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Abstract

Multi-objective optimization problems are characterized by possessing no sin-
gle solution that attains the best feasible value in each objective. The intricacy
of these problems lies in finding a compromise solution such that the prefe-
rences of the decision maker, who implements the compromise, are satisfied.
Scalarization – mapping the vector of objectives to a real value – identifies a
single solution as global preference optimum to solve this predicament, howe-
ver, scalarization generates no information about other compromise solutions
that might change the decision maker’s preferences towards the global opti-
mum. To address this issue, this thesis provides a theoretical and algorithmic
analysis of scalarized preferences. The theoretical analysis consists of the deve-
lopment of a framework that characterizes preferences as problem transforma-
tions that identify preferred subsets of the Pareto front. Scalarization is placed
within this framework as a codomain transformation. Furthermore, axioms are
proposed that represent desirable properties scalarization functions may exhi-
bit. It is shown under which conditions existing scalarization functions fulfill
these axioms. The algorithmic analysis characterizes preferences by the result
an optimization algorithm generates. Two new paradigms are identified within
the analysis for which algorithms that use scalarized preference information
are designed: Preferences-biased Pareto front approximations distribute points
across the entire Pareto front but focus more points in regions with better sca-
larization values; multimodal preference optima are points that are local scala-
rization optima in the objective space. A three step algorithm is developed to
approximate local scalarization optima and different methods are evaluated for
each step. Two real-world optimization problems are presented to illustrate the
usefulness of the two algorithms. The first problem consists of finding opera-
ting schedules for a combined heat and power plant that maximize electricity
and heat output while minimizing fuel consumption. Preference-biased appro-
ximations generate more energy efficient solutions among which the decision
maker can choose her personal preference weighing the tradeoffs between the
three objectives. The second problem is concerned with scheduling devices in a
residential building such that energy costs, carbon dioxide emissions and ther-
mal discomfort are minimized. It is shown that local scalarization optima are
schedules that balance the three objectives. The analysis and the experiments
presented in this work enable decision makers to make better choices by app-
lying methods generating more options that conform to their preferences.
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Zusammenfassung

Multikriterielle Optimierungsprobleme verfügen über keine Lösung, die op-
timal in jeder Zielfunktion ist. Die Schwierigkeit solcher Probleme liegt darin
eine Kompromisslösung zu finden, die den Präferenzen des Entscheiders genü-
gen, der den Kompromiss implementiert. Skalarisierung – die Abbildung des
Vektors der Zielfunktionswerte auf eine reelle Zahl – identifiziert eine einzige
Lösung als globales Präferenzenoptimum um diese Probleme zu lösen. Aller-
dings generieren Skalarisierungsmethoden keine zusätzlichen Informationen
über andere Kompromisslösungen, die die Präferenzen des Entscheiders be-
züglich des globalen Optimums verändern könnten. Um dieses Problem an-
zugehen stellt diese Dissertation eine theoretische und algorithmische Analy-
se skalarisierter Präferenzen bereit. Die theoretische Analyse besteht aus der
Entwicklung eines Ordnungsrahmens, der Präferenzen als Problemtransforma-
tionen charakterisiert, die präferierte Untermengen der Paretofront definieren.
Skalarisierung wird als Transformation der Zielmenge in diesem Ordnungsrah-
men dargestellt. Des Weiteren werden Axiome vorgeschlagen, die wünschens-
werte Eigenschaften von Skalarisierungsfunktionen darstellen. Es wird gezeigt
unter welchen Bedingungen existierende Skalarisierungsfunktionen diese Axio-
me erfüllen. Die algorithmische Analyse kennzeichnet Präferenzen anhand des
Resultats, das ein Optimierungsalgorithmus generiert. Zwei neue Paradigmen
werden innerhalb dieser Analyse identifiziert. Für beide Paradigmen werden
Algorithmen entworfen, die skalarisierte Präferenzeninformationen verwen-
den: Präferenzen-verzerrte Paretofrontapproximationen verteilen Punkte über
die gesamte Paretofront, fokussieren aber mehr Punkte in Regionen mit bes-
seren Skalarisierungswerten; multimodale Präferenzenoptima sind Punkte, die
lokale Skalarisierungsoptima im Zielraum darstellen. Ein Drei-Stufen-Algorith-
mus wird entwickelt, der lokale Skalarisierungsoptima approximiert und ver-
schiedene Methoden werden für die unterschiedlichen Stufen evaluiert. Zwei
Realweltprobleme werden vorgestellt, die die Nützlichkeit der beiden Algo-
rithmen illustrieren. Das erste Problem besteht darin Fahrpläne für ein Block-
heizkraftwerk zu finden, die die erzeugte Elektrizität und Wärme maximieren
und den Kraftstoffverbrauch minimiert. Präferenzen-verzerrte Approximatio-
nen generieren mehr Energie-effiziente Lösungen, unter denen der Entscheider
seine favorisierte Lösung auswählen kann, indem er die Konflikte zwischen
den drei Zielen abwägt. Das zweite Problem beschäftigt sich mit der Erstel-
lung von Fahrplänen für Geräte in einem Wohngebäude, so dass Energiekos-
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ten, Kohlenstoffdioxidemissionen und thermisches Unbehagen minimiert wer-
den. Es wird gezeigt, dass lokale Skalarisierungsoptima Fahrpläne darstellen,
die eine gute Balance zwischen den drei Zielen bieten. Die Analyse und die
Experimente, die in dieser Arbeit vorgestellt werden, ermöglichen es Entschei-
dern bessere Entscheidungen zu treffen indem Methoden angewendet werden,
die mehr Optionen generieren, die mit den Präferenzen der Entscheider über-
einstimmen.
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Glossary

a posteriori technique a solving technique in MOO that first obtains an ap-
proximation of the entire Pareto front and let the DM choose from this
approximation the solution she implements. The Pareto front approxi-
mation usually consists of a uniformly distributed discretization of the
front.

a priori technique a solving technique in MOO that considers the DM’s pref-
erence before the optimization process is started. Preference information
is used to design or configure a tailored algorithm that obtains Pareto op-
timal solutions that are preferred by the DM.

black box optimization a discipline that is concerned with optimization prob-
lems of which no information about their algebraic structure is known
and only the relation of input and outputs is available.

box constraints constraints on the search space of an optimization problem
that are given in the form xl ď x ď xr, where xl,xr P Rn. The vectors xl

and xr thereby form a box that contains the feasible set X .

candidate solution an element of the feasible set of an optimization problem,
i.e. the domain of the objective function.

codomain the set of output values into which a function maps. See Defini-
tion 2.

decision vector an element of the search or decision space of a real-valued
MOOP.

domain the set of input values on which a function is defined. See Definition 2.

elitism an EA is called elitist or suffices elitism, if the individuals that survive
to the next iteration are picked from the combined parent and offspring
population.
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Glossary

exploitation a search strategy during optimization that consists of focusing on
a narrow part of the search space in which promising candidate solutions
are assumed to be located. Exploitation is equivalent to performing a
search on a local scale.

exploration a search strategy during optimization that consists of probing large
portions of the search space. Exploration is equivalent to performing a
search on a global scale.

function a binary relation that maps elements of an input set (domain) to an
output set (codomain). For each input there exists exactly one output. See
Definition 2.

graph (binary relation) a collection of ordered pairs defined between elements
of a set of departure and elements of a set of destination. The graph of a
function describes the functional relationship between inputs and out-
puts. See Definitions 1 and 2.

ideal point the vector that possesses for each entry i the smallest feasible ob-
jective value of objective i of a given MOOP. See Definition 35.

implicit function a mathematical expression of several variables that is equated
to 0.

individual a candidate solution generated during the execution of an EA.

interactive technique a solving technique in MOO that mandates the DM to
interact with the optimization algorithm during runtime for steering the
search towards regions she deems interesting.

manifold a manifold of dimension n is a topological space that is at each point
locally homeomorphic to the n-dimensional Euclidean vector space. For
example, a circle is a manifold of dimension one, since a small segment of
the arc locally resembles a line.

mathematical program a formulation of an optimization problem that adheres
to a predefined algebraic structure. Mathematical optimization algorithms
that are designed to solve problems of a specific algebraic structure are
guaranteed to find an exact optimum or an optimum within some error
bounds of these problems..

nadir point the vector that possesses for each entry i the largest feasible objec-
tive value of objective i among all Pareto optimal objective vectors. See
Definition 38.
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Glossary

normative science a scientific approach to building theories and models by
assuming an idealized state of how a system should function or behave.
In MCDA and MOO, a normative approach defines how a decision mak-
ing process should ideally take place. The DM is expected to adhere to
guidelines developed by a normative approach.

objective vector an element of the objective space of a real-valued MOOP.

ontology a formal system in computer science for naming and defining types,
properties and the interrelationships of the entities that are described
within the system.

outranking a methodology in MCDA that relies on pairwise comparisons to
identify preferred alternatives.

parametric equation a group of functions of independent variables, where
each function can be used to describe a single coordinate of a geometric
object.

plateau a connected subset of the domain of a function f on which f has a
constant value.

population a set of individuals in an EA.

positive science a scientific approch to building theories and models by ana-
lyzing factual evidence. In MCDA and MOO, a positivist approach ana-
lyzes a DM’s choices and behavior to develop a mathematical model that
is compatible with his preferences. The generated model is expected to
make the same choices as the DM.

steady state a property that characterizes EAs that generate only a single new
individual in each iteration.
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Acronyms

ANN artificial neural network.

ASF achievement scalarization function.

BBO black box optimization.

BEMS building energy management system.

BFP best feasible position.

CHP combined heat and power.

CMA-ES Covariance Matric Adaption Evolutionary Strategy.

DBF detected basin fraction.

DE differential evolution.

DM decision maker.

EA evolutionary algorithm.

ESHL KIT Energy Smart Home Lab.

ESPEA Electrostatic Potential Energy Evolutionary Algorithm.

FP false positive.

GA genetic algorithm.

HC hill climber.

HVAC heating, ventilation and air-conditioning.

IGD inverted generational distance.

IP integer program.
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Acronyms

IQR inter-quartile range.

LED largest energy decrease.

MaO many-objective optimization.

MaOP many-objective optimization problem.

MAUT Multi-attribute Utility Theory.

MAVT Multi-attribute Value Theory.

MCDA Multiple Criteria Decision Analysis.

MILP mixed integer linear program.

MMO multimodal optimization.

MOCO multi-objective combinatorial optimization.

MOEA multi-objective evolutionary algorithm.

MOO multi-objective optimization.

MOOA multi-objective optimization algorithm.

MOOP multi-objective optimization problem.

NBC nearest better clustering.

OWL Web Ontology Language.

PD peak distance.

PMOEA preference-based multi-objective evolutionary algorithm.

PR preak ratio.

PSA particle swarm algorithm.

PSO particle swarm optimization.

PV photovoltaic.

RE relative energy.

SBX Simulated Binary Crossover.

SOO single-objective optimization.
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Acronyms

SOOP single-objective optimization problem.

SOPO single-objective parametric optimization.

SWF social welfare functional.

TS topographical selection.

UCF useful cluster fraction.

WIN worst in archive.
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Notation

The mathematical notation used in this work was chosen to conform with good
practices established in textbooks on multi-objective optimization and mathe-
matics. In general, capital latin letters refer to sets (e.g. A), boldface capital
latin letters to matrices (e.g. A), boldface small latin letters to vectors (e.g. a),
latin letters to functions, indices, variables, elements of sets and components
of vectors (e.g. a). Subscripts (e.g. ai) indicate components of a vector or ma-
trix, superscripts (e.g. ai) represent entities. Due to a limited supply of letters,
some symbols are reused throughout multiple chapters and sections with dif-
ferent meaning. Their meaning, however, should be clear in the given context.
The following glossary lists symbols that are universally valid throughout the
entire thesis.

dKpu,v,wq the perpendicular distance of vector w to the line passing through
the points u and v.

ă a binary relation that establishes a dominance relation. The statement a ă b
implies that a dominates b according to some dominance notion.

f |A the restriction of function f on the set A, where A is a subset of the func-
tion’s original domain X .

deg´pvq the indegree of node v in a directed graph, i.e. the number of edges
that point to v.

deg`pvq the outdegree of node v in a directed graph, i.e. the number of edges
that point away from v.

Opfq the set of functions that grow asympotatically at most as fast as f :
tg : R0 Ñ R` | Dc ą 0 Dt0 @t ą t0 : fptq ď c ¨ gptqu.

opfq the set of functions that grow asympotatically strictly slower than f :
tg : R0 Ñ R` | @c ą 0 Dt0 @t ą t0 : fptq ď c ¨ gptqu.

wpfq the set of functions that grow asympotatically strictly faster than f :
tg : R0 Ñ R` | @c ą 0 Dt0 @t ą t0 : fptq ě c ¨ gptqu.
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Θpfq the set of functions that grow asympotatically at the same speed as f :
tg : R0 Ñ R` | Dc ą 0 Dt0 @t ě t0 : fptq{c ď gptq ď c ¨ fptqu.

LpSq the Lebesgue measure of the set S, where S is a subset of a vector space.
The Lebesgue measure is a generalization of the volume concept from
three dimensions to arbitrary vector spaces.

M the number of units a decision maker (DM) is willing to give up at most in
one objective to gain an additional unit in another objective for defining
tradeoff optimal solutions (see Definition 14).

m number of objectives of an optimization problem.

N the population size chosen for an evolutionary algorithm (EA).

n number of decision variables of an optimization problem.

Φ preference predicate. See Definitions 11 and 12.

x, y, z general identifiers for decision vectors.

u, v, w general identifiers for objective vectors.

ue,k extreme point of the k-th objective. See Definition 40.

u‹ ideal point. See Definition 35.

undr nadir point. See Definition 38.

Ψ scalarization function. See Definition 28.

N pµ, σq a random number drawn from the normal distribution with mean µ
and standard deviation σ.

Nkpµ,Σq a vector of random numbers drawn from a multivariate normal dis-
tribution of k components with mean µ and covariance matrix Σ.

Upa, bq a random number drawn from the uniform distribution in the interval
ra, bs.

rks the set t1, . . . , ku, where k P N.

tauki“j the indexed set taj , aj`1, . . . , ak´1, aku, where j, k P N and j ă k.

clpSq the closure of the set S.

intpSq the interior of the set S.
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sortpS,Rq sorts the elements in S according to the binary relation R, where R
invokes a total order on S. The sorting T “ sortpS,Rq is a tuple of size
|S| such that for all i, j P r|S|s and ti, tj P T for which i ă j it holds that
tiRtj .

arg sortpS,Rq computes a vector of indices q P N|S| such that for any si P S the
entry qi contains the index of si in sortpS,Rq.

X feasible set of the search space of an optimization problem.

Xp the set of feasible decision vectors that map to Pareto optimal objective
vectors.

Y feasible set in the objective space.

Yp Pareto optimal feasible set in the objective space (Pareto front).
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1. Introduction

Every aspect of our life is affected by choices. From everyday decisions to busi-
ness propositions or political elections, each choice sets in motion a cascading
chain of actions. While some choices are negligible, others impact the fate of
entire countries, possibly even mankind. Making good decisions is a difficult
task in the face of plentiful options or alternatives that are difficult to fathom.
This work aims at providing a better understanding into the preferences that
necessarily guide our decision-making process. These insights are used in de-
veloping new methods that enable us to make better choices.

This chapter serves as an introduction to the work at hand. The main research
question is motivated first. The explanation of concepts from optimization the-
ory, especially multi-objective optimization (MOO), that are discussed therein
are based on the fundamental literature of [Deb01, CCLVV07, Mie99, Ehr05,
GEF16]. Thereafter, this work is put into perspective of current research on op-
timization. Section 1.3 discusses the objectives and contributions of this thesis.
Finally, the structure of the remaining work is presented in Section 1.4.

1.1. Motivation

Optimization is the science of obtaining the best possible outcome by making
a choice among a set of different options. In single-objective optimization, the
optimization outcome is characterized by only one criterion or objective that
represents the outcome’s desirability. The optimal choice is obtained by select-
ing the outcome that fulfills the criterion to the highest degree. Take the exam-
ple of a firm introducing a new product to the market. Said firm can choose
between different production plans, which represent different options, affect-
ing total output and costs per unit produced. Demand for the product depends
on the price at which it is offered. Selecting a production plan that maximizes
profits is the best possible outcome and desirability is measured in the quantity
of money earned.

Outcomes in real-world scenarios, however, are often characterized by multiple
criteria, making a clear ranking of alternatives difficult if those criteria are con-
flicting. Instead of a single solution that optimizes all criteria at the same time,
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1. Introduction

there exist a set of trade-off solutions that can only be improved in one criterion
by deteriorating another criterion at the same time. These solutions are called
Pareto optimal or efficient and are all eligible candidates for implementation.
MOO is the branch in optimization that deals with such problems. Consider the
example of a research and development department of an automotive company
designing a new engine. Gasoline consumption and power output are two key
properties by which the performance of an engine is judged. Since both crite-
ria are conflicting, there does not exist an engine configuration that minimizes
gas consumption and maximizes power output at the same time. Instead, there
exist engines that have a high gas consumption and a high power output, ones
consuming only little gas exhibiting only little power output and other config-
urations in between that balance gas consumption and power output.

In most real-world applications, only a single solution or seldom an elected few
of the entire Pareto optimal set can be implemented. This circumstance requires
a decision maker (DM) to pick only one alternative for implementation. Since
there exists no option that is best for all criteria, the optimal choice mainly de-
pends on the decision maker’s preferences. Going back to the example of the
automotive company, the best engine configuration depends on the type of car
that is developed. A sports car is expected to have a powerful engine, whereas
gas consumption is rather negligible. Compact cars, on the other, should be
more economical and favor consumption over power.

Formulating preferences, however, may be a difficult task, since it requires
awareness of the underlying values of which the objectives are composed of.
Also, DMs are often not aware of their preferences prior to any optimization
effort. Preferences sometimes only become apparent when alternatives become
available. Aiding the decision maker at any step of the selection process is
thereby key in enabling him to make choices that truly reflect the values that
form the very basis of her preferences [Kee09]. Consider in this context the ex-
ample of finding a name for your child. Such a decision has a major impact on
the child’s future life. At the same time, however, finding a compromise solu-
tion between the criteria for judging individual names is tremendously diffi-
cult; let alone defining the values that lie at the heart of those criteria.

A convenient way of solving the predicament of choice would be employing
a mechanism that ranks all Pareto optimal solutions. The alternative that is
placed at the top of the ranking would be considered the optimal choice. Such a
ranking mechanism can be composed by eliciting preferences from the DM and
employing expert evaluation techniques [GEF16, MA04]. Even if the DM does
not have a clear picture about her own preference, expert evaluation techniques
can still be used to recommend options that provide a balance between the
different objectives.
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Most real-world applications measure objectives by real numbers. Aggregating
these values into a single real number – a method that is known as scalarization
– allows establishing an ordering of all Pareto optimal solutions. In that sense,
scalarization is a powerful tool that eliminates the necessity of choice. The
weighted sum method (see [MA04]) is a well-known example of a scalarization
technique. Objective values are multiplied by positive weights signifying their
relative importance and subsequently summed. In case the DM does not have
any preconceived preferences about the importance of the individual criteria,
objective values can at least be normalized to a common scale and summed.

At the same time, however, scalarization bears the risk of oversimplification,
since aggregation always results in a loss of information. In the same manner,
in which a mathematical problem formulation is only a model of reality, scalar-
ization functions are only a model of human preferences [GEF16]. In both cases,
the model might miss unintentionally or willingly certain aspects that form part
of reality. The negligence of said aspects is not necessarily the result of an ab-
sence of diligence, but the difficulty of finding a mathematical representation
of intangible information. Wind farms, for example, are placed such that their
power output is maximized and operating costs are minimized. Residents,
however, often complain about the placement of individual turbines if they
are located close to their homes or seemingly spoil the landscape. Capturing
these criteria by a mathematical formulation can be difficult as they are subject
to individual perception and, thereby, in general difficult to measure [RM06].

Blindly selecting the optimum identified by the scalarized preference might,
therefore, result in a subpar choice. Instead of relying solely on the global
scalarization optimum, the scalarization function should serve as a guide to
identify alternatives that are interesting to the DM. Since these options are ex-
pected to be more desirable, the DM is not overburdened by making a choice
between countless options of which most are never even considered for im-
plementation. Narrowing down the choice to interesting alternatives greatly
simplifies the decision making process and allows the consideration of hidden
information that is not expressed in the scalarization function.

It is therefore imperative that the application of scalarized preferences is amen-
ded by optimization techniques that either compute more alternatives to choose
from or generate additional information that puts the global scalarization op-
timum in perspective to other options. The development of such techniques
has so far received little attention in MOO. The lack of availability of these
techniques motivates a deeper understanding of scalarized preferences and the
development of algorithms that provide a DM with more meaningful options
to make better choices.
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1.2. Related Work

Preferences in multi-objective optimization have been a very active field of re-
search in recent years. The field is closely intertwined with the discipline of
Multiple Criteria Decision Analysis (MCDA) and both areas distinguish them-
selves mainly in one key aspect. In MCDA, the set of feasible alternatives to
choose from is known to the DM. The problem of identifying the optimal op-
tion of these alternatives is called choice problem. In MOO instead, the set of
feasible alternatives is unknown prior to any optimization effort. Feasible alter-
natives must either be obtained by applying some optimization methodology
or an optimal choice is generated by the search algorithm itself [BDMS08].

In light of the extensive MCDA and MOO literature, it is imperative that this
thesis is put into perspective from both areas of research. Classic MCDA tech-
niques can be broadly divided into two schools. Outranking methods estab-
lish an ordering of the different alternatives by pairwise comparisons. Multi-
attribute Utility Theory (MAUT) and Multi-attribute Value Theory (MAVT)
techniques assign a numeric value to each alternative representing its desirabil-
ity. MAVT assumes that the outcomes of choices are deterministic, whereas in
MAUT, outcomes are probabilistic and utilities are modeled as expected values
[GEF16]. For simplicity, and since we only regard deterministic optimization
problems, we refer to MAVT in the subsequent work. Scalarization belongs to
the family of MAUT/MAVT techniques.

A function within the MAVT framework that assigns numeric values to so-
lutions is called value function. Alternatives can be ranked according to the
values computed by the value function. Value functions can be further char-
acterized by the degree of additional information that can be derived from the
function values. The literature mainly distinguishes between ordinal and car-
dinal or measurable functions, representing ordinal and cardinal scales of mea-
surement, respectively. Since cardinal preferences are mostly related to utility
theory and thereby MAUT techniques, their equivalent in value theory is de-
noted by measurable preferences [GEF16].

Ordinal values only reveal the position of each option in the ranking and pro-
vide no insight into the degree of preference intensity. Measurable functions,
on the other hand, allow the derivation of additional knowledge by comput-
ing the difference between individual values [GEF16, Roe98]. School grades
are an example for an ordinal preference scale. Improving from a ‘B’ to an ‘A’,
for example, requires a different effort compared to improving from a ‘D’ to a
‘C’. Maximum payload of a spaceship would be an example for cardinal pref-
erences, since increasing the payload from 700 kg to 800 kg is equally beneficial
as increasing it from 800 kg to 900 kg.
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1.2. Related Work

The analysis in this thesis takes a more general approach to the interpretation
of values. We assume that alternatives, whose values are close to each other,
are somewhat similarly desirable. Strict measurable preferences, which require
the comparability of value differences, however, are not enforced. In a practical
example, compare a wage increase from 5e to 10e to a raise from 1000e to
1005e. Although the increase in the amount of money earned is 5e in both
scenarios, the benefit of receiving a 100 % raise in the first case is arguably much
higher than the marginal gain in the second case. On the other hand, earning
5e is more similar to earning 10e in comparison to 1000e or 1005e.

Value functions can be further categorized according to the underlying mathe-
matical model they are based on. The most common approaches in MAVT are
based on either the additive or the multiplicative model. In both models, indi-
vidual criteria are valuated by a single-objective value function.1 The additive
model multiplies these valuated criteria by individual positive real numbers
signifying the relative importance of each objective and sums them up. In the
multiplicative model, valuated criteria are exponentiated by weights and sub-
sequently multiplied. It is worth noting that in case the valuated criteria are
positive, any multiplicative value function can be transformed into an additive
value function through logarithmizing [GEF16].

The reason, why the additive and multiplicative model are prevalent in MCDA
is not just their accessibility. MAVT is based on the axiomatic foundation that
a DM possesses a preference structure that can be represented by a value func-
tion. In case the preference adheres to a certain set of axioms, there exists an ad-
ditive or multiplicative value function that represents the preference [GEF16].
Consequently, methods for eliciting weights are a major focus in MAVT re-
search [JLS82].

MOO generally takes a more simplified approach. The valuation of additive
and multiplicative value functions greatly depends on the chosen weights [JLS82].
As mentioned before, candidate alternatives are usually not known prior to
any optimization effort. This makes the elicitation of preferences difficult, since
preferences can change if new information becomes available [KT79]. There-
fore, expert knowledge is often sought to construct value functions that guide
the search towards solutions that provide a balance between the different ob-
jectives [Mie99, MA04, SBS13, DG11, Das99]. These value functions are typi-
cally not founded on the basis of an axiomatic framework. The set of Pareto
optimal solutions of real-valued optimization problems usually forms a mani-
fold in the objective space called Pareto front. Therefore, value functions and

1Single-objective value functions can be used to transform qualitative assessments such as ‘good’
or ‘bad’ to a numeric scale. Valuating individual criteria before weighting also allows the mod-
eling of diminishing marginal utility.
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1. Introduction

preference notions in general are often inspired by its geometric properties
[BDDO04, DG11, BSS17, Das99, SW13].

So far, we have implicitly assumed that the valuation of individual criteria are
independent of each other. Extended MAVT models, however, also consider in-
teractions between criteria. Redundancy and complementarity between objec-
tives can be modeled using the discrete Choquet integral [Cho54]. Interactions
between criteria are accommodated in the additive model by giving weights to
subsets of criteria instead of individual criteria. An in-depth explanation of this
methodology is beyond the scope of this work. The interested reader, however,
is referred to [Gra96] for a detailed description.

Synergies between the valuation of objectives are usually not explicitly consid-
ered in classic MOO techniques. Instead, positive or negative interdependen-
cies are directly handled at the objective level, since they affect the composition
of the Pareto optimal set. If two objectives are aligned in the sense that the im-
provement of the first objective always results in an improvement of the second
objective and vice-versa, the dimensionality of the Pareto front is reduced by
one, since there exists no tradeoff between both objectives [Pad13]. A Pareto
optimal solution can be obtained by only optimizing one of the two objectives.
Objective function evaluations of real-world optimization problems are usually
computationally expensive [Kno06, Som81, SCBS14]. Therefore, a case can be
made for omitting redundant or strongly correlated objectives to save compu-
tation resources [DS05]. Of course, redundant objectives should be considered
in the final decision making process as each criterion influences the usefulness
of a solution to implement.

In this thesis, scalarization broadly refers to any function that aggregates a vec-
tor of numeric values to a single real value. We do not require any axiomatic
system of preferences to guarantee the existence of such functions. We do as-
sume, however, that said functions can be characterized by certain mathemat-
ical properties that guarantee that a function behaves in a certain way. The
discussion of these properties plays a central part in Chapter 3.

1.3. Objectives and Contributions

This work addresses the role of scalarization as a method for formulating pref-
erences in MOO. The main goal of this thesis is, firstly, providing a better un-
derstanding of scalarized preferences in MOO and, secondly, to develop new
methods that use scalarized preference information to generate more solutions
that are interesting to the DM. The contributions of this thesis can be summa-
rized in the following way:
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• the proposition of a new framework for the mathematical characteriza-
tion of preferences in MOO and the description of scalarized preferences
in said framework,

• the identification and definition of mathematical properties scalarization
functions can exhibit that invoke desirable behavior, which is beneficial
for the choice and optimization process,

• an algorithmic characterization of preferences that is based on the opti-
mization result delivered to the DM,

• the development of a new methodology for describing and obtaining
optimal Pareto front approximations by a finite set of points biased by
scalarized preference information,

• the development of a new technique for obtaining local scalarized prefer-
ence optima,

• a computational study of the proposed algorithms on artificial bench-
mark problems and in real-world application scenarios.

For a summary of previous publications that have contributed to this work, see
Appendix A.

1.4. Structure

The remaining work is structured as follows. The next chapter provides a
general introduction to preferences in multi-objective optimization. The multi-
objective problem is motivated as an extension to the single-objective problem.
Preferences are introduced in a two-fold way; firstly as a restriction to the set
of Pareto optimal solutions and secondly as a transformation of the original
optimization problem. Three distinctive transformation approaches are iden-
tified and illustrated using a practical example of a tradeoff-based preference
model.

The subsequent chapter formally introduces the notion of scalarized prefer-
ences and categorizes them in the framework presented in the previous chap-
ter. The notion of a scalarization function to express preferences is formally
defined. Specific instances of scalarization functions are discussed and catego-
rized. Subsequently, mathematical properties that a scalarization function may
exhibit are presented. The fulfillment of such properties implies that the scalar-
ization function behaves in a certain way, which in turn may be desired by a
DM. It is shown, under which conditions the presented scalarization function
fulfill the proposed properties.
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Chapter 4 presents an algorithmic characterization of preferences in MOO. A
framework is presented for characterizing the methodology of optimization
with respect to the optimization outcome and, therein, different paradigms are
described. Two new paradigms are developed in the course of said framework
– preferenced-biased Pareto front approximations and local preference optima.
The chapter also provides a brief introduction to evolutionary algorithms and
a justification to why this approach is chosen to develop algorithms that imple-
ment the new paradigms.

Next, a new concept for defining an optimal distribution of points on the Pareto
front using scalarized preference information is introduced. The theoretical
properties of this concept is examined and it is shown that such distributions
exist under very mild conditions. An algorithm – the Electrostatic Potential
Energy Evolutionary Algorithm (ESPEA) – that implements this concept to
generate preference-biased Pareto front approximations is presented. Different
selection strategies for choosing candidate solutions in ESPEA are discussed
and computationally analyzed. ESPEA is compared to other state-of-the-art
multi-objective evolutionary algorithm (MOEA) to examine how well ESPEA
performs in obtaining uniform Pareto front approximations if all Pareto opti-
mal points are considered to be equally desirable. A qualitative analysis of the
preference-biased Pareto front approximations obtained by ESPEA examines
their usefulness from a decision-making perspective.

An algorithmic framework for obtaining local scalarized preference optima is
presented in Chapter 6. The framework consists of three components. Different
methodologies for the individual components are developed and examined.
Quantitative computational studies are performed to compare the methodolo-
gies. The computational study puts its focus on finding optimal parametriza-
tions for each method and finding optimal methods for each component.

Chapter 7 presents two real-world applications for the algorithms developed
in Chapters 5 and 6. The first application is concerend with the optimization
of the operation of a combined heat and power (CHP) plant. It is shown that
ESPEA is able to obtain a uniform approximation of the Pareto front of the con-
sidered problem. ESPEA is also able to generate preference-biased Pareto front
approximations that contain more solutions that maximize the plant efficiency
while retaining a scope of the entire Pareto front. The second application is
concerned with finding optimal schedules for devices in a residential building.
Minimizing energy consumption costs, carbon dioxide emissions and thermal
discomfort are considered as objectives in this context. It is shown that sched-
ules that are local preference optima present themselves as interesting options
to the DM. At the same time, restricting the optimization result to local scalar-
ization optima simplifies the decision making process. The thesis is concluded
by a summary and an outlook on future work.
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2. Preferences in Multi-objective
Optimization

The fundamentals of preferences in MOO are discussed in this chapter. Opti-
mization problems and preferences are defined on the basis of set theory and
the theory of relations in contrast to existing approaches that rely on numeric
representations of variables and objectives [Deb01, CCLVV07, Mie99, Ehr05].
A set- and relation-based focus allows a clear and coherent definition of pref-
erences in MOO that is independent of the algebraic structure of the problem
to be solved. Thereby, existing concepts related to preferences in MOO can
be generalized and extended beyond real-valued vector spaces. The proposed
characterization of preferences is a first step towards developing optimization
methodologies that are applicable to arbitrary algebraic structures.

This chapter starts by explaining the foundations of optimization theory. The
multi-objective optimization problem (MOOP) is introduced as an extension
to the single-objective optimization problems (SOOPs) in optimizing multiple
objectives at the same time. Pareto optimality is presented as the combination
of the orderings that are imposed on the individual objectives of the SOOPs.
Preferences can then be described as a restriction to the set of Pareto optimal
solutions. The second part of the chapter focuses on how preferences can be
articulated as a transformation of the original MOOP and how different ap-
proaches to preference formulations can be related to each other. The chapter
is concluded with the presentation of three distinct formulations of a tradeoff-
based preference notion that identify the same preferred subset of the set of
Pareto optimal solutions.

2.1. Multi-objective Optimization Problems

Broadly speaking, any optimization problem consists of a set of inputs, a set of
outputs, and a mapping that relates elements of both sets to each other. In the
example of Section 1.1, a firm can choose between different production plans
for maximizing its profit from product sales. In this context, the different pro-
duction plans are inputs, profits are outputs, and the mapping describes how
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production plans are related to outputs. More formally, the mapping arranges
inputs and outputs as ordered pairs. Let us assume that the firm can choose
between a high capacity and a low capacity production plan, which in turn re-
sult in large and small profits. Then, the set of inputs is thigh, lowu and the set
of outputs is tlarge, smallu. If high capacity results in large profits and low ca-
pacity in small profits, the mapping consists of the ordered pairs t(high, large),
(low, small)u. Binary relations are a concept in mathematics that can be used to
describe these input-output relationships (see Definition 1).

Definition 1 (binary relation [DM60]). A binary relation R is a triple pA,B,Gq,
whereA andB are sets andG is a subset of the Cartesian productAˆB. Furthermore,

• A is called the set of departure,

• B is called the set of destination,

• G is called the graph of R and

• for any a P A and b P B the statement pa, bq P G or aRb reads that a is R-
related to b.

In an optimization context, input-output relations are characterized by each in-
put being mapped onto exactly one output requiring a restriction of the binary
relation concept. Different inputs may result in the same output, however no
input may lead to multiple outputs. In the example of the firm, two produc-
tion plans may result in the same profit margin, however a single production
plan cannot yield two profit levels. A binary relation as of Definition 1 would
allow such pairings. Optimization problems thereby require a restricted type
of binary relation that guarantees, on the one hand, that there exists an output
for every input and, on the other hand, every input is mapped onto only one
output. The function (see Definition 2) is a binary relation that satisfies these
requirements.

Definition 2 (function [Bou54]). A function f is a binary relation pX,Y, F q such
that for all x P X there exists exactly one y such that px, yq P F . Furthermore,

• X is called the domain of f ,

• Y is called the codomain of f ,

• Y :“ ty P Y | Dx P X : fpxq “ yu is called the image of f or the feasible set
of the codomain,

• fpxq “ y states that x maps to y, where y is the image of x and x is a preimage
of y.
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In real-world applications, every output is usually influenced by multiple in-
puts. In the example of the firm, a production plan may consist of the design of
a manufacturing plant. The capacity of a bottling plant, for example, depends
on the capacity of the bottling machines and packaging. The size of both com-
ponents can be chosen separately in designing the plant. A single element of
the domain of a function can, thereby, itself be comprised of multiple values.
This specific type of function is referred to as multivariate function (see Defini-
tion 3). In the following, we do not explicitly distinguish between functions as
of Definition 2 and multivariate functions, since any distinction does not affect
the subsequent analysis.

Definition 3 (multivariate function [Bou54]). A function f “ pX,Y, F q is called
multivariate iffX “ X1ˆ. . .ˆXn with n ě 2 and theXi for all i P rns :“ t1, . . . , nu
are non-empty sets.

The function builds the basis of any optimization problem. Single-objective op-
timization (SOO) seeks to identify the best attainable value in Y – the optimum
– and an element of X that maps to the best value. The firm is interested in
obtaining the highest attainable profits and a production plan through which
these profits can be realized. This requires that elements of Y can be compared
in such a manner that there exists an output that is either better or at least as
good as all other options. In practice, comparability is usually inherent to the
objective that is optimized. For example, it is quite obvious that a firm always
prefers larger profits. In a formal model, an order is imposed on Y by a bi-
nary relation R that allows a ranking of the elements of the image of f . If an
optimum exists, any such binary relation must define a least element (see Defi-
nition 4)1, which is the optimum that is sought.

An SOOP is only deemed solvable if a least element exists. In case a least ele-
ment does not exist, it might still be possible to obtain an element of Y that is a
satisfying output.2 Such considerations, however, go beyond the scope of this
formal model. We consider only solvable problems in this work. In SOO, it is
commonly assumed that all elements of Y can be compared to each other, that
the best attainable value is unique and that there exist no cyclic relations. We
adopt these assumptions, since they are useful and reasonable from a practical
perspective. A binary relation that defines a weak wellorder fulfills all these
requirements (see Definition 4).

Definition 4 (weak wellorder cf. [Can82]). A binary relation R “ pA,A,Gq is
called

1A greatest element can be defined equivalenty.
2The real line p0, 1q, for example, does not possess a least element for theď-relation, since for any

number close to 0 there can be found a smaller number that is even closer to 0. However, any
number that is sufficiently close to 0 could be deemed acceptable from a decision making point
of view.
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• complete if @a, b P A either aRb or bRa,

• antisymmetric if @a, b P A aRb and bRa implies a “ b,

• transitive if @a, b, c P A aRb and bRc implies aRc and

• possesses a least element if Da P A such that @b P A aRb holds.

A weak wellorder is a binary relation on a set A that is complete, antisymmetric,
transitive and defines a least element on A.3

The least element is at least as good as any other available option. Complete-
ness asserts that all elements of Y are comparable to each other and thereby
guarantees that the optimum can be compared to all alternatives. Antisymme-
try states that if a is at least as good as b and vice versa, a and b necessarily
coincide. This implies in the example of the firm that large profits are at least
as good as large profits. Antisymmetry guarantees that the optimal value is
unique. Transitivity prevents the occurrence of preference cycles. The exis-
tence of a least element finally asserts that an optimal value exists. Using the
concept of the weak wellorder, the SOOP can be defined as in Definition 5.

Definition 5 (single-objective optimization problem (SOOP)). Let f “ pX,Y,
F q be a function, where the binary relation R imposes a weak wellorder on the image
Y of f . The single-objective optimization problem consists of obtaining an element
x‹ P X that maps to the least element of Y . Furthermore,

• X is called the feasible set of f ,

• any x P X is called decision variable. If f is multivariate, the x1, . . . , xn are
called decision variables,

• any y P Y is called objective value,

• x‹ is called optimizer or solution of f ,

• y‹ :“ fpx‹q is called optimal value of f and

• f is called objective function.

An MOOP could be understood as finding a solution to multiple SOOPs at
the same time. Conversely, an SOOP can be considered a special case of an
MOOP that has only one objective function. The underlying objective func-
tions of the SOOPs are combined into a joint function that forms the basis of the
MOOP. The construction of this function requires the joining of the individual

3Cantor requires the wellorder to possess a least element for any non-empty subset of A. This
prerequisite is too strong for the presented model, since neither theď- nor theă-relation define
a least element on all subsets of R. The weak wellorder in this thesis is not related to the weak
wellorder concept in [Flu13].
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domains, codomains and function graphs. Joining domains implies defining
a common domain for all objective functions by combining inputs of the indi-
vidual domains such that each combined input of the common domain yields
outputs that are feasible for all objective functions. Constructing such a domain
from domains that are composed of different inputs is difficult, since individ-
ual problems might impose different restrictions on the set of available inputs.
Budgets, for example, restrict available resources that can be divided between
inputs. The firm that plans to release a new product might also consider the
environmental impact of its production as secondary goal. Investing in tech-
nology to prevent pollution might lock resources that could be used to expand
production instead. Since the joining of individual domains does not yield any
greater insight into preferences in MOO, we assume that all the objective func-
tions that are joined are defined on the same domain. This assumption is com-
mon throughout the scientific literature [Deb01, CCLVV07, Mie99, Ehr05].

The joint codomain of multiple SOOPs that are combined into an MOOP can
be modeled as the Cartesian product of the images of the individual functions.
Elements of the multi-objective codomain are tuples that possess as many en-
tries as there are objectives. Finally, the joint function graph consists of pairs,
where the first entry is an element of the joint domain and the second entry is
an element of the Cartesian product of the images of the objective functions.
Secondly, for each member of the joint graph there must exist a mapping from
the domain to every individual image (see 6).

Definition 6 (multi-objective function). For anm-tuple of SOOPs let f :“ pf1, . . . ,
fmq be the m-tuple of corresponding objective functions with for all i P rms : fi “
pX,Yi, Fiq. The multi-objective function is given by pX,Y, F q, where

• Y :“ Y1 ˆ . . .ˆ Ym and

• F :“ tpx, yq P pXˆY q | y “ py1, . . . , ymq^@i P rms ñ Dx P X : fipxq “ yiu.

The multi-objective function builds the basis of the MOOP. The next step con-
sists of formally defining the MOOP by stating which elements are sought in
MOO. When simultaneously searching for an optimum of multiple conflict-
ing objectives that share common inputs, we cannot expect that there exists an
element in X that maps to each optimal value of every SOOP. Evidently, max-
imizing production capacity must come at the cost of environmental impact.
Conversely, minimizing environmental impact always results in a loss of pro-
duction capacity. The weak wellordering of each individual image, however,
allows inferring a consecutive order of the codomain of the multi-objective
function. An element of the joint codomain is better compared to another al-
ternative if it is at least as good in every objective and strictly better in at least
one objective. This order is called Pareto order (see Definition 7).
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Definition 7 (Pareto order cf. [Par96]). Let A :“ tpa1, . . . , amq | ai P Aiu, where
all Ai are weak wellordered sets imposed by the binary relation ăi. The Pareto order
ăp is a binary relation on A that is defined as follows: for all a, b P A it holds that
a ăp b iff ai ăi bi for at least one i P rms and at the same time Ej P rms such that
bj ăj aj . Furthermore, for a, b P A
• a ăp b reads a Pareto dominates b,

• if a ćp b and b ćp a then a and b are non-dominated to each other and

• if Ec P A such that c ăp a, then a is called Pareto optimal or a minimal
element of A.

The Pareto order provides a means of ranking elements of the image of a multi-
objective function. However, it does not relate all elements of the joint image to
one another, as there exist elements for which neither dominates the other. The
minimal elements of the image of a multi-objective map – those that are not
Pareto-dominated by any other element – are optimal in the sense that the or-
dering of the original SOOPs, from which they stem, is preserved. No element
that is worse in one objective can Pareto dominate another element that is better
in said objective. In case that there do not exist any preferences regarding the
individual objectives, any such minimal element constitutes a viable candidate
for implementation as it can only be improved in one objective by deteriorating
another objective at the same time. The Pareto optimal elements are therefore
the set of solutions to an MOOP (see Definition 8).

Definition 8 (multi-objective optimization problem (MOOP)). Let f “ pX,Y, F q
be a multi-objective function. The multi-objective optimization problem consists of
obtaining a preimage of every Pareto optimal element of Y . Furthermore,

• Yp :“ ty P Y | Eȳ P Y : ȳ ăp yu is called the Pareto front,

• Xp :“ tx P X | fpxq “ y P Ypu is called set of Pareto optimal solutions and

• any x P Xp is called a Pareto optimal solution.

So far, an abstract perspective has been kept on the topic of optimization in
defining the domain and codomain of a problem as sets of arbitrary elements.
That perspective is a necessary requirement for providing a rigorous mathe-
matical foundation of preferences in MOOP. Nearly all real-world applications
and artificial benchmark problems, however, feature a real-valued vector space
as codomain. Decision variables are usually real-valued themselves, integers,
binary values or a combination of each. For developing efficient procedures
to obtaining Pareto optimal solutions, it is imperative that the domain and
codomain exhibit some meaningful algebraic structure to avoid brute force ap-
proaches that enumerate the entire domain. Scalarization itself is a technique
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that requires objectives to be measured on a real-valued scale. The real-valued
MOOP that serves as the basis of the analysis in subsequent chapters is there-
fore given in Definition 9 and illustrated in Figure 2.1a.

Definition 9 (real-valued MOOP cf. [CCLVV07]). Let f “ pX,Y, F q be the objec-
tive function of an MOOP. The MOOP is called real-valued ifX Ď Rn and Y Ď Rm,
where n,m P N and m ě 2. Additionally, for all i P rms each Yi is ordered by the
ď-relation. Furthermore,

• Rn is called the search space of f ,

• any x P Rn is called decision vector,

• Rm is called the objective space of f ,

• any u P Rm is called objective vector and

• Y is called the feasible set of the objective space,

Elements of vector spaces are referred to as points or vectors. For simplicity
and clarity, we consider only minimization problems in the analysis in subse-
quent chapters. This restriction does not present a limitation, however, since
any maximization problem can be transformed into an equivalent minimiza-
tion problem by negating its objective functions [Ber99].4 The domain of a real-
valued MOOP is defined by imposing constraints on the search space that are
expressed as either equalities or inequalities. Thereby, the values that each de-
cision variable is allowed to take on, is restricted. Pareto domination in vector
spaces is formally given in Definition 10 and illustrated in Figure 2.1b. We use
the common notation of writing elements of vector spaces and matrices in bold
face letters (see for example Definition 10).

Definition 10 (Pareto order in vector spaces [Par96]). Let y1,y2 P Rm. The
expression y1 ăp y2 is equivalent to for all i P rms it holds that y1

i ď y2
i and there

exists a j P rms such that y1
j ă y2

j .

In the next section, preferences in MOO are formally introduced. To guaran-
tee that the discussion and its results apply to all MOOP classes, the general
MOOP as of Definition 8 is considered instead of its real-valued counterpart of
Definition 9.

4Maximization problems correspondingly require the existence of a greatest instead of a least
element.
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Figure 2.1.: Illustration of a bi-objective MOOP and Pareto domination in a two-
dimensional vector space. Figure 2.1a shows the feasible set of the objective
space Y . The Pareto front is a continuous curve colored in red. The vector u
dominates the points v1, v2 and v3 in Figure 2.1b.

2.2. Preference Modeling

Since the inception of MOO as a discipline of research, preferences have been
a subject of study in the field. Every MOOP requires a DM to make a choice
about the solution that is finally implemented. Choosing a solution for imple-
mentation always involves making a compromise between different objectives
[GEF16]. Preferences are often regarded from a practical perspective as to how
a DM can be enabled to arrive at her favored solution. For this reason, frame-
works that categorize preferences mostly focus on how preferences are or can
be implemented in multi-objective optimization algorithms (MOOAs) (see for
example [LYBF`16, Coe00, RS06]). A discussion of these taxonomies is given
in Section 4.1.

Preferences, however, should not only be analyzed from an algorithmic per-
spective, but also on the problem level itself. As stated in the previous section,
Pareto optimality is only a natural extension of the order that is imposed on
individual objectives. If no assumptions about the DM’s preferences can be
made, any Pareto optimal solution is an equally good candidate for implemen-
tation. Ranking or preferring some solutions to others thereby restricts the set
of solutions that are deemed optimal. In that sense, the original MOOP can be
transformed such that the preferred set of alternatives is the solution to a mod-
ified MOOP that incorporates the DM’s preferences.

There exist few frameworks in the literature that have taken the approach of
describing preferences as a problem transformation. Li et al. have proposed an
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f1
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Figure 2.2.: Illustration of preference regions and knee points. A preference region is a
subset of the Pareto front and usually located at convex bulges of the Pareto
front. Elements of a preference region are preferred by the DM to other
Pareto optimal points that are not a member of that region. A knee point is
a point that is located at the center of a convex bulge of the Pareto front.

ontology for categorizing preference-based multi-objective evolutionary algo-
rithms (PMOEAs) [LYBF`16, LYBF`17] as well as preference models. Preference
models refer to the methodology that is used in obtaining preferred solutions.
Its instances include well known concepts from MOO such as knee points or
preference regions (see Figure 2.2), but also from classic MCDA techniques,
which are traditionally well described and categorized. The ontology acknowl-
edges the existence of PMOEAs that perform objective space transformations
to obtain preferred solutions, however their analysis focuses on an algorithmic
description of preferences and does not propose a formalism to express prefer-
ences as problem transformations.

Shukla et al. distinguish between direction- or region-based models and slope-
or curvature-based models [SED13]. In direction- and region-based models,
the DM’s preference guides the search towards areas of the Pareto front she
deems interesting. In slope- and curvature-based models, the desirability of a
point depends on the composition of the Pareto front, e.g. the curvature of the
curve that represents the Pareto front in bi-objective problems. Shukla et al.
describe preference models as triples of objective function – which they con-
ceive as combination of function graph and codomain – function domain and
an order imposed on the objective space. Any such triplet defines a preferred
subset of the set of Pareto optimal solutions. Their methodology acknowledges
preferences as modification to the original optimization problem.

In this thesis, a preference is a choice rule that defines a preferred subset of
the set of Pareto optimal solutions. Such choice rules can be modeled as pred-
icates in mathematical logic and are foremost independent of the actual prob-
lem structure (see Definition 11). Note that Xp does not have to be known
to the DM for him being able to define a preference. In this sense, preferences
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must be understood as a mechanism, whose invocation onXp defines a smaller
subset without knowing the composition of Xp. For a practical example, see
Section 2.3.

Definition 11 (preferred subset). A preference Φ is a predicate that defines a pre-
ferred subset Xp of Xp:

Xp :“ tx P Xp |Φpxqu . (2.1)

Definition 11 provides only an abstract concept to formally characterize prefer-
ences. As stated before, preferences should be integrated into the problem for-
mulation such that the preferred subset is the solution to a transformed prob-
lem. An MOOP is defined by its objective function and the orderings of its
individual objectives, and the objective function can be decomposed into do-
main X , codomain Y and graph F . Any modification must therefore induce
a change in these components. Of course, these changes cannot be arbitrary
and must preserve certain structures of the original problem. Otherwise, the
modified problem might be no longer a representation of the physical reality
on which the original problem is based. In the following, each component is
discussed individually, before a general model is presented.

Domain The domain of a function is a set that can be transformed by chang-
ing the composition of its elements. Extending the domain or replacing its
members by elements of other sets could allow the consideration of infeasible
inputs. This would no longer constitute a valid transformation, but a defi-
nition of an entirely new optimization problem. Functions are characterized
by the property of left-totality, which states that for every element of the do-
main, there must exist a map to the codomain [Bou54]. By introducing new
elements to the domain and thereby necessarily new mappings, extension and
replacement could also lead to new elements entering the Pareto optimal set,
which would contradict Definition 11. Therefore, the only viable option of
transforming the domain is to remove elements from it, thereby choosing a
subset of the original domain. Real-valued search spaces can be cropped, for
example, by imposing additional equality or inequality constraints.

Codomain Describing valid and meaningful transformations of the codomain
is more difficult. Adding elements to the codomain has obviously no effect as
there exists no member of the domain that map to them. Removing elements
from the codomain does not change the composition of Xp if they do not form
part of the image. Eliminating a member of the image, on the other hand, vi-
olates left-totality. A viable and meaningful transformation can thereby only
consist of mapping the image itself to a different codomain Z. By concate-
nating the mapping from X to Y and Y to Z we can effectively replace Y
with Z in the objective function. Such an approach is, for example, taken in
MAVT. By aggregating objective values, objectives are mapped to the field
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of real numbers. Elements of Z can also themselves be composed of tuples
such as elements in Y . It is only mandatory that there exists an order on the
elements in Z.

Graph Any domain and codomain transformation implicitly changes the graph
of the objective function. Manipulating the graph only would correspond to
changing the relation between inputs and outputs. Although such an ap-
proach could be used to pair Pareto optimal solutions with dominated ele-
ments of the image to remove members from the Pareto set, it makes more
sense to combine a graph transformation with a transformation of the domain
or codomain.

Order Changing the binary relation that orders the codomain is the most straight-
forward approach for formulating preferences in MOO. Outranking techniques,
for example, fall in this category. Any binary relation R that is imposed as a
preference on Y , however, must be an extension of the Pareto order. Other-
wise, rank reversals could occur that violate the natural order of the individ-
ual objectives and Pareto dominated solutions might enter the preferred set.
In case, the preference encompasses a codomain transformation as well, R is
directly imposed on Z.

Combining the results of the analysis, the mathematical structure of preference
predicates is given in Definition 12. Note that Definition 12 explicitly requires
the transformed domain XΦ to be a subset of the original domain X and that
the preferred order ă does not violate the Pareto order.

Definition 12 (preference predicate). Let f “ pX,Y, F q be the objective func-
tion of an MOOP. A preference predicate Φ “ pfΦ,ăq is a pair of a function fΦ “
pXΦ, YΦ, FΦq with XΦ Ď X and a binary relation ă that orders YΦ. Additionally, for
all x1, x2 P XΦ for which fpx1q ăp fpx2q it holds that fΦpx1q ă fΦpx2q. Then, for
any x P X the expression Φpxq is true iff

• x P XΦ and

• @x‹ P XΦ for which fΦpx‹q ă fΦpxq it holds that fΦpx‹q “ fΦpxq.

According to Definition 12, any preferred element x is required to fulfill two
conditions. Firstly, x has to be a member of the transformed function do-
main XΦ. Secondly, the image of x must not be dominated by any element
YΦ, where domination is induced by ă. Definition 12 shows that there exist
different methodologies of stating preferences in MOO. Theorem 1 shows that
these approaches can be transformed into each other.

Theorem 1. Let f “ pX,Y, F q be the objective function of an MOOP. For every
preference predicate Φ “ ppXΦ, YΦ, FΦq,ăq there exist corresponding preference pred-
icates ΦX “ ppXX , Y, FXq,ăpq, ΦY “ ppX,YY , FY q,ăpq and Φă “ ppX,Y, F q,ăă
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2. Preferences in Multi-objective Optimization

q such that for all x P Xp

Φpxq “ ΦXpxq “ ΦY pxq “ Φăpxq.

Proof. The preferred sets of Φ, ΦX , ΦY and Φă are given byX sp “ tx P Xp |Φspxqu
where s P tH, X, Y,ău. For the proof of Theorem 1, it is sufficient to show that
given Φ it is possible to construct predicates ΦX , ΦY and Φă for an arbitrary f
such that Xp “ XXp “ X Yp “ Xă

p .

1. Let ΦX “ pfX ,ăpq with fX “ pXp, Y, FXq and FX “ tpx, yq P F |x P Xpu.
For all x, x‹ P Xp for which ΦXpxq and fXpx‹q ăp fXpxq it follows that
fXpx‹q “ fXpxq, since by requirement of Definition 12 both fXpx‹q and
fXpxq are Pareto optimal in fXpXpq. It follows that Xp “ XXp .

2. Let ΦY “ pfY ,ăpq with fY “ pX,YY , FY q, YY “ t0, 1u and FY “ tpx0, 0q,
px1, 1q P X ˆ t0, 1u |x0 P Xp and x1 P X zXpu. For all x, x‹ P Xp for which
ΦY pxq and fY px‹q ăp ΦY pxq it follows that fY px‹q “ fY pxq “ 0. It follows
that Xp “ X Yp .

3. Let Φă “ pf,ăăq and for any x1, x2 P X let fpx1q ăă fpx2q iff x1 P Xp
and x2 R Xp. It follows that Xp “ Xă

p .

Theorem 1 is a powerful result, since it implies that any preference can be ex-
pressed by modifying only one component of the corresponding MOOP – ei-
ther the domain, codomain or the order on the codomain. The same preference
can be formulated using different problem transformations. This has major im-
plications for the design and execution of optimization algorithms, since the
transformation of each component has a different effect from an algorithmic
perspective. Intransitive preference orders, for example, prevent the applica-
tion of fast sorting techniques for ordering a set of points in the objective space
[Eic14].5 Such techniques, however, are utilized in many popular optimization
algorithms in evolutionary computation [DPAM02, BNE07, TFD11, NLA`08,
BSS15]. Sorting techniques that possess a higher computational complexity
must be used instead in these algorithms [Eic14]. Intransitive preferences also
allow the existence of preference cycles, which prohibit any ranking between
the elements that form part of the cycle. Pareto domination can be used as a
fallback mechanism in this case to rank the different points [Bra14]. Restricting
the feasible set by introducing additional constraints, on the other hand, allows

5Tradeoff domination for example, which is introduced in Section 2.3.2, is an intransitive prefer-
ence order. There exist equivalent domain and codomain predicates (Sections 2.3.1 and 2.3.3),
however that prevent the introduction of intransitivity.
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the application of any optimization technique that possesses a generic method
for handling constraint violations.

At the same time, however, the practical application of the results of Theorem 1
is limited. There exists no straightforward procedure of transforming different
preference predicates into each other. It is also possible that the algebraic struc-
ture of a problem cannot be maintained through different component transfor-
mations. For example, an objective space transformation that is obtained by
concatenating a smooth objective function with a non-smooth function, gen-
erally results in a transformed problem that possesses a non-smooth objective
function [SED13]. Therefore, Theorem 1 should rather serve as a motivation
to explore different formulations of the same preference. A practical example
for obtaining such different formulations to the same preference is given in the
next section.

2.3. Problem Transformations Using
Tradeoff-based Preference Models

Declaration: Parts of this section have been published in [BSS11, SBS13, BS16]

Tradeoffs are a popular and reliable method for describing and eliciting pref-
erences from a DM in MCDA [WB93]. Utilizing tradeoffs requires objectives
to be measured on a cardinal preference scale. We therefore consider the real-
valued MOOP as of Definition 9 for the remainder of this section. There exist
multiple approaches to how tradeoffs can be incorporated in MCDA method-
ology to identify preferred alternatives. The approach presented in this section
is founded on Geoffrion’s notion of proper Pareto optimality [Geo68] (see Def-
inition 13 and Figure 2.3).

Definition 13 (Geoffrion proper Pareto optimality [Geo68]). An element x‹ P X
is called Geoffrion proper Pareto optimal if x‹ P Xp and if there exists an M P R`
such that for all x P X and i P rms satisfying fipxq ă fipx‹q there exists a j P rms
for which fjpxq ą fjpx‹q and additionally

fipx‹q ´ fipxq
fjpxq ´ fjpx‹q ďM. (2.2)

Definition 13 states that a Geoffrion proper Pareto optimal solution must be
Pareto optimal and that any deterioration in one objective with respect to an-
other element of Y must be bounded by a finite numberM . Geoffrion’s concept
eliminates Pareto optimal solutions that exhibit an unbounded tradeoff and is
thereby a preference as of Definition 11. The notion of Geoffrion proper Pareto

21



2. Preferences in Multi-objective Optimization

f1

f2 Y

Yp

(a) Pareto optimality.

f1

f2 Y

YM

(b) Geoffrion proper Pare-
to optimality.

Figure 2.3.: Comparison of Pareto optimality and Geoffrion proper Pareto optimality.
The set of Geoffrion proper Pareto optimal elements YM does not include
the boundary points of the Pareto front, since these elements exhibit an un-
bounded tradeoff as of Equation (2.2).

optimality can be extended by fixing M to a specific value. This concept is
called M-proper Pareto optimality in [BSS11]. We refer to it as tradeoff optimality
in this work for brevity, and because this name is a clearer description of the
underlying preference notion.

Definition 14 (tradeoff optimality cf. [Shu07, BSS11]). Let an M P R` be given.
An element x‹ P X is called tradeoff optimal with respect to M if x‹ P Xp and if for
all x P X and for all i P rms satisfying fipxq ă fipx‹q there exists a j P rms for which
fjpxq ą fjpx‹q and additionally

fipx‹q ´ fipxq
fjpxq ´ fjpx‹q ďM. (2.3)

Definition 14 only differs from Equation (2.2) inM possessing a fixed value that
can be set by a DM. M “ 5, for example, implies that a loss of five units in one
objective must be compensated by a gain of at least one unit in another objec-
tive. Any tradeoff optimal solution must fulfill this requirement with respect to
all feasible elements of the objective space.

2.3.1. Tradeoff Domain Predicate

Tradeoff optimality restricts the set of Pareto optimal solutions and, thereby,
defines a preference as of Definition 11 that can be expressed by different pred-
icates. In the following, three different approaches are discussed for defining
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tradeoff optimality predicates that each focus on modifying a single compo-
nent of the underlying MOOP – domain, codomain and order. This exercise
serves as an illustration of the implications of Theorem 1. It also sheds some
light on the discussion on how different predicates influence the applicability
of subsequent optimization methodologies.

We commence by assessing modifications to the search space. Equation (2.2)
can be directly imposed as a constraint on the search space to restrict the set
of feasible solutions. By bounding the tradeoff of all feasible elements – not
only vectors that map to Pareto optimal solutions – we obtain a constrained
problem, whose set of Pareto optimal solutions is the set of tradeoff optimal
solutions. The corresponding preference is given in Definition 15.

Definition 15 (tradeoff domain predicate). Let f “ pX,Y, F q be the objective
function of an MOOP and M P R`. The tradeoff domain predicate is given by
pfMX ,ăpq with fMX “ pXM , Y, F

M
X q, where

• XM :“ tx P X | @x̂ P X and i P rms : fipx̂q ă fipxq : Dj P rms with fjpx̂q ą
fjpxq and pfipxq ´ fipx̂qq{pfjpx̂q ´ fjpxqq ďMu and

• FMX :“ tpx,yq P F |x P XMu.

The constraints imposed by pfMX ,ăpq on X are difficult to check during the ex-
ecution of an optimization algorithm, since the feasibility of an x P X does not
solely depend on the value of x, but also on other elements of X , which may be
unknown. Although it can be shown in [SHS10a] that it is sufficient to consider
only the Pareto optimal set to check a solution for tradeoff optimality, that sim-
plification still requires the complete knowledge of the Pareto front. The Pareto
front, however, is usually not known prior to any optimization effort.

The composition ofXM makes it difficult to solve an MOOP on which a tradeoff
domain predicate is imposed if mathematical programming techniques shall be
applied. These techniques usually expect feasibility to be expressed by equality
and inequality relations that only depend on the decision variables of the ele-
ment whose feasibility is checked [Ber99]. Even heuristic approaches should
be individually adapted. Braun et al. [BSS11] have proposed modifications
to four established multi-objective metaheuristics for generating tradeoff opti-
mal solutions. Each modification was tailored to the individual design of every
algorithm. This result motivates the exploration of different preference predi-
cates for describing tradeoff optimality. We therefore continue our discussion
by assessing order transformations.
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2.3.2. Tradeoff Order Predicate

Equation (2.2) delivers a blueprint for a binary relation that imposes an order
for identifying tradeoff optimal solutions. A Pareto optimal solution x‹ is not
tradeoff optimal if there exists a single element x such that the fraction in (2.2)
becomes larger than the threshold M . Said fraction is the ratio of the worst
deterioration divided by the largest improvement if choosing x‹ instead of x.
This tradeoff ratio can be used to define a dominance relation. We can say that
x dominates x‹ if the tradeoff that incurs by moving from fpx‹q to fpxq exceeds
M . The concept of tradeoff domination is formalized in Definition 16. Note that
tradeoff domination is defined for general vector spaces, since its existence is
independent of the optimization context.

Definition 16 (tradeoff domination [BS16]). Let u,v P Rm and M P R`. The
index sets Ią and Iă are defined by

Ią :“ ti P rms |ui ą viu, (2.4a)
Iă :“ ti P rms |ui ă viu. (2.4b)

Then, u tradeoff-dominates v, denoted by u ăM
t v, if either u Pareto-dominates v

or if u and v are non-dominated and

max
iPIăpu,vq

min
jPIąpu,vq

vi ´ ui
uj ´ vj ąM. (2.5)

Tradeoff domination is called M-domination in [BS16]. The name tradeoff dom-
ination was chosen to comply with the naming scheme used in this section.
Tradeoff domination is a generalization of U-domination [SBS13], since both
notions coincide for M “ 1. Definition 16 can be simplified to eliminate the
mandatory Pareto domination check as shown in Proposition 1. The tradeoff
order predicate is formally given in Definition 17.

