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Zusammenfassung  

Im Jahr 2015 bezogen weltweit etwa 663 Millionen Menschen ihr Trinkwasser aus 

unzureichend geschützten Quellen. Gleichzeitig haben es sich die Vereinten Nationen zum 

Ziel gesetzt, bis 2030 das universelle Recht auf sichere und bezahlbare 

Trinkwasserversorgung für jeden Menschen zu gewährleisten. Dieses Ziel kann durch die 

Installation von Technologien zur Wasserbehandlung erreicht werden, welche die 

Wasserqualität verbessern. Unter Berücksichtigung der für Entwicklungsländer 

relevanten Kriterien könnte Langsamsandfiltration eine geeignete 

Behandlungstechnologie zur Verbesserung der Wasserqualität sein. 

Verschiedene Autoren geben Empfehlungen zum Bau wirksamer Langsamsandfilter. Als 

entscheidende Parameter für die Ausführung der Filter wurden die Korngrößenverteilung 

des Filtersandes sowie die hydraulische Belastungsrate identifiziert. Entsprechend der 

gängigen Empfehlungen sollte das Filtermedium feinkörnig (d10 0.15-0.35 mm/Cu < 3) und 

die Belastungsrate niedrig genug (0.04 – 0.40 m/h) sein, um einen hohen Reinigungsgrad 

zu erreichen. Dabei ist zu berücksichtigen, dass auch bei diesen Konfigurationen kein 

bakterien- und virenfreies Filtrat garantiert werden kann. Ein weiterer 

Behandlungsschritt zu Desinfektion wird immer benötigt, um die übrigen 

Mikroorganismen zu entfernen und das Filtrat als Trinkwasser nutzbar zu machen. Bei 

niedrigen Belastungsraten wird allerdings eine große Filterfläche benötigt. Aufgrund 

dieser Einschränkung sank die Beliebtheit von Langsamsandfiltern Anfang des 20. 

Jahrhunderts. Deshalb wird eine Optimierung der empfohlenen Auslegungskriterien von 

Langsamsandfiltern benötigt, wodurch diese Einschränkung aufgehoben werden kann. Es 

mangelt derzeit weiterhin an einer Beschreibung des grundlegenden 

Entfernungsmechanismus durch Langsamsandfiltration, was die breitere Anwendung 

dieser Technologie weiter einschränkt. 

Das Hauptziel dieser Arbeit ist die Optimierung der empfohlenen Entwurfskriterien von 

Langsamsandfiltern als Wasseraufbereitungstechnologie. Im Mittelpunkt stand der 

Korngrößenverteilung des Filtermediums, ausgedrückt als effektive Größe d10 und 

Ungleichförmigkeitsgrad Cu, sowie der hydraulischen Belastungsrate auf die 

Reinigungsleistung von Schwebstoffen. Der hier verfolgte Ansatz liegt in der unabhängigen 

Betrachtung aller Kenngrößen, die auf den Wirkungsgrad des Filters Einfluss nehmen. Die 

experimentelle Arbeit wurde in zwei Phasen unterteilt. In der ersten Phase lag der Fokus 

auf der Identifikation der operativen Kenngrößen, die einen Einfluss auf die 

Partikelentfernung haben. Dazu wurden 18 Filtersäulen mit verschiedenen 

Filterkonfigurationen gebaut. In der zweiten Phase lag der Fokus auf dem Einfluss der 

Parameter auf die Eindringtiefe der Feststoffe in den Filter. Dabei wurde auch der Einfluss 

einer Schutzschicht auf die Filterlaufzeit evaluiert. Insgesamt wurden in der zweiten Phase 

13 Filtersäulen getestet. 
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Die Ergebnisse zeigen, dass die bisherigen Empfehlungen der Parameter eher konservativ 

ausgelegt sind. Bei der Verwendung von gröberem Filtersand (d10 0.90 mm und Cu 2.5) 

wird immer noch eine durchschnittliche Ablauftrübung von unter 1 NTU erreicht. Es 

konnte weiterhin gezeigt werden, dass der Betrieb der Filter bei höheren Belastungsraten 

von 0.80 m/h nicht zu einer höheren Trübung im Ablauf führt. Basierend auf diesen 

Ergebnissen wurden neue Empfehlungen für Entwurfskriterien festgelegt, bei denen die 

Spanne der verwendbaren Korngrößenverteilungen und der hydraulischen 

Belastungsrate vergrößert wurde. Diese umfasst eine d10 von 0,25 – 0,50 mm und Cu von 

2.5 – 7 mit einer hydraulischen Belastungsrate von 0,20 – 0,60 m/h. Höhere hydraulische 

Belastungsraten von 0,60 – 0,80 m/h können für feinen Filtersand mit d10 von 0,25 mm 

und Cu < 3 angewendet werden. Gröberer Filtersand (d10 0,50 – 0,90 mm/Cu < 3) kann als 

Alternative bei einer hydraulischen Belastungsrate  0,40 m/h verwendet werden. Die 

Aufbringung einer Schutzschicht aus Kies verlangsamte die Abnahme der Filterkapazität 

durch die Siebwirkung um bis zu 70 %. 

Weitere Empfehlungen wurden für einen Langsamsandfilter in Gunungkidul auf Java, 

Indonesien getroffen. Wegen der dortigen niedrigen Belastungsraten von 4 m/d und 

begrenztem Platzangebot konnte eine bereits existierende Pilotanlage nicht den Bedarf 

von fünf Dörfern mit insgesamt etwa 2800 Einwohnern decken. Unter den hier 

vorgestellten Richtlinien könnte mit gröberem Filtermaterial die Belastungsrate bei 

gleicher Reinigungsleistung verdoppelt werden, ohne die Betriebskosten oder die 

beanspruchte Fläche zu erhöhen. Dies ist ein Beleg dafür, dass Langsamsandfiltration ein 

großes Potential hat, die Trinkwasserversorgung speziell in Entwicklungsländern zu 

verbessern. 
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Abstract  

In 2015, 663 million of people who mostly live in the developing countries were still 

consuming unimproved water sources. On the other hand, United Nations set-up a target 

that by 2030, a universal and equitable access for safe and affordable drinking water for 

everyone must be achieved. This target can be achieved by implementing a water 

treatment technology to improve water quality for the community. By considering the 

terms Ǯsafeǯ, Ǯaffordableǯ and Ǯdeveloping countriesǯ, slow sand filtration can be the suitable 

treatment technology to improve water quality.  

In order to construct an effective slow sand filter, some recommendations on the design 

criteria have been proposed by several authors. Two critical parameters for the design 

criteria are the grain size distribution and the hydraulic loading rate. According to the 

recommendation, the filter media should be fine i.e. d10 0.15-0.35 mm/Cu < 3 and the rate 

should be low enough i.e. 0.04 – 0.40 m/h to ensure its removal efficiency. In fact, even 

though the slow sand filter is constructed using fine media and operated under low 

hydraulic loading rate, it cannot be guaranteed that the filtrate is bacteria and viruses free. 

A further step of treatments such as disinfection is always needed to remove the 

microorganisms left after filtration so that the water can be used for drinking water 

purposes. As a consequence of these low loading rates, a large filter area is needed. Due to 

this limitation, in the early 20th century, slow sand filter became less attractive. Therefore, 

an optimization on the recommended design criteria of slow sand filtration is required to 

overcome this limit. Unfortunately, a comprehensive description on the fundamental 

removal mechanism of slow sand filtration is still missing inhibiting the optimization and 

wider application of this technology. 

The main purpose of this work is to optimize the design recommendation of slow sand 

filtration as a technology to improve the water quality. In order to achieve this purpose, a 

specific objective is defined i.e. to understand the influence of the grain size distribution of 

filter media represented by effective size d10 and uniformity coefficient Cu and the 

hydraulic loading rate on the removal mechanisms of suspended solids. The approach to 

reach this objective is by investigating each operating variable independently so that its 

influence on the filter performance can be compared equally. The main experimental work 

was divided into two phases. In the Phase I, the focus was to identify the influence of 

operating variables on the suspended solids removal. A total of 18 filter columns with 

different filter configuration were constructed for the investigation in Phase I. The focus in 

Phase II was to find out the influence of the operating variables on the solids penetration 

in filter depth including the evaluation on the method to prolong the filter run time by 

applying protection layer. For the Phase II, a total of 13 filter columns were tested. 

The results of this study showed that the recommended values of operating variables are 

rather conservative. By using coarse media represented by d10 of 0.90 mm and Cu of 2.5, an 
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average outlet turbidity of less than 1 NTU could still be obtained. In regard to the 

hydraulic loading rate, it was also found that operating the filter at high rate up to 0.80 

m/h did not deteriorate the filter efficiency significantly. Hence, based on these results, a 

new recommendation of the design criteria, where the usable range of the grain size 

distributions of the filter media and hydraulic loading rate is expanded, has been 

proposed. The new range proposed for filter media is d10 0.25 – 0.50 mm/Cu 2.5 – 7 with 

the hydraulic loading rate of 0.20 – 0.60 m/h. Higher hydraulic loading rate of 0.60 – 0.80 

m/h can be applied for fine sand with d10 of around 0.25 mm and Cu < 3. Coarser sand (d10 

0.50 – 0.90 mm/Cu <3) can also be alternatives with the hydraulic loading rate of  0.40 

m/h. Based on the evaluation of the method to prolong the filter run time, it was found 

that applying gravel as a protection layer could be a promising method to decelerate the 

decrease of filter capacity by up to 70 % by acting as strainer. 

A recommendation was also given for the slow sand filter constructed in Gunungkidul in 

Java Island, Indonesia. Due to low loading rate of 4 m/d and limited space, an existing pilot 

plant was not able to comply with the water demand of five sub-villages (around 2,800 

inhabitants). Following the new design recommendations proposed in this study, the 

hydraulic loading rate of the system could be doubled by using coarser filter material, 

while maintaining the operating costs, filter area and high suspended solids removal 

capacity. This shows that slow sand filtration has a great potential to improve drinking 

water security especially in developing countries. 

 

 

 

Keywords: slow sand filtration, water treatment, suspended solids removal mechanism, 

design optimization, drinking water quality, hydraulic loading rate, filter media 
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1 Introduction 

The demand of water supply is directly proportional with the increase in global 

population. At the same time, water quality degradation causes the decrease in the amount 

of freshwater available for consumption (Peters and Meybeck, 2000). In 2015, it was 

reported that 663 million people worldwide were consuming unimproved water sources 

or surface water (United Nations, 2016). According to Unicef and WHO (2015), most of 

these people are living in sub-Saharan Africa and Asia (see Figure 1). Meanwhile, United 

Nations set-up several targets in the Agenda 2030 for Sustainable Development which one 

of them is ǲby 00, achieve universal and equitable access to safe and affordable drinking 
water for allǳ (Assembly, 2015). In order to achieve the target, a suitable water treatment 

technology to improve the water quality must be implemented in these regions.  

 

Figure 1. Proportion of population using improved drinking water source (Information Evidence 

and Research (IER) WHO, 2015) 

Considering that most of the people are living in developing regions, treatment 

technologies to improve the water source must fulfill these criteria as follows (Duke et al., 

2006; Baker and Duke, 2006; Ray and Jain, 2011; Guchi, 2015): 

a. simple to install, operate and maintain to comply with the local resources, 

b. low capital, operation and maintenance cost considering the affordability and 

sustainability, and 

c. effective to improve the water quality. 
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The water treatment concept which can meet those requirements is slow sand filtration 

(Baker and Duke, 2006; Silva, 2010; Ray and Jain, 2011; Fuchs et al., 2015). Cleary (2005) 

stated that slow sand filtration is a suitable technology for small community. This 

statement confirmed that slow sand filtration is the best alternative for developing 

countries by considering that in the developing countries, many people still live in rural 

area which was divided into small community. Clark et al. (2012) stated that slow sand 

filter is a favorable technology for the developing countries because it barely uses 

chemicals, is simple to operate and maintain and is inexpensive. 

Fuchs et al. (2015) conducted a study on the selection and installation of drinking water 

treatment in Indonesia, one of developing countries in Asia. In the study, Fuchs et al. 

compared four water treatment technologies: rapid sand filter, slow sand filter, 

diatomaceous earth filtration and membrane filtration. According to the evaluation which 

was based on the capability to meet regulatory requirements, capability to provide 

treatment technology with low cost and level of operation and maintenance, slow sand 

filter was found to be the most suitable technology for this region.  

Slow sand filter may be considered as the oldest water treatment technology. The first 

documented slow sand filter was reported in 1804 when John Gibb constructed an 

experimental sand filter and implemented it successfully at his bleachery in Paisley, 

Scotland (Guchi, 2015). In 1829, this technology was adopted for a public water supply by 

James Simpson at the Chelsea Water Company in London for the first time (Barrett et al., 

1991). Since then, the use of slow sand filter for public purpose became well developed. 

According to Huisman and Wood (1974), Haig et al. (2011) and Gottinger et al. (2011), 

slow sand filter can provide settlement, straining, filtration, removal and inactivation of 

microorganisms, chemical change and even –under certain circumstances– storage in a 

single unit. However, the slow sand filtration alone will not be able to produce water 

which is free from bacteria and viruses (Bellamy et al., 1985a; Bellamy et al., 1985b; 

Collins et al., 1991; Galvis, 1999). Therefore, further treatment such as disinfection is 

always needed. 

In order to ensure its performance, it was recommended to use a fine media and the filter 

is designed to be operated at a very low hydraulic loading rate (Huisman and Wood, 

1974). By following this recommendation without interrupting the supply, a large area is 

needed. Due to this limitation, in the early 20th century, slow sand filter became less 

attractive and the rapid filter became a greater interest (Haig et al., 2011; Graham and 

Collins, 2014; Yamamura, 2014). In addition, the land in developing countries recently 

becomes a scarce resource due to the various land use interests (Görgen et al., 2009). In 

order to overcome this limitation, the optimization on the design of slow sand filtration is 

required. However, the existence of some open questions in the current knowledge of slow 

sand filtration may restrict the optimization process. In 2014, Graham and Collins listed 

the open questions in the knowledge of slow sand filtration as follows: 

a. a thorough, quantitative description of the principal process mechanisms; 
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b. correlation between the inlet water quality and the nature of the slow sand filtration 

dirty layer (Schmutzdecke); 

c. elimination of natural and synthetic organic substances; 

d. estimating the filter run time; 

e. mechanisms of increasing filtration rates and filter run time; and 

f. improvement on cleaning technologies. 

This research focusses on the understanding the influence of operating variables on the 

filter performance, especially on the suspended solids removal, so that the optimization of 

the slow sand filtration design can be achieved. It is expected that the findings of this 

research can be adapted for the slow sand filter implementation especially in the 

developing countries. As an example, slow sand filter installed in Gunungkidul, in Java 

Island, Indonesia will be taken as a case study. Moreover, it is also expected that the 

results of this study may support further studies on the improvement of cleaning 

technologies.  
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2 Scientific Background 

Review of previous literatures presented in this chapter is started from the topic of 

suspended solids. It is because the particular focus in this research was the suspended 

solids removal. Afterwards, description about slow sand filtration as one of the 

technologies to improve water quality and its elements is presented herein. 

2.1 Suspended Solids 

Suspended solids in water can be ranged from inert to highly biologically active particles, 

such as clay, silt, sewage solids, organic and biological sludge in water (EPA Ireland, 2001; 

Hudson, 2010). These solid materials which may be found within the water are 

aesthetically undesirable and to some extent may endanger human health (Hudson, 2010). 

The presence of suspended solids may alter the physical, chemical and biological 

properties of waterbody as a source of raw water for drinking purpose (Bilotta and 

Brazier, 2008). According to EPA Ireland (2001), suspended solids may contain of algal 

growth which can lead into eutrophic condition. Suspended solids may indicate the 

discharge from sandpits, quarries or mines and sewage. Deposition of suspended solids 

may be formed also on rivers of lakes bed. Moreover, EPA Ireland mentioned that 

suspended solids may intervene the aquatic plant life due to the reduction of light 

penetration in surface water body and affect fish life. 

  

Figure 2. Scanning electron photomicrograph showing bacteria embedded in a particle. Bar: ͳ μm. 
(LeChevallier et al., 1981) 

High levels of suspended solids also affect the disinfection process because the particles 

may protect the pathogen organisms (see Figure 2) and carry nutrients to encourage the 
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bacteria growth (LeChevallier et al., 1981; DeZuane, 1997; WHO, 2017). Hence, the 

suspended solids levels in water must be as low as possible before the disinfection process 

is introduced. Considering the effect both in water body and during the disinfection 

process, suspended solids is deemed to be one of the significant pollutants in water body. 

Concentration of suspended solids is expressed by a parameter so called Total Suspended 

Solids (TSS) which is a measure of dry particle mass (mg) in certain water volume (L) 

(Reynolds et al., 2002; Bilotta and Brazier, 2008; Binnie and Kimber, 2013). 

The degree of alteration in the water body properties due to the presence of suspended 

solids depends not only on some factors such as concentration, exposure period, chemical 

composition and particle size distribution but also the variation between organisms and 

environments (Bilotta and Brazier, 2008). Therefore, determination of water quality 

guidelines for TSS is complicated. According to the Guidelines for Drinking Water Quality, 

WHO does not establish the threshold value for TSS in raw water specifically (WHO, 2017). 

However, a threshold value is proposed by the European Communities Regulations for 

Quality of Surface Water Intended for the Abstraction of Drinking Water in 1989. 

According to the regulation, it is mandatory for raw water which is classified as category 

A1 to have a TSS value less than 50 mg/L (EPA Ireland, 2001). Raw water in category A1 

has a high quality therefore requires only simple treatment (Erturk et al., 2010). 

Value of TSS can be determined by gravimetric method. This method consists of filtering 

certain volume of water through a filter paper, followed by drying the filter paper at 105 

°C for two hours. The difference between the mass of dry filter paper before and after 

filtration is considered as mass of the suspended solids. The calculated TSS is the ratio 

between mass of the suspended solids and the volume of filtered water (EPA Ireland, 

2001; Langenbach, 2010). Gravimetric analysis, however, has some disadvantages such as 

time demanding and its sensitivity (Al-Yaseri et al., 2012). Hence, many researchers such 

as Grayson et al. (1996), Packman et al. (1999), Holliday et al. (2003) and Hannouche et al. 

(2011) correlated the TSS and turbidity because to measure the latter is easier and 

cheaper. 

According to Binnie and Kimber (2013), turbidity is not directly related to the TSS 

concentration although the presence of suspended matter reduces the water clarity. It is 

because the correlation between TSS and turbidity depends on some factors such as the 

size, density, shape and type of the existing particles (Rügner et al., 2013). Therefore 

depending on the particle types, turbidity can be a potential surrogate measurement to 

determine the TSS concentration (Packman et al., 1999; Holliday et al., 2003; Daphne et al., 

2011; Hannouche et al., 2011; Al-Yaseri et al., 2012; Rügner et al., 2013). 

Turbidity is defined as a measure of water clarity which is influenced by the existence of 

suspended materials (EPA Ireland, 2001; Al-Yaseri et al., 2012). Turbidity has been 

deemed not only as a physical parameter due to its influence to the aesthetic appearance 

and psychological objections by the consumer, but also as a microbiological parameter 

(DeZuane, 1997). Turbidity may not be associated directly to the pathogenic organisms 
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within the water but there is a strong connection between high turbidity level and high 

microorganisms content (Lee and Lin, 2007; Al-Yaseri et al., 2012). 

In order to determine the turbidity, formazine, a polymer formed from hydrazine and 

formaldehyde, is accepted as the primary standard for turbidity measurement because 

with this substance a repeatable accuracy of ± 1 % can be achieved (Hudson, 2010). 

Turbidity value is determined by a turbidimeter. This device beams a light through the 

sample and measures the amount of light absorbed and scattered by the solids at 90° (Safe 

Drinking Water Committee and National Research Council, 1977; Hudson, 2010; Binnie 

and Kimber, 2013). High turbidity values exhibit high concentration of suspended solids 

(Daphne et al., 2011). However, amount of light scattered is not only influenced by the 

solid concentration but also by the scattering angle, solids size and shape, as well as 

refractive index of solids (Safe Drinking Water Committee and National Research Council, 

1977; Hudson, 2010). 

Although turbidity measurement cannot provide detailed information regarding the 

suspended solids such as their size number and mass or type of solids, the values indeed 

indicate whether or not other specific measurement shall be conducted such as for the 

determination of coliform or heavy metal. The turbidity values can also suggest the 

amount of chlorine required for the disinfection process (Safe Drinking Water Committee 

and National Research Council, 1977; LeChevallier et al., 1981). 

According to LeChevallier et al. (1981), the accepted turbidity level in drinking water has 

been standardized by the National Interim Primary Drinking Water Regulations that is 

promulgated on 24 December 1975 in accordance with the Safe Drinking Water Act. The 

recommended turbidity value is 1 NTU. It is allowed to have a turbidity value up to 5 NTU 

as far as it does not inhibit the disinfection process, avoid the maintenance of effective 

disinfectant, or hinder the microbiological determination (LeChevallier et al., 1981). As 

one of the most important parameters, the turbidity values shall be monitored on a daily 

basis in every step of the drinking water treatment from the raw water to the distribution 

system (LeChevallier et al., 1981; Tyagi et al., 2009; Daphne et al., 2011; WHO, 2017). 

World Health Organization also proposed a standard value for the turbidity, which is 

similar to the National Interim Primary Drinking Water Regulations and the Safe Drinking 

Water Act. According to WHO (2017), turbidity should be reduced to less than 1 NTU to 

ensure an effective disinfection process. At the worst scenario when it is difficult to reach 

the proposed value, the turbidity level shall be maintained below 5 NTU. However, in 

order to compensate this high turbidity level, a higher chlorine doses or a longer contact 

time shall be given during the disinfection process to ensure the water quality. Hudson 

(2010) mentioned that turbidity value of 0.1 NTU at the outlet of treatment technology for 

drinking water will have low risk to human health. However the limits are that at the 

customer taps, turbidity values shall be set at 4 NTU while at the treatment plant it shall 

be 1 NTU. 
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2.2 Basic Design and Component of Slow Sand Filter 

Basic design of slow sand filter is presented in Figure 3, consists of following parts 

(Huisman and Wood, 1974; Visscher, 1990; Campos, 2002): 

a. a supernatant layer which provides the pressure for the water to flow through the 

media and at the same time giving several hours retention for the raw water so that 

sedimentation, solids agglomeration and oxidation can occur; 

b. a filter bed or sand bed where the purification mechanisms occur; 

c. an under drainage system to support the filter media and minimize the obstacle for the 

treated water; 

d. outlet chamber consists of two sections separated by a wall where on top of it is placed 

a weir to flow the treated water; and 

e. a system of control valves which regulates the flow rate through the media. 

 

 

A. Raw water inlet  E. Underdrainage  I. Weir 

B. Supernatant layer  F. Venturimeter   J. Clean water reservoir 

C. Filter or sand bed  G. Regulating valve  K. Clean water outlet 

D. Supporting gravel  H. Ventilator    

Figure 3. Basic components of slow sand filtration (Huisman and Wood, 1974)  

Related to the basic components of slow sand filtration, operating variables which can give 

significant effect to its performance are media grain size distribution, hydraulic loading 

rate, operation mode, filter bed depth, quality of influent and the sand type (Huisman and 

Wood, 1974; Bellamy et al., 1985a; Muhammad et al., 1996; Rolland et al., 2009; Kandra et 

al., 2014). Comparison of several recommended values for the design criteria can be found 

in Table 1 (Huisman and Wood, 1974; Visscher, 1990; Barrett et al., 1991). 
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Table 1. Comparison of slow sand filtration design criteria according to different authors 

Design Criteria 

Recommended Values 

Huisman and 

Wood (1974) 
Visscher (1990) 

Barrett et al. 

(1991) 

Design period 7-10 years 10-15 years 20 years 

Period of operation 24 hours/day 24 hours/day 24 hours/day 

Hydraulic loading rate 

in the filters 

0.1-0.4 m/h 0.1-0.2 m/h 0.04-0.4 m/h 

Filter bed area 100-200 m2/filter 

min. of 2 units 

5-200 m2/filter* 

min. of 2 units 

A = Q/hydraulic 

loading rate** 

min. of 2 units 

Thickness of sand bed:    

     Initial 1.2-1.4 m 0.8-0.9 m 1.0-1.5 m 

     Minimum 0.7-0.9 m 0.5-0.6 m 0.3-0.8 m 

Sand specification:    

     Effective size d10 0.15-0.35 mm 0.15-0.30 mm 0.2-0.3 mm 

     Uniformity coefficient    

     (Cu) 

<3 

preferably < 2 

<5 

preferably <3 

1.5-2 

>3 for economic 

reasons is 

considerable 

Height of underdrains 

(including gravel layer) 

0.46 m 0.3-0.5 m 0.5-0.8 m 

Height of supernatant 

layer 

1.25 m 1.0 m 2.0-3.0 m 

*To facilitate manual cleaning 

**A stands for area; Q stands for debit 

 

As one of the important operating variables, hydraulic loading rate must be maintained 

under proper rate to ensure the removal processes. According to Visscher (1990) and 

Sánchez et al. (2006), the proper hydraulic loading rate can be controlled either at the 

inlet (Figure 4) or at the outlet (Figure 5) of filter. Research to compare the influence of 

both systems to the filter performance has been conducted (Sánchez et al., 2006). In terms 

of outlet quality, development of head loss and clogging period, both inlet and outlet 

controlled systems resulted in a similar filter performance. 
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A. Raw water inlet valve for regulation of hydraulic loading rate 

B. Valve for drainage of supernatant water 

C. Inlet weir 

D. Calibrated flow indicator 

E. Valve for backfilling the filter bed with clean water 

F. Valve for drainage of filter bed and outlet chamber 

G. Valve for treated water distribution 

H. Valve for delivery of treated water to waste 

Figure 4. Slow sand filter scheme with inlet controlled system (Visscher, 1990) 

In a slow sand filter with inlet controlled system, hydraulic loading rate is regulated by the 

raw water inlet valve (Visscher, 1990). This raw water inlet valve allows the water to flow 

in a constant rate to the filter unit leads into a constant hydraulic loading rate. Inside the 

system, a flow indicator is installed to measure the flow continuously (Visscher, 1990). 

