KIT | KIT-Bibliothek | Impressum | Datenschutz

Long-termanalysis of a variational integrator for charged-particle dynamics in a strong magnetic field

Hairer, Ernst; Lubich, Christian

The differential equations of motion of a charged particle in a strong non-uniform magnetic field have the magnetic moment as an adiabatic invariant. This quantity is nearly conserved over long time scales covering arbitrary negative powers of the small parameter, which is inversely proportional to the strength of the magnetic field. The numerical discretisation is studied for a variational integrator that is an analogue for charged-particle dynamics of the Störmer-Verlet method. This numerical integrator is shown to yield near-conservation of a modified magnetic moment and a modified energy over similarly long times. The proofs for both the continuous and the discretised equations use modulated Fourier expansions with state-dependent frequencies and eigenvectors.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000082695
Veröffentlicht am 11.05.2018
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000082695
Verlag KIT, Karlsruhe
Umfang 28 S.
Serie CRC 1173 ; 2018/6
Schlagworte charged particle, magnetic field, adiabatic invariant, modulated Fourier expansion
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page