Proposition 1 ([BS16]). Let u,v P Rm and M P R`. The expression u ăM
t v is

equivalent to
max
iPrms

pvi ´ uiq `M ¨ min
iPrms

pvi ´ uiq ą 0. (2.6)

Proof. If u ăp v then the left side of (2.6) is positive and consequently u ăM
t

v. If v ăp u then the left side of (2.6) is negative and u ćM
t v. The proof

is concluded by showing that (2.5) is equivalent to (2.6) if u and v are non-
dominated:

max
iPIăpu,vq

min
jPIąpu,vq

vi ´ ui
uj ´ vj ąM (2.7a)
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ô
max
iPrms

pvi ´ uiq
max
iPrms

pui ´ viq ąM (2.7b)

ô max
iPrms

pvi ´ uiq ´M ¨ max
iPrms

pui ´ viq ą 0 (2.7c)

ô max
iPrms

pvi ´ uiq `M ¨ min
iPrms

pvi ´ uiq ą 0. (2.7d)

Definition 17 (tradeoff order predicate). Let f “ pX,Y, F q be the objective func-
tion of an MOOP and M P R`. The tradeoff order predicate is given by pf,ăM

t q.

The tradeoff order predicate (see Definition 17) is usually easier to handle in
optimization algorithms compared to the tradeoff domain predicate. Optimiza-
tion techniques that rely on Pareto domination checks (e.g. [DPAM02, NDGN`09,
BNE07, BSS15]) can simply replace any occurrence of Pareto domination by
tradeoff domination. No additional custom modifications to the algorithm are
required. There exist exceptions, however, in case the algorithm exploits math-
ematical properties of Pareto domination that tradeoff domination does not ex-
hibit. Pareto domination, for example, is a transitive binary relation, whereas
tradeoff domination is not as shown in Proposition 2.

Proposition 2 ([BS16]). Tradeoff domination is not transitive for m ě 3 and M P
p0, 2q.

Proof. Consider the vectors u “ p1,´1, 0, . . . , 0q, v “ p0, 1,´1, . . . ,´1q and
w “ p´1, 0, 1, . . . , 1q. It follows that u ă

p0,2q
t v, v ă

p0,2q
t w and u ć

p0,2q
t w.

Equivalent examples can be constructed in any underlying vector space.

The transitivity of Pareto domination is, for example, exploited in nondomi-
nated sorting (see Algorithm 2 and Algorithm 2)– a method that is employed
by many MOEAs (e.g.[DPAM02, BNE07, DJ14]). Given a set of points S Ă Y ,
nondominated sorting divides S into subsets of points that do not dominate
each other (see Figure 2.4). In case a dominance relation is not transitive, the
set of non-dominated elements might be empty. In the proof of Proposition 2,
for example, w tradeoff dominates u resulting in a cyclic ordering of tu,v,wu,
in which no minimal elements exist. Imposing the Pareto order on any finite
subset of a real-valued vector space, on the other hand, always yields at least
one minimum element. In case no minimal elements can be identified during
a nondominated sorting step, the corresponding algorithm breaks and can no
longer continue its execution. This problem can be solved by employing a fall-
back to the Pareto order in case no minimal elements exist. The objective space
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transformation of the tradeoff codomain predicate that is discussed in the final
part of this section, provides an opportunity to circumvent this issue.

f2

f1

Front 1

Front 2

Front 3

Figure 2.4.: Illustration of nondominated sorting. Elements of a single front do not dom-
inate each other. Each element of front i is dominated by at least one element
of front i´ 1.

2.3.3. Tradeoff Codomain Predicate

The final transformation presented in this section is a cone-based decomposi-
tion of tradeoff optimality [BS16]. Cones are a concept in algebra that is used
in MCDA and MOO to describe dominance relations. A cone constitutes a sub-
set of a vector space with the property that any member of the cone multiplied
by a positive constant is again a member of the cone (see Definition 18). Said
characteristic is denoted by cone property.

Definition 18 (cone [Wie07]). A non-empty subset C Ă Rm is called cone, if for all
d P C and λ ą 0 it holds that λd P C.

In MCDA and MOO, any vector v that lies in the domination cone of a given
point u, is considered inferior to u (see Figure 2.5). The vector d “ v ´ u can
be interpreted as preferred direction. The cone property states that any positive
scaling of the difference d results in a preferred direction as well [Wie07].

Definition 19 (cone dominance [BS16]). Let u,v P Rm and C Ă Rm be a cone.
Vector u cone-dominates v, denoted by u ăC v, iff v ´ u P C.

Any dominance relation can be used to divide the vector space Rm with respect
to a u P Rm into points that are dominated by u, points that dominate u and
points that are non-dominated to u (see Definition 20). An illustration of these
divisions for tradeoff domination is given in Figure 2.6. Cone-based dominance
relations possess the advantage that the cone-dominated space can be directly
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f1
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v

~d

tuu ` C

(a) Pareto cone.

f1

f2

u

v

~d

tuu ` C

(b) A polyhedral cone.

f1

f2

u

v

~d

tuu ` C

(c) A nonlinear cone.

Figure 2.5.: Examples of three different cone types at a point u P R2. Any point that lies
in the set tuu ` C is cone dominated by u. Vector ~d indicates the preferred
direction from u to v. The cone property (see Definition 18) states that any
point u` λd with λ ą 0 is cone dominated by u.

inferred from the cone definition. Given a cone C P Rm, we obtain DăC puq “
tuu ` C.

Definition 20 (dominance, preference and non-dominated space c.f. [BS16]).
Let ă be a binary relation on Rm. Points in Rm are characterized with respect to a
u P Rm as dominated space Dăpuq, preference space Păpuq and non-dominated space
Năpuq with

Dăpuq :“ tv P Rm | u ă vu , (2.8a)
Păpuq :“ tv P Rm | v ă uu , (2.8b)
Năpuq :“ Rmz tDăpuq Y Păpuqu . (2.8c)

Cones can be constructed in multiple ways. The focus lies on polyhedral cones
(see Definition 22) in this work, since the tradeoff dominated space can be de-
composed into polyhedral cones. The common terminology for comparing el-
ements of vector spaces as described in Definition 21 is adopted.

Definition 21 (vector comparison [Wie07]). Let u,v P Rm. Then,

u ą v ô @i P rms ui ą vi, (2.9a)
u ŕ v ô @i P rms ui ě vi, (2.9b)
u ě v ô u ŕ v but u ‰ v. (2.9c)

Polyhedral cones can be used to produce a linear transformation YC of the ob-
jective space Y by multiplying every element of Y by the matrix A that induces
the polyhedral cone. Thereby, finding the cone-non-dominated points of Y is
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Figure 2.6.: Illustration of the tradeoff dominance and preference space for M “ 5 and
some u P R3.

the same as obtaining the Pareto optimal points of YC . This is a well-known
result in MOO [Wie07]. We can exploit this circumstance to formulate a predi-
cate consisting of a codomain transformation to identify tradeoff optimal solu-
tions.

Definition 22 (polyhedral cone [Wie07]). Let A P Rlˆm be a matrix with l P N`.
The polyhedral cone CpAq Ă Rm is given by

CpAq :“ td P Rm | Ad ě 0u . (2.10)

A cone-based decomposition of the tradeoff dominated space consists of find-
ing a set of polyhedral cones, whose union is equivalent to the tradeoff domi-
nated space (see Figure 2.7). Braun et al. [BS16] have proposed four different
decompositions that differ in the number of cones, matrix size and whether
individual cones are overlapping (see Table 2.4). Each one of these decomposi-
tions is subsequently introduced and discussed.

The ordered objectives approach is based on the idea of dividing the vector
space Rm into subsets by considering all feasible cases of ordering the elements
of the vector d “ u ´ v from largest to smallest. For example, if m “ 3 we
have d “ pd1, d2, d3q and there exist six possibilities to order the elements of
d (see Table 2.1). In the general case, we obtain m! different orders for m ob-
jectives. Next, for any such subset, the set of tradeoff dominated points is de-
termined. Since the largest and smallest elements are implicitly known in each
division, Equation (2.6) can be expressed as a simple linear inequality without
the maximum and minimum function. In turn, the different orderings of the
elements in d can themselves be expressed by m inequalities (see Table 2.1).

28



2.3. Problem Transformations Using Tradeoff-based Preference Models

The M-dominated space can thereby be composed of m! polyhedral cones each
induced by an mˆm matrix (see Theorem 2 and Table 2.2).

Table 2.1.: Linear inequalities of the ordered objectives approach for three objectives.

d1 ě d2 ě d3 d1 ě d3 ě d2 d2 ě d1 ě d3

d1 `Md3 ą 0 d1 `Md2 ą 0 d2 `Md3 ą 0
d1 ě d2 d1 ě d3 d2 ě d1

d2 ě d3 d3 ě d2 d1 ě d3

d2 ě d3 ě d1 d3 ě d1 ě d2 d3 ě d2 ě d1

d2 `Md1 ą 0 d3 `Md2 ą 0 d3 `Md1 ą 0
d2 ě d3 d3 ě d1 d3 ě d2

d3 ě d1 d1 ě d2 d2 ě d1

Table 2.2.: Matrices of the polyhedral cones of the ordered objectives approach for three
objectives.

d1 ě d2 ě d3 d1 ě d3 ě d2 d2 ě d1 ě d3
¨

˝

1 0 M
1 ´1 0
0 1 ´1

˛

‚

¨

˝

1 M 0
1 0 ´1
0 ´1 1

˛

‚

¨

˝

0 1 M
´1 1 0
1 0 ´1

˛

‚

d2 ě d3 ě d1 d3 ě d1 ě d2 d3 ě d2 ě d1
¨

˝

M 1 0
0 1 ´1
´1 0 1

˛

‚

¨

˝

0 M 1
´1 0 1
1 ´1 0

˛

‚

¨

˝

M 0 1
0 ´1 1
´1 1 0

˛

‚

Theorem 2 (ordered objectives decomposition [BS16]). Let u P Rm, M P R`
and let Ω denote the set of all permutations over the index set rms. Furthermore, σpiq
identifies the element at the i-th position of the permutation vector σ P Ω. Then,

DăMt
puq “ tuu ` int

˜

ď

σPΩ
CpAo

σq
¸

, (2.11)

with

Ao
σ “

ˆ

boσ
Bo
σ

˙

, (2.12)
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Figure 2.7.: Decomposition of the tradeoff dominated space using the ordered objectives
approach for M “ 3 and m “ 3. Dark gray patches show the faces of the in-
dividual cones of the ordered objectives approach and thick black lines their
generators. Light gray patches show the faces of the entire tradeoff domi-
nated space. The dotted lines are the generators of the cone that represents
the tradeoff dominated space.

where boσ is a vector of length m with

boσpiq :“
$

&

%

1 if i “ σp1q
M if i “ σpmq
0 else,

(2.13)

and Bo
σ is an pm´ 1q ˆm matrix with

Bo
σpi, jq :“

$

&

%

1 if j “ σpiq
-1 if j “ σpi` 1q
0 else.

(2.14)

Proof. It holds that tuu ` Ť

σPΩ CpBo
σq “ Rm. By additionally enforcing the

linear inequality given by boσ , tuu ` CpAo
σq yields exactly those elements in

CpBo
σq that are tradeoff dominated by u if we relax the strict inequality in Equa-

tion (2.6) to a non-strict inequality. Consequently, the union tuu `Ť

σPΩ CpAo
σq

yields all elements in Rm that are tradeoff dominated by u if Equation (2.6) is
non-strict. The interior tuu` int pŤσPΩ CpAo

σqq is then comprised of all tradeoff
dominated points if Equation (2.6) is strict.
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2.3. Problem Transformations Using Tradeoff-based Preference Models

The number of polyhedral cones of the ordered objectives decomposition grows
factorially in the number of objectives rendering its application in higher di-
mensions difficult. This observation yields a motivation for decreasing the
number of polyhedral cones that comprise the tradeoff dominated space. Es-
tablishing a tradeoff domination relation between two vectors requires only
the knowledge their largest and smallest objective difference. The exact order
of elements of d is irrelevant. If di is the largest and dj the smallest compo-
nent of d, it is sufficient to require that all other components are smaller than
di and larger than dj . This approach is referred to as min/max decomposi-
tion (Definition 23). The number of matrices is obtained as the number of all
2-permutations of m yielding mpm´ 1qmatrices in total.

Definition 23 (min/max decomposition [BS16]). Let u P Rm, M P R` and sij “
pcqmc“1,c‰i,c‰j with i, j P rms, i.e. the tuple of natural numbers from 1 to m without i
and j.

DăMt
puq “ tuu ` int

¨

˝

ď

iPrms

ď

jPrms ztiu
CpAmm

ij q
˛

‚, (2.15)

where

Amm
ij “

¨

˝

bMij
Bmm
ij

´Bmm
ji

˛

‚, (2.16)

with

bMij pkq :“

$

’

&

’

%

1 if k “ i

M if k “ j

0 else,
(2.17)

and

Bmm
ij pk, lq :“

$

’

&

’

%

1 if k “ i

´1 if l “ sijk
0 else.

(2.18)

Proof. It holds that tuu ` Ť

iPrms
Ť

jPrms ztiu CprBmm ´ Bmm
ij sT q “ Rm. Cone

tuu ` CpAmm
ij q then contains the closure of the elements in tuu ` CprBmm ´

Bmm
ij sT q that are tradeoff dominated by u. Their union forms the closure of the

space that is tradeoff-dominated by u.

For three objectives, the ordered objectives and the min/max decomposition
produce the same polyhedral cones. Both approaches differ in four and higher
dimensions. Therefore, an illustrative example of the min/max decomposition
for m “ 5 is provided in Example 1.
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2. Preferences in Multi-objective Optimization

Example 1. The matrix Amm
ij for m “ 5, M “ 3, i “ 1 and j “ 2:

Amm
12 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 3 0 0 0
1 0 ´1 0 0
1 0 0 ´1 0
1 0 0 0 ´1
0 ´1 1 0 0
0 ´1 0 1 0
0 ´1 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.19)

The number of polyhedral cones can be further reduced by decomposing Equa-
tion (2.5) intom´1 inequalities. Let dm be the largest component of d. The con-
dition stated in Equation (2.5) can be equivalently formulated as dm`Mdi ą 0
for all i P rm´1s resulting inm´1 inequalities. The component dm can be estab-
lished as largest element of d by the inequalities dm ą di for all i P rm´ 1s. The
resulting 2m ´ 2 inequalities describe the tradeoff dominated space if d1 is the
largest component of d. The number of polyhedral cones is thereby reduced to
m (Table 2.3 and Figure 2.8). This approach is called maximum decomposition,
since only the maximum component of d must be known (Definition 24).

Table 2.3.: Matrices of the polyhedral cones of the maximum approach for three objec-
tives.

d1 “ maxiPr3spdiq d2 “ maxiPr3spdiq d3 “ maxiPr3spdiq
¨

˚

˚

˝

1 ´1 0
1 0 ´1
1 M 0
1 0 M

˛

‹

‹

‚

¨

˚

˚

˝

´1 1 0
0 1 ´1
M 1 0
0 1 M

˛

‹

‹

‚

¨

˚

˚

˝

´1 0 1
0 ´1 1
3 0 1
0 3 1

˛

‹

‹

‚

Definition 24 (maximum decomposition [BS16]). Let u P Rm, M P R` and
si “ pcqmc“1,c‰i with i P rms, i.e. the tuple of natural numbers from 1 to m without i.

DăMt
puq “ tuu ` int

¨

˝

ď

iPrms
CpAmax

i q
˛

‚, (2.20)

with

Amax
i “

ˆ

BM
i

Bmax
i

˙

, (2.21)
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Figure 2.8.: Decomposition of the tradeoff dominated space using the maximum ap-
proach for M “ 3 and m “ 3. Dark gray patches show the faces of the
individual cones of the ordered objectives approach and thick black lines
their generators. Light gray patches show the faces of the entire tradeoff
dominated space. The dotted lines are the generators of the cone that repre-
sents the tradeoff dominated space.

where

BM
i pk, lq :“

$

’

&

’

%

1 if k “ i

M if l “ sik
0 else,

(2.22)

and

Bmax
i pk, lq :“

$

’

&

’

%

1 if k “ i

´1 if l “ sik
0 else.

(2.23)

Proof. It holds that tuu`Ť

iPrms CpBmax
i q “ Rm. Cone tuu`CpAmax

ij q then con-
tains the closure of the elements in tuu ` CpBmax

i q that are tradeoff dominated
by u. Their union forms the closure of the space that is tradeoff-dominated
by u.

The size of the matrices in the maximum decomposition can be further reduced
by substituting the linear inequalities for enforcing that di is the largest com-
ponent in Amax

i by a single inequality that bounds the tradeoff of di to all other
components of d. The inequalities implied by Bmax

i establish di as the largest
component of d. This requirement can be relaxed by stating that for an arbi-
trary j P rms ztiu the relation dj `Mdi ą 0 must hold. This condition allows
other components in d to be larger than di, however not so large such that Equa-
tion (2.5) is violated. By transitivity of theą-relation it holds that if di`Mdk ą 0
for all k P rms ztju and dj `Mdi ą 0 for a single j P rms ztju then dk`Mdi ą 0
for all k. This approach is referred to by minimum decomposition, since it uti-
lizes the minimum number of matrices and matrix rows (Definition 25). Note
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2. Preferences in Multi-objective Optimization

that j can be chosen arbitrarily. It is chosen as i` 1 in Definition 25. The relax-
ation of the minimum decomposition, however, comes at the cost of the cones
no longer being disjunctive sets. Instead, the cones overlap resulting in the sum
of the volume of the individual cones being larger than the volume of tradeoff
dominated space (Figure 2.9). This is problematic in volume-based optimiza-
tion techniques that usually require an exact decomposition of the dominated
space [BNE07].
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Figure 2.9.: Decomposition of the tradeoff dominated space using the minimum ap-
proach for M “ 3 and m “ 3. Dark gray patches show the faces of the
individual cones of the ordered objectives approach and thick black lines
their generators. Light gray patches show the faces of the entire tradeoff
dominated space. The dotted lines are the generators of the cone that repre-
sents the tradeoff dominated space.

Definition 25 (minimum decomposition [BS16]). Let u P Rm and M P R`.

DăMt
puq “ tuu ` int

¨

˝

ď

iPrms
CpAmin

i q
˛

‚, (2.24)

with

Amin
i “

ˆ

BM
i

bMi

˙

, (2.25)

where

bMi pkq “

$

’

&

’

%

1 if k “ i

M if k “ pi mod mq ` 1

0 else.
(2.26)

Proof. It is sufficient to show that CpAmax
i q Ď CpAmin

i q and that CpAmin
i q only

contains tradeoff dominated elements. Let di be the largest component of d. If
Bmax
i d ŕ 0 then dk `Mdi ě 0 for all k P rms ztiu implying that CpAmax

i q Ď
CpAmin

i q. If di is not the maximum element of d, then dk `Mdi ě 0 only holds
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2.3. Problem Transformations Using Tradeoff-based Preference Models

for all k if arg maxjPrmspdjq ` M arg minjPrmspdjq ě 0, which is equivalent to
d P DăMt

puq.

Any of the presented cone based decompositions can be used to formulate a
tradeoff codomain predicate. The formulation of the tradeoff domain predicate
as of Definition 26, however, suffers from two deficiencies. Since the tradeoff
dominated space is a composition of multiple polyhedral cones, each element
of the transformed codomain comprises a tuple of vectors – one vector for each
matrix. The Pareto order cannot be directly imposed on such elements. Instead,
individual vectors are compared on a pair-wise basis for Pareto domination. If
any vector Aiu Pareto dominates an Aiv with u,v P Rm, then, u tradeoff dom-
inates v. In this sense, Definition 26 is not a strict transformation that changes
only the codomain, although the Pareto order builds the basis of comparison.
Secondly, by letting Equation (2.6) be non-strict, we remove those elements
from the tradeoff optimal set for which equality holds in Equation (2.3) – these
are those elements that are located exactly at the tradeoff boundary. Although
this circumstance prohibits a mathematical equivalence between the codomain
predicate and the domain and order predicate, this limitation is negligible in a
practical context, since the preferred sets identified by the different predicates
nearly coincide.

Definition 26 (tradeoff codomain predicate). Let f “ pX,Y, F q be the objective
function of an MOOP andM P R`. LetA :“ pA1, . . . ,Akq be the generator matrices
of a cone based decomposition ofDăMt

puqwith u P Rm. Furthermore, let the inequality
in (2.6) be non-strict. The tradeoff codomain predicate is given by pfMY ,ăY q with
fMY “ pX,YM , FMY q, where

• YM :“ tpA1y, . . . ,Akyq | y P Rmu,
• FMY :“ tpx, pA1y, . . . ,Akyqq | px,yq P F u and

• For all y1,y2 P YM the relation y1 ăY y2 implies there exists an i P rks such
that Aiy

1 ăp Aiy
2.

A common approach in MOO is to approximate the Pareto front by a finite
set of points (see Section 4.1 for a detailed discussion on the topic). Usually,
these approximations aim at finding a uniform distribution of points on the
Pareto front in the objective space. Since uniform distributions on manifolds in
vector spaces can be described by concurrent definitions, there exist multiple
approaches to define optimal distributions of points [Deb01, CCLVV07]. Strict
codomain predicates possess an interesting feature in this regard that sets them
apart from domain and order predicates. Said optimal distribution notions are
all defined for the Pareto order, since the entire Pareto front is approximated.
A strict codomain predicate transforms the objective space of an MOOP, such
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2. Preferences in Multi-objective Optimization

that the Pareto order is imposed on the transformed objective space. Therefore,
these distribution notions can be directly applied to the transformed objective
space and thereby generate an approximation to the Pareto front that is both
optimal with respect to said distribution notion and the domain predicate.

In the present context of the tradeoff codomain predicate, the application of op-
timal distribution concepts is more complicated, since the Pareto order cannot
be directly imposed on the tradeoff transformed objective space. Their applica-
tion, however, is nonetheless possible. The quality of Pareto front approxima-
tions is usually measured by indicators [ZT99, BSS15, VVL98]. Such indicator
values can be computed for every objective space transformation induced by
individual cones and subsequently summed.

Table 2.4 provides an overview and comparison of the decompositions intro-
duced in this section. None of the proposed decompositions is best in each cat-
egory used for comparison. A closer look at Table 2.4 reveals that the approach
using the smallest number of cones still requires m cones. It is of interest to as-
sess, which is the minimum number of polyhedral cones for decomposing the
tradeoff dominated space. In the end, if it was feasible to describe the tradeoff
dominated space by a single polyhedral cone C, it would be possible to for-
mulate a strict tradeoff codomain predicate, since Pareto domination could be
directly imposed on the transformed objective space invoked by the generator
matrix of C.

Table 2.4.: Comparison of decomposition approaches of the tradeoff dominated space
by polyhedral cones. A decomposition is considered to be overlapping if the
cut of any two cones forms a space of m dimensions [BS16].

Number of cones Rows per matrix Overlapping

Ordered objectives m! m No
Min/max mpm´ 1q 2pm´ 2q ` 1 No
Maximum m 2pm´ 1q No
Minimum m m Yes

In determining the minimum number of cones, the mathematical property of
convexity for characterizing cones is discussed first (see Definition 27). Convex-
ity is often demanded to guarantee a certain degree of preference consistency.
Said property enforces the additivity of preference directions. Any combination
of moves in preferred directions must itself result in a preferred direction.

Definition 27 (convex cone [Wie07]). A cone C is called convex iff for all d1,d2 P
C it holds that d1 ` d2 P C.
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2.3. Problem Transformations Using Tradeoff-based Preference Models

The tradeoff dominated space is not convex as shown in Proposition 3. It is
a well known result in MOO, however, that polyhedral cones are convex (see
[Wie07]). This implies that the tradeoff dominated space cannot be described
by a single polyhedral cone. This result can be extended by identifying the
subsets of the tradeoff dominated space that render it non-convex. The line
connecting any two points in such two different subsets lies partially outside
of the tradeoff dominated space. As shown in Corollary 1, there exist m such
subsets and thereby we require at least m polyhedral cones to construct the
tradeoff dominated space.

Proposition 3. Let M P R` and u P Rm be arbitrary. The tradeoff dominated space
DăMt

puq is not convex if m ě 3.

Proof. Without loss of generality, let u “ p0, . . . , 0q and vi denote the vector of
negative ones of length m, whose i-th entry is equal to M ` ε with ε P p0,M s.
Let us consider the point w “ v1{2 ` v2{2. If DăMt

puq was convex, then w P
DăMt

puq according to Definition 18. However, w “ ppM ` ε ´ 1q{2, pM ` ε ´
1q{2,´1, . . . ,´1q and if m ě 3 we obtain

max
iPrms

pwi ´ uiq `M min
iPrms

pwi ´ uiq ă 0 (2.27a)

ô 1

2
pM ` ε´ 1q `Mp´1q ă 0 (2.27b)

ô ε´M ´ 1 ă 0, (2.27c)

which implies u ćM
t w.

Corollary 1. Let M P R` and u P Rm. Decomposing the tradeoff dominated space
DăMt

puq into polyhedral cones requires at least m cones if m ě 3.

Proof. Without loss of generality, it has been established in the proof of Propo-
sition 3 that for any j, k P rms and j ‰ k it holds that wj,k “ vj{2 ` vk{2 R
DăMt

puq if m ě 3. This implies that no vj and vk can be located in the same
polyhedral cone. Since there exist m vectors vi we conclude that they all must
be located in distinct polyhedral cones.

The chapter is concluded by illustrating the limiting behavior of the tradeoff
dominated space for extreme values of M (Figure 2.10). For M Ñ 0, any point
u P Rm tradeoff dominates all those points that do not lie in its negative or-
thant. If M Ñ 8 the tradeoff dominated space converges to the Pareto cone.
In this sense, tradeoff domination is a generalization of Pareto domination and
thereby an extension of a fundamental concept in MOO.
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Figure 2.10.: Illustration of the tradeoff dominated space for extreme values.
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3. Scalarized Preferences

The scope of this chapter is providing a better understanding of the method-
ology of scalarization by presenting a framework for categorizing and charac-
terizing scalarization functions. A system of axioms is proposed to describe
scalarization functions. These axioms represent desirable properties a scalar-
ization function may or should exhibit and thereby provide means to identify
the strengths and weaknesses of individual scalarization functions. This sys-
tem of axioms can thereby help a DM in choosing a scalarization function that
is a suitable representation of her preferences. The framework is illustrated by
characterizing multiple existing scalarization functions, which are revisited in
later chapters. These functions have been explicitly chosen to exemplify spe-
cific challenges and difficulties that are frequently encountered in MOO.

The general notion of scalarized preferences is discussed in Section 3.1 and a
formal definition of scalarization functions is given. A broad categorization is
proposed for classifying scalarization functions that is based on the arithmetic
operations involved in computing scalarization values. Multiple instances of
scalarization functions that are used in MOO and throughout this work are
presented and the relationships between them are explored. Section 3.2 intro-
duces a system of axioms to characterize and describe scalarization functions.
Special consideration is given to describing how different scales of measuring
objectives affects the ranking of Pareto optimal points induced by scalarization
functions. Mathematical proofs are given to show which scalarization func-
tions introduced in Section 3.1 fulfill the proposed axioms. It is shown that all
presented scalarization functions satisfy only subsets of the proposed axioms,
requiring the DM to carefully weigh advantages and disadvantages in choosing
a function that represents her preferences.

3.1. The Scalarized Preference Model

Declaration: Parts of this section have been published in [BSS17] and [SBS13].

Scalarization is a technique for solving MOOPs, see Section 4.1 for a discussion
on solving paradigms in MOO. Said method is used in a two-fold way in MOO:
1) obtaining either the entire set of Pareto optimal solutions in multi-objective
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3. Scalarized Preferences

combinatorial optimization (MOCO) [GEF16, Chapter 19] or a discretized, uni-
form subset of the Pareto front for general continuous problems [Mie99]; 2)
expressing preferences and identifying a single solution that is preferred to all
other options [Deb01, CCLVV07]. Scalarization functions are also known as
value functions in this context [Mie99, Sec. 4.1]. The analysis in this thesis fo-
cuses solely on the latter case.

Scalarized preferences are a well-known technique for solving MOOP, which
finds widespread application in research and in practice [MA04]. Scalariza-
tion functions are conceptually attractive, since they eliminate the necessity of
choice by identifying a single globally optimal solution. They are either derived
naturally from the objectives being optimized – for example the efficiency of a
combustion process [BSE`16] - or are the result of expert preference elicitation
[GEF16, KR93]. In the latter case, the application of a scalarization function re-
quires a profound understanding of mathematical preference modeling to fully
capture the DM’s preference [Mie99, Sec. 4.1]. The analysis in this section is
aimed at providing assistance in the elicitation step. The case in which scalar-
ization functions are used to compute the entire Pareto front or a discretized
subset of it is omitted, since they do not involve DM preferences.

The real-valued MOOP as of Definition 9 is considered as basis of the discus-
sion for clarity and simplicity. Generally speaking, a scalarization function is a
map from the objective space to the set of real numbers (see Definition 28). We
assume that the scalarization function is minimized to comply with the notion
of minimizing individual objectives.

Definition 28 (scalarization function). A scalarization function is a map Ψ “
pX,Y, F q with X Ď Rm and Y Ď R.

Given an MOOP with objective function f and a scalarization function Ψ, a
preferred solution is obtained by finding a minimum of the composition Ψ ˝ f .
The domain of the scalarization function is thereby restricted to the feasible
set of the objective space Y . The application of a scalarization function for ob-
taining a preferred solution can be formulated as predicate as of Definition 12
(see Definition 29). The scalarization predicate consists of an objective space
transformation. A scalarized preference reduces the Pareto optimal set to those
points that map to the smallest obtainable scalarization value. If the scalariza-
tion optimum is unique, the preferred subset (Definition 11) consists of a single
element.

Definition 29 (scalarization predicate). Let f “ pX,Y, F q be the objective func-
tion of an MOOP. A predicate pfs,ďq with fs “ pXs,R, Fsq is called scalarization
predicate if Xs “ X .

• The codomain of fs is referred to as scalarization space,
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3.1. The Scalarized Preference Model

• xs “ arg minxPX fspxqwith fpxsq being Pareto optimal is called scalarization
optimizer,

• fpxsq is called optimal scalarization value or scalarization optimum.

By mapping vectors of objectives to real numbers, a total order is invoked on
the objective space that allows ranking all of its elements. The Pareto opti-
mal solution that ranks at the top of all other alternatives is considered the
most preferred choice. The mathematical structure of the scalarization func-
tion is decisive to how scalarization values are assigned to vectors of the objec-
tive space. Depending on the chosen function, individual rankings may vary
greatly [MA04, Mie99]. A DM is therefore required to select a function that is
a suitable representation of her preferences. This task, however, may just be
as difficult as manually selecting a solution from a given set of alternatives.
MCDA methodology can be used to alleviate this process [GEF16].

In the following, three base categories of scalarization functions are proposed.
Thereafter, multiple instances of scalarization functions used in research and in
practice are presented. These functions have been chosen to reflect the large
array of scalarization methods available in MOO (see [MA04, GC17] for an
overview). Special consideration was given to the algebraic structure of the
different functions by including a range of functions that utilize simpler oper-
ations such as addition or multiplication and more complex operations such
as norms or trigonometric functions. These operations lead to the functions
exhibiting different mathematical properties such as smoothness or jump dis-
continuities. The presented functions also possess a varying degree of addi-
tional information required to correctly compute scalarization values. Such in-
formation includes reference points such as the vector of smallest attainable
objective values (see Definition 35) that must be precomputed in advance. The
algebraic structure and the required additional information both pose different
challenges in the applicability of algorithms to obtain preferred solutions. The
presented functions include functions that are frequently used by researchers
and practitioners such as the weighted sum (Definition 33) and the Chebyshev
method (Definition 36), but also methods that have been presented more re-
cently (see Definitions 41 and 42).

3.1.1. Additive Scalarization Function

To facilitate a better understanding of the scalarization methodology, a catego-
rization of scalarization functions is proposed. This categorization is revisited
in the next section when different properties of scalarization functions of these
categories are discussed. The additive model that has been briefly discussed in
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Section 1.2 builds the basis of the first category that is considered. The additive
scalarization function (see Definition 30) transforms individual objective val-
ues and sums them up. These transformations can take place to accommodate
different valuations for each objective. Concave utility functions, for example,
are used in economics to express the diminishing marginal utility of income
and wealth [VNM53]. The transformations may be arbitrary and different for
each objective. The only requirement is that they are strictly increasing, so the
natural ordering of the objectives is not partially reversed, i.e. a transformation
must not lead to larger objective values being preferred to smaller ones.

Definition 30 (additive scalarization function cf. [GEF16]). Let tg1, . . . , gmu be
a set of strictly increasing functions with gi : R Ñ R for all i P rms. The additive
scalarization function is given by

Ψ`puq :“
ÿ

iPrms
gipuiq. (3.1)

3.1.2. Multiplicative Scalarization Function

The multiplicative scalarization function (see Definition 31) has also been briefly
discussed in Section 1.2. It is closely related to the additive scalarization func-
tion. Instead of summing the transformed objectives, the values are multiplied.
Thereby, small increases or decreases in individual objectives may exert larger
changes in the scalarization value in comparison to additive functions. Any
multiplicative function can be transformed into an additive function by log-
arithmizing [GEF16]. Although both models – the additive and multiplica-
tive scalarization function – are isomorphic if transformed objective values are
positive, their applicability in optimization algorithms greatly differs because
of their different algebraic properties. The multiplicative function, for exam-
ple, usually introduces nonlinearities in the problem formulation that might
be difficult to handle using mathematical programming techniques (see Sec-
tion 4.2 for a discussion on different optimization methodologies). This, in
turn, increases the effort for validating necessary and sufficient conditions to
check for optimality, since these usually require the computation of derivatives
[Ber99, Mie99, MA04]. Logarithmizing a multiplicative function, on the other
hand, is also expected to result in nonlinearities that might be even more diffi-
cult to handle in comparison to using the product.

Definition 31 (multiplicative scalarization function cf. [GEF16]). Let tg1, . . . , gmu
be a set of strictly increasing functions with gi : R Ñ R for all i P rms. The multi-
plicative scalarization function is given by

Ψ˚puq :“
ź

iPrms
gipuiq. (3.2)
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Figure 3.1.: Illustration of the non-differentiability of the maximal scalarization function.
The Pareto front is given by Yp :“ tpx, 1´xq P R2

|x P r0, 1su and the scalar-
ization function as Ψpuq “ maxpu1, u2q. The function Ψ is non-differentiable
at the point p0.5, 0.5q, where the maximizing objective of Ψ changes from f2
to f1.

3.1.3. Maximal Scalarization Function

The third and final category in this thesis is the maximal scalarization function
(see Definition 32). This class of functions computes the scalarization value
as the maximum of all transformed objective values. In that sense, the objec-
tive that is fulfilled worst is decisive for the desirability of a solution. Maximal
functions usually introduce non-differentiability at those points, at which max-
imizing objective of Ψmax changes (see Figure 3.1). Non-differentiability pro-
hibits the application of many efficient mathematical programming techniques
[Ber99]. This drawback can be remedied, however, by reformulating the maxi-
mum function as a constraint [Mie99]. Adding constraints to the problem for-
mulation, on the other hand, usually increases the required effort for solving
the problem [MA04].

Definition 32 (maximal scalarization function cf. [MA04, Mie99]). Let tg1, . . . , gmu
be a set of strictly increasing functions with gi : RÑ R for all i P rms. The maximal
scalarization function is given by

Ψmaxpuq :“ max
iPrms

gipuiq. (3.3)

Many scalarization functions that have been proposed throughout the MOO lit-
erature are instances of either the additive, multiplicative or maximal scalariza-
tion function [MA04]. These three functions therefore serve as baseline models
for categorizing scalarized preferences. Subsequently, any mathematical char-
acterization of the additive, multiplicative and maximal scalarization functions

43



3. Scalarized Preferences

applies to every instance of these baseline models as well. The characteriza-
tions of these three functions presented in Section 3.2 therefore apply to a large
array of scalarization functions utilized in MOO methodology. Definitions 30
to 32, however, are not exhaustive for all existing and conceivable scalarization
functions. Neither one of these three functions addresses interdependencies be-
tween objectives, for example. Many scalarization approaches that have been
developed in recent years, use complex mathematical computations that can-
not be easily subsumed under joint categories [DG11, Das99, SBS13, BSS17].
Nonetheless, these approaches share many similarities with the three baseline
models that further the understanding into said approaches. It must be noted
that equivalent formulations for Definitions 30 to 32 exist for strictly decreasing
transformation functions. In this case, Equations (3.1) to (3.3) must be negated
to comply with minimization.

The remainder of this section introduces several explicit instances of scalar-
ization functions that are applied in MOO. These functions serve as a basis
for discussing the characterizations in Section 3.2 and are revisited later in the
computational studies in Chapters 5 and 6. They were chosen for this thesis,
because they use different notions for representing preferences and because
they vary in their degree of computational complexity – the necessary effort for
computing scalarization values.

The scalarization functions that are introduced in the following can be catego-
rized as either parameter-dependent or parameter-free (see Table 3.1). Parameter-
dependent scalarization functions require the DM to reveal additional prefer-
ence information used for prioritizing the different objectives. The parameter-
dependent scalarization functions presented in this section require the specifi-
cation of weights to describe the relative importance of each objective. There
exist, however, other scalarization techniques that require more complex pref-
erence information such as reference points [TMKM09] or desirability ranges
for each objective [Mes96]. Parameter-free scalarization functions, on the other
hand, do not require any additional information by the DM to compute scalar-
ization values. Scalarization functions that are parameter-free assume that all
objectives are equally important. In this sense, they deem a solution preferable
if it strikes a balance between all objectives. The scalarization functions that
are used in the computational studies in Chapters 5 and 6 are parameter-free to
facilitate a comparison across different scalarization functions that is unbiased
of any prioritization between different objectives.

3.1.4. Weighted Sum and Sum of Objectives

The weighted sum method (see Definition 33) is one of the most popular scalar-
ization functions in MCDA and MOO. It is an instance of the additive scalar-
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Scalarization function Symbol Parameter Reference Base model

Angle utility Ψa free Definition 41 None
Chebyshev Ψc free Definition 36 Maximal
Nash bargaining solution Ψn free Definition 39 Multiplicative
Product of objectives Ψp free Definition 34 Multiplicative
Sum of objectives Ψs free Definition 33 Additive
Tradeoff utility Ψt free Definition 42 None
Weighted Chebyshev Ψwc dependent Definition 36 Maximal
Weighted product Ψwp dependent Definition 34 Multiplicative
Weighted sum Ψws dependent Definition 33 Additive

Table 3.1.: Overview of parameter dependency of the scalarization functions presented
in Section 3.1.

ization function for which objectives are transformed by multiplying them by
non-negative weights. Each weight signifies the relative importance of every
corresponding objective. Weights can also be used to normalize objectives to a
common numeric scale for better comparability, although it is usually recom-
mended to decouple normalization and importance weighting [GEF16]. The
popularity of the weighted sum method can be attributed to the simplicity of
its application and the understanding of the meaning of the individual weights
[MA04]. In changing individual weights, different regions of the Pareto front
become more preferable [Mie99]. If all weights are set to the same positive
number, the weighted sum is equivalent to the sum of objectives. The sum of
objectives represents the case, in which all objectives are equally important to
the DM.

Definition 33 (weighted sum and sum of objectives cf. [Mie99]). Let λ P Rmě0 be
a vector of non-negative weights. The weighted sum is given by

Ψwspuq :“
ÿ

iPrms
λiui (3.4)

and the sum of objectives is defined as

Ψspuq :“
ÿ

iPrms
ui. (3.5)

3.1.5. Weighted Product and Product of Objectives

The weighted product (see Definition 34) is a multiplicative scalarization func-
tion that follows a similar line of thought as the weighted sum. Individual
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objectives are exponentiated by a non-negative number to express a different
priority for each goal. In contrast to the weighted sum, the weighted product is
less prevalent in MOO. Describing the relative importance of each objective in
terms of weights is deemed more difficult for the weighted product compared
to the weighted sum [MA04]. Nonetheless, the weighted product is a popular
method for describing preferences in economics, within which it is commonly
referred to as Cobb-Douglas preference [CD28, VR10]. In case all weights pos-
sess the same positive value, Ψwp becomes the product of objective values.

Definition 34 (weighted product and product of objectives [Bri22]). Letλ P Rmě0

be a vector of non-negative weights. The weighted product is given by

Ψwppuq :“
ź

iPrms
uλii (3.6)

and the product of objectives is defined as

Ψppuq :“
ź

iPrms
ui. (3.7)

3.1.6. Chebyshev Method

There also exist instances of maximal scalarization functions that utilize weights.
Objective values can be multiplied by non-negative weights and the maximum
of all products constitutes the scalarization value. A scalarization function that
builds on this approach, and which is frequently used in MOO [LZ09, Mie99,
MA04], is the weighted Chebyshev method (see Definition 36) that addition-
ally uses the ideal point of the MOOP to solve. The ideal point is the vector of
the smallest values that can be achieved in each objective (see Definition 35 and
Figure 3.2). The weighted Chebyshev method subtracts the ideal point from the
vector u, whose scalarization value is computed, and multiplies the difference
by a non-negative weight. The maximum of all weighted differences consti-
tutes the scalarization value. In subtracting the ideal point from u, the origin
of Rm becomes the joint point of reference for each objective – the smallest
value that can be achieved by every transformed objective. For any Pareto op-
timal point u, there exists a λ P Rmě0 such that u is the solution to Ψwc [Mie99].
Thereby, using the weighted Chebyshev method, any point of the Pareto front
can be attained as preferred solution.

Definition 35 (ideal point cf. [Mie99]). Let f “ pX,Y, F q be the objective function
of an MOOP. The ideal point of f is defined as u‹ with @i P rms : u‹i “ minuPY ui.
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Definition 36 (Chebyshev method cf. [Mie99]). Let λ P Rmě0 be a vector of non-
negative weights. The weighted Chebyshev method is given by

Ψwcpuq :“ max
iPrms

pλi pui ´ u‹i qq (3.8)

and the Chebyshev method is defined as

Ψcpuq :“ max
iPrms

pui ´ u‹i q . (3.9)

f1

f2

ue,1

ue,2

u‹

undr

Figure 3.2.: Illustration of the ideal point u‹, the nadir point undr and the extreme points
for objective one (ue,1) and objective two (ue,2).

Sum, product and maximum constitute three fundamentally different approaches
to representing preferences. This circumstance is best illustrated by assess-
ing the indifference curves of the sum of objectives, product of objectives and
Chebyshev method (see Figure 3.3). The indifference curve of a scalarization
function for a given aspiration level a P R comprises all elements of the ob-
jective space that have the same scalarization value a (see Definition 37). All
points that lie on the same indifference curve are thereby equally desirable. In-
difference curves are a popular tool in economics for comparing different pref-
erence models [VR10]. In MOO, this concept can be used to assess, whether a
move in the objective space in a given direction would be beneficial to the DM.

Definition 37 (indifference curve cf. [Edg81]). Let Ψ be a scalarization function
and a P R be an aspiration level. The indifference curve of Ψ at a is given as the
implicit function

Ipu, aq :“ Ψpuq ´ a “ 0. (3.10)

Scalarization functions that involve weights enable the DM to prioritize indi-
vidual objectives. Choosing the right weights, however, is usually cumbersome
for a DM, which is why there exists abundant literature on MCDA method-
ology for providing assistance during this process [GEF16]. The subsequent
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Ψcpuq

Figure 3.3.: Comparison of indifference curves for the sum of objectives, product of ob-
jectives and the Chebyshev method with u‹ “ p0, 0q. An aspiration level of
a “ 1 is depicted in the plot.

scalarization functions that are discussed in this section have been specifically
designed to be parameter-free, instead of being mere instances of parameter-
dependent scalarization functions. These functions aim at striking a balance
between the different objectives by considering additional information that can
be derived from the composition of the feasible set of the objective space. The
Chebyshev method – although being an instance of a parameter-dependent
scalarization function – follows the same strategy by utilizing the ideal point,
which consists of the minima of the respective feasible objective values.

3.1.7. Nash Bargaining Solution

The Nash bargaining solution (see Definition 39) is a concept that originated
in axiomatic bargaining theory in welfare economics and it is an instance of a
multiplicative scalarization function. The point u, whose scalarization function
is computed, is subtracted from the vector of the worst objective values among
all Pareto optimal points – the nadir point (see Definition 38 and Figure 3.2).
The differences are multiplied and the resulting product is negated. The Nash
bargaining solution deems points located close to the boundary of the Pareto
front as undesirable, because individual objective values that are close to their
nadir value enter Equation (3.11) as small factors rendering Ψn large in turn
(see Figure 3.4).

Definition 38 (nadir point [CCLVV07, Deb01]). Let f “ pX,Y, F q be the objective
function of an MOOP. The nadir point of f is defined as undr with @i P rms : undri “
maxuPYp ui.

48



3.1. The Scalarized Preference Model

Definition 39 (Nash bargaining solution cf. [Nas50]). The Nash bargaining so-
lution is given by

Ψnpuq :“ ´
ź

iPrms

`

undri ´ ui
˘

. (3.11)

f1

f2
Ψnpuq

undr

u

Figure 3.4.: Geometric interpretation of the scalarization value computed by the Nash
bargaining solution. The area of the shaded rectangle is equivalent to the
Nash bargaining value of u. A larger area indicates a higher desirability.

The Nash bargaining solution was originally proposed for maximization prob-
lems and has been adapted for minimization as proposed in [BHSS17]. Sub-
tracting objective values from the corresponding nadir values constitutes a strictly
decreasing transformation, which is why the resulting product is negated.

3.1.8. Angle Utility

Angle utility (see Definition 41 and Figure 3.6) is a scalarization function that
computes the scalarization value of a point u by using the extreme points of
the Pareto front as reference. Extreme points (see Definition 40 and Figure 3.2)
mark the corners of the Pareto front. They are worst in at least one objective
with respect to the entire Pareto front and can thereby be deemed least inter-
esting. Note that there exist different approaches to defining extreme points
for three and more objectives [DJ14, SIR11]. Angle utility has been originally
introduced as utilizing extreme points obtained by minimizing an achievement
scalarization function (ASF) [BSS17, DJ14]. The ASF is a maximal scalarization
function that multiplies each objective by a positive weight. If the extreme point
of objective k is sought, the weight of objective k is chosen to be much smaller
in comparison to the weights of the other objectives. Thereby, the optimizer of
the ASF attains a large value in objective k, while the objective values of other
objectives are small. Thereby, the optimizer is extreme in objective k.
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In this work, a lexicographical extreme point definition is used instead (Def-
inition 40 and Figure 3.5), since there exists a unique lexicographical extreme
point in each objective [Ehr05] and minimizing an ASF might yield multiple
solutions. A continuous Pareto front in three or higher dimensions might even
exhibit an infinite number of ASF extreme points as shown in Example 2. Lex-
icographical extreme points are obtained by minimizing the objectives of an
MOOP lexicographically. The extreme point of objective k is obtained by min-
imizing objective k ` 1 first. Subsequently, objective k ` 2 is minimized while
adding the constraint that objective k ` 1 retains its globally optimal value.
This procedure is repeated until finally objective k is minimized. The resulting
point has the maximum value in objective k among all Pareto optimal points.
Note that the objectives can be minimized in any order to obtain valid extreme
points, as long as objective k is minimized last. However, changing the order
may result in obtaining different extreme points.

Example 2. Let Yp :“ tu P r0, 1s3 |u1 “ 1 ´ u2, u3 “ 0u and ε ą 0 with λ “
p1{ε, 1{ε, εq. It follows that λu is constant for any u P Yp, which makes all u P Yp the
extreme point of objective 3.

Using angle utility, desirability is measured by considering the geometric prop-
erties of the front, namely the angles between u and the extreme points (see
Figure 3.6). The largest of all these angles yields the scalarization value of u.
This way, angle utility favors points that are located either towards the center
of the front or at convex bulges, since such points tend to decrease the angles
computed in Equation (3.14) (see Figure 3.6). Although angle utility utilizes the
maximum function (see Equation (3.13)) to compute scalarization values, it is
not a maximal scalarization function, since each angle is computed using the
entire vector u instead of a single component of u (see Equation (3.14)). This
implies an interdependency in the valuation of individual objectives that is not
considered in the maximal scalarization function.

Definition 40 (extreme point cf. [Ehr05]). Let f “ pX,Y, F q be the objective func-
tion of an MOOP. The k-th extreme point ue,k of f is given by

ue,k :“ lexmin
uPY puk`1, . . . , um, u1, . . . , ukq. (3.12)

Definition 41 (angle utility [BSS17]). The angle utility is given by

Ψapuq “ max
kPrms

`

γpu,ue,kq˘ , (3.13)

where

γpu,ue,kq “ arctan

¨

˚

˚

˝

c

řm
i“1,i‰k

´

ui ´ ue,ki
¯2

|uk ´ ue,kk |

˛

‹

‹

‚

. (3.14)
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Figure 3.5.: Illustration of lexicographic extreme points for three objectives on the Pareto
front Yp :“ tu P r´1, 1s3 | pu1, u2q P r0, 1s

2 : u3 “ 1 ´ u1 ´ u2u. The
extreme point of objective three is obtained by minimizing objective one first
resulting in the set tp0, u2, u3q P r0, 1s

3
|u2 ´ u3 “ 1u indicated by the thick

red line. Further minimizing objective two yields ue,3.

f1

f2

u

ue,2

ue,1

γpu,ue,2q

γpu,ue,1q

Figure 3.6.: Illustration of the computation of angle utility.

3.1.9. Tradeoff Utility

Tradeoff utility is as scalarization function that is based on the concept of trade-
off optimality that has been introduced in Section 2.3 (see Definitions 14 and 42).
Instead of considering only the tradeoff to one or multiple reference points (see
Definitions 36, 39 and 41), tradeoffs are measured with respect to all elements
of the feasible set of the objective space Y . The tradeoff between two points
is computed as the fraction of the worst deterioration across all objectives di-
vided by the best improvement across all objectives. The maximum tradeoff of
a point to all other elements of Y constitutes its tradeoff utility. In this sense, the
desirability of a point is determined by the best alternative available. Although
tradeoff utility possesses properties of a maximal scalarization function, it can-
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not be characterized as such, since individual objectives are not translated by
monotonous transformations.

Definition 42 (tradeoff utility [SBS13]). The tradeoff utility is given as

Ψtpuq :“ max
vPY

maxiPrmspui ´ viq
maxiPrmspvi ´ uiq . (3.15)

f1

f2

u

v1

v2

v12 ´ u2

u1 ´ v11

v21 ´ u1

u1 ´ v21

Figure 3.7.: Illustration of tradeoff utility. The fraction in Equation (3.15) is computed
by dividing the length of the corresponding lines indicated in the figure.
The numerator of said fraction is the greatest loss among all objective values
that occurs when choosing u instead of v1, which corresponds to u1 ´ v11 .
The denominator represents the largest gain when selecting u instead of v1,
which corresponds to v12 ´ u2. The same observation applies to v2.

3.2. Characterizing Scalarization Functions

The scope of this section is the mathematical characterization of scalarization
functions using a system of axioms. These axioms represent desirable prop-
erties that a scalarization function can exhibit. A DM may deem some ax-
ioms more important than others. In providing an axiomatic characterization,
a DM can be supported in identifying a scalarization function that serves as
suitable representation of her preferences. Depending on the set of axioms a
scalarization function fulfills, different optimization methodologies may be ap-
plied to obtain preferred solutions. The lack of fulfilling certain axioms, on
the other hand, may necessitate the modification of an existing optimization
algorithm before it can be combined with a given scalarization function (cf.
[SBS13, BHSS17]).

The majority of the axioms that are presented in this section are founded in wel-
fare economics and social choice theory. Welfare economics is concerned with
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the optimal allocation of goods in a society with multiple individuals, while
social choice theory, more generally, deals with collective decision making in
maximizing the well-being of a society. Depending on the preferences of the
members of a society, a hypothetical social planner is tasked with distributing
goods in such a manner that social welfare – the overall well-being of the mem-
bers – is maximized. Individual utility derived from the allocation of goods
is aggregated using social welfare functionals (SWFs). These functionals are
characterized in a systematic manner by axioms – desirable properties that a
distribution mechanism may or should exhibit [ASS02, Roe98].

Welfare economics and social choice theory have been mainly acknowledged
in MCDA and MOO in group decision making [CCLVV07, GEF16], however,
both disciplines have been scarcely related to scalarization in an optimization
context [Sta79]. Such a connection makes sense on a conceptual level, since
a social planner trying to find an allocation of goods that satisfies members
of a society can be related to a DM aiming to obtain a solution that strikes a
balance between the different objectives. The different allocations of goods,
among which a social planner can choose, correspond to the elements of the
feasible set in MOO. Individuals in welfare economics may be interpreted as
the objectives being optimized. Utility functions, employed by individuals to
evaluate allocations, are objective functions in MOO.

Although SWFs and scalarization functions have so far not been explicitly in-
terrelated, there exist SWFs hat have been employed as scalarization functions
to obtain preferred solutions in MOO – sometimes under different names. The
sum of objectives and the weighted sum are known as utilitarian and weighted
utilitarian SWF in welfare economics [dG02]. The Nash bargaining solution,
although not prevalent in MOO, has been used to obtain preferred solutions
to MOOPs [MMD91, BSS15, BSS17]. The maximal scalarization function corre-
sponds to the egalitarian SWF (or Rawlsian SWF) [Raw71].

It should be noted that other parts of economic theory that are related to wel-
fare theory, such as utility theory, have been largely acknowledged and applied
in relation to scalarization functions [Mie99, Bel86, HR88]. Utility theory is con-
cerned with the representation of human preferences by real-valued functions
[VNM53], and thereby builds the basis of MAUT and MAVT methodology
[KR93]. The crucial difference between utility theory and welfare economics
with respect to decision making is the perspective from which both disciplines
approach the subject. Utility theory takes a positive stance in assuming that the
DM inherently possesses a preference and aims at finding a numerical repre-
sentation of it [VNM53]. Welfare and social choice theory follow a normative
perspective in defining characteristics a decision making process should adhere
to [ASS02]. While the positive perspective has been explored, largely in MCDA
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[GEF16], partly in MOO [Mie99], the normative perspective has not been suffi-
ciently considered. In developing an axiomatic characterization of scalarization
functions, this work aims at establishing a framework for a normative descrip-
tion of scalarization functions.

Axioms to characterize SWFs are guided by ideas of moral philosophy and dis-
tributive justice [dG02, Roe98]. Consequently, not all considerations in welfare
economics and social choice theory translate well to MOO. After all, objectives
are not humans. For this reason, each axiom must be carefully assessed for its
applicability in MOO. Many axioms have been proposed in welfare economics,
since its inception by Kenneth Arrow [Arr51]. A review of all these charac-
terizations is beyond the scope of this thesis. Instead, an emphasis is put on a
selected few of these axioms that bear a significant meaning in the optimization
context.

In social choice theory, each individual i possesses an evaluation profile that is
a numeric representation of i’s preference on the set of alternatives X , among
which the social planner can choose from. Each individual assigns a real value
to every alternative of X signifying its desirability [Sen70]. This corresponds to
an objective function measuring the fulfillment of a goal by ranking outcomes
generated by choosing different values for the decision variables. The evalua-
tion profiles of all members of a given society can be aggregated into a tuple.
If there exist N individuals and X is finite the evaluation profile of the soci-
ety is an |X| ˆ N matrix. If X is continuous, then the aggregated profile is a
subset of RN . The aggregated evaluation profile of the society is the domain
of the SWF [Sen70] and corresponds to the feasible set of the objective space
Y in MOO, which is the domain of the scalarization function. Whether a given
SWF satisfies or violates a specific axiom can then either be defined for all feasi-
ble evaluation profiles or a subset of evaluation profiles [dG02]. The same line
of thought is adopted in this work. The fulfillment or violation of the axioms
proposed in this section is defined with respect to feasible sets of the objective
space or to restrictions of these sets (see Definition 43).

Definition 43 (feasible objective spaces and feasible Pareto fronts). Let F denote
the set of all objective functions that define a real-valued MOOP. The set of feasible
objective spaces is defined as

Υ :“ tY Ď Rm | Df P F : Y is the image of f u . (3.16)

Furthermore, the set of feasible Pareto fronts is defined as

Υp :“ tYp Ď Rm | Df P F : Yp is the Pareto front of f u . (3.17)
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3.2.1. Pareto Compliance

The first axiom that is presented within the proposed framework is based on
the Pareto dominance principle (see Definition 7). Welfare theory distinguishes
between the weak and strong Pareto axiom. The weak Pareto axiom states that
if alternative x is preferred by all individuals of the society to alternative y,
the SWF must rank x higher to y. The strong Pareto axiom states that if at
least one individual prefers x to y and all other individuals only weakly prefer
x to y (implying they either prefer x to y or they are indifferent between both
alternatives), then the SWF must rank x higher than y. Strong Pareto guarantees
that no inefficient alternative is chosen such that at least one individual could
be made better off without making anyone else worse off [Par96, dG02].

The Pareto dominance principle forms the very basis of defining optimality in
MOO (cf. Definition 8). This principle has also been applied in the context of
scalarization functions in MOO [Mie99, MA04, SBS13]. Scalarization functions
are usually assumed to be strictly increasing in each objective, implying that the
scalarization value becomes smaller if any objective value decreases [Mie99].
In most applications, however, it is deemed sufficient if the minimization of
the scalarization function yields a Pareto optimal point [MA04]. The Pareto
compliance axiom proposed in this work states that any dominated alternative
must possess a larger scalarization value than any alternative by which it is
dominated. Any scalarization function that satisfies Pareto compliance is guar-
anteed to obtain a Pareto optimal point when minimized.

Definition 44 (Pareto compliance cf. [Par96, Arr51]). A scalarization function Ψ
fulfills Pareto compliance if for all Y P Υ and u,v P Y satisfying u ăp v ñ Ψpuq ă
Ψpvq.

Pareto compliance has further been acknowledged in MOO with respect to
quality indicators. Quality indicators are functions that map a set of vectors
to a real number (see Section 5.3.1.3). Pareto compliance in terms of quality
indicators means that, given two sets A and B, if every element of B is domi-
nated by at least one element of A, then the indicator value of B must be larger
than the indicator value of A [CCLVV07, Definition 32].

The Pareto compliance axiom is a requirement for a scalarization function to
qualify as preference predicate, which mandates the preservation of the Pareto
order (see Definition 12). In case a scalarization function does not satisfy Pareto
comliance, a check for Pareto dominance must be performed in addition before
comparing scalarization values. This leads to an increase in runtime when exe-
cuting optimization algorithms [SBS13].

Proposition 4. Let SP denote the set of scalarization functions that satisfy Pareto and
let Y P Υ. Then,
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1. Ψ`, Ψws, Ψs P SP ,

2. Ψ˚ P SP if for all i P rms it holds that gi : R Ñ R`, i.e. all transformation
functions map to positive numbers.

3. Ψwp, Ψp P SP if Y Ď Rm` , i.e. the feasible objective space is fully contained in
the positive orthant.

4. Ψn P SP for all u P Y satisfying u ă undr, i.e. points that are strictly smaller
in each component compared to the nadir point.

5. Ψa P SP for all u P Y and k P rms for which there does not exist an ue,k such
that ue,k ăp u, i.e. points that are not Pareto dominated by any extreme point.

6. Ψmax, Ψwc, Ψc, Ψt R SP .

Proof. Let u,v P Y be arbitrary and u ăp v.

1. If u ăp v it follows that for all i P rms that ui ď vi and for at least
one j P rms that uj ă vj . Since the gi are strictly increasing transforma-
tion functions, it follows that gipuiq ď gipviq and gjpujq ă gjpvjq, which
implies that Ψ`puq ă Ψ`pvq. It follows that for all k P t`, ws, su that
Ψk P SP .

2. The scalarization function Ψ˚ is strictly increasing in each objective if for
all i P rms it holds that gi : RÑ R`. It follows that Ψ˚puq ă Ψ˚pvq.

3. Since Ψ˚ P SP if the gi map to positive numbers, it follows that Ψwp,Ψp P
SP if Y Ď Rm` .

4. The result Ψn P SP for all u P Y satisfying u ă undr is a consequence of
Ψ˚ P SP if for all i P rms ñ gi : RÑ R`.

5. For a proof of Ψa P SP for all u P Y and k P rms for which there does not
exist an ue,k such that ue,k ăp u see [BSS17, Proposition 1].

6. Let u‹ “ p0, 0q, u “ p1, 0q and v “ p1, 1q. It follows that Ψcpuq “ Ψcpvq.
Consequently, Ψmax,Ψwc,Ψc R SP .

For a proof of Ψt R SP see [SBS13, Theorem 3].

Proposition 4 shows that most of the scalarization functions presented in Sec-
tion 3.1 satisfy Pareto compliance only if the feasible set of the objective space
is restricted. These restrictions differ for each scalarization function and can be
remedied by applying different actions. The weighted product and the product
of objectives are only strictly increasing within the positive orthant. If objective
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values become smaller than zero, an objective vector u may Pareto dominate
other points that possess smaller scalarization values than u – e.g. u “ p´5,´5q,
v “ p1, 1q. This observation also illustrates, why the transformation functions
of any multiplicative scalarization function must strictly map to the positive
orthant for the scalarization function to fulfill the Pareto compliance axiom.

In many real-world optimization problems objective values take on negative
values [BDMS16, BSE`16]. Negative objective values can be scaled to posi-
tive values by subtracting a number greater than the smallest attainable value
of this objective from the corresponding objective function. Such a transforma-
tion, however, requires knowledge of the range of values that the objectives can
take on. Such knowledge is often not available prior to any optimization effort
[MA04]. Scaling may also effect the position of the scalarization optimum, an
aspect that is later discussed under invariance to scale axioms.

The scalarization value computed by the Nash bargaining solution is equiva-
lent to the volume of the box encompassed by u and the nadir point (Figure 3.4).
A larger volume is associated with a higher desirability. This notion, however,
makes only sense as long as u dominates the nadir point in each objective. For
example, if the nadir point dominates u, moving u towards positive infinity
increases the volume but not the desirability of u.

The angles utilized for the computation of angle utility are an indicator for the
tradeoff between u and the extreme points of the Pareto front. In this context,
the k-th angle may be perceived as the tradeoff with respect to the k-th objec-
tive. Angles are a meaningful notion for measuring the tradeoff as long as u
possesses a smaller objective value than the extreme point of the k-th objec-
tive. If ue,k dominates u then no tradeoff occurs as ue,k is strictly better than
u. The k-th angle loses its meaning as indicator for measuring tradeoffs in this
situation.

The weighted Chebyshev method can be modified to fulfill the Pareto compli-
ance axiom: Given a u P Y , the weighted Chebyshev method can be augmented
by summing the components of u´u‹, multiplying the sum by a small positive
scalar and adding the result to Ψwc [MA04]. The Nash bargaining solution and
angle utility can only be used to rank points that dominate the Nadir point. In
using intermediate estimates of the Nadir point and the extreme points, how-
ever, it is still possible to design optimization algorithms that obtain the corre-
sponding scalarization optima when starting the search from an arbitrary posi-
tion in the search space [BSS15, BSS17]. There exist no results that show under
which conditions Pareto compliance holds for tradeoff utility. Existing algo-
rithms that utilize tradeoff utility therefore additionally perform Pareto domi-
nation checks when comparing points in the objective space [SBS13].
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3.2.2. Binary Independence

SWFs are also characterized by the amount of information they require about
the set of alternatives X to establish a social preference between two alterna-
tives x and y. The axiom of binary independence1 states that the social prefer-
ence between x and y depends only on the individuals’ preferences between x
and y and no other alternatives in X . The social ranking generated by SWFs
that violate binary independence depends on the composition of X . Adding
or removing alternatives to X can thereby change the social preference of x
to y [Arr51]. Binary independence, however, has also been criticized in the
economics literature, since human preferences are known to depend on the in-
formation available. The revelation of additional choices can thereby lead to a
reevaluation of existing options [KT79].