At the beginning of the operation, the supernatant layer is shallow therefore the retention 

time of raw water to be in this layer is shorter. Supernatant layer will gradually increase to 

compensate the head loss due to the development of Schmutzdecke at the filter bed surface 

(Sánchez et al., 2006). When the supernatant level reaches the maximum, cleaning is 

needed. The advantage of the inlet control system is that it simplifies the filter operation. 

The rise of supernatant layer as a result of an increase of the head loss is directly visible 

(Visscher, 1990). 
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A. Raw water inlet valve 

B. Valve to drain the supernatant water 

C. Valve for backfilling the filter bed with clean water 

D. Valve for drainage of filter bed and outlet chamber 

E. Valve for regulation of the filtration rate 

F. Calibrated flow indicator 

G. Outlet weir 

H. Valve for treated water distribution 

I. Valve for delivery of treated water to waste 

Figure 5. Slow sand filter scheme with outlet controlled system (Visscher, 1990)  

Controlling the hydraulic loading rate at the outlet is the common method that is widely 

used (Sánchez et al., 2006). Using this method, the supernatant layer is kept constant at 

the maximum level above the bed surface. The different level between the supernatant 

layer and the water overflow which is usually positioned equal to the bed surface, creates 

a pressure allowing the water percolates through the media. Along with the removal 

process, retained particles may increase the head loss, hence, influencing the hydraulic 

loading rate. In order to maintain the desired hydraulic loading rate, valve E should be 

gradually opened as a consequence of the head loss increase. This valve opening may 

cause a slight variation of the hydraulic loading rate. Moreover, the operator must adjust 

the outlet valve opening regularly so that the constant hydraulic loading rate can be 

maintained (Visscher, 1990). 

In comparison to other water treatment technologies, some advantages of slow sand 

filtration are well-known and listed as follows (Huisman and Wood, 1974; Visscher, 1990; 

Cleary, 2005; Visscher, 2006; Gottinger et al., 2011): 

a. Slow sand filtration can effectively improve the water quality physically, chemically 

and microbiologically even when it is used as a single stage treatment. Table 2 shows 
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the examples of removal efficiencies of slow sand filtration based on the results of 

some previous studies by Slezak and Sims (1984), Bellamy et al. (1985a), Bellamy et al. 

(1985b), Visscher (1990), Collins et al. (1991), Galvis (1999), Logsdon et al. (2002) 

and Kaya and Takeuchi (2014). However, from these results it can be inferred that the 

slow sand filtration cannot directly produce drinkable water without further step of 

treatment because this technology alone cannot achieve 100 % of bacteria and viruses 

removal. 

b. Slow sand filter is an uncomplicated technology in respect to the construction, 

operation and maintenance therefore the cost can be maintained low. 

c. During the operation of slow sand filter, chemicals are not required. 

d. Low energy is required because the filter operates exploiting only the gravity flow. 

e. Slow sand filtration systems produce less dangerous waste compared to other 

methods because the sludge resulted during filter scraping is handled in a dry state 

and this material can be used as fertilizer. 

f. Cleaning process requires only a little amount of water, thus conservation of water can 

be managed. 

In spite of its advantages, the disadvantages of slow sand filter is also reported, as 

presented below (Huisman and Wood, 1974; Visscher, 1990; Logsdon et al., 2002; 

Gottinger et al., 2011): 

a. Due to its low velocity, a large area is needed to encounter the demand. 

b. Slow sand filter may not be suitable for cold climates because the filter operation at 

very low temperature influences the filter performance adversely. Therefore, an 

additional expensive system against freezing should be installed. 

c. Slow sand filtration is vulnerable to high turbidity as it accelerates the clogging period.  

d. In some countries where the construction methods are mechanized, for instance in the 

Netherlands, initial cost of slow sand filter may be higher than rapid filter. 

e. The growth of certain types of algae may require a more frequent cleaning due to the 

premature clogging. 
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Table 2. Removal efficiencies of slow sand filtration 

Parameter Effluent or removal 

efficiency 

Reference(s) 

Turbidity < 1 NTU* Slezak and Sims (1984); Visscher 

(1990); Collins et al. (1991); 

Galvis (1999) 

Color 30-100 % 

25-40 % 

Visscher (1990) 

Galvis (1999) 

Total coliforms 96-99.9 % 

98.9 % 

Bellamy et al. (1985a) 

Bellamy et al. (1985b) 

Fecal coliforms 95-97 % 

98 % 

1-3 log units 

Bellamy et al. (1985a) 

Bellamy et al. (1985b) 

Collins et al. (1991) 

Enteric viruses 2-4 log units 

99-99.99 % 

Collins et al. (1991) 

Galvis (1999) 

Giardia cysts >99.9 % 

 

2-4 log units 

99-99.99 % 

Bellamy et al. (1985a); Bellamy et 

al. (1985b) 

Collins et al. (1991) 

Galvis (1999) 

Cryptosporidium oocysts >99 % Galvis (1999) 

Standard plate count 

bacteria 

>99 % 

87-91 % 

Bellamy et al. (1985a) 

Bellamy et al. (1985b) 

Organic matter 60-75 % Visscher (1990) 

Biodegradable dissolved 

organic carbon 

<50 % Collins et al. (1991) 

Iron and manganese Largely removed 

30-90 % 

>99.9 % 

Visscher (1990) 

Galvis (1999) 

Kaya and Takeuchi (2014) 

Heavy metals 30-95 % Visscher (1990) 

Trihalomethane precursors <25 % Collins et al. (1991) 

*Nephelometric Turbidity Unit 

2.3 Hydraulics of Filtration 

In the theory of granular filtration, discussion about hydraulics is started by determining 

the flow types. Fluid flow may be classified as laminar, turbulent and transitional (Webber, 

1965; Bardet, 1997). Webber stated that laminar flow occurs when the velocity is low and 
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constant in such a way that the particles move parallel to the flow path. Adversely, the 

particle velocity during turbulent flow is high and fluctuated causing the particles motion 

is not in line with the flow path. Bardet define transitional as a type of flow between the 

lamina and turbulent flows. The simplest method to characterize the fluid type is by using 

the Reynolds number (Re). Following is the formula to calculate the Re (Binnie and 

Kimber, 2013): 

 ܴ݁ = ߩ ∙ ݒ ∙ �ܦ  (1) 

where ρ is the density of water, v is hydraulic loading rate, D is the particle diameter and η 

is the dynamic viscosity of fluid which in this research is water. According to Welty (2008), 

when the Re is below 2300, the flow is classified as laminar. A flow is transitional when 

2300 < Re < 3000 and turbulent flow occurs if the Re is above 3000. 

Low hydraulic loading rate in slow sand filtration leads into very small Re thus the flow 

regime is categorized as laminar flow (Campos et al., 2006). Jabur et al. (2005) described 

that in slow sand filtration, Re < 2. Therefore, Darcyǯs Law which stating that hydraulic 
loading rate is proportional to the difference of pressure can be applied in this system 

(Ives, 1987). An assumption in the application of Darcyǯs law is that the flow is steady, 
laminar, no change in viscosity (inviscid) and volume (incompressible) (Budhu, 2015). This equation from Darcyǯs law can describe the flow in porous media. According to the 
experiments done by Darcy, flow velocity v is influenced by the hydraulic conductivity k 

and hydraulic gradient i (Bardet, 1997): 

ݒ  = ݇ ∙ � (2) 

Filtration velocity v or hydraulic loading rate can be determined by dividing the 

volumetric flowrate Q by the specimen cross-sectional area A (see Equation 3) (Sherard et 

al., 1984). The value of Q can be obtained by dividing the volume and time t of water 

collected. The A depends on the diameter of column D. 

ݒ  = ݁ݐ�ܴ ݃݊�݀�� ܿ�݈ݑ�ݎ݀ݕܪ = �ܳ = ݁݉ݑ݈ܸ ߨ⁄ݐ ∙ ଶܦ Ͷ⁄  (3) 

Hydraulic gradient i is the ratio of different head drop Δh and the bed depth L (Bardet, 

1997): 

 � = ∆ℎ�  (4) 

Hydraulic conductivity is one of parameters generally used to characterize transport 

phenomena in porous media (Koponen et al., 1997). Hydraulic conductivity describes how 

ease the water flow through the media. There are many factors influencing hydraulic 
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conductivity in sand filtration such as size and shape of grains, homogeneity, size and 

arrangement of voids which are represented by void ratio and porosity, layering and 

fissuring, degree of saturation, fluid properties i.e. viscosity and temperature, fissuring, 

compression or stress level and particles loading (Bardet, 1997; Deb and Shukla, 2012; 

Budhu, 2015; Le Coustumer et al., 2012). 

Coarse grains tend to have a higher hydraulic conductivity compared to the finer grains. 

Fine fraction presence in the soil may significantly reduce the hydraulic conductivity 

(Budhu, 2015). As a provisional basis for this fine fraction, effective size d10 (mm) is used. 

The term d10 represents the grain size which is 10 % finer by weight. The d10 is used as one 

of the parameters because Hazen (1905) found out that fine fraction represented by d10 

mainly determines the characteristic of the sand. Budhu (2015) also mentioned that this 

portion will result relatively the same effect as irregular particles. According to the d10 

value, the sand is classified as fine or coarse. Low d10 value represents finer grains and vice 

versa. Empirical relationship between the d10 and hydraulic conductivity kH (cm/s) is shown by (azenǯs formula as follows (Bardet, 1997; Budhu, 2015): 

 ݇� = �ܥ ∙ ݀ଵଶ  (5) 

where CH is the Hazen constant which ranges between 0.4 and 1.4. This constant reflects 

the different type of soil. For fine and uniform sand, CH is typically 1.0. Another method to 

determine the CH by considering the porosity n is presented by Naeej et al. (2017) as 

follows: 

�ܥ  =
݃

×  × ͳͲ−ସ × [ͳ + ͳͲሺ݊ − Ͳ.ʹሻ] (6) 

In this study, the gravitational acceleration g is assumed to be 9.81 m/s2 and the kinematic 

viscosity  is 1×10-6 m2/s. (azenǯs formula is usually used to estimate the hydraulic 
conductivity value for coarse soils (Budhu, 2015). Calculation of empirical hydraulic conductivity based on (azenǯs formula was done using Equation 5 if the following 

requirements are fulfilled: 0.1 mm  d10  3 mm and Cu < 5. 

Estimation of hydraulic conductivity of filter media which did not meet the requirements for (azenǯs formula was determined using the Beyerǯs formula. The formula from Beyer as 

shown is Equation 7 is more suitable for finer grain size distribution (0.06 mm  d10  0.6 

mm and Cu < 20) (Vienken and Dietrich, 2011; Naeej et al., 2017): 

 ݇ = ܥ ∙ ݀ଵଶ  (7) 

The constant after Beyer CB is also influenced by the gravitational acceleration g, kinematic 

viscosity  and the homogeneity of the sand which is represented by uniformity coefficient 

Cu. Uniformity coefficient Cu, which characterizes the homogeneity of the sand, is the ratio 

of d60 to d10 (Bardet, 1997). The d60 represents the grain size which is 60 % finer by weight. 

The constant CB can be calculated using following formula (Naeej et al., 2017): 
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ܥ  =
݃

×  × ͳͲ−ସ × ݈݃ ͷͲͲܥ௨  (8) 

Large voids are not directly related to high porosity which will result into higher hydraulic 

conductivity. Figure 6 illustrates a sample of soil with total volume V and weight W. This 

soil sample consists of solid, water and air. When each constituent is grouped, the solid 

has a weight Ws and volume Vs. The weight and the volume of water are represented by Ww 

and Vw respectively. The air is weightless with a volume of Va. Total volume of voids Vv is 

composed by Vw and Va. 

 

Figure 6. Weight and volume of a soil sample (left) and weight and volume of solid, water and air 

constitutent (right) (Bardet, 1997)  

Void ratio e is the ratio of total voids volume to the solid volume (see Equation 9). In a 

sand bed with heterogeneous grain size, void ratio is reduced thus hydraulic conductivity 

is lower (Mbonimpa et al., 2002). 

 ݁ = ௩ܸܸ௦  (9) 

Porosity describes the total pores exist within the filter bed. Porosity n is the ratio of total 

voids volume to the total volume as shown in Equation10 (Bardet, 1997): 

 ݊ = ௩ܸܸ
 (10) 

When the value of Vv and Vs are difficult to be measured, the void ratio e can be determined 

based on the specific gravity Gs of the sand, water unit weight γw and dry unit weight γd. 

Equation 11 shows the relation among e, Gs, γw and γd (Bardet, 1997). Specific gravity Gs is 

a unit less expression which describes the ratio between unit masses of soil and water 

(Bardet, 1997). Determination of Gs can be done by laboratory test and the method is 

described in Section 4.2.1. In this study, the γw is assumed to be 9.81 kN/m3. The γd is 

Weight Volume Weight Volume 

Air 

Water 

Solid 

W V 

Ww Vw 

Ws Vs 

Va 

Vv 
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obtained by dividing the dry sample weight by the volume of sample. The dry sample 

weight in Newton is a product of dry sample mass in grams multiplied by the gravitational 

acceleration.  

 ݁ = ௦ܩ ∙ �௪�� − ͳ (11) 

Porosity n can be determined from the value of e with following equation (Bardet, 1997): 

 ݊ = ݁ͳ + ݁ (12) 

According to Koponen et al. (1997), the interconnected pores are crucial because those 

contribute to the flow in porous media. How the voids connect one another determines 

greatly the hydraulic conductivity. 

By considering the correlation of hydraulic conductivity and porosity, velocity through the 

void spaces or seepage velocity vs can be calculated using a formula as follows (Budhu, 

2015): 

௦ݒ  = ݇݊ ∙ � (13) 

Based on the value of porosity, an empirical hydraulic conductivity is determined using 

the Kozeny-Carmanǯs formula as follows (Naeej et al., 2017): 

 ݇� =
݃

× 8.͵ × ͳͲ−ଷ × ቆ ݊ଷͳ − ݊ଶቇ × ݀ଵଶ  (14) 

Hydraulic conductivity is high in loose state soil layers leading to a very high seepage 

velocity. In loose state soil layers, the existence of fissures may also increase the hydraulic 

conductivity degree (Budhu, 2015). 

Degree of saturation influences significantly the water flow in porous media. If the voids of 

soil sample are filled completely with water, fully saturated condition is achieved. Degree 

of saturation Sr (%) is calculated by comparing the water volume Vw and total voids 

volume Vv (Bardet, 1997): 

 ܵ = ௪ܸܸ௩ × ͳͲͲ (15) 

The possibility of fully saturated condition is very low due to the presence of entrapped air 

within the soil sample. Consequently, the entrapped air reduce the hydraulic conductivity 

due to the capillary action or soil suction (Budhu, 2015). 
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Viscosity is a temperature dependent parameter. When the temperature increases, the 

viscosity of fluid decreases (Cho et al., 1999). In a low viscosity, it is easier for the fluid to 

pass through the sand bed thus the hydraulic conductivity is higher (Budhu, 2015).  

Compression of the soil bed reduces the hydraulic conductivity due to the higher stress 

level. There are two processes of compression i.e. compaction and consolidation. 

Compaction decreases the total volume of voids, thus, it reduces the sand bed capability to 

convey the water (Bardet, 1997; Hatt et al., 2008). Consolidation occurs through a gradual 

flow of water independently of the clogging effects on the surface of filter bed (Hatt et al., 

2008). 

In the filtration process, impurities or suspended solids are removed from the raw water. 

These impurities are mostly deposited at the surface of filter bed. Due to the very fine size 

of the retained solid, the hydraulic conductivity is significantly decreased (Le Coustumer 

et al., 2012). 

The hydraulic conductivity can be measured in–situ using a permeameter. In the 

laboratory scale, hydraulic conductivity can be determined either by constant head or 

falling head test (Figure 7). 

Constant head test is usually used to determine the hydraulic conductivity of coarse-

grained soils such as clean sand and gravels ȋk ≥ ͳͲ-3) (Bardet, 1997). In this type of test, 

water is flowing through a bed of soil under a constant head as shown in Figure 7a. 

Hydraulic conductivity in vertical direction k can be determined by (Budhu, 2015): 

 ݇ = ܳ ∙ �� ∙ ∆ℎ (16) 

where Q is the volumetric flowrate (see Equation 3), L is the thickness of soil bed, A is the 

cross-sectional area and Δh is the head difference of inlet and outlet. 

The water flow in the less permeable soils such as fine sand (k  10-3 cm/s) is too slow, 

that the constant head test requires unreasonable measurement time. Therefore, 

for this type of soil, hydraulic conductivity is determined by falling head test. In the 

falling head test, water flows through a bed of soil with decreasing level as illustrated in 

Figure 7b. Hydraulic conductivity k is calculated using the following formula (Bardet, 

1997; Budhu, 2015): 

 ݇ = � ∙ �� ∙ ሺݐଶ − ଵሻݐ ݈݊ (ℎଵℎଶ) (17) 
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(a)                (b) 

Figure 7. A scheme of (a) constant head test and (b) falling head test (Budhu, 2015) 

2.4 Head Loss and Clogging Phenomena 

Head loss, in this study, is a phenomenon in slow sand filtration where the downward raw 

water flow is resisted by the existence of sand bed (Huisman and Wood, 1974). 

Accumulation of impurities on the surface of filter bed is also responsible for the 

progressive increase of head loss during filter operation (Graham and Collins, 2014). This 

phenomenon can be describe as the difference between the head of the water above and 

below the sand bed and it represents the frictional resistance of the sand layer (Hazen, 

1905). 

According to Holdich (2002), head loss is the inverse of hydraulic conductivity. High head 

loss is related to the high fluid viscosity μ and low hydraulic conductivity as formulated in 

the following: 

 � = �݇ ∙  (18) ݁ݐ�ܴ ݃݊�݀�� ܿ�݈ݑ�ݎ݀ݕܪ

Outlet Outlet 

L L 

Δh Δh 

dh Mariotte bottle 

Cross sectional a 
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Huisman and Wood (1974) proposed a simple method to calculate the head loss H which 

is associated with hydraulic loading rate (Naghavi and Malone, 1986) within a sand bed 

thickness of h as follows: 

ܪ  = ݇݁ݐ�ܴ ݃݊�݀�� ܿ�݈ݑ�ݎ݀ݕܪ ∙ ℎ (19) 

At the beginning of the filter operation, the head loss is dominantly dependent on the grain 

size distribution of media, bed depth and hydraulic loading rate (Naghavi and Malone, 

1986; Zhu et al., 1996; Mandloi et al., 2004). Figure 8 shows how high initial head loss can 

be associated with lower median grain size diameter and greater thickness of bed depth.  

 

Figure 8. Correlation of average initial head loss and bed depth after Naghavi and Malone (1986) 

Head loss gradually increases due to the deposition of sediment from the raw water and 

mostly occurs at the top layer of sand bed (Hazen, 1905; Farooq and Al-Yousef, 1993; 

Holdich, 2002; Aronino et al., 2009). 

Hydraulic gradient or gradient of total head (Bardet, 1997) can be used as an indicator of 

development head loss (Darby et al., 1992). Head loss development in filter bed is 

determined by media grain size, bed depth, hydraulic conductivity, media shape, bed 

porosity, hydraulic loading rate, water viscosity and density, concentration and size of 

suspended solids in water, volume of treated water and the ratio of filter diameter to 

media effective size(Yao et al., 1971; Lang et al., 1993; Boller and Kavanaugh, 1995; 

Trussell and Chang, 1999; Holdich, 2002; Puig-Bargués et al., 2005; Mesquita et al., 2012). 

Due to the limited literatures in slow sand filtration about head loss development, 

references cited herein are predominantly from the research in deep bed filtration. 
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Head loss is always dependent on the hydraulic conductivity of filter bed. Hydraulic 

conductivity has an inverse relationship with the head loss. Under a constant flow, lower 

hydraulic conductivity leads into the increase of head loss (Mays and Hunt, 2005). One of 

factors which affect the hydraulic conductivity and head loss is media shape (Bardet, 

1997). According to Bardet, especially related to the coefficient values of grain shape and 

the empirical hydraulic conductivity, the more irregular the media shape, the lower the 

hydraulic conductivity is. This means that the more rounded media shape will result in a 

lower head loss. However, Sperry and Peirce (1995) concluded that media size is more 

significant for predicting the hydraulic conductivity rather than media shape. This 

conclusion is confirmed by Trussell and Chang (1999) which stated that media shape has 

much less influence on the head loss compared to the impact of porosity and media size. 

Bed porosity is inversely proportional to the head loss as the higher bed porosity, the 

lower the head loss is (Trussell and Chang, 1999). Deposition of suspended solids in filter 

bed reduces the overall porosity (Tobiason and Vigneswaran, 1994). The decrease in 

porosity increases the tortuosity of flow in filter bed and consequently, head loss (Boller 

and Kavanaugh, 1995). Related to media size, OǯMelia and Ali (1978) stated that its impact 

on the head loss development is less significant compared to the effect of suspended solids 

concentration and size. Based on the study of OǯMelia and Ali, raw water with low 

concentration of suspended solids results in slow increase of head loss. This result was 

verified by Vigneswaran and Song (1986). Adin and Elimelech (1989) disproved the result 

of OǯMelia and Ali, particularly on the impact of media size. According to their study, Adin 

and Elimelech found that rate of head loss increase is strongly dependent on the media 

size. Finer media produce much higher head loss increase due to the surface removal of 

suspended solids, rather than the coarser media. Another study by Boller and Kavanaugh 

(1995) also contradicts to OǯMelia and Ali in regard to media size. However, Boller and 

Kavanaugh showed contrary results to Adin and Elimelech. In their study, head loss 

increase in coarser media size is larger than in finer media size. Size of suspended solids 

affects the head loss development in an inverse way. Suspended solids with larger size do 

not produce enormous head loss, meanwhile the submicron solids do ȋOǯMelia and Ali, 
1978). This result was confirmed by Tobiason and Vigneswaran (1994) and Boller and 

Kavanaugh where smaller solids result in higher head loss per unit mass deposited. 

Hydraulic loading rate has an essential impact on the head loss development. Adin and 

Elimelech (1989) observed that rapid head loss increase occurs in a filter bed operated 

higher hydraulic loading rate. On the contrary, Veerapaneni and Wiesner (1997) found out 

that lower hydraulic loading rate generates steep increases in head loss. It is because 

deposits of suspended solid occupy more pore spaces in filter bed under low hydraulic 

loading rate. Therefore, the drag loss for the water to flow is higher and consequently the 

head loss is higher. Disproving the both studies of Adin and Elimelech (1989) and 

Veerapaneni and Wiesner (1997), effect of hydraulic loading rate was found to be 

insignificant on the head loss development by Boller and Kavanaugh (1995). 

Progressive increase of head loss can be associated and used to predict the clogging rate 

(Puig-Bargués et al., 2005). Based on its definition, clogging is a condition when the 
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hydraulic conductivity decreases and water cannot percolate easily through the sand bed 

due to sediment accumulation and deposition in the filter from the total period of 

operation (Rodgers et al., 2004; Kandra et al., 2014; Mercado, Jean Margaret R et al., 2015). 

Clogging is a result of physical, biological and chemical processes (Pérez Paricio, 2001). 

The terms physical process refers to the attachments or detachment of suspended solids 

into the sand grains ȋMcDowell‐Boyer et al., 1986). Biological process involves the 

accumulation and growth of microorganisms in porous media (Vandevivere et al., 1995). 

Chemical clogging seldom occurs unless there is a chemical interaction between the 

dissolved salt in the water and the porous media (Rice, 1974). 

Clogging that occurs in sand filtration is regarded as a surface phenomenon (Rodgers et al., 

2004; Leverenz et al., 2009; Le Coustumer et al., 2012). This surface phenomenon involves 

the decline of pore space caused by suspended solids and bacterial growths on the 

captured or dissolved solids, and reopening of pore space caused by bacterial 

decomposition and the reduction of bacterial growths during the resting period (Leverenz 

et al., 2009). 

In slow sand filtration, at the beginning of the filter run, the sand characteristics such as its 

size influenced the clogging layer development (Elisson, 2002). Fine sand tends to clog 

faster than the coarser. However, once the clogging layer is formed, development of the 

clogging layer does not depend on the sand bed characteristics anymore (Kropf et al., 

1977). Clogging is a serious problem which influence the filter performance (Kandra et al., 

2010). In the worst case, clogging may provoke a breakthrough in the filter bed (Hazen, 

1905; Vries, 1972; Kandra et al., 2010). 

In practical use, high initial head loss may not be beneficial. It is because the time to reach 

the terminal head loss or clogging period is shorter. In order to ensure a consistently well 

performance, a filter shall be designed and operated in a manner where the time to reach 

the terminal head loss is considerably shorter than the time to reach the breakthrough. 

According to Hazen (1905), breakthrough occurs when the pressure for the water to flow 

becomes very high that the filter cake will no longer able to resist it. The filter cake will be 

broken allowing the water to flow with a huge increase of the loading rates. As a 

consequence, the breakthrough causes the decreased removal efficiency (Hazen, 1905). 

From this point of view, head loss is not only a very significant parameter but also a 

dominant design constraint (Boller and Kavanaugh, 1995). 

