interface with the neighboring circuit blocks.
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Shown in Fig. 5.38 is the implementation diagram of the entire array together
with the interconnecting interface on the physical level with neighboring circuits.
The array forms edge-connections at the top with the synaptic matrix and sends
the read out (membrane) to the CADC via the synaptic array. At the bottom, it is
edge-connected to the merged leak/reset circuits and multi-compartment extension
block. It sends the analog membrane voltage as well as SRAM storage bits to the
leak/reset array. Below the leak/reset is the capacitive memory which provides all
local biases from the bottom and global biases from the left edge. The neuron array
sends the fireout pulse event to the digital neuron and receives the programmable
fireadapt pulse back, used to trigger adaptation. Together with the post pulse that
is routed to the synapse matrix, the SRAM address decoder input is also received
from the digital neuron. Through the digital backend, neuron configuration bits are
set via a 10-bit bus (labeled configSramIn). On the left edge, we also have global
current stimulation pin Istim as well as the two read-out voltages that are further
routed to external buffers as shown in Fig. 5.25. A PGA reference is provided
from the middle of the two read-outs (see [94] for details) and three global current
biases are distributed inside the array using a current mirror from the left edge.
The entire neuron array (including leak/reset circuit) is configured using 14 local
current bias parameters, 6 local voltage parameters, and 3 global current parameters
as highlighted in the schematic.

5.15 Discussion

This chapter presented the design and implementation of the AdEx neuron model,
which is the targeted model of the BrainScaleS hardware. The circuit is designed
on top of the modular LIF architecture implemented in the initial prototypes. It al-
lows to easily integrate exponential and adaptation circuits without further changes.
Along with the enhancement to the AdEx model, the circuit also realizes an array
of SRAM bit-cells and stores the digital configuration within each neuron circuit.
As in the LIF circuit, the AdEx circuit specifications are motivated from parameters
suggested from a number of modeling studies.

The adaptation circuit implements the hardware model discussed in Sec. 3.1,
similar to the approach adopted by the first generation design [99]. However, the
design enhances the implementation by adding positive and negative subthreshold
adaptation conductance (±a). It realizes a charge pump to have positive and neg-
ative spike-triggered adaptation (±b). The design in [99] only realized positive a
and b. Further, at the component level [99] uses an OTA bias to tune the adap-
tation time constant, which, on one hand, has very small conductance range, and
secondly suffers from limited linear range of the OTA. The current implementa-
tion uses a dual-sided resistor for a large linear range and provides a fairly wide
conductance (resistive) range. Additionally, it requires only a single current bias
parameter for tuning the time constant. This conductance implementation via a
resistor is also a low-power solution since source-degenerated OTAs typically con-
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sume more power. The designed membrane buffer, however, needs to reduce its
current bias input to its specified 200 nA in the next revision.

Besides the OTA that models subthreshold conductance a (ga for hardware),
the rest of the adaptation circuit should be implemented by 1.2 V transistors only.
As shown in Fig. 5.4, the circuits marked with dashed lines are already 1.2 V core
transistor implementation. Therefore, to shift the rest of the circuit to 1.2 V, one
can mirror the capacitive memory current Iw via a 1.2 V supply, before feeding
it as positive current Iw in the circuit. This will remove the 2.5 V transmission
gates as well as level-shifter(s) that cause dynamic leakage. Further, this will also
limit the saturation level of voltage Vw to 1.2 V. The solution has in fact been
considered during the design phase – however, it has not been implemented due
to the additional mismatch when Iw is kept small (in the order of a few tens of
nanoamperes). The additional mismatch could come from double mirroring in
that case, since Capmem cells have a PMOS output only. However, given the
implementation cost, mirroring the Capmem source twice and feeding the positive
mirrored source via 1.2 V supply is still a viable solution (see Fig. 5.4). This will
also reduce dynamic power consumption caused by leakage current of the level-
shifter and reduce all core transistors to a maximum 1.2 V. The circuit could be
realized with a charge-pump circuit where the individual current sources are well
matched. Alternate charge pump architectures are reviewed in [152] and [153].
A dynamic current-matching charge-pump implementation suggested in [154,155]
is a good candidate. It reports a balanced positive and negative current source
architecture that compensates for channel length modulation via negative feedback.
The circuit is compact, feasible for 1.2 V implementation, and reduces the effects
of charge-sharing.