The notion of binary independence is directly transferable to MOO by assess-
ing if the computation of scalarization values requires any knowledge about
the composition of the feasible set of the objective space Y . Such knowledge
often consists of reference points such as the ideal or nadir point (see Defini-
tions 36 and 39). Binary independence in the context of scalarization implies
that the preference between two points u,v P Y is independent of the compo-
sition of Y (see Definition 45). If a scalarization function requires knowledge
about the composition of Y , that knowledge must be known to correctly com-
pute scalarization value. In MOO, however, there is usually no information
available about Y prior to any optimization effort. This implies, in turn, that
scalarization optima can only be correctly identified, if the necessary knowl-
edge about Y is obtained first.

The axiom of binary independence is formulated using the mathematical con-
cept of restrictions of functions. The restriction of a function consists of truncat-
ing its domain, while maintaining all existing relations defined by its graph of
the elements of the domain that have not been removed. A scalarization func-
tion fulfills binary independence if it establishes the same ranking between two
points on all of its restrictions of which these two points form part.

Definition 45 (binary independence cf. [Arr51]). A scalarization function Ψ ful-
fills binary independence if for all Y1,Y2 P Υ for which u,v P Y1 and u,v P Y2 and
R P tă,“,ąu it follows that Ψ|Y1

puqRΨ|Y1
pvq ñ Ψ|Y2

puqRΨ|Y2
pvq.

The requirement of additional information imposes different restriction on the
applicability of the scalarized preference model (see Proposition 5). While the
ideal point can be obtained by minimizing each objective function individu-
ally, computing the nadir point is known to be a difficult problem for three and

1Binary independence is also called independence of irrelevant alternatives.

58



3.2. Characterizing Scalarization Functions

more objectives [CCLVV07]. Computing the extreme points of a Pareto front is
equally difficult as determining its nadir point, since the i-th objective of the i-
th extreme point is the i-th component of the nadir point. A single misidentified
extreme point may lead to a large perturbation in the computed scalarization
values making the correct identification of the scalarization optimum impossi-
ble [BSS17]. Computing the exact tradeoff utility of a single point consists of
solving an optimization on its own (see Definition 42). Although there exist
simplified formulations to solving Equation (3.15) for two objective problems,
depending on the curvature of the Pareto front, Yp must be known for comput-
ing tradeoff utility exactly for arbitrary MOOPs [SBS13]. Despite these issues,
it has been shown, that the necessary knowledge about Y for computing scalar-
ization values of the Chebyshev method, the Nash bargaining solution, angle
utility and tradeoff utility can be estimated and obtained during runtime to
approximate scalarization optima [SBS13, BSS15, BSS17, BHSS17].

Proposition 5. Let SBI denote the set of scalarization functions that satisfy binary
independence. Then,

1. Ψws, Ψs, Ψwp, Ψp P SBI ,

2. Ψwc, Ψc, Ψn, Ψa, Ψt R SBI .

Proof. Let i P tws, s, wp, pu. Evidently, for all Y1,Y2 P Υ and u P Y1, u P Y2 it
holds that Ψi|Y1puq “ Ψi|Y2puq. Scalarization functions Ψwc and Ψc require the
ideal point, Ψn the nadir point, Ψa the extreme points and Ψt necessitates the
knowledge of Yp to compute scalarization values.

In general, utilizing more knowledge about the composition of Y enables the
DM to make a more informed decision about the solutions she prefers. In-
cluding such knowledge in the computation of scalarization values is thereby
expected to be beneficial. However, since this information has to be obtained
first, computational resources have to be diverted that could otherwise be spent
on the search for scalarization optima.

3.2.3. Non-Extremeness

The next axiom that is discussed is founded in the nondictatorship property.
Social choice theory characterizes a SWF as dictatorial if only the preferences
of a single individual are decisive for the social ranking of all available alter-
natives. Such an SWF maximizes the well-being of a single individual, while
neglecting the opinions of other members of the society. This is undesirable
from a normative perspective, since social welfare is reduced to the well-being
of only one individual [Arr51, Roe98].

59



3. Scalarized Preferences

A scalarization function that minimizes a single objective while neglecting all
other objectives may be perceived as dictatorial in the context of MOO. Mini-
mizing only one or several objectives is problematic if it comes at the expense
of attaining values in other objectives that coincide with their corresponding
nadir values. Such solutions provide no balance between the different objec-
tives and are thereby not interesting candidates for implementation [GEF16].
The axiom of non-extremeness states that a scalarization function must avoid
identifying any extreme point as scalarization optimum if the Pareto front does
not solely consist of extreme points.

Definition 46 (non-extremeness). A scalarization function Ψ fulfills non-extreme-
ness if for all Yp P Υp and k P rms for which Ypztue,1, . . . ,ue,mu ‰ H it follows
that

arg min
uPYp

Ψpuq ‰ ue,k. (3.18)

Whether a scalarization function identifies an extreme point as optimum, mainly
depends on the curvature of the Pareto front (Figure 3.8). It is a well-known fact
in MOO that the weighted sum method identifies extreme points as optima
on strictly concavely shaped Pareto fronts irrespective of the chosen weights
[DD97, MPSM00]. Proposition 6 shows that this result can be generalized for
additive scalarization functions. For any additive scalarization function it is
possible to construct a concave Pareto front on which the scalarization function
identifies extreme points as optima. Tradeoff utility also identifies extreme so-
lutions on concave Pareto fronts as optima, since the improvement in at least
one objective is always greater than the worst deterioration among all other
objectives when moving from an interior point towards the boundary [SBS13].
The shape of the Pareto front, however, is usually not known prior to any op-
timization effort unless all objective functions and constraints are convex, in
which case the Pareto front is also convex [Mie99]. Therefore, obtaining an ex-
treme solution cannot be precluded when applying a scalarization function that
violates non-extremeness.

Definition 47 (symmetric extreme points). Let Yp P Υp and a, b P R with a ă b.
The extreme points of Yp are symmetric if for all k P rms and i P rmsztku it holds that
ee,ki “ a and ue,kk “ b.

The analysis of angle utility in the context of non-extremeness makes use of the
Bachmann-Landau notation for describing the limiting behavior of functions.
The limit of angle utility when moving from the interior to the extreme points of
the Pareto front is assessed to analyze conditions that make angle utility fulfill
non-extremeness. Symmetric extreme points (Definition 47) are a requirement
for angle utility satisfying non-extremeness.
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f1

f2

u

v

(a) Convex Pareto front.

f1

f2

u

v

(b) Concave Pareto front.

Figure 3.8.: Example of a convex (Figure 3.8a) and concave (Figure 3.8b) Pareto front.
The line connecting any two points u,v P Yp lies above the Pareto front if it
is convex and below if it is concave.

Proposition 6. Let SNE denote the set of scalarization functions that satisfy non-
extremeness. Then,

1. Ψc, Ψn P SNE ,

2. Ψwc P SNE if λ P Rm` ,

3. Ψa P SNE if the following two conditions are satisfied:

a) The extreme points of Yp are symmetric.

b) For every k P rms there exists a parametric equation of Yp denoted by
h “ ph1, . . . , hmq : Rm´1 Ñ Rm for which it holds that

lim
tÑ8hptq “ ue,k. (3.19)

Furthermore, there exists an i P rms such that for all j P rmsztiu it holds
that hiptq P wphjptqq, i.e. there exists a component i in which h grows
asymptotically faster than any other component j.

4. Ψws, Ψs, Ψ˚, Ψwp, Ψp, Ψt R SNE and

5. Ψ` R SNE .

Proof.

1. For any Pareto optimal point u there exits a weight vector λ, such that u
is the solution to Ψwc. The solution u is only a boundary point if at least
one λi “ 0 [Mie99, Theorem 3.4.2]. It follows that Ψwc,Ψc P SNE .
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2. For all k P rms it follows that Ψnpue,kq “ 0. For any point u P Yp that does
not possess a nadir value in any of its objectives it holds that Ψpuq ă 0. It
follows that Ψn P SNE .

3. For Ψa, the case m “ 2 is considered first. Since γpue,k,ue,kq results in
an undefined mathematical expression, the limit of γpue,k,ue,kq is con-
sidered and it is shown that said limit exists. Next, it is proven that there
exists an interior point that has a smaller scalarization value than the limit
if the extreme points are symmetric concluding that angle utility fulfills
non-extremeness.

Without loss of generality, let ue,1 “ p1, 0q and ue,2 “ p0, 1q2 and hptq :“
p1´ h1ptq, h2ptqqwith i P t1, 2u : limtÑ8 hiptq “ 0. It follows that

Ψaphptqq “ maxpγphptq,ue,1q, γphptq,ue,2qq, (3.20a)

γphptq,ue,1q “ arctan

ˆ

h2ptq
h1ptq

˙

, (3.20b)

γphptq,ue,2q “ arctan

ˆ

1´ h1ptq
1´ h2ptq

˙

. (3.20c)

The following cases can be distinguished:

a) If h2 P wph1q it holds that

γphptq,ue,1q tÑ8“ π{2, (3.21a)

γphptq,ue,2q tÑ8“ π{4, (3.21b)

Ψaphptqq tÑ8“ π{2. (3.21c)

Furthermore, there exist t0, ε P R` such that

γphpt0` εq,ue,1q ą γphpt0q,ue,1q ą γphpt0q,ue,2q ą γphpt0` ε,ue,2qq,
(3.22)

which implies that Ψaphpt0qq ă Ψaphpt0 ` εqq.
b) If h1 P ωph2q it holds that

γphptq,ue,1q tÑ8“ 0, (3.23a)

γphptq,ue,2q tÑ8“ π{4, (3.23b)

Ψaphptqq tÑ8“ π{4. (3.23c)

2See Proposition 10 for a justification of this simplification.
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Furthermore, there exist t0, ε P R` such that

γphpt0` εq,ue,2q ą γphpt0q,ue,2q ą γphpt0q,ue,1q ą γphpt0` ε,ue,1qq,
(3.24)

which implies that Ψaphpt0qq ă Ψaphpt0 ` εqq.
c) The case h1 P Θph2q is in violation to the condition that either h1 P
wph2q or h2 P wph1q must hold, which is why it can be neglected.
For the sake of completeness, the limiting behavior of angle utility
in this case is given as well.

lim
tÑ8 γphptq,u

e,1q P p0, π{2q, (3.25a)

γphptq,ue,2q tÑ8“ π{4, (3.25b)

Ψaphptqq tÑ8“ max
´

lim
tÑ8 γphptq,u

e,1q, π
4

¯

. (3.25c)

Let hptq :“ ph1ptq, . . . , hk´1ptq, 1´hkptq, hk`1t, . . . , hmptqq. Furthermore,
let h´k the denote function h without its k-th index, i.e. h´kptq “ ph1ptq,
. . . , hk´1ptq, , hk`1ptq, . . . , hmptqq. For any k P rms and i P rmsztku it holds
that:

γphptq,ue,kq “ }h´kptq}2
hkptq , (3.26a)

γphptq,ue,iq “
b

p1´ hkptqq2 `ř

jPrmszti,ku hjptq2
1´ hiptq (3.26b)

The following two cases can be distinguished:

a) If @i P rmsztku : hk P wphiq : then

lim
tÑ8 γphptq,u

e,kq “ 0, (3.27a)

lim
tÑ8 γphptq,u

e,iq “ π{4 (3.27b)

Furthermore, there exist an ε P R` and a t0 P Rm´1 such that

γphpt0`εq,ue,iq ą γphpt0q,ue,iq ą γphpt0q,ue,kq ą γphpt0`ε,ue,kqq,
(3.28)

which implies that Ψaphpt0qq ă Ψaphpt0 ` εq.
b) If Di P rmsztku : hi P wphkq : then

lim
tÑ8 γphptq,u

e,kq “ π{2, (3.29a)

lim
tÑ8 γphptq,u

e,iq “ π{4 (3.29b)
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Furthermore, there exist an ε P R` and a t0 P Rm´1 such that

γphpt0`εq,ue,kq ą γphpt0q,ue,kq ą γphpt0q,ue,iq ą γphpt0`ε,ue,iqq,
(3.30)

4. Let Yp “ tu P R2ě0 |u2
1 ` u2

2 “ 1u. It follows that for any chosen weights,
the minimizers of Ψws are either p1, 0q, p0, 1q or both, which are the ex-
treme points of Yp. Both points are also the minimizers of Ψt on Yp. It
follows that Ψws, Ψs, Ψt R SNE .

Let Y 1p “ tp1, 1qu `Y . It follows that for any chosen weights the minimiz-
ers of Ψwp are either p2, 1q, p1, 2q or both, which are the extreme points of
Y 1p. It follows that Ψ˚, Ψwp, Ψp R SNE .

5. The statement Ψ` R SNE already follows from Ψs R SNE . The following
proof shows that not only the weighted sum as special case of the additive
scalarization function violates non-extremeness, but that every additive
scalarization function violates non-extremeness.

Let Ψ`puq “ g1pu1q ` g2pu2q. Since g1 and g2 are strictly increasing, there
exist inverse functions g´1

1 , g´1
2 such that there exists a Yp P Υp with

Yp “ tpg´1
1 pu1q, g´1

2 pu2qq P R2 | @u1, u2 ě 0 : u2
1 ` u2

2 “ 1u. (3.31)

It follows that

Ψ`puq “ g1

`

g´1
1 pu1q

˘` g2

`

g´1
2 pu2q

˘ “ u2
1 ` u2

2. (3.32)

The minimizers of Equation (3.32) are the extreme points of Yp, since op-
timizing Ψ` on Yp results in finding the minima of the sum of objectives
on the unit arc in the positive orthant.

The requirements for angle utility to satisfy non-extremeness demand that there
exist nonlinear tradeoffs between at least two objectives when converging from
the interior of the Pareto front to an extreme point. Nonlinear optimization
problems usually satisfy this condition [ZDT00, DTLZ05, HHBW06, ED07].
This requirement, however, is only a sufficient but not necessary condition.
The limiting behavior of objectives makes no statement about the angle utility
of interior points of the front. The conditions in Proposition 6 merely guaran-
tee that the angle utility of extreme points is larger compared to points in their
immediate neighborhood. There may exist interior global scalarization optima
independent of the limiting behavior of the different objectives. Even linear
tradeoffs allow the existence of interior angle utility optima. The Pareto front
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of the three objective benchmark problem DTLZ1 [DTLZ05], for example, con-
sists of a symmetric triangle and is thereby linear (Figure 5.7). Its corresponding
angle utility optimum is located at the center of the front.

Athan and Papalambros [AP96] proposed two additive scalarization functions
for obtaining interior points on concave Pareto fronts: An exponential weighted
criteria method that multiplies each objective value by a positive scalar and ex-
ponentiates each product. The resulting powers are weighted once more and
summed. Weighted compromise programming raises each objective value by
a positive scalar. The powers are multiplied by positive weights and subse-
quently summed. The authors prove that both functions are able to attain ev-
ery point on any concave Pareto front by changing weights and increasing the
positive scalars by which objectives are either multiplied or raised. Thereby,
the exponential weighted criteria method and the weighted compromise pro-
gramming can be configured such that they always obtain non-extreme points.
Proposition 6 seemingly contradicts these findings, because all additive scalar-
ization functions are characterized as violating non-extremeness. The differ-
ence between Proposition 6 and the results in [AP96] consists of Proposition 6
requiring the weights and scalars to be fixed. Proposition 6 states in this con-
text, that given a fixed set of weights and scalars, it is possible to construct a
Pareto front such that the exponential weighted criteria method and weighted
compromise programming obtain only extreme points as solutions. Thereby,
both statements are reconciled.

3.2.4. Contraction Consistency

Contraction consistency is a concept from axiomatic bargaining theory. Bar-
gaining theory deals with interactions, in which agents negotiate about the
distribution of a surplus that can be achieved if they reach an agreement. If
no agreement can be reached, each agent retains her endowment. Such inter-
actions are referred to as bargaining problems. Bargaining theory and social
choice theory are closely related, since they aim at deriving socially preferable
outcomes from individual preferences. Concepts originating in bargaining the-
ory have been discussed in the context of social choice theory. SWFs in the
context of bargaining problems aim at finding allocations – a distribution of the
surplus between the agents – that are characterized by desirable properties in
the same manner as in social choice theory. Contraction consistency describes
the property that if x is a welfare optimum identified by an SWF on the set of
alternatives X , then x must also be the welfare optimum on any subset of X in
which x is contained. In this sense, contraction consistency can be perceived as
a weaker form of binary independence [EH89, Roe98].
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Contraction consistency is a property that directly translates to a characteriza-
tion of SOOPs. In SOO, if x is a minimizer of objective function f on domain
X , then x is also a minimizer on any subset S of X for which x P S [Ber99]. Ob-
taining the optimum to a scalarized MOOP corresponds to solving an SOOP.
In contrast to SOO, however, the scalarization value of a point u may not only
depend on the objective values of u, but also on the composition of the feasible
set of the objective space Y . Thereby, the location of the scalarization optimum
may change if the domain of the scalarization function is restricted to a subset
of Y , even if the original scalarization optimum is still feasible. A scalarization
function Ψ is characterized as contraction consistent if the scalarization opti-
mum u˚ remains optimal on any restriction of Ψ for which u˚ is feasible (see
Definition 48 and Figure 3.9).

In real-world applications, contraction consistency is a useful property, since
the composition of the feasible set may change after the search for optima has
already been completed. In airfoil design, for example, optimal solutions may
turn out to be impractical to manufacture [WCL10]. Restrictions in the produc-
tion technology are difficult to translate into mathematical constraints, which
is why such violations are not anticipated in advance. A scalarization func-
tion that violates contraction consistency may require restarting the search if
the composition of Y changes, even if u˚ remains feasible. Selecting a new op-
timum even though the old one is available, appears counterintuitive from a
decision making perspective.

f1

f2

u˚

S

Y

(a) Satisfaction of contraction consis-
tency.

f1

f2

u˚|Y
u˚|S

S

Y

(b) Violation of contraction consistency.

Figure 3.9.: Illustration of the contraction consistency axiom. If the original feasible set
Y is reduced to S (S Ă Y), such that the original scalarization optimum
u˚ of Y is still feasible, contraction consistency requires that u˚ is also the
scalarization optimum of S.

Definition 48 (contraction consistency cf. [Roe98]). Let Ψ be a scalarization func-
tion and u˚ denote the scalarization optimum of Ψ on Y P Υ. The scalarization func-
tion Ψ fulfills contraction consistency if for all S P Υ satisfying S Ă Y and u˚ P S it
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follows that
arg min

uPS
Ψpuq “ u˚. (3.33)

The contraction consistency axiom can be used to characterize the robustness
of a scalarization function with respect to changes in Y (see Proposition 7). Ev-
idently, any scalarization function that violates binary independence remains
contraction consistent as long as the additional information obtained from Y ,
which is required for computing the scalarization values, remains the same
across different subsets. For example, if the ideal point is identical across mul-
tiple subsets of the objective space, the scalarization values computed by the
Chebyshev method remain the same. The more information a scalarization
function requires about Y to remain contraction consistent the less robust it is
towards changes in Y .

Proposition 7. Let SCC denote the set of scalarization functions that satisfy contrac-
tion consistency. Furthermore, let S,Y P Υ and S Ă Y . Then,

1. Ψws, Ψs, Ψwp, Ψp P SCC ,

2. Ψwc, Ψc P SCC for all S,Y for which the ideal points coincide,

3. Ψn P SCC for all S,Y for which the nadir points coincide,

4. Ψa P SCC @S,Y for which the extreme points coincide,

5. Ψt P SCC for m “ 2 and Yp convex or Yp concave and for all S,Y for which the
extreme points coincide.

Proof. Evidently, any scalarization function fulfilling binary independence also
satisfies contraction consistency. For any i P twc, c, n, au and all u P Y it holds
that Ψi|Ypuq “ Ψi|Spuq if either the ideal point, the nadir point or the extreme
points coincide, respectively.

Let m “ 2 and h be an implicit function of Yp. If Yp is convex then the tradeoff
utility of a point u P Yp is equivalent to the maximum of the derivative of h
with respect to f1 or f2 at u. If Ψt is concave, then either ue,1 or ue,2 maximizes
the tradeoff utility of u. See [SBS13, Theorem 5] for reference.

Note that the Nash bargaining solution fully satisfies contraction consistency
as it is defined in bargaining theory without any restrictions [Nas50]. This is
because the disagreement point, which is equivalent to the nadir point in MOO,
is also required to remain feasible. This restriction is considered as special case
in Proposition 7.
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f1
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u˚|Y
u˚|S

ue,1|Y
ue,1|S

S

Y

Figure 3.10.: Illustration of the monotonicity axiom. If the ideal value of f1 decreases
(indicated by the downward shift of the extreme point of objective one),
then the monotonicity axiom states that the value of f1 at the scalarization
optimum must decrease as well.

3.2.5. Monotonicity

Monotonicity axioms also originate in bargaining theory and take an opposing
stance to contraction consistency. There exist differing approaches to formu-
late monotonicity properties in bargaining theory, however their joint ethical
foundations coincide. Whenever the set of alternatives X increases such that
an agent can derive a higher utility from her preferred bargaining outcome,
then the welfare optimum of the increased set must not make the agent worse
off compared to the optimum of the original set X . The reasoning behind this
axiom is that an agent should not be punished if she is willing or able to bring
more to the negotiating table [Roe98].

An equivalent logic applies to MOO. In real-world applications, technologi-
cal advances sometimes allow further improvements in one objective that do
not necessarily require the deterioration of other objectives. Technological ad-
vances in the automobile industry, for example, have lead to increases in the
power output of combustion engines while decreasing fuel consumption at the
same time. Such achievements should be rewarded in the decision making
process to provide an incentive for actively researching new technologies – or
alternative policies in non-engineering scenarios – that improve objective val-
ues. Otherwise, such improvements would be ignored in the decision making
process or even be detrimental to the corresponding optimal objective value.
The monotonicity axiom that is proposed in this work, states that if the ideal
value of objective i becomes smaller while all other ideal values retain their
values, the value of i at the scalarization optimum must decrease as well (see
Definition 49).

Definition 49 (monotonicity cf. [Roe98]). Let u˚ denote the scalarization optimum
of a scalarization function Ψ on Y P Υ. The function Ψ fulfills monotonicity if for all
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S P Υ with S Ą Y for which there exists an i P rms such that minuPS ui ă minuPY ui
and for all j P rmsztiu minuPS uj “ minuPYp uj it follows that

ui̊ ă
ˆ

arg min
uPS

Ψpuq
˙

i

. (3.34)

Scalarization functions that satisfy binary independence are obviously indiffer-
ent to changes in the ideal values. If a scalarization function violates binary
independence or ignores ideal values in computing scalarization values, a de-
crease in a given ideal value might even lead to a deterioration of the corre-
sponding objective value at the scalarization optimum. In case of the Nash
bargaining solution, a decrease of the ideal value that is accompanied by an
increase of the nadir value of another objective implies that the objective value
of the former at the scalarization optima increases. Even if ideal values are uti-
lized for computing scalarization values, the effect of decreasing an ideal value
may be counteracted by other components utilized in computing scalarization
values. If extreme points are asymmetric, a small change in an ideal value
might translate to a minor change in the corresponding angle that does not af-
fect the maximum of all angles (see Proposition 8). Spending additional effort
on improving the individual minima of an MOOP is thereby only beneficial if
the chosen scalarization function satisfies monotonicity.

Proposition 8. Let SM denote the set of scalarization functions that satisfy mono-
tonicity. Then,

1. Ψc, Ψwc P SM ,

2. Ψt P SM if the following two conditions are met:

a) The Pareto front Yp is concave and m “ 2,

b) Given Y , S, i and j according to Definition 49 it must hold that ue,i1 |S `
ue,i2 |S ă ue,j1 |S ` ue,j2 |S .

3. Ψws,Ψs,Ψwp,Ψp,Ψn,Ψa R SM .

Proof. Let u˚|Y and u˚|S denote the scalarization optima of Y, S P Υ, respec-
tively. Furthermore, let i P rms with minuPS ui ă minuPY ui and @j P rmsztiu
minuPS uj “ minuPYp uj .

1. The scalarization optimum of the weighted Chebyshev method is located
at the interception of the line l passing through u‹ and u‹`p1{λ1, . . . , 1{λmq
with the Pareto front. Decreasing u‹ in objective i by ε P R` leads to a
shift of l in dimension i by ε. It follows that ui̊ |S ă ui̊ |Y .
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2. Let ue,i :“ ue,i|S and ue,j :“ ue,j |S . If m “ 2 and Yp concave then
the scalarization optimum coincides with either of the extreme points. If
Ψtpue,iq ă Ψtpue,jq holds then Ψt fulfills monotonicity and it follows that

Ψtpue,iq ă Ψtpue,jq (3.35a)

ô ue,ii ´ ue,ji
ue,jj ´ ue,ij

ă ue,jj ´ ue,ij
ue,ii ´ ue,ji

(3.35b)

ô pue,ii ´ ue,ji q2 ă pue,jj ´ ue,ij q2 (3.35c)

ô ue,ii ` ue,ij ă ue,ji ` ue,jj (3.35d)

ô ue,i1 |S ` ue,i2 |S ă ue,j1 |S ` ue,j2 |S (3.35e)

3. Evidently, any scalarization function that fulfills binary independence
cannot satisfy monotonicity. It follows that Ψws,Ψs,Ψwp,Ψp R SM . Only
scalarization functions that utilize ideal values in computing scalariza-
tion values may satisfy monotonicity. Thereby, the Nash bargaining so-
lution does not satisfy monotonicity, since it only requires knowledge of
the nadir point.

For any a P R` let Pa “ tpx, 1 ´ ?xq P R2 |x P r0, asu with Y “ P1 and
S “ P2. For angle utility, it follows that u‹|Y “ p0, 0q, u‹|Y “ p0, 1 ´?

2q and u˚|Y « p0.3838, 0.3805q, u˚|S « p0.2626, 0.4875q. It follows that
u2̊ |Y ă u2̊ |S , although u‹2|Y ą u‹2|S .

Proposition 8 shows that the majority of the scalarization functions that are
discussed within this work, do not satisfy the monotonicity axiom. For angle
utility, even an adverse effect can be observed. Decreasing the ideal value of
objective i may lead to an increase of the value of objective i at the angle util-
ity optimum. Tradeoff utility satisfies monotonicity only under very specific
conditions. For two objectives, the conditions state that the Pareto front must
be concave and that ue,i|S lies underneath the line with slope ´1 that passes
through ue,j |S .

3.2.6. Equity

SWFs aim at finding a compromise between the different opinions and needs
members of a society possess. Since the well-being of each individual is mea-
sured in utility, the social welfare optimum should aim at equally distributing
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utility among the society. Equity axioms in social choice theory formalize this
notion by describing circumstances under which transfers from wealthier to
poorer individuals would be socially desirable [dG02]. The Pigou-Dalton prin-
ciple states that a transfer from a wealthier to a poorer individual is desirable
as long as the utility of the poorer individual does not surpass the utility of
the wealthier individual after the transfer. Social choice theory distinguishes
between a weak and a strong satisfaction of the Pigou-Dalton principle. Weak
satisfaction implies that the SWF must be at least indifferent between transfers
from the rich to the poor, while strong satisfaction mandates that the outcomes
of such transfers must always be preferred to the original allocation [dG02].

In the same manner, scalarization functions aim at striking a balance between
the objectives that are optimized. Notions of equity have been adopted in MOO
to obtain preferred solutions [SHS10b, KOW04, Eic12, KOW04, Ogr09], how-
ever they have not been utilized to explicitly characterize scalarization func-
tions. Evidently, the Pigou-Dalton principle is only applicable if each objective
is equally important in the decision making process. Any scalarization function
that prioritizes individual objectives is in clear violation of any equity notion.
Definition 50 distinguishes between a strong and weak Pigou-Dalton princi-
ple in the same manner as in social choice theory. The strict variant mandates
that decreasing a large objective while increasing a small objective by the same
amount must always be preferred, while the weak variant requires the scalar-
ization function to be at least indifferent. See Figure 3.11 for an illustration of
the concept.

f1

f2

u

vε

ε

Figure 3.11.: Illustration of the Pigou-Dalton principle. A scalarization function that sat-
isfies the strong Pigou-Dalton principle must prefer any point on the red
line to u.

Definition 50 (Pigou-Dalton principle cf. [dG02]). Let for all i, j P rms, for all
u,v P Y P Υ and for all ε P R` the following two conditions hold:

• vj ă vi, vj “ uj ` ε, vi “ ui ´ ε and

• @k R ti, ju, vk “ uk.
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A scalarization function Ψ fulfills

• the weak Pigou-Dalton principle if Ψpuq ě Ψpvq and

• the strong Pigou-Dalton principle if Ψpuq ą Ψpuq.

Proposition 9 shows which scalarization functions satisfy the Pigou-Dalton prin-
ciple. Evidently, any scalarization function that satisfies the strong Pigou-Dalton
principle also satisfies the weak Pigou-Dalton principle. In addition, a function
that satisfies the weak but not the strong Pigou-Dalton principle is indifferent
towards Pigou-Dalton transfers as described in Definition 50.

Proposition 9. Let SWPDP and SSPDP denote the set of scalarization functions that
satisfy the weak and strong Pigou-Dalton principle, respectively. Then,

1. Ψp R SSPDP and Ψp R SWPDP ,

2. Ψc P SSPDP for m “ 2 and Ψc P SWPDP for m ą 2, and additionally for all m
it must hold that for all i, j P rms : u‹i “ u‹j ,

3. Ψn P SSPDP if for all i, j P rms : undri “ undrj ,

4. Ψa P SWPDP if m “ 2 and the extreme points are symmetric; additionally
Ψa P SSPDP if u R tw P R2 | Dt P r0, 1s : w “ ue,1 ` tpue,2 ´ ue,1qu, i.e. u
does not lie on the line that connects both extreme points,

5. Ψs P SWPDP ,

6. Ψt R SWPDP .

Proof. Let i, j P rms, ε P R`, u,v P Y P Υ such that vj ă vi, vj “ uj ` ε, vi “
ui ´ ε and for all l R ti, ju let vl “ ul.

1. For Ψp it holds that

Ψppuq “ ui ¨ uj ¨
ź

kPrmszti,ju
uk ă vivj

ź

kPrmszti,ju
uk “ Ψppvq (3.36a)

ô pvi ` εqpvj ´ εq ă vivj (3.36b)

ô vivj ´ viε` vjε´ ε2 ă vivj (3.36c)
ô ´vi ` vj ´ ε ă 0 (3.36d)
ô vj ă vi ` ε. (3.36e)

Equation (3.36e) is true, because vj ă vi and ε ą 0.
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2. For Ψc and m “ 2 it holds that

Ψcpuq “ maxpui ´ u‹i , uj ´ u‹j q “ maxpvi ` ε´ u‹i , vj ´ ε´ u‹j q, (3.37a)

Ψcpvq “ maxpvi ´ u‹i , vj ´ u‹j q, (3.37b)

ñ vi ` ε´ u‹i ą vi ´ u‹i ą vj ´ v‹j ą vj ´ ε´ u‹j . (3.37c)

Equation (3.37c) is true, since we require that u‹i “ u‹j . If m ą 2, then
Ψcpuq “ Ψcpvq if i ‰ arg maxkPrms ui.

3. For Ψn it holds that

Ψppuq “ ´pundri ´ uiqpundrj ´ ujq ¨
ź

kPrmszti,ju
pundrk ´ ukq ą

´pundri ´ viqpundrj ´ vjq
ź

kPrmszti,ju
pundrk ´ ukq “ Ψppvq (3.38a)

ô pundri ´ uiqpundrj ´ ujq ă pundri ´ viqpundrj ´ vjq (3.38b)

ô pundri ´ pvi ` εqqpundrj ´ pvj ´ εqq ă pundri ´ viqpundrj ´ vjq (3.38c)

ô undri undrj ´ undri vj ` undri ε´ viundrj ` vivj ´ viε´ εundrj `
εvj ´ ε2 ă undri undrj ´ undri vj ´ viundrj ` vivj (3.38d)

ô undri ´ vi ´ undrj ` vj ´ ε ă 0 (3.38e)

ô vj ´ undrj ă vi ´ undri ` ε. (3.38f)

Equation (3.38f) is true, since we require that undri “ undrj .

4. For Ψa and m “ 2 let us assume without loss of generality that ue,1 “
p1, 0q and ue,2 “ p0, 1q,3 i “ 1, j “ 2. It follows that for any u P Yp

γpu,ue,1q “ arctan

ˆ

u2

1´ u1

˙

“ arctan

ˆ

v2 ´ ε
1´ v1 ´ ε

˙

, (3.39a)

γpu,ue,2q “ arctan

ˆ

u1

1´ u2

˙

“ arctan

ˆ

v1 ` ε
1´ v2 ` ε

˙

, (3.39b)

γpv,ue,1q “ arctan

ˆ

v2

1´ v1

˙

, (3.39c)

γpv,ue,2q “ arctan

ˆ

v1

1´ v2

˙

. (3.39d)

Three cases can be distinguished:

a) If γpv,ue,1q ă γpv,ue,2q then v1 P pv2, 1 ´ v2q. It follows that Ψa

satisfies the strong Pigou-Dalton principle if γpv,ue,2q ă γpu,ue,2q,
which is equivalent to v1 ă 1´ v2.

3See Proposition 10 for a justification of this simplification.
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b) If γpv,ue,1q ą γpv,ue,2q then either v1 ą 1 ´ v2 or v1 ă v2, whereas
v1 ă v2 violates the condition vj ă vi. It follows that Ψa satisfies the
strong Pigou-Dalton principle if γpv,ue,1q ă γpu,ue,1q:

γpv,ue,1q ă γpu,ue,1q (3.40a)

ô v2

1´ v1
ă v2 ´ ε

1´ v1 ´ ε (3.40b)

ô v2p1´ v1 ´ εq ă pv2 ´ εqp1´ v1q (3.40c)
ô v2 ´ v2v1 ´ v2ε ă v2 ´ v2v1 ´ ε` εv1 (3.40d)
ô ´v2 ă ´1` v1 (3.40e)
ô v1 ą 1´ v2. (3.40f)

c) If γpv,ue,1q “ γpv,ue,2q then v1 “ 1 ´ v2. (The case v1 “ v2 would
violate the condition vj ă v1.) It follows that

γpv,ue,1q “ γpu,ue,1q “ γpv,ue,2q “ γpv,ue,2q “ π{4. (3.41)

All angles possessing the value π{4 (45˝ in degrees) implies that u
and v are located on the straight line L that connects both extreme
points, i.e. u,v P Lwith L “ tw P R2 | Dt P r0, 1s : w “ ue,1`tpue,2´
ue,1qu.

In cases one and two, it follows that Ψa P SSPDP . Case three implies that
Ψa P SWPDP .

5. For Ψs it holds that

Ψspuq “ ui ` uj `
ÿ

kPrmszti,ju
uk ě vi ` vj `

ÿ

kPrmszti,ju
uk “ Ψspvq

(3.42a)

ô ui ` uj ě vi ` vj (3.42b)
ô vi ` ε` vj ´ ε ě vi ` vj . (3.42c)

Since Equation (3.42c) is not strict, Ψs satisfies the weak, but not the strong
Pigou-Dalton principle.

6. Let Yp “ tu,v,wu with u “ p10, 0q, v “ p5, 5q and w “ p6, 0q. It follows
that Ψtpuq ă Ψtpvq, although v should be weakly preferred to u accord-
ing to the weak Pigou-Dalton principle. It follows that Ψt R SWPDP .
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Reference points play a crucial role in the satisfaction of the equity axiom for
scalarization functions that depend on such points. The Chebyshev method
requires all components of the nadir point to possess the same value. Other-
wise, transfers that are desirable in the Pigou-Dalton sense might even increase
the scalarization value. Consider the example u‹ “ p5, 0q, u “ p10, 5q and
v “ p7.5, 7.5q. The Pigou-Dalton principle dictates that v should be weakly pre-
ferred to u, whereas the Chebyshev method prefers u to v, since Ψcpuq “ 5 ă
7.5 “ Ψcpvq. From the proof of Proposition 9 one can argue, that the Chebyshev
method deems Pigou-Dalton transfers desirable if the distance to ideal values
is factored in as well. For more than two objectives, the Chebyshev method
is indifferent towards transfers that do not lead to a reduction of the objective
value that is furthest away from its ideal value. The Nash bargaining solu-
tion factors in the distances of objectives to their nadir values. Equation (3.38a)
shows that the Pigou-Dalton transfer must compensate for the difference in the
nadir values of the corresponding objectives involved in the transfer. Extreme
points are required to be symmetric for angle utility. Angle utility satisfies the
strong Pigou-Dalton principle, as long as the Pareto front is not a straight line
that connects both extreme points. This observation offers an explanation to
why angle utility has a strong tendency to favor interior points on both con-
vex and concave Pareto fronts. If the Pareto front consists of a straight line
between both extreme points, angle utility is indifferent towards Pigou-Dalton
transfers. Scalarization functions that violate the Pigou-Dalton principle deem
Pigou-Dalton transfers harmful and are less likely to identify a scalarization
optimum that provides a balance between the different objectives.

Evidently, the Pigou-Dalton principle requires that objective values are mea-
sured on a common scale such that they are comparable. Otherwise, a transfer
by a fixed amount from a larger to a smaller objective may imply a different use-
fulness depending on the chosen scales of the given objectives. For example,
increasing the power output of a car engine by 1 kW at the cost of consuming
one more liter of gasoline is less desirable than decreasing the gas consumption
by one liter while reducing the power output by 1 kW. The effect of different
scales for measuring objective values is therefore analyzed next.

3.2.7. Invariance to Scaling

The utility function of a single individual is a representation of her preferences
on the set of available alternatives X . The numeric values express preferences
by assigning a larger utility to more desirable options. Any strictly increasing
transformation of the utility function results in the same individual ranking
on X . It is therefore desirable that the social ranking induced by an SWF on
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X is invariant to transformations of the individual utility functions as long as
individual rankings on X remain the same [dG02].

In economics, there exist ordinal and cardinal utility functions (cf. Section 1.2).
Cardinal utility functions allow statements about preference intensity between
different alternatives. The larger the difference in utility between two options,
the stronger is the preference for the alternative possessing the larger utility.
Differences of ordinal utility, on the other hand, allow now statement about the
preference intensity. Thereby, ordinal utility functions are unique up to strictly
increasing transformations and cardinal utility functions are unique up to affine
transformations [VNM53].

Social choice theory categorizes the invariance of SWFs with respect to differ-
ent types of transformations of utility functions. These transformations in-
clude increasing and affine transformations depending on whether utility is
measured on an ordinal or cardinal scale. Furthermore, the utility functions
of the members of the society may either be transformed individually or uni-
formly [Roe98].

A single objective may be measured on different scales in MOO. In engineer-
ing applications for example, there exist multiple units to measure the same
physical quantities. Temperature is commonly measured in Celsius, Kelvin or
Fahrenheit. Costs and profits may be quantified in different currencies in busi-
ness or economics problems. The chosen scale of the given objective should
not affect its value at the scalarization optimum. Scale transformations can be
decomposed into multiple affine transformations. Definition 51 formalizes the
notion of scale invariance and introduces multiple affine transformations that
can be considered in the context of scalarization in MOO.

Definition 51 (scale invariance cf. [dG02, Roe98]). Let ψ : Rm Ñ Rm be an affine
transformation function. A scalarization function Ψ is scale invariant with respect to
ψ if for all Y P Υ, u,v P Y and all R P tă,“,ąu it holds that

Ψ|YpuqRΨ|Ypvq ñ Ψ|ψpYqpψpuqqRΨ|ψpYqpψpvqq. (3.43)

Let a P R`, b P R and for all i P rms let ai P R` and bi P R. For any u P Y the
following affine transformations are distinguished:

1. rai, bis: ψpuq “ pa1u1 ` b1, . . . , amum ` bmq,
2. rai, bs: ψpuq “ pa1u1 ` b, . . . , amum ` bq,
3. ra, bis: ψpuq “ pau1 ` b1, . . . , aum ` bmq,
4. rai, 0s: ψpuq “ pa1u1, . . . , amumq,
5. r1, bis: ψpuq “ pu1 ` b1, . . . , um ` bmq,
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rai, bis

rai, bs ra, bis

ra, bsrai, 0s r1, bis

ra, 0s r1, bs

Figure 3.12.: A diagram showing the relationships between the different affine transfor-
mations of Definition 51. An arrow pointing from an affine transformation
ψ1 to an affine transformation ψ2 implies that any scalarization function Ψ
that is scale invariant with respect to ψ1 is also scale invariant with respect
to ψ2. Conversely, if Ψ is not scale invariant with respect to ψ2, then Ψ is
also not scale invariant with respect to ψ1.

6. ra, 0s: ψpuq “ pau1, . . . , aumq,
7. r1, bs: ψpuq “ pu1 ` b, . . . , um ` bq.

The affine transformations of Definition 51 can be arranged in a hierarchical
structure as illustrated in Figure 3.12. Transformations at higher positions in
the hierarchy comprise transformations at lower positions. Affine transforma-
tions such as rai, bis can be decomposed into a change of the magnitude (ai) and
the origin (bi). Magnitude and origin transformations can either be common
for all objectives (e.g. ra, bs) or be different for each individual objective (e.g.
rai, bis). Physical units that measure the same quantity often share a common
origin but possess different magnitudes.4 Time, for example, can be measured
in seconds and minutes. The duration of zero seconds is equivalent to zero
minutes. Magnitudes, however, usually differ across physical units. Minutes
are translated to seconds by the affine transformation r60, 0s. The position of a
scalarization optimum may therefore change, in case the physical unit of a sin-
gle objective is changed in the problem formulation, if the scalarization func-
tion is not invariant with respect to rai, 0s-transformations. This implies that
already the choice of the scale by which objectives are measured may affect the
optimization outcome if the scalarization methodology is applied.

Proposition 10. Let Sψ be the set of scalarization functions that are scale invariant
with respect to the affine transformation ψ. Then,

4There exist, however, also physical units that do not share a common origin. Zero degree Kelvin,
for example, are not equivalent to zero degree Celsius.
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1. Ψws, Ψs, Ψwc, Ψc, Ψa, Ψt P Sra,bis and Ψws, Ψs, Ψwc, Ψc, Ψa, Ψt R Ψrai,0s,

2. Ψwp, Ψp P Srai,0s and Ψwp, Ψp R Sr1,bs,
3. Ψn P Srai,bis.

Proof. Let a P R`, b P R and for all i P rms let ai P R` and bi P R. For any Y P Υ
and u,v P Y without loss of generality, let Ψ|Ypuq ă Ψ|Ypvq. Then:

• For Ψws and ψ “ ra, bis it holds that

Ψws|ψpYqpψpuqq ă Ψws|ψpYqpψpvqq (3.44a)

ô
ÿ

iPrms
λipaui ` biq ă

ÿ

iPrms
λipavi ` biq (3.44b)

ô a

¨

˝

ÿ

iPrms
λiui

˛

‚`
ÿ

iPrms
λibi ă a

¨

˝

ÿ

iPrms
λivi

˛

‚`
ÿ

iPrms
λibi (3.44c)

ô
ÿ

iPrms
λiui ă

ÿ

iPrms
λivi (3.44d)

ô Ψws|Ypuq ă Ψws|Ypvq. (3.44e)

It follows that Ψws,Ψs P Sra,bis.
• For Ψwc and ψ “ ra, bis it holds that

Ψwc|ψpYqpψpuqq ă Ψwc|ψpYqpψpvqq (3.45a)

ô max
iPrms

pλipaui ` bi ´ pau‹i ` biqqq ă max
iPrms

pλipavi ` bi ´ pav‹i ` biqqq
(3.45b)

ô amax
iPrms

pλipui ´ u‹i qq ă amax
iPrms

pλipvi ´ v‹i qq (3.45c)

ô max
iPrms

pλipui ´ u‹i qq ă max
iPrms

pλipvi ´ v‹i qq (3.45d)

ô Ψwc|Ypuq ă Ψwc|Ypvq. (3.45e)

It follows that Ψwc,Ψc P Sra,bis.
• For Ψa and ψ “ ra, bis it holds for any k P rms that

γpψpuq, ψpue,kqq “ arctan

¨

˚

˚

˝

c

řm
i“1,i‰k

´

aui ` bi ´ paue,ki ´ biq
¯2

|auk ´ bi ´ paue,kk ´ biq|

˛

‹

‹

‚

(3.46a)
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“ arctan

¨

˚

˚

˝

a

c

řm
i“1,i‰k

´

ui ´ ue,ki
¯2

a|uk ´ ue,kk |

˛

‹

‹

‚

(3.46b)

“ arctan

¨

˚

˚

˝

c

řm
i“1,i‰k

´

ui ´ ue,ki
¯2

|uk ´ ue,kk |

˛

‹

‹

‚

(3.46c)

“ γpu,ue,kq, (3.46d)

which implies that Ψa|Ypuq “ Ψa|ψpYqpψpuqq. It follows that Ψa P Sra,bis.
• For Ψt and ψ “ ra, bis it holds that

Ψt|ψpYqpψpuqq “ max
ψpvqPψpYq

maxiPrms ψpuiq ´ ψpviq
maxiPrms ψpviq ´ ψpuiq (3.47a)

“ max
vPY

maxiPrmspaui ´ biq ´ pavi ´ biq
maxiPrmspavi ´ biq ´ paui ´ biq (3.47b)

“ max
vPY

amaxiPrms ui ´ vi
amaxiPrms vi ´ ui (3.47c)

“ max
vPY

maxiPrms ui ´ vi
maxiPrms vi ´ ui (3.47d)

“ Ψt|Ypuq. (3.47e)

It follows that Ψt P Sra,bis.
• Let Y “ tu,vu with u “ p1, 0q, v “ p0, 2q, pa1, a2q “ p3, 1q and ψ “ rai, 0s.

Additionally, let λ “ p1, 1q, ue,1 “ p3, 0q and ue,2 “ p0, 3q. It follows that
for all i P tws, s, wc, c, a, tu

Ψi|Ypuq ă Ψi|Ypvq, (3.48)

however at the same time

Ψi|ψpYqpψpvqq ă Ψi|ψpYqpψpuqq, (3.49)

which implies Ψi R Srai,0s.
• For Ψwp and ψ “ rai, 0s it holds that

Ψwp|ψpYqpψpuqq ă Ψwp|ψpYqpψpvqq (3.50a)

ô
ź

iPrms
paiuiqλi ă

ź

iPrms
paiviqλi (3.50b)
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ô
ź

iPrms
aλii

ź

iPrms
uλii ă

ź

iPrms
aλii

ź

iPrms
vλii (3.50c)

ô
ź

iPrms
uλii ă

ź

iPrms
vλii (3.50d)

ô Ψwp|Ypuq ă Ψwp|Ypvq (3.50e)

It follows that Ψwp,Ψp P Srai,0s.

Let u “ p10, 1q, v “ p5, 5q, λ “ p1, 1q, b “ 20 and ψ “ r1, bs. It fol-
lows that Ψwppuq ă Ψwppvq, however Ψwppu ` bq ă Ψwppu ` bq, which
implies Ψwp,Ψp R Sr1,bs.

• For Ψn and ψ “ rai, bis it holds that

Ψn|ψpYqpψpuqq ă Ψn|ψpYqpψpvqq (3.51a)

ô ´
ź

iPrms
ppaiundri ´ biq ´ paiui ´ biqq ă ´

ź

iPrms
ppaiundri ´ biq ´ paivi ´ biqq

(3.51b)

ô ´
ź

iPrms
aipundri ´ uiq ă ´

ź

iPrms
aipundri ´ viq (3.51c)

ô ´
ź

iPrms
pundri ´ uiq ă ´

ź

iPrms
pundri ´ viq (3.51d)

ô Ψn|Ypuq ă Ψn|Ypvq (3.51e)

It follows that Ψn P Srai,bis.

Proposition 10 shows that the majority of the scalarization functions presented
in this chapter are not scale invariant with respect to individual changes in
magnitudes (rai, 0s-transformations). A common approach to address this issue
is normalization [GEF16, Deb01, CCLVV07]. Normalization scales all Pareto
optimal points to the range r0, 1s (see Definition 52).

Definition 52 (normalization cf. [MA04]). Normalization is an affine transforma-
tion ψ of type rai, bis such that for any u P Y and i P rms

ψpuqi “ ui ´ u‹i
undri ´ ui . (3.52)

Although this technique makes objectives measured on different scales com-
parable, it makes the location of the scalarization optimum dependent on the
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composition of the Pareto front even if the scalarization function satisfies binary
independence. The ideal and nadir point need to be computed even if they are
not used in the calculation of scalarization values. In case nadir or ideal val-
ues take on different values due to additional constraints being imposed on the
MOOP, the location of the scalarization optimum changes as well.

Table 3.2 summarizes the results of this section. The axioms that are proposed
in this chapter can also be used to characterize other scalarization functions that
have not been included in this analysis – see [MA04] for example for a compre-
hensive overview of existing scalarization methodologies in MOO. Categoriz-
ing scalarization functions according to which axioms they fulfill enables a DM
to choose from an entire set of methods that reflects her preferences best if she
deems specific axioms more important than others. The proposed axioms can
also be used as guidelines to design new scalarization functions. An expert can
specifically develop a scalarization function that satisfies a set of preferred ax-
ioms or possibly modify an existing scalarization function such that it satisfies
these axioms. Normalization, for example, can be combined with any scalar-
ization function presented in Section 3.1 to create a function that is invariant
with respect to rai, bis transformations.
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3. Scalarized Preferences

Table 3.2.: Summary of how the presented scalarization functions satisfy the proposed
axioms. A checkmark 3 indicates that the scalarization function completely
satisfies the axiom, whereas a checkmark in parentheses (3) states that the
function satisfies the axiom if a set of well-defined restrictions is met that
can be verified with reasonable effort by the DM. The cross 7 states that the
scalarization function violates the axiom.
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Additive scalarization
function 3 7

Weighted sum 3 3 7 3 7 ra, bis
Sum of objectives 3 3 7 3 7 7 3 ra, bis
Multiplicative
scalarization function (3) 7

Weighted product (3) 3 7 3 7 rai, 0s
Product of objectives (3) 3 7 3 7 7 7 rai, 0s
Maximal scalarization
function 7

Weighted Chebyhsev
method 7 7 3 (3) 3 ra, bis
Chebyshev method 7 7 3 (3) 3 7 (3) ra, bis
Nash bargaining
solution (3) 7 3 (3) 7 (3) (3) rai, bis
Angle utility (3) 7 (3) (3) 7 (3) (3) ra, bis
Tradeoff utility 7 7 7 (3) 7 7 7 ra, bis
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4. Methodologies for Solving
Multi-objective Optimization
Problems

The solution to a real-valued MOOP as of Definition 9 is a set of points that
potentially consists of an infinite number of elements. Furthermore, calculating
objective values for real-world optimization problems often requires a large
amount of computational resources. Additionally, a DM is usually only able
to implement a single solution of the entire Pareto optimal set. In practical
applications, it is therefore often neither tractable nor desirable to obtain the
entire set of Pareto optimal solutions. Instead, different methodologies and
paradigms for solving MOOPs have been developed to compute only relevant
subsets of the entire Pareto optimal set. These techniques are often tailored to
or guided by a DM’s preference. Categorizing these techniques and paradigms
results in an algorithmic characterization of preferences.

This chapter commences by a brief discussion of existing frameworks for al-
gorithmically characterizing preferences in MOO. Subsequently, a new cate-
gorization is presented that characterizes solving paradigms based on the op-
timization outcome – the search result that is generated by an optimization
algorithm. A special emphasis is put on analyzing these paradigms from the
perspective of scalarized preferences. Two paradigms are proposed that con-
stitute new approaches to characterize optimization outcomes. The remainder
of the chapter focuses on algorithms for solving MOOPs. A brief overview of
existing methodologies is given and the class of evolutionary algorithms (EAs)
is explained in detail, since this class builds the foundation of the algorithms
presented in the subsequent chapters.

4.1. Solving Paradigms in Multi-objective
Optimization

Declaration: Parts of this section have been published in [BHSS17]
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MOO methodology consists of searching for candidate solutions and deciding
between different options. Preferences are mostly related to decision-making in
this context. The most common approach to characterizing preferences in MOO
therefore consists of classifying the order in which searching and deciding take
place [CM75, BDMS08].

A priori technique methods consider the DM’s preferences from the start by
taking preference information into account before the search for candidate so-
lutions begins [CCLVV07]. Preference information is used to design or config-
ure tailored algorithms that obtain Pareto optimal solutions that are favored
by the DM [BSS11, SBS13, BDDO04, DG11, Das99]. This way, no compu-
tational resources are wasted on options that are not interesting to the DM
[MA04]. Thereby, given a fixed budget of computation, either more desirable
alternatives can be generated or fewer alternatives can be more thoroughly
or faster improved. A priori methods, however, usually do not generate a
representation of the entire Pareto front. By focusing on specific regions or
individual points of the Pareto front, a DM might miss alternatives that could
turn out to be interesting if she had greater knowledge of the problem that is
solved [BSS15, BHSS17].

Interactive technique or progressive optimization methodology acknowledges
that preferences may change during the search if new information about the
composition of the feasible set of the objective space becomes available [GEF16].
Thereby, equal emphasis is put on searching and deciding. The DM is required
to interact with the optimization algorithm by making intermediate decisions
to guide it towards solutions she prefers. Interactive technique algorithms
allow a greater flexibility in the articulation of preferences, since the DM is
allowed to change her opinion during runtime and correct errors if search re-
sults do not meet her previous expectations. Constant interaction, however,
can also be arduous for the DM and even harmful if she does not fully under-
stand the implications of the choices she makes during the interaction [Mie99].

A posteriori technique methods obtain a representation of the entire Pareto
front, for example a uniform discretization of a curve for bi-objective prob-
lems. The DM is then presented with the entire set of solutions and subse-
quent MCDA methodology can be applied to pick a candidate for implemen-
tation [GEF16]. This way, the search is prioritized to the decision-making.
Being able to choose from a set that represents the entire Pareto front bears the
advantage that all tradeoffs between different regions of the front can be taken
into account when making a decision [Deb01, CCLVV07]. At the same time,
however, computing a representation of the entire Pareto front is often costly,
since a sufficient number of points must be found to cover it in its entirety. Es-
pecially in real-world applications, in which individual function evaluations
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may take multiple hours [CSB`12, SCBS14], it is often intractable to generate
such a representation.

The ontology of Li et al. for characterizing PMOEA [LYBF`16, LYBF`17] has
already been briefly discussed in Section 2.2. It provides multiple concepts to
how preferences can be characterized from an algorithmic perspective and in-
corporates many categorizations that have been proposed throughout the liter-
ature [CM75, BKSG15, ASO15]. The ontology groups preference concepts into
classes, which are further divided into subclasses. The classes specifically re-
lated to preferences in MOO are discussed in the following (see Figure 4.1).
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Figure 4.1.: Excerpt of the ontology of Li et al. containing concepts related to preferences
– adapted from [LYBF`17, Fig. 1]. Listing of classes is limited to concepts rel-
evant to this thesis. Omissions are marked by dotted lines. All classes using
the Web Ontology Language (OWL) framework are subclasses of owl:Thing1.
Scalarization functions can be perceived as utility and desirability functions.

A priori technique, interactive technique, and a posteriori technique preference
incorporation are summarized under the class interaction time. Li et al. adopt
and extend the characterization of Bechikh [BKSG15] to define the class of pref-
erence models. As stated in Section 2.2, this class describes the methodology that
is applied to identify preferred solutions. Closely related to this concept is the
class preference information from the DM, which contains different types of infor-
mation that a DM must provide for using a corresponding preference model.
When using a weighted sum, the DM has to specify weights for the individual
objectives, for example. Preference integration focuses on how preference models
are incorporated into an optimization algorithm [ASO15]. The predicates for-
mulated in Section 2.3 are an example for different integration types. Tradeoff
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optimal solutions can be obtained by either imposing new constraints on the
problem, changing the dominance relation or transforming the objective space.
Instead of applying these changes at the problem level itself, they can also be
handled at the algorithmic level.

The ontology of Li et al. also characterize how preferences influence the search
result delivered by the optimization algorithm. The result can either consist of
a single solution or an entire set of solutions. Sets of solutions are further di-
vided into biased distributions and bounded regions. Biased distributions fo-
cus on obtaining more solutions in preferred parts of the Pareto front, whereas
bounded region approaches obtain only points in specific parts of the Pareto
front that are preferred by the DM. The algorithmic categorization proposed in
this section focuses as well on the optimization outcome and is an extension of
Li’s work.

4.1.1. Closed-form Expression

The Pareto front of a real-valued MOOP of m objectives is a manifold of at
most m´1 dimensions [Hil01]. A manifold is a geometric structure that locally
resembles the Euclidean space, e.g. a curve in one or a surface in two dimen-
sions [Lee10]. Such manifolds can be mathematically described by an implicit
function or a parametric equation [Hil01]. Both approaches result in an analytic
representation of the Pareto front. Obtaining such a representation of the Pareto
front of an MOOP is referred to as closed-form expression paradigm. The closed-
form expression provides the DM with full knowledge of the Pareto front. She
is able to build her preferences on all available information and can choose the
alternative she favors most among the entire set of Pareto optimal solutions
(see Figure 4.3a).

Finding a closed-form expression of a Pareto front, however, is highly diffi-
cult, as there exists no straightforward methodology to derive an exact repre-
sentation from an arbitrary problem formulation [RW05]. Obtaining an ana-
lytic representation of the Pareto front of a real-world MOOP is thereby usu-
ally intractable. These problems are often too complex to even analytically de-
termine a single Pareto optimal solution [BSE`16, CSB`12, SCBS14]. Closed-
form expressions are typically only known for artificial problems that are used
in the literature to compare and benchmark MOEAs (e.g. [ZDT00, DTLZ05,
HHBW06]). It is imperative that the Pareto front of a benchmark problem is
known for being able to assess how much effort it takes an algorithm to obtain
a suitable representation of the front [HHBW06].

There exist algorithms in MOO that try to approximate a closed-form represen-
tation of the Pareto front. Ruzika and Wiecek divide approaches that approxi-
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mate the Pareto front by (piecewise) polynomial functions into approximation
classes. The degree of the polynomial dictates the order of the approximation
class – e.g. an approximation by quadratic functions constitutes a second order
approximation [RW05]. Ruzika and Wiecek also discuss other function types
to approximate a closed-form expression of the Pareto front. Li et al, for ex-
ample, fit a hyperellipse to the Pareto front to obtain an approximation of a
closed-form representation [LFWB03]. In case the Pareto front can be decom-
posed into segments of specific function types, any method that utilizes these
function types for approximation is able to generate an exact representation of
the Pareto front [GEF16, Chp. 18]. For example, an algorithm that uses line
segments to approximate the Pareto front is able to compute an exact represen-
tation of the Pareto front a linear two-objective MOOP. Furthermore, sandwich
methods obtain an inner and outer approximation by piecewise functions that
serve as upper and lower bound of the Pareto front. The true Pareto front is lo-
cated between the inner and outer approximation. By tightening the inner and
outer approximation an ever more precise representation of the Pareto front can
be obtained [RW05, GEF16].

Homotopoy-based algorithms are another class of techniques to obtain closed-
form expressions of Pareto fronts. These methods are inspired by single-objective
parametric optimization (SOPO). In SOPO, the objective function or constraints
may possess multiple parameters – function arguments whose values are un-
known during optimization and usually only become known during live ap-
plication. Scalarization functions that are used in MOO to obtain a uniform
discretization of the Pareto front (cf. Section 3.1) often possess parameters, for
example in the form of weights. By systematically setting and varying these
parameters, a uniform discretization of the front may be attained (see the finite
set of points paradigm that is discussed next). Homotopy-based algorithms
aim at finding a functional description of the Pareto front in the neighborhood
of the points obtained by the discretization [Hil01].

4.1.2. Finite Set of Points

Since obtaining a closed-form expression of the Pareto front is often intractable,
classic MOO methodology aims at approximating the Pareto front by a finite
set of points [Deb01, CCLVV07]. Such a finite set of points representation usu-
ally consists of a uniform discretization of the front. The number of points
used for the discretization is specified by the DM. Uniformly distributed points
across the Pareto front provide the DM nearly with the same degree of infor-
mation about the composition of the front as the closed-form expression (see
Figure 4.3b). Although the DM is limited to the points obtained by the opti-
mization algorithm in her choice, at least one of these points should satisfy the
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DM’s preferences if there are sufficient solutions to choose from and the en-
tire front is covered. The finite set of points notion falls into the category of a
posteriori technique approaches.

Finding a uniform approximation of the Pareto front consists of two challenges.
First of all, the approximation should be sufficiently close to the actual Pareto
front, such that its elements are at least close to Pareto optimal. Ideally, all
points of the approximation are located on the actual front. Numeric algo-
rithms that operate on nonlinear functions, however, are often only able to gen-
erate solutions that are close to optimality within a certain error bound. This is a
general problem in optimization and not specifically related to MOO [Ber99].

Secondly, the approximation should be uniform such that every part of the front
is equally covered. The issue is, however, that there does not exist a general
definition of uniformity for manifolds in vector spaces [SK97]. Instead, dif-
ferent mathematical concepts and algorithmic techniques are used to achieve
uniformity. Scalarization functions such as the weighted sum or the Cheby-
shev method can be used with uniform sets of weight vectors to compute uni-
formly distributed points on the Pareto front [DD98, ZL07, LZ09, DJ14]. In gen-
eral however, uniform weights do not guarantee a uniform discretization of the
Pareto front [JD14, DD97]. Heuristic approaches often use niching techniques
to force points to equally spread across the Pareto front [DPAM02, ZLT01, ZK04,
NDGN`09]. These techniques penalize points that are close to each other in
the objective space, which results in search operators generating more decision
vectors that map to areas of the Pareto front that have not been explored, yet.
Although niching techniques are capable of spreading points well across the
front, they can in general not be used straightaway to decide between two sets
of points, which one represents a more uniform approximation. This circum-
stance prohibits using these techniques to define optimal distributions of points
on the Pareto front.

Hypervolume [ZT99] is a well-known and one of the few concepts in MOO that
allows measuring the uniformity of a Pareto front approximation by a real-
valued function. Hypervolume denotes the volume enclosed by a finite set of
points with respect to a predefined reference point (see Figure 4.2a). Given a
reference point and a fixed number of points, there exists a positioning of these
points on the Pareto front such that the hypervolume is maximized, thereby
constituting an optimal distribution of points. The contribution of individual
points to the overall hypervolume, however, depends on the chosen reference
point. This can lead to points changing their optimal position if the reference
point is moved, which implies a certain ambiguity in using hypervolume to
define an optimal distribution of points [SDS14, IISN17]. Furthermore, com-
puting the hypervolume contribution of an individual point is known to be
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NP-hard for three and more objectives [BF09]. Finally, a set of points that max-
imizes hypervolume for a given front may differ from the equidistance notion
of a DM (see Figure 4.2b). Hypervolume-based optimization techniques have
been successfully applied in MOO [ZK04, BNE07, IHR07, BZ11]

The extended discussion on uniformity serves to illustrate the ambiguity in
defining and the difficulty in obtaining good discretized representations of the
Pareto front that cover it in its entirety. Thereby, any notion of uniformity for
Pareto front approximations in MOO can itself be conceived as a preference.
Of course, the finite set of points approach suffers from the same drawback as
any a posteriori technique technique. Obtaining an approximation of the entire
Pareto front is computationally expensive. Since this is often neither tractable
nor desirable, other paradigms use preferences to restrict the part of the Pareto
front that is approximated.
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Figure 4.2.: Illustration of the hypervolume concept. The shaded area in Figure 4.2a
depicts the volume encompassed by the four red points with respect to the
blue reference point. Dark gray areas mark the respective contribution of
each individual point to the overall hypervolume. Figure 4.2b shows the
Pareto front Yp given by Yp :“ tu P R2

ě0 |u
4
1 ` u4

2 “ 1u. The four red
points are positioned on Yp such that they maximize their hypervolume with
respect to the reference point p11, 11q. The points are not equally distributed
across the front, since the two interior points are close to each other and
further away from the boundary points.