Maintenance of filter when terminal head loss or clogging is reached normally involves 

scraping of top layers to remove the clogging layer. Other method that can be done to put 

the slow sand filter back into service is by filter cake harrowing (Collins et al., 1991; 

Österdahl, 2015). Filter harrowing is done by draining the supernatant water into only 

around 30 cm above the sand surface. Then the top 30 cm sand medium is raked –either 

manually or using a machine– so that the colloidal debris is loosened and caught by the 

moving water stream. The dirty water is not discharged through the filter bed but at the 

surface. This harrowing is believed to be a better method because it requires less time and 
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labor compared to the normal scraping. Moreover, the filter can be put back into service 

faster without compromising the removal efficiency (Collins et al., 1991). 

2.5 Removal Mechanisms 

Fundamental purpose of filtration is to remove the impurities from the water by passing it 

through sand bed. Removal mechanisms and inactivation of microorganisms are mostly 

related to a thin layer so called Schmutzdecke or Ǯdirty layerǯ at the surface of filter bed 
(Weber-Shirk and Dick, 1997). Schmutzdecke, together with low hydraulic loading rate and 

fine sand size, encourages the filter to achieve high efficiency of treatment (Campos et al., 

2002). 

For more than a century, the role of Schmutzdecke in the removal mechanisms had been 

argued due to its various definitions. Hazen (1905) expressed the Schmutzdecke as a 

sediment layer resulted from coarser particles in the water that are restrained on the 

surface of sand bed. This layer will then become another filter that is much finer than the 

sand. Huisman and Wood (1974), Ellis (1987) and Binnie and Kimber (2013) had similar 

definition on Schmutzdecke stating that it is a thin slimy mat or a biologically active mat 

formed on the surface of sand bed composed of humus, sand, algae, plankton, diatoms, 

protozoa, metazoan, rotifiers and bacteria. Cleasby et al. (1984) and Bellamy et al. (1985b) 

stated that Schmutzdecke consists of inert deposits and living organisms that develops on 

the surface of sand bed. Weber-Shirk and Dick summarized those various definitions of 

Schmutzdecke as follows: 

a. particle deposition which forms a layer on the surface of filter bed, 

b. a surface skin formed by biological growth, and 

c. a biologically active zone within the filter bed. 

At the beginning of the filter operation,the Schmutzdecke is formed due to the physical 

process (Campos, 2002; Ellis et al., 2009). This physical removal is regarded as the 

principal removal mechanisms in slow sand filtration (Campos, 2002). Thus, in order to 

understand the removal mechanisms in slow sand filtration, the focus in this study was on 

the suspended solids removal. Considering this focus of research, the most suitable 

definition of Schmutzdecke is the layer of solids deposition on the surface of filter bed. Another term that is more suitable to specify this solids deposition is Ǯfilter cakeǯ (Weber-

Shirk and Dick, 1997). From this point on, the term of filter cake will be used herein. 

Generally, removal mechanisms of suspended solids by filtration consist of two sequential 

steps: transport and attachment processes ȋElimelech and OǯMelia, ͳͻͻͲaȌ. These 

mechanisms that is responsible for suspended solids removal in slow sand filtration are 

influenced by many variables such as the retention site, retention forces, particle size, type 

of flow and transport or capture mechanisms (Herzig et al., 1970; Yao et al., 1971; (uisman and Wood, ͳͻͶ; McDowell‐Boyer et al., 1986). 
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2.5.1 Transport Mechanisms 

Particles are brought into contact to the potential retention site where it can be remained 

or transported by the stream during the flow through the sand bed (Herzig et al., 1970). 

There are four possible locations where the suspended solids may be collected as 

illustrated in Figure 9: 

a. surface, where suspended solid may have contact with and retained on; 

b. crevice, where suspended solids are wedged in between two convex surfaces of two 

grains; 

c. constriction, where suspended solid is retained among grains because its size is bigger 

than the pore size; and 

d. cavern, where the suspended solids are remained in such a sheltered pocket formed 

by several sand grains. 

 

  (a)                                         (b)                                   (c)                                       (d) 

Figure 9. Retention sites of suspended solids: (a). surface; (b). crevice; (c). constriction; and (d). 

cavern (Herzig et al., 1970) 

Transport mechanisms are categorized into six types: sedimentation, interception, inertia, 

diffusion or Brownian motion, hydrodynamic effects and mass attraction or van der Waals 

force (Herzig et al., 1970; Yao et al., 1971; Huisman and Wood, 1974). By considering a 

single grain of filter media as a collector, Yao et al. illustrated the transport mechanisms as 

seen in Figure 10. Darby and Lawler (1990) mentioned that particle size distribution 

determines the dominant transport mechanism whether it is sedimentation or 

interception or Brownian motion. The first two types of transport mechanisms occur 

when the suspended solids are >1 μm (Yao et al., ͳͻͳ; OǯMelia and Ali, ͳͻͺȌ. Meanwhile, 

Brownian motion will play more important role for the particles having the size of < 1 µm 

(Keller and Auset, 2007). In this study, in order to study more about the head loss 

development and ripening period in the slow sand filtration, particle size distribution also 
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needs to be considered since it is impossible to rely only on the measurement of turbidity 

or TSS (Darby and Lawler, 1990). 

Sedimentation occurs when the density of solids is higher than the water density. In this 

case, the velocity of the particle is no longer the same as the water due to the gravitational 

force (Herzig et al., 1970; Yao et al., 1971; Ives, 1987). Hence, the particles are precipitated 

onto the collector. Temperature is also influencing sedimentation efficiency since it affects 

the viscosity of water. The higher the temperature is, the lower the viscosity allowing a 

faster settlement of particle (Ives, 1987). 

Another factor affecting sedimentation efficiency is the ratio between the surface loading 

rate and the settling velocity of suspended particles. If the settling velocity is equal to or 

greater than the surface loading, removal by sedimentation can occur (Huisman and 

Wood, 1974). Settling velocity will be discussed particularly in the Section 2.6. 

Interception is due to the flow of suspended particles which follow the trajectory and at 

some points come into contact with the collector (Yao et al., 1971). According to Keller and 

Auset (2007), interception is not only a function of hydraulic loading rate but also of 

diameter ratio between suspended solids and the sand grain as well as porosity. 

Probability of interception will decrease if the hydraulic loading rate is high. 

 

Figure 10. Basic transport mechanisms in sand filtration (Yao et al., 1971; Bradford et al., 2002; 

Binnie and Kimber, 2013) 
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Inertia is the tendency of a particle to remain in its own trajectory (Zamani and Maini, 

2009). Due to their inertia, it is difficult for the particles to follow the same trajectory as 

the water (Herzig et al., 1970). Deviation of the streamlines cannot be avoided and at some 

points the particles are brought into contact with the grains. However, if the hydraulic 

loading rate and Reynolds number are low, inertia is not significant (Binnie and Kimber, 

2013). 

Difussion or Brownian motion is induced by the collision between liquid molecules and 

the suspended solid causing a random movement (Yao et al., 1971). Diffusion enables 

particles to come into contact and detained to the area that is not flooded by the 

suspension (Herzig et al., 1970). 

Hydrodynamic effects occur due to the nonuniform velocities and the nonsphericity of 

particles (Herzig et al., 1970; Ives, 1987). Largest velocity is at the center of particles and 

declines approaching the grain surface. The velocity gradient from one side to the other 

causes particles to rotate (Binnie and Kimber, 2013). Nonsphericity of particles leads into 

imbalance forces which cause the particles to turn and twist during their move through 

the water. Combination of rotations, turns and twists causes lateral forces which divert the 

particles from their streamlines allowing them to travel in a random path, hence, it 

increases the contact probability between the particles and the sand grains (Ives, 1987). 

Mass attraction or van der Waals force does not only influence the transport mechanisms 

but also attachment mechanisms (Huisman and Wood, 1974). Van der Waals force is 

influenced by the size of the interacting particles, the distance between particles and 

collector, and Hamaker constant of interacting media (Herzig et al., 1970; Elimelech and 

O'Melia, 1990b). Hamaker constant reflects the interaction between the interacting 

materials and the intervening media (Bergström, 1997). Van der Waals force is significant 

when the distance between two particles is close (Huisman and Wood, 1974). McDowell‐Boyer et al. (1986) summarized three mechanisms that impede the suspended 

solids migration during the transport processes through porous media as illustrated in 

Figure 11. These mechanisms depend on the size of suspended solids.  

 

Figure 11. Filtration mechanisms: filter cake formation (left); straining (middle); and physical-

chemical filtration (right) ȋMcDowell‐Boyer et al., 1986) 
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When the particles are larger than the pore size, their penetration into the sand bed is 

limited. They are often remained at the surface of sand bed forming a filter cake or surface 

mat ȋMcDowell‐Boyer et al., 1986). Types of particles contained in the filter cake influence 

greatly its properties such as hydraulic conductivity, porosity, compressibility and the 

capacity to restrain other particles (Weber-Shirk and Dick, 1997). This particle deposition 

at the surface leads to a significant decrease of the hydraulic conductivity of the filter. 

Straining occurs in constriction when the particles are small enough to penetrate the 

porous media but too large to pass through the interstices between grains in the sand bed. 

It mostly takes place at the surface of the filter which contributes to the formation of filter 

cake since it restricts openings of the sand bed pores (Huisman and Wood, 1974; McDowell‐Boyer et al., 1986). Straining is the only one mechanism that is known from the 

beginning of slow sand filtration establishment. Before the existence of pathogenic 

bacteria was known, slow sand filtration is only deemed as a strainer for turbidity and 

suspended solids (Hazen, 1905; Huisman and Wood, 1974). In that period, it was believed 

that the filter performance depends on the fineness of the strainer which is sand (Hazen, 

1905). 

Independent of the hydraulic loading rate, straining that is also not influenced by 

electrostatic interactions. Straining is influenced greatly by the system geometry and the 

grain shape (Tufenkji et al., 2004). Prediction on the straining potential within porous 

media based on the system geometry is influenced by the solid or particle diameter (dp) 

and the grain mean diameter (dm) (Herzig et al., ͳͻͲ; McDowell‐Boyer et al., 1986). 

Sakthivadivel (1969), as cited by McDowell‐Boyer et al. ȋͳͻͺȌ, recommended some 
values of dm/dp to determine the straining potential. Particle penetration to media will not 

be possible when dm/dp < 10. In such condition, a filter cake will be formed. For 10 < dm/dp 

< 20, deposition of particles is expected to occupy > 30% of pore volume and hydraulic 

conductivity is reduced by a factor of 7-15. Deposition of smaller particles which occupy 

pore volume is predicted to be only 2-5% if dm/dp > 20. If the ratios of grain diameter and 

particle diameter are ranging from dm/dp < 10 to dm/dp > 20, the constriction is blocked by 

larger particles. These larger particles act as strainers for smaller particles. In this case, an 

effective particle removal by a combination of surface and straining filtration can be 

achieved ȋMcDowell‐Boyer et al., 1986). Sherard et al. (1984) conducted an experiment in 

geotechnical filter materials using fine and coarse media. Sherard et al. (1984) found out 

that there was no penetration of finer sand into the coarser if dc,15/df,85 < 9. The term dc,15 

represents the coarse grain size corresponds to 15 % finer by weight and df,85 represents 

the fine grain size corresponds to 85 % finer by weight. 

Herzig et al. (1970) proposed a threshold value for dp/dm by considering a triangular 

constriction composed by three tangent spherical grains (see Figure 12). If the value of 

dp/dm is higher than this threshold, the particles cannot penetrate through the 

constriction. The threshold values vary depending on the amount of the particle at the 

constriction site. The limit values of dp/dm are 0.154, 0.10 and 0.082 for one, three and four 

particles respectively. When the constriction is clogged due to the subsequent blockage of 
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particles in each crevice, removal of microorganisms by straining is possible. Dullemont et 

al. (2006) proved that by the existence of Schmutzdecke, E.coli removal was 2 log10 higher 

due to the straining mechanisms. 

 

          ቀ ����ቁ୪i୫it = Ͳ.ͳͷͶ               ቀ ����ቁ୪i୫it = Ͳ.ͳͲ   ቀ ����ቁ୪i୫it = Ͳ.Ͳ8ʹ 

Figure 12. Straining in a triangular constriction (Herzig et al., 1970) 

Another relevant variable contributing to the straining potential is media grain shape. 

Variation of grain shapes leads to the increase of pore size distribution (Tufenkji et al., 

2004). Crucial aspect of straining by irregular shape of grains is the existence of very small 

pore throats which allow capture and storage of broader range of particle sizes including 

colloids (Barton and Buchberger, 2007). 

The size of colloids in suspension is much smaller compared to the media grain size. 

Removal by straining may occur in such condition, but this removal is not significant. 

Percentage of mass retention by straining is higher for the larger colloid or for the smaller 

grain (Bradford et al., 2003). For colloid straining, Bradford et al. proposed a value of 

0.002 for dp/dm. However, Xu et al. (2006) found out that the straining rates will increase 

above the dp/dm of 0.008. 

Due to its size, colloids removal is dominated by physical-chemical mechanism or 

attachment through a collision with the collector (Bradford et al., 2002; Xu et al., 2006) and securing colloids to the collectorǯs surface (Ives, 1987). McDowell‐Boyer et al. (1986) 

proposed a threshold value for colloid removal based on the geometry of the colloid and 

sand grain. Ratio of media grain size and colloid or dm/dp should be > 1000 in order to 

enable the attachment of colloid. 

When characterizing the transport phenomena in porous media, there is a variable to 

consider. This variable is specific surface area of sand As which can be related to hydraulic 

conductivity (Koponen et al., 1997; Carrier III, 2003). This parameter can have an 

influence to the removal mechanisms (Langenbach, 2010). Specific surface area of sand is 

the total interstitial surface area of the voids and pores per unit bulk volume (Bear, 1988). 

The As is influenced by the specific diameter of sand grains ds and porosity. It has the unit 

of m2/m3 and can be approximated by the following formula (Bear, 1988; Langenbach, 

2010): 

dp 

dm/2 

dp 

dm/2 

dp 

dm/2 
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 �௦ = ݀௦ ሺͳ − ݊ሻ (20) 

Value of ds in mm depends on the d10 and Cu given by (Huisman and Wood, 1974): 

 ݀௦ = ݀ଵሺͳ +  ௨ሻ (21)ܥ݈݃

Total sand surface area AT where the water has passed within the inner column diameter 

D and bed depth L can be calculated by (Langenbach, 2010): 

 �� = �௦ ߨ ∙ ଶͶܦ � (22) 

2.5.2 Attachment Mechanisms 

The purpose of filtration is to separate the solids from the suspension. Therefore, 

suspended solids which have made contact with grains need to be attached to the 

collectors. Suspended solids can be detained at constriction due to the axial pressure of 

the water which holds on the particles opposing the opening of pores. Friction forces the 

particles to stop and remain in a crevice. Attachment process of particles to the grains is 

influenced by not only various chemical-colloidal interactions but also the existence of 

supporting forces or interactions between particles and grain surface (Elimelech and 

O'Melia, 1990b). The dominant supporting forces are van der Waals forces and electrical 

forces (Zamani and Maini, 2009). Van der Waals forces are always attractive while 

electrical forces can be either attractive or repulsive depending on the physicochemical 

conditions of the suspension. Derjaguin and Landau (1941) stated that these forces are a 

function of the distance between the two masses. Thus, the attachment process depends 

significantly on the distance between the particles and the sand grain surface (Herzig et 

al., 1970; Huisman and Wood, 1974). If the distance is high, the total energy of interaction 

is very small that it can be neglected (Hamaker, 1937). According to Zamani and Maini, 

these supporting forces will be significant if the distance between the two masses is below 

100 nm. 

Electrostatic forces or interactions which are dominant in the attachment mechanism 

occurs not only due to the short distance between a particle and a sand grain but also due 

to the opposite electrical charges ȋ(uisman and Wood, ͳͻͶ; McDowell‐Boyer et al., 

1986). Opposite electrical charges of a particle and a grain may lead into attraction force, 

in contrary repulsion force is originated from interaction between two particles having the 

same charge. Electrostatic character of particles is also affected by the chemistry of fluid 

(Elimelech and O'Melia, 1990b; Redman et al., 1997). In this study, quartz sand was 

selected as filter media. According to Huisman and Wood (1974) quartz sand has a 

negative charge. The selected surrogate material which was quartz powder certainly has 

the same charge as the filter media. Therefore, this type of attachment mechanisms is not 



2 Scientific Background 

30 

significant during the filtration process except the grain sand took some positively charged 

particles presence in tap water and this double layer lead into the attraction of quartz 

powder. Moreover, related to Bradford et al. (2002), since the size of Millisil is larger than 

the size of colloid, it can be predicted that the dominant removal mechanisms are by 

sedimentation and interception. 

Out of the van der Waals and electrostatic forces, there are some forces involved in the 

mechanism of attachment. Those forces are steric forces adherence, hydration (structural) 

forces and hydrophobic forces (Huisman and Wood, 1974; Elimelech and O'Melia, 1990b; 

Bradford et al., 2002; Binnie and Kimber, 2013). Interaction of two surfaces due to steric 

forces takes place when polymers are adsorbed onto the interfaces of interacting particles 

and surfaces (Elimelech and O'Melia, 1990b). 

Adhesion occur due to the formation of slimy material (zoogloea) during the ripening 

period by the bacteria and other microorganisms that are deposited on the filter surface 

(Huisman and Wood, 1974). This zoogloea produces a sticky gelatinous film which allows 

some particles from the raw water to adhere when they are brought into contact through 

one of the transport processes. 

According to Liang et al. (2007) hydration forces refer to solvation forces when the solvent 

is water. Hydration forces start to occur when the distance of two particles is closer than a 

few nanometers. Geometric constrain and attractive interaction between the particle and 

liquid molecules generate the solvation forces. These forces are influenced by the chemical 

and physical properties of the particles and the medium. 

Hydrophobic forces occur when two hydrophobic particles are attracted each other and 

some water molecules are trapped in narrow space between them. A hydrophobic particle 

does not have any hydrogen-bonding sites. In contrary, water molecules tend to form 

hydrogen-bonding clusters. In the case of trapped water molecules, formation of 

hydrogen-bonding clusters are restricted by the hydrophobic particles. Hence water 

molecules will migrate to the bulk water where the formation of hydrogen-bonding 

clusters is not restricted. As a consequence, an attractive force between the two 

hydrophobic particles rises allowing the two particles to attach one another (Liang et al., 

2007). 

Other factors controlling the kinetics of particles attachment are the hydraulic loading rate 

and the fixation to the grain surface (Bradford et al., 2002). The efficiency of collector also 

has an influence to the particles attachment. This efficiency is independent of the particle 

size but it is affected by diffusion, interception and gravitational sedimentation (Elimelech and OǯMelia, ͳͻͻͲa; Logan et al., 1995). 
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2.6 Settling Velocity of Suspended Solids and Stokes’ 
Law 

Characteristics of suspended solids influence the removal mechanism in the system, 

especially by sedimentation. Efficiency of sedimentation is affected by settling velocity of 

the particles. Camenen (2007) and Binnie and Kimber (2013) listed several parameters 

which influence the settling velocity such as shape, roundness, size and density of 

particles. When only gravitational force is participated, , a particle having greater density 

than water will be sedimented (Binnie and Kimber, 2013). At the beginning of the 

settlement, gravitational force accelerates the process before then its velocity becomes 

gradually constant due to the resistance of water. This settling velocity vs is given by 

(Rubey, 1933; Binnie and Kimber, 2013): 

௦ݒ  = [Ͷ ∙ ݃ ∙ ሺߩଵ − ሻߩ ∙ ͵ܦ ∙ ܥ ∙ ߩ ].ହ
 (23) 

where g is acceleration due to gravity; ρ1 is the density of particle; ρ is the density of 

water; D is the particle diameter; CD is the drag coefficient. 

Drag coefficient CD is influenced by the Re where it will be increased along with the 

decrease of Re (Camenen, 2007). In laminar flow, CD is influenced by the Re where it will 

be increased along with the decrease of Re. The relation between CD and Re is formulated 

as follows (Johnson et al., 1996): 

ܥ  = ʹͶܴ݁ (24) 

By replacing the Re in Equation 24 with the one from Equation 1 followed by combining 

the Equation 23 and 24, the settling velocity in laminar flow known as Stokesǯ law can be 
determined as follows (Rubey, 1933; Binnie and Kimber, 2013): 

௦ݒ  = ͳͳ8 ∙ ݃ ∙ ሺߩଵ − �ሻߩ ∙  ଶ (25)ܦ

Removal by sedimentation occurs if settling velocity is equal or greater than the surface 

loading rate or in this case is hydraulic loading rate (Huisman und Wood 1974). 

 

2.7 Operating Variables Influencing Filter Performance 

The fundamental purpose of designing a slow sand filtration is to have a filter which can 

maintain not only the high quality of treated water but also the operation period. 
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Performance of slow sand filtration depends on the operating variables. These operating 

variables are the matters of choice although some recommended values for them have 

been established (see Table 1). In the following sections, influence of each operating 

variables, i.e. grain size distribution, hydraulic loading rate, filter bed depth and 

supernatant layer, on the filter performance are presented. 

2.7.1 Grain Size Distribution 

Sand as the filter media is the critical part of slow sand filtration. Huisman and Wood 

(1974) and Rolland et al. (2009) agree that grain size distribution of media is one of the 

most important operating variables which ensure the effluent quality. The grain size 

distribution is represented by effective size d10 and uniformity coefficient Cu (Crites and 

Tchnobanoglous, 1998) (see also Section 2.3). In the water filtration studies, d10 is a basis 

to determine the diameter of filter column. The wall effect can be neglected as far as the 

ratio of the diameter of filter column to the d10 is higher than 50 (Lang et al., 1993). 

The d10 and Cu are very essential because both influence the internal characteristics of the 

filter media such as its porosity and hydraulic conductivity (Clark et al., 2012). These 

characteristics affect the filter performance, particularly to the impurities penetration to a 

depth where the surface scraping is not sufficient to clean the filter (Huisman and Wood, 

1974; Ellis and Aydin, 1995). 

According to the recommendation values of grain size distribution on the design criteria of 

slow sand filtration, fine media is preferably chosen but it does not necessarily need to be 

uniform. Huisman and Wood (1974) collected the data around Europe and found out that 

mostly the slow sand filters were designed with the d10 of 0.15-0.35 mm and Cu of below 3. 

Small value of d10 will ensure the good effluent quality (Visscher, 1990) and such degree of 

Cu is needed to provide regular pore sizes and sufficient porosity (Huisman and Wood, 

1974). 

In 1996, van der Hoek, J. P. et al. investigated the influence of grain size in the filter 

performance. They compared two media with d10 of 0.19 mm and 0.25 mm. The result 

showed that the smaller grain size produced a slightly better efficiency although the filter 

run time is shorter. The research conducted by Rolland et al. (2009) revealed similar 

conclusion as van der Hoek, J. P. et al.. Rolland et al. investigated the grain size effect to the 

hydraulic and biological behaviors. The fine sand with d10 of 0.33 mm and Cu of 2.57 and 

coarse sand with d10 of 0.8 and Cu of 3 were compared. Biological behaviors linked to the 

treatment efficiency showed that fine grain performed significantly better than the coarse 

sand. 

Interesting results were reported by Bellamy et al. (1985a). They investigated the 

influences of some operating variables on the slow sand filtration performance. One of the 

operating variables tested was the grain size distribution. It was found out that filter 

performance raises along with the decrease in d10. This observation was in agreement with 

the result of van der Hoek, J. P. et al.. However, the removal of standard plate count 
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bacteria reached 99.70 % for a filter with d10 of 0.62 mm while for finer media with d10 of 

0.29 mm achieved 99.90 %. The filter with coarse sand was also able to reach high 

removal efficiency of Giardia cysts and total coliform bacteria. From this result, it was 

concluded that the argument from Huisman and Wood, Visscher and Barrett et al. (see 

Table 4) to use fine sand cannot be considered as a general rule. 

In addition to the conclusion of Bellamy et al. (1985a) on d10, Muhammad et al. (1996) 

figured out that coarser sand up to 0.45 mm with Cu of 2 could provide satisfactory 

removal level of fecal coliform and total coliform. In regard to the turbidity, Muhammad et 

al. observed a removal efficiency of higher than 96 % for filters with d10 of 0.20 mm and 

0.45 mm. Confirming this result, Langenbach (2010) did not detect significant impact from 

the variation of d10 in the range of 0.25–0.8 mm with Cu of 1.6 on the total suspended solids 

removal.  

Related to the filter run time, Muhammad et al. (1996) and Elisson (2002) had the same 

results where the sand with lower d10 will have shorter filter run time compared to the 

coarser sand. It is because a slow sand filter with excessive fine grains lacks adequate pore 

sizes.  

Focusing on the influence of Cu, Di Bernardo and Escobar Rivera (1996) variated the Cu 

from 2.2 to 4.3. In terms of the percent removal of apparent colour, turbidity, total iron 

and manganese, faecal coliform and heterotropic bacteria colonies, it was found that 

higher Cu provides better effluent quality. Moreover, the filter run time will be longer 

although the particles may penetrate deeper in the filter with higher Cu. Confirming the 

result of Di Bernardo and Escobar Rivera particularly on the filter run time, Zipf et al. 

(2016) found out that lower Cu leads into shorter filtration career. However, a clear 

comparison could not be achieved because the two media had a different characteristic. 

One media had a d10 of 0.49 mm and a Cu of 2 while another media had a d10 of 0.17 and a 

Cu of 5. 

On the contrary to the results of Di Bernardo and Escobar Rivera and Zipf et al., 

Langenbach (2010) stated that higher Cu will lead into a shorter filter run time. It is 

because higher Cu causes a lower porosity of the filter bed. In ungraded sand, grain sizes 

are widely varied and the finer ones may fill in the interspaces between coarser grains 

(Elisson, 2002). Therefore, the filter will be easier to clog with a higher Cu. 