The exponential circuit design is a 1.2 V implementation, motivated by a sim-
ple and area-efficient circuit that is digitally tunable and intended to reduce power
consumption. To keep it simple and compact, it is designed as an OTA-less circuit
in comparison to the implementation in [99]. Both [99] and the current imple-
mentations exploit the sub-threshold MOS characteristics to generate exponential
current. The model parameter VT is realized as 3-bit digitally tunable parameter,
which saves an analog parameter. If extended to 6-bits this may also compensate
for mismatch and process variations, although this is yet to be demonstrated. The
circuit in [99] can also tune the slope factor, which is fixed in the current imple-
mentation. Further, [99] generates exponential current for only an initial 100 mV
range [150]. The current implementation extends it to multiple hundreds of mV.
The input stage of the exponential circuit (see Fig. 5.19) needs improvement to
save dynamic power at higher membrane voltage. This can be achieved either by
more efficient transistor sizing or a re-design of the input stage for better efficiency.

The circuit can produce the number of firing regimes as demonstrated by sim-
ulated and measured traces. However, in order to properly traverse the parameter-
space for firing regimes, the sensitivity of the revised leak circuit to Capmem up-
date cycle needs to be fixed. The leak circuit is not implemented by the author and
is external to the current work done as part of this thesis. The conductance-based
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Neuron model AdEx I&F
No. of neurons 32
Voltage supply 2.5/1.2 V
Process 65 nm CMOS
Speed-up (acceleration) factor ×1000
Global parameters 3 current biases
Local (individual) parameters1 20 (14 currents, 6 voltages)
Configurability 40-bit SRAM per neuron
Membrane capacitor (max.)2 2.36 pF (6-bit configurable)
Area (single AdEx neuron) 2863.5 µm2

Area (array of 32 AdEx neurons) 243.5 µm × 403.6 µm
Area (extended neuron)3 3372 µm2

Power Consumption4 46.5 µW
τw (min./max. range) 5 [25.8 ± 8.2] µs – [418.5± 210.8] µs

1 13 biases are used in the Ad-Ex neuron circuit (9 currents, 4 voltages)
2 can be increased to 4.36 pF if adaptation is switched-off
3 this is the cumulative area of the larger neuron with AdEx implementa-
tion (243.5 µm× 11.76 µm), multi-compartment and conductance-based
reset (16.3 µm× 11.76 µm) and the digital control (26.9 µm× 11.76 µm)
4 approx. for the extended neuron circuit; varies with parameter settings
5 with 1σ variation based on simulation results

Table 5.6: A summary of achieved specifications of the implemented AdEx neuron
array.

reset is not modeled in the AdEx model.
Several other changes have been summarized for marching on towards a final

chip. This includes a small neuron read-out buffer, a 6-bit tunable membrane,
fixed bias distribution, etc. A preliminary architecture that looks very plausible for
conductance-based synapses is finalized and needs an implementation in the next
revision. Table 5.6 summarizes the achieved specifications of the AdEx neuron
circuit.
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Chapter 6

Conclusion and Outlook

This thesis reported the circuit design and implementation of spiking neuron mod-
els for the development of second-generation BrainScaleS mixed-signal neuromor-
phic hardware. Given the BrainScaleS approach, biophysically-inspired integrate-
and-fire neuron models are selected for implementation to reproduce the temporal
neural dynamics. The second-generation hardware implementation is in 65 nm
CMOS, a step ahead from the previous HICANN chip implementation in 180 nm
CMOS. Along with the technology difference, the new hardware features a reduced
acceleration factor of 103 times compared to biology, as opposed to the previous
factor of 104–105. This shifts the available range of neuron time constants and new
circuit architectures have been explored and implemented for the 103 acceleration
factor.