4.1.3. Subset Approximation

The subset approximation paradigm limits the Pareto front approximation to ar-
eas on the front that are deemed interesting according to the DM’s preferences
(see Figure 4.3c) [LYBF`16, LYBF`17, BKSG15]. All elements in these areas
are considered to be of equal desirability to the DM. The distribution of points
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within a given area should therefore be uniform. In restricting the approxi-
mation to subsets of the Pareto front, the DM is not concerned with alterna-
tives that she would never consider for implementation. The computational
resources that are saved this way can be used to improve the subset approx-
imation. At the same time, however, information about the global tradeoffs,
which occur between different regions of the Pareto front, is lost. If areas of
interest are to be approximated uniformly, the DM faces the same issues as in
the finite set of points approach. Identifying preference or knee regions (see
Figure 2.2) is an example of subset approximation.

Preferred subsets are often defined by setting a threshold underneath solutions
are deemed interesting [SHS10a, BSS11, DG11]. Finding an optimal threshold,
however, can be a difficult task. If the threshold is set too high, the subset
approximation covers too much of the Pareto front. The DM thereby gains no
advantage in focusing on subsets. If the threshold is too low, the subset approx-
imation may consist of too few options or be even empty. Given a fixed thresh-
old, the expanse of the preferred subsets compared to the Pareto front also
greatly depends on the curvature and composition of the Pareto front [BSS11].
This makes it difficult for coming up with best practices a priori technique to
define meaningful values for the preference thresholds.

Numerous approaches have been developed to compute preferred subsets of
the Pareto front. Additional constraints can be enforced on the problem that
is solved to curtail the front [SHS10a, BSS11, SHS10b]. Scalarization values
can be used to set thresholds that delimit regions of interest [SBS13, DG11].
Weighting methods also use scalarization functions to identify preferred parts
of the Pareto front. These approaches insert scalarization values at different
steps of finite set of points algorithms. Friedrich, for example, multiplies a
weighting coefficient with the niching value in the NSGA-II and SPEA2 al-
gorithms [FKN13]. Brockhoff et al. use weighting coefficients to increase the
hypervolume contribution of points that lie in preferred parts of the Pareto
front [BBTZ13]. Domination-based approaches enlarge the Pareto cone (see
Figure 2.5) leading to areas of the Pareto front becoming dominated. The re-
maining non-dominated Pareto optimal solutions form the preferred subset
[BKS01, SW13, SB13, BSS11].

4.1.4. Global Preference Optima

The last paradigm that has been established in MOO is obtaining global prefer-
ence optima (see Figure 4.3d) [Mie99, LYBF`16, LYBF`17]. Algorithms following
this approach compute only a single solution – a solution that is globally pre-
ferred by the DM to all other Pareto optimal points. If an MOOP possesses mul-
tiple global preference optima, these algorithms usually identify only one of
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them. Since these are equally desirable from the DM’s perspective, any global
optimum represents a best choice from a normative perspective.

Global preference optima eliminate the necessity of choice, since the DM is pre-
sented with only one option. All computational resources can therefore be fo-
cused on finding a global optimum. This approach, however, does not generate
any additional information about the Pareto front. Other, potentially interest-
ing options are not considered [BSS15, BHSS17]. A DM should thereby be well
aware of the chosen preference model, its integration into an optimization algo-
rithm and the resulting implications on the search results. For scalarized pref-
erences, these considerations can be made by utilizing the results presented in
Chapter 3.

Scalarization is the most common technique to obtain global preference op-
tima. Minimizing a weighted sum (see Definition 33) for a given set of weights,
for example, yields a global preference optimum [MA04]. Lexicographic ap-
proaches optimize individual objectives in an order specified by the DM. The
optimal value of the objective that is most important to the DM is identified
first. Subsequently, the optimal value of the second most important objective
is determined while requiring that the most important objective maintains its
optimal value. This procedure is repeated until all objectives have been op-
timized [Ehr05]. Reference-point based methods utilize aspiration values for
each objective set by the DM. These methods then aim at finding a Pareto
optimal point that satisfies the chosen aspiration levels [Mie99]. Knee-point-
based algorithms (see Figure 2.2) also belong to the global preference optima
paradigm. Such approaches aim at finding points that are located at the great-
est convex bulge of the Pareto front and often utilize scalarization techniques
[BDDO04, DG11, SBS13, Das99, BSS17].

4.1.5. A Hierarchy of Solving Paradigms

The four paradigms that have been presented build a hierarchy with respect to
the knowledge about the Pareto front generated through their application (see
Figure 4.4). A closed-form expression allows generating any number of points
on the Pareto front. From a finite set of points, subsets can be identified that
are favored by a given preference notion. Of all subsets, the globally preferred
point can be identified. Note, however, that this hierarchy is not an inclusive
relation. Picking the most preferred point of a subset approximation does usu-
ally not yield an exact global optimum. At the same time, the subsets identified
from an approximation of the entire Pareto front are expected to contain far less
elements than the search result of an algorithm that was specifically designed
to approximate these subsets. Finally, a closed-form expression cannot be easily
discretized into a finite set of uniform points.
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Figure 4.3.: Illustration of solving paradigms in MOO. Figures 4.3a to 4.3d show ideal-
ized examples of the result obtained by the respective optimization method-
ology on the DEB2DK [BDDO04] benchmark problem. Note that algorithms
following the global preference optima paradigm usually obtain only one
global optimum as search result, marked by obtained in Figure 4.3d. Other
global optima, marked by alternative in Figure 4.3d, are not retrieved. Differ-
ent runs might obtain different optima.

The hierarchy proposed in Figure 4.4 also orders the paradigms according to
the computational effort they require for being executed. Obtaining a closed-
form expression of the Pareto front mandates a series of complex computations
if curve-fitting or homotopy approaches are applied. These methods usually
utilize finite set of points approximations in intermediate steps of their exe-
cution [RW05, Hil01]. If a finite set of points approximation is generated by
solving multiple instances of a scalarized MOOP, a subset approximation may
be obtained by solving only a subset of these scalarized instances. A DM, for
example, may choose a small subset of weight vectors for the weighted sum or
Chebyshev method [LZ09, JD14]. Subset approximations, however, are often
obtained by modifying existing finite set of points algorithms. In this case, a
subset approximation may elicit more computational effort if the same number
of function evaluations are executed [SHS10a, BSS11, FKN13, BBTZ13]. Global
preference optima approaches compute only a single solution and are thereby
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expected to require less function evaluations [SBS13, Das99, MA04].
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Figure 4.4.: Hierarchy of existing solving paradigms in MOO that describe the out-
come an optimization methodology yields. The hierarchical structure ex-
presses how much information about the Pareto front is generated in apply-
ing each paradigm. The closed-form expression generates full knowledge
of the Pareto front, whereas the global preference optima paradigm attains
the least knowledge in only computing a single Pareto optimal point. Con-
versely, the application of paradigms that generate less information typically
requires less computational effort and are thereby easier to apply.

The four paradigms can also be closer regarded in the light of scalarized pref-
erence optima. Each approach can be utilized to obtain or approximate the op-
timum of a scalarized MOOP. The closed-form expression of a Pareto front can
be concatenated with the scalarization function that represents the DM’s pref-
erence. A minimum of the concatenated function is a a global optimum of the
scalarization function. Obtaining the minimum of the concatenated function
requires solving an SOOP, which itself requires the application of a suitable op-
timization methodology. Scalarization values can be computed for any point of
a uniform Pareto front approximation. The point having the smallest scalariza-
tion value serves as an approximation of a global scalarization optimum. The
same procedure can be applied to the points generated by a subset approxima-
tion. Of course, the scalarization optimum must be contained in the preferred
region covered by the subset approximation. Additionally, necessary reference
points in the objective space for correctly computing scalarization values must
be available (see Definitions 36, 39 and 41, for example). Finally, concatenating
the objective functions of the MOOP to solve with the scalarization function
and obtaining the minimum of the resulting SOOP corresponds to the global
preference paradigm.

As it has been suggested in the previous chapters, scalarization values should
rather be perceived as guidance in identifying interesting solutions instead
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of blindly relying on a global scalarization optimum to be the best choice.
Therefore, the suggestion is made to amend the existing hierarchy of solving
paradigms by two new approaches that are especially useful in combination
with scalarized preferences.

4.1.6. Preference-biased Pareto front approximations

Preference-biased Pareto front approximations are proposed to strike a balance be-
tween the finite set of points and the subset approximation paradigm (see Fig-
ure 4.5a). A preference-biased approximation contains more points in regions
that are deemed interesting, however still covers the entire Pareto front. This
way, the DM attains an insight into the composition of the Pareto front and
the global tradeoffs that occur similar to the finite set of points paradigm. At
the same time, the DM is presented with more useful alternatives such as in
the subset approximation approach. Regions are deemed more interesting if
their members are associated with smaller scalarization values [BSS15]. An al-
gorithmic framework for obtaining preference-biased Pareto front approxima-
tions using scalarized preference information is presented in the next chapter.

The main idea of the preference-biased Pareto front approximation is that the
preference itself should determine the distribution of points across the front.
Given a specific preference model, there should exist an optimal allocation of
points on the front irrespective of the algorithm chosen for obtaining said allo-
cation. Approaches found in the literature that obtain biased approximations
usually do not define a concept of such an optimal allocation. Instead, they rely
on niching techniques to bias the distribution of points towards desirable areas
[BKS01, BD05, Deb03, BDDO04, SBS13, FKN13]. Many of these approaches also
put a higher emphasis on obtaining subsets of the front instead of covering the
front in its entirety [BKS01, BD05, BDDO04, FKN13].

Deb [Deb03] proposes modifying the distance metric in the niching mechanism
of the NSGA-II algorithm. The modification is referred to as biased sharing
approach and allows prioritizing the different objectives. The resulting Pareto
front approximations are more dense towards regions that feature small values
of highly prioritized objectives. The biased sharing approach, however, does
not define an optimal allocation. Shukla et al. [SBS13] have developed an al-
gorithm that splits the number of points dedicated to approximate preferred
regions and the rest of the front. If the preferred region is small and the fraction
of points dedicated to approximate the preferred region is large, the approxi-
mation of the preferred region is more dense compared to the rest of the front.
The approach of Shukla et al., however, neither defines an optimal distribution.
The biased hypervolume contribution approach by Brockhoff et al. [BBTZ13]
defines a density function from which an optimal allocation of points could
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be derived. Whether the approximation covers all areas of the front, however,
depends on the chosen weighting function.

4.1.7. Multimodal preference optima

Multimodal preference optima is the second paradigm that is proposed within this
work. This approach can be considered a compromise between subset approxi-
mation and global preference optima. Preferences often allow the identification
of multiple regions of interest on a Pareto front. In this context, preferences are
characterized as multimodal if those regions of interest are disconnected. It
is usually possible to identify a solution in each region that is preferred to all
other elements of that specific region. Such points are called local optima and
sought in the multimodal preference optima paradigm [BHSS17].

The multimodal preference optima paradigm can be directly applied to scalar-
ization functions. If the domain of a scalarization function is restricted to the
Pareto front, the scalarization function may exhibit multiple local and global
optima. The multimodal scalarized preference approach consists of comput-
ing all optima – local and global – of the scalarization function. Local optima
possess the best scalarization value among all Pareto optimal solutions in their
neighborhood. They thereby constitute the best choice in their immediate vicin-
ity making them interesting candidates for implementation. An algorithmic
approach for computing local scalarization optima is presented in Chapter 6.

Multimodal preference optima approaches are largely untapped in MOO. Ex-
isting methodologies that utilize scalarization functions are mainly interested
in obtaining a single global preference optimum [Mie99, MA04, DG11, Das99,
SBS13]. Branke et al. [BDDO04] have proposed an algorithm that approximates
knees on Pareto fronts that feature multiple convex bulges. Their approach
generates a tight approximation of the knee region around its strongest bulge,
however the corresponding knee point is not explicitly sought. Research on
multimodal optimization, however, has received increasing attention in SOO
[Pre15]. Methodologies from single-objective multimodal optimization (MMO)
can be translated to MOO in the context of scalarization functions (see Chap-
ter 6).

4.1.8. An Amended Hierarchy of Solving Paradigms

The complete hierarchy that contains all presented paradigms is depicted in
Figure 4.6. Preference-biased approximations are often obtained by introducing
new niching mechanism to existing algorithmic frameworks [BDDO04, FKN13,
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f1

f2

(a) Preference-biased approximation.

f1

f2

(b) Multimodal preference optima.

Figure 4.5.: Illustration of new solving paradigms for characterizing optimization out-
comes in MOO. Figures 4.5a and 4.5b show idealized examples of the re-
sults obtained by the respective optimization methodology on the DEB2DK
benchmark problem.

BBTZ13]. Thereby, these approaches elicit a similar computational effort as fi-
nite set of points algorithms. Obtaining all global and local preference optima,
on the other hand, requires more effort than computing only a single global
optimum. Global optimization algorithms are designed to escape and discard
local optima if they are encountered during the search [Ber99, Sia16]. A multi-
modal search strategy explicitly retains local optima and further improves their
approximation. If all local optima are to be found, the search space must be suf-
ficiently explored. A global optimum, on the other hand, may be obtained by
starting the search from a random point in the search space [Ber99, Sia16].

As stated before, the relationship between the paradigms in Figure 4.4 is not in-
clusive. The same observation applies to the preference-biased approximation
in the amended hierarchy in Figure 4.6. Regions of interest are not uniformly
approximated in preference-biased approximations. Points could be eliminated
from a finite set of points approximation to obtain a preference-biased approx-
imation. Such a procedure, however, is expected to lead to a very coarse ap-
proximation of the corresponding optimal distribution of points on the Pareto
front implied by the preference. Furthermore, if the threshold to define regions
of interest in the subset approximation paradigm is set too low, approximations
to local optima might not be contained in the generated subsets that would oth-
erwise be found using a multimodal optimization procedure [BSS11, BHSS17].
The relationship between multimodal preference optima and global preference
optima, however, is strictly inclusive. Any global preference optimum is con-
tained in the set of all local preference optima.
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Figure 4.6.: Complete hierarchy of existing and proposed solving paradigms in MOO
that describe the outcome an optimization methodology yields.

4.2. Nature-inspired Problem Solving

Algorithms for obtaining solutions to MOOPs can be broadly divided into math-
ematical programming techniques and metaheuristics. Both approaches rep-
resent two different schools of thought that are mostly pursued in separate
branches of research [GEF16]. Mathematical programming mandates that the
MOOP is formulated such that it satisfies a predefined mathematical structure,
i.e. it must be given in a canonical form. In nonlinear multi-objective optimiza-
tion, for example, objective functions and constraints are assumed to be twice
continuous and differentiable. If this is the case, it is possible to formulate nec-
essary and sufficient conditions for checking, whether a point is Pareto optimal.
These conditions can in turn be exploited to develop algorithms that efficiently
search for Pareto optimal solutions. A mathematical programming technique
is guaranteed to obtain Pareto optimal solutions within some error bound if
the MOOP meets the conditions required by the programming technique that
is applied [Mie99, Ehr05].

Metaheuristics are high-level frameworks that define search strategies for ap-
plying heuristics to solve optimization problems [Sör15]. Heuristics are solving
techniques that rely on stochastic operators to compute solutions. Stochastic
operators use (pseudo-)random numbers that are generated during runtime.
These random numbers influence the execution of the algorithm and may lead
to different results across multiple runs [Deb01, CCLVV07]. In contrast, math-
ematical programming techniques are deterministic and always yield identi-
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cal results if run with the same configuration. Although metaheuristics have
been successfully applied to solve real-world optimization problems, they are
never guaranteed to arrive at an optimum and might get stuck at local optima
[Sia16, Sör15].

Metaheuristics often mimic natural phenomena or human behavior in obtain-
ing solutions to optimization problems [Sia16, Sör15]. EAs are a broad class
of optimization algorithms that simulate the biological process of evolution.
They utilize an initial set of points sampled in the domain of the MOOP that
is gradually improved using evolutionary operators to converge towards a de-
sired optimum. This set of points that is continually improved is referred to
as population. Evolutionary operators generate and improve population mem-
bers, also called individuals, by mimicking natural selection in the optimization
context. A generic framework that illustrates how EAs work as optimization
methodology is described in Figure 4.7. The description of EAs in MOO in this
section is based on [Deb01, CCLVV07].

Begin Generate initial
population

Mating
selection

Recombination

Mutation

Survivor
selection

Stopping
criterion End

yes

no

Figure 4.7.: Illustration of the general working principle of an EA. An initial population
is generated. In each iteration, individuals are selected from the popula-
tion into a mating pool and recombined to generate offspring individuals.
Offspring individuals are mutated. Only the best population members ac-
cording to some predefined selection criterion of the offspring generation
survive. The surviving members constitute the population of the next itera-
tion. The evolutionary cycle is repeated until a predefined stopping criterion
is met.
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Evolutionary operators can be divided into three categories – selection, recom-
bination (or crossover) and mutation. Selection operators are used to decide
which population members procreate to generate offspring individuals. They
select and pair population members using stochastic or deterministic choice
rules. Recombination operators then use the paired population members – the
parents – to generate new offspring individuals by using arithmetic operations
to combine the decision vector values of the parents. Recombination is used
to explore the search space between the parents. Mutation operators are used
to induce minor changes in the decision vectors of offspring individuals. This
way, areas of the search space can be explored that are otherwise inaccessible
through mere recombination.

In EAs and especially MOEAs, selection operators are also used to decide,
which individuals survive to form the population of the next generation. Of-
ten, the population of the current iteration and the offspring are combined to a
joint set of individuals. The best individuals are picked from the combined set
and survive to the next iteration – a concept called elitism. Fitness values are
assigned to the members of the combined population that depend on the ob-
jective vector of the given individual and the composition of the population. In
the finite set of points paradigm, for example, an individual is ranked higher, if
it is presumed closer to the Pareto front and if there exist only few neighboring
population members in the objective space. Fitness assignment and selection
are usually the decisive mechanisms in the finite set of points paradigms by
which algorithms differ, since most algorithms rely on the same crossover and
mutation operators [DPAM02, ZLT01, ZK04, TFD11].

In evolutionary optimization, population members are further characterized by
their geno- and phenotype. The genotype is the representation of the decision
vector in the EA. In case of real-valued MOOP, the EA can either operate di-
rectly on real-valued variables or use an encoding – reals, for example, can be
represented by a binary string to a limited working precision.2 The phenotype
of an individual consists of its objective vector. Recombination and mutation
work on the phenotype of an individual, while selection mostly considers the
phenotype.

EAs have a long history of successful application in MOO, which is why they
are chosen as optimization methodology in this work [Deb01, CCLVV07, GEF16,
BDMS08]. Additionally, scalarization functions are regarded as black boxes in
this work to give the DM the highest degree of freedom in specifying her prefer-
ences. In black box optimization (BBO), no analytical description of the MOOP
that is solved is given. No assumptions can thereby be made about the arith-
metic structure of the problem that can be exploited, for example to compute

2It is noted that computers, which are used to solve hard MOOPs, are themselves only able to
depict reals to a limiting working precision, since all memory is finite.
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derivatives [Pre15]. Scalarization functions are often non-smooth or introduce
nonlinearities that make the application of mathematical programming difficult
[MA04, SBS13, BSS17]. Many of the scalarization functions presented in Sec-
tion 3.2 also require reference points. These points would be obtained in math-
ematical programming techniques by formulating and solving separate opti-
mization problems. This, in turn, requires additional expert knowledge from
the DM that is normally not directly available. MOEAs, on the other hand, are
able to estimate these reference points during runtime [SHS10a, BSS11, SBS13,
BSS17, DJ14, JD14].
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Approximations

Declaration: Parts of this chapter have been published in [BSS15].

The scalarized preference model assigns a desirability value to every element
of the Pareto optimal front. Areas of the front that have larger scalarization
values are less desirable compared to areas that feature smaller scalarization
values. A Pareto front approximation by a finite set of points should take this
preference information into account – regions possessing smaller scalarization
should be more densely approximated, whereas areas of large scalarization val-
ues should feature less points. Such a preference-biased approximation pro-
vides a DM with enough information to estimate the global tradeoffs that oc-
cur on the Pareto front while retaining a tight focus on the areas that are most
interesting to him.

This chapter commences by presenting a theoretical foundation for defining an
optimal allocation of points given an arbitrary Pareto front and scalarization
function. It is shown that such an allocation exists under some very weak re-
quirements. An algorithm that approximates such optimal allocation of points
is presented next. The final section of this chapter features a computational
study. A quantitative analysis assesses how well the algorithm approximates
the optimal preference-biased allocation. A no preference case is also consid-
ered in which all Pareto optimal solutions are equally desirable. Therefore, the
proposed algorithm is compared to other approaches that compute uniform fi-
nite set of points approximations. The results show that the proposed algorithm
outperforms these other approaches on many popular benchmark problems.
Finally, a qualitative analysis evaluates the usefulness of the preference-biased
approximations generated by the algorithm from a decision making perspec-
tive.
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5.1. Theoretical Foundation of Preference-biased
Approximations

The scalarized preference model as presented in Chapter 3 assigns numeric val-
ues to every Pareto optimal solution. These scalarization values express desir-
ability – smaller values indicate higher and larger values lower desirability. If a
Pareto front is discretized into a finite set of points (cf. Sections 4.1.2 and 4.1.6),
the discretization should take this preference information into account. More
points should be located in areas with smaller scalarization values and less
points in regions with higher scalarization values. The scope of this section
is presenting a concept that defines an optimal distribution of points across a
Pareto front given a specific scalarization function.

The concept for defining optimal distributions of points is founded in the phys-
ical phenomenon of electrostatic potential energy. In physics, charged particles
exert Coulomb forces onto each other. These Coulomb forces yield electrostatic
potential energy. The potential energy that a single charged particle introduces
into a physical system with respect to another particle is equal to the product of
their charges multiplied by Coulomb’s constant and divided by their Euclidean
distance. Given a closed physical system of charged particles, the energy of the
system is equal to the sum of all pairwise electrostatic energy between the in-
dividual particles. If the number of particles is finite, there exists a positioning
of these particles in the system such that the overall energy of the system is
minimized [HRW10].

The phenomenon of electrostatic potential energy is translated to the optimiza-
tion context. The closed physical system is represented by the Pareto front. The
charged particles are Pareto optimal solutions. The charge of a particle cor-
responds to its scalarization value. The distance between particles is equal to
the Euclidean distance between points in the objective space. The energy that
is produced by a finite set of Pareto optimal points can then be described as
in Definition 53.

Definition 53 (energy [BSS15]). Let S “ tu1, . . . ,uNu Ď Yp be a finite subset of
the Pareto front Yp and Ψ be a scalarization function. The energy of S is defined as

UpSq “
N´1
ÿ

i“1

N
ÿ

j“i`1

Ψpuiq ¨Ψpujq
}ui ´ uj}2

. (5.1)

Furthermore,

• minSPYNp UpSq is called energy minimum,

• arg minSPYNp UpSq is called an N -optimal distribution for Ψ on Yp.
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The preferred subset of Xp that is identified by minimizing Equation (5.1) can
also be formulated as preference predicate (see Definition 12). The preference-
biased approximation predicate (Definition 54) restricts the feasible set to the
set of Pareto optimal points that minimize the function U .

Definition 54 (preference-biased approximation predicate). Let f “ pX,Y, F q
be the objective function of an MOOP, Ψ be a scalarization function and N ą 2. The
preference-biased approximation predicate is given by ppXN , Y, FN q,ăpq with

XN :“
#

tx1, . . . ,xNu Ď Xp

ˇ

ˇ

ˇ

ˇ

ˇ

arg min
tx1,...,xNuPXNp

N´1
ÿ

i“1

N
ÿ

j“i`1

Ψpfpxiqq ¨Ψpfpxjqq
}fpxiq ´ fpxjq}2

+

(5.2)
and

FN :“ tpx, fpxqq P F |x P XNu . (5.3)

There exist noteworthy difference between the physical concept of electrostatic
potential energy and its translation to the optimization context. First of all,
Coulomb’s constant is dropped from Equation (5.1), since it bears no meaning
in the optimization context. Multiplying Equation (5.1) by any positive con-
stant does not change the order in which sets are ranked if energy as of Defi-
nition 53 is used as a measure for comparison. Secondly, in physics, particles
retain their charge if they change their position. In the optimization context, the
scalarization value of a point depends on its position in the objective space.

Given a fixed number of points N , a scalarization function Ψ and a Pareto front
Yp, minimizing Equation (5.1) yields an N -optimal distribution of points for
Ψ on Yp. Theorem 3 shows that such a distribution exists under very mild
conditions. The Pareto front of a real-valued MOOP is compact under very
weak restrictions [Hil01]. Even if the Pareto front is disconnected (Figures 5.20e
and 5.21b) or discrete, an N -optimal distribution of points exists. All scalar-
ization functions introduced in Section 3.1 besides the Nash bargaining solu-
tion fulfill the requirements of Theorem 3 and Propositions 11 and 12 such that
N -optimal distribution exist for these functions (Corollary 2). The Nash bar-
gaining solution always yields negative scalarization values, which would lead
solutions having smaller scalarization values to increase U , whereas solutions
with larger scalarization values would decrease U . This runs contrary to the as-
sumption that smaller scalarization values imply higher desirability. The Nash
bargaining solution, however, can be modified such that it yields only positive
values by adding a positive constant that is greater than the optimal scalariza-
tion value (Definition 55). The value of the constant influences the position of
the individual points at the N -optimal distribution.

Theorem 3 (existence of energy minima[BSS15]). Let Ψ be a scalarization function,
Yp be a Pareto front and N ą 1. Furthermore, let Ψ be lower semi-continuous on Yp,
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Yp be non-empty and compact and for all u P Yp let Ψpuq ą 0. Then, U attains its
minimum on Yp.

Proof. The domain of U is YNp . The set YNp is compact, because Yp is compact.
Let ε be greater but close to zero andQ :“ tS P YNp |UpSq ď maxuPYp NΨpuq{εu
be a lower level set of YNp . It follows that QXYNp is compact. The function U is
lower semi-continuous onQXYNp , since Ψ is lower semi-continuous on Yp and
the denominator of Equation (5.1) never attains the value zero on Q. Then, the
conditions for the Weierstraß extreme value theorem are fulfilled [Ber99].

Proposition 11 (energy minima on disconnected fronts). Let Ψ be a scalarization
function, Yp be a Pareto front andN ą 1. Furthermore, let Yp be a non-empty union of
non-intersecting compact subsets, let Ψ be lower semi-continuous on each subset and
for all u P Yp let Ψpuq ą 0. Then, U attains its minimum Yp.

Proof. The proof is analogous to the proof of Theorem 3. If Yp consists of dis-
connected compact subsets, a lower level set Q of YNp can be constructed such
that U is lower semi-continuous on QX Yp.

Proposition 12 (energy minima on discrete fronts). Let Ψ be a scalarization func-
tion, Yp be a Pareto front and N ą 1. Furthermore, let Yp be a finite set of points with
|Yp| “ K ě N and for all u P Yp let Ψpuq ą 0. Then, U attains its minimum Yp.

Proof. GivenN andK, there exist
`

K
N

˘

different possibilities for choosing a set S
of N out of K points. For each such set S the function U can be computed.

Definition 55 (modified Nash bargaining solution cf. [BSS15]). Let b P R` such
that b ą maxuPYp ´Ψnpuq. The modified Nash bargaining solution is defined as

Ψmnpuq “ Ψnpuq ` b. (5.4)

Corollary 2 (cf. [BSS15]). U attains its minimum on any Pareto front Yp that is com-
pact, discrete or a union of compact sets if Ψ is chosen as either the weighted Chebyshev,
the modified Nash bargaining solution, angle utility or tradeoff utility; or if Ψ is chosen
as the weighted sum and the weighted product and Yp Ă Rmě0 and Yp Ă Rmą0 holds,
respectively.

Proof. The proof follows from Theorem 3 and Propositions 11 and 12.

Examining Equation (5.1), it is possible to assess how the movement of an indi-
vidual point on the Pareto front affects the amount of energy it introduces into
the set S. Any movement towards an area that has smaller scalarization values
is beneficial as it decreases U . At the same time, however, the denominator of

104



5.2. Algorithmic Approach to Preference-biased Approximations

Equation (5.1) penalizes movements that bring a point closer to other points
in the objective space. At the energy minimum, a balance is obtained between
locating points in favorable regions of the front and dispersing them across the
entire front.

In case the DM possesses no preference with respect to individual solutions
and considers all Pareto optimal points equally desirable, Ψ can be chosen as
Ψpuq :“ 1 for all u P Yp. Such a scenario corresponds to finding a uniform dis-
cretization of the Pareto front. Theorem 3 and Propositions 11 and 12 guarantee
that such an optimal distribution exists. The results of the computational study
in Section 5.3.2 show that choosing Ypuq “ 1 yields distributions that visually
appear as uniform.

The notion of finding a preference-biased Pareto front approximation using
scalarized preference information can be related to the concept of probabil-
ity density functions in statistics. The probability density function of a ran-
dom variable defines the relative likelihood for each value it can take on to
occur [FKPT12]. A scalarization function can be interpreted as an inverse den-
sity function in this context. A smaller scalarization value would correspond
to a larger probability. Drawing multiple values from such a distributions
should thereby result in a distribution of points that locates more points in ar-
eas of small scalarization values. Brockhoff et al. [BBTZ13] have used such an
approach in defining biased hypervolume-maximizing distributions (see Sec-
tion 4.1.6).

5.2. Algorithmic Approach to Preference-biased
Approximations

Finding the energy minimum for a fixed N requires substantial computational
resources. If the underlying MOOP, which is solved, possesses n decision vari-
ables, finding the minimum of Equation (5.1) is an optimization problem of
N ¨ n decision variables. Mathematical programming techniques that utilize
first and second order derivatives might struggle to find a close approximation
of the optimum within a reasonable time frame, as the Jacobian and the Hessian
of Equation (5.1) become very large, possessingN ¨n and pN ¨nq2 entries, respec-
tively. Furthermore as explained in Chapter 3, many scalarization functions re-
quire the knowledge of reference points or do not fulfill the Pareto axiom (see
Proposition 4). For such scalarization functions, any mathematical program-
ming technique needs to determine such reference points before searching for
the minimum of Equation (5.1). Computing the tradeoff utility (see Defini-
tion 42) of a single point even consists of solving a separate SOOP. Finding an
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N -optimal distribution of points for tradeoff utility thereby mandates solving
N SOOPs for each function evaluations of Equation (5.1). Therefore, an EA is
proposed to approximate the minimum of Equation (5.1).

On a side note that further illustrates the complexity of obtaining anN -optimal
distribution of points, finding the minimum of Equation (5.1) is a generaliza-
tion of the Thomson problem in physics [Tho04]. The Thomson problem is
concerned with finding a positioning of a given number of electrons on the unit
sphere such that their elecostatic potential energy is minimized. It is equivalent
to finding the minimum of Equation (5.1) if Ψ :“ 1 and Yp is chosen as the unit
sphere.1 Computing solutions to the Thomson problem is known to be dif-
ficult. A computer-aided proof for the positioning of five electrons was only
published in 2010 [Sch13]. Since Equation (5.1) is a generalization of the Thom-
son problem for variable charges and arbitrary geometries, finding a minimum
of Equation (5.1) is expected to be even harder than solving the Thomson prob-
lem for a given N .

An evolutionary strategy for approximating the energy minimum faces two
challenges. First of all, the population of the EA needs to converge towards
the energy minimum state. Secondly, once a good approximation has been at-
tained, the algorithm should retain said approximation and avoid random fluc-
tuations in the positioning of solutions across the Pareto front in subsequent
generations. The first challenge can be further divided into two subtasks: the
population needs to converge towards the front and subsequently disperse on
the front to approximate the energy minimum. An archive-based steady state
algorithm is proposed to tackle these two challenges. Archive-based EAs main-
tain a set of candidate solutions that is separate from the current population. An
archive usually contains the best candidate solutions encountered so far during
the search [CCLVV07]. Steady state algorithms produce only one offspring in
each iteration [CCLVV07]. The archive contains those elements that form the
currently best known approximation of the energy minimum. New candidate
solutions are only accepted into the archive if they improve the current approx-
imation. The approximation is either improved by candidate solutions moving
closer to the front or further afar from each other. Thereby, the archive is ex-
pected to gradually converge towards the front and the energy minimum state,
meeting the first challenge. The steady-state approach implies that only one
candidate solution at a time is tested for eligibility to enter the archive. The
archive will therefore never return to a previous composition of candidate so-
lutions avoiding random fluctuations.

An outline of the ESPEA is presented in Algorithm 1. Note that population

1The unit sphere, however, is not a Pareto front, since there exist sphere elements that Pareto dom-
inate other sphere elements. The sphere segment located in the negative orthant, for example,
dominates the unit sphere segment in the positive orthant.
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members are elements of the search space. To facilitate a simplified notation
the objective vector of any population member xi is referred to as f i :“ fpxiq.2
The algorithm starts by generating an initial set of candidate solutions (Line 1)
from which all elements, whose images are not Pareto-dominated are copied
into the archive A (Line 2). Next, the algorithm repeats a loop until a prede-
fined stopping criterion is met. At the beginning of each iteration, a single
new candidate solution x is generated using evolutionary operators (Line 4)3.
All archive members, whose images are Pareto-dominated by fpxq are elimi-
nated from the archive (Line 5). In case fpxq is not Pareto-dominated by any
archive members and does not possess the same objective values as any exist-
ing archive member, it is checked whether x is eligible to join the archive. In
case the archive has not reached its maximum desired size of N , x is added to
the archive (Line 8). Otherwise, the algorithm checks, whether x replacing any
other archive member leads to a reduction of the total energy of the archive.

The function epyq in Line 10 computes the amount of energy individual y in-
troduces into the archive A:

epyq “
ÿ

zPAztyu

Ψpfpyqq ¨Ψpfpzqq
}fpyq ´ fpzq}2

. (5.5)

For any i P rN s, entry e´yipxq in vector e (Line 11) states the energy x would
introduce into A if x was to supersede yi:

e´yipxq “
ÿ

zPAztyu

Ψpfpxqq ¨Ψpfpzqq
}fpxq ´ fpzq}2

. (5.6)

The replacement of an existing archive member takes place in Line 12. It might
be the case that there exist multiple archive members, whose replacement by x
would yield a reduction in the overall energy of the archive. In this scenario,
different replacement strategies could be devised. The following three strate-
gies are proposed. Let Aą be the subset of A that consists of those members
that introduce more energy into the archive than x, i.e. Aą :“ ty P A | e´ypxq ă
epyqu.
Best feasible position (BFP) arg minyPAą e´ypxq

The offspring x in inserted into the archive such that it introduces the
least energy among all elements it can replace in Aą.

2To avoid confusion, the short notation f i :“ fpxiq is only used if there exist no other indexed
candidate solutions in the current context, e.g. yi, such that the mapping of f i is distinct.

3The procedure of how new individuals are generated using evolutionary operators is described
in Section 5.3.1.1
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Worst in archive (WIN) arg maxyPAą epyq
Individual a supersedes the archive member that exhibits the largest en-
ergy of all elements in Aą.

Largest energy decrease (LED) arg maxyPAąpepyq ´ e´ypxqq
The difference in archive energy before and after replacement is maxi-
mized.

The three replacement mechanisms pursue different conceptual ideas. WIN
focuses on eliminating the worst archive members in terms of energy contribu-
tion, while BFP inserts x in the archive such that its effect on the overall archive
energy is minimal. Both strategies, however, do not consider the actual en-
ergy decrease caused by x replacing an existing archive member as in the case
of LED. The absolute energy decrease that occurs by applying BFP and WIN
might only be marginal. On the other hand, focusing on the energy decrease
might not lead to finding suitable replacements for members that introduce the
highest energy into the archive. All three strategies are compared in a compu-
tational study in Section 5.3.1.

Algorithm 1: Electrostatic Potential Energy Evolutionary Algorithm [BSS15]
Input : MOOP f , replacement strategy strategy
Output: Pareto front approximation A

1 Generate and evaluate initial population P
2 A :“ ty P P | Ez P P : fpzq ăp fpyqu
3 repeat
4 Generate and evaluate a single new candidate solution x
5 A :“ ty P A | fpxq ćp fpyqu
6 if @y P A : pfpyq ćp fpxqq ^ pfpxq ‰ fpyqq then
7 if |A| ă N then
8 A :“ AY txu
9 else

10 Calculate epyq for all y P A
11 Calculate e :“ pe´y1pxq, . . . , e´yN pxqq
12 replace(A,x,strategy)

13 until stopping criterion
14 return A

ESPEA’s approach to approximating anN -optimal distribution of points works
twofold. The archive of non-dominated individuals ensures that the popu-
lation gradually converges towards the Pareto front. By retaining only non-
dominated individuals, a strong selection pressure is put on quickly converging
towards the front. Maintaining an archive of only non-dominated individuals
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has been successfully applied in other EAs [TFD11]. The replacement strate-
gies are niching mechanism for moving the population towards the N -optimal
distribution on the front once the desired archive size has been reached. By
generating only a single new individual instead of multiple individuals in each
iteration, the archive is expected to converge quicker to an energy minimum
state. In general, steady state algorithms are known to require less function
evaluations for obtaining a representation of the Pareto front compared to gen-
erational algorithms, whose offspring generations usually have the same size as
the current population [DNLA09]. The steady state approach has also been suc-
cessfully employed to obtain approximations of a hypervolume (see Figure 4.2)
maximizing distribution of points. SMS-EMOA, for example, utilizes topolog-
ical sorting (see Figure 2.4) and eliminates the individual in the last front that
has the smallest hypervolume contribution [BNE07].

The computational complexity of ESPEA is analyzed next. The Bachmann-
Landau [Cor09] notation is used for describing the worst case runtime of the
algorithm. The analysis describes the runtime of a single iteration of the algo-
rithm and counts basic arithmetic operations as computation steps. Removing
dominated members from the archive elicits an effort of ΘpNmq. In case the
archive is full, all of its N members need to be checked for elimination. A
single check for Pareto dominance requires at most m arithmetic operations,
since m objective values are possibly compared. During the removal of dom-
inated archive members, it can be checked, whether fpxq itself is dominated
or possesses the same objective values as another archive member. No addi-
tional effort is required. If the archive has not reached its full size, x can be
added in constant time. Equation (5.5) in Line 10 needs to be computed for
each archive member. Scalarization values can be precomputed once for every
archive member and x resulting in a runtime of ΘpN ¨ OpΨqq. Computing the
Euclidean distance between two objective vectors requires an effort of Θpmq.
Computing Equation (5.5) for a single archive member thereby elicits an effort
of ΘpNmq and for the entire archive ΘpN2mq.
When computing Equation (5.5) sequentially for all archive members ty1, . . .,
yNu intermediate results can be stored to save additional effort. The addend
Ψpf iq ¨ Ψpf jq{ ››f i ´ f j

›

›, for example, is both contained in epyiq and epyjq, since
the energy between any two individuals is pairwise symmetric. Consequently,
only NpN ´ 1q{2 fractions in Equation (5.5) need to be computed instead of
pN ´ 1q2. Still, computing NpN ´ 1q{2 fractions results in the same complexity
class of ΘpN2mq. Storing the fractions increases the space complexity of ESPEA
to OpN2q. Additionally, summing up all fractions for a single archive member
requiresN ´1 steps implying a total effort of ΘpN2q for all archive members.

The computation of vector e in Line 11 requires an effort of ΘpNmq. As for
Equation (5.5), the fractions in Equation (5.6) can be precomputed once for each
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pair of x and all other archive members, eliciting an effort of ΘpNmq. For any
y1,y2 P A it holds that

e´y1 “ e´y2 ´ Ψpfpxqq ¨Ψpf iq
}fpxq ´ f i}2

` Ψpfpxqq ¨Ψpf jq
}fpxq ´ f j}2

. (5.7)

It follows that computing e´y1 necessitates an effort of ΘpNq, while all subse-
quent entries e´y2 , . . ., e´yN can be computed in constant time. Applying any
of the presented replacement strategies in Line 12 requires ΘpNq, since finding
the minimum of a set of N elements requires N ´ 1 comparisons. If the WIN
strategy is applied, Line 11 may be skipped. The total effort for executing a
single ESPEA iteration then results in a runtime of ΘpN2mq.
The runtime of ESPEA can be further reduced if results of previous iterations
are kept. If x is not added to the archive, the values computed in Line 10 can
be retained. Even if x replaces an existing archive member the following up-
date scheme can be used to reduce the overall runtime to ΘpNmq. Let etpyq
denote the function value epyq of archive member y at iteration t and let z be
the archive member that is replaced by p. Then,

et`1pyq “ etpyq ` Ψpfpxqq ¨Ψpfpyqq
}fpxq ´ fpyq}2

´ Ψpfpzqq ¨Ψpfpyqq
}fpzq ´ fpyq}2

. (5.8)

The update mechanism described in Equation (5.8) elicits a constant effort for
each archive member and thereby a total effort of ΘpNq for the entire archive.
Additionally, it holds that et`1pxq “ e´zpxq. The update mechanism in Equa-
tion (5.8) can also be utilized, whenever x eliminates an archive member by
Pareto-domination in Line 5. In case the entire archive is dominated by fpxq,
this would result in an effort of ΘpN2q, since N updates are performed con-
sisting of N ´ 1, . . ., 1 steps as the archive becomes smaller. On average, how-
ever, ESPEA’s runtime can be reduced to ΘpNmq, since in later stages of the
search, when the archive is close to the Pareto front, the image of a newly
created individual is only expected to dominate a few existing archive mem-
bers. Thereby, ESPEA is faster than other popular steady-state MOEAs such as
NSGA-II [DNLA09], SPEA2 [DNLA09] or SMS-EMOA [BNE07], whose worst-
case runtime complexity is ΘpN2mq, ΘpN2 logNq and Op2mq (for m ą 3), re-
spectively. Table 5.1 contains an overview of the time complexity of the differ-
ent computation steps of ESPEA.

ESPEA can further be modified to constrain the preference-biased approxi-
mation to a subset of the Pareto front by changing the dominance relation in
Lines 5 and 6. Any dominance relation such as polyhedral cones (Definition 22),
variable cones [SB13] or tradeoff domination (Definition 16 and others can be
utilized. Examples are provided in Section 5.3.3.
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Table 5.1.: Overview of the time complexity of ESPEA of a single iteration. Let k denote
the number of archive members that are eliminated in Line 5. The column
k ! N considers the case if the number of eliminated archive members is
negligible in comparison to the population size and describes the expected
behavior of ESPEA when the archive is close to the Pareto front. In the naive
column, ESPEA does not retain any information about the function values of
e and e´y, whereas in the retain column, ESPEA uses the update strategy of
Equation (5.8).

Step Naive Retain

Worst k ! N Worst k ! N

Remove dominated individuals
from archive (Line 5) ΘpNmq ΘpNmq ΘpN2q ΘpNmq
Calculate epaq for all archive
members (Line 10) ΘpN2mq ΘpN2mq ΘpNq ΘpNq
Calculate e (Line 11) ΘpNq ΘpNq ΘpNq ΘpNq
Archive update (Line 12) ΘpNq ΘpNq ΘpNq ΘpNq
Complete iteration ΘpN2mq ΘpN2mq ΘpN2q ΘpNmq

On a final note, it needs to be mentioned that electromagnetism-inspired op-
timization algorithms in MOO have been the subject of research in the past
[TK06, CAA14, CAA15, HJL15]. These approaches, however, have translated
the physical phenomenon of Coulomb forces to search operators instead of
defining an optimal distribution of points on the Pareto front, which is sought
by ESPEA. Said algorithms thereby follow the finite set of points paradigm
(Section 4.1.2) instead of considering preference information to obtain biased
Pareto front approximations.

Tsou and Kao [TK06] are credited as having developed the first electromagnetism-
inspired heuristic for MOOPs— MOEM—which is itself an extension to a single-
objective optimization algorithm—EM heuristic [BF03]. The EM heuristic is a
population-based approach that assigns to each candidate solution a charge,
which depends on its deviation from the current estimate of the globally op-
timal objective value. The charges are used to compute forces that move the
particles through to the decision space. Particles that possess smaller objective
values attract particles having larger objective values, while candidate solu-
tions exhibiting larger objective values repel particles with smaller objective
values. EM further employs a local search strategy in each iteration that probes
the particles’ neighborhood to speed up the convergence.

The EM heuristic is translated by Tsou and Kao to MOO by introducing the
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following modification: Instead of considering the deviation from the current
estimate of the globally optimal value, the particle’s distance to the closest pop-
ulation member that is not dominated by any other candidate solution is used
to compute the charge value. MOEM maintains an archive of nondominated
solutions that are found during the search. When the archive has exceeded its
maximum size, random archive members are deleted until the archive retains
its maximal size.

Carrasqueira et al. [CAA14] have further improved the MOEM algorithm by
Tsou and Kao. They utilize the crowding distance metric (Algorithm 3) to trun-
cate the archive and introduce changes to the charge computation and particles’
movement resulting from the force vectors to speed up the convergence. Sub-
sequent modifications of MOEM by Carrasqueira et al. [CAA15] have focused
on improving the local search strategy. There exist further multi-objective ex-
tensions of the original EM algorithm. Han et al. use the number of candidate
solutions a particle dominates as its charge value [HJL15]. Other approaches
to EM-inspired optimization algorithms have focused on specific types of op-
timization problems such as flow shop scheduling [Kha14] or vehicle routing
[YE10].

5.3. Computational Analysis of Preference-biased
Approximations

The computational analysis is split into three parts. The first part consists of a
comparison of the three replacement strategies BFP, WIN and LED. The second
part of the analysis is concerned with the no preference case, in which all Pareto
optimal solutions are considered to be equally desirable. ESPEA is compared to
other MOEAs that aim at obtaining a uniform finite set of points approximation
of the Pareto front. The third and final part features a qualitative analysis of the
preference-biased Pareto front approximations generated by using ESPEA with
scalarized preference information.

All studies were conducted within the jMetal framework version 4.5 [DN11].
jMetal is a Java-based software for developing, testing and applying algorithms
to solve MOOs. The framework provides implementations of existing opti-
mization algorithms, optimization problems and search operators. There exist
multiple abstraction layers to represent concepts from optimization theory such
as evolutionary operators, populations or candidate solutions, which allow
easy development of custom code. ESPEA was developed within the jMetal
framework and the code is publicly available online [Bra].
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5.3.1. Quantitative Comparison of Replacement Strategies

The comparison of the replacement strategies BFP, WIN and LED features two
different simulation studies. The first experiment examines how the energy
(Equation (5.1)) of ESPEA’s archive evolves from a set of randomly drawn deci-
sion vectors if the search space is restricted to the set of Pareto optimal solutions
Xp. The second experiment assesses how close each approximation produced
by the three different replacement strategies is to the optimal distribution of
points if the original feasible set is considered as search space.

Both studies require the knowledge of reference N -optimal distributions of
points that serve as benchmark for allowing a quantitative comparison of the
three replacement strategies. Such reference N -optimal distributions can only
be computed with sufficient accuracy if N is not too large. A size of 50 was
found to produce sufficiently accurate reference distributions, whereas larger
values would not. For this reason, a population size of 50 was chosen instead
of 100, which is a common value found in the literature. Each run of the differ-
ent replacement strategies was initialized with the same random population.
Decision variables were drawn from a uniform distribution in the first exper-
iment and latin hypercube sampling [MBC79] in the second experiment. Uni-
form sampling was chosen in the first study, since latin hypercube sampling
produces close to optimal distributions if the search space is restricted to the
Pareto optimal set. Latin hypercube sampling generally allows a better explo-
ration of the search space in early iterations. In the following, search operators,
test problems and performance indicators are introduced before the simulation
results are presented and discussed. A summary of the study setup is provided
in the appendix in Table E.1.

5.3.1.1. Replacement Strategies Study Search Operators

Two different crossover operators were used within ESPEA depending on the
current archive size. When the archive had not reached its maximum size,
Simulated Binary Crossover (SBX) [AD94] was used. SBX is a recombination
technique that simulates the crossover of binary strings on real-valued decision
variables. In MOO, a binary string is a decision variable that is represented by
a sequence of zeros and ones. Given two binary strings, single-point binary
crossover randomly chooses a cutoff point and exchanges the substrings of the
two strings to generate offspring individuals (see Figure 5.1). If binary strings
are used to encode real-valued numbers, offspring individuals can be charac-
terized by the distance to their parents in the search space – the spread factor.
Considering all feasible sequences of zeros and ones of a fixed length and all
possible cutoff points, a probability density function for the spread factor can
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0 1 0

Parents

0 0 0 1 0

Offspring

1 1

1 1 0 1 1 1 1 0 0 0

Cutoff point

Figure 5.1.: Illustration of single-point binary crossover. Binary strings are divided at the
cutoff point. Substrings are swapped between parents to generate offspring.

be computed. Said density function describes the distance of offspring to their
parents depending on the chosen cutoff point. SBX recombines real numbers
such that the resulting offspring individuals fit the density function for binary
crossover. For SBX, there further exists a distribution index ηc that controls
the shape of the density function. Small distribution indices lead to offspring
being located further away from their parents, whereas large indices result in
offspring being close to their parents [AD94]. A crossover probability of 1.0 and
a distribution index of 20 were chosen, which have empirically shown to gen-
erate good search results in MOO [DPAM02, ZK04, BNE07]. While crossover
probabilities of 0.9 are more common in the literature, preliminary tests did not
reveal a significant performance difference the values 0.9 and 1.0. Parents for
crossover were chosen randomly from the archive.

The mathematical description of SBX is summarized as follows. Let xo denote
the offspring of individuals y1 and y2 and let r P r0, 1sn be a vector of uniform
random numbers. Every component xoi of xo is computed by the following
formula:

xoi “ 0.5
`p1` βiqy1

i ` p1´ βiqy2
i

˘

, (5.9)

where

βi “
$

&

%

p2riq 1
ηc`1 if ri ď 0.5

´

1
2p1´riq

¯
1

ηc`1

else.
(5.10)

Whenever ESPEA’s archive possessed its maximum size, differential evolu-
tion (DE) [SP97] was applied as crossover operator. DE comprises a family of
crossover operators that uses three or more parents for recombination. These
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operators generate a mutant decision vector by linearly combining parent de-
cision vectors. Recombination takes place by randomly choosing between en-
tries from the mutant vector and another parent decision vector to form a new
offspring decision vector. DE operators mainly differ from each other by how
the mutant vector is computed and how the entries from the mutant and parent
vector are chosen. The current-to-rand/1/bin recombination scheme was applied,
which has been empirically verified to exhibit good performances [MMVRCC06].
Let x, y1, y2, y3 denote parent decision vectors and ck, cf P r0, 1s. The mutant
vector xm is computed in the following way:

xm “ x` ckpy3 ´ xq ` cf py1 ´ y2q. (5.11)

The parameters ck and cf are combination coefficients that control the weight
of the different parents on the mutant vector and 0.5 was chosen as their value,
which is commonly used in the literature. Let pc denote the recombination
probability, r P r0, 1sm denote a vector of uniform random numbers and j P
rms. The offspring vector xo is computed as follows:

xoi :“
"

xmi if ri ă pc or i “ j
xi else. (5.12)

The index j guarantees that the offspring vector z contains at least one entry
of the mutant vector xm irrespective of the chosen values for ck and cf . A
recombination probability of pc “ 0.5 was chosen.

SBX has been successfully applied in many MOEAs to obtain finite set of points
approximations of the Pareto front [DPAM02, ZLT01, ZK04, TFD11], which is
why it was chosen in this study. Differential evolution has been shown to out-
perform SBX as search operator [TF07, LZ09]. As long as the archive is still
small, differential evolution requiring four instead of two parents for crossover
leads to the same parents being more frequently recombined in early stages of
the search. This, on the other hand, might reduce the genetic diversity of the
archive and lead to an insufficient exploration of the search space. Therefore,
differential evolution is only applied once the archive has reached its full size.
Parents are selected randomly, such that equal weight is given to improving the
entire distribution of points. The archive replacement strategies guarantee that
the scalarized preference information is taken into account when new elements
enter the archive.

Polynomial mutation [DG96] was applied to all offspring irrespective of the
current archive size. The perturbations introduced by polynomial mutation to
the offspring decision vector are drawn from a polynomial density function.
Similar to the working principle of SBX, polynomial mutation also utilizes a
distribution index ηm to control the spread factor of the mutated offspring. For
any i P rms let xli and xuj denote the lower and upper bound of xi, r, s P r0, 1sm
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be two vectors of uniform random numbers and pm P r0, 1s be the mutation
probability. The mutated decision vector xp of any x P Rm is computed in the
following way.

xpi “
"

xi ` ρpxui ´ xliq if ri ă pm
xi else, (5.13)

with

ρ “
#

p2siq 1
ηm`1 if si ă 0.5

1´ p2´ 2siq 1
ηm`1 if si ě 0.5.

(5.14)

The mutation probability was set to pm “ 1{m and the distribution index
to ηm “ 20, which are values that are both recommended in the literature
[DPAM02, ZLT01, ZK04].

5.3.1.2. Replacement Strategies Study Test Problems

The literature on MOO has produced numerous benchmark problems for test-
ing and comparing MOOAs. These benchmark problems aim at recreating
challenges that are possibly encountered in real-world optimization problems,
however their objective functions are usually not related to any real-world
quantities. Test problems must be carefully selected such that they are rep-
resentative for the target application for which the algorithms are tested.

Assessing the performance of optimization algorithms by comparing their per-
formance on benchmark problems must be discussed in light of the no free
lunch theorem for optimization [WM97]. The no free lunch theorem implies
that the average performance of any two algorithms is the same if all conceiv-
able optimization problems are considered. This means that the computational
results of this and all subsequent chapters are not generalizable to all possi-
ble optimization problems. An algorithm that is shown to perform well on
the problems considered in this work is not expected to outperform other al-
gorithms on a randomly picked MOOP. Instead, the problems considered in
the experiments of this work are expected to be representative of the type of
problems to which the algorithms are applied in practice.

MOO refers to problems possessing two or three objective functions, whereas
problems with more objectives are referred to as many-objective optimization
problem (MaOP) [ITN08]. ESPEA is mainly intended to solve MOOPs. Preference-
biased Pareto front approximations are most beneficial to a DM if she can easily
comprehend the impact of her preferences on the distribution of points. Com-
prehension is furthered by visualization and visualizing Pareto fronts of four
or more objectives is usually very difficult.
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An important criterion in selecting benchmark problems for this study was that
an analytical description of the Pareto front must be known. The different re-
placement strategies are compared by assessing how well they approximate
the energy minimum of Equation (5.1). Therefore, for each problem a distribu-
tion of points that is sufficiently close to the energy minimum, which serves as
benchmark, must be obtained. Such distributions can be generated using math-
ematical programming techniques if there exists an analytical representation of
the front [BSS15]. Secondly, problems were selected based on the curvature and
composition of the Pareto front. The geometry of the Pareto front has a large
effect on the optimal positioning of points at the energy optimum. Therefore,
two and three objective problems with convex, concave and mixed curvatures
were chosen for the study.

The problem ZDT1 has a strictly convex and ZDT2 a strictly concave Pareto
front [ZDT00] (Figure 5.2). ZDT1’s front is tangential to the f2-axis towards the
left extreme point and ZDT2 is tangential to the vertical line passing through
the point p0, 1q towards the left extreme point. The ZDT problem family has
been frequently used in the past to benchmark finite set of points algorithms
[DPAM02, ZLT01, NDGN`09, ZK04]. ZDT1 and ZDT2 can be used to assess
the effect of concavity and convexity of the Pareto front on the different re-
placement strategies.
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(a) ZDT1.
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(b) ZDT2.

Figure 5.2.: Pareto fronts of the problems ZDT1 and ZDT2 including a 50-optimal distri-
bution of points for Ψpuq :“ 1.

The DEB2DK and DO2DK problems feature mixed curvature Pareto fronts [BDDO04]
(Figures 5.3 and 5.4). They both possess a parameter k that controls the number
of convex bulges – also called knees – on the Pareto front. DO2DK addition-
ally uses a parameter s that adds skewing to the front. Mixed curvature Pareto
fronts usually possess a complex geometric shape potentially rendering finding
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a uniform finite set of points approximation more difficult.
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(a) DEB2DK k “ 1.
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(b) DEB2DK k “ 3.

Figure 5.3.: Pareto fronts of the problem DEB2DK for k “ 1 and k “ 3 including a 50-
optimal distribution of points for Ψpuq :“ 1.

The Pareto front of an instance of the Lamé problem is the part of a unit hy-
persphere in the positive orthant [ED07] (Figures 5.5 and 5.6). The parameter
γ controls the curvature of the front. For any fixed γ the distance induced by
the p-norm with p “ γ of every Pareto optimal point to the origin is equal to 1.
For example, γ “ 2 yields a circle and γ “ 1 a straight line as Pareto front. The
values 0.25 and 4 for γ using two objectives and 0.5 for three objectives were
chosen to assess the effect of extreme curvatures on the replacement strategies.
As explained in Section 4.1, other optimal distribution concepts such as hy-
pervolume are gravely affected by extreme curvatures making these problem
instances interesting test cases.

The DTLZ family comprises a set of problems that is scalable in the num-
ber of objectives [DTLZ05]. Three objectives were chosen for all problem in-
stances. DTLZ1’s Pareto front is the unit simplex scaled by 0.5. It’s inverted
version [JD14] is considered as well. Hypervolume-based finite set of points
approaches have as well shown to struggle in producing uniform approxima-
tions on the inverted DTLZ1 problem [IISN17]. DTLZ3’s Pareto front is the part
of the unit sphere in the positive orthant. The problem is known to be difficult
to solve (Figure 5.7).

Finally, a new set of test problems is proposed: The B problem family consists
of six three objective problems (Figures 5.8 and 5.9 and Definition 69). They ap-
pear simple in their mathematical structure compared to more recent problem
families such as DTLZ and WFG [HHBW06], however the B family features
problems that possess Pareto fronts with complicated shapes that have so far
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(a) DO2DK k “ 2 s “ 1.
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Figure 5.4.: Pareto fronts of the problem DO2DK for k “ 2 and k “ 4 with s “ 1 in-
cluding a 50-optimal distribution of points for Ψpuq :“ 1. The optimal dis-
tribution is more dense towards the left extreme points, because the range
of f2 among all Pareto points is larger compared to f1. This effect can be
prevented by normalizing objectives before distance computation.

not been explored in MOO. Since the shape of the Pareto front may exert a large
effect on the distribution of points on the front generated by a niching mecha-
nism [IISN17], the B family is proposed and included in the study. B1’s Pareto
front is convex and formed like a spade, whereas the Pareto front of B2 is con-
cave and shaped like a sun sail. The front of B3 resembles a linen that is folded
towards the center at its four corners. B4’s front is a plane. The front of B5
possesses a wave-like shape and B6’s front resembles a smooth staircase. A list
of all problems utilized in the study is found in Table 5.2. Their mathematical
definitions are contained in Appendix B.
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Table 5.2.: Problems utilized in the replacement strategy study. The table features the
problem names including their parametrization, the source of publication,
the number of objectives m and the number of decision variables n.

Name Source m n

B1 new 3 12
B2 new 3 12
B3 new 3 12
B4 new 3 12
B5 new 3 12
B6 new 3 12
DEB2DK k “ 1 [BDDO04] 2 30
DEB2DK k “ 3 [BDDO04] 2 30
DO2DK k “ 2 s “ 1 [BDDO04] 2 30
DO2DK k “ 4 s “ 1 [BDDO04] 2 30
DTLZ1 [DTLZ05] 3 7
inverted DTLZ1 [JD14] 3 7
DTLZ3 [DTLZ05] 3 12
Lamé γ “ 0.25 [ED07] 2 7
Lamé γ “ 0.5 [ED07] 3 7
Lamé γ “ 4 [ED07] 2 7
ZDT1 [ZDT00] 2 30
ZDT2 [ZDT00] 2 30
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(a) Lamé γ “ 0.25.
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(b) Lamé γ “ 4.

Figure 5.5.: Pareto fronts of the Lamé problem for two objectives and γ “ 0.25 and γ “ 4,
respectively.
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Figure 5.6.: Pareto fronts of the Lamé problem for thee objectives with γ “ 0.5 from the
front and side including a 50-optimal distribution of points for Ψpuq :“ 1.
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(c) Inverted DTLZ1 (front).
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(d) Inverted DTLZ1 (side).
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Figure 5.7.: Pareto fronts of the problems DTLZ1, inverted DTLZ1 and DTLZ3 from the
front and the side including a 50-optimal distribution of points for Ψpuq :“
1.
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Figure 5.8.: Pareto fronts of the problems B1, B2 and B3 from the front and the side in-
cluding a 50-optimal distribution of points for Ψpuq :“ 1.
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Figure 5.9.: Pareto fronts of the problems B4, B5 and B6 from the front and the side in-
cluding a 50-optimal distribution of points for Ψpuq :“ 1.
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5.3.1.3. Replacement Strategies Study Performance Indicators

Two performance indicators are used to evaluate the simulation results. The
first indicator measures the energy as of Equation (5.1) of the approximation S
generated by ESPEA relative to the energy of a reference N -optimal distribu-
tion of points P . The indicator relative energy (RE) is computed by dividing the
energy of the approximation by the energy of the reference set (Definition 56).

Definition 56 (relative energy). Let S, P Ă Rm be finite. The relative energy (RE)
REpS, P q is defined as

REpS, P q “ UpSq
UpP q . (5.15)

The reference sets were generated by formulating mathematical programs to
find the minimum of Equation (5.1) for each test problem. To simplify the
search for the energy minimum, parametric equations for the Pareto fronts
of all presented test problems were computed. Thereby, Pareto dominated
points are eliminated from the search space. For any of the presented prob-
lems, it holds that all objective functions are non-conflicting in decision vari-
ables txm, . . . , xnu. This means that for a given problem, all these variables are
required to take on a specific value to generate a Pareto optimal point.4 Any
deviation from this value leads the resulting objective vector to move away
from the front. The parametric equations retain only tx1u as free variable for
two objectives and tx1, x2u as free variables for three variables. Any feasible
value for a free variable produces a Pareto optimal point. The MATLAB soft-
ware using the solver fmincon was used in combination with the interior-point
option to generate the reference fronts. A maximum number of 50 000 function
evaluations was chosen as stopping criterion.

RE is an indicator for measuring the uniformity of a finite set of points Pareto
front approximation if Ψpuq :“ 1 is used as scalarization function. Smaller val-
ues of the RE indicator signalize a higher quality of approximation. RE is only
a useful means of comparison if S and P have the same size and all elements of
both sets are located on the Pareto front. Evidently, anyN ´1-optimal distribu-
tion possesses less energy than anN -optimal distribution, since fewer addends
enter Equation (5.1). In the non-preference case, all scalarization values are
set to 1. Distributing points across the entire feasible objective space yields a
smaller RE compared to focusing all N points on the Pareto front. Therefore,
the search space was restricted to the Pareto optimal set Xp in the study that
uses RE as performance indicator.

4For all B-problems for example, decision variables txm, . . . , xnu need to take on the value 0 to
generate Pareto optimal points.
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The second performance indicator that is used to compare the simulation re-
sults is inverted generational distance (IGD). IGD measures the distance be-
tween two sets of objective vectors. Given two sets S and P , IGD computes the
distance of every point in P to its closest neighbor in S. The mean of all these
distances constitutes the IGD (Definition 57).

Definition 57 (inverted generational distance [VVL98]). Let S, P Ă Rm be finite.
The inverted generational distance (IGD) IGDpS, P q is defined as

IGDpS, P q “ 1

|P |
ÿ

uPP
min
vPS }u´ v}2. (5.16)

IGD is commonly used in MOO to assess the quality of finite set of points ap-
proximations of the entire front. In this case, P is a uniform, finite, discretized
subset of the Pareto front and S is the approximation generated by an MOEA.
IGD measures both how close the approximation is to the true front and how
well spread the points are across the entire front. In evolutionary MOO the
former property is denoted by convergence and the latter by diversity.

In the computational study that is presented in this section, P is chosen as the
N -optimal distribution of points. IGD thereby reveals how close the approxi-
mation generated by ESPEA is to theN -optimal distribution. The simulation in
which IGD was measured to compare the replacement strategies retained the
original search spaces of all problems in the study. There were no restrictions
in place that limited the search space to the Pareto optimal set. Thereby, the
convergence of ESPEA’s population towards the Pareto front using the differ-
ent replacement strategies can be assessed as well. Smaller IGDs imply that the
approximate distribution is closer to the optimal distribution in the objective
space.