2.7.2 Hydraulic Loading Rate 

Preference on the hydraulic loading rate that will be applied in the filter operation greatly 

affects the surface area of slow sand filter required (Hazen, 1905). Equation 3 shows that 

hydraulic loading rate is inversely proportional to the surface area of filter. This means in 

order to fulfill the demand, if the filter is operated under a high hydraulic loading rate, a 

filter with smaller surface area is sufficient. However, high hydraulic loading rate does not 

only lead to a rapid clogging thus requires more often scraping, but also to a deeper 

penetration of particulate impurities (Hazen, 1905; Huisman and Wood, 1974). Values for 
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hydraulic loading rate recommended by Huisman and Wood (1974), Visscher (1990) and 

Barrett et al. (1991) are in the range of 0.04-0.40 m/h (see Table 1). These low hydraulic 

loading rates are recommended to ensure satisfactorily effluent quality.  

Di Bernardo and Escobar Rivera (1996) confirmed that slow sand filter performed better 

under low hydraulic loading rate. In their study, investigation on the influence of three 

hydraulic loading rates i.e. 0.10 m/h, 0.20 m/h and 0.25 m/h on the turbidity removal was 

conducted. It was proved that higher hydraulic loading rate does not only produce a worse 

effluent quality in terms of turbidity but also a shorter filter run time. 

The conclusion of Di Bernardo and Escobar Rivera (1996) on the removal efficiency and 

filter run time was approved by Tyagi et al. (2009). During their research, Tyagi et al. 

(2009) observed the development of head loss from a filter operated under three different 

hydraulic loading rates i.e. 0.14 m/h, 0.19 m/h and 0.26 m/h. The results showed that a 

rapid head loss development occurred in the filter with the hydraulic loading rate of 0.26 

m/h. This rapid rate of head loss increase caused shortest filter run time. Under the 

hydraulic loading rate of 0.26 m/h, the percentage of suspended solids and BOD removal 

of the filter was the lowest. 

Influence of the hydraulic loading rate on the slow sand filtration performance was also 

investigated by Bellamy et al. (1985b) particularly in term of effluent quality. Using three 

identical filter columns packed with d10 of 0.28 mm and Cu of 1.46, they compared three 

different hydraulic loading rates of 0.04 m/h, 0.12 m/h and 0.40 m/h. Percent removal of 

Giardia cysts, bacteria, turbidity and particles. was used to determine the effect of different 

hydraulic loading rate. Findings showed that slow sand filtration performance declined 

with the increase of hydraulic loading rate. Nevertheless, at the rate of 0.4 m/h removal of 

Giardia cysts and coliform bacteria were still above 99%.  

The results from Bellamy et al. (1985b) were strengthened by the findings of Muhammad 

et al. (1996). By testing three hydraulic loading rates of 0.10 m/h, 0.20 m/h and 0.30 m/h, 

Muhammad et al. (1996) found out that the bacteriological quality in the outlet does not 

decline significantly with the increase of hydraulic loading rate. The percent removal of 

turbidity and color declined considerably with increase of hydraulic loading rate but the 

effluent quality was still good. From this study, it can be concluded that a hydraulic loading 

rate which is higher than the conventional value of 0.10 m/h (Ellis and Wood, 1985), can 

be employed when the raw water quality is good, although the high hydraulic loading rate 

may cause frequent scraping. Cleasby (1991) as cited by Logsdon et al. (2002) 

recommended a good quality raw water for slow sand filtration as follows: 

a. The turbidity is low (< 5 NTU). 

b. Iron concentration is < 0.3 mg/L. 

c. Manganese concentration is < 0.05 mg/L. 

d. Algae bloom is very low and chlorophyll a is < 0.05 μg/L. 
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Langenbach (2010) rejected the conclusion of Muhammad et al. (1996) especially on the 

physical removal. Langenbach (2010) reported that hydraulic loading rate did not show a 

significant impact on the TSS removal. In the investigation, Langenbach (2010) employed 

six filter columns. These columns were filled up with sand which had varied d10 from 0.23 

mm to 0.82 mm and Cu ranged from 1.36 to 4.91. The test was divided into three phases. In 

phase I, hydraulic loading rate was set under 0.05 m/h then 0.10 m/h and 0.20 m/h for 

phase II and phase III respectively. Percent removal of TSS ranged from 70-84% and did 

not influence by the different hydraulic loading rates. The reason for this was because the 

mechanism on TSS removal is mechanical straining which takes place mostly in the filter 

cake. This means after the ripening period, grain size distribution and hydraulic loading 

rate do not play significant role anymore. 

During the filter operation, avoiding frequent rate changing is the most suitable way to 

enhance the slow sand filtration performance (Logsdon et al., 2002). In the case of 

declining rate, Visscher (1990) stated that it may cause significant fluctuation in the 

thickness of supernatant layer which later leads into larger filter area or higher filter box 

requirements to be able producing the same amount of output as in the constant rate. 

2.7.3 Sand Bed Depth 

Collins et al. (1991) reported that slow sand filtration performance is a function of the 

maturation degree and the depth of sand bed as filter media. According to the Section 

2.7.2, a high hydraulic loading rate may decline the performance of slow sand filtration. 

This decline can be diminished by increasing the thickness of sand bed. Determination of 

filter bed thickness is influenced by the removal mechanisms within the media and the 

consideration of re-sanding. Higher sand bed depth allows scraping and cleaning during 

maintenance process therefore delaying the re-sanding (Clark et al., 2012). 

Visscher (1990) suggests a minimum depth of 500-600 mm and a minimum of 600 mm 

should be taken if slow sand filtration is a single treatment. According to Huisman and 

Wood (1974), thickness of sand bed in slow sand filtration must be at least 700 mm due to 

the purification zones. Bacteria purification occurs usually in the top 300-400 mm of sand 

bed and below this layer lies the mineral oxidation zone with the thickness of 400-500 

mm. Deposition of suspended solids and colloidal matter mostly happens at the surface of 

sand bed which can be removed by scraping off 10-20 mm of the top layer (Huisman and 

Wood, 1974; Weber-Shirk and Dick, 1997).  

Datta and Chaudhuri (1991) found out that the inactivation of bacteria mostly occurs at 

the top layer of the bed between 100-250 mm from the total of 1000 mm depth. Ellis and 

Aydin (1995) investigated the removal of solids and particulate organic carbon through 

the be depth of 1200 mm. They observed that solids content and particulate organic 

carbon decreased rapidly to a depth of 300 mm. Both studies by Datta and Chaudhuri 

(1991) and Ellis and Aydin (1995) confirmed that the purification mechanisms take place 

mostly at the top of sand layer, ranging from one tenth to one fourth of the total bed depth. 
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Bellamy et al. (1985a) observed that by increasing the bed depth, the percentage of 

remaining coliforms decreases. However, by lowering the bed depth up to 480 mm does 

not seriously impair the filtration performance where 95% of coliform removals could still 

be achieved. Muhammad et al. (1996) approved the conclusion of Bellamy et al. by 

investigating the influence of sand thickness of 400 mm and 730 mm on the effectiveness 

of the filter. The result showed that the thickness of sand bed is not the key parameter for 

bacteria removal. Related to the turbidity and color removal, filter column with thicker 

bed depth performed slightly better. Overall, a sand bed with 400 mm can still provide a 

good quality of effluent. 

Nancy et al. (2014) confirmed the results of Bellamy et al. (1985a), Datta and Chaudhuri 

(1991), Ellis and Aydin (1995) and Muhammad et al. (1996) by testing three various bed 

depth of 500 mm, 700mm and 1000 mm respectively. Nancy et al. (2014) observed that 

turbidity and TSS value in the effluent decreased with the increase of bed depth. Efficiency 

of bacteria removal, however, did not significantly affected by the decrease of bed depth. 

Those facts prove that recommended design criteria for bed thickness are rather for the 

purpose of prolonging the re-sanding period than ensuring the filter performance. 

Filter bed depth may alter due to the compaction process during the filter operation 

(Kandra et al., 2014). By the compaction, porosity of the sand bed is smaller thus the 

hydraulic conductivity decreases. Process of compaction in sand bed means reducing the 

air fraction or available void and modifying the grains arrangement (Bardet, 1997). 

Modification of initial and final hydraulic conductivity can be related to compaction where 

it contributes to the reduction of filter capacity to transport water (Hatt et al., 2008).  

2.7.4 Supernatant Layer 

Purification mechanism in both inlet and outlet controlled systems is started from the 

supernatant layer where sedimentation may take place (van Dijk and Oomen, 1978; 

Sánchez et al., 2006). Supernatant layer above the filter media has two major function, 

which are (Huisman and Wood, 1974; van Dijk and Oomen, 1978; Visscher, 1990): 

a. providing a detention period for the raw water, during which some purification 

mechanisms occur such as sedimentation, particle agglomeration and oxidation; 

b. providing the head pressure for the water to flow through the sand bed. 

Level of supernatant layer is influenced by the control system (see Figure 4 and Figure 5) 

of the hydraulic loading rate. By using inlet controlled system, level of supernatant layer is 

higher along with the increase of head loss. Meanwhile, in the outlet controlled system, 

supernatant layer can be kept at constant level. 

According to the studies of van Dijk and Oomen (1978) and Abudi (2011), level of 

supernatant layer has some influences to the slow sand filtration performance. van Dijk 

and Oomen (1978) stated that to maintain constant water height under the normal 

operation condition is preferable. Under constant supernatant layer, the risk of disturbing 
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the filter cake is reduced, floating impurities can be taken through the fixed scum outlets 

and deep penetration of sunlight can be prevented. Sunlight penetration may stimulate 

plants growth in the sand surface (Huisman and Wood, 1974). Abudi (2011) observed that 

a constant water depth could prevent the change of bio zone and removal efficiency. The 

increase on the level of supernatant layer, up to higher than 500 mm, will lead into lower 

oxygen diffusion and thinner biological layer. Then, oxidation and metabolism of 

microorganisms in the biological zone may decrease. If this occurs, the layer will no longer 

be functioning and at the worst case, it might become an ineffective filter. 

In order to find out the influence of constant supernatant layer, Di Bernardo and Alcócer 

Carrasco, N. E. (1996) compared two filter columns. The first filter was operated with 

constant hydraulic loading rate and constant supernatant layer. The second filter was 

employed with decreasing supernatant layer. Decreasing level means that the water was 

allowed to flow from maximum level to the minimum level above the sand bed in the filter 

box. Analysis of performance was based on the effluent quality and filter run times. 

According to the findings, the impact of supernatant layer whether constant or decreasing 

on the filter performance was insignificant. 

 

 

 





 

39 

3 Research Questions and 

Objectives 

Previous findings in the influence of operating variables presented in Section 2.7 may 

imply that the recommended design criteria are rather conservative. Applying the 

recommended values does not necessarily ensure an excellent slow sand filtration 

performance. As a matter of choice, the decision on the design of slow sand filtration 

cannot be dependent on the recommended values (see Table 1) only. Unfortunately, most 

of the previous tests were conducted with different filter configurations. As an example 

the study of Zipf et al. (2016) who compared fine and coarse media with different values of 

Cu. This setting may complicate the conclusion of which operating variables of the design 

criteria dominate the effect to the slow sand filtration performance. Moreover, the 

influence of every operating variable on the removal mechanism is still rare to be found in 

the literature. Optimization and wider application of slow sand filtration technology may 

be restricted due to the existence of this gap. Therefore, the main purpose of this study 

was to optimize the design recommendation of slow sand filtration by understanding the 

influence of each operating variable independently on the suspended solids removal 

mechanisms. There were two reasons behind the selection of suspended solids removal as 

a focus. The first was because suspended solid is a significant pollutant in the water and it 

may affect the disinfection process (see Section 2.1). The second was because its physical 

removal is a fundamental mechanism in slow sand filtration (see Section 2.5). Along with 

the main purpose, an attention was also given to the method of increasing filter run time 

and hydraulic loading rate. 

In order to achieve the main purpose of this research, some specific objectives along with 

the research questions were defined as follows: 

1. to identify the effect of operating variables, specifically d10, Cu and high hydraulic 

loading rate on the removal efficiency. 

How is the influence of each operating variable on the removal efficiency of suspended 

solids? 

Is grain size distribution represented by d10 and Cu the dominant factor which influences 

the removal efficiency? 

Does coarse sand produce a low filtrate quality? 

Does high hydraulic loading rate deteriorate the removal efficiency significantly? 
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2. to find out the influence of d10, Cu, hydraulic loading rate and bed depth on the solids 

penetration and dominant removal mechanisms within the filter bed. 

How is the influence of each operating variable on the solids penetration in filter bed? 

How does each operating variable influence the dominant removal mechanism? 

How does suspended solids deposition influence the clogging period? 

3. to identify the clogging period by observing the development of hydraulic conductivity 

and head loss. 

How is the influence of each operating variable on the progressive head loss? 

4. to evaluate the method for prolonging the filter run time by adding protection layer. 

Is the method of Mälzer and Gimbel (2006) on the addition of protection layer a suitable 

approach to prolong the filter run time? 

5. to investigate the method for increasing the hydraulic loading rate. 

Are the recommended values of hydraulic loading rate plausible to be followed? 

The approach to achieve the objectives was by investigating the influence of each 

operating variable systematically. A systematic scientific investigation allows the 

operating variables to be investigated independently. The experimental approach used in 

this study is still limited in the literature making it as a great challenge in the study. 
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4 Materials and Methods 

4.1 Overview of Experimental Setup 

Due to the limited literature on the experimental approach, many parts of the 

experimental set-up were not standardized. Therefore, the experimental works were 

divided into three major phases i.e. pre-experiment, Phase I and Phase II. 

Pre-experiment phase was conducted to set up the materials and procedure. Grain size 

distribution of media, characteristic of media in regard to specific gravity, methods of filter 

construction, potential surrogate material and suitable operation mode related to the 

supernatant layer were determined in this phase. A part of the tests especially on the 

setup of varied grain size distribution represented by d10 and Cu provided several results 

which served as a presumptive basis of the filter performance in Phase I and Phase II. The 

trial of the experimental setup was very important because methods of filter run, 

hydraulic conductivity measurement, sampling and evaluation of filter performance for 

Phase I and Phase II were tested here. In addition, the influence of protection layer was 

also figured out. 

Phase I focused on the investigation of the influence of operating variables on the 

suspended solids removal. The operating variables that were tested consisted of d10 and Cu 

of media and high hydraulic loading rate. Filter columns were constructed from Plexiglass 

with the diameter of 125 mm and height of 1200 mm. A set of filter columns for the test of 

each operating variable was replicated two to three times in order to obtain the reliable 

data. In Phase I, the removal mechanisms of slow sand filtration remained into a black box 

because the evaluation of filter performance was only based on its ability to remove the 

suspended solids. Two important parameters used in the evaluation of filer performance 

were turbidity and TSS. Development of hydraulic conductivity and head loss was also 

observed to monitor the clogging period.  

In Phase II, the focus was divided into two essential parts. The first part was similar to the 

focus of Phase I, investigating the performance of filter especially on solids removal. The 

second part was on the determination of solids penetration in the filter bed to identify the 

removal mechanism. Observation on the penetration of solids is important because it also 

relates to the filter maintenance. Deeper solids penetration may lead to the failure of 

surface scraping. If the solids penetrate too deep in the filter bed, the risk of changing the 

whole filter media was higher. 

There were three independent variables tested in Phase II, i.e. d10, Cu and hydraulic loading 

rate. During the tests in this phase, filter columns with diameter of 60 mm were used. 

Analysis on the solids penetration was conducted adapting the method of Ellis and Aydin 

(1995). At the beginning, every 10 mm of filter bed was scraped carefully using a small 
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long scoop. Each sand sample was placed in an Erlenmeyer flask. Then each sand sample 

was diluted by adding 100 mL of distilled water. Every diluted sample was shaken for 40 

minutes using a flask shaker operated at 100 rpm. Afterwards, the diluted sample was 

rested for 5 minutes allowing the sand to settle down. The supernatant containing the 

suspended solids was decanted for the turbidity measurement. By investigating the solids 

penetration in the bed depth, influence of operating variables i.e. grain size distribution, 

hydraulic loading rate and bed depth on the dominant removal mechanisms (see Figure 

11) could be identified. Investigation on the adequacy of adding protection layer to 

prolong the filter run time was also conducted within the Phase II. Based on the analysis of 

solids penetration, the function of gravel layer above the sand bed could be verified. 

In the entire experimental phases, a total of 10 filter columns were built for the pre-

experiment phase. The tests in Phase I and Phase II involved in total 18 and 13 filter 

columns respectively. Table 3 presents the list of each test with the amount and diameter 

of filter columns. 

Table 3. Overview of constructed filter columns for each test 

Test 

Grain Size 

Distribution of 

Filter Media Porosity 

n 

Empirical Hydraulic Conductivity 

(m/s) 

d10 

(mm) 
Cu Beyer kB Hazen kH 

Kozeny-

Carman 

kKC 

Pre-experiment 

Supernatant Layer:       

Constant-Filter 1 0.26 2.5 0.33 9.16×10-4 6.76×10-4 2.14×10-4 

Constant-Filter 2 0.26 2.5 0.33 9.16×10-4 6.76×10-4 2.14×10-4 

Decreasing-Filter 1 0.26 2.5 0.33 9.16×10-4 6.76×10-4 2.14×10-4 

Decreasing-Filter 2 0.26 2.5 0.33 9.16×10-4 6.76×10-4 2.14×10-4 

Setup of d10:       

Filter 1 0.075 2.5 0.38 7.62×10-5 - 2.83×10-5 

Filter 2 0.50 2.5 0.35 3.39×10-3 2.80×10-3 9.59×10-4 

Setup of Cu:       

Filter 1 0.15 2.5 - 3.05×10-4 - - 

Filter 2 0.15 5 - 2.65×10-4 - - 
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Table 3. (continued) 

Test 

Grain Size 

Distribution of Filter 

Media Porosity 

n 

Empirical Hydraulic Conductivity 

(m/s) 

d10 (mm) Cu Beyer kB Hazen kH 

Kozeny-

Carman 

kKC 

Pre-experiment 

Protection Layer:       

WOPL Filter 0.20 1.74 - 5.79×10-4 - - 

WPL Filter 0.20 1.74 - 5.79×10-4 - - 

Phase I 

Solids Removal in 

Varied d10: 

      

Set 1       

Filter 1 0.075 2.5 0.42 7.62×10-5 - 3.86×10-5 

Filter 2 0.15 2.5 0.41 3.05×10-4 2.38×10-4 7.85×10-5 

Filter 3 0.26 2.5 0.36 9.16×10-4 7.90×10-4 2.81×10-4 

Filter 4 0.40 2.5 0.35 2.17×10-3 1.62×10-3 5.14×10-4 

Filter 5 0.50 2.5 0.34 3.39×10-3 2.62×10-3 8.56×10-4 

Set 2       

Filter 1 0.15 2.5 0.34 3.05×10-4 3.26×10-4 1.42×10-4 

Filter 2 0.26 2.5 0.33 9.16×10-4 6.71×10-4 2.11×10-4 

Filter 3 0.40 2.5 0.33 2.17×10-3 1.75×10-3 5.88×10-4 

Filter 4 0.50 2.5 0.32 3.39×10-3 2.37×10-3 7.52×10-4 

Solids Removal in 

Varied Cu: 

      

Set A       

Filter 1 0.26 2.5 0.32 9.16×10-4 6.30×10-4 1.90×10-4 

Filter 2 0.26 3 0.32 8.84×10-4 6.30×10-4 1.90×10-4 

Filter 3 0.26 5 0.32 7.96×10-4 6.19×10-4 1.91×10-4 
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Table 3. (continued) 

Test 

Grain Size 

Distribution of Filter 

Media Porosity 

n 

Empirical Hydraulic Conductivity 

(m/s) 

d10 (mm) Cu Beyer kB Hazen kH 

Kozeny-

Carman 

kKC 

Phase I 

Set B       

Filter 1 0.26 2.5 0.32 9.16×10-4 6.30×10-4 1.90×10-4 

Filter 2 0.26 3 0.32 8.84×10-4 6.30×10-4 1.90×10-4 

Filter 3 0.26 5 0.31 7.96×10-4 5.81×10-4 1.86×10-4 

Set C       

Filter 1 0.26 2.5 0.32 9.16×10-4 6.30×10-4 1.91×10-4 

Filter 2 0.26 3 0.32 8.84×10-4 6.21×10-4 1.68×10-4 

Filter 3 0.26 5 0.29 7.96×10-4 5.31×10-4 1.47×10-4 

Solids Removal in 

High Hydraulic 

Loading Rate*: 

      

Set A       

Filter 1 0.26 2.5 0.32 9.16×10-4 6.30×10-4 1.90×10-4 

Filter 2 0.26 3 0.32 8.84×10-4 6.30×10-4 1.90×10-4 

Filter 3 0.26 5 0.32 7.96×10-4 6.19×10-4 1.91×10-4 

Set B       

Filter 1 0.26 2.5 0.32 9.16×10-4 6.30×10-4 1.90×10-4 

Filter 2 0.26 3 0.32 8.84×10-4 6.30×10-4 1.90×10-4 

Filter 3 0.26 5 0.31 7.96×10-4 5.81×10-4 1.86×10-4 

Set C       

Filter 1 0.26 2.5 0.32 9.16×10-4 6.30×10-4 1.91×10-4 

Filter 2 0.26 3 0.32 8.84×10-4 6.21×10-4 1.68×10-4 

Filter 3 0.26 5 0.29 7.96×10-4 5.31×10-4 1.47×10-4 
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Table 3. (continued) 

Test 

Grain Size 

Distribution of Filter 

Media Porosity 

n 

Empirical Hydraulic Conductivity 

(m/s) 

d10 (mm) Cu Beyer kB Hazen kH 

Kozeny-

Carman 

kKC 

Phase II 

Solids Removal 

and Penetration in 

Varied d10: 

      

Filter 1 0.075 2.5 0.33 7.62×10-5 - 1.84×10-5 

Filter 2 0.26 2.5 0.35 9.16×10-4 7.49×10-4 2.55×10-4 

Filter 3 0.50 2.5 0.34 3.39×10-3 2.58×10-3 8.34×10-4 

Filter 4 0.70 2.5 0.36 - 5.73×10-3 2.04×10-3 

Filter 5 0.90 2.5 0.35 - 9.05×10-3 3.10×10-3 

Solids Removal 

and Penetration in 

Varied Cu: 

      

Filter 1 0.26 2.5 0.37 9.16×10-4 8.30×10-4 3.07×10-4 

Filter 2 0.26 3 0.33 8.84×10-4 6.76×10-4 2.14×10-4 

Filter 3 0.26 7 0.31 7.38×10-4 6.09×10-4 1.81×10-4 

Solids Removal 

and Penetration in 

Varied Hydraulic 

Loading Rate*: 

      

Filter 1-0.08 m/h 0.26 2.5 0.33 9.16×10-4 6.72×10-4 2.12×10-4 

Filter 2-0.20 m/h 0.26 2.5 0.37 9.16×10-4 8.30×10-4 3.07×10-4 

Filter 3-0.80 m/h 0.26 2.5 0.34 9.16×10-4 7.33×10-4 2.45×10-4 

Increasing the 

Filter Run Time: 
      

Filter 1-WOPL 0.26 2.5 0.37 9.16×10-4 8.30×10-4 3.07×10-4 

Filter 2-WPL 0.26 2.5 0.34 9.16×10-4 7.18×10-4 2.37×10-4 

*The test used the same filter columns as in the test of solids removal in varied Cu 
**One filter column is from the test of solids removal and penetration in varied Cu 
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4.2 Pre-Experiment Phase 

4.2.1 Filter Media and Determination of Specific Gravity 

Quartz sand was the only type of sands tested in the entire experimental phases. The 

quartz sand was supplied by two companies from Germany, Gebrüder Willersinn GmbH in 

Ludwigshafen and Friedrich Quarzsandwerke in Rheinhafen. The first supplier also 

provided the gravels that were used for the supporting and protection layer. The gravel 

was washed and dried in the laboratory and sieved with two sieve openings. The objective 

of sieving was to separate the gravel size into coarse (>6.3 mm) and fine (2-6.3 mm) 

fractions. By using the separate gravel size, construction of supporting layer could be 

stratified where the coarse gravel was placed under the finer one. This grading allowed 

the supporting layer to be more stable to hold up the sand bed. The fine gravel was also 

used as a protection layer, which was installed above the sand bed, for several filter 

columns. 

Fulfilling the requirement of systematic investigation, grain size distribution represented 

by d10 and Cu has to be determined so that at the end the configurations of filter columns 

can be compared equally. As an example, when the purpose of the test was to identify the 

influence of the media size on the slow sand filtration performance, then the grain size 

distributions of media was varied in d10 while the Cu was maintained the same (see Figure 

13). On the contrary, if the focus was to investigate the influence of the range of media size 

on the slow sand filtration performance, then the grain size distributions of media was 

varied in Cu while the d10 was maintained the same (see Figure 14). From the grain size 

distribution graph, the y-axis shows the percentage of finer grain size by weight and the x-

axis shows the grain size. 