The first model implemented is the leaky integrate-and-fire model. The cir-
cuit explores a novel synaptic input concept that simplifies the integrator design
compared to the implementation in [98, 99]. The integrator uses parasitic capaci-
tance of the synaptic input line and implements a novel compact tunable resistor
architecture. The leak term in the circuit is realized from the legacy approach of a
transconductance amplifier, but adds additional features such as high-conductance
mode and output offset compensation (synaptic OTA only). A spike pulse gen-
erator is designed to evoke a digital output event and a read-out buffer scheme is
integrated to read-out both the membrane and synaptic input activity. The buffer is
based on a two-stage opamp with indirect compensation scheme and directly drives
the output pad. All circuits are interconnected using transmission-gate switches to
devise a modular architecture.

The AdEx model is a mixed-signal implementation which integrates adaptation
and exponential circuits to the modular LIF architecture. The adaptation circuit
realizes accelerating and decelerating spike-triggered adaptation using a charge-
pump based circuit. It integrates a dual-sided compact floating tunable resistor to
tune the large range of adaptation time constants. An OTA within the adaptation
circuit models the subthreshold adaptation conductance. The exponential circuit
exploits the MOS subthreshold region to generate exponential current, dependent
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on the membrane voltage. The circuit is compact with a digitally tunable expo-
nential threshold and switches itself off before reaching the 1.2 V supply rail. The
neuron circuit further implements a 6-bit tunable membrane and a 40-bit SRAM
array per neuron. The AdEx implementation explored in this work is further in-
tegrated with a digitally tunable refractory period as well as a conductance-based
reset.

For the design of the larger system the neuron circuits implement the following
essential features of the system:

Tunability and Circuit Specifications

The neuron circuit specifications have been motivated from the parameter range
used by known network models developed by computational neuroscience groups.
Being a general-purpose computational element for a variety of network models
the neuron circuit is a highly tunable element. This tunability is made possible
by the availability of on-chip biases and tunable circuit architectures. For digital
configuration an on-chip SRAM array has been integrated per neuron. For the
identified parameter range Table 6.1 summarizes the achieved range of the two
neuron circuits.

Hardware 1 Models Units
τmem 0.35 to 16.4 7 to 50 ms
τsyn 1.24 to 20.5 1 to 100 ms
τref 1.11 to 137.5 2 0 to 10 ms
a ±1.9 to ±650 –11 to 40 nS
b 3 ±0.12a to ±51.8a 0 to 250 mV/nA
τw 25.8±8.2 to 418±211 16 to 600 ms

1 reported with a 1σ single-side quantile
2 extended to a range of 0.1 ms – 1000 s in DLS-3 chip
3 not directly comparable since hardware is voltage
(∆V ) and dependent on a, while model parameter b
is current [91]

Table 6.1: Achieved tunable specifications in the neuron circuits.

While the range of refractory period, subthreshold adaptation and spike-
triggered adaptation are achieved, the current implementation falls short in the
case of membrane and synaptic time constants.

Scalability and Silicon Verification

The chip prototypes implement an array of neurons in a highly integrated ANC
architecture aligned with the digital logic core. All three prototypes whose results
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have been reported are miniature versions of the larger HICANN-DLS chip, where
tight integration with capacitive memory cells, synapses and digital control has
been verified. At the circuit level, individual circuits target scaled up specifica-
tions, e.g., the synaptic input design considers the line parasitic of the larger chip
and the read-out amplifier drives a variable on-chip capacitive load (Sec. 4.3.4,
Sec. 5.5.1). Further, through in depth testing of the prototypes, circuit statistics are
demonstrated (Chapter 4 and [79]).

Testability

Although the entire neuron array is connected to the external pads with two pins,
the design ensures the testability of most subcircuits individually. The implemen-
tation of multiplexed debug read-out scheme (Sec. 4.8, Sec. 5.5) as well as the
modular architecture that disables other circuits, facilitates this evaluation. The
read-out of input synaptic events as well as the adaptation voltage Vw let us char-
acterize the neuron model dynamics (Sec. 4.3.4, Sec. 5.5). The extended read-out
scheme in DLS-3 prototype reads out two parallel voltages. The neuron circuit fur-
ther integrates a membrane bypass-mode to test and debug the digital event routing.

Calibration

The subcircuits within the neuron ensure that they can be calibrated against non-
ideal effects arising as a result of device mismatch or process corners. As a result
of calibration (Sec. 4.3.7, Sec. 4.6.2) the time constants are set reliably and the
residual offset currents are compensated for.