Although RE and IGD measure both how well a set of points approximates an
N -optimal distribution of points, they differ in their explanatory power. Any
N -sized set of Pareto optimal points S, whose energy is close to that of the
N -optimal distribution P , would constitute a close-to-optimal distribution in
terms of RE. The elements of set S, however, may be located at different posi-
tions than those of P (see Figure 5.10), which result in a larger IGD. IGD mea-
sures only the distance between S and P in the objective space and makes no
statement about the quality of distribution in terms of RE. On the other hand,
RE cannot be used to quantify the convergence of ESPEA towards the Pareto
front if the entire feasible set X is considered, since few to none archive mem-
bers are expected to be located exactly on the Pareto front.
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f2

f1

Figure 5.10.: Consider the f1-f2-plot of a three objective Pareto front that consists of a
circle and the three sets of red (R), blue (B) and green (G) points. The sets
R and B constitute a 4-optimal distribution. If R is chosen as reference set,
then REpB,Rq “ 1 ă REpG,Rq, however IGDpB,Rq ą IGDpG,Rq.

5.3.1.4. Discussion of the Replacement Strategies Study Results

EAs utilize random numbers in generating new candidate solutions. Each run
of an EA may yield a different outcome even if the same start population is
used. EAs must therefore be run multiple times on the same problem to allow
the derivation of meaningful statements about their performance. ESPEA was
run 100 times with each replacement strategy on every problem. In each run,
50 000 function evaluations were chosen as termination criterion.

The development of RE across the 50 000 function evaluations is depicted in
Figures 5.11 to 5.13. The results show a near universal tendency. The replace-
ment strategies WIN and LED clearly outperform BFP in early iterations. Al-
though all three strategies start with the same initial population, WIN and LED
converge faster towards the energy optimum. The performance range of BFP
is also larger compared to the other two methods. WIN and LED appear to ex-
hibit a near identical performance on all problems. This observation suggests
that both strategies mostly select the same archive members for replacement.

The results also show that focusing on the elimination of the worst archive
members (LED and WIN) is more beneficial compared to inserting new individ-
uals such that their effect on overall energy is minimized BFP. This observation
caters to the Darwinian notion of survival of the fittest. All three replacement
strategies, however, arrive at a close approximation of the energy optimum
within 1000 function evaluations. This allows the conclusion that BFP, WIN
and LED are all suitable replacement strategies for ESPEA.

In order to evaluate the performance differences between the three replacement
strategies in later iterations, RE after 50 000 function evaluations is reported in
Table 5.3. The performance differences observed in early iterations continue to
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Table 5.3.: Replacement strategies study – RE. Median and IQR (as subscript) results
after 50 000 function evaluations. Only significant digits are reported after
omitting the leading 1. Negative values imply that ESPEA outperformed the
reference set and RE is smaller than 1. Best performance is colored in green,
second best in blue. WIN and LED outperform BFP.

BFP WIN LED

B1 ´1.37e´38.7e´4 ´1.29e´31.0e´3 ´1.40e´39.6e´4

B2 ´1.24e´36.5e´4 ´1.09e´37.0e´4 ´1.21e´37.6e´4

B3 1.41e´46.3e´4 4.59e´64.7e´4 9.47e´57.2e´4

B4 ´1.07e´38.4e´4 ´1.12e´37.6e´4 ´1.20e´37.9e´4

B5 ´1.38e´46.7e´4 ´3.68e´41.1e´3 ´4.39e´49.5e´4

B6 ´2.16e´31.1e´3 ´2.24e´31.2e´3 ´2.23e´37.8e´4

DEB2DK k “ 1 5.44e´45.1e´4 4.90e´45.3e´4 5.14e´45.2e´4

DEB2DK k “ 3 5.56e´45.4e´4 4.62e´45.5e´4 5.11e´44.5e´4

DO2DK k “ 2 s “ 1 5.77e´45.1e´4 4.72e´45.2e´4 4.02e´44.6e´4

DO2DK k “ 4 s “ 1 6.98e´45.5e´4 5.25e´45.4e´4 5.75e´45.9e´4

DTLZ1 ´2.18e´39.5e´4 ´2.51e´36.9e´4 ´2.36e´37.3e´4

invDTLZ1 ´7.75e´41.0e´3 ´8.00e´48.3e´4 ´7.41e´47.9e´4

DTLZ3 1.27e´31.2e´3 8.72e´41.2e´3 8.50e´41.2e´3

Lamem “ 2 γ “ 0.25 5.02e´45.6e´4 3.18e´45.0e´4 3.82e´44.3e´4

Lamem “ 3 γ “ 0.5 1.11e´44.5e´4 7.96e´54.5e´4 ´9.14e´55.1e´4

Lamem “ 2 γ “ 4 7.06e´46.4e´4 6.71e´46.0e´4 5.52e´44.7e´4

ZDT1 6.09e´44.8e´4 4.20e´45.7e´4 4.91e´45.0e´4

ZDT2 5.16e´47.2e´4 4.25e´44.6e´4 3.67e´43.8e´4

manifest themselves at the end of the execution. WIN and LED clearly outper-
form BFP on nearly all test problems. There exist only three problems for which
BFP achieves a smaller RE compared to any of the other two methods. On these
problems, the range of RE among all three strategies is small suggesting that the
actual performance difference is marginal.

The values listed in Table 5.3 confirm the observations of the convergence plots
that the three replacement strategies are able to find a close approximation of
the energy minimum. In some cases, they are even able to outperform the
benchmark obtained by solving a corresponding mathematical program. This
observation confirms that the EA is a suitable approach for finding energy min-
ima.

Performance differences after 50 000 function evaluations can be further ex-
plored by assessing the distribution of RE achieved by the different replace-
ment strategies across the 100 runs. Figure 5.14 shows boxplots of RE for the
individual strategies after 50 000 function evaluations. As in Table 5.3, only sig-
nificant digits are displayed. Outliers were removed for better visualization.
The boxplots reveal that there exist only marginal performance differences be-
tween the three replacement strategies. Although the first quartile of LED and
WIN is on average smaller than BFP’s, the IQRs of all methods largely over-
lap.
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A statistical analysis is performed to check the performance differences for sig-
nificance. Statistical hypothesis tests allow drawing conclusions about whether
differences observed in data samples are systemic or merely coincidental. A
statistical test consists of a null and alternative hypothesis, where both are fal-
sifiable statements and the alternative is the exact opposite of the null hypoth-
esis. The null hypothesis is assumed to be true unless there exists sufficient
evidence that suggests otherwise. Evidence is generated by computing a test
statistic, which is a numerical summary of the data samples. The test statis-
tic is compared against the expected sample distribution, whereas the sample
distribution must either be known or inferred before testing. The comparison
yields the p-value, which states the probability of observing the sample data
or a more extreme outcome assuming that the null hypothesis is true. If the
p-value falls below a certain threshold the null hypothesis is rejected and the
observed difference between the samples is deemed significant. Equivalently,
it can be stated that a difference is observed with confidence [FKPT12].

The first step of the statistical analysis consists of inferring the sample distri-
bution. Hypothesis testing mainly distinguishes between parametric and non-
parametric tests. Parametric tests possess a greater statistical power implying
that they are more likely to discover a significant effect if one exists. Paramet-
ric tests require that the sample data follows a specific distribution. According
to the central limit theorem, the sum of independent and identical distributed
variables follows asymptotically a normal distribution [FKPT12]. Since each
algorithm run on a given test problem is independent of previous and subse-
quent runs, performance indicator values of individual runs are assumed to be
independent. Running a given algorithm on the same test problem using iden-
tical configurations should result in indicator values that stem from the same
distribution. Therefore, results for RE were first checked for normal distribu-
tion.

Each sample of 100 runs for every algorithm and problem was tested for nor-
mal distribution using the Anderson-Darling test [AD52]. The null hypothesis
of the Anderson-Darling test states that the sample follows a normal distribu-
tion. For every test problem the null hypothesis of normal distributed RE was
rejected for at least one algorithm at a significance level of 0.05 (Table 5.4).

Therefore, the non-parametric Kruskal-Wallis [KW52] test was used to assess,
whether the observed performance differences are significant. The null hypoth-
esis of the Kruskal-Wallis states that all considered samples – RE grouped by
the three replacement strategies on a given test problem – stem from the same
distribution, whereas no assumptions about the shape of the distribution is
made. If the simulation results suggest that all samples come from the same
distribution, the observed performance differences are not significant. The p-
values of the Kruskal-Wallis test are reported in Table 5.4. Out of the 18 consid-
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ered test problems, significant performance differences are only observed on
six of them.

Table 5.4.: Replacement strategies study – RE. The table reports p-values of the
Anderson-Darling and ANOVA/Kruskal-Wallis test. Significant results at a
5 % level are highlighted in green. Significant difference are only reported on
six out of 18 problem instances.

Anderson-Darling Kruskal-Wallis

BFP WIN LED

B1 0.0005 0.0005 0.0005 0.5062
B2 0.0005 0.0005 0.0005 0.9051
B3 0.0005 0.0005 0.0005 0.0491
B4 0.0016 0.0005 0.0005 0.2636
B5 0.1732 0.0108 0.2134 0.2663
B6 0.0005 0.0005 0.0005 0.2701
DEB2DK k “ 1 0.0005 0.0005 0.0005 0.2277
DEB2DK k “ 3 0.0005 0.0005 0.0005 0.1163
DO2DK k “ 2 s “ 1 0.0005 0.0005 0.0005 0.0120
DO2DK k “ 4 s “ 1 0.0005 0.0005 0.0005 0.1732
DTLZ1 0.0021 0.0005 0.0005 0.1229
invDTLZ1 0.0005 0.0005 0.0005 0.8089
DTLZ3 0.0005 0.0005 0.0005 0.1079
Lamém “ 2 γ “ 0.25 0.0005 0.0005 0.0005 0.0005
Lamém “ 3 γ “ 0.5 0.0293 0.0005 0.0005 0.0485
Lamém “ 2 γ “ 4 0.0009 0.0005 0.0087 0.0366
ZDT1 0.0005 0.0005 0.0005 0.0911
ZDT2 0.0005 0.0005 0.0005 0.0215

A rejection of the null hypothesis of the Kruskal-Wallis test only indicates that
the median performance of at least one replacement strategy significantly dif-
fers from those of the other strategies. In order to assess which strategies differ
from each other, a post-hoc analysis is required that performs pairwise compar-
isons between the different strategies [FKPT12]. Dunn’s method [Dun64] was
used for the post-hoc analysis.

The results of the post-hoc analysis are displayed in Table 5.5. BFP is signifi-
cantly outperformed by WIN on two and by LED on four test problems. No
significant performance differences between WIN and LED were reported. A
significant performance difference cannot be confirmed by the post-hoc anal-
ysis on the three objective Lamé problem. This is due to the p-value reported
by the Kruskal-Wallis test being very close to 0.05 (Table 5.4) implying that the
observed difference is not very strong. The results in Tables 5.4 and 5.5 do
not suggest a systemic performance difference between the three methods. It
is worth noticing though that the Pareto fronts of all problems, on which sig-
nificant performance differences were detected, exhibit either strong convex or
concave curvatures. This suggests that WIN and LED outperform BFP on prob-
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lems, whose curvature is strongly pronounced.

Table 5.5.: Replacement strategies study – RE. The table reports p-values of a post-hoc
analysis. Each column lists the p-value of the comparison of BFP with respect
to WIN and LED on the given problem. Significant results at a 5 % level are
highlighted in green for smallest and blue for second smallest p-value. More
significant performance differences are reported for LED.

WIN LED

B3 0.0430 0.6706
DO2DK k “ 2 s “ 1 0.1755 0.0099
Lamém “ 2 γ “ 0.25 0.0008 0.0076
Lamém “ 3 γ “ 0.5 0.9999 0.0906
Lamém “ 2 γ “ 4 0.6954 0.0321
ZDT2 0.1258 0.0236

Summarizing the results for RE, WIN and LED outperform BFP in early itera-
tions of the search. Although performance differences persevere till later itera-
tions, only a few statistically significant differences can be reported. Still, WIN
and LED appear to perform evenly well, whereas the use of the BFP strategy is
discouraged.
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Figure 5.11.: Replacement strategies study – convergence of RE for problems B1 to B6.
Straight lines indicate median performance and dashed lines inter-quartile
ranges (IQRs) of performance.
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Figure 5.12.: Replacement strategies study – convergence of RE for problems DEB2DK,
DO2DK, ZDT1 and ZDT2. Straight lines indicate median performance and
dashed lines IQRs of performance.
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Figure 5.13.: Replacement strategies study – convergence of RE for problems DTLZ1,
invDTLZ1, DTLZ3 and the Lamé problems. Straight lines indicate median
performance and dashed lines IQRs of performance.
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Figure 5.14.: Replacement strategies study – boxplots of RE after 50 000 function evalu-
ations.
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Next, the three replacement strategies are compared with respect to the IGD
performance indicator. Figures 5.15 to 5.17 show the development of IGD
across 50 000 function evaluations for all test problems. The analysis focuses
on late iterations, since the initial populations are expected to be far away from
the Pareto front. The results indicate a rather small performance difference be-
tween the three replacement strategies. Notable differences are only observable
on B1, B3, B4 and DO2DK (k “ 4), on which WIN and LED once again outper-
form BFP.

On nearly all problem instances, all three replacement strategies show early
convergence towards the energy minimum between 10 000 and 20 000 function
evaluations. This is a common range for MOEAs that compute finite set of
points approximations [BNE07] and thereby suggests that ESPEA is a suitable
algorithm for obtaining finite set of points approximations as well. A notable
exception is DTLZ3, for which convergence is only achieved between 30 000
and 40 000 function evaluations. This reflects the observation that DTLZ3 is
known to be difficult to solve [TF07]. Still, all three replacement strategies per-
form well with respect to IGD.

The performance of ESPEA slightly deteriorates in late iterations on DEB2DK
(k “ 1) and ZDT2. One explanation for this behavior could be that ESPEA
converges towards a local energy optimum, whose energy differs marginally
from the global optimum, but which is further away in the objective space from
the global optimum (see Table 5.3 and Figure 5.10).

IGD after 50 000 function evaluations is displayed in Table 5.6. The figures
show that WIN and LED once again outperform BFP on most test problems,
although BFP achieves better results on more test problems compared to RE.
The magnitude of the performance difference between all three replacement
strategies – the effect size, however, is small. This observation suggests that all
three strategies exhibit negligible performance differences if sufficient function
evaluations are performed.

The distribution of IGD after 50 000 function evaluations is shown in Figure 5.18.
Outliers were again removed for a better visualizations. Similar to RE, the IQRs
of the three replacement strategies tend to overlap on most problems, although
BFP appears to perform slightly worse on average. On B1, B2 and B3, however,
BFP is clearly outperformed by the other two strategies. This observation is
already hinted at in the convergence plots (Figure 5.15). A post-hoc analysis is
performed to verify, whether the observed differences are significant.

The post-hoc analysis was performed in the same manner as it was done for
RE (Table 5.7). On six problem instances, the Anderson-Darling test did not
reject the null hypothesis of normally distributed data for all three replacement
strategies. For these six problems, IGD was tested for variance homogeneity
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Table 5.6.: Replacement strategies study – IGD. Median and IQR (as subscript) results
after 50 000 function evaluations. Best performances are colored in green,
second best in blue. WIN and LED are the top performing replacement strate-
gies.

BFP WIN LED

B1 8.34e´38.4e´4 7.66e´38.0e´4 7.54e´37.6e´4

B2 7.44e´37.7e´4 7.21e´37.4e´4 7.19e´38.8e´4

B3 1.11e´21.1e´3 1.00e´21.0e´3 9.72e´31.0e´3

B4 1.06e´29.7e´4 9.60e´31.0e´3 9.69e´39.0e´4

B5 7.89e´31.1e´3 7.75e´31.3e´3 7.76e´39.0e´4

B6 7.80e´39.4e´4 7.67e´39.9e´4 7.62e´31.1e´3

DEB2DK k “ 1 1.30e´32.3e´4 1.31e´32.2e´4 1.31e´32.4e´4

DEB2DK k “ 3 1.25e´33.8e´4 1.24e´34.2e´4 1.21e´34.2e´4

DO2DK k “ 2 s “ 1 1.38e´33.9e´4 1.35e´33.2e´4 1.38e´33.9e´4

DO2DK k “ 4 s “ 1 1.42e´34.3e´4 1.26e´33.6e´4 1.33e´33.5e´4

DTLZ1 7.53e´31.1e´3 7.62e´31.2e´3 7.57e´31.0e´3

invDTLZ1 6.37e´39.2e´4 6.45e´31.3e´3 6.37e´31.2e´3

DTLZ3 9.61e´31.2e´3 9.02e´31.9e´3 9.15e´31.6e´3

Lamém “ 2 γ “ 0.25 1.57e´33.0e´4 1.59e´34.2e´4 1.53e´33.4e´4

Lamém “ 3 γ “ 0.5 5.08e´36.0e´4 4.94e´37.4e´4 4.98e´36.3e´4

Lamém “ 2 γ “ 4 1.46e´33.8e´4 1.44e´35.5e´4 1.45e´34.3e´4

ZDT1 1.24e´32.0e´4 1.21e´32.6e´4 1.25e´33.1e´4

ZDT2 1.15e´34.0e´4 1.09e´34.0e´4 1.10e´33.8e´4

using Bartlett’s test [Bar37]. The null hypothesis of the Bartlett test states that
all samples come from distributions with equal variances – a property denoted
by variance homogeneity or homoscedasticity. Homoscedasticity is a necessary
requirement for conducting hypothesis tests that assume normally distributed
data. In all six cases, variance homogeneity was not rejected allowing the appli-
cation of an ANOVA test. The null hypothesis of ANOVA states that all samples
come from the same normal distribution [FKPT12]. If the null hypothesis was
rejected, Dunn’s method was used as well for the post-hoc comparison.

The post-hoc analysis reveals that there exist six problems on which signif-
icant performance differences occur (Table 5.8). On five of these problems,
BFP is significantly outperformed by both WIN and LED. Performance differ-
ences between WIN and LED were not found to be significant. Comparing
Tables 5.5 and 5.8 shows that RE and IGD detect significant performance differ-
ences mostly on different problems. Significant differences are only observed
on B3 for both indicators. This further illustrates the fact that RE and IGD mea-
sure different aspects of the quality of approximation.

Taking all results presented in this section into account, a clear recommendation
for utilizing either the WIN or LED strategy instead of BFP can be given. The
performance difference between WIN and LED is not significant. Still, applying
WIN yields better performance indicator values on most test problems, which
is why WIN is chosen as replacement strategy in all subsequent studies.
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Table 5.7.: Replacement strategies study – IGD. The table shows p-values of the
Anderson-Darling and ANOVA/Kruskal-Wallis tests. Significant results at
a 5 % level for the ANOVA/Kruskal-Wallis test are highlighted in green. Sig-
nificant performance differences are only observed on six out of 18 test prob-
lems.

Anderson-Darling Bartlett ANOVA/Kruskal-Wallis

BFP WIN LED

B1 0.6383 0.8718 0.1987 0.2317 0.0000
B2 0.3318 0.2866 0.7997 0.7159 0.0000
B3 0.3921 0.3150 0.7208 0.5210 0.0000
B4 0.0580 0.9823 0.8606 0.3430 0.0000
B5 0.5666 0.1271 0.4816 0.7955 0.5968
B6 0.8479 0.3183 0.0445 n/a 0.0802
DEB2DK k “ 1 0.1758 0.0167 0.0967 n/a 0.7090
DEB2DK k “ 3 0.0005 0.0120 0.0016 n/a 0.2668
DO2DK k “ 2 s “ 1 0.5802 0.0035 0.0512 n/a 0.3625
DO2DK k “ 4 s “ 1 0.1958 0.9298 0.6535 0.5501 0.0010
DTLZ1 0.2252 0.0005 0.0549 n/a 0.9925
invDTLZ1 0.2810 0.1919 0.0051 n/a 0.8102
DTLZ3 0.0005 0.0005 0.0005 n/a 0.0003
Lamem “ 2 γ “ 0.25 0.3053 0.0005 0.0005 n/a 0.3690
Lamem “ 3 γ “ 0.5 0.5564 0.7363 0.4056 0.6266 0.0804
Lamem “ 2 γ “ 4.0 0.0997 0.0153 0.0078 n/a 0.3055
ZDT1 0.3924 0.0054 0.0020 n/a 0.2539
ZDT2 0.0465 0.0763 0.1669 n/a 0.9261
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Table 5.8.: Replacement strategies study – IGD. The table shows p-values of a post-hoc
analysis of IGD. Each column lists the p-value of the comparison of BFP with
respect to WIN and LED on the given problem. Significant results at a 5 %
level are highlighted in green for smallest and blue for second smallest p-
value. All reported performance differences are significant with the exception
of LED on DO2DK.

WIN LED

B1 0.0000 0.0000
B2 0.0001 0.0007
B3 0.0000 0.0000
B4 0.0000 0.0000
DO2DK k “ 2 s “ 1 0.0007 0.1168
DTLZ3 0.0013 0.0018
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Figure 5.15.: Replacement strategies study – convergence of IGD for problems B1 to B6.
Straight lines indicate median performance and dashed lines IQRs of per-
formance.
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Figure 5.16.: Replacement strategies study – convergence of IGD for problems DEB2DK,
DO2DK, ZDT1 and ZDT2. Straight lines indicate median performance and
dashed lines IQRs of performance.
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Figure 5.17.: Replacement strategies study – convergence of IGD for problems DTLZ1,
invDTLZ1, DTLZ3 and the Lamé problems. Straight lines indicate median
performance and dashed lines IQRs of performance.
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Figure 5.18.: Replacement strategies – boxplots of IGD after 50 000 function evaluations.
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5.3.2. Quantitative Analysis of the No Preference Case

In case all Pareto optimal points are equally desirable, minimizing Equation (5.1)
for a given N is expected to produce a uniform distribution of points on the
Pareto front. The results of the study in the previous section confirm that ES-
PEA is well able to obtain such N -optimal distributions of points. In order
to quantify how well ESPEA performs in comparison to existing finite set of
points approaches, a quantitative study is conducted to benchmark ESPEA
against established metaheuristics in MOO. This analysis also yields insights
into how well the energy concept is suited to achieve uniform distributions of
points in terms of established MOO performance indicators.

A population size of 100 was chosen for every algorithm used in the study,
which is a common value used in the literature [DPAM02, ZLT01, ZK04, NDGN`09].
Objective values were normalized (see Definition 52) for computing the Eu-
clidean norm in Equation (5.1) based on minimum and maximum objective
values of the current archive to eliminate the bias of objectives being mea-
sured on different scales (see Definition 51). Normalization is a common tech-
nique applied in MOO to achieve uniform finite set of points approximations
[DPAM02, BNE07, DJ14]. Latin hypercube sampling [MBC79] was utilized in
each algorithm to generate the initial population.

5.3.2.1. Comparative Study Benchmark Algorithms

ESPEA is compared to seven other metaheuristics. The algorithms haven been
selected such that they represent a large array of different approaches and
philosophies utilized in MOO to obtain finite set of points approximations. All
chosen algorithms have been successfully applied to solve numerous academic
and real-world optimization problems. They are established solving techniques
that serve as reasonable benchmark to compare ESPEA to the state-of-the-art in
MOO. The same search operators as presented in Section 5.3.1 are used with
ESPEA. As suggested in the previous section, the WIN archive strategy is em-
ployed.

NSGA-II [DPAM02] is a generational EA that is one of the most frequently used
metaheuristics in MOO and described in Algorithm 4. Nondominated sorting
(Algorithm 2) and crowding distance (Algorithm 3) are two techniques that
were introduced by NSGA-II to MOO and which have been utilized in many
successive algorithms [TFD11, NDGN`09, NLA`08]. Nondominated sorting
(see Figure 2.4) divides the current population into subsets of points in the ob-
jective space called layers or fronts. Points that form part of a specific layer
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do not Pareto dominate each other. Each point of a given layer is Pareto domi-
nated by at least one element of the previous layer save for the first layer, which
consists of non-dominated elements.

Algorithm 2: nondominated sorting [DPAM02]
Input : Population P
Output: Sorting (L1, . . . , Lk)

1 k :“ 1
2 while P ‰ H do
3 Lk :“ tx P P | Ey P P : fpyq ăp fpxqu
4 P :“ P zLk
5 k :“ k ` 1

6 return pL1, . . . , Lkq

Crowding distance is a niching technique for estimating the density of the pop-
ulation in the objective space. The crowding distance of a point fpxq is the esti-
mate of the volume of the largest cuboid that can be inscribed around fpxq such
that no other population member is located in the cuboid (Figure 5.19). A large
crowding distance implies that fpxq is located in a sparsely populated region
of the objective space. Objective values are normalized based on the maximum
and minimum objective values of the current population before crowding dis-
tance is computed. The crowding distance of extreme points is set to infinity
such that they are retained for normalization in successive iterations.

Algorithm 3: crowding distance [DPAM02]
Input : Population P
Output: Crowding distance c

1 c “ 0N // vector of crowding distances
2 fmax :“ pmaxxPP fx1 , . . . ,maxxPP fxmq // max function values
3 fmin :“ pminxPP fx1 , . . . ,maxxPP fxmq // min function values
4 forall i P rms do
5 Let spjq :“ arg sortppf1

i , . . . , f
N
i q,ď, jq

6 csp1q :“ 8
7 cspNq :“ 8
8 for j “ 2 to N ´ 1 do

9 cspjq :“ cspjq ` f
spj´1q
i ´ fspj`1q

i

fmax
i ´ fmin

i

10 return c

NSGA-II performs nondominated sorting on the combined population of par-
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f1

f2

fj´1

fj

fj`1

Figure 5.19.: Illustration of crowding distance. The points f j´1 and f j`1 mark the cor-
ners of the largest cuboid around f j that does not contain any other popu-
lation member.

ents and offspring. The next generation’s population is filled layer by layer
until the current layer size exceeds the number of remaining open spots in the
next generation. Next, the crowding distance of all elements of the current layer
is computed. The elements that possess the largest crowding distance fill the
remaining spots.

Parents are chosen in NSGA-II using binary tournament selection [Bri81]. Bi-
nary tournament selection randomly chooses two population members and
compares them to each other using a predefined selection criterion. NSGA-
II uses Pareto domination as first criterion. If the images of both individuals
are non-dominated to each other crowding distance is compared as secondary
criterion. Each tournament winner is chosen as parent and mated with another
tournament winner. SBX and polynomial mutation were chosen as crossover
and mutation operators. The same configuration as for ESPEA was used to
provide a fair basis of comparison.

SPEA2 is a generational EA that uses an external archive, in which the best
individuals that have been found during the search are stored. In each iter-
ation, fitness values are assigned to the union of the current population and
the archive. The fitness value is the sum of an individual’s raw strength and
its density value. The raw strength of an individual x consists of the number
of population and archive members by which fpxq is dominated. The density
value is defined as 1 divided by the Euclidean distance in the objective space
between fpxq and its k-nearest neighbor plus 2, whereas k is usually chosen
as 1. The raw strength defines the rank of an individual similar to the num-
ber of the front in nondominated sorting. The density value serves as niching
mechanism. A smaller fitness indicates that an individual is more desirable (see
Algorithm 5).

Binary tournament selection using fitness values as selection criterion is ap-
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Algorithm 4: NSGA-II [DPAM02]
Input : MOOP f
Output: Pareto front approximation P

1 Generate and evaluate initial population P
2 repeat
3 Generate and evaluate offspring population Q
4 pL1, . . . , Lkq := nondominatedSorting(P YQ)
5 P :“ H
6 i :“ 1
7 while |P | ` |Li| ď N do
8 P :“ P Y Li
9 i :“ i` 1

10 if |P | ă N then
11 c :“ crowdingDistance(Li)
12 s :“ arg sortpc,ěq
13 P :“ P Y tLips1q, . . . , Lips|P |´N qu
14 until stopping criterion
15 return P

plied for choosing parents in SPEA2. SBX and polynomial mutation were used
for generating the offspring solution using the same configuration as in NSGA-II.

IBEA [ZK04] is a quality indicator-based generational EA (see Algorithm 6). A
binary quality indicator in MOO is a function IpS, T q that maps to R, where
S and T are finite subsets of Rm. The expression IpS, T q allows a quantita-
tive statement about the relationship of S and T . Quality indicators are mainly
used to compare finite set of points approximations. IGD (Definition 57) and
RE (Definition 56) are examples for quality indicators. IBEA uses quality in-
dicators to compute fitness values of population members. Indicator values
between each pair of population members are computed. The fitness of an in-
dividual is then calculated by negating all its indicator values with respect to
the other population members, dividing them by a scaling factor κ, further ex-
ponentiating the values and finally summing up all powers and negating the
result (see Line 5 in Algorithm 6).

The value for the scaling constant was chosen as κ “ 0.05 as suggested in
[ZK04]. Objective values are normalized based on the maximum and minimum
objective values of the current population. Binary tournament selection with
fitness values as selection criterion was applied for choosing parents. SBX and
polynomial mutation were used for generating the offspring solution main-
taining the same configuration as in NSGA-II. The hypervolume indicator as
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Algorithm 5: SPEA2 [ZLT01]
Input : MOOP f
Output: Pareto front approximation A

1 Generate and evaluate initial population P
2 A :“ H
3 repeat
4 Q :“ P YA
5 Let F pxq :“ |ty P Q | fpyq ăp fpxqu| ` 1

minyPQ }fpxq ´ fpyq}2 ` 2

6 Let px1, . . . ,x|Q|q :“ Q

7 s :“ arg sortppF px1q, . . . , F px|Q|qq,ďq
8 A :“ tQps1q, . . . , QpsN qu
9 Generate and evaluate offspring population and assign it to P

10 until stopping criterion
11 return A

presented in [ZK04] has been used in the study, which is defined as follows.

IHV pS, T q “
"

HV pT,wq ´HV pS,wq if @v P T Du P S : u ăp v
HV pS ` T,wq ´HV pS,wq else,

(5.17)
where HV pS,wq denotes the hypervolume of set S with respect to reference
point w P Rm.

SBX and polynomial mutation were used as evolutionary operators with IBEA.
Both operators were configured in the same manner as for ESPEA. IBEA uses
binary tournament selection with fitness values as selection criterion.

SMPSO [NDGN`09] is a particle swarm optimization (PSO) technique. Particle
swarm algorithms (PSAs) are inspired by the natural phenomena of bird flocks
and fish schools. In these swarm systems, the movement of each bird or fish is
influenced by its relative position to its neighbors such that the swarm seem-
ingly behaves as a single entity. PSAs mimic this behavior in guiding candidate
solutions through the search space utilizing globally and locally best positions
that have been attained by swarm members so far. Candidate solutions are re-
ferred to as particles in PSO and the swarm is equivalent to the population in
EAs. In contrast to the population of an EAs, the swarm always maintains the
same size throughout the entire execution of the algorithm. In this sense, no
new particles are generated, existing candidate solutions are updated making
their previous position lost when they move through the search space. Par-
ticles, however, memorize the best individual location they have attained in
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Algorithm 6: IBEA [ZK04]
Input : MOOP f , scaling factor κ
Output: Pareto front approximation P

1 Generate and evaluate initial population P
2 repeat
3 Generate and evaluate offspring population Q
4 P :“ P YQ
5 Let F pxq :“ ř

yPP ztxu´ exp

ˆ´Iptfpyqu, tfpxquq
κ

˙

// assign

fitness
6 while |P | ą N do
7 x‹ :“ arg minxPP F pxq
8 P :“ P ztx‹u
9 Let F pxq :“ F pxq ` exp

ˆ´Iptx‹u, txuq
κ

˙

// update fitness

10 until stopping criterion
11 return P

the search space and have access to global information about best positions
achieved by other particles.

Let t be in the index of the current iteration. Each particle is characterized by its
position xt in the decision space and its current velocity zt P Rn. The position
of the particle is updated in each iteration by adding the velocity to its current
position.

xt “ xt´1 ` zt. (5.18)

The velocity of the current iteration is computed through multiple calculations.
First, the unconstrained velocity zt,u is obtained by weighing the velocity of the
previous iteration by a factor w called inertia weight and adding two weighted
directional vectors pointing to the particle’s best individual or personal location
xp and a globally best position xg . The unconstrained velocity is obtained by

zt,u “ wzt´1 ` c1r1pxp ´ xt´1q ` c2r2pxg ´ xt´1q, (5.19)

where r1 and r2 are uniform random numbers in r0, 1s and c1 and c2 are param-
eters that control the effect of the personal and global best. The unconstrained
velocity is multiplied by a constriction coefficient χ to obtain the constrained
velocity

zt “ χ ¨ zt,u (5.20)

with
χ “ 2

2´ α´?α2 ´ 4α
(5.21)
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and

α “
"

c1 ` c2 if c1 ` c2 ą 4
1 if c1 ` c2 ď 4.

(5.22)

If the optimization problem is box constrained and the absolute value of a com-
ponent of the velocity vector is larger than half of the length of the box in the
current dimension, then the component’s value is reset to half the length of the
current dimension of the box keeping its original sign.

Algorithm 7 shows an outline of SMPSO. N denotes the swarm size. The al-
gorithm features two archives A and B. B represents the personal memory.
The element Bpiq at position i of the archive is the best position of swarm
member Spiq :“ xi that the particle has attained so far. The personal mem-
ory is updated, whenever f i Pareto dominates fBpiq in the current iteration.
The crowding archive A contains the globally best points that have been ob-
tained during the execution of SMPSO. The archive has a variable size and
only contains nondominated points. Each updated particle is added to the
archive if it is not dominated by any other archive member. If the archive
exceeds its maximum size N after the insertion, crowding distances are com-
puted and the archive member possessing the smallest crowding distance is
eliminated. The call updateSwarm (Line 6) encompasses the steps explained
in Equations (5.18) to (5.22) and is summarized in Algorithm 18. Each parti-
cle xi uses Bpiq as personal best xp and a randomly chosen archive member
as global best xg . After updating the swarm in Line 6, polynomial mutation is
performed on each particle to broaden the search.

The algorithm was configured as proposed in the pre-existing implementation
in the jMetal framework, which was developed by the designers of SMPSO. An
inertia weight of w “ 0.1 was chosen. The parameters c1 and c2 were drawn
as uniform random numbers in the interval r1.5, 2.5s for every velocity calcula-
tion. Polynomial mutation was configured in the same manner as for the other
algorithms.

SMS-EMOA is a steady state EA that uses hypervolume contributions as nich-
ing technique (Algorithm 8). In each iteration, nondominated sorting is per-
formed on the union of the population and the newly created candidate solu-
tion. For each member of the last front, the hypervolume that it contributes
to the overall volume of the front is computed (Figure 4.2a). The candidate
solution that possesses the smallest hypervolume contribution with respect to
a reference point u is deleted. The remaining individuals across all fronts are
merged to form the population of the next generation. Objective values are
normalized to mitigate the effect of different scalings during hypervolume con-
tribution calculation. A reference point of w “ 10m in the normalized objec-
tive space was chosen such that boundary points are always retained. A for-
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Algorithm 7: SMPSO [NDGN`09]
Input : MOOP f , inertia weight w, turbulence factors c1, c2
Output: Pareto front approximation S

1 Generate and evaluate initial swarm S :“ px1, . . . ,xN q
2 Z :“ pz1, . . . , zN qwith zi “ 0n // velocities
3 A :“ txi P S | Exj P S : f j ăp f iu // global best
4 B :“ S // personal best
5 repeat
6 pS,Zq :“ updateSwarm(S,Z,A,B,w, c1, c2)
7 forall xi P S do // update archive
8 if @y P A : fpyq ćp f i then
9 A :“ ty P A | f i ćp fpyqu Y txiu

10 if |A| ą N then
11 c “ crowdingDistance(A)
12 A :“ A ztAparg miniPrNs ciqu // remove worst

13 if f i ăp fBpiq then // update personal memory
14 Bpiq :“ xi

15 until stopping criterion
16 return A

mal description for the computation of hypervolume contributions using the
Lebesgue measure L is given in the appendix in Algorithm 19. SMS-EMOA
used SBX and polynomial mutation with the same configuration as ESPEA.
Binary tournament selection with hypervolume contributions as selection cri-
terion was applied for the mating pool selection.

MOEA/D-DE or MOEAD in short [LZ09] is a decomposition-based EA (Algo-
rithm 9). Decomposition-based algorithms divide the MOOP into scalar sub-
problems for each of which a solution is computed. MOEAD uses the Cheby-
shev method (Definition 36) to decompose the MOOP into N SOOPs. Uniform
weight vectors tλ1, . . . ,λNu taken from the unit simplex (cf. [DD98, Sec. 5])
are used with the Chebyshev decomposition to aim for generating a uniform
approximation of the Pareto front. Each population member xi is associated
with a neighborhood Bi that is composed of those population members whose
weight vectors are closest to the vector λi of xi under the Euclidean norm.

In each iteration, a new candidates solution is generated for every population
member xi using DE with the rand/1/bin reproduction scheme:

xm “ xi ` cf py1 ´ y2q, (5.23)
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Algorithm 8: SMS-EMOA [BNE07]
Input : MOOP f , reference point w
Output: Pareto front approximation P

1 Generate and evaluate initial population P
2 repeat
3 Generate and evaluate a single new candidate solution x
4 P :“ P Y txu
5 pL1, . . . Lkq := nondominatedSorting(P)
6 c :“ hypervolumeContributions(Lk,w)
7 Lk :“ Lk ztLkparg miniPrNs ciqu // remove worst

8 P :“ tL1, . . . , Lku
9 until stopping criterion

10 return P

where both y1 and y2 are elements of the mating pool. The mating pool is cho-
sen with probability pb as the neighborhood Bi of P piq and with probability
1´ pb as the entire population P . The newly generated candidate solution y is
also mutated using polynomial mutation. The estimate of the ideal point u‹ re-
quired for computing the Chebyshev method is updated by replacing all of its
components u‹i by fyi if fyi is smaller than u‹i . Next, y replaces at most cN pop-
ulation members. The candidate solution y is compared to randomly drawn
element z of Q. If fpyq possesses a smaller scalarization value with respect to
the Chebyshev method with λi, then y replaces z in the current population P .
Afterwards, z is removed from Q.

MOEAD was parametrized as suggested in [LZ09]. The neighborhood size was
chosen to be 20, the selection probability was set to pb “ 0.9 and the number of
candidate solutions that are replaced at most to cN “ 2. The DE operator was
parametrized with cf “ 0.5. Polynomial mutation was configured in the same
manner as for the other algorithms.

The final algorithm that is considered for the study is NSGA-III [DJ14], an ex-
tension of NSGA-II that uses a decomposition-based niching mechanism in-
stead of crowding distance. NSGA-III was specifically designed to obtain finite
set of points approximations of MaOPs, however it has also shown to generate
good results on MOOPs. The decomposition uses l reference points that are
either provided by the DM or generated uniformly in the unit simplex by the
same method that is applied in MOEAD. A single instance of the decomposed
problem consists of finding a Pareto optimal objective vector u that minimizes
the perpendicular distance between u and the line given by the reference point
λ and the origin in the normalized objective space dKp0m,λ,uq.
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Algorithm 9: MOEAD [LZ09]

Input : MOOP f , reference points tλul1
Output: Pareto front approximation P

1 Generate initial population P :“ px1, . . . ,xN q
2 Initialize B1, . . . , BN

3 u‹ :“ pminxiPP pf i1q, . . . ,minxiPP pf imqq
4 repeat
5 forall xi P P do
6 if Up0, 1q ă pb then
7 Q :“ Bi

8 else
9 Q :“ P

10 y :“ differentialEvolution(xi,random(Q),random(Q))
11 y :“ mutate(y)
12 u‹ :“ pminpu‹1, fy1 q, . . . ,minpu‹m, fymqq
13 c :“ 0
14 while pc ă cN q ^ pQ ‰ Hq do
15 z :“ random(Q)

16 if Ψwcpfpyqq ă Ψwcpfpzqq w.r.t. λi then
17 P :“ pP Y tyuq ztzu
18 c :“ c` 1

19 Q :“ Q ztqu
20 until stopping criterion
21 return P

In each iteration, nondominated sorting is applied to the union of population
and offspring. The next generation population is filled front by front until the
size of the current front Li exceeds the number of remaining open spots in the
next generation. If the next generation has not reached its maximum size the
decomposition-based niching mechanism is applied to decide which members
of Li survive. The objective vectors of the elements in the next generation and
the current front are normalized to prevent any effect of scaling on the distance
calculation.

The next step associates each individual in the next generation and Li with
the reference point λ to which it has the smallest perpendicular distance in
the objective space. The number of candidate solutions in the next generation
that are associated with a given λ is referred to as niche count. The following
selection mechanism is repeated until the next generation has reached the size
N . A random index j is drawn among all reference points that possess the
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smallest niche count among all reference points. If no candidate solution inLi is
associated with λj , then λj is ignored until the next iteration. If the niche count
of λj is zero, the element in Li possessing the smallest perpendicular distance
to λj is chosen. If the niche count of λj is greater than zero, an element in Li
that is associated with λj is randomly chosen. The chosen element is added to
the next generation increasing the niche count of λj and removed from Li.

Uniform reference points were generated as suggested in [DJ14] for two and
three objectives. SBX and polynomial mutation were utilized to generate the
offspring population. Polynomial mutation was configured in the same man-
ner as for the other algorithms. A distribution index of 30 was chosen for SBX
as suggested in [DJ14] to increase the likelihood of generating candidate solu-
tions that are closer to the reference line. A crossover probability of 1.0 was
used.
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Algorithm 10: NSGA-III [DJ14]

Input : MOOP f , reference points tλul1
Output: Pareto front approximation P

1 Generate initial population P
2 repeat
3 Generate offspring population Q
4 pL1, . . . Lkq :“ nondominatedSorting(P YQ)
5 P :“ H
6 i :“ 1
7 while |P | ` |Li| ď N do
8 P :“ P Y Li
9 i :“ i` 1

10 if |P | ă N then
11 normalizepP Y Liq
12 CP pλq :“ tx P P |λ “ arg minλjPtλulj“1

dKp0m,λj , fpxqqu
13 CLipλq :“ tx P Li |λ “ arg minλjPtλulj“1

dKp0m,λj , fpxqqu
14 I :“ rls
15 while |P | ă N do
16 j :“ random(ta P I : |CP pλaq| “ minbPIp|CP pλbq|qu)
17 if CLipλjq “ H then
18 I :“ I ztju
19 else
20 if |CP pλjq| “ 0 then
21 y :“ minxPCLi pλjq dKp0m,λj , fpxqq
22 else
23 y :“ random(CLipλjq)
24 P :“ P Y tyu
25 CP pλjq :“ CP pλjq Y tyu
26 CLipλjq :“ CLipλjq ztyu

27 until stopping criterion
28 return P
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5.3.2.2. Comparative Study Test Problems

The computational study is split into two parts. The first experiment focuses on
the general performance of each algorithm on a heterogeneous test bed of prob-
lems. Each problem was selected such that Pareto fronts of various types, i.e.
convex, concave, disconnected etc., are present in the study. In total, 24 prob-
lems are considered of which all 18 from the study of the replacement strategies
are retained (Table 5.2). Thereby, six new problems are added to the simulation
(see Table 5.9). DEB3DK [BDDO04] is a three objective extension of DEB2DK.
The problem also possesses a parameter k for controlling the number of convex
bulges of the Pareto front. The total number of bulges is given by 2k. The pa-
rameter k induces a strong deformation of the Pareto front, which leads to the
surface that forms the front becoming partially dominated. These dominated
parts can be identified as holes in Figure 5.20. Niching techniques must avoid
these holes in order to generate a genuine approximation of the Pareto front.

DTLZ5 is a three objective problem, whose Pareto front is an arc of a circle
[DTLZ05]. It is therefore considered degenerate, since the front is a manifold
of dimension 1 (see Figure 5.21). The objective space above the front forms a
wedge, effectively squeezing the population as it approaches the front. Re-
dundant objectives as in the case of DTLZ5 might deter niching technqiues
from finding a uniform finite set of points approximation. The Pareto front of
DTLZ7 is composed of four disconnected patches [DTLZ05]. As in the case
of DEB3DK, the feasible region of the objective space between the patches is
Pareto dominated (see Figure 5.20).

ZDT3’s Pareto front is a sinusoidal wave that expands towards the extreme
point of the first objective. The front is therefore disconnected, since the seg-
ments in which the wave exhibits an upward movement are dominated. The
Pareto front of ZDT6 possesses a concave shape similar the one of ZDT2 (Fig-
ure 5.2). The ZDT6 problem, however, is more difficult to solve, since small
steps in the decision space result in large jumps in the objective space. Search
operators might therefore be deterred from successfully generating candidate
solutions in sparsely crowded regions.

The second experiment focuses on the influence of the shape of the Pareto front
on the algorithms’ performance. In order to isolate the effect of Pareto front
curvature on the performance, random instances of the Lamé with m “ 2 and
DEB2DK problems are considered. Recall that the parameter γ of the Lamé
problem changes the curvature of the front. Values smaller than 1 imply a
convex curvature and values greater than one a concave curvature (see Fig-
ure 5.5). 100 uniform random numbers were drawn in the interval (0.25,1) and
(1,4), respectively, to obtain 100 convex and 100 concave Lamé instances. Recall
that the parameter k sets the number of knees of the Pareto front of DEB2DK.
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Table 5.9.: Additional problems utilized in the ESPEA no preference study. The table
features the problem names including their parametrization, the source of
publication, the number of objectivesm and the number of decision variables
n. For the remaining problems, see Table 5.2.

Name Source m n

DEB3DK k “ 1 [BDDO04] 3 30
DEB3DK k “ 2 [BDDO04] 3 30
DTLZ5 [DTLZ05] 3 12
DTLZ7 [DTLZ05] 3 22
ZDT3 [ZDT00] 2 30
ZDT6 [ZDT00] 2 10

For DEB2DK, 100 problem instances were generated by selecting each value
k P t1, . . . , 10u ten times. The proposed test bed consists of three test instances:
convex, concave and mixed curvature.
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Figure 5.20.: Pareto fronts of the problems DEB3DK and DTLZ7 from the front and the
side.
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Figure 5.21.: Pareto fronts of the problems DTLZ5, ZDT3 and ZDT6.
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5.3.2.3. Comparative Study Performance Indicators

IGD is chosen as sole performance indicator in the first experiment (see Def-
inition 57). The IGD metric is one of the most common performance indica-
tors to benchmark finite set of points algorithms, since it captures both conver-
gence and diversity [BSS15, LZ09, DJ14]. Convergence measures how close an
approximation is to the Pareto front and diversity how well-spread its points
are on the front. The computation of IGD requires a finite reference set (see
Equation (5.16)). Therefore, a uniform discretization of the Pareto front of each
test problem was generated. Each discretization possesses between 10 000 and
20 000 points such that the entire Pareto front is sufficiently covered.

In the second experiment, IGD and the spread metric (Definition 58) are consid-
ered. The spread metric is a performance indicator for two objective problems
that measures the average distance between consecutive elements of the Pareto
front approximation. Recall that the lexicographic order allows a total ordering
of a two objective Pareto front either from left to right or from right to left. The
spread metric consists of the average distance of successive objective vectors
when counted from left to right.5 A smaller spread signalizes a higher quality
of approximation. Objective values are normalized before distances are com-
puted.

Definition 58 (spread [DPAM02]). Let S Ă Rm and let S be ordered lexicographi-
cally with S :“ tu1, . . . ,u|S|u. The spread SPREADpSq is defined as

SPREADpSq “ 1

|S|
|S|´1
ÿ

i“1

›

›ui ´ ui`1
›

›

2
. (5.24)

The spread metric does not require a reference set such as the IGD or RE. It
is only a meaningful indicator for comparing algorithm performances if the
Pareto front approximations cover the entire Pareto front. Additionally, simi-
larly to the RE indicator, it is only viable to compare sets of equal sizes. For ex-
ample, a Pareto front approximation that consists of a single point has a spread
of zero, irrespective of its location in the objective space. For these reasons, a
convergence analysis of the spread metric is omitted. The spread metric mea-
sures only the diversity of the Pareto front approximation and not its conver-
gence to the true front.

5Equivalently, successive objective vectors may also be counted from right to left.
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5.3.2.4. Discussion of the Comparative Study Results

All algorithms were run 100 times on each test problems for 50 000 function
evaluations, which are equivalent to 500 generations.6 The results of the first
experiment are analyzed first. Performance across the 500 generations with
respect to the IGD indicator is depicted in Figures 5.22 to 5.29. The figures
depicting the performance on each problem have been split into two plots, re-
spectively, so the differences between the algorithms are better visible. ESPEA
is contained in each of these plots for an easier comparison. The figures show
magnified picture details for a better analysis of the convergence behavior.

The figures show vast performance differences between the algorithms on the
test problems. ESPEA is among the top performing algorithms on the B prob-
lem family. SPEA2, however, is the algorithm that performs best and the only
one that beats ESPEA on all problem instances. ESPEA is the second-best per-
forming algorithm on B1, B2 and B3. In addition to SPEA2, ESPEA is outper-
formed by IBEA and NSGA-III on B4. On top of that, NSGA-III’s population
achieves smaller IGDs on B5 and B6. The IQRs of the IGDs, however, border
each other on B5 and B6 suggesting that the actual performance gap between
both algorithms is narrow.

The performance of NSGA-II exhibits a pronounced drop on B2 and B4 after de-
creasing sharply in the beginning. Such performance drops may be explained
by the niching mechanism being unable to evenly distribute points across the
front. In early iterations, the population approaches the Pareto front uniformly.
Once the population is close to the front, the niching mechanism is unable to
handle the geometry of the front, which leads to an unequal distributions of
points across the front.

ESPEA also obtains good results on the DEB2DK problems. It shares the second-
best performance with NSGA-III and is only clearly outperformed by SMPSO.
In comparison, ESPEA achieves better results than SMPSO on all instances of
the B problem family. On the DEB3DK problem instances, ESPEA is the fourth
(k “ 1) and third best algorithm (k “ 2) and outperformed by NSGA-III, SMS-
EMOA (only for k “ 2) and SPEA2, however in early iterations, ESPEA con-
verges faster than both NSGA-III and SPEA2. ESPEA obtains the second small-
est IGD on the DO2DK instances and is only outperformed by SMPSO.

Results on the DTLZ problem family are mostly positive. While ESPEA is out-
performed by NSGA-III, SMS-EMOA and SPEA2 on DTLZ1, it achieves the
second-best results on the inverted DTLZ1 being only bested by SPEA2. ES-
PEA belongs to the group of best performing algorithms on DTLZ3 and shares

6In generational EAs, performance is only measured after each iteration, in which function eval-
uations equivalent to the population size are performed.
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the second place with SPEA2 on DTLZ5. On DTLZ7, however, ESPEA is out-
performed by the majority of the other algorithms. The IQR of IGD attained by
ESPEA, however contains the IQRs of all other algorithms besides SPEA2. This
suggests that although the performance gap is large, it may not be significant.

On the Lamé problem instances, ESPEA is the overall top performing algo-
rithm. For m “ 2 and γ “ 0.25 it shares the first place with SMPSO. SMPSO
outperforms ESPEA for m “ 2 and γ “ 4, however ESPEA obtains the best
results for m “ 3 and γ “ 0.25, while SMPSO is only third best. ESPEA ex-
hibits a similarly strong performance on the ZDT problems. It belongs to the
algorithms that achieve the smallest IGD on ZDT2, ZDT3 and ZDT6 and is only
outperformed on ZDT1.

The convergence plots reveal that ESPEA is competitive when compared to
the state-of-the-art in MOO. On the vast majority of the considered benchmark
problems, ESPEA ranks among the top three performing algorithms. The nar-
row bounds of the IQRs of the IGDs obtained by ESPEA also suggests that the
algorithm delivers stable results. The performance of SMPSO, which often out-
performs ESPEA, for example, appears more unstable, since its IQRs are larger
on average. In addition, the performance gaps to algorithms that achieve bet-
ter results than ESPEA is often narrow. The median IGD of ESPEA’s popula-
tion constantly decreases across the 50 000 function evaluations on all problem
instances, which further underlines the stability of ESPEA’s results. Regarding
the problem characteristics, it appears though that ESPEA performs moderately
worse on three dimensional problems compared to two dimensional problems.
On reason for this observed behavior could be that the size of the boundary of
the Pareto front increases as the number of objectives increases. Points that lie
on the boundary possess no neighboring points beyond the boundary, leading
them to induce less energy into the archive than interior points. This in turn
may result in ESPEA putting a stronger focus on approximating the boundary
compared to the interior of the front.

Table 5.10 shows the IGD after 50 000 function evaluations for all eight algo-
rithms. The figures confirm the analysis of the convergence plots. ESPEA,
SMPSO and SPEA2 are the top performing algorithms after all function evalu-
ations have been exhausted. NSGA-III also achieves good results, but appears
to perform weaker than the top three algorithms. SMS-EMOA scores the small-
est IGD on two test problems and the second smallest IGD on one problem.
IBEA attains a second best performance on B4. MOEAD and NSGA-II achieve
no best or second best place in the performance ranking and can therefore be
considered outmatched.

The performance differences observed in the convergence behavior and af-
ter the completion of the entire 50 000 function evaluations raise the question,
whether these differences may be traced to the fundamental properties of the
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problems and if these are linked to the algorithms niching techniques. ESPEA
and SPEA2 appear to achieve good results irrespective of the underlying prob-
lem. This may be attributed to their niching mechanisms, which are both not
largely influenced by the geometry of the front. The niching mechanisms of
ESPEA and SPEA2 both depend on the inverse Euclidean distance between
population members. For a given distance d and Pareto optimal point u an-
other Pareto optimal point v can be found, such that the distance between u
and v equals d irrespective of the geometry of the front as long as it is con-
nected. In contrast, hypervolume-based niching techniques are largely affected
by the front geometry [IISN17]. It is a well-known fact, that hypervolume un-
derstates the importance of points close to the boundary on concave Pareto
fronts, since they contribute less to the overall hypervolume of the popula-
tion (see Figure 4.2). This is clearly reflected by the data, which shows that
SMS-EMOA performs worse compared to other algorithms on problems with
concave Pareto fronts.

ESPEA, however, tends to overstate the importance of points that lie on the
boundary of the Pareto front, since such points lie farthest away from other
population members. This leads to more points of the Pareto front approxima-
tion being located on the boundary of the Pareto front. Said fact may explain,
why SPEA2 tends to outperform ESPEA on nearly all three objective problems.
In contrast, ESPEA achieves better results than SPEA2 on most of the two objec-
tive problems. ESPEA’s niching mechanism, which takes the distances between
all population members into account – and not just the nearest neighbors – is
able to distribute the points more evenly on the front.

Interestingly, ESPEA achieves the worst results on DTLZ7 being outperformed
by all algorithms besides IBEA. DTLZ7 features a disconnected Pareto front.
A qualitative analysis of the Pareto front approximations obtained by ESPEA
has revealed that the algorithm sometimes only approximates either of the four
patches that form the front (Figure 5.20e). This may be attributed to the strong
selection pressure induced by ESPEA’s steady state approach. In case the algo-
rithm converges to early to only either of the patches, it might be incapable of
branching out the approximation to the other patches.

SMPSO performs notably better on two objective compared to three objective
problems. Since global leaders are selected at random from the crowding archive,
the algorithm might struggle to achieve a stable distribution of points on the
front. Instead, particles are likely to reposition themselves continuously lead-
ing to a non-uniform distribution. Crowding distance is also known to be an
insufficient density estimator in three and higher dimensions [KD06]. This is
also reflected by the performance of NSGA-II, which performs better on three
objectives than on two objective problems.

163



5. Preference-biased Pareto Front Approximations

Decomposition-based MOEAs have shown to be more efficient in obtaining fi-
nite set of points approximations of MaOPs compared to traditional domination-
based techniques [ITN08, DJ14]. The reason for this is that niching techniques
that work well for two or three objectives fail to estimate the population den-
sity in higher dimensions as the ratio of nondominated to dominated/domi-
nating candidate solutions increases. This may serve as an explanation to why
NSGA-III appears to perform better on the three compared to the two objective
problems.

In order to confirm whether the observed performance differences are signifi-
cant, a statistical analysis is performed. The same procedure that has been pre-
sented in the previous section is applied. Table G.15 reveals that the hypothesis
of normally distributed data is rejected for at least one algorithm on all problem
instances. A subsequent Kruskal-Wallis reveals that significant performance
differences exist on all problem instances. Results of the post-hoc analysis are
only reported for the comparison of ESPEA to the other seven algorithms, since
the focus of this study is evaluating ESPEA against state-of-the-art finite set of
points algorithms.

The results in Table 5.11 confirm that ESPEA outperforms the majority of the
other algorithms on nearly all test problems. ESPEA only obtains once results
that are significantly worse than those of IBEA (B4), MOEAD and NSGA-II
(both DTLZ7). On all other problem instances, ESPEA surpasses the three al-
gorithms with confidence. ESPEA also significantly outperforms SMS-EMOA
on the majority of the 24 test problems. NSGA-III and SMPSO surpass ESPEA
on multiple problems, still ESPEA achieves on the majority of the test instances
better results. The performance of SPEA2 and ESPEA appears to be on par.
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Figure 5.22.: Comparative study of ESPEA – convergence of IGD for problems B1 to
B3. Straight lines indicate median performance and dashed lines IQRs of
performance.
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Figure 5.23.: Comparative study of ESPEA – convergence of IGD for problems B4 to
B6. Straight lines indicate median performance and dashed lines IQRs of
performance.
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Figure 5.24.: Comparative study of ESPEA – convergence of IGD for problems DEB2DK
and DEB3DK. Straight lines indicate median performance and dashed lines
IQRs of performance.
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(f) IGD. DO2DK k “ 4 s “ 1.

Figure 5.25.: Comparative study of ESPEA – convergence of IGD for problems DEB3DK
and DO2DK. Straight lines indicate median performance and dashed lines
IQRs of performance.
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Figure 5.26.: Comparative study of ESPEA – convergence of IGD for problems DTLZ1,
invDTLZ1 and DTLZ3. Straight lines indicate median performance and
dashed lines IQRs of performance.
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Figure 5.27.: Comparative study of ESPEA – convergence of IGD for problems DTLZ5,
DTLZ7 and a two objective Lamé problem. Straight lines indicate median
performance and dashed lines IQRs of performance.
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Figure 5.28.: Comparative study of ESPEA – convergence of IGD for Lamé problems and
problem ZDT1. Straight lines indicate median performance and dashed
lines IQRs of performance.
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Figure 5.29.: Comparative study of ESPEA – convergence of IGD for problems ZDT2,
ZDT3 and ZDT6. Straight lines indicate median performance and dashed
lines IQRs of performance.
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Table 5.10.: Comparative study of ESPEA – IGD. Median and IQR (as subscript) results after 50 000 function evaluations. Best
performances are colored in green, second best in blue. ESPEA and SPEA2 are the top performing algorithms, while
NSGA-III and SMPSO also achieve good results.

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

B1 5.13e´41.1e´5 5.62e´42.6e´5 6.85e´43.6e´6 7.93e´41.0e´4 5.61e´43.0e´5 8.04e´49.3e´5 8.00e´41.1e´5 4.34e´49.1e´6

B2 4.64e´42.0e´5 6.47e´44.1e´5 6.38e´46.4e´6 1.02e´32.5e´4 5.76e´42.9e´5 8.77e´41.5e´4 7.04e´45.5e´7 3.60e´48.1e´6

B3 5.86e´41.2e´5 2.49e´32.8e´4 9.47e´41.1e´5 9.50e´41.6e´4 6.67e´44.8e´5 8.92e´41.1e´4 7.81e´41.7e´5 5.07e´41.2e´5

B4 6.17e´43.1e´5 5.02e´47.6e´6 7.73e´47.5e´6 1.29e´32.7e´4 5.27e´49.7e´6 9.83e´41.8e´4 7.72e´42.1e´5 4.62e´41.3e´5

B5 6.93e´42.0e´5 1.42e´37.2e´5 9.31e´41.0e´4 8.29e´45.6e´5 6.57e´43.0e´5 8.33e´46.3e´5 9.15e´41.7e´5 5.23e´41.1e´5

B6 7.38e´43.8e´5 1.66e´31.3e´4 8.33e´44.1e´5 8.55e´41.0e´4 6.75e´45.4e´5 8.05e´48.2e´5 1.09e´34.1e´5 5.26e´41.7e´5

DEB2DK k “ 1 4.60e´54.3e´7 6.87e´53.2e´6 5.80e´56.4e´6 6.11e´55.8e´6 4.64e´59.4e´7 4.51e´53.9e´7 4.79e´58.4e´7 4.72e´58.9e´7

DEB2DK k “ 3 4.57e´56.3e´7 3.74e´42.6e´5 5.67e´54.6e´6 5.97e´54.0e´6 4.54e´51.1e´6 4.47e´53.9e´7 4.80e´58.3e´7 4.65e´58.3e´7

DEB3DK k “ 1 4.11e´41.0e´5 7.24e´41.5e´5 5.95e´45.9e´5 5.53e´49.2e´5 3.64e´41.3e´5 4.66e´43.8e´5 3.69e´47.6e´6 3.52e´41.4e´5

DEB3DK k “ 2 4.27e´41.4e´5 9.40e´48.5e´6 6.41e´47.4e´5 5.26e´45.3e´5 3.69e´41.8e´5 4.70e´43.1e´5 4.75e´43.8e´5 3.62e´41.2e´5

DO2DK k “ 2 s “ 1 5.27e´57.5e´7 1.88e´36.5e´5 3.23e´44.5e´6 6.57e´54.1e´6 2.44e´43.3e´6 4.92e´51.8e´7 5.98e´51.7e´6 5.80e´51.7e´6

DO2DK k “ 4 s “ 1 5.26e´57.4e´7 9.37e´41.8e´5 3.40e´43.1e´6 6.54e´54.6e´6 2.59e´42.3e´6 4.94e´53.0e´7 7.51e´52.3e´6 5.78e´51.4e´6

DTLZ1 4.99e´46.6e´6 4.22e´34.5e´4 5.96e´47.3e´6 5.98e´43.9e´5 4.46e´42.1e´5 6.47e´44.8e´5 4.23e´44.6e´6 4.48e´41.2e´5

invDTLZ1 4.84e´46.5e´6 4.53e´35.8e´4 6.98e´47.2e´6 5.84e´44.4e´5 5.96e´42.0e´5 6.43e´44.7e´5 9.74e´42.6e´6 4.33e´41.1e´5

DTLZ3 7.20e´48.2e´5 5.31e´31.3e´4 7.97e´42.4e´4 8.42e´41.2e´4 6.69e´41.6e´4 7.84e´45.6e´5 8.41e´42.2e´5 7.56e´41.6e´3

DTLZ5 3.60e´42.4e´5 2.28e´31.4e´4 9.57e´45.9e´6 4.39e´43.3e´5 1.25e´32.7e´4 3.13e´41.2e´5 4.91e´43.2e´5 3.48e´41.4e´5

DTLZ7 4.13e´34.8e´3 5.18e´34.1e´3 1.24e´31.3e´4 5.98e´45.5e´5 5.66e´43.8e´5 7.27e´41.2e´4 9.02e´43.5e´3 5.03e´42.3e´5

Lamém “ 2 γ “ 0.25 5.41e´52.2e´7 3.88e´34.2e´4 1.51e´32.2e´5 7.19e´54.5e´6 1.38e´36.7e´6 5.51e´55.0e´7 2.79e´41.0e´5 5.82e´51.5e´6

Lamém “ 3 γ “ 0.5 1.45e´43.2e´6 2.74e´38.2e´4 2.92e´44.2e´6 2.07e´42.1e´5 4.27e´41.6e´4 1.81e´41.4e´5 2.08e´41.1e´5 1.56e´41.3e´5

Lamém “ 2 γ “ 4 5.36e´58.0e´7 6.91e´46.6e´5 6.78e´55.0e´8 6.55e´54.3e´6 6.69e´55.2e´6 4.82e´52.9e´7 1.56e´48.4e´6 5.39e´51.5e´6

ZDT1 4.41e´54.5e´7 5.04e´51.7e´6 7.23e´54.8e´6 5.74e´53.2e´6 5.24e´51.8e´6 4.25e´52.9e´7 4.22e´52.4e´7 4.58e´51.2e´6

ZDT2 4.39e´54.5e´7 1.64e´41.0e´5 5.37e´53.1e´6 5.90e´53.5e´6 4.58e´51.3e´6 4.40e´55.6e´7 5.72e´53.0e´6 4.56e´56.9e´7

ZDT3 6.41e´51.2e´6 7.66e´42.6e´5 2.52e´47.3e´6 8.02e´54.6e´6 9.24e´59.0e´6 6.14e´56.9e´7 6.28e´52.3e´6 7.22e´53.4e´6

ZDT6 3.23e´59.0e´7 7.16e´56.0e´6 3.61e´56.0e´8 5.46e´58.9e´6 3.34e´51.3e´6 3.68e´53.1e´6 3.63e´51.1e´6 3.62e´52.7e´6
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Table 5.11.: Comparative study of ESPEA – IGD. The table shows p-values of a post-hoc analysis. Green cell color indicates that
ESPEA outperforms the corresponding algorithm with confidence at a 95 % level, the blue color without confidence.
Red cell color indicates that ESPEA is outperformed by the corresponding algorithm with confidence at a 95 % level,
the orange color without confidence. ESPEA outperforms most of the other algorithms with confidence on the different
problem instances.

IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

B1 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0560
B2 0.0000 0.0000 0.0000 0.0522 0.0000 0.0000 0.0601
B3 0.0000 0.0000 0.0000 0.0493 0.0000 0.0000 0.0583
B4 0.0000 0.0000 0.0000 0.0558 0.0000 0.0004 0.0000
B5 0.0000 0.0000 0.0000 0.4458 0.0000 0.0000 0.0000
B6 0.0000 0.0000 0.0000 0.1184 0.0002 0.0000 0.0000
DEB2DK k “ 1 0.0000 0.0000 0.0000 0.5216 0.0034 0.0000 0.0000
DEB2DK k “ 3 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0856
DEB3DK k “ 1 0.0000 0.0000 0.0000 0.0000 0.0292 0.0005 0.0000
DEB2DK k “ 2 0.0000 0.0000 0.0000 0.0009 0.0006 0.0000 0.0000
DO2DK k “ 2 s “ 1 0.0000 0.0000 0.0000 0.0000 0.0602 0.0000 0.0134
DO2DK 4 “ 2 s “ 1 0.0000 0.0000 0.0000 0.0000 0.0615 0.0000 0.0577
DTLZ1 0.0000 0.0001 0.0000 0.0012 0.0000 0.0000 0.0013
DTLZ3 0.0000 0.0000 0.0000 1.0000 0.0001 0.0000 0.0000
DTLZ5 0.0000 0.0000 0.0013 0.0000 0.0000 0.0000 0.9806
DTLZ7 0.0000 0.0009 0.0001 0.0000 0.9108 0.1354 0.0000
invDTLZ1 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0602
Lamém “ 2 γ “ 0.25 0.0000 0.0000 0.0000 0.0000 0.0630 0.0000 0.0000
Lamém “ 3 γ “ 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1536
Lamém “ 2 γ “ 4 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 1.0000
ZDT1 0.0000 0.0000 0.0000 0.0000 0.0124 0.0000 0.0784
ZDT2 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
ZDT3 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0074
ZDT6 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
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The next part of the analysis focuses on the ranking of algorithms across the en-
tire set of optimization problems in the study. In order to facilitate a meaningful
basis for comparison the following procedure is proposed. Each algorithm is
assigned a performance rank on every test problem consisting of the number
of other algorithms it outperforms at a 5 % significance level. A rank of 7, for
example, indicates that the given algorithm outperforms all other algorithms
on the respective problem. These performance ranks are then used as input
data in a Friedman test [Fri37] to establish an overall ranking of the algorithms
across all problems (see Table G.21).

The Friedman test is a non-parametric test that is similar to the Kruskal-Wallis
test. The null hypothesis of the Friedman test also states that all considered
samples – performance ranks of an algorithm across all test problems – stem
from the same distribution implying that observed performance differences
are only a product of chance. No assumption about the shape of the under-
lying distribution is made. In contrast to the Kruskal-Wallis test, the Friedman
test assumes that the observations in the data samples are paired – ranks are
considered within and not across problems.

The proposed procedure explicitly refrains from using median or mean IGD,
since they are no indicator for significant performance difference. A given al-
gorithm can only be considered superior to another algorithm on a given test
problem if a statistical test rules out that the observed performance difference
may be attributed to chance.

The Friedman test reported a p-value of 6.6183e´16 strongly indicating that
there exist significant performance differences. A post-hoc analysis using Dunn’s
method was performed to assess between which algorithms significant per-
formance differences occur. The results show that ESPEA outperforms IBEA,
MOEAD, NSGA-II and SMS-EMOA with high confidence. ESPEA achieves
better results than SMPSO and NSGA-III, however the observed performance
differences are not significant. SPEA2 is the only algorithm that reaches a
higher performance rank than ESPEA, however the ranks of both algorithms
differ only marginally. A p-value of 1.0 suggests that virtually no performance
difference exists.

The observed performance differences related to the problem characteristics
are analyzed next using statistical methods. The influence of the number of ob-
jectives on the algorithms’ performance ranks is considered first. The problems
were divided into two groups of two and three objective problems. A Wilcoxon
rank sum test [MW47] was used to compare both groups. The Wilcoxon rank
sum test is a non-parametric test, whose null hypothesis states that the medi-
ans of both groups are the same. If the null hypothesis is rejected the respective
algorithm exhibits a significant performance difference between two and three
objective problems in comparison to the other algorithms of the experiment. If
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Table 5.12.: Comparative study of ESPEA – IGD. Post-hoc analysis of the Friedman test
results. The rank states the number of other algorithms an algorithm signif-
icantly outperforms on average. The column p-values is related to the per-
formance difference with respect to ESPEA. Green cell color indicates that
ESPEA outperforms the corresponding algorithm with confidence at a 95 %
level, the blue color without confidence. Orange cell color indicates that ES-
PEA is outperformed without confidence. ESPEA is second best performing
algorithm and no significant performance difference is observed between
ESPEA and the top performing SPEA2.

Rank Algorithm p-value

5.6250 SPEA2 1.0000
5.5417 ESPEA n/a
4.4375 SMPSO 0.9622
4.1250 NSGA-III 0.6862
3.0417 SMS-EMOA 0.0084
2.3750 NSGA-II 0.0001
2.0000 MOEAD 0.0000
0.8542 IBEA 0.0000

the performance differences are not significant the performance ranks are sim-
ilar for two and three objectives.

Table 5.13 shows the results of the Wilcoxon rank sum test. The quantitative
comparison confirms that MOEAD and NSGA-III perform better on three ob-
jective problems as expected, however only NSGA-III exhibits a significant per-
formance increase in comparison to the other algorithms. ESPEA performs
slightly worse on three objective problems, however the difference is not sig-
nificant. As speculated, SMPSO shows a large performance drop, which is con-
firmed to be significant by the rank sum test. SPEA2, on the hand, is found to
achieve significantly better results on three objective problems. This observa-
tion, however, does not imply that SPEA2’s niching mechanism performs better
on three compared to two objective problems in general, since only the relative
performance between algorithms is compared. Instead, the results rather sug-
gest that other niching mechanisms achieve more uniform Pareto front approx-
imations on two objective problems and that SPEA2’s niching mechanism does
not exhibit similar performance drops observed in other MOEAs if the number
of objectives is increased from two to three.

The analysis of the computational study is completed by assessing the results
of the second experiment. Figure 5.30 shows the convergence plots for the IGD
metric on the three test distances. The majority of the algorithms exhibit a
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Table 5.13.: Comparative study of ESPEA – IGD. Comparison with respect to the num-
ber of objectives. Problems are grouped into two and three objective prob-
lems and compared by means of a Wilcoxon rank sum test. Significant per-
formance differences between two and three objective problems are colored
in green. The rank states the average number of other algorithms the given
algorithm significantly outperforms for the stated number of objectives. Per-
formance differences are significant for NSGA-III, SMPSO and SPEA2.

ESPEA IBEA MOEAD NSGA-II

p-value 0.6024 0.3727 0.0734 0.8981
Rank m “ 2 5.3000 0.2000 1.0000 1.7000
Rank m “ 3 4.8462 0.9231 1.6923 1.6923

NSGA-III SMPSO SMS-EMOA SPEA2

p-value 0.0128 3.44e´4 0.2089 4.82e´4
Rank m “ 2 2.5000 5.9000 3.0000 3.7000
Rank m “ 3 4.5385 2.0000 2.1538 5.8462

similar performance quickly converging towards the Pareto front and show-
ing no sign of further improvement after 50 to 100 generations. IBEA, how-
ever, performs notably worse than the other algorithms on all test instances. Its
hypervolume-based niching mechanism does not appear to be able to handle
extreme curvatures. Since IBEA does not consider the overall hypervolume of
the entire population (in contrast to SMS-EMOA), but only pairwise hypervol-
ume comparisons between population members, strong curvatures might lead
IBEA to overemphasize knee points and neglect other regions of the Pareto
front. MOEAD and NSGA-III perform considerably worse on the convex test
instances than the other algorithms. An explanation for this behavior is ex-
plored later when the results with respect to the spread metric are additionally
taken into account.

Median IGD and IQRs are displayed in Table 5.14. In contrast to the conver-
gence analysis, the figures suggest that all algorithms achieve good results on
the convex, concave and mixed curvature problems. The IGD obtained by the
algorithms is of the same magnitude (1e´4) on all problems with the exception
of IBEA on the concave problems. ESPEA and SMPSO obtain the smallest IGDs
among all algorithms.

A post-hoc analysis is performed to check the performance differences for sig-
nificance. A Kruskal-Wallis test confirms that significant performance differ-
ences exist on all three problem instances (Table G.16). Table 5.15 shows the
results of the post-hoc analysis. ESPEA outperforms IBEA, MOEAD, NSGA-
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5. Preference-biased Pareto Front Approximations

Table 5.14.: Comparative study of ESPEA – IGD. Median and IQR (as subscript) results
after 50 000 function evaluations grouped by the curvature of the Pareto
front. Best performances colored in green, second best in blue. Significant
performance differences are observed on all problem instances. ESPEA and
SMPSO are the top performing algorithms.

ESPEA IBEA MOEAD NSGA-II

Convex 1.32e´42.45e´5 4.74e´44.73e´3 4.21e´41.12e´3 1.89e´43.37e´5

Concave 1.53e´41.95e´5 1.09e´39.65e´4 1.83e´43.26e´5 1.99e´41.90e´5

Mixed 1.45e´42.00e´6 9.09e´42.13e´4 1.84e´41.95e´5 1.89e´41.59e´5

NSGA-III SMPSO SMS-EMOA SPEA2

Convex 3.48e´41.15e´3 1.44e´43.07e´5 1.57e´41.80e´4 1.45e´42.32e´5

Concave 1.74e´43.60e´5 1.51e´47.34e´6 2.83e´41.85e´4 1.58e´41.47e´5

Mixed 1.46e´43.71e´6 1.41e´41.15e´6 1.52e´43.32e´6 1.48e´42.95e´6

Table 5.15.: Comparative study of ESPEA – IGD. The table shows p-values of the post-
hoc analysis based on the grouping by Pareto front curvature. Green cell
color indicates that ESPEA outperforms the corresponding algorithm with
confidence at a 95 % level, the blue color without confidence. Red cell color
indicates that ESPEA is outperformed by the corresponding algorithm with
confidence at a 95 % level, the orange color without confidence. ESPEA out-
performs most of the other algorithms across the three test instances.

IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

Convex 0.0000 0.0000 0.0000 0.0000 0.3359 0.0000 0.0114
Concave 0.0000 0.0000 0.0000 0.0000 0.9600 0.0000 0.9962
Mixed 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0605

II and SMS-EMOA with confidence on all test instances. Furthermore, ESPEA
achieves better results than NSGA-III and SPEA2, however only the difference
on the convex instance is found to be significant for both algorithms. ESPEA is
solely outperformed by SMPSO on the concave and mixed curvature problems.
Additionally, the mixed curvature problems are the only test instance on which
ESPEA performs significantly worse than any other algorithm.

Absolute IGDs after 50 000 function evaluations suggest that the algorithm per-
formances are similar and that the obtained Pareto front approximations are
close and well-spread across the true Pareto front. For this reason, the spread
metric is considered to assess solely the uniformity of the distribution of points
across the Pareto front (Table 5.16). In contrast to IGD, the spread metric re-
veals considerate performance differences. ESPEA and SMPSO achieve again
the best results, however they also outperform most of the other algorithms by
a large margin.
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Table 5.16.: Comparative study of ESPEA – spread. Median and IQR (as subscript) re-
sults after 50 000 function evaluations grouped by the curvature of the Pareto
front. Best performances colored in green, second best in blue. ESPEA and
SMPSO are the top performing algorithms.

ESPEA IBEA MOEAD NSGA-II

Convex 0.070.01 0.340.42 0.520.52 0.370.04

Concave 0.070.02 0.850.47 0.260.01 0.380.04

Mixed 0.090.01 0.900.38 0.320.03 0.360.04

NSGA-III SMPSO SMS-EMOA SPEA2

Convex 0.440.67 0.070.06 0.110.35 0.150.02

Concave 0.240.07 0.130.06 0.390.31 0.140.02

Mixed 0.150.02 0.070.01 0.150.02 0.150.02

The results in Table 5.16 additionally confirm many of the observations made
for the analysis of the results in Table 5.10 Hypervolume-based methods such
as IBEA and SMS-EMOA perform worse on concave Pareto fronts, since points
towards the boundary contribute less to the overall hypervolume of the popu-
lation on concave fronts. IBEA performs worst on the mixed curvature instance.
This may be attributed to IBEA failing to approximate the concave bulges of the
front (Figure 5.31). The reference point based methods MOEAD and NSGA-III
perform worst on the convex fronts and best on the mixed curvature fronts. The
reason for this can be explained as follows: The niching mechanisms of both al-
gorithms aim at finding points that lie at the intersection of the line passing
through the reference point and the origin with the Pareto front. Reference
points that are uniform on the unit simplex7 do not produce uniform intersec-
tions on the Pareto front (Figure 5.31). Since the Pareto front of the mixed cur-
vature instances are close to the unit simplex, MOEAD and NSGA-III perform
considerably better on these problems compared to the convex instances.

Finally, NSGA-II and SMPSO exhibit vast performance differences although
both algorithms use crowding distance as niching mechanism. The perfor-
mance difference can be explained by the steady-state update mechanism of
the archive employed by SMPSO. NSGA-II computes the crowding distance
for all 2N population members of parents and offspring if all population mem-
bers are nondominated to each other. TheN candidate solutions possessing the
smallest crowding distances based on the entire population survive to the next
round. This subset of the population, however, is not necessarily the subset that
minimizes the sum of all crowding distances if crowding distances are only
computed based on the elements of the subset and not the entire population
of 2N elements. SMPSO, on the other hand, recomputes crowding distances

7In case of two objectives the unit simplex consists of the line between p1, 0q and p0, 1q.
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Table 5.17.: Comparative study of ESPEA – spread. The table shows p-values of the post-
hoc analysis based on the grouping by Pareto front curvature. Green cell
color indicates that ESPEA outperforms the corresponding algorithm with
confidence at a 95 % level, the blue color without confidence. Orange cell
color indicates that ESPEA is outperformed by the corresponding algorithm
without confidence at a 95 % level. ESPEA outperforms most of the other
algorithms across the three test instances.

IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

Convex 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Concave 0.0000 0.0000 0.0000 0.0000 0.0532 0.0000 0.0000
Mixed 0.0000 0.0000 0.0000 0.0000 0.1185 0.0000 0.0000

whenever a candidate solution is added to the archive. Thereby, the element
that contributes least to the overall crowding distance of the archive is elimi-
nated. Therefore, SMPSO is able to achieve much uniformer approximations of
the Pareto front.

Table 5.17 lists the results of a post-hoc analysis for the spread metric (see Ta-
ble G.17 for the corresponding Kruskal-Wallis test results). The figures show
that ESPEA outperforms all algorithms besides SMPSO with confidence. ES-
PEA is outperformed by SMPSO on the convex and mixed fronts, however, the
performance difference is not significant.

The computational study has revealed that ESPEA is a highly competitive algo-
rithm for solving MOOPs. ESPEA outperforms many algorithms – some even
by a large margin – that are widely used in research and in practice. At the
same time, there exists no algorithm that obtains clearly better results than ES-
PEA. ESPEA, therefore, constitutes an excellent choice for obtaining uniform
finite set of points approximations.
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Figure 5.30.: Comparative study of ESPEA – convergence of IGD for convex, concave
and mixed curvature problems. Straight lines indicate median performance
and dashed lines IQRs of performance.
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Figure 5.31.: Example runs of IBEA and MOEAD on DEB2DK with k “ 10 and Lamé
with γ « 0.28. The niching mechanisms of both algorithms are not able to
produce uniform Pareto front approximations.

182



5.3. Computational Analysis of Preference-biased Approximations

5.3.3. Qualitative Analysis of Preference-biased
Approximations

The final computational study of this chapter focuses on analyzing preference-
biased Pareto front approximations generated by ESPEA using scalarized pref-
erence information. The analysis is purely qualitative and of illustrative nature
to underline the usefulness of such approximations to a DM. ESPEA uses the
same search operator configuration as in the previous study in Section 5.3.1
(Table E.2). Approximations of required reference points for computing scalar-
ization values were estimated based on the current population. ESPEA was
run on each problem for 20 000 function evaluations with the exception of B3
and DTLZ3, for which 25 000 and 50 000 function evaluations were used, re-
spectively. A population size of 50 was chosen for bi-objective problems and a
population size of 100 for problems featuring three objectives.

Figures 5.32 to 5.35 show exemplary runs of ESPEA on three-objective prob-
lems using different scalarization functions for computing charges. The sur-
faces of the Pareto fronts are colored to depict the desirable regions identified
by the respective scalarization function and called scalarization landscape or
also scalarization surface for three objectives. Figures 5.36 to 5.40 depict ESPEA
runs on bi-objective problems. Each figure features a plot of the corresponding
scalarization function that was used. The plot indicates the scalarization value
that the function assigns to the corresponding Pareto optimal objective vector
on the f1-axis. The function Ψ :“ 1 refers to the case in which all solutions
are equally desirable – also called the no preference case. The identifiers of the
other scalarization functions are contained in Table 3.1.

Figure 5.32 shows example runs of ESPEA on DTLZ3 and DEB3DK (k “ 2) us-
ing the Chebyshev and sum of objectives scalarization functions, respectively.
The scalarization surface of DTLZ3 using Chebyshev’s method shows that the
most desirable solutions are located around the section of the median lines to
the centroid of the front. The three lines form a distinctive cross as indicated by
the blue shading. In the no preference case, the solutions are uniformly spread
across the front. If the Chebyshev method is utilized, the Pareto front approx-
imation prominently identifies the cross as desirable region and locates more
solutions around the three intersecting lines.

A similar observation can be made in Figure 5.32 for DEB3DK with k “ 2. The
solutions are distributed uniformly across the Pareto front avoiding the holes
in the surface in the no preference run. According to the sum of objectives,
the most desirable solutions are located at the convex bulges next to the two
large holes at the top of the front and the convex bulges near the barycenter of
the front. ESPEA focuses more solutions in exactly these regions if the sum of
objectives is chosen as scalarization function.

183



5. Preference-biased Pareto Front Approximations

0
0.5

1

0
0.5

1

0

0.5

1

f1f2

f
3

ESPEA Ψ :“ 1 ESPEA Ψc

0.7

0.8

0.9

1

C
he

by
sh

ev

(a) DTLZ3.

0

5

0

5

0

2

4

6

f1f2

f
3

ESPEA Ψ :“ 1 ESPEA Ψs

7

8

9

10

su
m

of
ob

je
ct

iv
es

(b) DEB3DK k “ 2.

Figure 5.32.: ESPEA runs on DTLZ3 using the Chebyshev method and on DEB3DK (k “
2) using the sum of objectives.
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Figure 5.33.: ESPEA runs on DEB3DK (k “ 2) using the weighted sum.

The weighted sum method allows giving different priorities to the objective
functions that are optimized. Prioritizing objectives leads to large shifts in the
regions of the Pareto front that are deemed most desirable. This shift in pri-
orities is also reflected in the preference-biased approximation obtained by ES-
PEA. Figure 5.33 shows the influence of different weights on ESPEA’s search
results. Prioritizing either objective one or two over the other objectives leads
to a strong concentration of solutions that feature smaller f1- and f2-values
respectively. Both Pareto front approximations are nearly symmetric to each
other providing further evidence thatN -optimal distributions are also obtained
beyond the no preference case.

Figure 5.34 shows runs of ESPEA on DTLZ7 and DEB3DK with k “ 1 using
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(c) DTLZ7 tradeoff surface.
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(d) DEB3DK k “ 1 tradeoff surface.

Figure 5.34.: ESPEA runs on DTLZ7 and DEB3DK (k “ 1) using tradeoff utility.

tradeoff utility as scalarization function. The figure additionally contains two
plots that show only the scalarization surfaces to better illustrate the desirable
regions of the Pareto fronts. The northern patch of DTLZ7 is deemed most
interesting, whereas the other three patches exhibit desirable regions towards
their southern boundary. In the no preference case, solutions are distributed
uniformly across the four patches. If tradeoff utility is chosen as scalarization
function, ESPEA strongly concentrates solutions on those parts of the patches
that feature the smallest tradeoff utility. The approximation of the northern
patch is less dense towards the center. This can be attributed to the solutions
on the boundary of the patch being located further away from solutions on the
same patch. Thereby they introduce less energy into the archive.

The Pareto front of DEB3DK exhibits both strong convex and concave curva-
tures leading to tradeoff utility becoming quite large in areas close to the holes
that are nearly Pareto dominated. This in turn leads to solutions being highly
concentrated in areas that feature a very small tradeoff utility. Regions that
possess a larger tradeoff utility are nearly universally neglected. Using trade-
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off utility as scalarization function in ESPEA even appears to speed up the con-
verge towards the Pareto front on DEB3DK.
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Figure 5.35.: ESPEA runs on B3 using the Nash bargaining solution.

Figure 5.35 shows a run of ESPEA on B3 using the modified Nash bargain-
ing solution as scalarization function. The most desirable region of the front
according to the Nash bargaining solution is located at the center of the front
slightly shifted towards the minimum of f3. In the no preference case, ESPEA
distributes the solutions evenly across the front. Using the Nash bargaining so-
lution, more solutions are located towards the center. These results also suggest
that ESPEA is able to correctly estimate the Nadir point during runtime, which
is necessary to correctly compute the Nash bargaining solution.
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Figure 5.36.: ESPEA runs on DEB2DK (k “ 1) using tradeoff utility and on DO2DK
(k “ 2, s “ 1) using the Nash bargaining solution.

Tradeoff utility on DEB2DK k “ 1 posseses a global optimum at the center of
the front that is enclosed in a narrow valley resembling a gorge (Figure 5.36).
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The curvature of the scalarization landscape becomes more flat towards the
boundary of the Pareto front with two local optima being located at the ex-
treme points. ESPEA’s Pareto front approximation focuses strongly on the knee
region around the global tradeoff optimum and, at the same time, avoids the
areas possessing large tradeoff utility that encompass the knee region. The ap-
proximation also becomes more dense towards the boundary when tradeoff
utility decreases.

The Nash bargaining landscape on DO2DK features a large valley that exhibits
a strong increase in scalarization values to the left extreme point and a moder-
ate increase towards the right extreme point. ESPEA focuses the vast majority
of the solutions at the bottom of the valley. Only a few solutions are found to-
wards the boundary yielding enough information for the DM to allow a correct
estimation of the course of the front.
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Figure 5.37.: ESPEA runs on DEB2DK (k “ 3) and DO2DK (4 “ 2, s “ 1) using angle
utility.

Example runs of ESPEA using angle utility are depicted in Figure 5.37. The
angle utility landscape of DEB2DK (k “ 3) features a pronounced valley at
the center of the front and is surrounded by two smaller valleys. Most of the
solutions are focused in the large valley, however the two smaller valleys are
also well approximated. On DO2DK (k “ 4, s “ 1), the angle utility landscape
is rather flat towards the right extreme point and takes a terrace-like shape
when moving to the left extreme point. The majority of the solutions are located
in the valley basin and the flat ascent towards the right extreme point. Only
few solutions are found on the terrace, which features a steep increase in angle
utility.

Two instances of the Lamé problem with m “ 2 possessing extreme curva-
tures are considered in Figure 5.38. The sum of objectives identifies the most
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Figure 5.38.: ESPEA runs on Lamé (m “ 2, γ “ 4) with the Chebyshev method and on
Lamé (m “ 2, γ “ 0.25) with the sum of objectives.

desirable region at the strong convex bulge for γ “ 0.5. ESPEA generates an
approximation that appears to be symmetrical to the bisecting line of the first
quadrant. Such a behavior is expected, since the Pareto front is symmetrical to
the bisecting line and any point on the front and its mirror image possess the
same sum of objectives. This observation further suggests that ESPEA is able to
approximate N -optimal distributions of points for arbitrary scalarization func-
tions.

For γ “ 4, the product of objectives identifies the extreme points as most de-
sirable options on the Lamé problem instance. A global optimization of the
scalarization function would only yield either extreme point as solution. ES-
PEA, on the other hand, generates more options such that the entire Pareto
front is covered by points. The distribution of points is more dense towards the
extreme points, where the product of objectives is smallest.

Runs of ESPEA on ZDT1 and ZDT2 using the Chebyshev method and tradeoff
utility, respectively, are depicted in Figure 5.39. The scalarization landscape of
the Chebyshev method resembles a wedge exhibiting a shallow curvature from
the global optimum towards the extreme points. The density of points steadily
increases towards the global optimum. The scalarization landscape of ZDT2 is
discontinuous at the extreme points, since the Pareto front of ZDT2 is concave.
The global scalarization optima are located at the extreme points. The trade-
off landscape features a shallow valley that extends towards the right extreme
point and possesses a tangential tradeoff towards the left extreme points. ES-
PEA identifies both global optima and densely approximates the shallow valley
while neglecting the area of steep ascent towards the left extreme point.

188



5.3. Computational Analysis of Preference-biased Approximations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
he

by
sh

ev

Yp Ψc ESPEA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f
2

(a) ZDT1.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

tr
ad

eo
ff

ut
ili

ty

Yp Ψt ESPEA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

f1

f
2

(b) ZDT2.

Figure 5.39.: ESPEA runs on ZDT1 using the Chebyshev method and on ZDT2 using
tradeoff utility.

As suggested in Section 5.1, the Pareto dominance relation that is used to up-
date the archive in Lines 5 and 6 of Algorithm 1 may be substituted by any other
dominance relation. The last two example runs in Figure 5.40 show ESPEA us-
ing the weighted sum in conjunction with tradeoff domination (Definition 16).
No solutions are located in tradeoff dominated areas of the front even if the
weighted sum identifies them as highly desirable.

The analysis has shown that ESPEA is able to generate preference-biased Pareto
front approximations that takes scalarized preference information into account.
ESPEA computes Pareto front approximations that concentrate more solution
in areas that feature small scalarization values and only sparsely approximates
regions possessing large scalarization values. The density of solutions on the
front is strongly influenced by the composition of the scalarization landscape.
If a scalarization landscape features gorges then most of the solutions are lo-
cated at the valley floors. In contrast, if the landscape is flat solutions are more
equally distributed across the fronts. It was also shown that ESPEA can be
successfully combined with dominance notions beyond Pareto optimality.
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Figure 5.40.: ESPEA runs on DEB2DK k “ 1 using a weighted sum with λ “ p 4
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and tradeoff domination with M “ 4 and M “ 3, respectively. The set

YăMt
p :“ tu P Yp | Ev P Y : v ă

M
t uu is a subset of the Pareto front that

consists of all tradeoff optimal points for a given M . Conversely, YąM

p :“
tu P Yp | Dv P Y : v ă

M
t uu consists of all tradeoff dominated points of the

Pareto front for a given M .
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6. Multimodal Scalarized
Preferences

Declaration: Parts of this chapter have been published in [BHSS17].

Scalarized preferences invoke a desirability landscape on the Pareto front that
may consist of multiple hills and valleys. Recall that scalarization functions
are minimized within this work. The peak of any hill is a locally least desir-
able point and the bottom of a valley is a local desirability optimum. Any such
optimum is an optimal choice in its immediate neighborhood given the scalar-
ized preference.As explained in Section 4.1, the set of scalarization optima is
expected to be much smaller than a finite set of points or subset approximation
of the Pareto front. A DM that can focus only on the scalarization optima and
should therefore be enabled to arrive quicker at a compromise solution that
suits his preferences best.

The first part of this chapter presents the theoretical foundation of scalariza-
tion optima. A mathematical definition of local scalarization optima is given
and the notion of basins of attraction is presented – a concept that is utilized
in devising search strategies for local scalarization optima. Next, an algorith-
mic framework is presented for approximating the local scalarization optima
of generic MOOPs and arbitrary scalarization functions. The final section con-
sists of a computational study that analyzes the proposed approach on a set
of artificial benchmark problems. The analysis is focused on identifying op-
timal components for each step of the algorithm. The results reveal that the
approach is successful in approximating local scalarization optima on the con-
sidered problems and scalarization functions.

6.1. Local Scalarization Optima and Basins

Optimizing scalarized MOOPs usually yields only a single global optimum.
The identified optimum, however, is not necessarily the best choice, if the scalar-
ization function is not a perfect representation of the DM’s preferences. In prac-
tice, it is often impractical or even infeasible to find a scalarization function
that is a perfect representation of the DM’s preferences [Mie99, Sec. 4.1]. In
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the presence of multiple global optima, the DM might prefer some optima to
others because of hidden features that cannot be captured by the scalarization
function. Such preferences, for example, may depend on the composition of the
corresponding decision vectors of the optima. Global optimization algorithms,
however, usually obtain only either of these global optima prohibiting the DM
to make her own choice. In a different scenario, the global optimum might
be counterintuitive to the preferences that the DM stated. As mentioned be-
fore, a weighted sum, for example, finds only extreme points on concave Pareto
fronts. Any extreme point would be undesirable if the DM desires a solution
that strikes a balance between the different objectives. Finally, the global opti-
mum that was found might prove difficult to implement because of technical
limitations in the manufacturing processes that cannot be anticipated before-
hand. In all these cases, obtaining and considering additional global and local
optima may enable the DM to make a better choice [Pre15].

6.1.1. Local Scalarization Optima

In order to formally define local scalarization optima, the concept of neighbor-
hoods needs to be introduced first. Given an ε ą 0, a neighborhood of a point
u P Y is a subset of the objective space that consists of all feasible objective
vectors that lie within a distance ε of u according to some metric, e.g. the Eu-
clidean norm. A point u P Yp then qualifies as local scalarization optimum if
there exists a non-empty neighborhood of u such that u possesses the smallest
scalarization value among all Pareto optimal elements in the neighborhood.

Definition 59 (local scalarization optimum [BHSS17]). Let f be the objective func-
tion of an MOOP, Ψ be a scalarization function and for any u P Rm let Bpuq “ tv P
Rm | }u´ v}2 ă εu with ε ą 0 denote the open ball of u with radius ε. An objective
vector uL P Yp is called a local scalarization optimum of Ψ on f if there exists a
non-empty neighborhood of Pareto optimal points V puLq “ BpuLq X Yp with ε ą 0
such that for all v P V puLq it holds that ΨpuLq ă Ψpvq.
• Any xL for which fpxLq “ uL is called local scalarization optimizer,

• any uL for which BpuLq “ Rm is called global scalarization optimum.

The requirement of ΨpuLq ă Ψpvq for all v P V puL) in Definition 59 implies
that the local scalarization optimum is strict. This condition eliminates local
optima that are located on plateaus. All optimization problems that are consid-
ered within this work do not exhibit plateaus, which is why this simplification
is made. Nonetheless, the notion of local scalarization optima as of Defini-
tion 59 could be extended to also include optima that are located on plateaus.
Furthermore, a scalarized MOOP may have more than one point that possesses
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6.1. Local Scalarization Optima and Basins

the globally optimal scalarization value as shown in Figure 6.1. The global op-
timum is not unique in such instances and the condition ΨpuLq ă Ψpvq must
be weakened to ΨpuLq ď Ψpvq for allowing multiple global optima to exist as
of Definition 59.

6.1.2. Basins of Attraction

Basins of attraction are an important concept in MMO that allow the develop-
ment of efficient search strategies for local scalarization optima. A basin of a
local scalarization optimum uL consists of all feasible points v P Y for which
there exists a search path from v to uL that is descending in the scalarization
space. This means that there exists a curve from v to uL in Y such that when
moving along the curve from v to uL the scalarization values of the curve el-
ements decrease (Definition 60 and Figure 6.1). A local search algorithm that
starts its search in the basin of uL is expected to converge to uL.

Definition 60 (basin [BHSS17]). The basin BpuLq of a local scalarization optimum
uL is a subset of the feasible objective space such that for all v P BpuLq there exists a
continuous function α : r0, 1s Ñ Rm such that αp0q “ v and αp1q “ uL and for all
t1, t2 P r0, 1s with t1 ă t2 it holds that Ψpαpt1qq ě Ψpαpt2qq.
• The set of all basins for a given objective function of an MOOP and scalarization

function is called basin system.
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Figure 6.1.: Illustration of local scalarization optima and their corresponding basins.
Basins have been restricted to the Pareto front for clarity. Five basins – three
local (green) and two global (blue) – are depicted in the figure. Dashed lines
mark the boundary of the basins as indicated by the scalarization function
(tradeoff utility). The solid lines indicate the positions of the optima of the
scalarization function.
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6.1.3. Local Scalarization Optima Preference Predicate

Local scalarization optima can be formulated as preference predicate by extend-
ing the scalarization predicate (Definition 29). The preferred set identified by
a scalarization predicate consists of all scalarization optimizers – decision vec-
tors that map to objective vectors that possess the smallest scalarization value
among all Pareto optimal points. The preferred set of a local scalarization op-
tima preference predicate additionally contains those decision vectors that map
to local scalarization optima (Definition 61). A preference predicate that con-
tains decision vectors that map to local and global scalarization optima is ob-
tained by restricting the ď-relation that orders the scalarization space. Given
two point u,v P Y , u dominates v in the scalarization space if u possesses a
smaller scalarization value than v and additionally if u and v share a common
basin. By applying this restriction, the image of any point u can only domi-
nate other elements of the scalarization space, whose preimages are located in
the same basin as u. Elements, whose preimages come from different basins
are thereby always non-dominated to each other. Thereby, any strictly local
optimum is not dominated by a global optimum as it is the case under the
scalarization predicate.

Definition 61 (local scalarization optima preference predicate [BHSS17]). Let
f “ pX,Y, F q be the objective function of an MOOP and Φs “ pfs,ďqwith pX,R, Fsq
be a scalarization predicate. The corresponding local scalarization optima prefer-
ence predicate is given by pfs,ăLq, where for all u,v P Yp the relation Ψpuq ăL

Ψpvq holds iff Ψpuq ď Ψpvq and there exists a local scalarization optimum uL such
that u,v P BpuLq.

6.2. Algorithmic Framework for Approximating
Scalarization Optima

An algorithmic framework for approximating local scalarization optima is pro-
posed in this section. The framework uses ideas and guidelines that have been
established in single objective MMO. Minimizing a scalarized MOOP is closely
related to finding the local optima of an SOOP. There exist, however, concep-
tual differences that need to be addressed when translating single-objective
MMO techniques to scalarization in MOO. These difference are discussed in
the course of this section. In single objective MMO, the application of a multi-
modal optimization algorithm is divided into three steps: 1) sampling, 2) basin
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identification and 3) local optimization [Pre15, Wes15, WRP16].1

Sampling the search space Single objective multimodal optimization tech-
niques commence by sampling the search space to estimate the topology
of the objective function. Local optimizers might be distributed across the
entire feasible set or be narrowly located next to global optimizers. In the
former case, the sample must cover the entire feasible set. In the latter
case, the resolution of the sample must be fined-grained such that the lo-
cal optimizers can be detected. In both scenarios, the search space must
be sufficiently explored such that no optimizer is missed.

Basin identification As mentioned in the first step, the samples generated in
the previous step serve as input to build an estimate of the topology of
the objective function in single-objective MMO and correspondingly the
scalarization function in MOO. The estimate is used to identify basins of
attraction of local optima. The sample generated in the first step is clus-
tered for this purpose. Each cluster is expected to represent a single basin
of attraction and the point in the cluster possessing the smallest scalariza-
tion value constitutes a rough estimate of the corresponding local opti-
mum. It may happen, though, that the clustering fails. Either individual
basins are missed or clusters cover multiple basins. These issues are dis-
cussed in detail in Section 6.3.1.

Local optimization Once the clustering is completed, each cluster is used as
starting point for a local optimization procedure. If an EA is applied, for
example, each cluster serves as start population. If the cluster is com-
pletely contained in a single basin, the local optimization algorithm is ex-
pected to correctly approximate the corresponding local optimum. Spe-
cial care must be given to the parametrization of the local search algo-
rithm such that it does not escape its assigned basin and converge to an
optimizer possessing a smaller objective value. Local search algorithms
for finding local scalarization optima are discussed in Section 6.3.2.

The proposed framework adapts these three steps and modifies them to take
special considerations into account that occur in MOO (Algorithm 11). In SOO,
local optima may be found across the entire feasible set. In MOO on the other
hand, all local scalarization optima must be Pareto optimal and are therefore
located on the Pareto front. It therefore makes sense, to focus the sampling on
the Pareto optimal set instead of the entire feasible set. Since the Pareto optimal
set is not known prior to any optimization effort, it is proposed to compute a

1The literature on multimodal optimization usually combines sampling and basin identification
into a single step, speaking of a two-stage model. Since sampling takes a more prominent role
in the light of scalarized preferences, it is introduced as separate step.

195



6. Multimodal Scalarized Preferences

uniform finite set of points approximation of the Pareto front, which serves as
input to the basin identification step.

Additionally, scalarization functions that violate Pareto compliance (Defini-
tion 44) do not possess a meaningful topology for the entire feasible set that
can be exploited for local optimization. The Nash bargaining solution (Defini-
tion 39), for example, can only be computed for points that dominate the Nadir
point. Scalarization functions that violate binary independence (Definition 45)
also require implicit knowledge of the Pareto front, e.g. in the form of reference
points. Angle utility (Definition 41), for example, requires knowledge of the
extreme points that can be inferred from a uniform finite set of points approx-
imation of the Pareto front. Starting the search from a random sample in the
feasible set therefore appears ill-advised, which is why a uniform sample of the
Pareto front is considered instead.

Clustering methods applied in single-objective MMO can be adapted in MOO.
In SOO, however, local optima are defined in the search space, i.e. a local op-
timizer must have the smallest objective value in a neighborhood of the fea-
sible set. Local scalarization optima, on the other hand, are defined in the
objective space, i.e. a local optimum has to possess the smallest scalarization
value among all points in a neighborhood that is contained in the feasible objec-
tive space. Therefore, clustering methods need to estimate the topology of the
scalarization function with respect to the objective space instead of the search
space.

Many basin identification techniques require that the sample is uniformly dis-
tributed across the search space to obtain optimal results [WRP16]. Since any
non-degenerate Pareto front is an m ´ 1 manifold in an m-dimensional vec-
tor space, any uniform approximation of the Pareto front constitutes a highly
biased sample that is not equally distributed in Rm. Whether this circum-
stance presents itself as limitation to applying single objective basin identifi-
cation techniques in MOO is the subject of study in Section 6.3.1.

Local optimization algorithms from SOO can be applied by choosing the scalar-
ization function as objective function for optimization. Approximations of ref-
erence points required for computing scalarization values can be inferred from
the Pareto front approximation in the first step. In case of tradeoff utility (Def-
inition 42) the entire finite set of points approximation can serve as estimate
of Yp. If the scalarization function is not Pareto compliant (Proposition 4), the
Pareto order must be imposed on top of the comparison of scalarization values.
Given u,v P Y , the point u is only better than v if either u Pareto dominates v
or if both objective vectors are non-dominated to each other and u possesses a
smaller scalarization value than v.
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Table 6.1.: Key differences between MMO in SOO and scalarized MOO.
Single-objective Multi-objective

Function values depend on Decision vector Objective vector and (potentially) com-
position of Pareto front

Comparison of candidate
solutions

Function value Pareto domination and scalarization
value

Set in which optima/basins
are defined

Search space Objective space

Feasible locations of optima Feasible set Pareto front

Samples generated in Feasible set Pareto optimal set

Sample composition Uniform in search space Biased in objective space

Clustering performed in Search space Objective space

The local search must be carefully configured such that the algorithm does not
escape its assigned basin. This is a known problem in single-objective MOO
[Pre15] and expected to apply to scalarization functions as well. Local opti-
mization is studied in Section 6.3.2. A summary of the differences of MMO in
SOO and scalarized MOO is given in Table 6.1.

Algorithm 11: Local Scalarization Optima Approximation Procedure cf.
[BHSS17]
Input : MOOP f , scalarization function Ψ
Output: Approximation of local scalarization optimizers txL,iuki“1

1 Generate uniform Pareto front approximation P
2 Cluster P into basin estimates C “ tC1, . . . , Cku
3 forall i P rks do
4 Run local optimization with Ci as initial set to approximate xL,i

5 return txL,1, . . . ,xL,ku

6.3. Computational Analysis of Framework
Components

The three steps sampling, basin identification and local optimization constitute
individual components of an algorithmic framework for approximating local
scalarization optima. Different techniques can be applied in each step. The
scope of this section is finding suitable methods for each component by con-
ducting a quantitative computational study. For this purpose, techniques that
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have been established in single-objective MMO are adapted for scalarized pref-
erences in MOO. The analysis is performed within individual steps not taking
dependencies between methods of different components into account. While
there might exist synergies or antagonistic effects between methods of different
components, it is more reasonable to assume that any method that performs
well in a given step delivers better input to methods in successive steps than
techniques that perform worse in the predecessor step. For example, if more
basins are detected through clustering local optimization should find more lo-
cal optima.

The analysis is performed chronologically in the execution order of the steps in
Algorithm 11. The method that yields the best performance in the current step
is utilized in generating inputs for successive steps in subsequent studies. An
extensive study of different sampling techniques is omitted, since the literature
on MOO contains a myriad of studies on algorithms seeking uniform finite set
of points approximations. Instead, the results of Section 5.3.2 are used for justi-
fying a reasonable approach to sampling that is described in Section 6.3.1. All
algorithms are implemented in jMetal and the code is available online [Bra].

6.3.1. Basin Identification Methods

Two basin identification methods from single-objective MMO – topographical
selection (TS) [TV92] and nearest better clustering (NBC) [Pre15] – are adapted
for the use with scalarized preferences in MOO and computationally analyzed.
Both techniques have been found to be successful in detecting basins, their per-
formance however greatly depends on the chosen parameters [WRP16]. NBC
and TS are tested with different parameter configurations. The best configura-
tions of each algorithm are compared to each other to deliver a final verdict on
which method yields the overall best performance.

Based on the results of Section 5.3.2, ESPEA is chosen as method to generate the
Pareto front approximations that are used as sample for the basin identification
methods. Among all tested algorithms in Section 5.3.2, ESPEA outperformed
all other algorithms with the exception of SPEA2, however no significant per-
formance difference between ESPEA and SPEA2 was found. The majority of
the test problems considered in the analysis of this chapter have also been part
of the study in Section 5.3.2. ESPEA is therefore an adequate technique for com-
puting a sample of the Pareto front. Any other algorithm generating uniform
finite set of points approximations, however, could be used instead.

An archive size of 200 was chosen to obtain a sufficiently large cover of the
Pareto front. ESPEA was run for 25 000 function evaluations on each problem
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instance, since the IGD performance indicator improves only marginally in sub-
sequent iterations on the considered test problems. Latin hypercube sampling
was used to generate the initial population. The search operators utilized in
ESPEA were configured in the same manner as for the study in Section 5.3.2.
ESPEA was run 100 times on each problem instance. See Table E.3 for a sum-
mary of the ESPEA configuration. Both basin identification algorithms were
applied to each final archive of all 100 runs.

6.3.1.1. Clustering Algorithms

Both basin identification techniques that are regarded in the study perform
their clustering by building a directed graph from the elements of the Pareto
front approximation. For simplicity, the Pareto front approximation is referred
to as population in the following. Each population member constitutes a vertex
of the graph. The clustering methods connect the vertices by edges according to
rules that depend on their scalarization values and their distances in the objec-
tive space. The basin identification techniques divide the graph into subgraphs,
where the vertices of each subgraph represent a cluster that is an estimate of a
basin of attraction.

Recall that fpxiq :“ f i. TS builds the graph in the following way (Algorithm 12).
For each population member xi its kc-closest neighbors in the objective space
according to the Euclidean norm are considered. Among all kc-closest neigh-
bors of xi, an edge pointing from xi to the closest of these neighbors that pos-
sesses a smaller scalarization value than f i is added to the graph if such a point
exists. Each vertex that has an outdegree of zero after all edges have been added
is an estimate of a local scalarization optimum. For each such vertex v a sub-
graph is identified that consists of all vertices and edges that form part of a path,
whose endpoint is v. These subgraphs are disconnected from each other, since
each node possesses at most one outgoing edge. Thereby, each disconnected
subgraph represents a cluster.

The description of TS in Algorithm 12 is based on [WRP16] and has already
been modified for the purpose of this study. TS was originally designed to
identify solely local optima and not their surrounding basins. Therefore, an
alteration was introduced to the original algorithm. The original TS cluster-
ing algorithm generates incoming edges to all kc-closest neighbors possessing
a smaller objective (scalarization) value instead of only the smallest as in Al-
gorithm 12 (Line 7). Such a procedure, however, allows individual vertices to
form part of multiple clusters, since each vertex may possess up to kc outgoing
edges. Overlapping clusters would deter the local search, since local optimiza-
tion algorithms are more prone to escape their assigned basin.
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Algorithm 12: topographical selection cf. [TV92]

Input : Pareto front approximation P :“ txiuNi“1, scalarization function Ψ,
parameter kc

Output: Clustering C
1 Create directed graph G :“ pV,Eqwith V :“ P and E :“ H
2 forall xi P P do
3 s :“ arg sortp››f1 ´ f i

›

›

2
, . . . ,

›

›fN ´ f i
›

›

2
,ďq

4 Q :“ txsp2q, . . . ,xspkc`1qu // kc closest neighbors
5 y‹ :“ arg minyPQ:Ψpf iqąΨpfpyqqp

›

›f i ´ fpyq››
2
q

6 if y‹ ‰ H then
7 E :“ E Y tpx,y‹qu
8 return tV 1 Ď V |G1 “ pV 1, E1q is a disconnected subgraph of Gu

Another change involves the distance computation. The original TS considers
distances in the search space, whereas in Algorithm 12 distances are measured
in the objective space. In the original description of TS, another edge from all
of the kc-closest neighbors to xi is added to the graph if Ψpf iq ă Ψpfpyqq and
there already exists a path in the graph such that xi can be reached from y.
This step is intentionally omitted in Algorithm 12, since it does not change the
clustering outcome.

The second clustering technique that is considered for the study is NBC (Al-
gorithm 13). NBC builds a spanning tree from the Pareto front approximation.
For each population member x, an edge to its closest neighbor y‹ in the ob-
jective space that possesses a smaller scalarization value than fpxq is added to
the graph. The distance according to the Euclidean norm between both vec-
tors serves as weight of the edge px,y‹q. The only element of the Pareto front
approximation that does not possess an outgoing edge is the point whose im-
age possesses the smallest scalarization value, which serves as estimate of the
global scalarization optimum.

Subsequently, two cutting rules are applied to divide the spanning tree into
subgraphs. Cutting rule 1 defines a threshold length wt, which is equivalent to
the average arc length in the spanning tree multiplied by a parameter φc. All
edges that are larger than the threshold length are cut. The reasoning behind
cutting rule 1 is that very long edges are likely to connect local optima to basins
of other local optima that possess smaller scalarization values.2

2Preuss [Pre15] further multiplies the threshold length by a correction factor if the sample adheres
to complete spatial randomness. Since Pareto front approximations are highly biased samples
in Rm and do not satisfy complete spatial randomness, the correction factor is dropped.
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Cutting rule 2 regards all nodes in the graph with three or more incoming
edges. For any such node x, if the length of its outgoing edge is longer than
the median length of its incoming edges multiplied by a parameter bc, the out-
going edge is removed from the graph. Cutting rule 2 follows the same logic as
cutting rule 1 in identifying nodes that are potentially local optima. The second
rule, however, is more likely to identify an approximate local optimum if it is
closely located next to another basin that features smaller scalarization values.
The edge length of the approximate local optimum to its closest better neighbor
would be too small to fall under the threshold length of cutting rule 1. Cutting
rule 2 is expected to play a more important role as the number of objectives
increases. For two objectives, any node can have at most two incoming edges
if the Pareto front approximation consists only of non-dominated points, since
the approximation is totally ordered from left to right.

Algorithm 13: nearest better clustering cf. [BHSS17, Pre15]
Input : Pareto front approximation P , scalarization function Ψ, parameter

φc, parameter bc

Output: Clustering C
1 Create weighted, directed graph G :“ pV,E,wqwith V :“ P and E :“ H
2 forall x P P do // build spanning tree
3 y‹ :“ arg minyPP :ΨpfpyqqăΨpfpxqq }fpxq ´ fpyq}2
4 if y‹ ‰ H then
5 E :“ E Y tpx,y‹qu
6 wppx,y‹qq :“ }fpxq ´ fpyq}2
7 wt :“ φc ¨řePE wpeq{|E| // threshold length

8 forall x P V : pdeg´pxq ě 3q ^ pdeg`pxq ą 0q do // cutting rule 2
9 Let e` denote the outgoing edge of x

10 Let e´1 , . . . , e
´
k denote the incoming edges of x

11 if wpe`q ą bc ¨mediantwpe´1 q, . . . , wpe´k qu then
12 E :“ E zte`u;
13 forall e P E : wpeq ą wt do // cutting rule 1
14 E :“ E zteu
15 return tV 1 Ď V |G1 “ pV 1, E1q is a disconnected subgraph of Gu

Cutting rule 2 is executed before cutting rule 1, since rule 1 might cut incom-
ing edges negating the requirement of having an outgoing edge count of at
least three for applying cutting rule 2. The threshold length of cutting rule 1,
however, is computed with respect to all edges of the spanning tree, which is
why it must be computed before applying cutting rule 2. Historically, cutting
rule 2 was introduced after cutting rule 1 in [Pre15], which explains the chosen
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naming scheme.

Both TS and NBC possess parameters that influence the clustering outcome.
The neighborhood size kc in TS determines the number of basins that can be
found, since any vertex with no outgoing edge must have a better scalarization
value than all of its kc neighbors. Decreasing the neighborhood size increases
the likelihood of finding small basins. If the Pareto front approximation is not
close enough to the actual front, however, small neighborhood sizes might lead
to the identification of multiple clusters in the same basin, since the scalariza-
tion landscape may possess multiple small hills and valleys.

The threshold value φc controls how far clusters need to be located away from
each other to qualify as basin estimate. Similar to kc, decreasing ψc increases
the likelihood of generating more clusters. The effect of φc, however, is more
difficult to understand as arc lengths greatly depend on the quality of the Pareto
front approximation. Extensive simulations studies were performed by Preuss
in [Pre15] to derive a formula for determining optimal values for bc that de-
pends on the sample size N “ |P | and the number of objectives (decision vari-
ables in the original publication):

bcpN,mq “p´4.69 ¨ 10´4n2 ` 0.0263m` 3.66m´1 ´ 0.457q ¨ log10pNq
` 7.51.10´4n2 ´ 0.0421m´ 2.26m´1 ` 1.84. (6.1)

Because of the intricate design of Equation (6.1) and the negligible effect that
cutting rule 2 is expected to have on NBC in the current scenario, only the vari-
ation of φc is considered in the computational study. The values for parameters
kc and φc have been chosen to reflect meaningful choices that have been tested
in previous studies [Pre15, WRP16].

6.3.1.2. Basin Identification Test Problems

The problems considered in this study were chosen such that they possess mul-
tiple local scalarization optima across different scalarization functions. The
DEB2DK, DEB3DK and DO2DK problems (Table 5.2) are reasonable choices
in this respect, since the parameter k allows controlling the number of con-
vex bulges their Pareto fronts exhibit. By increasing the number of bulges, the
scalarization landscapes undergoes great changes and more scalarization op-
tima are generated (Table 6.2). DTLZ7 and ZDT3 (Table 5.9) are chosen as well,
since the Pareto fronts of both problems are disconnected. At least one scalar-
ization optimum is located in each disconnected region.
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The scalarization functions presented in Section 3.1 have been chosen for the
study. As discussed in Section 3.1, these scalarization functions are represen-
tative of the different scalarization methodologies available in the literature.
The sum of objectives (Definition 33), Nash bargaining solution (Definition 39),
angle utility (Definition 41) and tradeoff utility (Definition 42) have been con-
sidered in particular. The Chebyshev method was omitted, because it only
possesses a single global scalarization optimum on all bi-objective problems
of the study. The product of objectives is not considered, since it identifies
only boundary points of the given test problems as scalarization optima. An
overview of the number of local scalarization optima for the different problems
and scalarization functions is given in Table 6.2.

As evidenced by Table 6.2 and Figure 6.2, the chosen scalarization function has
a major influence on the shape of the scalarization landscape and the number of
scalarization optima. It is therefore imperative, that both the effect of the shape
of the Pareto front and the scalarization function is considered in the analysis.

Table 6.2.: Overview of the problems chosen for the multimodal preference study. Iden-
tifiers of the scalarization functions are found in Table 3.1. The variable m
denotes the number of objectives.

Ψs Ψn Ψa Ψt m

DEB2DK k “ 1 3 1 1 3 2
DEB2DK k “ 2 4 2 2 5 2
DEB2DK k “ 3 5 3 3 7 2
DEB2DK k “ 4 6 4 4 9 2
DEB3DK k “ 1 5 1 2 6 3
DEB3DK k “ 2 10 4 4 23 3
DO2DK k “ 1 s “ 1 1 1 1 2 2
DO2DK k “ 2 s “ 1 2 1 1 3 2
DO2DK k “ 3 s “ 1 2 1 1 5 2
DO2DK k “ 4 s “ 1 3 2 1 5 2
DTLZ7 4 4 5 12 3
ZDT3 5 5 5 6 2

6.3.1.3. Basin Identification Performance Indicators

An ideal clustering should group the objective vectors of the Pareto front ap-
proximation such that the elements of each cluster are contained in a single
basin of attraction. Additionally, each basin is covered by at most one cluster.
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Figure 6.2.: Comparison of scalarization landscapes for the sum of objectives, the Nash
bargaining solution, angle utility and tradeoff utility of DO2DK k “ 4 s “
1. Individual scalarization functions shape the scalarization landscape in
different ways by introducing hills and valleys at different regions of the
Pareto front.

If the Pareto front approximation is uniform and consists of sufficient points, all
basins should be found through the clustering. In real-world applications, such
a clustering is usually difficult to achieve [Pre15]. Preuss [Pre15, Section 4.6.3]
distinguishes between three error types to characterize imperfect clusterings:

Type 1: At least one basin is not covered by any cluster and remains unde-
tected.

Type 2: At least one cluster covers more than one basin.

Type 3: Multiple clusters cover a single basin.

Type 1 errors occur if the Pareto front approximation misses entire regions that
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6.3. Computational Analysis of Framework Components

feature individual basins. In this case, the methodology that is used for ap-
proximating the Pareto front does not locate any points in the respective basin.
This behavior is the result of either the method failing to generate a uniform
Pareto front approximation or if the basin is too small to be identified by the
chosen granularity of the approximation. If the chosen population size of an
EA is too small, for example, it is possible that even a uniform approximation
misses basins that are located between neighboring points (Figure 6.3).
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Figure 6.3.: Example of a highly multimodal scalarization landscape that makes basin
identification impractical. Although the Pareto front approximation is uni-
form there exist multiple basins that are not covered by any solution render-
ing it impossible for any clustering algorithm to detect all basins.

In both cases, type 1 errors are attributed to issues regarding the sampling
methodology. The clustering methods cannot remedy the circumstance that
no points are located in the respective basins. Any uniform Pareto front ap-
proximation of reasonable size should locate sufficient points in all basins. In
case a basin is indeed too small for being detected, one might argue from a nor-
mative perspective that the corresponding local scalarization optimum is less
desirable to the DM. A small basin implies that the corresponding optimum is
not robust and it might therefore be difficult to implement in practice [BS07].
If the optimum is strictly local, it is reasonable to assume that other solutions
exist close-by that possess a smaller scalarization value [Pre15].

Type 2 errors appear if the clustering is too coarse. The local optimization pro-
cedure that is subsequently applied is expected to approximate either of the
local optima of the basins covered by the clustering. Depending on the chosen
search method, it is likely that of all basins, the local optimum featuring the
smallest scalarization value is identified, since local search methods are usu-
ally greed and therefore more attracted to regions featuring smaller scalariza-
tion values [Sia16]. If the points of the cluster do not show great variation
in their scalarization values between basins, it is reasonable to assume that
the local optimum of the basin featuring the most points is approximated, if
population-based approaches are employed as local search [Pre15]. In all cases,
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6. Multimodal Scalarized Preferences

local scalarization optima are likely to be missed, since local search algorithms
usually only approximate a single local optimum.

If the clustering it too fine-grained Type 3 errors may occur. Local searches
using clusters covering the same basin are expected to converge to the same
local optimum. From a decision-making perspective, this does not present it-
self as a problem, since no information about local scalarization optima is lost.
From a computational perspective, however, this situation is highly undesir-
able, since resources are wasted on approximating the same local optimum
multiple times.

In order to compare clusterings generated by different algorithms, it is impera-
tive to define measures for grading the usefulness of a specific clustering. In the
same manner in which quality indicators are used to evaluate the uniformity
and convergence of a Pareto front approximation, performance indicators re-
lated to the different error types have been developed to assess clustering qual-
ity. The useful cluster fraction (UCF) and detected basin fraction (DBF) used in
single-objective MMO are adopted and modified for this purpose [Pre15].

The following notation is used for the formal definition of the performance
indicators:

B, Bi The variable B denotes a basin system as of Definition 60 and Bi is the
identifier for a single basin of the basin system.

C, Cj The set of clusters – the clustering – generated by a clustering algorithm
is denoted by C and the Ci are individual clusters of C. The clustering is
a partitioning of a finite set of points approximation of the Pareto front.
Each cluster is thereby a finite subset of the objective space Y .

Both UCF and DBF rely on the concept of decided clusters. A cluster is called
decided if more than half of its elements are located in a single basin of at-
traction (Definition 62). Said basin is called the main basin of the cluster. The
underlying assumption of the UCF and DBF is that given a specific cluster, a
local search converges towards the local optimum of the main basin. If there
exists no main basin and a metaheuristic is applied as local search technique, it
is more likely that local optima of different basins are identified if the search is
repeated using the same cluster as initial set. The concept of decided clusters
is therefore used to penalize severe cases of type 2 errors in the performance
evaluation.

Definition 62 (decided cluster [Pre15]). A cluster Cj is called decided if there
exists a basin Bi P B and a subset D Ď Cj such that D Ď Bi and |D| ą |Ci|{2.
Furthermore, Bi is called the main basin of Cj .
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6.3. Computational Analysis of Framework Components

Since multiple decided clusters may cover the same basin (type 3 error), the
notion of useful clusters is considered next. If multiple decided clusters cover
the same basin, one can argue that only one of them is useful, since local search
is expected to converge to the same local optimum if either cluster is used as
initial set of the search. The number of useful clusters therefore consists of
the number of basins that are covered by at least one decided clusters (Defini-
tion 63).

Definition 63 (number of useful clusters [Pre15]). The number of useful clusters
is given by

N c “ |tBi P B | DCj P C : Bi is the main basin of Cju| . (6.2)

The UCF is then defined as the number of useful clusters divided by the total
number of clusters (Definition 64). A larger UCF implies that more clusters of
the clustering are useful. An increase in the number of clusters may result in
obtaining more clusters that feature common main basins. This is especially
the case if the number of clusters exceeds the number of basins. Consequently,
obtaining more clusters elicits a higher computational effort, since local opti-
mization is performed for each cluster. The UCF therefore penalizes type 3
errors.

Definition 64 (useful cluster fraction [Pre15]). The useful cluster fraction (UCF)
is defined as

UCF pCq “ N c

|C| . (6.3)

The DBF is computed by dividing the number of useful clusters by the total
number of basins. A DBF of 1 implies that each basin is covered by at least
one decided cluster. If a decided cluster is obtained for each basin, local opti-
mization is expected to find all local optima. The DBF is indifferent towards
multiple clusters sharing the same basin. The more clusters are identified, the
likelier it is that for any basin Bi there exists a cluster Cj such that Bi is the
main basin of Cj . In this sense, the DBF penalizes type 2 errors.

Definition 65 (detected basin fraction cf. [Pre15]). The detected basin fraction
(DBF) is defined as

DBF pCq “ N c

|B| . (6.4)

Note that the definition of the DBF in this work differs from the one proposed in
[Pre15]. Preuss divides the number of useful clusters by the number of basins
in which the sampling method has generated at least one point. This defini-
tion, however, penalizes the sampling method. For example, a clustering that
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6. Multimodal Scalarized Preferences

consists of one cluster based on a sample that covers only a single basin, has
a DBF of 1. If another sample of the same Pareto front covers four basins and
three decided clusters are found, the clustering possesses a DBF of 0.75. The
latter clustering, however, is undoubtedly more preferable to the former. Si-
mon Wessing has therefore suggested in a personal communication to divide
the number of useful clusters by the total number of basins instead.

A perfect clustering – a single decided cluster for each basin - achieves a score
of 1 for both the UCF and DBF. At the same time, however, either indicator
may be improved at the expense of the other. NBC and TS feature parameters
that control the granularity of the clustering. A coarse clustering creates few,
a fined-grained clustering more clusters. Coarse clusterings are more likely to
achieve a higher UCF and a smaller DBF, whereas fine-grained clusterings will
obtain a smaller UCF and a higher DBF. In this sense, a tradeoff can be observed
between both performance indicators.

Both indicators may also be interpreted from a computational and decision-
making perspective. Similar to the discussion about the error types, the UCF is
more important when considering computational costs. Fewer clusters imply
less computational effort in the successive local optimization step. The DBF is
of greater importance with respect to decision-making. Having more options
at her disposable is more desirable for the DM.

Both the UCF and DBF require the knowledge of the basin structure of the
problems that are solved. Since not all considered scalarization functions are
Pareto compliant (Definition 44), the basins are restricted to the Pareto front.
Each basin is discretized by a uniform finite set of points in the same manner in
which the Pareto fronts for the computational studies Section 5.3 were gener-
ated. An objective vector u of a Pareto front approximation is associated with
a basin in the following way. The distance between u and each point of the
discretized basins is computed. The basin of the point to which u is closest is
then associated with u.

For two objectives, the maxima of the scalarization landscape mark the bound-
ary points of the basins (Figure 6.1). In three and higher dimensions, it is pos-
sible that there exist Pareto optimal points for which descending paths in the
scalarization space can be constructed to multiple local optima. In these cases,
each point was assigned such that the path length in the objective space to
the local optimum is shortest. Note, that the number of reported minima in
[BHSS17, Table 1] and Table 6.2 differ for some of the three objective problems.
A different methodology was used to compute the basins and the scalarization
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minima in this work that is reported in Appendix D.3

6.3.1.4. Discussion of the Basin Identification Study Results

Five different parametrizations have been chosen for TS and NBC; kc P t2, 4, 6,
10, 20u and φc P t1.5, 2, 2.5, 3, 3.5u (Table E.4). The selected values reflect rea-
sonable ranges for both algorithms that have been studied in the past [Pre15,
WRP16]. Tables 6.3 to 6.6 show the median and IQR performance of TS and
NBC . The figures confirm that there exists a noticeable tradeoff between the
UCF and DBF as predicted. Increasing the neighborhood size kc or the thresh-
old φc improves the UCF while the DBF deteriorates. Vice versa, decreasing
the neighborhood size or the threshold yields a larger DBF and a smaller UCF.
This observation is consistent across all four scalarization functions.