 

Figure 13. Comparison of grain size distributions with different d10 but similar in Cu of 2.5 
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Figure 14. Comparison of grain size distributions with similar d10 of 0.26 mm but different Cu  

A calculation involving the size of sieve openings has been made so that the desired grain 

size distribution can be obtained. Since both suppliers were not able to provide the sand 

with desired grain size distribution as presented in Table 4, they had to be prepared in the 

laboratory. At the beginning, sand from the supplier should be separated based on the 

grain size using a sieving machine. Sieving was conducted under the dry method using a 

stack of sieves with seven to eight different size openings: 3 mm, 2 mm, 1 mm, 0.5 mm, 

0.25 mm, 0.125 mm, 0.063 mm and 0 cm. After that, the sand was remixed based on the 

grain composition in Table 4. The mixing was done manually using a bucket and a scoop 

due to the small amount of mass per mixture. A sample of around 250 g of sand was then 

taken from the new mixture for a sieving analysis. This sieving analysis was to ensure that 

the sand is well-mixed. 
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Table 4. Composition of sand fraction of filter media 

d10 

(mm) 
Cu 

Composition of sand size (%) 

2-3 

mm 

1-2 

mm 

0.5-1 

mm 

0.25-

0.5 mm 

0.125-

0.250 

mm 

0.063-

0.125 

mm 

0-

0.063 

mm 

0.075 2.5 0.00 0.50 9.92 9.92 47.37 29.79 2.50 

0.15 2.5 0.00 2.45 17.90 47.35 30.26 1.01 1.03 

0.15 5 0.00 32.73 17.53 34.17 7.56 7.51 0.50 

0.26 2.5 0.00 5.05 56.36 30.33 6.37 1.21 0.68 

0.26 3 0.00 25.48 40.87 25.11 3.36 4.50 0.68 

0.26 5 0.00 64.39 7.19 19.53 3.71 4.50 0.68 

0.26 7 36.25 27.88 10.97 15.83 5.82 2.57 0.68 

0.30 2.5 0.00 20.38 47.28 30.32 0.33 1.01 0.68 

0.40 2.5 0.00 40.48 45.72 12.25 0.21 1.01 0.33 

0.50 2.5 0.00 59.97 30.29 8.54 0.21 0.94 0.05 

0.70 2.5 30.73 49.12 19.90 0.25 0.00 0.00 0.00 

0.90 2.5 56.38 31.88 11.49 0.25 0.00 0.00 0.00 

 

One of the characteristics of the sand, specific gravity (see Section 2.3), was also 

determined in the laboratory. Value of void ratio e (see Equation 11) and porosity n 

depend on the specific gravity. In this study, the specific gravity was determined following 

the ASTM D 854 standard (Bardet, 1997). The materials and equipment needed for 

specific gravity test were dry sand sample, distilled water, 250 mL volumetric flask, 

balance (accuracy 0.01 g), aluminum dish and oven. 

Test procedure was conducted under the room temperature. Four dry sand samples were 

prepared to ensure a reliable result. The samples were placed in a dish and then spiked 

with distilled water to make a sand-water mixture. Four empty aluminum dishes and four 

empty flasks were weighed. The mixture was poured into the flask and agitated gently to 

remove the air. Distilled water was added carefully until the flask was filled. Next step was 

to measure the mass of the filled flask. After that, the flask was emptied and the sand-

water mixture was poured into the aluminum dish. Samples were then dried in the oven 

for 24 hours. 
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Mass of dried sand then weighed and the specific gravity was calculated using Equation 26 

as follows: 

௦ܩ  = ௦ܹ௦ܹ + �ܹ௪ − �ܹ௦ (26) 

where Gs is the specific gravity, Ws the mass of dry sand, Wfw the mass of flask filled with 

distilled water only and Wfs the mass of flask filled with sand-water mixture. 

Characteristics each variable in the tests and the specific gravity are presented in Table 5. 

Table 5. Specific gravity test on quartz sand 

Description Sample 1 Sample 2 Sample 3 Sample 4 

Mass of flask (g) 100.32 94.14 98.06 88.85 

Mass of aluminium dish (g) 5.96 5.98 5.55 5.56 

Mass of flask and water(g) 349.75 343.53 347.38 338.10 

Mass of flask, sand and water (g) 424.21 423.85 409.37 399.94 

Mass of sand and aluminium dish (g) 125.74 136.05 105.36 105.46 

Mass of dried sand (g) 119.78 130.07 99.81 99.90 

Specific gravity Gs 2.64 2.61 2.64 2.62 

Average specific gravity Gs 2.63 

 

4.2.2 Method of Filter Column Construction 

Construction of filter columns in the pre-experiment phase and Phase I was using free 

falling method while in Phase II, water pluviation method was used. In the free falling 

method, the dry sand was poured gradually and carefully into an empty column with the 

help of a funnel. During the sand pouring, the funnel was rotated horizontally allowing the 

sand to be distributed evenly in the entire filter area. After the sand was loaded into the 

column up to the desired height, the water was introduced slowly in the up-flow direction 

to avoid short circuiting as seen in Figure 15. Another reason for the up-flow direction was 

to reduce the air bubbles that were trapped within the filter bed. In the free falling 

process, compaction of sand was only due to the gravitational force. One disadvantage of 

this method was the formation of fine grain layers because of the rapid settlement of 

coarser grains. At the top of the sand surface, there was also this fine grain layer. The 

existence of this layer might lead into faster clogging period because mostly removal in 

slow sand filtration occurs at the top of sand bed. 
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The difference between the water pluviation method and the free falling method laid only 

on the introduction of water. Prior to the sand loading, water was filled into the column 

carefully under the up-flow direction until certain height. The water level should not be 

too high to avoid the overflow due to the sand loading. After that, the process was the 

same as in the free falling method where the sand was gradually loaded to the filter. The 

loading was done carefully with a funnel to minimize the development of air bubbles when 

the sand entering the water layer. Settlement of sand was also because of gravity but the 

velocity is slower than from the free falling method due to the existence of water inside 

the column, however, similar disadvantage on the formation of fine grain layers was still 

found. An advantage of this method was that the sand grains were arranged inside the 

water medium therefore, the interspaces between grains were filled with water. As a 

consequence, the air bubble development could be reduced. 

 

Figure 15. Short circuiting in the filter column 

4.2.3 Selection of Surrogate Material and Turbidity Correlation 

In order to maintain a constant quality of influent, artificial raw water created from a 

mixture of solid material and tap water was used. In this study, the turbidity is used as the 

controlled parameter to describe the quality of artificial raw water. For this purpose, the 

turbidity should change linearly as a function of suspended solid concentration. At the 

beginning, four materials i.e. natural soil (Heilerde), silica powder (Millisil W12), silica gel 

and rock powder were evaluated in order to select the most suitable surrogate material to 

represent suspended solids in the artificial raw water. 
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Prior to the creation of suspension, natural soil, silica powder, silica gel and rock powder 

were sieved using 63 μm sieve. Each type of solids was then mixed with tap water under 

varied concentration. Mixing process was done using a magnetic stirrer for 15 minutes as 

seen in Figure 16. After that, the suspension was decanted and the turbidity was measured 

using the Hach Lange 2100Q Portable Turbidimeter. Allowance for the turbidity 

measurement was set for ± 10%. In order to investigate the correlation between the 

turbidity and the suspended solids concentration, four different concentrations were 

tested (Table 6). 

 

Figure 16. Artificial raw water created from a mixture of natural soil and tap water under varied 

concentration. The most transparent water has the lowest concentration of suspended solids and 

turbidity value. 

Table 6. Turbidity correlation according to the type of suspended solids 

Suspended solid 

concentration 

(mg/L) 

Turbidity by 

natural soil 

(NTU) 

Turbidity by 

silica 

powder 

(NTU) 

Turbidity by 

silica gel 

(NTU) 

Turbidity by 

rock powder 

(NTU) 

50 4.16 21.40 1.61 23.06 

250 32.09 121.33 2.45 104.64 

500 67.00 252.00 3.50 222.86 

1000 153.33 581.00 3.15 956.30 

 

The values of measured turbidity are plotted in Figure 17. According to the regression 

analysis, relationship between suspended solids concentration and turbidity for natural 



4 Materials and Methods 

52 

soil and silica powder was strongly linear. However, the analysis for silica gel and rock 

powder showed that the relationship between suspended solids and turbidity was not 

linear. Concentration of silica gel in the liquid did not affect the turbidity values. 

Meanwhile for rock powder, exponential regression fit more properly than linear 

regression. Based on this result, silica gel and rock powder were omitted as potential 

surrogate material in the raw water. 

 

Figure 17. Relationship between turbidity and suspended solids concentration for natural soil, silica 

powder, silica gel and rock powder 

At the beginning, natural soil was chosen as the surrogate material solely because the 

standard error of natural soil in the regression analysis was lower than the silica powder. 

However, after some tests in the pre-experiment phase and the test of influence of the d10 

in Phase I, it was observed that the settling velocity of natural soil was quite fast. Then the 

settling velocity of the natural soil and the second potential surrogate material, silica 

powder, was compared. The approach was by determining the grain size distribution of 

both materials followed by the calculation of the settling velocity using Equation 25. 

Measurement of particle size was conducted using EyeTech Particle Size and Shape 

Analyzer. 

Output from the particle size measurement indicated that silica powder has a larger fine 

fraction than the natural soil (see Figure 17). Larger content of fine fraction in the silica 

powder causes lower settling velocity of particle compared to the natural soil. Comparison 

of settling velocity for both materials based on the value of d10, d50 and d90 is shown in 

Table 7. Based on the settling velocity of natural soil which was higher than the applied 

hydraulic loading rate (see Section 2.7.2), sedimentation was the only mechanism that 

worked for the complete removal (see Section 2.6). Therefore, for the rest of the tests in 

Phase I and Phase II, silica powder was used as surrogate material to create the artificial 

raw water. 
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Figure 18. Grain size distribution of natural soil and silica powder 

Table 7. Settling velocity (20 °C) of natural soil and silica powder according to d10, d50 and d90 of 

particles 

Parameter 

Ø ȋμmȌ 
Settling Velocity 

(m/h) 

Natural 

soil 

Silica 

powder 

Natural 

soil 

Silica 

powder 

d10 16.11 9.18 0.84 0.27 

d50 34.85 26.08 3.93 2.20 

d90 54.33 51.58 9.55 8.61 

 

4.2.4 Selection of Suitable Supernatant Level 

Focus on this test was to select the suitable supernatant level for the filter operation 

during the experimental phases. Influence of constant and decreasing supernatant levels 

on the slow sand filtration performance was investigated. The investigation was 

performed with distilled water as the inlet in order to minimize the effect of particle 

addition on the alteration of the hydraulic loading rates. For the test, four filter columns 

were constructed with the same grain size distribution of media, d10 of 0.26 mm and Cu of 

2.5. All filter columns consisted of 30 mm supporting layer, 200 mm filter bed and 20 mm 

protection layer. Two columns were operated under constant head i.e. Constant-Filter 1 

and Constant-Filter 2. The other two columns were operated under decreasing head i.e. 

Decreasing-Filter 1 and Decreasing-Filter 2. 
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Columns with constant head mode were operated with a constant Δh (Figure 19a). In 

order to maintain the constant supernatant level, the principal of communicating vessel 

was adopted. In the decreasing head mode, the supernatant level was allowed to drop 

from the maximum level to the minimum level (Figure 19b). Once the supernatant reached 

the minimum level, the operation was stopped and restarted after the supernatant was in 

the maximum level. 

 

            (a)              (b)  

Figure 19. Scheme of filter columns operated under constant and decreasing head (not drawn to 

scale) 

Evaluation on the filter behavior under constant and decreasing supernatant levels was 

based on the development of hydraulic loading rate. In the filter columns operated under 

constant supernatant layer, the trend of hydraulic loading rate was constant as illustrated 

in Figure 20. Meanwhile, in the decreasing mode, average hydraulic loading rates were 

likely to decline from the initial value. Considering that there was no addition of 

suspended solids to the filter bed which might lead into clogging, the behavior of filter 

columns with decreasing supernatant level was quite distinctive. According to the 

previous literatures, this decrease in hydraulic conductivity might be as a result of 

compaction in the filter bed during the operation which altered its capacity to transport 

water (Bardet, 1997; Hatt et al., 2008). This changing of the capacity might occur not only 

due to the frequent openings and closings of the valve but also inconsistent hydraulic 

loading rate. 

min level 

max level 

Δh 

Inlet 

Outlet 

Supernatant layer 

Protection layer 

Supporting layer 

Sand layer 
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Figure 20. Development of hydraulic loading rate in the filter columns operated under constant and 

decreasing supernatant layer 

Considering the behavior of hydraulic loading rate, constant supernatant level was chosen 

to be the most suitable operation mode for the experimental phases. It was expected by 

operating the filter columns under constant supernatant layer, no effect such in the 

decreasing mode might occur during the experiments. Another consideration was that the 

supernatant layer could act as a damper so that every time the artificial raw water was fed 

to the column, the sand bed surface was not disturbed. Maintaining the condition of sand 

bed surface is important due to the development of filter cake that occurs on the filter 

surface. 

4.2.5 Setup of Filter Columns with Variation in d10 

Trial on the experimental setup for varied d10 was conducted by comparing fine and coarse 

grain size distributions of media. Fine and coarse media were represented by d10 of 0.075 

mm and 0.50 mm respectively with the same Cu of 2.5. Values of d10 that were tested in this 

phase were not in the range of recommended values 0.15-0.35 mm (see Table 1). This 

condition was intended to investigate the performance of filter under the extreme media 

size. Each filter column consisted of three layers i.e. 50 mm supporting layer, 200 mm sand 

layer and 20 mm protection layer (see Figure 19). Gravel size used for supporting and 

protection layers was 2-6.3 mm. Outlet position was always above the protection layer to 

ensure that the sand layer was always potentially saturated. 
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After the filter columns were constructed, its characteristics related to the values of 

porosity, specific surface area and initial hydraulic conductivity was determined. In the 

whole tests of this study, the hydraulic conductivity measurement was always conducted 

with the constant head method. The main reason was because the flow of water through 

the filter media was too rapid to be measured with falling head test. In order to identify 

the clogging pattern, hydraulic conductivity measurements were carried out for at least 

two times i.e. initial one when the filter bed was still clean and final one when the filter has 

been loaded with solids which come from the raw water. The design of filter column did 

not allow the hydraulic conductivity measurement for the filter bed only because the 

water flowed through the whole layers including the protection and supporting layer. 

However, the hydraulic conductivity is significantly influenced by the finest grain within 

the system. Therefore, it was assumed that the presence of protection and supporting 

layer had an insignificant effect to the degree of hydraulic conductivity of filter column. 

Based on the value of initial hydraulic conductivity, the initial hydraulic loading rate could 

be set-up by adjusting the Δh. Initial hydraulic loading rate for both columns in this test 

was set at 0.18±0.05 m/h. 

Artificial raw water was created by mixing the natural soil and tap water under the 

concentration of 1000 mg/L or 250±25 NTU. Intermittent mode was selected as the 

method of filter operation for the whole experimental phases. The basic reason was 

because with the intermittent mode, the amount of water filtered and the mass of solids 

could be controlled easier which was very important for conducting the systematic 

investigation. During the filter operation, a volume of 300 mL was fed to the column for 

each filter run. Performance of filer columns was evaluated based not only on the 

comparison of inlet and outlet water turbidity but also on the filter behavior in regard to 

the development of hydraulic conductivity and head loss. In order to observe the clogging 

potential, hydraulic conductivity was measured after every three feedings. For the head 

loss, the values of each column would be comparable by converting them into normalized 

head loss at certain hydraulic loading rate. In this study, the normalized head loss was 

calculated using the formula from Sugimoto (2014) at the hydraulic loading rate of 0.20 

m/h (see Equation 27). 

=ሺܿ݉ሻ ݊�ݐ�ݖ�݈�݉ݎ݊ ݏݏ݈ ݀�݁ܪ  ቀ ݁ݐ�ݎ ݓ݈ܨሺܿ݉ሻ ݏݏ݈ ݀�݁ܪ ℎ݉ ቁ × ቀ ݁ݐ�ݎ ݓ݈݂ ݀݁ݖ�݈�݉ݎ� ℎ݉ ቁ  (27) 

 
  

4.2.6 Setup of Filter Columns with Variation in Cu 

Experimental setup for varied Cu was also conducted in this pre-experiment phase. Two 

filter columns i.e. Cu 2.5 and Cu 5 were constructed for this test. Both filter columns had the 
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same d10 of 0.15 mm. Configuration of filter columns was as follows: 30 mm of supporting 

layer; 250 mm of sand layer; and 20 mm of protection layer. Initial hydraulic conductivity 

test was conducted to set-up the hydraulic loading rate of 0.2±0.05 m/h. Natural soil was 

used as a surrogate material to create the artificial raw water with a concentration of 1000 

mg/L with turbidity of 250±25 NTU. The feeding rate for each filter column was 500 

mL/day. Evaluation of filter performance was based on the turbidity removal and 

development of relative hydraulic conductivity and normalized head loss at 0.20 m/h. The 

calculation of the relative hydraulic conductivity Δk was done by adopting the method of 

Schwarz (2004) as follow: 

 ∆݇ = ݇ሺ�ሻ݇ሺሻ  (28) 

where k(m) is the hydraulic conductivity at solids mass m (m/s) and k(0) is the initial 

hydraulic conductivity (m/s). 

4.2.7 Influence of Protection Layer on Suspended Solids Removal 

The influence of the protection layer on the filter performance on turbidity removal was 

studied by constructing two filter columns i.e. WOPL1-Filter and WPL2-Filter. Filter media 

that was used for this test was directly taken from the package provided by the supplier 

without any modification. The grain size distribution of the sand was represented by d10 of 

0.20 mm and Cu of 1.74. Both filter columns consisted of 30 mm supporting layer and 300 

mm sand layer. One filter was added with 20 mm protection layer. 

Initial hydraulic conductivity was determined after the filter column construction and a 

hydraulic loading rate of 0.6±0.15 m/h was set. Silica powder was used as the surrogate 

material to create the artificial raw water (220 mg/L and 100±10 NTU). In every feeding, 

2000 mL of artificial raw water was filtered. At the end of filter operation, final hydraulic 

conductivity was also measured so that the effect of solids addition to the filter capacity 

could be observed. The outlet turbidity from both filter columns was also evaluated by 

conducting One Way Analysis of Varian (ANOVA) test to find out whether the performance 

of both filter was equal. The ANOVA test basically uses the variance of the sample means 

to indicate whether they are difference or not (Schumacker and Tomek, 2013). The sample 

means are homogeneous if they are similar. On the other hand, if the differences are quite 

large then the sample means are heterogeneous. In this study the ANOA test was 

performed by using the data analysis from Microsoft Excel. At the end of the calculation, 

the results will show the p-value. This p-value will be compared with the significance 

factor α. If the p-value is higher than the α then it can be concluded that the sample means 

are not significantly different. 

                                                                    
1 WOPL = without protection layer 
2 WPL = with protection layer 
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4.3 Phase I 

4.3.1 Large Scale Filter Columns with Variation in d10 

The experimental setup of this first test in Phase I consisted of two similar sets, i.e. Set 1 

and Set 2, of filter columns. Set 1 consisted of five filter columns with five different grain 

size distributions which varied in d10 i.e. d10 0.075 mm, d10 0.15 mm, d10 0.26 mm, d10 0.40 

mm and d10 0.50 mm (see Figure 21). Set 2 consisted of four filter columns with the same 

grain size distributions as in Set 1 but without the d10 0.075 mm. Three values of d10 

represented the recommended values (see Table 1) while d10 of 0.075 mm and 0.50 mm 

represented the extreme fine and coarse media respectively. The heterogeneity of sand 

fraction was represented by Cu of 2.5.  

 

Figure 21. Phase I - Construction of filter columns in Set 1  

The principal procedures tested in Section 4.2.5 such as the operation mode, sampling and 

methods of parameters measurement were adopted for this investigation. Operating 

variables such as bed depth and hydraulic loading rate of both sets were maintained equal. 

Configuration of each filter column consisted of 100 mm stratified gravel as supporting 

layer (see Section 4.2.1), 500 mm sand layer and 200 mm protection layer (see Figure 22). 

The characteristic of each filter column was identified from the values of void ratio and 

porosity, specific surface area and hydraulic conductivity. The hydraulic loading rate was 

set at 0.20±0.05 m/h.  
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Filter columns were fed up with artificial raw water created from a mixture of natural soil 

and tap water. Concentration of the artificial raw water was 380 mg/L and the turbidity 

was 100±10 NTU. In every filter run, a volume of 3000 mL was fed to the column. Both 

sets of filter columns were under operation for 6 weeks. At the beginning of each week, 

7000 mL of artificial raw water were added to the column in order to create the 

supernatant layer (Δh). At the end of the week, the hydraulic conductivity was measured 

to observe its development. After the measurement of hydraulic conductivity, the water 

was allowed to drop until 2 cm above the protection layer to ensure that the sand bed was 

potentially saturated. Filtrate samples were taken two times per filter run followed by the 

measurement of turbidity and particle size. One Way ANOVA test was carried out to 

evaluate the difference of outlet turbidity from each filter column. Another parameter 

used to evaluate the filter performance was the development of relative hydraulic 

conductivity and normalized head loss at 0.2 m/h. 
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Figure 22. Phase I - Sketch of large filter column (not drawn to scale)

4.3.2 Large Scale Filter Columns with Variation in Cu 

Three similar sets of filter columns i.e. Set A, Set B and Set C, were constructed for this 

investigation. Every set consisted of three filter columns with different grain size 

distribution which varied in the Cu. The filter columns with narrow grain size distribution 

were represented by Cu 2.5 and Cu 3 while the filter column with wide grain size 

distribution was represented by Cu 5. The Cu of 2.5 and 3 were tested to validate the 
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recommended values (see Table 1) while the Cu of 5 was used to investigate how a wide 

grain size distribution affects the filter performance. Other operating variables such as d10 

(0.26 mm), bed depth, operation mode and hydraulic loading rate were controlled to be 

equal for all filter columns. Configuration of the filter columns was exactly the same to the 

previous experiment on d10 (see Section 4.3.1, Figure 22). After the filter column 

construction, physical properties of filter represented by void ratio, porosity and hydraulic 

conductivity were determined. Hydraulic loading rate was set up at 0.2±0.02 m/h for each 

filter column. 

Artificial raw water in this test was created by mixing tap water and silica powder. 

Concentration of suspended solids in the inlet was 220 mg/L and the turbidity was 

100±10 NTU. At the beginning of every week, head drop for each column was created 

using 2500 mL of artificial raw water. Then, for the next five days each filter column was 

fed with a volume of 2500 mL every day. All filter columns were operated intermittently 

with constant supernatant layer during seven weeks. Measurement of hydraulic 

conductivity was conducted by the end of every week. After the hydraulic conductivity 

measurement, the supernatant layer was allowed to drop until zero pressure. 

Assessment of the slow sand filtration performance was based on some parameters such 

as, turbidity, TSS and particle size. Determination of TSS was done by the gravimetric 

method as described in Section 2.1. As the focus of this research experiment was to find 

out the influence of Cu on the slow sand filtration performance, the capability of each filter 

on removing the turbidity and TSS was compared and analyzed using the ANOVA test. The statistical analyses were conducted at ͻͷ% level of confidence ȋα = Ͳ.ͲͷȌ. Development of 
relative hydraulic conductivity and normalized head loss at 0.20 m/h were also observed 

during the study. 

4.3.3 Large Scale Filter Columns with Variation in Cu Operated Under 

High Hydraulic Loading Rate 

In this test, three sets of filter columns i.e. Set A, Set B and Set C from the previous test on 

varied Cu were used. Hence, the grain size distribution of filter media was the same but the 

initial hydraulic conductivity was different from the previous test. It is because certain 

mass of solids was already deposited in the filter bed and affecting the filter capacity. The 

test was conducted for eight weeks long. The filter columns were operated using the same 

procedure as in the previous test described in Section 4.3.2 except the total volume of 

artificial raw water loaded to create the supernatant layer at the beginning of each week 

and the hydraulic loading rate (0.6±0.15 m/h). Parameters measured during the test were 

turbidity, TSS and particle size. Development of turbidity at the outlet, relative hydraulic 

conductivity and head loss was also evaluated. Gradual change in the relative hydraulic 

conductivity during the filter run under 0.2±0.05 m/h and 0.6±0.15 m/h is also presented 

in the result. 
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4.4 Phase II 

4.4.1 Small Scale Filter Columns with Variation d10  

The systematic investigation on the influence of d10 was conducted using five filter 

columns varied in d10 i.e. d10 0.075 mm, d10 0.26 mm, d10 0.50 mm, d10 0.70 mm and d10 0.90 

mm. Those five different grain size distributions had the same Cu of 2.5. The first three d10 

values were adopted from the large-scale test (see Section 4.3.1) and the two other values 

were used to study the influence of the extreme condition on the filter performance. Filter 

columns were constructed without protection layer as illustrated in Figure 23. Filter 

construction was done using the water pluviation method.  

 

Figure 23. Phase II - Sketch of small filter column without protection layer (not drawn to scale) 

Physical characteristic of columns such as the void ratio and porosity, hydraulic 

conductivity, and specific surface area was determined after the construction. After the 

initial hydraulic conductivity was measured, an initial hydraulic loading rate of 0.45±0.10 

m/h was established. During the filter operation, the height of supernatant layer and 

outlet position was maintained constant. Consequently, hydraulic loading rate decreased 

by the deposition of solids in the sand bed. By allowing the hydraulic loading rate to 

decrease, clogging pattern of every column can be observed. Feeding of columns was done 

at the rate of 1000 mL/day. The artificial raw water was created from tap water and silica 

powder (45±5 NTU, 110 mg/L). The experiments were performed for seven weeks.
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Slow sand filtration performance was evaluated by analyzing several parameters i.e. 

turbidity, TSS, particle size distribution of the outlet and development of relative hydraulic 

conductivity and normalized head loss at 0.20 m/h.  

In this test, after the turbidity value was determined, the sample in the cuvette was poured 

back to the diluted sample in the Erlenmeyer flask. This sample was then dried for 24 

hours in the oven. The dry sample was weighed and sieved with a sieve opening of 0.063 

mm. Mass of sand sample >0.063 mm was measured. The portion of fine fraction <0.063 

mm was calculated based on the percentage of sand composition in Table 4. Mass of 

retained suspended solids was estimated by subtracting the total mass of sand sample to 

the mass of sand fraction. According to this analysis, the percent surface removal by filter 

cake formation and straining could be calculated. 