Power Consumption

The design reduces power consumption using 1.2 V supply, wherever possible. The
circuits for the synaptic resistor, adaptation resistor, adaptation buffer, exponential
circuit are a 1.2 V implementation. Most circuits can be switched off digitally.
Power consumption is highly dependent on parameter settings. Depending upon
the time constants and utilized circuits, the consumption varies. For an average
setting and single synaptic input enabled, power consumption of the LIF neuron
circuit is approximately 10 µW. It is emphasized that digital circuits, such as in-
verters, must not be subjected at the output of any slow moving voltage signal if
dynamic power is to be conserved (Sec. 4.11). The static power consumption of the
extended AdEx neuron (including conductance-based reset and the digital control)
is approximately 46.5 µW. This can be reduced further by saving quiescent current
consumption in merged leak/reset OTA, extra consumption in adaptation, as well
as in the bias distributor (Sec. 5.13).
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Silicon Area

With reduced 1.2 V supply the core transistor designs help reduce the occupied
silicon area. The 1.2 V implementations are therefore compact, for example, the
exponential circuit occupies only 47.7 µm2 area, which is seven times less than the
implementation in [99]. Area is further conserved by relying on reduced bias cur-
rents (Sec. 4.6.2) and small conductances, rather than increased capacitors for long
time constants (Sec. 5.3.3). Further, MOS capacitors are used to restrict the area
(Sec. 4.7, Sec. 5.6). Additionally, in the adaptation circuit, resource sharing is en-
abled, by merging the metal capacitor with membrane capacitor, when adaptation
is not used. The LIF circuit utilizes 2352.0 µm2, while the AdEx implementation
uses 2863.5 µm2. The extended AdEx circuit that includes conductance-based re-
set, multi-compartment extensions as well as the digital neuron control occupies
3372 µm2 per neuron.

Future design improvements

Given the designs of the two neuron circuits, achieved specifications and the re-
ported results, a number of design improvements are recommended:

• From Table 6.1 it is evident that the leak and synaptic time constants fall
short of achieving their desired range. Their maximum range needs to be in-
creased. This is a realistic target, since the resistor implementation in adap-
tation circuit has demonstrated the availability of a large tunable range for
adaptation time constant. The variation in the implemented architecture is
relatively low in the specified range of synaptic and leak time constants.

• The conductance-based parallel synaptic input architecture outlined in
Sec. 5.9 needs to be implemented, to provide more biologically realistic
synaptic dynamics [156]. The architecture facilitates the end-user to select
between the current-based or conductance-based synaptic inputs.

• The exponential circuit should increase itsWVT resolution to compensate for
corner variations.

• The adaptation circuit should realize the charge pump circuit with core tran-
sistors only to limit Vw to 1.2 V, according to recommendations in Sec. 5.3.3.

• The fixed-bias distributor should correct the current bias input provided to
the adaptation buffer.

• An overall static and dynamic power consumption is to be reviewed within
the extended neuron with multi-compartment extension and digital control.
In the AdEx implementation, the input stage of the exponential circuit re-
quires improved sizing to conserve dynamic power consumption (Sec. 5.4).
Both dynamic and static power is reduced once the adaptation charge pump
is reduced to 1.2 V.
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Comparison to other architectures

Several groups produce neuromorphic hardware with neuron model implemen-
tations ranging from software-definition [157, 158] to subthreshold analog [159–
161] to fully-digital implementations [159, 162]. The SpiNNaker system [157,
158] based on arrays of many-core ARM-based microprocessor systems has a
software-defined neuron model. A popular approach to design silicon neurons
is the continuous-time implementation that exploits the subthreshold MOS dy-
namics, as proposed in [12, 13]. The systems adhering to this subthreshold ana-
log integration [159–161] implement biophysically-inspired neuron models with
real-time spiking dynamics. All-digital phenomenological model implementations
typically capture the input/output neuron behavior and the digital nature bene-
fits from the deep-submicron CMOS implementations [97, 162, 163]. Out of the
above-mentioned implementations, state-of-the-art large-scale architectures are,
for example, the IBM’s TrueNorth system [97, 164, 165] in the digital domain,
and Stanford University’s Neurogrid architecture [159] for the analog subthresh-
old approach.