Both parameters kc and φc tend to have a stronger effect on the UCF than on
the DBF. Small neighborhoods and thresholds apparently result in the gener-
ation of many clusters that share the same main basin. This leads to a large
deterioration of the UCF as kc and φc decrease. The performance drops are
worst for the tradeoff utility problems, most probably since their scalarization
landscapes feature many steep hills and valleys. NBC also appears to be more
affected than TS.

On the other hand, increasing the neighborhood size or the threshold has a far
smaller effect on the DBF. However, if the values for both parameters would
be further increased beyond reasonable values, a similar performance deterio-
ration as for UCF should occur as well. Increasing kc or φc limits the overall
number of clusters that can be found. This is mostly evident for TS, where the
number of feasible clusters is the size of the Pareto front approximation divided
by the neighborhood size. Performance regarding the DBF appears to be very
robust with respect to the parametrization as the reported values in Tables 6.4
and 6.6 mostly coincide across the different problems and scalarization func-
tions. The DBF is large on nearly all problem instances and both clustering
methods achieve a perfect score of 1 on the majority of all problems.

This allows the conclusion that both TS and NBC are successful in detecting
basins. The recommendation for a given clustering method and parametriza-
tion depends on the preferences regarding the tradeoff of computational re-
sources and the number of minima found. From a decision-making perspec-
tive, the search for local optima should be prioritized to saving computational

3Preliminary studies revealed that ESPEA occasionally does not approximate all four patches of
the Pareto front of DTLZ7. Only runs in which ESPEA finds all patches are considered in the
study such that the performance analysis of the clustering algorithms is not deterred by type 1
errors.
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6. Multimodal Scalarized Preferences

resources. A few local searches finding the same local optimum should be
deemed acceptable if more interesting solutions can be generated. At the same
time, the additional runs spent on repeatedly identifying the same local opti-
mum should not be disproportionate to the total number of optima found. For
example, performing ten local searches for finding two local optima could be
deemed reasonable. However, spending additional 90 searches to identify one
more local minimum could be considered excessive.

Small neighborhoods and thresholds lead to the detection of nearly all basins,
however they also result in the generation of many useless clusters. The UCF
drops below 10 % on some of the considered test problems. At the same time,
increasing either parameter results only in small deteriorations of the DBF. Both
kc “ 6 and φc “ 2.5 are reasonable compromises among all tested parametriza-
tions. If both configurations are directly compared to each other across all test
instances, TS is marginally better than NBC with respect to the DBF. There-
fore, the clusters identified by TS with kc “ 6 are used as input for the local
optimization in the next study.

Note that no statistical analysis is performed to investigate the performance
differences for significance. Median performance across different parametriza-
tion coincides very often and show little variation as evidenced by the reported
IQRs. This implies that there exists little to no uncertainty in the results that
could be attributed to chance. The procedure applied in Section 5.3.2 would
report no significant difference between the parametrizations kc “ 6 and φc “
2.5, since the results are too similar.

210



6.3.
C

om
putationalA

nalysis
ofFram

ew
ork

C
om

ponents

Table 6.3.: Basin identification study – UCF of TS. Median and IQR (as subscript) results for different parametrizations of kc across
100 runs. Best performances are colored in green, second-best performances in blue. Increasing kc steadily improves the
UCF, since less clusters are created that are located in the same basin. Performance deteriorates if kc is further increased
once clusters are merged that are located in distinct basins.

Sum of objectives Nash

2 4 6 10 20 2 4 6 10 20

DEB2DK k “ 1 0.330.12 0.750.15 1.000.25 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 0.500.13 0.800.20 1.000.00 1.000.00 1.000.00 1.000.33 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 0.630.16 1.000.17 1.000.00 1.000.00 1.000.00 1.000.25 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 4 0.670.13 1.000.14 1.000.00 1.000.00 1.000.00 0.800.13 1.000.00 1.000.00 1.000.00 1.000.00

DEB3DK k “ 1 0.210.05 0.480.14 0.800.17 1.000.17 1.000.00 0.070.02 0.250.13 0.500.50 1.000.00 1.000.00

DEB3DK k “ 2 0.330.06 0.570.13 0.670.14 0.700.13 0.500.17 0.200.03 0.570.17 0.670.33 0.670.00 0.670.00

DO2DK k “ 1 s “ 1 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00

DO2DK k “ 2 s “ 1 0.670.17 1.000.00 1.000.00 1.000.00 1.000.00 1.000.33 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00 0.500.50 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 0.750.25 1.000.00 1.000.00 1.000.00 0.001.00 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 0.170.03 0.440.15 0.800.13 1.000.00 1.000.00 0.110.02 0.210.03 0.310.05 0.570.17 1.000.00

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.17 1.000.00 1.000.00 1.000.00 1.000.00

2 4 6 10 20 2 4 6 10 20

DEB2DK k “ 1 0.170.06 0.500.17 1.000.50 1.000.00 1.000.00 0.210.04 0.500.15 0.750.40 1.000.00 1.000.00

DEB2DK k “ 2 0.330.11 0.670.33 1.000.00 1.000.00 1.000.00 0.210.04 0.450.08 0.710.21 1.000.17 1.000.00

DEB2DK k “ 3 0.500.17 1.000.25 1.000.00 1.000.00 1.000.00 0.270.05 0.580.10 0.780.18 1.000.09 1.000.00

DEB2DK k “ 4 0.570.17 1.000.00 1.000.00 1.000.00 1.000.00 0.330.05 0.640.13 0.900.08 1.000.00 0.860.16

DEB3DK k “ 1 0.040.01 0.110.04 0.200.08 0.330.08 0.500.50 0.190.03 0.320.07 0.500.11 0.710.17 1.000.20

DEB3DK k “ 2 0.150.03 0.400.11 0.600.23 0.750.33 1.000.00 0.400.07 0.500.08 0.550.10 0.540.16 0.330.20

DO2DK k “ 1 s “ 1 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.070.01 0.130.03 0.200.04 0.500.27 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.100.01 0.210.05 0.380.17 0.880.25 1.000.00

DO2DK k “ 3 s “ 1 0.500.50 1.000.00 1.000.00 1.000.00 1.000.00 0.170.02 0.360.05 0.630.16 1.000.17 1.000.00

DO2DK k “ 4 s “ 1 0.500.38 1.000.00 1.000.00 1.000.00 1.000.00 0.190.03 0.420.10 0.710.21 1.000.00 1.000.00

DTLZ7 0.130.02 0.220.05 0.290.05 0.390.08 0.670.14 0.280.04 0.410.07 0.530.09 0.670.14 0.670.26

ZDT3 0.500.10 0.830.29 1.000.00 1.000.00 1.000.00 0.110.01 0.190.02 0.310.06 0.630.16 1.000.00
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Table 6.4.: Basin identification study – DBF of TS. Median and IQR (as subscript) results for different parametrizations of kc across
100 runs. Best performances are colored in green, second-best performances in blue. Increasing kc deteriorates the DBF
since fewer clusters are found and clusters that cover distinct basins are merged.

Sum of objectives Nash

2 4 6 10 20 2 4 6 10 20

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 1.000.00 1.000.00 1.000.00 1.000.00 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 1.000.00 1.000.00 1.000.00 1.000.20 0.600.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 4 1.000.00 1.000.00 1.000.00 0.670.00 0.670.00 1.000.00 1.000.00 1.000.00 1.000.25 0.500.00

DEB3DK k “ 1 1.000.00 1.000.00 1.000.20 0.800.00 0.600.20 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB3DK k “ 2 0.800.10 0.800.10 0.700.20 0.500.10 0.300.10 1.000.00 1.000.00 0.750.50 0.500.00 0.500.00

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 1.000.00 1.000.00 1.000.33 0.670.00 0.000.67 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.750.00

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.800.20

Angle utility Tradeoff utility

2 4 6 10 20 2 4 6 10 20

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 0.670.00 0.670.00 0.670.00 0.670.00 0.670.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.14

DEB2DK k “ 4 0.800.00 0.800.00 0.800.00 0.800.00 0.800.00 1.000.00 1.000.00 1.000.00 1.000.00 0.670.11

DEB3DK k “ 1 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.830.00 0.830.00 0.830.17 0.830.17 0.830.17

DEB3DK k “ 2 1.000.00 1.000.00 0.750.25 0.750.00 0.750.00 0.650.09 0.520.09 0.430.09 0.300.13 0.090.09

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.800.20 0.800.00

DO2DK k “ 4 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 1.000.00 1.000.20 1.000.20 0.800.20 0.800.00 0.920.08 0.830.08 0.750.08 0.580.08 0.330.17

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00
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Table 6.5.: Basin identification study – UCF of NBC. Median and IQR (as subscript) results for different parametrizations of φc

across 100 runs. Best performances are colored in green, second-best performances in blue. The UCF improves if φc

is increases, since less clusters are created that are located in the same basin. Performance deteriorates if kc is further
increased once clusters are merged that are located in distinct basins.

Sum of objectives Nash

1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5

DEB2DK k “ 1 0.380.10 0.600.25 0.750.25 1.000.25 1.000.00 1.000.50 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 0.670.13 1.000.20 1.000.00 1.000.00 1.000.00 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 0.830.17 1.000.00 1.000.00 1.000.00 1.000.00 0.600.15 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 4 1.000.14 1.000.00 1.000.00 1.000.00 1.000.00 0.670.10 1.000.20 1.000.00 1.000.00 1.000.00

DEB3DK k “ 1 0.280.06 0.800.12 1.000.20 1.000.17 1.000.17 0.040.01 0.200.08 0.500.50 1.000.50 1.000.00

DEB3DK k “ 2 0.440.06 0.670.18 0.670.18 0.670.21 0.630.21 0.170.04 0.800.33 0.800.33 0.670.00 0.670.00

DO2DK k “ 1 s “ 1 0.100.03 0.330.25 0.500.17 0.500.00 0.500.00 0.100.03 0.330.25 0.500.17 0.500.00 0.500.00

DO2DK k “ 2 s “ 1 0.110.02 0.500.27 0.670.33 1.000.00 1.000.00 0.200.07 0.670.50 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 0.140.04 0.400.10 0.670.17 0.670.00 0.670.33 0.050.01 0.250.13 0.500.17 0.500.00 0.500.38

DO2DK k “ 4 s “ 1 0.190.04 0.500.17 0.670.15 0.750.08 0.670.08 0.170.05 0.500.10 0.670.17 0.670.00 0.670.33

DTLZ7 0.240.06 0.800.20 1.000.20 1.000.20 1.000.20 0.170.02 0.330.06 0.500.13 0.670.23 0.800.13

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

Angle utility Tradeoff utility

1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5

DEB2DK k “ 1 0.110.02 0.250.08 0.500.17 1.000.50 1.000.50 0.430.13 0.600.15 1.000.25 1.000.25 1.000.00

DEB2DK k “ 2 0.400.17 1.000.33 1.000.00 1.000.00 1.000.00 0.560.13 0.710.12 0.830.17 0.830.17 1.000.17

DEB2DK k “ 3 0.750.15 1.000.00 1.000.00 1.000.00 1.000.00 0.700.12 0.880.10 0.880.13 1.000.13 1.000.13

DEB2DK k “ 4 0.800.20 1.000.00 1.000.00 1.000.00 1.000.00 0.750.13 0.900.18 1.000.10 1.000.10 1.000.10

DEB3DK k “ 1 0.040.01 0.170.06 0.330.23 0.500.17 0.500.17 0.310.06 0.610.21 0.800.17 0.800.15 0.820.28

DEB3DK k “ 2 0.200.03 0.670.23 0.750.31 1.000.25 1.000.25 0.570.10 0.540.15 0.500.16 0.450.18 0.440.16

DO2DK k “ 1 s “ 1 0.100.03 0.330.25 0.500.17 0.500.00 0.500.00 0.170.05 0.290.08 0.400.21 0.400.17 0.400.15

DO2DK k “ 2 s “ 1 0.050.01 0.250.13 0.500.50 1.000.00 1.000.00 0.210.05 0.380.10 0.500.17 0.600.25 0.750.15

DO2DK k “ 3 s “ 1 0.050.01 0.250.13 0.500.17 0.500.00 0.500.38 0.360.05 0.530.09 0.670.13 0.710.13 0.800.13

DO2DK k “ 4 s “ 1 0.060.02 0.250.13 0.330.17 0.500.17 0.500.00 0.380.06 0.560.13 0.710.21 0.830.12 0.830.17

DTLZ7 0.200.05 0.310.07 0.380.11 0.440.10 0.500.13 0.420.06 0.560.10 0.620.13 0.610.14 0.630.21

ZDT3 0.710.21 1.000.17 1.000.00 1.000.00 1.000.00 0.240.04 0.360.05 0.450.12 0.500.10 0.500.17
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Table 6.6.: Basin identification study – DBF of NBC. Median and IQR (as subscript) results for different parametrizations of φc

across 100 runs. Best performances are colored in green, second-best performances in blue. Increasing φc deteriorates
the DBF since fewer clusters are found and clusters that cover distinct basins are merged.

Sum of objectives Nash

1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 4 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB3DK k “ 1 1.000.00 1.000.20 0.800.20 0.800.00 0.800.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB3DK k “ 2 0.800.00 0.600.10 0.500.20 0.400.10 0.400.18 1.000.00 1.000.00 0.750.50 0.500.00 0.500.00

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 1.000.00 1.000.00 1.000.33 1.000.33 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

Angle utility Tradeoff utility

1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 0.670.00 0.670.00 0.670.00 0.670.00 0.670.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 4 0.800.00 0.800.00 0.800.00 0.800.00 0.800.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB3DK k “ 1 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.830.17 0.830.17 0.830.17 0.830.17 0.830.17

DEB3DK k “ 2 1.000.00 1.000.25 0.750.00 0.750.00 0.750.00 0.570.13 0.350.09 0.260.13 0.170.13 0.170.09

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.800.20 0.800.00

DO2DK k “ 4 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 0.800.20 0.800.20 0.800.20 0.800.00 0.800.00 0.830.08 0.750.17 0.670.08 0.500.17 0.420.17

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00
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6.3.2. Local Optimization Algorithms

The modification of four single-objective local optimization algorithms for ap-
proximating local scalarization optima is proposed in this section. The greatest
challenge during local optimization is to force the algorithm to stay in its as-
signed basin and not converge to a stronger optimum, i.e. an optimum that
possesses a smaller scalarization value [BHSS17]. For this reason, different pa-
rameter configurations are tested to find optimal parametrizations of each algo-
rithm. The best configurations of every algorithm are compared to each other
to assess which method delivers the best results in the proposed framework.
The clusters generated by TS using the neighborhood size kc “ 6 as reported
in Section 6.3.1 are used as input for the local optimization algorithms. A pop-
ulation size of 20 was used if applicable. If a cluster possessed more than 20
elements, the 20 members possessing the smallest scalarization value were re-
tained. If a cluster possessed less than 20 elements, it was filled with random
copies of the existing cluster members. Each algorithm was run for a maximum
of 5000 function evaluation on each cluster.

6.3.2.1. Algorithms for Approximating Local Optima

The four algorithms have been chosen to represent different established search
techniques that are frequently and successfully applied in stochastic SOO. The
Covariance Matric Adaption Evolutionary Strategy (CMA-ES) developed by
Hansen [Han06] is considered to be one of the top performing EAs in BBO and
is also frequently used as local search method in single-objective MMO [Pre15].
Recall that n denotes the number of decision variables. The algorithm utilizes
an n-dimensional vector and an n ˆ n-matrix that serve as mean and covari-
ance matrix of a multivariate normal distribution from which decision vectors
are sampled. Mean and covariance matrix are updated in each iteration such
that the multivariate normal distribution is biased towards the decision vec-
tors of those population members that possess the smallest objective values.
An outline of CMA-ES including the proposed modifications is shown in Algo-
rithm 14.

The original CMA-ES initializes the mean by uniform random numbers and the
covariance matrix by the identity matrix. This corresponds to a random search
in the first iteration. In order to take the information into account regarding the
basin structure generated through the clustering, Algorithm 14 utilizes the de-
cision vector of the cluster member possessing the smallest scalarization value
as initial distribution mean. The identity matrix is retained as initial covari-
ance matrix to prevent premature convergence. Early tests have revealed that
using the covariance matrix of the cluster as initial covariance matrix results
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6. Multimodal Scalarized Preferences

Algorithm 14: CMA-ES cf. [Han06]

Input : Cluster C “ txiuNi“1, MOOP f , scalarization function Ψ, weights
λ, parameters σ, α, cc, cs, c1, cµ, dσ , µ

Output: Local scalarization optimizer approximation yb

1 y :“ arg min Ψpf iq // distribution mean
2 V :“ In // covariance/identity matrix
3 yb :“ y // best candidate solution
4 repeat
5 Let P :“ txjuNj“1 with xj :“ Nnpy, σ2Vq
6 yb :“ arg mintzPPYtybu | @yPP :fpyqćpfpzquΨpfpzqq // retain best

7 P :“ sortpP, păp,Ψqq
8 yold “ y
9 y :“ updateMean(P,λ, µ)

10 pσ :“ updateIsotropicEvolutionPath(pσ, cσ, µw,V,y
old,y, σ)

11 pc :“
updateAnisotropicEvolutionPath(pc, cc, α, µw,pσ,y

old,y, σ)
12 V :“ updateCovarianceMatrix(V, c1, cµ, cs,pc,λ, P,y

old, σ)
13 σ :“ updateStepSize(σ, cσ, dσ,pσ)
14 until stopping criterion
15 return yb

in numerical instabilities of CMA-ES resulting in an early termination of the
algorithm.

LetN once more denote the population size. At the beginning of each iteration,
N individuals are generated by sampling decision vectors from the n-variate
normal distributionNnpy, σ2Vq (Line 5), where σ is a search strategy parameter
called step size, whose meaning is discussed in the subsequent paragraphs.
These candidate solutions are sorted according to their scalarization values in
ascending order and stored in the population P . If the scalarization function Ψ
is not Pareto compliant (Definition 44) then a Pareto dominance comparison is
performed before scalarization values are compared.

Lines 9 to 13 summarize the update strategy of y, V and σ that was retained
unchanged from the original formulation of CMA-ES (see Algorithms 20 to 24
in the appendix for details). The update strategy encompasses a series of in-
tricate computations that are independent of the context of local scalarization
optima and therefore only discussed briefly. Refer to [Han06, Sia16] for a de-
tailed explanation of the update procedure and the meaning of the different
parameters.
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6.3. Computational Analysis of Framework Components

Summarizing, the CMA-ES described in Algorithm 14 is modified in two ways
but otherwise equivalent to the procedure detailed in [Han06]. The first modi-
fication consists of selecting the population member having the smallest scalar-
ization value as distribution mean instead of the zero vector. The second mod-
ification concerns the selection of the new mean and the sorting procedure in
Lines 6 and 7. The modified selection criterion consists of a Pareto domination
check and subsequent comparison of scalarization values if both candidate so-
lutions are nondominated to each other. The original procedure in [Han06] only
compares objective values, i.e. scalarization values in the current context.

The new mean (Line 9) is generated by computing a weighted sum of the de-
cision vectors of the µ best population members, where µ is usually chosen as
less than half of the population size. CMA-ES uses information contained in
the evolution path of the population for updating the covariance matrix and
the step size in each iteration. The evolution path records the trajectory of the
population in the decision and objective space across all generations. This infor-
mation is used to update the covariance matrix to bias the normal distribution
towards promising regions in the decision space for speeding up the conver-
gence of the algorithm. The step size is controlled using the movement of the
distribution mean y to prevent premature convergence. Information with re-
spect to the evolution path of the covariance matrix and the step size are stored
in the vectors pσ,pc P Rm, respectively. The vector pσ is called isotropic evo-
lution path, since the step size σ does not favor movements in particular direc-
tions and pc is called anisotropic evolution path, since the covariance matrix
controls movements towards favorable regions. Both vectors pσ and pc are
initialized by the zero vector.

The values for the strategy parameters have been chosen as suggested in the
literature and are listed in Table E.6. The step size σ is usually the only param-
eter that is explicitly set by the user and adapted to the problem that is solved.
Smaller step sizes focus the search locally, while larger step sizes broaden the
search. As a general rule of thumb, the step size is chosen as a fraction of the
bounding box of the decision space [cma].

A generational elitist genetic algorithm (GA) was included in the study. A GA
is a specific type of EA that encodes the decision vectors of candidate solutions
for the optimization process. The representation of the decision vectors must
be decoded before objective values are calculated. The recombination and mu-
tation operators of the GA operate on the encoded candidate solutions instead
of the decision vectors. The terms GA and EA, however, are often used syn-
onymously [Sia16, ES`03].

An outline of the GA used in this study is presented in Algorithm 15. The GA
uses the genetic operators binary tournament selection, SBX and polynomial
mutation (see Section 5.3.1). Binary tournament selection chooses two parents
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from the current population using scalarization values and Pareto domination.
The parents are recombined by applying SBX and the resulting offspring is
transformed using polynomial mutation. The two best candidate solutions in
terms of scalarization value and Pareto domination are retained for the succes-
sive iteration. A crossover probability of 1.0 and a mutation probability of 1{n
was used. As explained in the previous chapter, these values have empirically
shown to generate good results.

Algorithm 15: genetic algorithm (GA) cf. [Sia16, ES`03]

Input : Cluster C “ txiuNi“1, MOOP f , scalarization function Ψ, parameter
η

Output: Local scalarization optimizer approximation yb

1 P :“ C
2 repeat
3 P :“ sortpP, păp,Ψqq
4 Q :“ tx1,x2u // Retain best candidate solutions
5 forall i P rN s do
6 py1,y2q :“ binaryTournamentSelectionpP q
7 z :“ simulatedBinaryCrossvoverpy1,y2, ηq
8 z :“ polynomialMutationpz, ηq
9 Q :“ QY tzu

10 P :“ Q

11 until stopping criterion
12 yb :“ arg mintyPP | @zPP :fpzqćpfpyquΨpfpyqq
13 return yb

The performance of the search operators mainly depend on the distribution in-
dices η used with SBX and polynomial mutation. As explained in Section 5.3.1,
increasing the distribution index leads to offspring and mutated candidate so-
lutions being located closer to their parents. This in turn dictates whether the
search is performed on a local or a more global scale. For this reason, differ-
ent values for the distribution indices are tested in the study. Note that the
same value is chosen for the distribution indices of crossover and mutation,
since both operators affect the scope of the search – i.e. distance of parent to
offspring individuals – in the same manner.

Hill climbers (HCs) are a family of local search algorithms that iteratively im-
prove a single candidate solution. A random candidate solution is chosen as
incumbent. In each iteration, a single new candidate solution – the challenger –
is generated by applying a local search operator. If the challenger is better than
the incumbent, it supersedes the incumbent [ES`03].
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Algorithm 16: hill climber (HC) cf. [ES`03]

Input : Cluster C “ txiuNi“1, MOOP f , scalarization function Ψ, parameter
η

Output: Local scalarization optimizer approximation y
1 y :“ arg min Ψpf iq
2 repeat
3 z :“ polynomialMutationpy, ηq
4 if pfpzq ăp fpyqq _ ppfpyq ćp fpzqq ^ pΨpfpzqq ă Ψpfpyqqq then
5 y :“ z

6 until stopping criterion
7 return y

Algorithm 16 shows an outline of the HC implementation that was used in the
study. The cluster member having the smallest scalarization value is chosen
as incumbent. Polynomial mutation is applied as local search operator. The
challenger replaces the incumbent if it either dominates the incumbent or both
objective vectors are non-dominated to each other and the challenger possesses
a smaller scalarization value.

The HC may be perceived as a simplified elitist GA that uses a population size
of 1 and no crossover operator. If the Pareto front approximation is uniform,
the cluster member possessing the smallest scalarization value is expected to
be already closely located to the local scalarization optimum of the correspond-
ing basin. A HC might therefore quickly converge to the optimum. The study
examines, whether the extra effort of maintaining a population of candidate
solutions in the GA is beneficial for the search in the context of local scalar-
ization optima. Different values for the distribution index η of the polynomial
mutation are tested with the HC.

The final local search algorithm that is considered in the study is a PSA (Al-
gorithm 17). Single-objective PSAs follow the same algorithmic approach that
is utilized within SMPSO (Algorithm 7). Each swarm member i is associated
with a position xi in the decision space and a velocity zi. A particle’s position is
updated using the same formula as in SMPSO (Equations (5.18) and (5.19) and
Lines 7 and 8), however the parameters c1 and c2 in Equation (5.19) and the con-
striction coefficient Equation (5.20) have been dropped in favor of a constriction
mechanism that depends solely on the inertia weight w for simplifying exper-
imentation. This simplification does not restrict the search capabilities of the
PSA, since the constriction coefficient and the inertia weight are algebraically
equivalent [PKB07]. In dropping c1, c2 and χ, turbulence factors that broaden
the search across the search eliminated. This is an intended behavior, to make
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the swarm stay in its assigned basin.

Algorithm 17: particle swarm algorithm (PSA) cf. [Sia16]

Input : Cluster C “ txiuNi“1, MOOP f , scalarization function Ψ, parameter
w

1 S :“ txiuNi“1 // swarm
2 A :“ S with A :“ py1, . . . ,yN q // archive
3 Z :“ pz1, . . . , zN qwith zi “ 0n // velocities
4 yg :“ arg min Ψpf iq
5 repeat
6 forall xi P S do
7 zi :“ wzi ` r1pyi ´ siq ` r2pxg ´ siq
8 xi :“ xi ` zi

9 if pf i ăp fpyiqq _ ppfpyiq ćp f iq ^ pΨpf iq ă Ψpfpyiqqqq then
10 yi :“ xi

11 if pf i ăp fgq _ ppfg ćp f iq ^ pΨpf iq ă Ψpfgqqq then
12 xg :“ si

13 until stopping criterion
14 return xg

The swarm leader is the candidate solution that has the smallest scalarization
value among all encountered particles that is not dominated by any swarm
member that was generated throughout the search. The personal best position
yi of particle i is the decision vector of the location at which i has possessed the
smallest scalarization value and was not dominated by any previous positions
of i.

PSAs are known to exhibit erratic movements throughout the decision space
if the particle velocity is not properly controlled [PKB07]. Such movements
also lead to the exploration of vast areas of the search space, effectively leading
the PSA to escape its assigned basin. The inertia weight plays an important
role in guiding the trajectory of the swarm towards the local optimum. The
experimental study therefore assesses how different choices for the value of the
inertia weight affects the convergence of the algorithm.

6.3.2.2. Local Optimization Performance Indicators

Performance evaluation of local search in single-objective MMO is guided by
two aspects. Firstly, any SOO technique aims to minimize the distance between
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the optimum and the approximation the algorithm computes. Correspond-
ingly, local search in single-objective MMO should approximate local scalariza-
tion optima as close as possible. Secondly, each run of the local search should
approximate the local optimum of the basin (in the form of the cluster used
as initial population) it is assigned to. A local search algorithm that is prone
to escaping its assigned basin, in favor of converging to scalarization optima
possessing smaller scalarization optima, is expected to be unable to find all
local scalarization optima. Both aspects are covered by the performance indi-
cators presented in the following that have been adopted from single-objective
MMO by applying a minor modification. In single objective MMO distances
are computed in the decision space. The performance indicators in this study
all measure distances for performance evaluation in the objective space. All
distances are computed in the normalized objective space (Definition 52).

For formally defining the performance indicators, let P denote the set of local
scalarization optima and S the set of objective vectors obtained through the
application of local search. The peak distance (PD) (Definition 66) measures
the average distance between each local scalarization optimum uL to its closest
approximation in S. The indicator therefore shows how well each scalariza-
tion optimum is approximated on average. A PD of 0 indicates that an exact
representation of each optimum was found. PD is algebraically equivalent to
the IGD (Definition 57), which measures the quality of Pareto front approxima-
tions.

Definition 66 (peak distance cf. [Pre15]). Let S, P Ă Rm be finite. The peak
distance (PD) PDpS, P q is defined as

PDpS, P q “ 1

|P |
ÿ

uLPP
min
vPS

›

›uL ´ v
›

›

2
. (6.5)

Performance measured by PD is prone to the influence of outliers. If a single
scalarization optimum is missed during local search – for example because the
local search escaped its assigned basin – the PD may greatly deteriorate even if
an exact representation of all other optima is found.

Often, it is sufficient to approximate an optimum within a certain accuracy,
since in practical applications, decision variable values may only be set within
a limited precision [Pre15]. In such cases, it suffices that the approximation lies
within a given distance threshold of the local optimum. The preak ratio (PR)
(Definition 67) follows this notion by counting the number of optima for which
there exists an approximation within a distance of ε ď 0 divided by the total
number of optima. An indicator value of 1 states that each optimum has been
approximated by a point that lies within a range of ε.
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Definition 67 (peak ratio cf. [Pre15]). Let S, P Ă Rm be finite and ε P R`. The
preak ratio (PR) PRpS, P q is defined as

PRpS, P q “ 1

|P |
ÿ

uLPP
1DvPS:}uL´v}2ďε. (6.6)

The PR can be interpreted as indicator for how many optima are found during
local search. The indicator, however, makes no statement about the quality
of their approximation. The expressiveness of the PR depends on the chosen
threshold ε. If ε is chosen too large, the optima are too coarsely approximated.
If ε is chosen too small, there may be only few optima for which there exists a
close enough approximation. A value of ε “ 0.01 in the normalized objective
space was chosen for the study.

The final performance indicator is a measure that originates in statistics. A false
positive (FP) is an objective vector that has been identified as scalarization op-
timum by local search although it is located too far away from a true optimum.
The FP indicator (Definition 68) counts the number local optima approxima-
tions that do not lie within a threshold δ of any scalarization optimum. Similar
to PR, the expressiveness of FP depends on the chosen value for δ and is subject
to the opinion of the DM. A value of δ “ 0.2 was chosen for the study.

Definition 68 (false positives cf. [Pre15]). Let S, P Ă Rm be finite and δ P R`.
The false positive (FP) FPpS, P q performance indicator is defined as

FPpS, P q “
ÿ

vPS
1@uLPP :}uL´v}2ąδ. (6.7)

FPs are particularly undesirable from a decision-making perspective, since there
exist other candidate solutions in the proximity of an FP that possess a smaller
scalarization value. If the search is too narrow, FPs may occur. Another reason
for the occurrence of FP may be insufficient information about reference points
if the scalarization function violates binary independence (Definition 45). In
this case, scalarization values are computed incorrectly, which leads local search
to assume local optima at other positions than where they are truly located.
Even if the local optimization succeeds in this case, the approximated optima
are not of any use.

6.3.2.3. Discussion of the Local Optimization Study Results

A summary of the experimental settings is found in the appendix (Table E.5).
Preliminary testing was conducted and recommended values from the litera-
ture were considered to identify meaningful ranges for the parameters of the
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local optimization algorithms. Hansen recommends choosing a step size in the
interval r1e´3, 1e´1s if the feasible set is contained in a bounding box with side
length 10 to commence the optimization by a narrow local search.4 The feasible
set of all problems considered in the study is given by X “ r0, 1sn. Therefore,
the step sizes σ P t1e´5, 1e´4, 1e´3, 1e´2, 1e´1uwere chosen for the study.

A distribution index of η “ 20 is commonly used in the literature for both SBX
and polynomial mutation to maintain a balance between exploration and ex-
ploitation during the search [DPAM02, ZLT01, ZK04]. Consequently, the distri-
bution index should be increased to focus the search narrowly inside the basin.
The values η P t20, 30, 40, 80, 160u were chosen to take into account that local
optimization needs to put a stronger focus on exploitation than exploration.

Since the constriction factor and the turbulence mechanism are removed from
Algorithm 17, the inertia weight is the driving force of the search that de-
termines the magnitude of the particles’ movement in the search space. Ini-
tial tests have revealed that inertia weights smaller than 0.1 result in move-
ments that are too small to provide substantial improvements during the local
search. Inertia weights greater than 1 are ill-suited from an algebraic perspec-
tive. Line 7 in Algorithm 17 pulls the particle towards its personal and the
global best position. If w ą 1 then Line 7 may result in pulling the particle
beyond the position of the local and global best. Therefore, values between 0.1
and 1 were chosen for the study: w P t0.1, 0.25, 0.5, 0.75, 1u.
Tables G.1 to G.4 show median PDs across 100 runs. The step size σ “ 1e´3
consistently delivers the best results across all four scalarization functions. The
parametrization σ “ 1e´2 achieves the second best performance for the sum of
objectives, the Nash bargaining solution and angle utility. For tradeoff utility,
σ “ 1e´4 results in smaller PDs than σ “ 1e´2. Since tradeoff utility land-
scapes of the chosen test problems are highly multimodal and possess several
local scalarization optima, the narrower search focus induced by the smaller
step size appears to benefit the local search.

There exist notable differences in the reported PDs between the five parametriza-
tions up to a magnitude of 10e3. On average, however, all chosen step sizes
appear to result in successful approximations of the local scalarization optima.
There exist a few notable exceptions, though, for the step sizes 1e´5 and 1e´4:
On a number of DO2DK, DTLZ7 and ZDT3 test instances all approximated
minima obtained by CMA-ES using the step sizes 1e´5 and 1e´4 are far away
from the the true minima. In these cases, the search may be too narrow to con-
verge towards the scalarization optima.

4https://www.lri.fr/~hansen/cmaes_inmatlab.html#practical. Accessed
23.10.2017.
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The PDs reported for the GA and the HC exhibit a similar performance pat-
tern with respect to the distribution index. Increasing the distribution index
steadily improves the results suggesting that local optimization benefits from
a narrow search focus. Preliminary tests have revealed that higher distribution
indices are able to achieve even smaller PDs. Further increasing the distribution
index, however, is questionable from an algebraic perspective, since offspring
and mutated individuals would be too close to their parents to be able to effec-
tively explore the basin. The observed results rather suggest that the clusters
possess elements that are already close to the scalarization minima. A search
that is very narrow may achieve good results in this situation, since small, but
steady improvements can lead to a sufficient approximation of the local opti-
mum. If the initial approximation of the optimum is rather coarse, however,
large distribution indices are expected to fail in finding a close approximation
of the optimum.

A closer look at the figures in Tables G.2 and G.3 also reveal that the perfor-
mance increase between the distribution index 80 and 120 becomes small to
negligible on most problem instances. This observation further suggests that
increasing the distribution index beyond 120 will not provide a significant im-
provement of the results. The tendency of attaining smaller PDs by increasing
the distribution index appears to be stronger for the GA compared to the HC.
Choosing a distribution index of 120 for the GA results in the smallest PD on
nearly all test problems. The HC shows more heterogeneous results, especially
for tradeoff utility. Although the HC with a distribution index 120 still achieves
the best performance on average, other parametrization outperform η “ 120
on multiple problems. The performance difference on these problem instances
on which the parametrization η “ 120 is outperformed, however, is negligible,
further evidencing that increasing η beyond 120 is not entirely beneficial.

The results for the PSO identify the inertia weight w “ 0.75 as the best parame-
trization. The choice w “ 0.75 outperforms all other parametrizations on the
majority of the considered problems. The parametrization w “ 0.5 attains the
second best performance. The results suggest that personal and global best
should exhibit a strong influence in computing particle velocity. At the same
time, increasing the inertia weight beyond 0.75 leads to a notable performance
drop. The performance decrease from w “ 0.75 to w “ 0.1 is far less pro-
nounced.

Tables G.5 to G.8 show the algorithms’ performances with respect to the PR.
In setting a threshold for the detection of local scalarization optima, the PR
defines a minimum aspiration level for each optimization algorithm. Every
parametrization that achieves a PR of 1 is deemed successful in approximating
the local scalarization optima of the given problem.
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The results confirm that a step size of σ “ 1e´2 allows CMA-ES to find good
approximations of all scalarization optima on the majority of the considered
test problems. The step size σ “ 1e´2 leads CMA-ES to achieve the highest
PRs among all parametrizations. The parametrizations σ P t1e´5, 1e´4u, on
the other hand, perform rather poorly, not finding sufficient approximations of
multiple local optima on many of the test problems. The PR for the step size
1e´3 is only smaller on a few test problems compared to σ “ 1e´2. The step
size 1e´1 also generates good results with the exception of the sum of objectives
scalarization function. In general, a recommendation for both σ P t1e´3, 1e´2u
can be given.

The distribution indices η P t80, 120u result in a similar performance with re-
spect to the PR for both the GA and the HC. Smaller distribution indices are
discouraged by the results, since performance drops for η ă 80 are observed
for the sum of objectives and tradeoff utility. The figures suggest that small
distribution indices broaden the search too far such that the local optimization
algorithm escapes its assigned basin.

The PSA with inertia weights in the range w P t0.1, 0.25, 0.5, 0.75u yields good
results with respect to the PR across all scalarization functions . The parametriza-
tion w “ 0.75 is best among all tested values. A sharp performance drop can
be observed for w “ 1. On the majority of the considered test problems, only a
fraction of all scalarization optima is sufficiently approximated if w “ 1. This
observation suggests that there exists a threshold value for the inertia weight
beyond which the approximation quality quickly declines.

Tables G.9 to G.12 show the FPs obtained by the different parametrizations of
the algorithms. Most false positives occur on the DEB3DK k “ 2 (tradeoff util-
ity) and DTLZ7 (angle and tradeoff utility) problems. A closer analysis has
revealed, however, that the overall majority of these FPs is located in the vicin-
ity of true local scalarization optima. The FPs are still too far away from the
actual minima, though, which is why they are identified as FPs. In this sense,
the reported FPs should be rather interpreted as coarse approximations of local
scalarization optima.

The best parametrizations that have been identified during the analysis of PD
and PR (σ “ 1e´3, η “ 120, w “ 0.75 ) obtain little to no FPs. These are,
however, not the best parametrizations if only FPs are considered. The step
size σ “ 1e´2 results in fewer FPs than σ “ 1e´3. The PSA also obtains the
least FPs with inertia weights w P t0.1, 0.25u.
All in all, the meaning of FPs should not be overstated. While coarse approx-
imations are a nuisance, PR and PD carry more weight in identifying good
parametrizations. High PRs and small PDs indicate that a local optimization
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algorithm is capable of finding good approximations of local scalarization op-
tima. The occurrence of FPs rather implies that the approximations are some-
times too coarse. The results also point to an inherent tradeoff between PD or
PR and FPs. Fine-tuning the parametrization of a local search algorithm can
lead to the identification of more local optima. It may happen though that
these additional optima are only coarsely approximated, since they are in gen-
eral hard to find.

The FPs reported for the GA and the HC, however confirm the tendency of
previous findings with respect to the PD and PR. Increasing the distribution
index, unanimously leads to the identification of fewer FPs. Small distribution
indices appear to broaden the search too far, such that both algorithms do not
converge properly.

The final part of the analysis consists of a comparison of the best parametriza-
tion of each algorithm. Table 6.7 shows the PDs of CMA-ES (σ “ 1e´3), GA,
HC (each η “ 120) and the PSA (w “ 0.75). The comparison also includes
a baseline to assess the effectiveness of the local search. The baseline identi-
fies the objective vector of each cluster that possesses the smallest scalarization
value as estimate of a local scalarization optimum. Thereby, the baseline shows
the approximation quality of the local optima obtained by the Pareto front ap-
proximation without any local optimization effort.

A convergence analysis as performed in Section 5.3 is omitted, since the per-
formance of a single local optimization run is computed form the execution of
multiple local searches. Each local search is aimed at approximating a different
local optimum making the analysis of the presented performance indicators
across multiple iterations ambiguous. For example, a local search that con-
verges towards a specific local optimum is likely to move further away from
other local optima at the same time. If none of the basins of these optima have
been found by the clustering, for example, the PD might decrease although
the local search is successful in approximating the optimum of the assigned
basin. The subsequent analysis also focuses solely on the PD, since the best
parametrizations of each algorithm exhibited similar results for both the PR
and FP.

The results in Table 6.7 show that the HC and the PSA are the top performing
local optimization algorithms. There exist notable performance differences be-
tween the four scalarization functions. The PSA is superior to the HC on the
sum of objectives and the Nash bargaining solution problems. The HC outper-
forms the PSA on the angle utility instances. On the tradeoff utility problems,
both algorithms exhibit a similar performance. CMA-ES and the GA should be
considered outperformed by the HC and the PSA. The baseline also achieves
the smallest PD on three and the second smallest on one problem instance.
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This observation suggests that the local optimization algorithms escape their
assigned basin during the search.

A statistical analysis is carried out to confirm, whether the observed perfor-
mance differences are significant. The same procedure that is applied in Chap-
ter 5 is used to evaluate the simulation results. The distribution of the PDs of
each algorithm on every problem is tested for normality. Subsequent ANOVA
or Kruskal-Wallis tests are applied on each test problem to confirm, whether
there exists at least one algorithm, whose performance significantly differs from
those of the other algorithms. The test results confirm that such significant per-
formance differences exist on every test problem (Table G.18)

Table 6.8 shows a post-hoc comparison of the baseline to the local optimization
algorithms. The figures indicate that the local optimization leads to a significant
improvement of the approximations of scalarization optima on the majority of
the test problems. The results, however, also confirm that performance deterio-
rates in comparison to the baseline on a few benchmark problems. The baseline
outperforms all four algorithms with confidence on the ZDT3 Nash bargaining
solution and on the DTLZ7 angle utility instance.

It must be noted, however, that this does not imply that the optimization itself
fails. Instead, the performance deterioration is either attributed to the local
optimization algorithms escaping their dedicated basins or the clustering not
detecting all basins. The former case corresponds to an undesirable behavior
that should be avoided by the algorithm. Since the algorithm neither knows nor
explicitly uses the basin structure of the problem, it converges to an optimum
that possesses a smaller scalarization value than the one of its assigned basin.
Although this behavior is not intended, it is not a failure of the algorithm’s
working principles.

The latter case – the clustering not detecting all basins – should be interpreted
as a conceptual shortcoming of the PD. As explained before, a point that moves
towards a specific local optimum might move away from other local optima at
the same time, which may increase the PD. If a cluster covers multiple basins,
the member of the cluster that possesses the smallest scalarization value might
possess a smaller average distance to the local optima of the covered basins
than a point obtained through local search.

The four algorithms and the baseline are ranked to deliver a final verdict on
their performance. The same methodology that is applied to evaluate ESPEA
against other finite set of points algorithms is used. For each problem instance
and algorithm a rank is computed. The rank consists of the number of algo-
rithms that perform significantly worse with respect to the PD than the consid-
ered algorithm (Table G.22). The average ranks across all problems and scalar-
ization functions are displayed in Table 6.9. The figures show that using either
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the PSA, HC or CMA-ES results in a significant improvement of the PD. In con-
junction with the median PDs displayed in Table 6.8, it is possible to conclude
that local optimization results in a large improvement of the approximations
of the local scalarization optima on the vast majority of the test problems. The
GA is the only algorithm that does not achieve a significant improvement at a
95 % confidence level. Since the observed p-value is close to 0.05, however, a
performance improvement is still likely to occur.

Table 6.10 shows the complete results of the post-hoc analysis carried out to
compare the ranks of the algorithms. The figures show that the PSA signifi-
cantly outperforms the GA and CMA-ES. The performance difference between
the PSA and the HC is negligible. The HC outperforms the GA with confi-
dence, however not CMA-ES. The performance difference between the GA and
CMA-ES is not significant.
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Table 6.7.: Local search study – PD. Median and IQR (as subscript) results of best local search parametrizations: σ “ 1e´3 (CMA-
ES), η “ 120 (GA and HC) and w “ 0.75 (PSA). The baseline shows performance before any local optimization. Each
objective vector possessing the smallest scalarization value in every cluster was chosen as estimate for a local scalariza-
tion minimum. Best performances are colored in green, second-best performances in blue. The HC and PSA are the top
performing algorithms.

Sum of objectives Nash

Baseline CMA-ES GA HC PSA Baseline CMA-ES GA HC PSA

DEB2DK k “ 1 3.09e´31.42e´3 3.46e´44.06e´4 2.08e´37.07e´4 1.26e´52.20e´5 1.80e´91.09e´9 3.48e´33.74e´3 1.18e´31.36e´3 1.78e´31.89e´3 4.62e´57.98e´5 1.22e´51.57e´5

DEB2DK k “ 2 3.61e´31.35e´3 7.97e´45.65e´4 2.74e´31.90e´3 7.04e´51.25e´1 3.67e´95.58e´10 4.42e´32.77e´3 1.31e´31.04e´3 2.91e´31.67e´3 1.20e´48.06e´5 9.88e´51.50e´5

DEB2DK k “ 3 3.80e´31.28e´3 9.18e´45.26e´4 7.37e´25.73e´2 1.24e´17.24e´2 4.04e´96.11e´10 4.30e´31.95e´3 1.37e´39.32e´4 3.14e´31.46e´3 1.67e´49.16e´5 1.30e´42.38e´5

DEB2DK k “ 4 3.80e´31.44e´3 8.73e´44.92e´4 9.32e´22.25e´2 9.35e´28.72e´5 5.20e´93.63e´10 5.23e´31.89e´3 2.03e´31.63e´3 5.53e´36.48e´2 3.73e´26.70e´2 1.34e´11.79e´7

DEB3DK k “ 1 4.92e´29.72e´2 2.70e´11.73e´1 8.09e´31.11e´1 1.14e´41.13e´1 1.73e´41.13e´1 2.92e´21.26e´2 1.98e´25.76 3.75e´32.79e´3 3.15e´36.45e´4 3.27e´37.02e´4

DEB3DK k “ 2 6.03e´22.85e´2 9.76e´26.39e´2 4.13e´23.80e´2 1.57e´22.41e´2 1.60e´23.75e´2 6.71e´22.73e´2 3.30e´15.22 4.25e´23.87e´2 4.26e´23.83e´2 4.26e´23.78e´2

DO2DK k “ 1 s “ 1 2.58e´33.04e´3 7.05e´48.89e´4 1.19e´31.49e´3 2.74e´56.04e´5 5.31e´91.17e´9 2.44e´32.59e´3 5.31e´46.49e´4 1.31e´31.25e´3 2.70e´54.82e´5 1.66e´52.19e´5

DO2DK k “ 2 s “ 1 5.09e´34.58e´3 1.87e´32.07e´3 3.16e´32.41e´3 6.78e´57.80e´5 1.50e´19.60e´10 3.21e´32.16e´3 7.90e´48.52e´4 2.26e´31.50e´3 6.80e´56.85e´5 4.43e´51.02e´5

DO2DK k “ 3 s “ 1 3.38e´31.87e´3 8.88e´46.69e´4 2.19e´31.50e´3 6.88e´57.04e´5 5.67e´91.09e´9 2.49e´32.31e´3 6.08e´46.96e´4 1.56e´31.48e´3 4.99e´58.80e´5 2.98e´51.96e´5

DO2DK k “ 4 s “ 1 5.38e´39.18e´2 1.69e´39.35e´2 9.36e´29.22e´2 9.39e´29.39e´2 9.39e´27.78e´10 3.08e´31.48e´3 6.03e´44.93e´4 2.08e´39.83e´4 6.46e´55.53e´5 2.05e´51.55e´5

DTLZ7 3.92e´21.09e´2 2.10e´14.03e´1 8.78e´32.65e´3 7.12e´37.31e´5 7.12e´31.17e´9 5.13e´21.58e´2 1.72e´11.53e´1 1.98e´28.93e´3 2.36e´28.57e´3 2.22e´29.28e´3

ZDT3 4.74e´31.17e´3 2.42e´41.99e´4 1.61e´34.85e´4 9.69e´55.79e´5 6.27e´91.89e´10 4.41e´31.59e´3 4.10e´21.58e´3 4.21e´22.21e´3 4.08e´21.47e´3 4.08e´21.32e´3

Angle utility Tradeoff utility

Baseline CMA-ES GA HC PSA Baseline CMA-ES GA HC PSA

DEB2DK k “ 1 2.40e´31.20e´3 1.34e´41.73e´4 1.24e´35.30e´4 1.36e´41.70e´4 2.78e´46.63e´4 3.09e´31.42e´3 2.11e´34.90e´4 2.24e´35.21e´4 1.24e´42.27e´4 1.75e´42.00e´4

DEB2DK k “ 2 4.53e´32.23e´3 1.53e´31.03e´3 3.15e´31.89e´3 1.81e´48.75e´5 1.88e´42.89e´5 3.72e´31.21e´3 1.62e´36.20e´4 2.34e´36.76e´4 2.40e´49.92e´5 3.01e´41.39e´4

DEB2DK k “ 3 3.81e´31.71e´3 1.21e´38.40e´4 2.49e´31.17e´3 2.82e´41.98e´4 2.94e´42.16e´4 3.67e´39.60e´4 2.30e´38.60e´4 2.40e´36.40e´4 1.19e´33.53e´4 1.04e´33.24e´4

DEB2DK k “ 4 4.10e´31.69e´3 1.37e´38.85e´4 2.97e´39.76e´4 1.59e´47.29e´5 1.42e´42.54e´5 3.80e´39.92e´4 2.21e´37.42e´4 2.57e´35.65e´4 1.64e´22.45e´2 1.11e´35.52e´4

DEB3DK k “ 1 3.53e´21.14e´2 3.43e´22.84e´1 3.73e´33.27e´3 1.46e´35.19e´4 1.50e´36.41e´4 6.49e´21.57e´2 5.88e´21.25e´2 4.53e´21.33e´2 4.56e´21.31e´2 4.40e´21.57e´2

DEB3DK k “ 2 6.54e´21.03e´2 3.13e´11.86e´1 3.96e´22.55e´2 4.10e´22.72e´2 4.12e´23.30e´3 1.19e´11.64e´2 1.20e´11.76e´2 1.16e´11.69e´2 1.16e´11.88e´2 1.21e´11.98e´2

DO2DK k “ 1 s “ 1 1.97e´32.12e´3 1.55e´41.90e´4 9.34e´46.55e´4 1.12e´42.11e´4 2.21e´43.98e´4 3.11e´31.64e´3 3.97e´41.35e´3 2.13e´37.58e´4 1.25e´43.02e´4 2.00e´43.00e´4

DO2DK k “ 2 s “ 1 4.24e´34.63e´3 9.58e´58.59e´5 1.29e´34.50e´4 7.18e´58.23e´5 1.80e´48.11e´4 3.59e´31.60e´3 1.79e´31.27e´3 1.91e´37.49e´4 5.20e´43.91e´4 5.84e´43.17e´4

DO2DK k “ 3 s “ 1 6.17e´34.30e´3 3.27e´41.46e´4 1.66e´39.69e´4 2.15e´42.25e´4 3.74e´44.17e´4 3.86e´31.28e´3 3.58e´31.27e´3 2.30e´31.06e´3 1.52e´23.45e´4 1.45e´21.29e´2

DO2DK k “ 4 s “ 1 2.50e´32.31e´3 7.12e´44.36e´4 1.29e´31.02e´3 8.71e´45.85e´4 6.62e´45.44e´4 4.04e´31.72e´3 1.88e´31.15e´3 2.26e´38.39e´4 5.72e´42.20e´4 6.41e´42.15e´4

DTLZ7 4.68e´21.10e´2 2.26e´16.38e´2 1.79e´11.35e´2 1.95e´11.22e´2 1.85e´16.23e´3 7.23e´22.19e´2 8.07e´22.90e´2 1.64e´12.54e´2 1.63e´13.34e´2 1.15e´13.31e´2

ZDT3 5.68e´31.57e´3 1.91e´31.90e´4 2.72e´36.90e´4 1.84e´31.04e´4 1.85e´39.00e´6 4.66e´31.37e´3 1.27e´33.41e´4 2.49e´22.38e´2 2.48e´26.98e´5 1.30e´33.41e´4
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Table 6.8.: Local search study – PD. The table shows p-values of a post-hoc analysis of the best local search parametrizations. Green
cell color indicates that the baseline is outperformed by the corresponding algorithm with confidence at a 95 % level, the
blue color without confidence. Red cell color indicates that the baseline is outperformed by the corresponding algorithm
with confidence at a 95 % level, the orange color without confidence.

Sum of objectives Nash

CMA-ES GA HC PSA CMA-ES GA HC PSA

DEB2DK k “ 1 0.0000 0.0029 0.0000 0.0000 0.0000 0.0071 0.0000 0.0000
DEB2DK k “ 2 0.0000 0.7775 0.0000 0.0000 0.0000 0.0584 0.0000 0.0000
DEB2DK k “ 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0214 0.0000 0.0000
DEB2DK k “ 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.9980 0.2669 0.0000
DEB3DK k “ 1 0.0000 0.0883 0.0000 0.0000 0.0070 0.0000 0.0000 0.0000
DEB3DK k “ 2 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DO2DK k “ 1 s “ 1 0.0000 0.0112 0.0000 0.0000 0.0000 0.0061 0.0000 0.0000
DO2DK k “ 2 s “ 1 0.0000 0.0224 0.0000 0.0000 0.0000 0.0776 0.0000 0.0000
DO2DK k “ 3 s “ 1 0.0000 0.1100 0.0000 0.0000 0.0000 0.0503 0.0000 0.0000
DO2DK k “ 4 s “ 1 0.0858 0.9965 0.3262 0.9999 0.0000 0.0204 0.0000 0.0000
DTLZ7 0.9956 0.0000 0.0000 0.0000 0.8326 0.0000 0.0000 0.0000
ZDT3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Angle utility Tradeoff utility

DEB2DK k “ 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DEB2DK k “ 2 0.0000 0.0282 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DEB2DK k “ 3 0.0000 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DEB2DK k “ 4 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.8581 0.0000
DEB3DK k “ 1 0.9991 0.0000 0.0000 0.0000 0.0046 0.0000 0.0000 0.0000
DEB3DK k “ 2 0.0000 0.0000 0.0000 0.0000 0.9432 0.9648 0.8943 0.3945
DO2DK k “ 1 s “ 1 0.0000 0.0015 0.0000 0.0000 0.0000 0.0012 0.0000 0.0000
DO2DK k “ 2 s “ 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DO2DK k “ 3 s “ 1 0.0000 0.0000 0.0000 0.0000 0.9956 0.0000 0.0000 0.5876
DO2DK k “ 4 s “ 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DTLZ7 0.0000 0.0000 0.0000 0.0000 0.5756 0.0000 0.0000 0.0000
ZDT3 0.0000 0.0000 0.0000 0.0000 0.0000 0.6130 0.0000 0.0000
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Table 6.9.: Local search study – PD. Friedman tests results with respect to the baseline.
The rank states the number of other algorithms an algorithm significantly out-
performs on average. The column p-value is related to the performance differ-
ence with respect to the baseline. Green cell color indicates that the baseline
outperforms the corresponding algorithm with confidence at a 95 % level, the
blue color without confidence. The results allow the conclusion that, in gen-
eral, the local search further improves the approximation of the local optima.
All algorithms besides the GA outperform the baseline with confidence at a
95 % level. The p-value of the GA is close to 0.05 suggesting that applying the
GA as local search still yields a noticeable improvement.

Rank Algorithm p-value

3.0417 PSA 1.6098e´13
2.8125 HC 4.0844e´11
1.9688 CMA-ES 2.7361e´4
1.5000 GA 0.0728
0.6771 Baseline n/a

Table 6.10.: Local search study – PD. Friedman test results in detail. Colors indicate the
following: red implies that the row algorithm is outperformed by column al-
gorithm at a 95 % confidence level; orange implies that the row algorithm is
outperformed without confidence and the blue color that the row algorithm
outperforms the respective column algorithm.

CMA-ES GA HC PSA

Baseline 2.7361e´4 0.0728 4.0844e´11 1.6098e´13
CMA-ES 0.7457 0.0598 0.0049
GA 2.0257e´4 5.5522e´6
HC 0.9978
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Optimization theory is a discipline that is founded in the analysis of real-world
applications. Methodologies that are born from entirely theoretical assump-
tions about reality should therefore be tested on real-world applications to as-
sess their performance and applicability in practice. The scope of this chapter
therefore lies in illustrating the usefulness of the algorithms presented in Chap-
ters 5 and 6 with two practical examples.

The first example is concerned with the optimization of the operation efficiency
of a CHP plant. ESPEA is applied to generate operating schedules for the CHP
plant that maximize fuel efficiency. At the same time, ESPEA finds alternative
schedules that are close to but deviate from the efficiency optimum. Such minor
deviations from the efficiency optimum are occasionally beneficial to improve
the short-term profitability of the plant.

The second example explores optimal scheduling in building energy manage-
ment systems (BEMSs). Building energy management pursues different, usu-
ally conflicting goals in operating buildings such as minimizing costs and car-
bon dioxide emissions while maximizing user comfort. Building operations
consists of scheduling the execution times and modes of household appliances
and the control of heating, ventilation and air-conditioning (HVAC) devices.
Classic MOO methodology generates a multitude of operating schedules that
are often difficult to compare and choose from. Restricting the set of candi-
date solutions to local scalarization optima can greatly decrease the number
of potentially interesting schedules thereby facilitating a simplification of the
decision-making process.

7.1. Combined Heat and Power Plant

Declaration: Parts of this section have been published in [BSE`16]. Some passages are
quoted verbatim.

Cogeneration is the simultaneous generation of electricity and useful heat with
the aim of exploiting more efficiently the energy stored in the fuel. Cogenera-
tion is, however, a complex process that encompasses a great amount of sub-
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systems and variables. This fact makes it very difficult to obtain an analytical
model of an entire plant, and therefore providing a mechanism or a methodol-
ogy able to optimize its global behavior.

This section proposes a neuro-evolutionary strategy for modeling and optimiz-
ing a cogeneration process of a real industrial plant. Firstly, the modeling of
the process is carried out by means of several interconnected artificial neural
networks (ANNs), where each ANN deals with a particular sub-system of the
plant. Next, the obtained models are used as black box functions by an evolu-
tionary algorithm, which solves a multi-objective optimization problem of the
plant. The objectives of the optimization problem consist of minimizing the
fuel consumption and maximizing both the generated electricity and the use of
the heat. The proposed approach is evaluated with data of a real cogeneration
plant collected over a one-year period. Obtained results verify that the model-
ing of the plant is correct but also that the optimization increases the efficiency
of the cogeneration plant.

7.1.1. Modeling of a Complex Cogeneration Process

The process of generating electricity and useful heat at the same time is called
cogeneration and is also known as combined heat and power. The ultimate
goal of cogeneration is to exploit the maximum possible energy contained in a
fuel. In the industry, the high temperature flue gases generated by engines, gas
turbines, or other machines can be used to produce more electricity or to per-
form another process demanding heat. This implies cost savings because the
amount of fuel required is reduced. This fuel saving also results in a reduction
of pollution. These economic and environmental factors are the reasons why
nowadays the number of cogeneration plants is increasing steadily.

As many other industrial processes, cogeneration is a rather complex process
due to a high number of variables involved, nonlinear dynamics, limited ana-
lytical models and also incomplete knowledge. This fact implies that it is highly
arduous to obtain a model that reproduces with fidelity the behavior of the real
system. Moreover, without such a model, it becomes very difficult to carry out
any formal strategy to try to optimize the efficiency of the process. Especially,
the application of mathematical programming techniques is impossible if a for-
mal mathematical description cannot be obtained.

Soft computing methods provide a non-conventional way to deal with those
problems characterized by their complexity, high dimensionality, hard non-
linearities and vague or imprecise knowledge. Most typical soft computing
methods are ANNs, fuzzy systems and evolutionary computation. Many of
these techniques exhibit complementary aspects and hence, they provide very
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often better performance when combined in a cooperative way as hybrid ap-
proach rather than acting exclusively (e.g. neuro-fuzzy systems, evolutionary
fuzzy systems, or neuro-evolutionary systems). Due to those interesting prop-
erties, soft computing methods are widely used for modeling industrial pro-
cesses [NSH`13, IHK12, ZA12]. Soft computing methods have also been suc-
cessfully applied to cogeneration plants for analysis/diagnosis, optimization
and control or prediction purposes (see [RVMB14, BSE`16] for a comprehen-
sive literature review).

The cogeneration plant is located in Monzón (Huesca), in the north of Spain1.
The main systems of the plant are: four internal combustion engines, four re-
frigeration engine circuits, an exhaust steam boiler, a steam turbine condenser,
a steam turbine, and a slurry drying process. The plant produces electricity by
means of the combustion engines and the steam turbine. The steam is gener-
ated with the heat of the exhaust gases of the four engines. Part of this heat
is also used in a slurry drying process being the slurry provided by nearby
farms.

The four internal combustion engines are all identical, i.e. with the same char-
acteristics and the nominal power of each being 3700 kW. They are organized
into two banks with eight cylinders each and the fuel used for the combustion
is natural gas. The engines exchange heat with two circuits that use water from
the cooling towers. A cooling circuit refrigerates the mixture of air and fuel mix
around 50 ˝C and the other circuit preheats the intake air to around 35 ˝C. The
engines generate electrical energy, which is sold, and flue gases. Each engine
has a diverter, which sends the flue gases to an exhaust steam boiler when the
engine is working above 50 % of rated power, or to the chimney if the rated
power is below 50 %. Engines are usually above this threshold, and therefore
the flue gases go to the exhaust steam boiler most of the time.

Next, the heat from the exhaust steam boiler is used by the steam generator
to create steam at 400 ˝C and 22.5 bar. This steam feeds the steam turbine to
generate more electricity, with 1000 kW of nominal power. The condenser of
the steam turbine uses water from the cooling towers to condensate the steam
from the steam turbine and recirculate it to the system. In addition, as in the
engines, the power generated with the steam turbine is sold.

The slurry from the farms consists of approximately 6 % solids. Firstly, a me-
chanical treatment is carried out to remove the solid part from the rest using
rotatory equipment. Then, a chemical treatment in the liquid part is performed
to remove the chemical load. After that, the heat treatment uses the result of
the chemical treatment to separate the condensables from non-condensables in
an evaporator using superheated water generated in the exhaust steam boiler

1http://www.energyworks.com. Accessed 13.12.2017
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Table 7.1.: Nomenclature of parameters, variables and objectives used for the cogener-
ation optimization problem including physical quantities in which they are
measured.

Divi Diverter Engine i P tA,B,C,Du (%)
FCond Condensate effluent flow (kg h´1)
FEv Flow fed evaporator (kg h´1)
FFlueGas Flue gases flow (kg h´1)
FGas_i Flow natural gas Engine i P tA,B,C,Du (m3 h´1)
FSteam Steam flow to steam turbine (kg h´1)
HAmb Ambient humidity (%)
LHV Low heating value (kW h m´3)
pCond Condenser pressure (bar)
pEv Evaporator pressure (bar)
pSt_Gen Steam generator pressure (bar)
Pi Rated power Engine i P tA,B,C,Du (%)
PST Turbine power (kW)
P Total generated power (kW)
Qfuel Used fuel (kW)
TBank_ij Temperature gases Bank i P t1, 2u Engine j P tA,B,C,Du (˝C)
TAmb Ambient temperature (˝C)
TH2O_Ex Water temperature exchange (˝C)
TH2O_SH Water superheated temperature (˝C)
TH2O_TH Water temperature tubular heater (˝C)
TH2O_Tow Water temperature cooling tower (˝C)
Tin_ij Temperature intake air Bank i P t1, 2u Engine j P tA,B,C,Du (˝C)
TMixt_Eng_i Water temperature to cooling the mixture Engine i P tA,B,C,Du (˝C)

(water with a temperature around 120 ˝C). A tubular heater is used to recircu-
late the effluent to the evaporator and preheat it. The tubular heater uses water
from the refrigeration circuit, which preheats the intake air of the engines. The
non-condensable part goes with the solid part resulting from the mechanical
treatment and is sold as fertilizer. The condensable effluent is condensed again
with the water from the cooling towers. Finally, the sterilizer uses the heat from
the superheated water to purify the condensed effluent, thereby obtaining wa-
ter suitable for irrigation. An overview of all relevant parameters, variables
and objectives is given in Table 7.1.