4.4.2 Small Scale Filter Columns with Variation in Cu 

In the investigation of the influence of Cu on the removal and penetration of solids, three 

filter columns varied in Cu, i.e. Cu 2.5, Cu 3 and Cu 7 were constructed. The d10 of all columns 

was the same that is 0.26 mm. Two Cu values, 2.5 and 3, were taken from the large scale 

test (see Section 4.3.2) while the Cu of 7 was used to investigate the extreme condition. The 

same configuration of filter columns as in the previous test in Section 4.4.1 was employed 

(see Figure 23). In this test, the filters were operated for seven weeks with constant height 

of supernatant layer but the outlet position of every column was always adjusted to 

maintain the same hydraulic loading rate of 0.20±0.05 m/h during the experiment. Filter 

columns were fed intermittently using artificial raw water created from silica powder and 

tap water (220 mg/L, 100±10 NTU) at the rate of 1000 mL/day. Performance of filter 

columns was then evaluated after several parameters i.e. turbidity, TSS, development of 

relative hydraulic conductivity and normalized head loss at 0.20 m/h, particle size 

distribution and solids penetration. 

4.4.3 Small Scale Filter Columns with Variation in Hydraulic Loading 

Rates 

In order to investigate the influence of hydraulic loading rate on the solids removal and 

penetration, three filter columns with similar d10 of 0.26 mm and Cu of 2.5 were 

constructed. Each filter column was operated under different hydraulic loading rate i.e. 

0.08±0.02 m/h, 0.20±0.05 m/h and 0.8±0.2 m/h. Similar to the two previous tests (see 

Section 4.4.1 and 4.4.2), filter columns in this test were without the protection layer (see 

Figure 23). Each filter column was characterized by its void ratio and porosity, specific 

surface area and initial hydraulic loading rate. The procedure of filter operation in this test 

was adopted from the previous test described in Section 4.4.2. Therefore, the quality of 

artificial raw water (220 mg/L, 100±10 NTU), rate of feeding (1000 mL/day), duration of 

experiment and operation mode were similar to the small scale test of varied Cu. 

Evaluation of filter performance was also based on the turbidity and TSS removal, 
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development of relative hydraulic conductivity and normalized head loss at 0.20 m/h and 

the solids penetration in the sand bed. 

4.4.4 Evaluation on the Use of Protection Layer to Prolong Filter Run 

Time 

In 2006, Mälzer and Gimbel had done a study in regard to the effect of protection layer to 

increase the filter run time. A similar experiment was conducted in this study by 

employing gravel as protection layer. The study was completed with the analysis on the 

solids penetration. The objective was to identify how the solids penetrated in the 

protection layer, so that the role of gravel as protection layer to increase the filter run time 

could be validated. In order to accommodate this objective, a new filter column with d10 of 

0.26 mm and Cu of 2.5 was constructed with the configuration as follows: 30 mm 

supporting layer, 200 mm sand layer and 20 mm protection layer. The approach in this 

test was to compare the performance of this new constructed filter column and filter 

column with d10 0.26 mm and Cu 2.5 from the previous test, which was constructed 

without protection layer (see Section 4.4.1). Each filter column was operated under the 

constant supernatant level with the adjustment of the outlet position to control the 

hydraulic loading rate at 0.20±0.05 m/h. The filter columns were operated intermittently 

and fed with artificial raw water (220 mg/L, 100±10 NTU) at the rate of 1000 mL/day for 

seven weeks. The performance of slow sand filtration was evaluated based on the 

turbidity and TSS removal, particle size distribution, development of relative hydraulic 

conductivity and normalized head loss at 0.20 m/h and the solids penetration. 
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5 Results and Interpretation 

5.1 Filter Performance in the Pre-Experiment Phase 

5.1.1 Comparison of Fine and Coarse Media 

Characteristic of filter columns with d10 0.075 mm and d10 0.50 mm that were tested in the 

pre-experiment phase is presented in Table 8. From the values of initial hydraulic 

conductivity, it can be inferred that the water flowed easier in the filter column with 

coarse media. Equal hydraulic loading rate and the different values of initial hydraulic 

conductivity led to the variation in the initial head differences (Δh). For the turbidity 

removal, filter d10 0.075 mm and filter d10 0.50 mm achieved high efficiencies, i.e. 99.91 % 

and 99.89 % respectively, independently from the d10. According to the outlet quality, filter 

d10 0.075 mm and filter d10 0.50 mm were able to reduce the turbidity from 250±25 NTU to 

below 1 NTU as presented in Figure 24. The values that can be read from the boxplot are 

the following: 

a. 1st percentile value shown by the lower horizontal line of the whisker, 

b. 25th percentile value shown by the bottom part of the box, 

c. mean value shown by the little box, 

d. median value shown by the horizontal line in the box, 

e. 75th percentile value shown by the upper part of the box, 

f. 99th percentile value shown by the upper horizontal line of the whisker, and 

g. outlier value shown by the small cross. 

Table 8. Pre-Experiment Phase - Characteristics of filter columns with fine and coarse media 

Parameters d10 0.075 mm d10 0.50 mm 

Initial Hydraulic Conductivity k(0) (m/s) 2.96×10-5 4.90×10-4 

Initial Hydraulic Loading Rate (m/h) 0.17 0.16 

Initial Δh (cm) 29 1.5 
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Figure 24. Pre-Experiment Phase - Outlet turbidity of filter d10 0.075 mm and filter d10 0.50 mm  

Development of hydraulic conductivity and normalized head loss demonstrated the effect 

of suspended solids load to the filter behavior. Figure 25 shows a slight decrease of 

hydraulic conductivity in filter d10 0.075 mm and filter d10 0.50 mm. Initial hydraulic 

conductivity for filter d10 0.075 mm and filter d10 0.50 mm decreased only for 7 % and 2 % 

respectively at the end of filter operation. A very low decrease indicated that an addition 

of 6300 mg solids in the filter bed was insignificant for the hydraulic conductivity of both 

filter columns. However, a presumptive basis that filter d10 0.075 mm would experience 

faster clogging period could be made by considering two reasons i.e. the lower initial 

hydraulic conductivity and the decrease of hydraulic conductivity after 6300 mg solids 

load which was around three times higher than filter d10 0.50 mm. 

 

Figure 25. Pre-Experiment Phase - Development of relative hydraulic conductivity in filter d10 0.075 

mm and filter d10 0.50 mm  
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The decrease of hydraulic conductivity caused an increase in the head loss. In Figure 26, 

the gradual increase of normalized head loss at 0.20 m/h due to the suspended solids load 

was plotted. According to the graph, it could be inferred that the head loss was 

significantly affected by the solids that retained in the filter bed. In regard to the clogging 

pattern, interpreting the gradual increase of normalized head loss at 0.20 m/h during the 

filter operation could be a promising approach. According to the findings either on the 

decrease of hydraulic conductivity or increase of normalized head loss, the degree was 

always greater for filter d10 0.075 mm rather than filter d10 0.50 mm. 

 

Figure 26. Pre-Experiment Phase - Development of normalized head loss at 0.20 m/h in filter d10 

0.075 mm and filter d10 0.50 mm 

5.1.2 Comparison of Narrow and Wide Graded Media  

Trial on the experimental setup for filter columns with varied Cu was done by constructing 

two filter columns which had the characteristics presented in Table 9. Both filter Cu 2.5 

and filter Cu 5 performed well in reducing the turbidity from 250±25 NTU to below 2 NTU 

(Figure 27). Filter Cu 2.5 reached averagely a slightly higher turbidity removal (99.64 %) 

than filter Cu 5 (99.47 %). This result was contradictory from previous studies by Di 

Bernardo and Escobar Rivera (1996) and Zipf et al. (2016) (see Section 2.7.1). However, it 

is worth noting again that in the study of Zipf et al., the filter with highest Cu had the 

smallest d10. Consequently, it was difficult to evaluate whether the higher removal 

turbidity was caused by the higher Cu or lower d10. The approach in this study was more 

promising because the d10 was the same for all filter columns therefore the influence of 

various Cu could be investigated independently. 
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Table 9. Pre-Experiment Phase - Characteristics of filter columns with varied Cu 

Parameters Cu 2.5 Cu 5 

Initial Hydraulic Conductivity k(0) (m/s) 2.61×10-4 1.39×10-4 

Initial Hydraulic Loading Rate (m/h) 0.23 0.21 

Initial Δh (cm) 6.5 12 

 

 

Figure 27. Pre-Experiment Phase - Outlet turbidity of filter Cu 2.5 and filter Cu 5 

Filter column with narrow graded media had a higher value of initial hydraulic 

conductivity. However, at the end of filter operation, the hydraulic conductivity of filter Cu 

2.5 was lower than filter Cu 5. After 8000 mg solids load, the initial hydraulic conductivity 

of filter Cu 2.5 decreased up to 67 % while for filter Cu 5 was only 25 %. Figure 28 shows 

that the solids load affected the changes of hydraulic conductivity significantly. The 

relative hydraulic conductivity in filter Cu 2.5 was significantly greater than in filter Cu 5. 
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Figure 28. Pre-Experiment Phase - Development of relative hydraulic conductivity in filter Cu 2.5 

and filter Cu 5 

As a consequence of the decrease of hydraulic conductivity, the head loss was increased. 

Figure 29 shows that the normalized head loss at 0.20 m/h for filter Cu 2.5 increased from 

around 6 cm to nearly 30 cm. Meanwhile, in the filter Cu 5, the head loss increased from 

around 11 cm to nearly 20 cm. The discrepancies of the increase of head loss strengthened 

the proof that the filter with narrow graded media tended to clog faster than the wide 

graded media. 

 

Figure 29. Pre-Experiment Phase - Development of normalized head loss at 0.20 m/h in filter Cu 2.5 

and filter Cu 5 
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5.1.3 Effect of Protection Layer on Turbidity Removal 

One of methods to maintain the sand bed surface undisturbed is by adding protection 

layer at the surface of filter bed which may serve as a damper for the water flow. However, 

the original design of slow sand filter does not have a protection layer. In this phase, an 

experiment in regard to the effect of protection layer, which was constructed from gravel 

(2–6.3 mm), on the turbidity removal was conducted. The characteristics of WOPL-Filter 

and WPL-Filter which were tested are listed in Table 10. Based on the measurement, the 

initial hydraulic conductivity of WOPL-Filter was slightly higher than WPL-Filter. It was 

because the protection layer also restricted the water flow through the porous media.  

Table 10. Pre-Experiment Phase - Characteristics of filter column with and without protection layer 

Parameters WOPL-Filter WPL-Filter 

Initial Hydraulic Conductivity k(0) (m/s) 5.40×10-4 4.63×10-4 

Initial Hydraulic Loading Rate (m/h) 0.60 0.60 

 

Both filter columns achieved high percentage of turbidity removal i.e. 99.72 % for WOPL-

Filter and 99.70 % for WPL-Filter (Figure 30). Outlet turbidity for both columns was 

reduced from 100±10 NTU to below 0.5 NTU independently from the protection layer. 

According to the ANOVA test ( 0.05), outlet turbidity from both filter columns was not 

significantly different with the p-value of 0.39511. Since the influence of protection layer 

on filter performance was deemed to be insignificant, all filter columns in Phase I was 

constructed with protection layer.  

 

Figure 30. Pre-Experiment Phase - Outlet turbidity of WOPL-Filter (without protection layer) and 

WPL-Filter (with protection layer) 
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In Phase II, filter columns were constructed mostly without protection layer. It is because 

the focus of Phase II was to identify the removal mechanism by analyzing the solids 

penetration and the presence of protection layer may affect the solids deposition in the 

surface of filter bed. 

5.2 Influence of the Grain Size Distribution on 

Suspended Solids Removal 

5.2.1 Variation in d10  

The objective of this experiment was to evaluate the influence of varied d10 on the 

suspended solids removal. Characteristics of filter columns in Set 1 and Set 2 are 

summarized in Table 11. During the filter construction, the compaction of filter media was 

only by gravity. Therefore, the mass of sand which was loaded into the filter column was 

varied although the bed depth was equal for all filter columns. As a result, porosity values 

of filter columns were not similar one another. 

Table 11. Phase I - Characteristics of filter columns in the test of varied d10 

Parameters d10 0.075 mm d10 0.15 mm d10 0.26 mm d10 0.40 mm d10 0.50 mm 

Initial Hyd. 

Cond. k(0) 

(m/s) 

     

Set 1 9.25×10-5 2.61×10-4 4.36×10-4 4.98×10-4 8.27×10-4 

Set 2  6.76×10-5 1.64×10-4 4.72×10-4 4.93×10-4 

Initial Hyd. 

Load. Rate 

(m/h)  

     

Set 1 0.20 0.19 0.18 0.19 0.20 

Set 2  0.18 0.21 0.19 0.19 

Initial Δh (cm)      

Set 1 40 14 11.5 9 5 

Set 2  40 18 9.5 7.5 

 

Values of initial hydraulic conductivity of filter columns in Set 1 and Set 2 were greatly 

influenced by the fine fraction. As expected, hydraulic conductivity of filter column with 

d10 of 0.075 mm was the lowest among others because it had a high content of fine 

fraction. On the contrary, in the filter columns with d10 of 0.50 mm, the content of fine 
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fraction was the lowest among others. As a result, the values of initial hydraulic 

conductivity of both filter columns Coarse-2 were the highest in both sets. Effect of 

uncontrollable arrangement of voids and grains on the initial hydraulic conductivity could 

be observed clearly in this phase. From all of the filter columns that were constructed with 

the same grain size distribution, the same values of initial hydraulic conductivity were 

never being observed. This fact proved that it was impractical to construct identical filter 

columns even though both columns were constructed using the same filter media. 

 

 

Figure 31. Phase I - Outlet turbidity of filter columns in the test of varied d10 

After six weeks of intermittent operation, both sets performed satisfactorily by reducing 

the inlet turbidity of 100±10 NTU to an average outlet turbidity of below 2 NTU 

independently from the d10 (see Figure 31). Both Set 1 and Set 2 could achieve an average 

turbidity removal of above 98.90 % (see Table 12). In order to identify the variation 
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among the outlet quality of filter columns in both sets, the One Way ANOVA was 

performed. According to the results of the analysis, the p-values from both sets were 

higher than the significance level ( = 0.05) (see Table 13). These values represented that 

the population means of outlet turbidity of the filter columns in Set 1 and Set 2 were not 

significantly different. 

Table 12. Phase I - Average turbidity removal of filter columns in the test of varied d10 

Set 
Turbidity Removal 

d10 0.075 mm d10 0.15 mm d10 0.26 mm d10 0.40 mm d10 0.50 mm 

Set 1 99.87 % 99.13 % 98.92 % 98.74 % 99.00 % 

Set 2 - 98.74 % 99.03 % 99.02 % 99.15 % 

Table 13. Phase I - Results of One Way ANOVA test at significance level of 0.05 in the test of varied 

d10 

Set p-value 

Set 1 0.1343 

Set 2 0.0649 

 

      

Figure 32. Phase I - Visualization of water quality in the inlet (a) and outlet (b) that was captured 

during the particle size distribution measurement 

From the measurement of the particle size distribution of the outlet, size of the solids in 

terms of d10, d50 and d90 could be obtained. How suspended solids removed after the 

filtration could also be observed by comparing the inlet and outlet visualization during the 

measurement (Figure 32). Considering the particle size distribution in the outlet, the filter 

(a) (b) 
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column that was able to retain smaller size of solids could be determined. As presented in 

Figure 33, filter columns with finer media represented by d10 of 0.075 mm and 0.15 mm 

performed better on restraining smaller solids compared to other filter columns. Three 

other columns could wash bigger size of solids out. In these filter columns, it would be 

easier for the smaller size of solids to pass through the filter bed. However, those values 

are still higher than the size of bacteria and viruses that might exist in raw water. In this 

experiment bacteria and viruses were not taken into account. 

 

 

Figure 33. Phase I - Comparison of size distribution of solids in the outlet of filter columns in the 

test of varied d10 

The development of relative hydraulic conductivity (see Figure 34) and normalized head 

loss at 0.20 m/h (see Figure 35) was evaluated by taking Set 1 as a representative. Initial 

hydraulic conductivity of filter columns d10 0.075 mm, d10 0.15 mm, d10 0.26 mm, d10 0.40 
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mm and d10 0.50 mm decreased up to 11 %, 13 %, 1 %, 30 % and 22 % respectively at the 

end of filter run. These percentages also showed that all filter columns were still in a good 

operation condition related to the problem of clogging. By referring to these percentages, 

filter d10 0.075 mm and filter d10 0.26 mm were likely to have more or less similar behavior 

toward the addition of solids in filter bed. The same tendency occurred in the filter 

columns with coarser media i.e. filter d10 0.40 mm and filter d10 0.50 mm. With only 1 % 

decrease, it indicates that the solids retained in filter bed did not influence the hydraulic 

conductivity of filter column d10 0.26 mm yet. From the relative hydraulic conductivity 

shown in Figure 34, it indicated that the addition of 35,000 mg solids lowered the 

performance, in regard to the clogging, for less than 30 % for all filter columns. 

According to the graph, the hydraulic conductivity decreases in filter columns d10 0.075 

mm, d10 0.15 mm and d10 0.40 mm were predominantly influenced by the solids load. On 

the contrary, the effect of solids load on the gradual changes in filter columns Fine-3 and 

Coarse-2 were found out to be minor. Even though the final hydraulic conductivity 

declined up to 22 % in filter d10 0.50 mm, the development of gradual decrease was not as 

intense as others. Since filter d10 0.075 mm had the lowest initial hydraulic conductivity 

and it decreased along with the suspended solid loads, it was predicted to experience the 

fastest clogging period. 

 

Figure 34. Phase I - Development of relative hydraulic conductivity of Set 1 in the test of varied d10 

Relationship between the addition of solids to the filter bed and normalized head loss at 

0.20 m/h is represented in Figure 35. From the beginning of the filter operation, the head 

loss of all filter columns was varied as a consequence of different initial hydraulic 

conductivity values. With the addition of solids in filter bed, head loss increased for all 

filter columns except for filter d10 0.26 mm. By performing the linear regression analysis, it 

was found out that the slope values were significantly different from zero for all filter 

columns. This result indicated that gradual changes in the solids load were responsible for 
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the development of head loss. Compared to other filter columns, filter d10 0.26 mm was the 

most stable filter in regard to the alteration of hydraulic conductivity toward the addition 

of solids. It indicates that filter d10 0.26 mm would have the longest filter run among 

others. By taking the behavior of filter d10 0.26 mm into consideration, the d10 of 0.26 mm 

was taken as the effective size of filter columns in the test of varied Cu in Phase I. 

 

Figure 35. Phase I - Development of normalized head loss at 0.20 m/h of Set 1 in the test of varied 

d10 

5.2.2 Variation in Cu  

Table 14. Phase I - Characteristics of filter columns in the test of varied Cu 

Parameters Cu 2.5 Cu 3 Cu 5 

Initial Hyd. Cond. k(0) (m/s)    

Set A 3.72×10-4 2.21×10-4 2.78×10-4 

Set B 3.55×10-4 2.61×10-4 6.01×10-4 

Set C 4.00×10-4 2.00×10-4 4.72×10-4 

Initial Hyd. Loading Rate (m/h)    

Set A 0.22 0.21 0.23 

Set B 0.21 0.21 0.22 

Set C 0.20 0.21 0.21 

Initial Δh (cm)    

Set A 9.6 16.2 12.8 

Set B 10.0 13.5 6.2 

Set C 8.3 17.6 7.8 
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Characteristics of filter columns from Set A, Set B and Set C were presented in Table 14. It 

was expected that the initial hydraulic conductivity of filter columns with wide graded 

sand would be lower because the pores might be filled up with the finer grains. However, 

based on the measurement, initial hydraulic conductivity of filter column with wide 

graded sand were higher than the values of filter column with narrow graded. 

The results from this test on the turbidity and TSS removal did not confirm the results 

from the previous test in varied Cu in the Pre-Experiment Phase. The filter column with 

higher Cu in the Phase I could achieve turbidity and TSS removal as high as filter columns 

with the lower Cu. From the inlet quality of 100±10 NTU and 220 mg/L, outlet turbidity 

and TSS was found to be in average less than 2 NTU (see Figure 36) and 3 mg/L (see 

Figure 37) respectively for every column in all sets. All filter columns in Set A, Set B and 

Set C achieved a percentage of turbidity removal around 99.00 % (see Table 15). 

Table 15. Phase I - Average turbidity and TSS removal in the test of varied Cu  

Set 
Turbidity Removal TSS Removal 

Cu 2.5 Cu 3 Cu 5 Cu 2.5 Cu 3 Cu 5 

Set A 98.97 % 98.95 % 98.92 % 98.63 % 98.57 % 98.09 % 

Set B 99.06 % 99.20 % 99.17 % 98.78 % 99.00 % 98.66 % 

Set C 99.13 % 99.25 % 99.21 % 98.81 % 98.97 % 99.02 % 
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Figure 36. Phase I - Outlet turbidity of filter columns in the test of varied Cu  
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Figure 37. Phase I - Outlet TSS of filter columns in the test of varied Cu  
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In order to analyze whether there was a significant difference among filter columns in 

regard to the removal efficiency, ANOVA test was performed. It was found out that the 

mean values of outlet turbidity and TSS of all filter were not significantly different (Table 

16) since the p-values were higher than the significance level of 0.05 in every set. These 

findings indicated that Cu did not influence significantly the turbidity and TSS removal. 

Table 16. Phase I - Results of ANOVA test at significance level of 0.05 in the test of varied Cu 

Set 
p-value 

Turbidity TSS 

Set A 0.9570 0.2145 

Set B 0.3772 0.1431 

Set C 0.4498 0.4783 

 

Deposition of solids in the filter bed increased the resistance of the water to pass through 

hence altered the hydraulic conductivity. The more solids were retained, the lower the 

hydraulic conductivity should be. Figure 38 presents the changes in the average relative 

hydraulic conductivity from the three grain size distributions. All filter columns except 

filter Cu 3 in all set experienced the gradual decrease on hydraulic conductivity. After 

approximately 22,500 mg solids retained in filter bed, the initial hydraulic conductivity of 

filter Cu 2.5 and filter Cu 5 decreased up to 7 % and 18 % from the initial values 

respectively. At the end of filter run the hydraulic conductivity increased up to 19 % from 

the initial value in filter Cu 3. This increase might be caused by the released of the trapped 

air bubbles, the changing of the voids arrangement and on the pores connection. 

 

Figure 38. Phase I - Development of average relative hydraulic conductivity of filter columns in the 

test of varied Cu 



5.3 Influence of High Hydraulic Loading Rate on Suspended Solids Removal 

81 

With the addition of solids in the sand bed, average normalized head loss at 0.20 m/h 

increased for filter columns Cu 2.5 and Cu 5 and decreased for filter columns Cu 3 (see 

Figure 39). The increase of normalized head loss at 0.20 m/h for filter Cu 2.5 and filter Cu 5 

was around 50 % and 31 % respectively. According to these findings, especially on the 

alteration of hydraulic conductivity and normalized head loss, it could be inferred that that 

filter columns with Cu of 2.5 tended to clog faster compared to other filter configurations. 

This finding confirmed the result of the previous test the pre-experiment phase (see 

Section 5.1.2) i.e. filter run time would be longer for a filter column with higher Cu. Since 

the capacity of all filter columns was still high (see Figure 38), they were continued to be 

operated to study the influence of high hydraulic loading rate on suspended solids 

removal.  

 

Figure 39. Phase I - Development of average normalized head loss at 0.20 m/h of filter columns the 

test of varied Cu 

5.3 Influence of High Hydraulic Loading Rate on 

Suspended Solids Removal 

When the filter operation under high hydraulic loading rate was started, approximately 

22,500 mg of solids were already deposited in the filter bed. The existence of these solids 

influenced the behavior of filter columns not only in regard to their hydraulics but also in 

regard to the removal efficiencies. Table 17 presents the comparison of average filter 

efficiencies under low (0.20±0.05 m/h) and high (0.60±0.15 m/h) hydraulic loading rates. 

Turbidity and TSS removals of filter columns operated under high hydraulic loading rate 

were surprisingly higher than when they were operated under low rate. For both types of 

hydraulic loading rate, the filter columns were fed with the same inlet water quality i.e. 

100±10 NTU and 220 mg/L. Under high rate, all filter columns were able to reduce the 

turbidity to below 0.50 NTU averagely (see Figure 40). This value was around 75 % lower 

than the average outlet turbidity of filter columns when they were operated under low 
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hydraulic loading rate (see Figure 36). Based on the turbidity removal, filter columns NG-1 

achieved the highest efficiency averagely. Meanwhile, filter columns NG-2 performed 

slightly lower than the others.  

Table 17. Phase I - Average turbidity and TSS removal of filter columns operated under low 

(0.20±0.05 m/h) and high (0.60±0.15 m/h) hydraulic loading rate 

Filter Columns 
Turbidity Removal TSS Removal 

Low Rate High Rate Low Rate High Rate 

Cu 2.5 99.05 % 99.70 % 98.88 % 99.22 % 

Cu 3 99.13 % 99.58 % 98.94 % 99.25 % 

Cu 5 99.10 % 99.66 % 99.02 % 99.22 % 

 

The percentage of TSS removal was averagely in the same range for all filter columns. 

Average outlet TSS dropped to below 2 mg/L after the filter columns were operated under 

high hydraulic loading rate (see Figure 41). This value was around 33 % lower than the 

average outlet concentration from the previous test (see Figure 37).  

The measurement of size distribution of solids found in the outlet confirmed the previous 

results that filter columns with Cu of 2.5 were more capable on retaining fine solids than 

other columns (see Error! Reference source not found. and Appendix 4). From almost 

all sets, the average size of solids found in the outlet of filter columns Cu 2.5 was finer than 

of filter Cu 3 and filter Cu 5. It was also found out that the solids in the outlet of filter 

columns operated under high hydraulic loading rate were finer than under low hydraulic 

loading rate.  
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Figure 40. Phase I - Outlet turbidity of filter columns in test of high hydraulic loading rate 

(0.60±0.15 m/h) 
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Figure 41. Phase I - Outlet TSS of filter columns in the test of high hydraulic loading rate (0.60±0.15 

m/h) 
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Changes in the hydraulic conductivity of filter columns toward the addition of solids were 

observed during the operation (see Figure 42). During the filter operation under low rate, 

an anomaly occurred in the filter columns Cu 3. In all sets, the hydraulic conductivity of 

filter Cu 3 increased while the other filter columns decreased with the addition of solids. In 

the filter operation under high hydraulic loading rate, average hydraulic conductivity 

decreased up to 44 % and 21 % for filter Cu 2.5 and filter Cu 5. Meanwhile, in filter Cu 3, an 

increase of 3 % on the hydraulic conductivity was found. 