TrueNorth Neurogrid HICANN-4 DLS-2 DLS-3
CMOS tech. [nm] 28 180 180 65 65

Architecture digital
analog
subthresh.

analog analog
mixed-
signal

Model
augmented
LIF

quadratic
I&F

AdEx LIF AdEx

Area [µm2] 2900a 1800 3124b 2352 3372c

Area Est.d [µm2] – – – 1404 2847
Power e [µW] N/A N/A 100 10–15 40–46

a multiplexed 256 times per time step
b without the membrane capacitor (approx. 2800 µm2), which overlaps (shares)
the area occupied by floating gate array
c cumulative area including multi-compartment extensions, conductance-based
reset and digital control. The AdEx design implemented in this work occupies
2863 µm2

d estimated area if DLS neurons implement the membrane capacitor as MIM-
CAPs overlapping another chip block and synaptic input capacitor is realized
entirely from line parasitics
e dependent on parameter settings

Table 6.2: An overview of neuron model specifications in large-scale neuromorphic
architectures.

The TrueNorth system integrates an augmented LIF implementation with an
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objective of building a synthetic computational element for cognitive applications
[97]. The classic LIF behavior is extended with various leak, threshold and reset
modes with deterministic and stochastic operation. The neuron performs a number
of synthetic, logical and fixed-point arithmetic operations. It operates in real-time
with a possibility of 21× speed-up to real-time [164], and occupies an area of
2900 µm2. Following a digital-approach, the neuron can be time-multiplexed for
reuse. Compared to the HICANN/HICANN-DLS neuron, it not only produces
the spiking behavior, but also synthetic, logical, signal processing, probabilistic
and arithmetic functions. However, it requires a composition of 2 or 3 neurons to
produce diverse behavior such as spike-frequency adaptation, tonic bursting, etc.,
which can be reproduced with a single element in bio-physical implementations
(e.g., see Sec. 5.11). The stochasticity added to the system, though not directly
comparable, but to a certain extent is inherent in integrated analog models of spik-
ing neurons, pertaining to variations due to device mismatch. The TrueNorth sys-
tem runs with a 1 ms time-step, which may limit the realization of shorter time
constants. Further, the temporal dynamics such as the synaptic and refractory time
constants are not tunable implementations. Compared to BrainScaleS neurons, the
maximum fan-in and fan-out is limited to 256 per synaptic core (each containing
256 neurons and 64K synapses). On the other hand, compared to the current work,
axonal delays are implemented.

Neurogrid is another large-scale system, which is more biologically-plausible
hardware compared to TrueNorth. Compared to the BrainScaleS system which
supports arbitrary connectivity, it is optimized for sparse long-range connections
and dense local connectivity, such as for modeling neocortex [159]. The neu-
ron implementation is a dimensionless quadratic integrate-and-fire model, where
somatic and dendritic compartments are modeled. Dimensionless models reduce
free parameters, whereas log domain analog subthreshold circuits realize real-time
temporal dynamics. Synapses are shared among neurons and multiple spikes may
superimpose in time on a single synapse circuit [166]. The larger architecture is
designed using 16 neurocore chips, each having 256 × 256 neurons where all neu-
rons share the parameter set. The HICANN and HICANN-DLS chips are highly
tunable and configurable, since they provide individual parameters for every single
on-chip neuron (Sec. 5.12 and Sec. 4.13). Neurogrid is implemented in a 180 nm
CMOS process where the neuron occupies 1800 µm2. Due to the subthreshold
approach, the power consumption (as well as occupied area per neuron) is typi-
cally lower compared to the work presented here. Subthreshold current integration
further allows for longer time constants. The circuits are calibrated [167] for vari-
ations arising as a result of transistor mismatch, similar to the approach in this
work.

Table 6.2 summarizes the neuron specifications in TrueNorth and Neurogrid,
in comparison to HICANN and DLS prototypes. Note that Neurogrid achieves less
area in comparison as discussed above. This is due to less number of transistors,
but typically subthreshold currents let scale the overall area occupied by the capac-
itors. In comparison, although the single instance of TrueNorth neuron is large, the
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time-multiplexing scales the effective area per neuron to 14.3 µm2 [164]. The area
occupied by the first-generation HICANN-4 neuron is relatively large, and it uti-
lizes the higher metal area (MIMCAP implementation) and places the large mem-
brane capacitor over the floating gate array. Despite that, compared to 28 nm, an
older CMOS process occupies more space. The DLS neurons are relatively smaller
and use line parasitic and MOScaps for area efficiency. If chip implementation
allows to overlap area as MIMCAP like HICANN-4, it may shrink its size further
(Area Est. in Table 6.2). Compared to the HICANN neuron [98], the DLS neurons
are power efficient despite their 2.5 V usage, but power consumption varies vastly
with parameter settings.

At the system level, all three systems discussed here describe non-von Neu-
mann architectures, where stronger biological inspiration is evident in Neurogrid
and BrainScaleS design. The spike transmission is asynchronous digital in all
three systems. The BrainScaleS system described here supports multiple levels
of dedicated synaptic plasticity as opposed to Neurogrid and TrueNorth in gen-
eral. A reasonable figure of merit to compare the performance of neuromorphic
hardware is the energy per synaptic event. However, it is highly dependent on
the realized network, the number of synapses and the finalized hardware. In gen-
eral, studies suggest [163, 168, 169] that digital implementations are typically less
energy-efficient, compared to continuous-time analog approaches. Since the im-
plementations present very diverse benchmarks, a fair comparison is difficult. In
future, other technologies, e.g., the memristive crossbars [170,171] will get mature
enough, or novel emerging technologies will implement more scalable and energy
efficient large-scale neuromorphic solutions.

Taking inspiration from the structure and dynamics of the nervous system, ana-
log neuromorphic systems integrate physical neurons with spiking dynamics on a
biologically-inspired substrate. This work presented the design and implementa-
tion of this physical 65 nm CMOS neuron, which endows the second-generation
BrainScaleS hardware with highly tunable biologically plausible firing dynamics.
The 65 nm system architecture will emerge as a powerful computational plat-
form due to the integration of analog and digital cores (PPU), a distinct feature
of BrainScaleS-2 hardware [86].

Applying nature’s principles has its benefits – already in the last decade, deep
learning [172, 173] enabled a technological stride in machine learning and pat-
tern recognition, made possible by adopting biologically-inspired computing prin-
ciples. The role of future neuromorphic systems towards the solution of real-world
applications is yet to be determined. With the recent realization of advanced neu-
romorphic systems by industrial players [164,174,175], the prospects are high that
neuromophic systems will play a central role in next-generation computing archi-
tectures.
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Appendix A

Digital configuration in the DLS-2 LIF Neuron

A description of the digital configuration bits used in the DLS-2 neuron circuit is
listed in Table 3.

Enable bit Description
ctrlTgNeuron<0> connects excitatory synaptic input to membrane
ctrlTgNeuron<1> connects inhibitory synaptic input to membrane
ctrlTgNeuron<2> enables the high conductance state in leak
ctrlTgNeuron<3> enables the Istim pin for debug inputs
ctrlTgNeuron<4> enables the read-out debug amplifier
ctrlTgNeuron<5> not connected
ctrlTgNeuron<6> connects leak to the membrane
ctrlTgNeuron<7> enables the excitatory bypass link
ctrlTgNeuron<8> enables the inhibitory bypass link
ctrlTgNeuron<9> connects SpikeGen as digital fire-out for backend
enAnaOutMux<10:11> two-bit select line for debug multiplexer
enAnaOutMux<12:13> two-bit select line for size of membrane capacitor
enAnaOutMux<14:17> not connected
pullDn global pull down signal resetting SpikeGen comparator.

Table 3: A summary of digital bus signals that configure the LIF neuron circuit.
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Appendix B

Digital configuration bits in the DLS-3 AdEx Neuron

A description of the configuration bits stored in the SRAM array in the DLS-3
neuron circuit is listed in Table 4.