 

Figure 42. Phase I - Development of average relative hydraulic conductivity of filter columns in the 

test of high hydraulic loading rate (0.60±0.15 m/h) 

Compensating the decrease on the hydraulic conductivity, the head loss in the filter bed 

was gradually increased except for filter columns Cu 3 (see Figure 43). Following the 

pattern of hydraulic conductivity, suspended solids load affected the development of head 

loss predominantly in the filter columns Cu 2.5 and Cu 5. After the filter operation was 

terminated, the average value of the final head loss increased around 57 % and 23 % from 

the initial values for filter columns Cu 2.5 and Cu 5 respectively. Meanwhile, the effect of 

suspended solids load in the filter columns Cu 3 was minor. The average increase of final 

head loss in filter columns Cu 3 was only 2 % from the initial values. As expected, the 

increase of head loss in filter with Cu of 2.5 was higher compared to the other 

configurations.  
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Figure 43. Phase I - Development of average normalized head loss at 0.20 m/h of filter columns in 

the test of high hydraulic loading rate (0.60±0.15 m/h) 

Figure 44 presents the behavior of filter columns toward the total solids load from the 

beginning of filter operation until the termination under high hydraulic loading rate. 

Hydraulic conductivity of filter Cu 2.5 dropped up to 48 % from the initial value. It 

indicated that after a load of around 62,500 mg solids the filter capacity declined to almost 

50 % from its actual capacity. The same decreasing trend occurred in filter Cu 5 which 

experienced a decrease of 36 %. Filter Cu 3 behaved differently due to the increase of 

hydraulic conductivity up to 22 % from its initial. By considering both the development of 

relative hydraulic conductivity and normalized head loss at 0.20 m/h, it could be inferred 

that the filter columns with Cu of 2.5 tended to clog faster than the others. 

 

Figure 44. Phase I - Development of average relative hydraulic conductivity of filter columns from 

the clean filter bed until the termination of the operation at 0.60±0.15 m/h 
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5.4 Influence of the Grain Size Distribution on Solids 

Penetration in Filter Bed 

5.4.1 Variation in d10  

Table 18 lists the characteristics of five filter columns which were tested in this phase. The 

initial hydraulic conductivity was as expected where the values were higher for coarser 

media. However, the hydraulic conductivity of filter Coarse-4 was slightly lower than filter 

Coarse-3. 

Table 18. Phase II - Characteristics of filter column in the test of varied d10  

Parameters d10 0.075 mm d10 0.26 mm d10 0.50 mm d10 0.70 mm d10 0.90 mm 

Initial Hyd. 

Conductivity 

k(0) (m/s) 

8.22×10-5 2.71×10-4 4.72×10-4 2.96×10-3 2.87×10-3 

Initial Hyd. 

Loading 

Rate (m/h) 

0.44 0.47 0.48 0.40 0.42 

Initial Δh (cm) 41.0 11.7 7.0 1.0 1.0 

 

According to the results presented in Section 5.2, there was no significant difference on 

the filter performance of filter columns with fine and coarse sand, especially on the 

turbidity removal. This insignificant difference was proved by the result of the ANOVA 

test. On the other hand, the experiment in Phase II showed that the turbidity and TSS 

removal decreased with the increase of d10 (see Figure 45 and Figure 46). The turbidity 

was reduced from 45±5 NTU to below 1 NTU averagely even in the filter columns with 

very coarse media. This average value of outlet turbidity met the requirement of WHO in 

regard to the water quality for achieving an effective disinfection. Average percentages of 

turbidity removal were 99.44 %, 99.36 %, 99.00 %, 98.39 % and 97.89 % for filter 

columns d10 0.075 mm, d10 0.26 mm, d10 0.50 mm, d10 0.70 mm and d10 0.90 mm 

respectively. Concentration of TSS found in the outlet was averagely below 2 mg/L from 

the inlet concentration of 110 mg/L. Filter d10 0.075 mm achieved the highest TSS removal 

i.e. 99.18 % followed by filter columns d10 0.26 mm (99.03 %), d10 0.50 mm (98.87 %), d10 

0.70 mm (98.66 %) and d10 0.90 mm (98.53 %). 
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Figure 45. Phase II – Outlet turbidity of filter columns in the test of varied d10  

 

Figure 46. Phase II – Outlet TSS of filter columns in the test of varied d10  

Although the five filter columns achieved high efficiencies, the difference of average outlet 

turbidity and TSS between fine and coarse media was quite significant. Average outlet 

turbidity of filter column d10 0.075 mm was 0.24 NTU which was nearly four times lower 

than the average outlet turbidity of filter d10 0.90 mm (0.95 NTU). In the case of TSS, the 

average outlet concentration of filter column d10 0.075 mm was 0.85 mg/L. Meanwhile, the 

filter column d10 0.90 mm had the average outlet concentration of 1.61 mg/L which was 

nearly two times the outlet of filter d10 0.075 mm. Based on this result, the argument of 

using finer sand to ensure high slow sand filtration performance was confirmed. However, 

it is worth noting that the coarser d10 tested in this study was nearly three times greater 

than the upper limit of the recommended values (see Table 1). 
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During the filter operation, the hydraulic conductivity of filter columns was altered with 

the deposition of solids in filter bed (see Figure 47). The changes in filter capacity could be 

used to predict the clogging pattern of filter columns. Filter d10 0.075 mm contained the 

finest media and the initial hydraulic conductivity was the lowest among others. At the 

end of the filter operation, filter d10 0.075 mm experienced the highest decrease of 

hydraulic conductivity i.e. 54 % followed by filter d10 0.26 mm with a decrease of 51 %. 

 

Figure 47. Phase II - Development of relative hydraulic conductivity of filter columns in the test of 

varied d10 

Clogging period can be predicted from the development of relative hydraulic conductivity 

and the increase of normalized head loss at 0.20 m/h (Figure 48). The changes of filter 

capacity on filter d10 0.70 mm and filter d10 0.090 mm were not as predominant as in the 

filter with finer media. Filter d10 0.70 mm and filter d10 0.90 mm behaved differently from 

others toward the solids load. While the hydraulic conductivity of filter d10 0.075 mm, filter 

d10 0.26 mm and filter d10 0.50 mm decreased with the solids load, filter columns d10 0.70 

mm and d10 0.90 mm slightly increased up to around 4 % and 5 %.  
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Figure 48. Phase II - Development of normalized head loss at 0.20 m/h of filter columns on the test 

of varied d10  

Before the sand bed was scraped, filter cake was observed to be established notably in 

columns with fine filter media and a thin layer was found in filter with d10 of 0.50 mm (see 

Appendix 9). Turbidity measurement of the scraped sample validated this observation 

(see Figure 49). This filter cake formation caused a great hydraulic conductivity decrease 

and a considerable head loss increase of the filter d10 0.075 mm and filter d10 0.26 mm. 

 

Figure 49. Phase II - Solids penetration in filter columns in the test of varied d10 
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Turbidity values of the first 1 cm sand layer were decreased with the increase of d10. From 

the filter d10 0.075 mm and filter d10 0.26 mm, the turbidity values dropped considerably 

on the second 1 cm sand layer. Meanwhile, in the filter d10 0.50 mm the turbidity value 

decreased gradually and became more or less stable below 3 cm sand layer. In the two 

coarse filter columns, the turbidity value did not decrease significantly from the first 1 cm 

sand layer to lower depth indicating a deeper penetration of solids. In this test, the coarse 

filter media did not contain any clay and silt fraction. 

Microscopic visualization of sand sample (see Figure 50) shows that suspended solids 

indicated by dark cloud among the grains are abundant in the top layer compared to the 

lower layer. Suspended solids mass was estimated based on the total mass of sand sample 

from the first 1 cm layer as a representative. Mass of suspended solids from filter columns 

d10 0.075 mm, d10 0.50 mm and d10 0.70 mm are presented in Table 19. For fine media 

formation of filter cake was the dominant mechanism on suspended solids removal 

represented by high percentage removal at the first 1 cm of filter bed. Meanwhile, deeper 

straining tends to be the dominant removal mechanism in the coarser media. 

            

Figure 50. Phase II - Microscopic visualization of top layer i.e. first 1 cm (a) vs lower layer i.e. 10 cm 

below surface (b) from filter column with d10 of 0.26 mm 

Table 19. Phase II - Percentage of suspended solids mass retained at the first 1 cm of filter bed in 

the test of varied d10 

Filter Columns Mass Retained (mg) 
% Removal at Surface 

of Filter Bed 

d10 0.075 mm 3,498 90.87 

d10 0.50 mm 1,865 48.43 

d10 0.70 mm 1,240 16.10 

 

(a) (b) 
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5.4.2 Variation in Cu  

According to the characteristics of filter columns (see Table 20), filter Cu 7 had the highest 

hydraulic conductivity value confirming the previous result in Section 5.2.2. This can be 

explained due to the composition of sand size (see Table 4) within the filter column. Filter 

Cu 7 consisted of higher coarse fraction compared to the others. 

Table 20. Phase II - Characteristics of filter columns in the test of varied Cu  

Parameters Cu 2.5 Cu 3 Cu 7 

Initial Hydraulic Conductivity k(0) (m/s) 2.73×10-4 3.27×10-4 3.71×10-4 

Initial Hydraulic Loading Rate (m/h) 0.20 0.20 0.22 

Initial Δh (cm) 4.8 4.1 3.8 

 

Removal of turbidity in this test was satisfactory for all filter columns. Filter Cu 2.5, 

achieved the highest percentage removal 99.68% followed by filter Cu 3 with 99.52% and 

filter Cu 7 with 99.45% (Figure 51). This result confirmed the turbidity removal of filter 

columns in the Pre-Experiment Phase (see Section 5.1.2). Average outlet turbidity for all 

filter columns was <0.60 NTU. Related to TSS removal, filter Cu 2.5 was also found out to 

perform slightly better compared to the other two columns. Removal percentage of filter 

Cu 2.5 was 99.66% while filter Cu 3 and filter Cu 7 were 99.58% and 99.51% respectively 

(Figure 52).  

 

Figure 51. Phase II - Outlet turbidity of filter columns in the test of varied Cu  
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Figure 52. Phase II - Outlet TSS of filter columns in the test of varied Cu  

Gradual decrease on hydraulic conductivity with suspended solids load was observed on 

the whole filter columns. According to the development of the relative hydraulic 

conductivity (see Figure 53), the behavior of filter Cu 3 and filter Cu 7 was similar toward 

the addition of solids in the sand bed where both filter columns declined rapidly until the 

load of 3,000 mg solids. After that, the decrease was slightly until the filter operation was 

terminated. Filter Cu 2.5 experienced a gradual decrease of hydraulic conductivity. At the 

end of the filter operation, the hydraulic conductivity decreased more or less in the same 

rate i.e. 89 % for filter Cu 2.5 and filter Cu 7 and 88 % for filter Cu 3. By considering the 

trend of the declination, filter Cu 2.5 tended to clog faster than the other two columns. This 

result confirmed the finding of Pre-Experiment Phase (see Section 5.1.2) and Phase I (see 

Section 5.4.2) where the media with lower Cu tended to experience faster clogging period. 

 

Figure 53. Phase II - Development of relative hydraulic conductivity of filter columns in the test of 

varied Cu  
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Based on the analysis of solids penetration (Figure 54), turbidity of first 1 cm sand sample 

was very high followed by a sudden decrease for lower depth. High turbidity values found 

in the whole filter columns indicated that the dominant removal mechanism was the 

formation of filter cake. The presence of filter cake on the filter bed was responsible for 

the significant decrease of hydraulic conductivity in all filter columns. 

 

Figure 54. Phase II - Solids penetration in filter columns in the test of varied Cu 

5.5 Influence of Hydraulic Loading Rates on Solids 

Penetration in Filter Bed  

Uncontrolled grains and voids arrangement in the filter bed resulted in the different 

values of porosity and void ratio which at the end affected the initial hydraulic 

conductivity (see Table 21). Filter 0.08 m/h, as estimated, had the lowest initial hydraulic 

conductivity compared to others. As a consequence, the Δh of filter 0.08 m/h was higher 

than filter 0.20 m/h although the first filter was operated under a hydraulic loading rate 

that was more than a half lower than the second filter. 

 

 

 



5.5 Influence of Hydraulic Loading Rates on Solids Penetration in Filter Bed 

95 

Table 21. Phase II - Characteristics of filter columns in the test of influence of hydraulic loading rate 

Parameters 0.08 m/h 0.20 m/h 0.80 m/h 

Initial Hydraulic Conductivity k(0) (m/s) 9.03×10-5 2.73×10-4 2.55×10-4 

Initial Hydraulic Loading Rate (m/h) 0.08 0.20 0.76 

Initial Δh (cm) 6.0 4.8 19.1 

 

As expected, the percentage of turbidity removal was higher with the lower hydraulic 

loading rate. Highest average removal was achieved by filter 0.08 m/h with 99.72% 

followed by filter 0.20 m/h with 99.68% and filter 0.80 m/h with 99.19% (see Figure 55). 

Average outlet turbidity of High-1 was almost three times higher than from Low-1. 

However, the average outlet turbidity for all filter columns was still below 1 NTU. 

 

Figure 55. Phase II - Outlet turbidity of filter columns operated under different hydraulic loading 

rate  

Related to the TSS removal, the same pattern was applied. The lower the hydraulic loading 

rate, the higher the percent removal is (see Figure 56). By operating the filter under 

0.08±0.02 m/h and 0.20±0.05 m/h, average TSS removal reached 99.66%. Concentration 

of TSS in the outlet for filter 0.08 m/h and filter 0.20 m/h was below1 mg/L while for filter 

0.80 m/h was above1 mg/L. The filter column operated under 0.8±0.2 m/h achieved 

99.33% TSS removal. 
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Figure 56. Phase II - Outlet TSS of filter columns operated under different hydraulic loading rate 

At the end of the filter operation, hydraulic conductivity declined significantly for filter 

columns 0.08 m/h (92 %) and 0.20 m/h (89 %). In filter column 0.80 m/h, decrease of 

hydraulic conductivity was only 43 %. The hydraulic conductivity of filter column 0.08 

m/h decreased considerably until the load of 4,500 mg solids and then slightly until the 

termination of filter operation (see Figure 57). As a consequence of the prevailing 

decrease of filter 0.08 m/h, the normalized head loss at 0.20 m/h increased considerably 

(see Figure 58). In the filter column 0.20 m/h, the hydraulic conductivity decreased 

gradually with the solids load. Filter 0.80 m/h behaved differently as the hydraulic 

conductivity decrease was linear with the solids load. 

 

Figure 57. Phase II - Development of relative hydraulic conductivity of filter columns operated 

under different hydraulic loading rate 
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Figure 58. Phase II - Development of normalized head loss at 0.20 m/h of filter columns operated 

under different hydraulic loading rate 

The different behavior of filter columns towards the solids load could be described by 

considering the solids penetration. According to the turbidity measurement from the sand 

sample, filter 0.08 m/h had the highest value on the first 1 cm scraping (see Figure 59). 

This high value was followed by a sudden decrease to <1000 NTU. Having lower turbidity 

value from the first 1 cm of sand sample, filter 0.20 m/h also experienced a sudden 

decrease in the lower bed depth. Those values indicated that most of the suspended solids 

retained at the top of filter bed causing significant decrease on hydraulic conductivity and 

increase in head loss. Meanwhile in filter 0.80 m/h, it was found out that the solids 

penetrated deeper within the filter columns by considering the turbidity values of first and 

second 1 cm of sand samples. Therefore, the decrease of hydraulic conductivity and 

increase of normalized head loss were not as high as in the filter columns with lower 

hydraulic loading rates. Deeper straining in filter 0.80 m/h was found to be higher 

compared to the filter 0.08 m/h and filter 0.20 m/h. If the feeding of filter column was 

extended, at certain point the decrease pattern of hydraulic conductivity of filter 0.80 m/h 

might be as the same as the pattern of filter columns 0.08 m/h and 0.20 m/h which likely 

to be exponential. 
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Figure 59. Phase II - Solids penetration in filter columns operated under different hydraulic loading 

rate 

5.6 Increasing Filter Run Time by Applying Protection 

Layer 

According to Mälzer and Gimbel (2006), protection layer applied in the filter columns may 

inhibit the clogging period and prolonging the filter run time. Two filter columns with the 

characteristics listed in Table 22 were tested in this phase to evaluate this method of 

Mälzer and Gimbel (2006). The initial hydraulic conductivity of filter column with 

protection layer was expected to be lower than without protection layer. However, based 

on the measurement, filter column WPL had a slightly higher hydraulic conductivity than 

filter WOPL. 

Average turbidity removal of both filter columns was similar i.e. 99.68 % and 99.67 % for 

filter columns WOPL and WPL respectively (see Figure 60). The average values of outlet 

turbidity were 0.34 NTU for filter column without protection layer and 0.35 NTU for filter 

column with protection layer. Related to the average removal of TSS (see Figure 61), filter 

column WOPL (99.66 %) had slightly higher removal efficiency than filter column WPL 

(99.55 %). 
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Table 22. Phase II - Characteristics of filter columns to test the method of filter run time 

prolongation 

Parameters WOPL WPL 

Initial Hydraulic Conductivity k(0) (m/s) 2.73×10-4 3.17×10-4 

Initial Hydraulic Loading Rate (m/h) 0.20 0.20 

Initial Δh (cm) 4.8 4.7 

 

 

Figure 60. Phase II - Outlet turbidity of filter columns without and with protection layer 

 

Figure 61. Phase II - Outlet TSS of filter columns without and with protection layer 
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Hydraulic conductivity decreased significantly for filter column without protection layer 

with the addition of solids in filter bed (see Figure 62). Decrease of hydraulic conductivity 

in filter WOPL was up to 89 % while in filter WPL, the decrease was only 26 %. This 

phenomenon led to the significant changes of the normalized head loss at 0.20 m/h in the 

filter column without protection layer (see Figure 63). These discrepancies on the 

developments of the relative hydraulic conductivity and normalized head loss at 0.20 m/h 

were because the gravel layer acted as the first strainer for the suspended solids. Filter 

cake was formed on the surface of sand bed in WOPL. Meanwhile, in filter column WPL, it 

was observed that some solids were retained in the gravel layer as could be identified 

from the solid penetration in Figure 64. 

 

Figure 62. Phase II - Development of hydraulic conductivity filter columns without and with 

protection layer 

 

Figure 63. Phase II - Development of normalized head loss at 0.20 m/h filter columns without and 

with protection layer 
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In the solids penetration graph, the first value for WPL was obtained from the scraping of 

protection layer. The high turbidity value showed that some solids were retained in the 

protection layer. The scraping of first 1 cm of sand layer from filter WPL resulted in the 

significantly lower turbidity value than from filter WOPL. Since some solids were retained 

in the protection layer, the formation of filter cake might be retarded and the clogging 

could be decelerated. 

 

Figure 64. Phase II - Solids penetration in the filter columns without and with protection layer
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6 Discussion 

6.1 Optimization of Slow Sand Filtration Design 

Generally, the results of this study not only showed the effectiveness of slow sand filter on 

removing the suspended solids but also proved that the ranges of the current 

recommended values of design criteria were too narrow. These narrow ranges contribute 

to the limitation on the optimization and wider utilization of the technology. In this study, 

the influence of each operating variable on the suspended solids removal, solids 

penetration and clogging period was investigated systematically so that the main purpose 

i.e. optimization on the design recommendation could be achieved. 

In Phase I, it was found out that the d10 of filter media can be raised up to 0.50 mm without 

deteriorating the removal efficiency of suspended solids. According to the ANOVA test, the 

outlet turbidity values of the filter columns with d10 of 0.50 mm were not significantly 

different from the outlet turbidity of filter columns with finer media. Previously, Jenkins et 

al. (2011) also reported that the effect of grain size distribution (i.e. d10 0.17 mm/Cu 2.4 

and d10 0.52 mm/Cu 2.1) on the turbidity removal by intermittent slow sand filtration was 

insignificant. Prior to Jenkins et al., Langenbach (2010) also found the same result at the 

two newest studies (see Section 2.7.1). These findings strengthened the indication that the 

recommended values of d10 i.e. 0.15 – 0.35 mm is rather conservative. By using coarser 

media represented by d10 0.50 mm, it is not only that the high removal efficiency can be 

obtained but also the capital cost to procure the sand can be reduced. 

Since the d10 range tested in Phase I (0.075 – 0.50 mm) could not give the answer yet to 

how the d10 influences the suspended solids removal, coarser sand represented by d10 of 

0.70 mm and 0.90 mm were tested in Phase II. Three other d10 values tested in Phase II 

were taken from the values in previous experiment i.e. d10 of 0.075 mm which represented 

extreme fine media, d10 of 0.26 mm which represented the recommended value and d10 

0.50 mm which represented the coarsest media in Phase I. 

The results from Phase II confirmed that the coarser the filter media the lower the 

removal efficiency of suspended solids. However, the range of tested d10 values so that the 

confirmation could be proved was very broad i.e. 0.075 – 0.90 mm. The highest d10 value 

tested was almost three times higher than the upper limit of the recommended d10 value 

which is 0.35 mm. The average values of outlet turbidity of filter columns with coarser 

media represented by d10 of 0.50 mm, 0.70 mm and 0.90 mm were reaching more than one 

and a half, two and a half and three times the average of filter columns with recommended 

d10 of 0.26 respectively. However, the average turbidity values for all filter columns with 

coarser media tested in Phase II were still below 1 NTU. According to WHO, after the 

treatment with slow sand filtration, outlet turbidity should never exceed 5 NTU to achieve 

an effective disinfection process (WHO, 2017). Hence, average outlet quality from both 

finer and coarser media investigated in this study met the requirement of WHO. 
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From the perspective of suspended solids removal, employing coarser media did not lower 

the filtrate quality. However, in regard to the removal mechanism, coarse media 

contributed significantly to the deeper penetration of solids. According to the 

investigation, the coarser the media the deeper the penetration of solids is. In the filter 

columns with finer media, the pores size was too small for the solids to pass through. 

Therefore, the solids were retained on the surface of filter bed forming a layer so called 

filter cake. In this layer, which was actually an accumulation of very fine particles, the 

pores size was very small inhibiting the other solids to pass through. Therefore, the filter 

cake became a secondary filter layer. Formation of filter cake in the filter column with d10 

of 0.075 mm occurred because most of the solids retained on the surface of filter bed, i.e. 

91 % of total solids mass. On the contrary, formation of filter cake did not occur yet in 

filter column with d10 of 0.70 mm because the solids retained at the first 1 cm of sand layer 

were only around 16 % of total solids load and deeper straining became the dominant 

removal mechanism. 

As the consequence of the type of removal mechanisms, the decrease of filter capacity was 

also different between the fine and coarse media. By the formation of filter cake, the 

characteristics of the filter were no longer affected by the grain size distribution of the 

media. The hydraulic conductivity of filter bed was determined by this layer. Therefore, in 

the filter columns with fine media i.e. Fine-1.1 and Fine-3.1 the hydraulic conductivity 

decreased significantly at the end of filter run. These hydraulic conductivity decreased 

caused the increase of head loss in filter columns with fine media. On the other hand, the 

hydraulic conductivity in coarse media tended to be more stable toward the addition of 

solids. Deeper straining allowed the solids to penetrate deeper in the filter bed and spread 

among the grains. As a result, the changes of head loss in filter columns with coarser media 

were insignificant. These results showed that the filter columns with finer media tended to 

experience faster clogging than the coarser media due to the faster formation of filter cake. 

For the application in the real plant, a recommendation for the range of d10 values, which is 

divided into finer and coarser media, is allowed to be proposed based on the results of the 

study. A broader range of d10 values is introduced together with the risks that may occur 

due to the selection of the d10. Table 23 summarizes the selection criteria between finer 

and coarser media. 
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Table 23. Selection criteria between finer and coarser media* 

Criteria 
Finer Media 

(d10 0.25 – 0.50 mm) 

Coarser Media 

(d10 0.50 – 0.90 mm) 

Average outlet turbidity < 1 NTU < 1 NTU, but higher than the 

finer media 

Initial cost** Higher Lower 

Dominant removal 

mechanism 

Filter cake formation Deeper straining 

Filter run time Shorter Longer 

Maintenance Surface scraping or wet 

harrowing 

Deeper scraping or 

replacement of the entire 

bed depth 

Maintenance cost Lower Higher 

*Based on the investigation under narrow graded media (Cu = 2.5) 
**The cost to procure the sand 

 

Investigation on the influence of different grain size distribution which varied in Cu was 

also conducted in two phases. In Phase I, it was found out that the removal efficiency of 

filter columns with narrow graded media, represented by Cu of 2.5 and 3, and wide graded 

media, represented by Cu of 5, was not significantly different. This finding where the filter 

columns with Cu of 5 produced high removal efficiency confirmed the previous results of 

Slezak and Sims (1984) and Di Bernardo and Escobar Rivera (1996). 

Similar to the finding in the investigation of varied d10, the range of recommended values 

for Cu by previous authors (Huisman and Wood (1974), Visscher (1990) and Barrett et al. 