Parameter Circuit Description

enSpkCmpB SpikeCmp comparator output reset
enSynBypExc Bypass enables excitatory bypass
enSynBypInh Bypass enables inhibitory bypass
enFireOut – enables fire output
enMemCap<5:0> Memcap membrane select lines
enSynIexc Syn. Input (Exc.) enables synaptic input (exc.)
enSynIinh Syn. Input (Inh.) enable synaptic input (inh.)
enAnaOutMux<1:0> Analog I/O select lines for debug read-out
enAnaIn Analog I/O enable for Istim

enAnaOut Analog I/O enable for VreadOut

enOutAmp Analog I/O enable for read-out amplifier
enAdapt<1:0> Adaptation enables for adaptation
enCapMerge Adaptation adds Cw as membrane
enVa Adaptation enables positive conductance ga

enVw Adaptation enables decelerating adaptation
enReadVw Adaptation enable for Vw read-out
enExpWeight<2:0> Exponential digital VT bits (labeled WVT )
enExp Exponential enable for exponential output

Table 4: A summary and description of digital configuration bits of the DLS-3
neuron.
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Appendix C

Hardware parameters for various firing patterns in AdEx
Neuron

The hardware parameter settings for the broad spikes shown in Fig. 5.26 is listed
in Table 5.

Parameter 1 Value Parameter Value

IrefAnalog 250 enSpkCmpB 0
Vleak 360 enSynBypExc 1
VleakAdapt 360 enSynBypInh 1
Vreset 400 enMemCap<5:0> 0x3F
Vthresh 600 enSynIexc 0
IbiasLeak 1022 enSynIinh 0
IbiasLeakSd 1022 enAnaOutMux<1:0> 0
ImemOff 400 enAnaIn 0
IbiasAdaptRes 150 enAnaOut 1
IbiasAdaptSd 280 enOutAmp 1
IAdaptW 100 enAdapt<1:0> 0x03
VsynExc 780 enCapMerge 0
VsynInh 780 enVa 1
IglobAdapt 1022 enVw 1
IglobSynSdInh 0 enReadVw 0
IglobSynSdExc 0 enExpWeight<2:0> 0x0
enExp 1 enFireOut 1
enLeak 1 adaptConfig 0xE
enHiConReset 1 resetHoldOff 0xE
enHiConLeak 0 refrCounter 0xE0

1 The voltage and current biases are given in terms of
equivalent digital code

Table 5: The hardware parameters used to evoke broad SAP in the AdEx neuron.
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In order to read-out two simultaneous inputs, the configuration of Ta-
ble 5 for the second neuron (whose Vw is to be read-out) changes the bits
enAnaOutMux<1:0>, enReadVw to 0x11 and 1 respectively. The parameter set
for the tonic spiking shown in Fig. 5.35g is listed in Table 6. The parameters not
listed in the table assume the default values (disabled for digital inputs).

Parameter Value Parameter Value

IrefAnalog 250 enSpkCmpB 0
Vleak 430 enSynBypExc 1
VleakAdapt 430 enSynBypInh 1
Vreset 430 enMemCap<5:0> 0x3F
Vthresh 600 enSynIexc 0
IbiasLeak 1022 enSynIinh 0
IbiasLeakSd 1022 enAnaOutMux<1:0> 0
ImemOff 0 enAnaIn 0
IbiasAdaptRes 100 enAnaOut 1
IbiasAdaptSd 200 enOutAmp 1
IAdaptW 50 enAdapt<1:0> 0x03
VsynExc 780 enCapMerge 0
VsynInh 780 enVa 1
IglobAdapt 1022 enVw 1
IglobSynSdInh 0 enReadVw 0
IglobSynSdExc 0 enExpWeight<2:0> 0x5
enExp 1 enFireOut 1
enLeak 1 adaptConfig 0xE
enHiConReset 1 resetHoldOff 0xE
enHiConLeak 0 refrCounter 0xE0

Table 6: The hardware parameters used to evoke tonic spiking in the AdEx neuron.
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[83] S. Friedmann, J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier,
“Demonstrating hybrid learning in a flexible neuromorphic hardware sys-
tem,” IEEE Transactions on Biomedical Circuits and Systems, vol. PP,
no. 99, pp. 1–15, 2016.

[84] S. Friedmann, “The nux processor v3.0,” 2015. [Online]. Available:
https://github.com/electronicvisions/nux
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