(1991)) was also too limited. Therefore in Phase II, the range was extended and fine filter 

media with the Cu of 2.5, 3 and 7 were tested. The first two values of Cu represented the 

recommended values while Cu of 7 represented the extreme value. Based on the turbidity 

removal in Phase II, it was found out that filter column with Cu of 7 produced average 

outlet turbidity that around 42 % higher than the filter column with Cu of 2.5. However, 

the outlet turbidity values for all filter columns were lower than 1 NTU which indicated 

that the filtrate quality met the WHO turbidity standard. Related to the dominant removal 

mechanism, the statement from Huisman and Wood (1974) where the solids penetration 

might be deeper in the filter with higher Cu was not confirmed in this study. Formation of 

filter cake was observed in all filter columns independently from the Cu. This result 

indicated that the formation of filter cake was significantly influenced by the d10 and not by 

Cu.  

In regard to the hydraulic conductivity, theoretically, the filter with higher Cu was expected 

to have lower initial hydraulic conductivity due to the reason that the finer fraction may 
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occupy the larger pores and block the flow path (see Error! Reference source not 

found.). From this reason, it was also expected that the filter column with higher Cu would 

experience faster clogging period (Elisson, 2002; Langenbach, 2010). However, both 

predictions did not occur in this experiment. According to the measurement especially in 

Phase II, the values of initial hydraulic conductivity of the filter with wide graded media 

were higher than with narrow graded media. This discrepancy was as a result of the 

approach in the empirical values determination. The empirical calculation was mostly 

based on the grain size distribution of media neglecting the effect of the arrangement of 

grains and voids, the presence of air bubbles within the sand bed and the connections 

between void. With the addition of solids that retained in filter bed, the initial hydraulic 

conductivity of filter columns altered. Normally, the solids deposition, especially on the 

surface of filter bed forming filter cake, caused the decrease of hydraulic conductivity. This 

filter cake is a layer formed by the collection of very fine particles, therefore this layer 

inhibits the water flow. However, there was also a possibility where the hydraulic 

conductivity increased with the addition of solids especially when the filter cake is not yet 

formed. Increase of hydraulic conductivity in filter column could be caused by the 

alteration of grains and void arrangement and the release of entrapped air from the pores 

during the filter operation.  

According to the observation in Phase II, the hydraulic conductivity of all filter columns 

decreased exponentially. The R2 values of all models were very high ensuring the 

prediction of the influence of the solids addition on the relative hydraulic conductivity. A 

prediction on the relative hydraulic conductivity by taking a solids load value of 10,000 mg 

was done using the regression formula. It was found out that the relative hydraulic 

conductivity would be around 0.03, 0.10 and 0.13 for filter columns with Cu of 2.5, 3 and 7 

respectively. Capacity of filter column with Cu 2.5 would only be 3 % of its initial after a 

load of 10,000 mg solids. Meanwhile, filter columns with higher Cu could still have around 

10 % of its initial. This prediction indicated that the wider the grain size distribution of 

media, the longer the filter run would be. The results from this study approved the 

conclusion of Di Bernardo and Escobar Rivera (1996) who found out that lower Cu led to 

shorter filter run time. Based on the results in the investigation on the influence of Cu on 

the filter performance, a list of selection criteria is proposed in this study (see Table 24). 
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Table 24. Selection criteria between narrow and wide graded media* 

Criteria 
Narrow Graded Media 

(Cu < 3) 

Wide Graded Media 

(Cu 5 - 7) 

Average outlet turbidity < 1 NTU < 1 NTU, but higher than the 

narrow graded media 

Initial cost** Higher Lower 

Dominant removal 

mechanism 

Filter cake formation Filter cake formation 

Filter run time Shorter Longer 

Maintenance Surface scraping or wet 

harrowing 

Surface scraping or wet 

harrowing 

Maintenance cost Low Low 

*Based on the investigation under fine media (d10 = 0.26 mm) 
**The cost to procure the sand 

 

Actually, d10 and Cu are inseparable as both are the components which represent the grain 

size distribution of sand. Taking this into consideration, it is worth to discuss the overall 

results if the investigation on varied d10 and Cu. As it was mentioned in the previous 

section (see Section 2.7.1), d10 and Cu influence the hydraulic conductivity of filter media. 

By considering the results of the measurement (see Table 18 and Table 20), it could be 

inferred that the d10 influenced more the hydraulic conductivity than the Cu. As an 

example, filter column with d10 0.075 mm/Cu 2.5 had an initial hydraulic conductivity 

which was two orders of magnitude lower than the filter column with d10 0.70 mm/Cu 2.5. 

On the other hand, the initial hydraulic conductivity value of filter column with Cu 3/d10 

0.26 mm was similar to the value of filter column with Cu 7/d10 0.26 mm. These results 

indicated that Cu did not influence the hydraulic conductivity values as significant as d10.  

Related to the removal mechanism, it could also be inferred that d10 had more significant 

influence than Cu at the beginning of filter operation. The lower the d10 was, the faster the 

filter cake was formed. In the filter columns with coarser media, formation of filter cake 

took longer time. Appendix 9 shows how the solids cover the entire area of filter column 

with finer media. Meanwhile, in the filter columns with coarser media, the filter cake layer 

was not yet formed evenly on the entire bed surface. The faster the filter cake formation 

was, the faster the filter operation had to be terminated due to the significant decrease of 

hydraulic conductivity and increase of head loss. By considering that filter cake was 

formed in filter columns NG-1.1, NG-2.1 and WG-2 independently from the Cu, it could be 

inferred that the Cu did not influence the dominant removal mechanism as significant as 

the d10. However, the influence of d10 was only significant at the beginning of filter 

operation. Once the filter cake is formed, the removal efficiency and the changes in the 

filter capacity are dependent on this layer which acts as the secondary filter.  
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From the experiment of high hydraulic loading rate in Phase I, it was not expected that 

filter performance was better under 0.60±0.15 m/h. This phenomenon could be explained 

due to the existence of suspended solids within the filter bed. When the high hydraulic 

loading rate was applied to the filter columns, 22,500 mg of suspended solids had been 

loaded and retained in the filter bed. Based on the observation, these solids mostly 

accumulated on the surface of filter bed. They might act as another strainer for the 

artificial raw water therefore enhancing the filter performance.  

In Phase II, the performance of filter columns operated under different hydraulic loading 

rates could be compared precisely. From the perspective of solids removal, the 

recommendation was to apply a low hydraulic loading rate in order to ensure the removal 

efficiency (Huisman and Wood, 1974; Visscher, 1990; Barrett et al., 1991). However, the 

range of the recommended hydraulic loading rate given by those previous authors was 

rather narrow. Meanwhile based on the results of previous tests, especially on the high 

rate experiment in Phase I, it could be inferred that once the filter cake is formed, the 

removal efficiency is no longer dependent on the on the hydraulic loading rate as proven 

by the better effluent quality. 

Operated at a hydraulic loading rate of 0.8±0.2 m/h filter column High-1 performed lower 

than the filter column Low-2 which was operated at 0.20±0.05 m/h. The average outlet 

turbidity of filter column High-1 was only two and a half times higher than the filter 

column Low-2 even though the hydraulic loading rate was four times higher. Moreover, 

the average value was still in the standard value of WHO i.e. below 1 NTU. From this result, 

it could be inferred that the removal efficiency of filter column with fine media operated at 

a high hydraulic loading rate did not deteriorate significantly. 

According to the analysis of suspended solids penetration, filter cake was formed in all 

filter columns. However, from the values in Figure 59, it could be inferred that in the 

higher the hydraulic loading rate was the longer time needed for the filter cake to be 

formed. Solids penetrated deeper in the media of filter column High-1. On the contrary, in 

the filter columns operated at lower hydraulic loading rate, the filter cake formed faster. 

As a consequence, the hydraulic conductivity of filter column Low-1 and Low-2 decreased 

greater than the filter column High-1. Gradual increase on head loss could also be 

observed in all filter columns due to the decrease of hydraulic conductivity. The regression 

analysis of relative hydraulic conductivity also showed that filter columns operated at 

lower rate tended to clog faster than the one operated at higher rate.  

A recommendation on the method for increasing the hydraulic loading rate can be 

proposed based on the results of the investigation on the different rates. First, it is 

recommended to use fine and narrow graded media if the filter is planned to be operated 

at high hydraulic loading rate from the beginning of the operation. Second 

recommendation is to increase the hydraulic loading rate after the ripening period is 

passed.  

Taking into consideration the results of Phase I and Phase II in regard to the suspended 

solids removal, a new recommendation for the range values of design criteria especially 
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for d10, Cu and hydraulic loading rate is proposed and listed in Table 25. By applying higher 

hydraulic loading rate, the filter area can be reduced significantly. Hydraulic loading rate 

of 0.60 m/h is preferably than 0.80 m/h based on two considerations. The first is that the 

filter column operated under 0.60 m/h performed better in regard to the turbidity 

removal. The second consideration is related to the solids penetration in the filter bed. 

Hydraulic loading rate of 0.80 m/h contributes to the deeper penetration of solids in filter 

bed which will lead into either higher possibility of breakthrough or higher cost during the 

filter maintenance. 

It is not recommended to use coarse sand with high Cu because in such configuration the 

arrangement of grains and pores is heterogeneously distributed. Therefore, it will be 

difficult to control an even hydraulic loading rate. Moreover, the stability of the filter bed 

may be very poor because the risk of washout of finer media is high. It is also worth to 

noting that this new recommendation is addressed for the purpose of water quality 

improvement before disinfection process.  

Table 25. Comparison of the past and new recommendation values of the design criteria of slow 

sand filtration 

Design Criteria 

Recommended Values 

1. Huisman and Wood 

(1974) 

2. Visscher (1990) 

3. Barrett et al. (1991) 

Anggraini (2017) 

Hydraulic loading rate in the 

filters 

1. 0.1-0.4 m/h 

2. 0.1-0.2 m/h 

3. 0.04-0.4 m/h 

0.20-0.60 m/h*; 

> 0.60 m/h up to 0.80 m/h 

can be alternatives for fine 

media e.g. d10 ±0.25 mm/Cu 

< 3 

Sand specification:   

     Effective size d10 1. 0.15 – 0.35 mm 

2. 0.15 – 0.30 mm 

3. 0.20 – 0.30 mm 

0.25 – 0.50 mm; 

0.50 – 0.90 mm can be 

alternatives as long as the 

filter will be operated at  

0.40 m/h 

     Uniformity coefficient    

     (Cu) 

1. < 3, preferably < 2 

2. < 5, preferably < 3 

3. 1.5 – 2, > 3 for economic 

reasons is considerable 

2.5 – 7 for d10 < 0.50 mm; 

< 3 is preferable for d10 > 

0.50 mm 

 

As part of the research, the method of prolonging the filter run by applying protection 

layer (Mälzer and Gimbel, 2006) was evaluated. In this study, the development of head 

loss and the observation on the solids penetration proved that adding gravel as a 
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protection layer for the filter bed was an effective method to prolong the filter run time. In 

regard to the removal of suspended solids, performance of both filter columns, with and 

without protection layer, was satisfactorily. The average values of outlet turbidity from 

both filter columns met the requirement of WHO. This result confirmed the previous test 

in the Pre-Experiment Phase which figured out that the removal efficiency of filter 

columns with and without protection layer was similar. 

After the filter operation was terminated, it was found out the hydraulic conductivity of 

filter column with protection layer was decreased insignificantly compared to the filter 

column without protection layer. The decrease of hydraulic conductivity in the filter 

column without protection layer was around three times greater than the decrease in the 

filter column with protection layer. In the filter column without protection layer, the solids 

were retained directly on the surface of filter bed. The constriction size of sand bed was 

certainly lower than of gravel layer. Hence, as proven by the observation in the solids 

penetration (see Figure 64), the formation of the secondary filter layer in the filter column 

without protection layer was faster than in the filter column with protection layer.  

Behavior of filter column toward the addition of solids could also be observed from the 

development of head loss. The gradual increase of normalized head loss at 0.20 m/h in the 

filter column without protection layer was found out to be significant. It indicated that the 

filter column without protection layer tended to clog faster than the filter column with 

protection layer. The difference of the final and the initial normalized head loss at 0.20 

m/h in the filter column without protection layer was around 28 cm. In the contrary, the 

increase of normalized head loss at 0.20 m/h in the filter column with protection layer 

was only around 2 cm. 

Those results above indicated that the presence of protection layer may inhibit the 

occurrence of clogging. Therefore, the recommendation of Mälzer and Gimbel (2006) to 

add the protection layer so that the filter run time can be prolonged is an appropriate 

method.  

6.2 Case Study – Slow Sand Filter in Gunungkidul, Java 

Indonesia 

The district of Gunungkidul is one of the poorest regions in Java Island, Indonesia which 

suffers from severe water scarcity especially during the dry season (April – October). Due 

to its karst topography, the water percolates rapidly to the underground forming 

subsurface rivers. In general, local population may derive their water supply from wells, 

surface water, rainwater harvesting and piped water from the public utility PDAM 

(Nestmann et al., 2009). However, there are some limitations from these water sources i.e. 

most wells and surface water run dry during the dry season, the cost to construct the 

rainwater storage tanks is not easily affordable for most of the local population and the 

level of service of the pipe water is very poor (Fuchs et al., 2015).  
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By considering those conditions, an Integrated Water Resources Management Indonesia 

Project (IWRM Indonesia) was established in Gunungkidul. Within the framework of the 

project, an additional water intake was developed by constructing an underground dam 

with an integrated micro-hydro power plant to pump out the water from Bribin cave to a 

reservoir built in Kaligoro. This reservoir supplies the water for 3.5 % of the total 

population which are served in the water supply system (Fuchs et al., 2015). In regard to 

the quality, the water does not meet the requirements of any regulatory standard of 

drinking water (Silva, 2010; Anggraini, 2011). Hence, a water treatment is needed to 

improve the water quality. As part of the project, a pilot plant of slow sand filter was 

installed in Kaligoro to improve the water quality by removing suspended solids. 

Based on Fuchs et al. (2015), the pilot plant was designed to treat an amount of 195 m3 per 

day which can be used to serve five sub-villages (around 2,800 inhabitants). By 

considering the recommended values of design criteria (Table 1), Fuchs et al. determined 

the hydraulic loading rate for the plant was Ͷ m/d ȋ≈ Ͳ.ʹͲ m/hȌ. )n order to encompass 
these criteria, the total filter bed are of 50 m2 was needed. This filter area was divided into 

two filter beds with 25 m2 each. To maintain the continuous supply during the clogging 

and maintenance period, four additional filter beds were needed. In total, six filter beds 

with an area of 25 m2 each were proposed. Table 26 presents the proposed design criteria 

for the plant in Kaligoro. However, the local authorities agreed to construct only half of the 

proposed plant due to the budget procurement. Therefore, the amount of sub-villages that 

should be supplied was also reduced by around the half. Figure 65 shows the layout of the 

filter unit. 

Table 26. Proposed design criteria for slow sand filter plant in Kaligoro (Fuchs et al., 2015) 

Design Criteria Value 

Filter bed area 25 m2 per unit 

 Total 6 filter units 

Hydraulic loading rate 4 m/d (≈ Ͳ.ʹͲ m/hȌ 

Height of filter bed  

Initial 0.8 m 

Minimum 0.5 m 

Specification of sand Lava sand 

Effective size d10 0.25 mm 

Uniformity coefficient Cu 3.06 

Height of underdrain including gravel layer 0.25 m 

Height of supernatant level 1 m 
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Figure 65. Layout of the slow sand filter in Kaligoro (drawn not to scale: IWRM-Indonesia (2015)) 

The construction works of the pilot plant was started in July 2013 (see Figure 66). During 

the monitoring period in August 2014, it was found out that the filter media loaded to the 

chambers were not in accordance with the proposed design. According to the sieving 

analysis that was conducted at the Soil Mechanics Laboratory, Department of Civil and 

Environmental Engineering, Gadjah Mada University, the filter media contained 34.26 % 

gravel (see Appendix 11). Therefore, the filter media was sieved to separate the gravel 

from the sand fraction. At the end the d10 of the media was 0.30 mm and the Cu was 2.93 

(Nugraha, 2016). 

 

Figure 66. Construction works in Kaligoro (Fuchs et al., 2015) 
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Performance of slow sand filter plant had been monitored in 2015 for one month period 

(Nugraha, 2016). As a part of the monitoring, the turbidity of inlet and outlet was 

measured. The comparison of inlet and outlet turbidity is presented in Figure 67. Average 

turbidity removal was 43 % and the outlet values were all below the national turbidity 

standard of Indonesia i.e. 5 NTU. However, it is worth noting that the measurement was 

done during the ripening period when the dirt layer (Schmutzdecke) had not developed 

yet. It could be estimated that after the Schmutzdecke has been developed, the outlet 

turbidity can be lower than the values at the ripening period. Due to these low values of 

outlet turbidity, it could be inferred that the next treatment step i.e. disinfection can be 

performed effectively. 

 

Figure 67. Inlet and outlet turbidity of slow sand filter in Kaligoro after Nugraha (2016) 

At the moment, this plant was not in operation and abandoned (see Figure 68). It was 

found out during the last monitoring of implemented plant, which was done in July 2017, 

that due to the low capacity of the plant, the local water company PDAM which should be 

responsible of the plant operation decided not to use it. 
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Figure 68. Current condition of slow sand filter in Kaligoro (Doc.: Marjianto, 2017) 

With regard to its function and performance on improving the water quality, it is worth to 

put this plant into operation. However, due to the current condition of the plant and the 

issue regarding the plant capacity, some improvements on the constructed plant have to 

be made. Based on the results of this research, the following are some recommendations in 

regard to the filter media, the hydraulic loading rate and the construction that can be 

proposed (see also Table 27): 

1. Filter Media 

According to Figure 68, some plants grow in the chambers of the plant. The risk that 

some parts of the plants are decomposed in situ is very high. These decaying materials 

may deteriorate the filtrate quality. Therefore, it is recommended to replace the entire 

filter media in the three chambers. In regard to the sand specification, the d10 does not 

necessarily to be very fine and the Cu does not necessarily to be as narrow as the 

previous recommended values by Huisman and Wood (1974), Visscher (1990) and 

Barrett et al. (1991). In order to ensure the filter performance and by considering the 

peak turbidity during the rainy season, a d10 of 0.25 - 0.50 mm and Cu of 3-7 can be 

selected. The d10 values of 0.70 mm and 0.90 mm were not recommended because the 

solids may penetrate very deep into the filter bed and led to higher maintenance cost 

because surface scraping will not be sufficient. By having a coarser and ungraded 

media the capital cost may be reduced because further sieving process does not need 

to be done. Lava sand can still be chosen because this material is abundant locally. 

2. Hydraulic Loading Rate 

Based on the results of the study, higher hydraulic loading rate may reduce the 

removal efficiency. However, it was also found that a hydraulic loading rate of 0.8±0.2 

m/h could still reach an average outlet turbidity of below 1 NTU. In the case of slow 

sand filter Kaligoro, the low capacity can be increased by raising the hydraulic loading 
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rate so that the five sub-villages can be supplied with improved water. In order to 

achieve this purpose, the hydraulic loading rate only needs to be increased two times of the original proposal i.e. ͺ m/d ȋ≈ Ͳ.ͶͲ m/hȌ. Since the higher hydraulic loading rate 

(0.8±0.2 m/h) was capable to achieve high removal efficiency, it can be ensured that 

higher performance can be obtained by operating the filter at lower hydraulic loading 

rate (0.40 m/h). 

Table 27. Comparison of previous and current proposed design criteria for slow sand filter Kaligoro 

Design Criteria Previous Value Current Value 

Filter bed area 25 m2 per unit 25 m2 per unit 

 Total 6 filter units Total 3 filter units 

Hydraulic loading rate 4 m/d ȋ≈ 0.20 m/hȌ 8 m/d ȋ≈ 0.40 m/hȌ 

Height of filter bed   

Initial 0.8 m 0.8 m 

Minimum 0.5 m 0.5 m 

Specification of sand Lava sand Lava sand 

Effective size d10 0.25 mm 0.25 – 0.50 mm 

Uniformity coefficient Cu 3.06 2.5 - 7 

Height of underdrain including 

gravel layer 
0.25 m 0.25 m 

Height of supernatant level 1 m 1 m 

 

3. Construction of Filter Plant – Outlet Position 

The outlet position of current plant is located at the bottom of the chamber (see Figure 

69). The outlet pipe is directly connected to the clean water storage tank which is 

placed next to the filter and below the base of the filter chambers. In this position, the 

Δh is too high and leads to the difficulty of controlling the water flow at the desired 

rate. To ensure the filter is operated at the desired rate and to have a better control of 

the rate, it is recommended to reduce the Δh. The approach is to adjust the point 

where the water comes in to the storage tank up to the level around the surface of 

sand bed. Therefore, the storage tank has to be put at least 1,000 mm higher than the 

current level (see Figure 70). 
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Figure 69. Outlet position of current filter plant in Kaligoro 

 

 

Figure 70. Sketch of current (a) and recommended (b) outlet position of slow sand filter in Kaligoro 

(not drawn to scale) 
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7 Conclusion 

Based on the results of this research, some conclusions can be drawn as follows: 

1. The current range values that were recommended in the design criteria of slow sand 

filter was rather conservative. As a consequence of this limited range, the optimization 

and the improvement of the technology were also limited. It was proved that coarser 

filter media represented by d10 0.90 mm/Cu 2.5, which was almost three times greater 

than the upper limit of the current recommended values, could produce low value of 

outlet turbidity i.e. below 1 NTU averagely. Under this average value, the disinfection 

process could be performed effectively. It was also found that for the filter with fine 

media, the hydraulic loading rate could be increased up to 0.80 m/h which was two 

times the upper limit of the current recommended values. By operating the filter at 

0.80 m/h, the average outlet turbidity was also found to be below 1 NTU. As a result of 

a higher hydraulic loading rate is that the area needed for the construction of slow 

sand filter could be reduced significantly. Therefore, the design criteria can be 

optimized by considering these results (see Table 27). Nevertheless, this new 

recommendation on the range values of the slow sand filtration design criteria have to 

be tested for the biological removal and further in a larger scale to provide a more 

comprehensive findings.  

2. In this study, it was figured out that the operating variables did not significantly 

influence the removal efficiency. However, the operating variables, especially the d10 of 

the grain size distribution, influence significantly the period needed for the dirt layer 

to be formed. It was found out that the finer the media, the faster the formation of dirt 

layer on the surface of filter bed is. The faster the formation of the dirt layer is, the 

faster the filter will experience clogging period. This clogging period can be identified 

by the significant decrease of hydraulic conductivity and increase of head loss. As an 

example, by comparing the d10 of 0.26 mm/Cu 2.5 and d10 0.50 mm/Cu 2.5, it was 

identified that the clogging in the finer filter column would occur for two and a half 

time faster than the coarser filter column. 

3. A method to enhance the hydraulic loading rate can be proposed by taking into 

consideration the formation of dirt layer. It was found out that after the dirt layer is 

formed, hydraulic loading rate was no longer affecting the filter performance. In this 

case it has been proved in this study that once the dirt layer has been formed, the 

hydraulic loading rate can be enhanced up to three times without deteriorating the 

filter performance. 

4. Applying protection layer in the filter can be a promising method to increase the filter 

run time. It was proved that by adding gravel as a protection layer, the decrease of 

filter capacity of the filter could be 70 % lower than the decrease of filter without any 

protection layer. 
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5. The implementation of a technology, especially in the developing countries, should 

consider many aspects such as the socio-economic condition, human resource, local 

policy etc. Another important factor is to develop the sense of belonging of the 

technology among the local people so that the technology can last in a long term. This 

sense of belonging can be grown by implementing an appropriate technology. 

Implementation of too advanced technology in rural areas in developing countries may 

be redoubtable for some local people in which they do not want to deal with it. Slow 

sand filter can be a promising technology which is appropriate for the people living in 

developing countries especially in rural areas. Its simplicity in the construction, 

operation and maintenance process does not require the skilled personal. Further, 

education on the personnel in charge so that they can have an advanced skill will also 

support the successful implementation of the technology. 
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Appendix 

Appendix 1. Grain size distribution of filter media for systematic investigation  
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Appendix 2. Specific surface area of filter columns in all tests 

Specific surface area does not have any influence on the suspended solids removal but it 

will have a big influence on the bacteria removal as has been studied by Orb (2012) 

Phase Filter Columns Specific Surface Area As (m2/m3) 

Phase I 

 Set 1 Set 2  

Fine-1 25,987   

Fine-2 14,699 13,224  

Fine-3 8,243 8,628  

Coarse-1 5,583 5,467  

Coarse-2 4,423 4,535  

 Set A Set B Set C 

NG-1 8,759 8,760 8,758 

NG-2 8,050 8,050 8,077 

WG-1 6,587 6,680 6,799 

Phase II 

Fine-1.1 29,960   

Fine-3.1 8,376   

Coarse-2.1 4,441   

Coarse-3 3,060   

Coarse-4 2,413   

NG-1.1 8,115   

NG-2.1 7,913   

WG-2 5,892   

Low-1 8,623   

Low-2 8,115   

High-1 8,428   

NG-1.1PL 8,474   
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Appendix 3. Solids size distribution in the outlet of filter columns in Phase I-varied Cu  
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Appendix 4. Solids size distribution in the outlet of filter columns in Phase I-high hydraulic 

loading rate (0.60±0.15 m/h) 
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Appendix 5. Filter columns in Phase II 

 

 

 

Appendix 6. Process of sand samples shaking during the analysis of solids penetration in 

Phase II 
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Appendix 7. Solids size distribution at the outlet of filter columns in Phase II-varied d10  

 

 

 

Appendix 8. Solids size distribution at the outlet of filter columns in Phase II-varied Cu 
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Appendix 9. Formation of filter cake in Phase II - test of varied d10  

 

  

 

Appendix 10. Development of normalized head loss at 0.20 m/h in the Phase II-varied Cu 

 

d10 0.50 mm d10 0.90 mm 

d10 0.26 mm 
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Appendix 11. Grain size analysis of filter media of slow sand filter Kaligoro before sand-

gravel separation 
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