As explained, the plant components are modeled by means of artificial ANNs.
ANNs are a method from machine learning that imitate the behavior of the
human brain in performing various computational tasks. A basic ANN con-
sists of interconnected layers each of which possesses a certain number of neu-
rons (Figure 7.1). The edges that connect the neurons of the different layers are
characterized by weights that allow each neuron to prioritize its inputs. With
the exception of the input neurons, the output of each neuron is obtained by
summing the weighted inputs and subsequently applying an activation func-
tion to the resulting weighted sum. For a comprehensive introduction to ANNs
see, e.g. [Ert11, Chp. 9].

236



7.1. Combined Heat and Power Plant

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 7.1.: Illustration of an ANN. Inputs are propagated from the input layer through
hidden layers to compute outputs at the output layer. Each neuron com-
putes an output by weighing and aggregating its inputs. Illustration by Kjell
Magne Fauske [Fau].

Each plant component is represented by a single ANN. The inputs of the ANN
are quantities measured during the operation of the plant that affect the com-
ponents output. The steam turbine, for example, produces the power PST,
which depends on the steam generator pressure pStGen, the steam flow FSteam
and the condenser pressure pCond. The ANNs are linked (connected) by means
of shared or common variables (e.g. an output variable of a network can be an
input variable of one or several other networks). The global model is shown in
Table 7.2 where a total of twelve ANNs are given: four for the engines, four for
the engine cooling circuits, one for the exhaust steam boiler, one for the steam
turbine condenser, one for the steam turbine and finally another one for the
slurry drying process.

Multilayer perceptrons trained by the back-propagation algorithm were used
as ANN model. A multilayer perceptron is a feedforward ANN – edges only
point from neurons of previous to direct successor layers – that may possess
multiple hidden layers. The back-propagation algorithm is a training algorithm
that finds optimal weights for the network edges. Edge weights for a given set
of input data are considered optimal if the error consisting of the difference
between the output recorded in data set and the output generated by the ANN
is minimal. The back-propagation algorithm feeds the error back to the ANN
to iteratively update the weights. See [Ert11] for a detailed description of the
back-propagation algorithm.
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Table 7.2.: Plant components modeled by ANNs. Inputs marked in red represent deci-
sion variables used for the optimization of the plant.

Plant component Inputs of the model Output

Cooling Engine A TH2O_Ex, TH2O_Tow, PA TMixt_Eng_A
Cooling Engine B TH2O_Ex, TH2O_Tow, PB TMixt_Eng_B
Cooling Engine C TH2O_Ex, TH2O_Tow, PC TMixt_Eng_C
Cooling Engine D TH2O_Ex, TH2O_Tow, PD TMixt_Eng_D
Engine A Tin_1A, Tin_2A, TAmb, HAmb, LHV, FGas_A

TBank_1A, TBank_2A, TMixt_Eng_A, PA,DIVA
Engine B Tin_1B , Tin_2B , TAmb, HAmb, LHV, FGas_B

TBank_1B , TBank_2B , TMixt_Eng_B , PB ,DIVB
Engine C Tin_1C , Tin_2C , TAmb, HAmb, LHV, FGas_C

TBank_1C , TBank_2C , TMixt_Eng_C , PC ,DIVC
Engine D Tin_1D, Tin_2D , TAmb, HAmb, LHV, FGas_D

TBank_1D, TBank_2D, TMixt_Eng_D, PD,DIVD
Exh. steam boiler PStGen, FFlueGas FSteam
Steam turbine TH2O_Tow, TST_Cond pCond
Condenser
Steam turbine pStGen, FSteam, pCond PST
Slurry process pEV, TH2O_SH, TH2O_Ex, TH2O_TH, FCond FEv

Preliminary testing was conducted to determine a suitable topology for the
multilayer perceptrons. It was concluded that the accuracy did not show any
significant improvement after increasing the number of hidden layers. There-
fore, the simplest option was selected: only one hidden layer. Similarly, some
initial tests were made with different number of hidden nodes. It was con-
cluded that when the number of neurons increases beyond twice the number
of inputs (i.e., a common practical rule), results barely improve. Therefore, the
adopted criterion in all the models is, using twice as many hidden nodes as the
number of inputs.

To train and test the ANNs, a large data set was collected trough a one-year
observation process in the real plant. In total, 213 parameters were identified
as being potentially relevant for training and validating the ANNs. Their val-
ues have been measured and retrieved with a resolution of one minute during
the whole period of observation. Firstly, a careful analysis of the data was per-
formed to choose the most relevant variables and also to filter outliers, missing
data or uninformative variables. Next, based on previous knowledge of the
system physics and also on a trial and error process, input variables for each
ANN were determined. To make the huge data set more tractable, the data set
resolution was changed to 10-minute separated values. This action can be re-
alized, because it was observed that observed parameters change very little in
that period, due to the slow dynamics of the plant. Thus, a total of about 40 000
samples were obtained for each variable. Now, for making the ANNs capable
of modeling the different dynamics of the cogeneration process throughout the
whole year, the data was partitioned into a training and test set: data from odd
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Table 7.3.: Mean absolute error (MAE) for training and testing samples for each neural
network.

Structure Training MAE Testing MAE

Cooling Engine A 3/6/1 0.21 % 0.23 %
Cooling Engine B 3/6/1 0.28 % 0.26 %
Cooling Engine C 3/6/1 0.10 % 0.13 %
Cooling Engine D 3/6/1 0.49 % 0.33 %
Engine A 10/20/1 0.39 % 0.42 %
Engine B 10/20/1 0.41 % 0.41 %
Engine C 10/20/1 0.38 % 0.42 %
Engine D 10/20/1 0.38 % 0.37 %
Recovery Boiler 2/4/1 0.61 % 0.63 %
Steam Condenser 2/4/1 1.01 % 0.96 %
Steam Turbine 3/6/1 0.67 % 0.70 %
Slurry Process 5/10/1 2.35 % 2.52 %

months (i.e. January, March, May, . . . ) are used to train the models and data
from even months (i.e. February, April, June, . . . ) are used to test the model-
ing performance of the trained ANNs. The whole training/testing process has
been carried out by using the OPTIBAT trainer. In addition, all the variables
have been normalized.

The results of the modeling are presented in Table 7.3, where the mean absolute
error MAE “ 1

K

řK
i“1 |yi ´ y1i| between the desired (yi) and actual (y1i) output

with K being the sample size, for both the training and the testing phase, is
shown. The errors observed are very small at less than 1 %. Only the slurry
process exhibits a slightly higher error, which can be attributed to little infor-
mation about its behavior. Even in the testing case, where the ANNs deal with
unseen data, the error is quite small. Note that the testing error represents
the model’s behavior better than the training error as it contains unseen data
during the training of the models. Hence, the testing error is used to evaluate
the model’s predictive behavior. For all the models, the difference between the
training error and the testing error was always less than 0.3 %. This means that
the models were capable of learning the dynamic of the systems and can make
accurate predictions when dealing with unseen data. These results validate the
modeling performance of the trained ANNs.

Once the CHP plant has been modeled by means of the connected ANNs, the
next step is to carry out an optimization process to improve the efficiency of the
plant operation. In particular, a focus is put on three performance objectives:
1) minimizing the amount of used fuel Qfuel (i.e. natural gas flow); 2) maxi-
mizing the useful thermal energy FEv (i.e. flow of the fluent in the evaporator)
and 3) maximizing the generated power P . To carry out the optimization, a
total of twelve real-valued decision variables are available in the plant; that
is, a set of input variables whose values can be changed freely (within certain
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bounds) by the plant operator. These twelve variables are those highlighted in
red in Table 7.2. The mathematical formulation of the corresponding MOOP is
as follows:

min
Tin_ij ,pSt_Gen,pEv,TH2O_SH

pQfuel,´FEv,´P q s.t. (7.1a)

FGas_A ` FGas_B ` FGas_C ` FGas_D “ Qfuel (7.1b)
PA ` PB ` PC ` PD ` PST “ P (7.1c)

30 ˝C ď Tin_ij ď 38 ˝C @i P t1, 2u, j P tA,B,C,Du (7.1d)
20 bar ď pSt_Gen ď 22 bar (7.1e)

0.13 bar ď pEv ď 0.17 bar (7.1f)
110 ˝C ď TH2O_SH ď 125 ˝C (7.1g)

7.1.2. Optimization of a Complex Cogeneration Process

The combined approach of using ANNs as black box functions may be ap-
plied in conjunction with any optimization algorithm that is able to handle
real-valued decision variables. For this reason, several state-of-the-art, MOEAs,
which use different search strategies, are considered for solving the proposed
optimization problem. The first step of the optimization procedure consists of
computing a finite set of points representation of the Pareto front (Section 4.1.2)
to attain a deeper understanding of the problem structure and to study the
tradeoffs that occur between the different objectives. The same algorithms
and their configuration that are used to benchmark ESPEA in Section 5.3.2
are retained to approximate the Pareto front of the cogeneration optimization
problem: ESPEA (Algorithm 1), IBEA (Algorithm 6), MOEAD (Algorithm 9),
NSGA-II (Algorithm 4), NSGA-III (Algorithm 10), SMPSO (Algorithm 7) and
SPEA2 (Algorithm 5).2

As explained before, the performance of the CHP is influenced by 213 different
parameters of which 36 were found to have a significant impact as indicated in
Table 7.2. While twelve of these parameters may be manipulated by the plant
operator as decision variables, there still exist 24 parameters, whose different
combinations of values potentially affect the optimization effort but cannot be
manipulated. For this reason 39 parameter observations were randomly picked
from the database, which come from a week in February and serve as represen-
tative sample. For each observation, the values of those 24 parameters were

2AbYSS [NLA`08] instead of SPEA2 was considered in the computational study in [BSE`16]. In
order to retain a consistent selection of algorithms throughout this work, AbYSS was replaced
by SPEA2. AbYSS was not among the top performing algorithms in [BSE`16] and SPEA2 is the
top performing algorithm in Section 5.3.2 making the exchange reasonable.
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Table 7.4.: Cogeneration study – IGD. Mean and standard deviation (as subscript) of
median IGD across all problem instances. Best performance is highlighted in
green, second best performance in blue.

ESPEA IBEA MOEAD NSGA-II

1.72e´41.89e´5 1.45e´31.83e´4 1.44e´31.66e´4 3.63e´42.09e´5

NSGA-III SMPSO SMS-EMOA SPEA2

1.18e´31.26e´4 3.39e´41.97e´5 1.46e´31.61e´4 2.35e´42.05e´5

extracted.The 24 parameters of each of the 39 observations serve as individual
problem instances for the computational study. The objective of this study is to
identify the algorithm that delivers the best performance by choosing optimal
values for the twelve decision variables across all 39 problem instances. Each
algorithm was run 100 times on every problem instance employing a popula-
tion size of 100. The algorithms used the same configuration as for the study in
Section 5.3.2 (Table E.2). 50 000 function evaluations were performed per run.
Preliminary tests have revealed that the populations of the algorithms assessed
in this study become evolutionary stable at 50 000 evaluations, implying that
the population exhibits little to no movement in the objective space after said
number of function evaluations have passed.

IGD (Definition 57) was chosen as performance metric, since it captures both
convergence and diversity. Since the Pareto fronts of the problem instances are
unknown, all nondominated solutions obtained across all algorithm runs of a
single problem instance are utilized as reference front (an example is given in
Figure 7.2). Objective values were normalized to mitigate the effect of differ-
ent scales. The study was performed within the jMetal framework version 4.5
[DN11] and the code is available online [Bra].

A preliminary analysis has revealed that the performance of an individual al-
gorithm only differs marginally across the different problem instances. This
observation indicates that the proposed approach is very robust with respect
to the parameters that cannot be influenced by the operator. For the sake of
clarity, only a summary of the results across all problem instances is provided
in Table 7.4. Full results are provided in the appendix in Table G.13.

The study results demonstrate that there exist clear performance differences be-
tween individual algorithms. Values of the IGD metric differ by a factor of ten
from best to worst. This implies that the choice of algorithm greatly influences
the optimization outcome. Best results are obtained using ESPEA, whereas
NSGA-II, SMPSO and SPEA2 show also good performances. IBEA, MOEAD,
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NSGA-III and SMS-EMOA, on the other hand, trail behind. The smallest aver-
age IGD is achieved by ESPEA.

A statistical analysis was performed to check the results for statistical signifi-
cance. The same procedure that was applied in Sections 5.3.2 and 6.3.2 is used
for this purpose. The Kruskal-Wallis test confirmed significant performance
differences on all 39 problem instances (Table G.19). ESPEA was found to out-
perform all other algorithms with confidence at a 95 % level on each problem
instance (Table G.20). Therefore, ESPEA should be considered the supreme
choice in obtaining finite set of points approximations of the Pareto front of the
cogeneration problem.

1.571

0.95

1.5712

3.6 1

1.5714

P

104

104 104

Qfuel FEv

1.05

1.5716
1.5718

1.13.5

Figure 7.2.: Pareto front of problem instance 2 out of 39 of the cogeneration optimization
problem. The front is a collection of all non-dominated solutions that were
retrieved in final populations during the study. The Pareto front that these
points describe can be approximated by a plane: P “ 15530` 5.13e´3FEv´

6.76e´7Qfuel.

A closer analysis of the Pareto front reveals possible explanations for the per-
formance differences observed. Figure 7.2 shows the Pareto front of a cogenera-
tion optimization problem instance. The rectangular shape of the front suggests
that all Pareto optimal points lie on a plane. A regression analysis has indeed
confirmed that, for 38 out of 39 problem instances, all points can be fitted in a
plane with a coefficient of determination of one and a root mean square error
of about 0.019.3 Interestingly, the Pareto front is almost a linear function, al-
though the problem itself is not. As possible explanation for this observation
may be traced to the activation function used by the neural network. A logistic
function 1{p1` expp´xqqwas used, which can be approximated by a piecewise
linear curve.

3The Pareto front of problem instance 1 out 39 (referenced as CG0 in Table G.13) consists of two
different planes.
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Figure 7.3.: Exemplary search results of ESPEA, IBEA, MOEAD, NSGA-II, NSGA-III,
SMPSO, SMS-EMOA and SPEA2 on problem instance 2 of the cogeneration
optimization problem for illustrating their performance.

Figure 7.3 offers an explanation to why algorithm performances can be divided
into two tiers. ESPEA, NSGA-II, SMPSO and SPEA2 capture the extent of the
Pareto front in its entirety, whereby ESPEA achieves the most equidistant ap-
proximation. NSGA-II obtains several dominated points as indicated in the
plot. IBEA, MOEAD, NSGA-III and SMS-EMOA focus mainly on a single edge
of the front. It is reasonable to assume that applying MOEAD and NSGA-III
with reference points from [DD98] as it is suggested in [LZ09, DJ14] is problem-
atic given the presented front. The reference points presumably do not cover
the front equally, which leads to a strong focus on boundary solutions. A bet-
ter choice of reference points might ameliorate this issue. Hypervolume-based
methods, such as SMS-EMOA and the IBEA configuration used in this study,
seem to struggle with the geometry of the front. One may speculate that, de-
spite objective normalization, boundary points yield the highest hypervolume
contributions on plane-shaped fronts. Recent studies have revealed that the
success of hypervolume-based MOEAs highly depend on the geometry of the
front [IISN17]. Although the figures only depict single runs, these basic obser-
vations could be confirmed for other problem instances and different runs as
well.

Robustness is another aspect of algorithm performance that is of interest in the
current setting. In practice, it is usually not feasible to conduct 100 runs and
choose the most preferable option from this pool of alternatives. If there is lit-
tle variability in the composition of the Pareto front approximation between
individual runs, however, it may be concluded that every single run yields a
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Figure 7.4.: Surface attainment plot of ESPEA for the 1st and 100th percentile of problem
instance 2 from the front (left) and the back (right). The 1st percentile depicts
the space that is dominated by all ESPEA runs combined, while the 100th

percentile shows the space that is dominated in all of the 100 runs.

satisfying approximation of the Pareto front. One way of assessing robustness
is considering the surface attainment [FF96] across multiple runs. Surface at-
tainment measures the space that is dominated by a given approximation set.
When measured across multiple runs, surface attainment yields the space that
is dominated in a given percentage of runs. Figure 7.4 provides an example
for the visualization of the surface attainment of ESPEA of the 1st and 100th

percentile. Both surfaces nearly coincide, suggesting that the optimization ap-
proach is very robust across different runs. Similar observations were made for
other problem instances.

The multiobjective approach generates a set of candidate solutions among which
a DM chooses an option that fits his preferences best. In the present context,
there exists an measure that may be used to evaluate the efficiency of the co-
generation process. In this work, the fuel efficiency is defined as the quotient
of the total power generated by the unused energy contained in the fuel:

εEE “ 100 ¨ P
Qfuel ´ FEv{0.9 . (7.2)

A question that needs to be addressed in this context is, whether the multi-
objective approach is suited to find a solution that maximizes the efficiency of
the cogeneration process. Table 7.5 shows the average of the best fuel efficiency
achieved by each algorithm. Detailed results are contained in the appendix
in Table G.14. The figures reveal that ESPEA, IBEA, MOEAD and SMPSO
obtain roughly the same fuel efficiency. The fuel efficiency of SMS-EMOA is
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Table 7.5.: Cogeneration study – fuel efficiency. Mean and standard deviation (as sub-
script) of median fuel efficiency across all problem instances. Best perfor-
mance is highlighted in green, second best performance in blue.

ESPEA IBEA MOEAD NSGA-II

70.55977.8805e´4 70.55884.5023e´4 70.56054.3261e´4 70.41520.0154

NSGA-III SMPSO SMS-EMOA SPEA2

70.48460.0067 70.56054.3270e´4 70.53940.0436 70.21200.0159

marginally worse. Larger performance differences are observed for NSGA-II,
NSGA-III and SPEA2. Overall, the results show that each algorithm is able to
find fuel-efficient solutions. The average fuel efficiencies obtained by the algo-
rithms are too similar to warrant a statistical analysis, since the expected effect
size is negligible.

If a choice rule such as (7.2) is given, it makes sense to focus the search from the
beginning on those regions of the Pareto front that yield the highest efficiency.
In a multi-objective context, however, a DM is usually not only interested in
obtaining a preconceived optimum, but also in comparing his choice to other
options available [Roy96, KT79]. Additionally, situations may occur in which
a deviation from a fuel-efficient operation is prudent. Short-term fluctuations
in the electricity prices might encourage the plant operator to increase power
output at the cost of increasing fuel consumption, thus generating larger prof-
its. Changes in ambient temperature possibly affect the need for heat during
the slurry drying process. Differences in the quantity and cost of slurry supply
might have an effect on the necessity to conserve or spend fuel.

ESPEA’s charge mechanism enables the plant operator to obtain more operat-
ing schedules that are close to but differ from the fuel efficiency optimum to
accommodate the needs for deviation outlined in the previous paragraph. Fig-
ure 7.5 illustrates the effect of using the fuel efficiency as scalarized preference
information in ESPEA. Equation (7.2) was additionally raised by the power of
three to give the search an even stronger focus to obtain fuel efficient sched-
ules. The density of solutions is higher in those regions that exhibit a high fuel
efficiency. At the same time, an approximation to the Pareto front in its entirety
is retained enabling the DM to compare the most efficient schedule to other
alternatives available.

Applying ESPEA’s charge mechanism focuses the search on generating more
solutions that are close to the efficiency optimum. In this context, it appears
reasonable to compare ESPEA to a SOO algorithm with respect to the efficiency
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Figure 7.5.: A single run of ESPEA using fuel efficiency as scalarization function on prob-
lem instance 31 of the cogeneration optimization problem.

optima that both algorithms obtain. To allow a fair basis of comparison, a GA
(Algorithm 15) was chosen that uses the same evolutionary operators as ES-
PEA and population size of 100. The GA uses SBX and polynomial mutation.
Both operators are configured in the same way as in ESPEA. Figure 7.6 depicts
a comparison of both algorithms’ performances across all test problems. Al-
though the GA converges faster, especially within the first 150 iterations, the
performances of both algorithms align the more function evaluations are per-
formed. Considering absolute values, the performance differences are almost
negligible.

Since the cogeneration optimization problem as presented in this section is em-
bedded in a real-time application, algorithm run times are a critical issue in this
context. As mentioned before, the thermodynamical processes inside the plant
change rather slowly. Therefore, the plant is expected to be reconfigured in reg-
ular intervals of 15 minutes. After 15 minutes have elapsed, the optimization is
performed using the values of the 24 significant parameters that are currently
observed. The plant rescheduling is performed automatically by the algorithm
choosing the solution of the final population possessing the highest efficiency.
A plant operator may optionally review the algorithm’s choice by analyzing the
tradeoffs observed on the Pareto front. A single algorithm run should therefore
take considerably less than 10 minutes on commercial off-the-shelf medium-
class computer hardware. With the exception of ESPEA and SMS-EMOA, all
algorithms finish 50 000 function evaluations within less than ten seconds on
an Intel Core i5-4300U processor with 8GB RAM running Microsoft Windows 8.1.
A single ESPEA run takes about half a minute, whereas an SMS-EMOA execu-
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Figure 7.6.: Comparison of ESPEA using fuel efficiency as scalarization function to a
GA. The figure shows the median (solid line) and the 95th percentile (dotted
line) of the best efficiency observed in each iteration and for every problem
across all 100 runs for each algorithm. The median of medians and the 95th

percentile of 95th percentiles across all 39 problems are depicted in the figure.

tion can take up to ten minutes. Although run-times also highly depend on the
implementation and the chosen programming language, the most important
factor is the computational complexity of executing a single iteration of a given
optimization algorithm. ESPEA and SMS-EMOA are steady-state algorithms
implying that more costly operations are performed per function evaluation.
As elaborated on in Section 4.1.2, SMS-EMOA computes the hypervolume con-
tribution (Figure 4.2a) of each population member in every iteration, which is
an NP-hard problem [BF09] resulting in a very high run-time. Considering all
this, one may draw the conclusion that every algorithm assessed in this study
is suitable for an on-line implementation with the exception of SMS-EMOA.

7.2. Building Energy Management Systems

Declaration: Parts of this section have been published in [BDMS16]. Some passages
are quoted verbatim.

BEMSs allow the automated operation of appliances and other devices in com-
mercial and residential buildings. Automated operation may pursue multiple,
potentially conflicting goals. This section presents a framework for modeling
devices in a residential building and finding optimal schedules for their oper-
ation. Three conflicting objectives are considered: 1) minimizing costs of total
energy consumption, 2) minimizing carbon dioxide emissions caused by en-
ergy consumption and 3) minimizing thermal discomfort of the residents. In
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the presence of multiple, conflicting objectives, a DM is required to choose an
operating schedule that suits her preferences. Choosing an optimal operation
schedule among a large set of Pareto optimal solutions, however, is arduous.
On the other hand, applying a priori technique methods to obtain a single op-
timal schedule is difficult if the DM has no prior knowledge about the possible
tradeoffs between the different objectives, on which she can build her prefer-
ences. Local scalarization optima may bridge the gap between these two ap-
proaches in providing the DM only with a limited set of interesting schedules
based on a scalarization function that is a rough estimate of the DM’s true pref-
erences.

7.2.1. A Multi-objective Framework for Building Energy
Management Systems

Modern buildings possess devices and systems whose operating times and
modes can be controlled by automated BEMSs [MMAS16]. The scope of such
systems is finding optimal operating schedules for these devices that adhere
to constraints and preferences set by the residents. Devices may be catego-
rized according to the degree of control the BEMS can exercise over them (Ta-
ble 7.6). Non-optimizable devices are controlled by the residents. The BEMS
is not allowed to make any autonomous decisions about how and when non-
optimizable devices are operated. Such devices include white goods such as
stoves and ovens or components of home entertainment systems such as TV
sets, video game consoles or personal computers.

There also exist devices over which neither the residents nor the BEMS exer-
cise control. Such devices are also classified as non-optimizable and include,
for example, photovoltaic (PV) systems. PV systems are installed on building
rooftops and transform solar radiation into electricity by using the photovoltaic
effect. Electricity generated by the PV system can either be consumed in the
building or fed into to the electric grid. The amount of electricity generated
depends mostly on the intensity of the solar irradiance and cannot be changed
by an operating mechanism.

Deferable appliances are devices, whose starting times may be delayed and
thus controlled by the BEMS. A resident usually specifies a temporal degree
of freedom, which states the maximum time the device may be delayed and
thereby implies a time windows within which the device has to be operated.
A dishwasher is an example for a deferable appliance. Residents usually do
not require a dishwasher to start right away once it is has been filled. Instead,
residents rather specify the dishwasher to be finished by a certain time. For
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Table 7.6.: Overview of device types in residential buildings. See [BDMS16].

Load-
flexible

Inter-
ruptible Description Examples

Non-optimizable Device may only be
controlled by the user

Stove, oven, TV,
video game consoles

7 (3)

Starting time of the
device may be
optimized within a
defined period

Conventional
dishwasher,
washing machine

7 3

Operation cycle of
device may be split into
one or more phases that
are separated by pauses

Interruptible
dishwasher,
micro-CHP plant

3 7
Device has alternative
load profiles for the
same operation cycle

Lighting, heat
pump, heating

3 3

Operation cycle consists
of multiple phases for
each of which
alternative profile may
be chosen

Air-conditioning,
gas-fired boiler,
battery

example, a resident may load and program the dishwasher in the evening after
dinner and requires dishes to be cleaned by the next morning.

Interruptible devices are appliances, whose operation cycle can be split into
multiple phases. The execution of such devices may be paused between in-
dividual phases, while individual phases are non-interruptible. The general
operation cycle of a dishwasher, for example, consists of the following phases:
heating water, cleaning (rinsing), draining and drying. Modern dishwashers
may perform multiple cycles of heating, cleaning and draining during a single
execution. A dishwasher may be interrupted between some of these phases
within their temporal degree of freedom. Of course, technical constraints limit
the amount of time that is allowed to pass between phases. For instance, heated
water eventually cools down rendering it less efficient for cleaning dishes. Any
deferable device can be modeled as an interruptible device possessing exactly
one non-interruptible phase. Deferable devices are therefore listed in Table 7.6
as interruptible in parenthesis.

There also exist devices that possess phases of variable length and a variable
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number of phases. For example, a micro-CHP plant in a residential building
burns natural gas to generate electricity and heat, which may be consumed by
HVAC devices. The BEMS may choose the starting and execution times of the
micro-CHP plant as well as the number of start-ups. Each execution time can
be understood as a phase.

Load-flexible devices possess alternative load profiles for the same operation
cycle. A load profile defines the power consumption of a device across time
during its operation. Heating elements are characterized, for example, as load-
flexible. Radiators usually possess multiple heating levels, which result in dif-
ferent amounts of heat being emitted by the radiator. The BEMS may exercise
control over such devices, for example, by temporarily lowering the heating
level in favor of saving energy costs during periods of high electricity prices.

Finally, there exist devices that are both load-flexible and interruptible. Such
devices may possess multiple load profiles for the same phase. A dishwasher,
for example, may theoretically heat water at different heat levels. Lower levels
require less energy but more time until the water has attained the necessary
temperature for cleaning, whereas higher levels require more energy and less
time. Devices of variable phase length and variable number of phases may
also be load-flexible. Air-conditioning, for example, can be run at different
cooling levels and temporarily paused if necessary. Lowering the cooling level
or completely turning off air-conditioning in times of peak electricity prices
may save energy consumption costs.

Load-flexible, interruptible devices build the basis of the proposed modeling
approach as any optimizable (or schedulable) device can be modeled as a load-
flexible, interruptible device. A non-load-flexible, interruptible device is a load-
flexible, interruptible device that possesses only a single load-profile for each
phase. Equivalently, load-flexible, non-interruptible devices are load-flexible
and interruptible devices whose operation cycle consists of a single phase.

The modeling of the optimization problem requires that each aspect of control,
exercised by the BEMS on the devices in the building, is encoded into a deci-
sion variable. The BEMS optimizes the scheduling of devices within a specified
time frame – the optimization horizon. For scheduling the devices, time is dis-
cretized into time slots of fixed lengths. The variable t denotes such a time slot.
If a device is scheduled to start in t, it is executed at the beginning of t. Each
device j possesses an earliest starting time, which is called release time rj and a
latest finishing time denoted by deadline dj . Both release time and deadline are
provided by the residents of the building. The length of an individual phase k
is denoted by pj,k. Interruptibility is modeled by associating every phase with
a decision variable sj,k. Each sj,k is an integer that states the delay, with which
phase k of device j is executed with respect to the earliest time it may be ex-
ecuted. Hence, sj,k “ 0 implies that phase k is directly executed after phase
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Interruption 1 Phase 1

rj djrj ` sj,1rj ` sj,1 rj ` sj,1 ` pj,1 ` sj,2

Phase 2Interruption 2

Figure 7.7.: Illustration of the encoding of a two-time interruptible device. Adapted
from [BDMS16].

k ´ 1. The vector sj :“ psj,1, sj,2, . . .q contains every delay of each individual
phase. If device j is deferable, then sj becomes a vector of length one, i.e. a
scalar. See Figure 7.7 for an illustration of an interruptible device. Constraint-
handling is simplified using the proposed encoding if a heuristic is applied,
since successive phases are always executed consecutively. Mathematical pro-
gramming formulations, however, require a different modeling approach (see
e.g. [SWSJ11]).

Operation modes can also be represented using an integer encoding. For each
device j at phase k operation mode aj,k,l is chosen, where aj,k is a vector of
feasible operation modes for device j in phase k. An operation mode aj,k,l is
represented by an integer where aj,k,l “ l, i.e. operation mode l of phase k and
device j is encoded by integer l. If device j possesses only a single operation
mode in phase k then aj,k,l “ aj,k,1 “ 1, i.e. l “ 1. In the implementation of
the simulation, decision variables for the operation modes are only introduced
if there is more than one operation mode to choose from.

HVAC devices can be started an arbitrary number of times by the BEMS during
the optimization horizon. To model this aspect in the problem formulation, a
decision variable nj is introduced that expresses the number of phases. Conse-
quently, sj is a vector of length nj . As indicated before, BEMS may also dictate
the execution time of HVAC devices. Thereby, the length pj,k of phase k of any
HVAC device j becomes a decision variable itself and is no longer a param-
eter of the inherent technical design of the device. For practical reasons, the
number of potential start-ups is capped in the simulation to a maximal number
nmax. The genome reserves space for nmax delays, phase lengths and opera-
tion modes for each HVAC device. If for any j it holds that nj ă nmax, the
remaining nmax ´ nj entries in the genome are simply ignored.

Summarizing, each optimizable device is characterized by four decision vari-
ables of which three are vectors. These four variables define the schedule of the
device.
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sj : vector of delays for each individual phase
pj : vector of lengths of each individual phase
aj : vector of operation modes for each phase
nj : number of operation cycles

As noted before, if any decision variable is not applicable to a given device,
e.g. the phase lengths of a dishwasher are subject to the chosen operation mode
and cannot be changed by the BEMS. They are simply ignored for this specific
device instance.

The schedules of the devices in a building allow inferring their internal states
at any time slot t. The internal states of the devices determine their current con-
sumption of energy and provision of energy and services such as temperature
regulation, which in turn affects the minimization of the objectives total energy
costs, carbon dioxide emissions and thermal discomfort. The next step of the
modeling consists of quantifying these internal states such that the resulting
values can be used to compute objective values.

The first aspect that is considered in this context is the electricity consumption.
For being able to perform the optimization, the BEMS is required to know the
electric energy that every device j consumes during any time slot t. Let Ej,k,l
denote the load profile of device j in phase k of operation mode l. The amount
of energy a device consumes in a time slot t is equivalent to the integral of
the load profile in t. Based on the chosen delay sj,k and operation mode aj,k,l,
the electric energy that appliance j consumes in time slot t is expressed by the
function Ej,k,lptrefq. The time (i.e. the number of time slots) that has elapsed,
since phase k has been started tref is defined relative to t:

tref “ rj `
˜

k
ÿ

i“1

sj,i

¸

`
˜

k´1
ÿ

i“1

pj,i

¸

´ t. (7.3)

The definition of the reference time tref enables the BEMS to determine how
much energy device j consumes in time slot t given its choice of sj , aj . The
electric energy Ejptq that device j consumes in time slot t can then be defined
in the following way:

Ejptq “

$

’

&

’

%

Ej,k,lptrefq if t P
«

rj `
˜

k
ÿ

i“1

sj,i

¸

`
˜

k´1
ÿ

i“1

pj,i

¸

, rj `
k
ÿ

i“1

sj,i ` pj,i
ff

E
standby
j else.

(7.4)

The range definition of t for which the case Ej,k,lptrefq applies coincides with
the time slots in which phase k is active. Device j only consumes the energy
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Ej,k,lptrefq in tref if phase k is active. If no phase is active in t the device j con-
sumes the standby consumption E

standby
j . Note that the standby consumption

may vary in real-world appliances depending on which phase has been most
recently finished, e.g. a dishwasher that has just heated the water for cleaning
might maintain the water temperature by consuming more energy as long as
the next washing phase has not started. For clarity and simplicity, this behavior
is not explicitly considered in the formal model.

Equation (7.4) can also be used to model the provision of electricity within
the building by schedulable devices. The function Ej,k,lptrefq then yields the
amount of energy device j produces in phase k given operation mode l. The
value Ej,k,lptrefq is negative if j generates electricity to distinguish between
consumption and production. The micro-CHP plant, for example, burns nat-
ural gas to generate heat and electricity. In contrast to household appliances
that possess fixed phase lengths, the BEMS can control the length of individ-
ual phases of phase-length-variable devices such as the micro-CHP plant. The
load profile of any such device is then only considered within the confines of
the phase length. A micro-CHP plant, for example, requires a start-up time,
in which it produces less energy and heat, before it is fully operational and
generates a constant power output once it has reached its optimal operating
point. Note that the same load profile is used across all executed phases and
E

standby
j “ 0 for any electricity-producing device.

In addition to appliances that consume electricity, there also exist devices that
consume natural gas such as the micro-CHP plant. Equation (7.4) can also be
used to model gas consumption. Instead of a load profile Ej,k,l a gas consump-
tion profileGj,k,l is associated with each gas consuming device and the function
Gj,k,lptrefq yields the gas consumption with respect to the time that has elapsed,
since the device has been started. The gas consumption Gjptq of a gas consum-
ing device j can then be described by

Gjptq “

$

’

&

’

%

Gj,k,lptrefq if t P
«

rj `
˜

k
ÿ

i“1

sj,i

¸

`
˜

k´1
ÿ

i“1

pj,i

¸

, rj `
k
ÿ

i“1

sj,i ` pj,i
ff

0 else.
(7.5)

Gas consuming devices do not burn any gas if they are not active and there-
fore have no standby consumption. Similar to the load profile of the micro-
CHP plant, the gas profile Gj,k,l can also be used to model time-variable con-
sumption in the start-up phase of gas consuming devices. Additionally, gas-
consuming devices usually require a minimum downtime before they may be
restarted. Such downtimes are included in the phase lenghts, i.e. the phase
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length pj,k covers the period in which gas is burned and electricity is gener-
ated and the minimum downtime. A phase is therefore at least as long as the
minimum downtime.

The final step of the device modeling is concerned with the provision of heat
and cooling for regulating the temperature inside the building. HVAC devices
consume either gas or electricity to generate heat or cooling. Air-conditioning
uses electricity to cool down the temperature inside the building. The micro-
CHP plant and the condensing boiler, on the other hand, first feed their gen-
erated heat into a hot water storage tank. Energy, in the form of warm water,
is extracted from the hot water storage tank to heat the building. Residents
also utilize hot water from the hot water storage tank for other purposes in the
household, for example for cooking or showering.

The provision of heat by HVAC devices can be described in the same manner
as the consumption of electricity and gas (Equations (7.4) and (7.5)). Let Qj,k,l
denote the energy output – either heat or cooling – of device j in phase k and
operation mode l. The function Qj,k,lptrefq yields the current energy provision
with respect to the time that has elapsed since phase k has been started:

Qjptq “

$

’

&

’

%

Qj,k,lptrefq if t P
«

rj `
˜

k
ÿ

i“1

sj,i

¸

`
˜

k´1
ÿ

i“1

pj,i

¸

, rj `
k
ÿ

i“1

sj,i ` pj,i
ff

0 else.
(7.6)

The final component of the model of the residential building consists of the
temperature model. A simplified model is chosen that considers only the en-
ergy flows between the building components. The temperature T ptq inside the
building in any time slot t depends on the temperature in the previous iteration
T pt´1q and the energy delta Q∆ptq that is either added to or removed from the
air inside the building in the form heat or cooling:

T ptq “ T pt´ 1q ` Q∆ptq
A ¨ h ¨ ρair ¨ cair , (7.7)

where A and h are the area and height of the building, and ρair and cair are
the density and the specific heat capacity of air. The energy delta can be de-
composed into heat added by the heating Qheatptq, losses or gains Qlossptq that
occur as a result of the temperature difference between inside and outside
the building, cooling caused by the air-conditioning QACptq and other sources
Qotherptqthat include waste heat of household devices and residents present in
the building:

Q∆ptq “ Qheatptq `Qlossptq ´QACptq `Qotherptq. (7.8)
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The cooling of the air-conditioning enters Equation (7.8) as negative term, since
cooling removes energy in form of heat from the building. A subscript is used
to index the cooling, since QACptq corresponds to the energy produced by the
air-conditioning according to Equation (7.6). In contrast, Qheatptq is energy ex-
tracted from the hot water storage tank. The heat loss or gain of the building
Qlossptq is computed as follows:

Qlossptq “ pT outpt´ 1q ´ T pt´ 1qq ¨Aenv ¨ hloss, (7.9)

where T out is the outside temperature, Aenv the area of the building envelope
and hloss is a heat transfer coefficient.

As mentioned before, Qheatptq is energy that is extracted from the hot water
storage tank. In the proposed scenario, the extracted Qheatptq is managed by a
controller and the BEMS does exercise direct influence on the amount of water
that is extracted. Instead, the residents set a target temperature T set for the
building and the BEMS schedules the micro-CHP-plant and the condensing
boiler such that the target is met. The necessary heat QNHptq for maintaining
the target temperature is calculated using the following equation:

QNHptq “ Qlossptq ` pT set ´ T pt´ 1qq ¨A ¨ h ¨ ρair ¨ cair. (7.10)

The amount of heat that can be extracted from the hot water storage is limited
by the temperature of the hot water storage tank. The hot water storage tank
possesses a minimum temperature T heat

WS above which hot water may extracted
for heating. If the temperature of the hot water tank TWSptq falls below T heat

WS ,
either the micro-CHP plant or the condensing boiler are required to heat the
water in the storage tank before any further water may be extracted for heating
purposes. Additionally, the hot water storage possesses a maximum energy
Qmax

WS that can be extracted at most per time slot. Based on these constraints, the
amount of energy that is extracted, is defined as

Qheatptq “
#

maxp0,minpQNHptq, Qmax
WS qq if TWSptq ą T heat

WS

0 else.
(7.11)

A model for the temperature of the warm water storage is presented next. The
temperature of the hot water storage TWSptq in time slot t depends on its tem-
perature TWSpt´1q in the previous time slot t´1 and the energy that is fed into
and extracted from the storage. These include the heat generated by the micro-
CHP plant and the condensing boiler Qinptq “ QCHPptq `QCBptq, the extracted
heatQheatptq for heating the building, the energy of the warm water used by the
residentsQwarmptq and the energy required for maintaining the current temper-
ature of the water storage tankQstandby

WS ptq. The sum of theses energies is divided
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by the product of the water storage volume VWS, the density and specific heat
capacity of water ρwater and cwater4 to obtain the temperature change:

TWSptq “ TWSpt´ 1q ` Qinptq ´Qheatptq `Qwarmptq ´Qstandby
WS ptq

VWS ¨ ρwater ¨ cwater . (7.12)

Additionally, The hot water storage possesses a minimum Tmin
WS and maximum

operation temperature Tmax
WS . The storage temperature is required to remain in

these bounds. All schedules that result in the violation of these boundaries in at
least one time slot are infeasible. Since the hot water storage is not perfectly in-
sulated, its heat dissipates into the building.5 The energy required to maintain
the current temperature of the hot water storage is obtained by

Q
standby
WS ptq “ pTWSpt´ 1q ´ T pt´ 1qq ¨ hloss

WS , (7.13)

where hloss
WS is the heat transfer coefficient of the hot water storage. The com-

plete thermal and scheduling model allows defining the objectives that are op-
timized.

Residential buildings are provided with electricity and natural gas by a utility
company. In the proposed framework, it is assumed that gas can be purchased
at a fixed price pg and that the price for electricity pbptq varies across time, i.e.
in each time slot t residents may pay a different price per unit for the amount
of electricity the buy from the utility. If the amount of electricity generated
in the building exceeds the building’s consumption, the surplus is sold to the
utility. The price per unit of energy sold depends on its source of generation.
Electricity is generated in the building by the micro-CHP plant and a PV sys-
tem. The energy output of both devices at time t is denoted by ECHPptq and
EPVptq. Note that the sign of both quantities is negative to indicate that energy
is generated instead of consumed. Electricity generated by a micro-CHP plant
and PV system is remunerated at pCHP and pPV, respectively, per unit. The final
price is determined by the share of each generating device in the total amount
of electricity produced (Equation (7.14)).

Finally, the model implements the notion of a load limitation mechanism. The
utility may be interested in capping peak consumption to guarantee the stabil-
ity of the electric grid in providing customers with an incentive to limit their
energy consumption in times of peak demand. In case the total amount of en-
ergy bought exceeds the threshold Emax, residents are obliged to pay a penalty
P pt, Eptq ´ Emaxq. The penalty is also time-variable such as the purchase price
of electricity and depends on the excess demandEptq´Emax. Let J be the set of

4In this simplified model it is assumed that the specific heat capacity is constant i.e. does not
depend on the water temperature.

5The loss Qstandby
WS ptq forms part of the heat loss/gain expressed by Qotherptq.
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all devices in the building and Eptq “ ř

jPJ Ejptq and Gptq “ ř

jPJ Gjptq. The
energy costs at any time slot t is computed as

Cptq “ pptq ¨ Eptq
l jh n

energy costs/
renumeration

` pg ¨Gptq
l jh n

gas costs

`P pt, Eptq ´ Emaxq ¨ 1EptqąEmax
l jh n

penalty for violation of load limitation

, (7.14)

where

pptq “
$

&

%

pbptq if Eptq ě 0
ECHPptq ¨ pCHP ` EPVptq ¨ pPVptq

ECHPptq ` EPVptq if Eptq ă 0.
(7.15)

The total energy costs C are obtained by summing the costs across all time
slots: C “ ř

tPH Cptq, where H is the set of considered time slots. Negative
costs imply that the residents earn money by selling unused electricity.

Carbon dioxide emissions are caused by burning gas in the micro-CHP plant
and condensing boiler or by consuming electricity bought from the grid. Each
unit of gas causes a fixed emission of eg. The electric grid is fed by numerous
energy suppliers. Suppliers generate electricity using different technologies
that potentially involve the emission of carbon dioxide. The proposed frame-
work assumes that there exists a signal ebptq that states the average amount
of carbon dioxide emitted for generating a unit of electricity that can be pro-
cured from the grid in time slot t. The carbon dioxide emitted in t is the sum of
the emission of electricity bought from the grid and of the natural gas burned
locally:

Bptq “ ebptq ¨ Eptq ¨ 1Eptqą0 ` eg ¨Gptq. (7.16)

Total carbon dioxide emissions are summed across the entire optimization hori-
zon to obtain the overall carbon dioxide emissions B “ ř

tPH Bptq.
The last objective consists of the average deviation from a target lower T l and
upper temperature Tu set by the residents for the building. Whenever the tem-
perature in the building falls below T l or rises above Tu discomfort incurs:

Dptq “ `

T l ´ T ptq˘ ¨ 1T ptqăT l ` pT ptq ´ Tuq ¨ 1T ptqąTu . (7.17)

The average thermal discomfort is obtained by summing the discomfort of all
time slots and dividing the result by the number of time slots of the optimiza-
tion horizon: D “ ř

tPH Dptq{|H|. To prevent extreme temperature drops and
spikes, residents are allowed to set a minimum Tmin and a maximum temper-
ature Tmax that defines bounds in which the building temperature has to stay
in all time slots. Any schedule that results in the building temperature to move
beyond these bounds is considered infeasible. An illustration of the thermal
discomfort is provided in Figure 7.8. An overview of all relevant parameters,
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Dptq

T ptq
Tmin T l T u Tmax

Figure 7.8.: Illustration of how thermal discomfort is computed. If the building tem-
perature T ptq is within the comfort threshold rT l, T u

s no discomfort incurs.
If the temperature lies either in rTmin, T l

q or pT u, Tmax
s the discomfort in-

creases linearly with respect to the distance to the comfort threshold. Any
schedule that results in the temperature falling below Tmin or rising above
Tmax is considered to be infeasible, which is indicated by a discomfort of
positive infinity.

variables and functions is given in Table F.6. The complete problem formula-
tion is given in Equation (7.18a).

min
sj ,pj ,aj ,nj

pC,B,Dq s.t. (7.18a)

Tmin ď T ptq ď Tmax @t P H (7.18b)

Tmin
WS ď TWSptq ď Tmax

WS @t P H (7.18c)

rj `
nj
ÿ

i“1

sj,i ` pj,1 ď dj @j P J (7.18d)

By rescheduling devices within the optimization horizon, different costs, emis-
sions and discomfort may occur. There exists an inherent tradeoff between
the three objectives. Minimizing costs favors executing devices during periods
in which electricity is cheap. Such periods, however, may not be character-
ized by low carbon dioxide emissions of energy sold by the utility. Heating
the building in winter and cooling it in summer requires the operation of the
air-conditioning or the condensing boiler and the micro-CHP plant. All three
devices either consume electricity or natural gas, which leads to an increase in
costs and emissions.
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Table 7.7.: Overview of the problem instances in the BEMS study.
RW1/RS1 RW2/RS2 RW3/RS3 Temporal flexibility

Washing machine deferrable deferrable deferrable and load-flexible 08:00 - 17:00
Tumble dryer deferrable interruptible interruptible and load-flexible 18:00 - 21:00
Dishwasher deferrable interruptible interruptible and load-flexible 10:00 - 18:00

7.2.2. Optimal Operating Schedules in Residential Buildings

The computational study considers an optimization horizon of 24 hours with
time slots of one minute length and full information about all relevant parame-
ters within the optimization horizon, i.e. there exist perfect weather predictions
for the next 24 hours and there is no uncertainty about the behavior of the res-
idents. Such simplifications may appear unrealistic within a practical scenario,
however they are a necessary requirement for allowing a meaningful analysis
of the optimization results. Otherwise, schedules that are optimal ex-ante, may
turn out to be not optimal ex-post, e.g. if the schedule expected a different res-
idential behavior. Such scenarios should be dealt within the realm of robust
optimization. Instead, the scope of this study is the exploration of tradeoffs
that occur between objectives as the result of selecting different schedules and
how the selection process can be simplified for the residents

Six different scenarios – RW1-RW3; RS1-RS3 – are considered each of which
consists of finding optimal schedules for a single residential household (Ta-
ble 7.7). In each scenario, the residential building possesses a micro-CHP plant,
a condensing boiler, a hot water storage tank, a PV system, a dishwasher, a
washing machine and a tumble dryer. The six scenarios comprise two dif-
ferent weather settings: a cold winter day in January (RW1-RW3) and a hot
summer day in June (RS1-RS3). The weather strongly affects the demand for
heating and cooling and the generation of electricity by the PV system, which
is why its effect on the optimization outcome in studied. Air-conditioning is
only considered in the summer scenario. The scenarios are further categorized
by the type of flexibility the dishwasher, washing machine and tumble dryer
exhibit: deferrable (RW1/RS1), deferrable/interruptible (RW2/RS2) and de-
ferrable/interruptible and load-flexible (RW3/RS3). The effect of flexibility on
the optimization results can therefore be assessed separately.

Load profiles of the washing machine, dishwasher and tumble dryer were ob-
tained from measurements in the laboratory environments of the KIT Energy
Smart Home Lab (ESHL)6 Technical parameters for the HVAC devices were
taken from real products (Table 7.8) if possible and missing data was amended

6http://www.organicsmarthome.org. Accessed 04.12.2017.
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Table 7.8.: Overview of HVAC devices used in the BEMS study.
Appliance Product Manufacturer

Micro-CHP Plant ecoPower 1.0 Vaillant
Condensing boiler Logamax plus GBH172 Buderus
Hot water storage tank VITOCELL 100-E Viessmann

by proper considerations. Load profiles are documented in Appendix F and in
the digital appendix.

A four person household served as blueprint for modeling the residential build-
ing. The floor space and ceiling height were chosen as A “ 130 m2 and h “ 2 m.
The German standard load profiles of households H0 provided by the German
Association of Energy and Water Industries was chosen to model the electricity
consumption of non-optimizable devices. Time-variable electricity prices cor-
respond to those employed in the project iZeus [Dal13]. The same load limita-
tion signal as employed by Allerding et al. [All14] was used. The penalty for
exceedance was set as paying twice the current price. A natural gas price of
9.16 Cent per kW h was chosen, which reflect current tariffs in Germany. Feed-
in tariffs are based on the German Renewable Energy Act with 12.56 Cent per
kW h for PV systems and 8.53 Cent per kW h for micro-CHP plants. Carbon
dioxide emissions of electricity obtained from the grid is based on data from
the Fraunhofer Institute of Solar Energy7. The hot water consumption profile was
obtained from Directive 2010/30/EU of the European Commission8. Lower and
upper bounds for the temperature were set to T l “ 19.5 ˝C and T u “ 20.5 ˝C
in January and to T l “ 21.5 ˝C and T u “ 22.5 ˝C in June. The minimum
and maximum temperatures inside the building were set to Tmin “ 18 ˝C and
Tmax “ 25 ˝C in all scenarios. Outside temperatures were obtained from the on-
line weather portal wetter.com at an hourly resolution in Karlsruhe for the dates
7.1.2015 (RW1-RW3) and 4.6.2015 (RS1-RS3). Solar irradiance was measured in
the ESHL. The code of the simulation is available online [Bra].

As stated in the introduction, the main focus of this study is identifying sched-
ules that are local scalarization optima. For this purpose, the algorithmic frame-
work that was introduced in Algorithm 11 is applied. Pareto front approx-
imations in step 1 of Algorithm 11 may be obtained by various methods –
mathematical programming, metaheuristics or a combination of the two. In
optimization, it is usually advisable to first try an exact approach to solve an
optimization problem before applying a heuristic, since the latter are not guar-
anteed to find an optimum within a certain error bound. If no canonical form

7https://www.energy-charts.de/power_de.htm. Accessed 04.12.2017.
8http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32013R0812.

Accessed 04.12.2017.
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can be formulated that is an adequate representation of the physical reality or
if the mathematical program cannot be solved within a reasonable time frame,
heuristics should be applied to solve the problem.

Scheduling problems such as the one presented in Section 7.2.1 are usually ex-
pressed as integer programs (IPs).9 In an IP, decision variables are integers
and objective functions and constraints are linear.10 IPs are known to be NP-
hard [Kar72] implying that there is no known algorithm that solves a general IP
within polynomial runtime. As the number of decision variables increases, IPs
usually become increasingly difficult to solve within a reasonable time frame
and mathematical programs often do not find close approximations of optima
at all. In such cases, metaheuristics often outperform mathematical program-
ming techniques [APSS12]. Additionally, there exist few mathematical pro-
gramming techniques for three objective IPs (see [GEF16, Sec. 19.4.2]) On top
of that, these techniques do not perform well for a larger number of decision
variables [PGE09]).

For these reasons, an evolutionary approach was chosen to approximate the
Pareto fronts of the six scenarios. Integer variables were encoded as real num-
bers, i.e. the values stored in the genome were rounded to obtain the devices’
schedule. In general, integers can either be directly used as values in the genome
or encoded as reals or binary strings. These three options possess different ad-
vantages and disadvantages. Indirect encodings such as the real and binary
string representation possess the advantage that there exist efficient recombi-
nation and mutation operators for both, whereas search operators that operate
directly on integers are not well explored [ES`03].

On the other hand, the performance of search operators operating on indirect
encodings depend on the composition of the problem domain. Binary strings
possess a fixed length of a bits, which allows the representation of 2a different
integers. If there are b different integers to represent, then a must be chosen
such that 2a ě b. This implies that there exist 2a ´ b strings that do not map to
a feasible value of the problem domain. Such strings must be either repaired or
discarded if they are the result of a recombination or mutation operation.

Search operators on real-valued integer representations might be inefficient if
the number of feasible integers is small, since rounding may result in small
changes in the genome not translating to the decoded integer variable. For
example, if there exist only two integers t0, 1u any mutation operation needs to
make the encoded variable either smaller or greater than 0.5 to change the value

9The proposed problem as presented in Section 7.2.1, however, is not presented in the canonical
form of an IP.

10There exists variants of IPs that, for example, also allow real-valued decision variables – mixed
integer linear programs (MILPs) – or non-linear constraints and objective functions – non-linear
integer programs – among others.
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Table 7.9.: BEMS study – IGD. Median and IQR (as subscript) results after 50 000 func-
tion evaluations. Best performances are colored in green, second best in blue.
NaN implies that the algorithm did not find any feasible candidate solution.

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

RW1 4.862.17 0.160.39 4.66NaN 1.471.94 1.672.42 0.071.21 2.922.47 1.552.01

RW2 11.943.83 0.231.39 10.36NaN 3.584.83 5.586.19 0.120.36 7.125.10 4.275.92

RW3 5.001.99 0.220.55 1.71NaN 1.812.18 1.542.49 0.051.73 3.232.16 1.632.58

RS1 0.070.02 0.090.01 NaNNaN 0.080.02 0.080.01 0.060.02 0.080.01 0.080.02

RS2 0.070.02 0.080.01 NaNNaN 0.080.02 0.080.01 0.060.01 0.080.02 0.080.01

RS3 0.090.03 0.100.01 NaNNaN 0.110.02 0.110.01 0.070.02 0.110.02 0.100.03

of the decoded integer. Instead, bit-flip mutation would ensure that a mutation
always translates to a change in the decoded decision variable. In the proposed
problem, an optimization horizon of 24 hours at a one minute resolution results
in 1440 time slots, which is a sufficiently large number for SBX and polynomial
mutation to perform well.

Using a real-encoding for the decision variables allows reusing the same al-
gorithms that have been studied in Sections 5.3.2 and 7.1.2 for approximating
the Pareto fronts: ESPEA (Algorithm 1), IBEA (Algorithm 6), MOEAD (Al-
gorithm 9), NSGA-II (Algorithm 4), NSGA-III (Algorithm 10), SMPSO (Algo-
rithm 7), SMS-EMOA (Algorithm 8) and SPEA2 (Algorithm 5). The algorithms
were configured in the same manner as in the previous two studies (Table E.2).
A population size of 100 and 50 000 function evaluations were chosen, since
it was observed that the populations of the algorithms became evolutionary
stable after 50 000 function evaluations had elapsed.

IGD is used as indicator to evaluate the algorithms’ performances. Reference
Pareto fronts for computing IGDs were generated for each problem instance
from the Pareto front approximations of every algorithm across all 100 runs.
Table 7.9 shows the median IGD after 50 000 function evaluations for each algo-
rithm and scenario. There exists a notable performance difference between the
summer and winter scenarios. The results for the IGD suggest that the major-
ity of the algorithms appear to not perform very well in the winter scenarios.
In the median run, the approximations found by ESPEA, MOEAD, NSGA-II,
NSGA-III, SMS-EMOA and SPEA2 appear to be far away from the true Pareto
front as indicated by the large IGD. Only IBEA and SMPSO manage to obtain
satisfactory results. In the summer scenarios, all algorithms exhibit a similar
performance with the exception of MOEAD, which is not able to find a sin-
gle feasible solution within the median number of runs. SMPSO performs best
on all problem instances. IBEA delivers the second best results in the winter
scenarios and ESPEA obtains the second best performance in the summer sce-
narios.
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Table 7.10.: Extreme objective values obtained among Pareto optimal points in the BEMS
study.

Cost/ct Emissions/g Discomfort/˝C

min max diff min max diff min max diff

RW1 1936 1964 27 49689 49832 144 0 0.02 0.02
RW2 2009 2051 42 49733 49801 68 0 0.02 0.02
RW3 2008 2056 121 49707 49828 121 0 0.02 0.02
RS1 123 1951 1828 9538 49829 40291 0 0.72 0.72
RS2 112 2030 1918 9415 49799 40384 0 0.73 0.73
RS3 126 2029 1903 9735 49801 40065 0 0.61 0.61

A possible explanation for the large performance difference between summer
and winter scenarios can be found in the magnitude of the extreme values of
the Pareto fronts. Recall that IGD normalizes objective values based on the
ideal and nadir point.11 Table 7.10 reveals that the difference between maxi-
mum and minimum objective values is much larger in the summer compared
to the winter scenarios. This can be explained by a higher solar irradiance in
the summer facilitating schedules, in which the majority of the electricity con-
sumed in the building is supplied by the PV system. The small differences
between maximum and minimum objective values in winter leads to normal-
ization overstating the distance of any objective vector to the Pareto front in
comparison to the summer scenario.

Further reasons for the observed performance differences between the algo-
rithms may be found by analyzing the Pareto fronts of the problem instances.
Figures 7.9 and 7.10 depict the Pareto fronts of the six problem instances. The
shapes of the Pareto fronts are more similar within the same season and differ
largely between seasons. The flexibility of the household appliances appears to
have little effect on the optimization outcome. Most notably, the Pareto fronts
of the summer scenarios are degenerate as the objectives costs and emissions
are aligned. These fronts, however, feature a stark tradeoff between costs/e-
missions and thermal discomfort. In winter, there exist tradeoffs between all
three objectives instead. Summer and winter scenarios have in common that
their Pareto fronts are disconnected. In winter, the fronts mainly consist of
three vertically disconnected curves and in summer vertically disconnected
lines form the Pareto front. This may explain, why SMPSO is the top perform-
ing algorithm. As observed in Section 5.3.2, SMPSO exhibits a notable per-
formance drop between two and three objective problems compared to other
algorithms. Since the Pareto fronts of the proposed scenarios mainly consist
of disconnected lines and curves, these problems are more similar to two ob-

11Normalization is mandatory to give each objective equal weight in the distance computation in
the IGD metric.
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jective than three objective problems for niching mechanisms distributing so-
lution uniformly across the Pareto front. This means that niching mechanisms
that perform well for two objectives might possess an advantage on these six
problems over three objective problems that possess a non-degenerate, contin-
uous front.
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Figure 7.9.: Pareto fronts of the problems RW1, RW2 and RW3. The values in parenthesis
indicate azimuth and elevation of the perspective.

A statistical analysis is performed to test the performance differences for sig-
nificances (see Table G.18 for the results of the Anderson-Darling and Kruskal-
Wallis tests). The results in Table 7.11 show that ESPEA is outperformed with
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Table 7.11.: BEMS study – IGD. The table shows p-values of the post-hoc analysis. Green
cell color indicates that ESPEA outperforms the corresponding algorithm
with confidence at a 95 % level, the blue color without confidence. Red cell
color indicates that ESPEA is outperformed by the corresponding algorithm
with confidence at a 95 % level.

IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

RW1 0.0000 0.0004 0.0000 0.0000 0.0000 0.0034 0.0000
RW2 0.0000 0.0001 0.0000 0.0000 0.0000 0.0004 0.0000
RW3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
RS1 0.0000 0.0000 1.0000 0.0607 0.0000 0.0037 1.0000
RS2 0.0000 0.0000 0.7955 0.1489 0.0000 0.3934 0.9989
RS3 0.9877 0.0000 0.0033 0.0000 0.0000 0.0013 0.9960

confidence by all other algorithms in the winter scenarios. In the summer sce-
narios, ESPEA has already been established as the second-best performing al-
gorithm. However, in only about half of the comparisons the performance dif-
ference is significant. This observation reflects the fact that the IGD achieved
by the algorithms is very similar across the summer scenarios.

ESPEA’s rather mediocre performance may be explained by another observa-
tion. Preliminary studies have revealed that the majority of the candidate so-
lutions in the initial population represent infeasible schedules. This is likely to
be caused by the latin hypercube sampling, which tries to distribute the initial
population uniformly across the search space. Although ESPEA is able to han-
dle constrained optimization problems, the algorithm was not specifically de-
signed to execute an efficient search strategy if large portions of the search space
are infeasible or even the entire initial population is infeasible. If the entire ini-
tial population is infeasible, the individual that exhibits the least constraint vi-
olation becomes the sole archive member.12 The archive can only grow, when
feasible schedules are found. This is likely to impede the search in early itera-
tions, since only a single archive member can serve as parent to generate new
candidate solutions. ESPEA’s performance on constrained optimization prob-
lems could be improved by applying more sophisticated constraint-handling
techniques [Coe02] or by redesigning the algorithm to also archive infeasible
candidate solutions (e.g. [SS13]). Such considerations, however, go beyond the
scope of this work.

In a live system, residents would set a target temperature T set, a comfort thresh-
old rT l, T us and the temporal degrees of freedom – release time rj and deadline
dj – of each optimizable appliance that is not an HVAC device. Using predic-
tions for the weather, non-optimizable load and warm water consumption, the

12The sum of absolute constrained violations was applied as selection criterion in all algorithms to
compare infeasible solutions to each other.
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BEMS would perform a multi-objective optimization and present the residents
with the Pareto front approximation. The resident would then be required to
act as DM and select a preferred schedule among the Pareto optimal set that
is implemented.

Choosing a preferred schedule from a visual or tabular representation of the
Pareto front approximation is a non-trivial task [GEF16]. The Pareto fronts of
the six scenarios exhibit multiple convex and concave bulges and mainly con-
sist of disconnected lines and curves. These irregular shapes make it difficult
to identify a single schedule that is particularly attractive to implement. The
notion of local preference optima, however, can be applied to reduce the large
Pareto optimal set to a small number of candidate schedules. The reduced can-
didate set contains only the most interesting alternatives, since local preference
optima represent the best choice in their immediate neighborhood in the objec-
tive space.

In the live system, the residents would choose a scalarization function that is
a suitable representation of their preferences. Instead of showing the Pareto
front approximation to the residents, the BEMS would perform Step 2 and 3 of
Algorithm 11 to approximate the local scalarization optima of the Pareto front.
The residents would then be presented with the local scalarization optima and
select a preferred schedule. The presentation can take place visually by plotting
the Pareto front and the scalarization optima in a single graph or by listing the
optima in a tabular environment.

To illustrate this process, local scalarization optima are obtained from the set
of the combined nondominated solutions across all algorithms and runs. TS
(Algorithm 12) is executed to determine the basins of attraction (Definition 60).
The candidate solution in each cluster that possesses the smallest scalarization
value is chosen as estimate of a local scalarization optimum. The local opti-
mization step is skipped to avoid local search escaping its assigned basin.

Since the Pareto front approximations obtained by combining the nondomi-
nated solutions across all runs and algorithms are not uniform, clustering al-
gorithms such as TS may overestimate the number of basins. This may lead
to the identification of putative scalarization optima, which are essentially FPs
(Definition 68). In order to avoid an accumulation of such FPs, an additional
filtering mechanism is applied to crop the number of identified scalarization
optima. Whenever the distance of two putative scalarization optima is smaller
than 0.1 in the normalized objective space, the optimum that possesses the
smaller scalarization value of the two is retained and the other one is elimi-
nated.

Table 7.12 lists the number of scalarization optima obtained for different scalar-
ization functions and neighborhood sizes kc. Although kc “ 6 has been identi-
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Table 7.12.: Number of local scalarization optima obtained after applying TS to identify
basins of attraction for different scalarization functions. Scalarization op-
tima are selected as those elements that possess the smallest scalarization
value in each cluster generated by TS. Results are shown for choosing dif-
ferent neighborhood sizes kc and compared to the size of the Pareto front
approximation from which clusters are computed.

Front Sum Nash Angle Tradeoff

kc 6 10 20 6 10 20 6 10 20 6 10 20

RS1 176 6 5 2 5 4 2 5 4 2 6 5 3
RS2 188 4 4 4 4 3 3 3 3 3 3 4 4
RS3 119 5 5 4 4 4 3 4 4 3 5 5 4
RW1 328 13 11 10 13 11 10 11 8 7 14 11 9
RW2 260 7 7 7 6 5 6 7 5 5 8 5 5
RW3 449 13 13 13 11 11 7 10 8 7 12 11 8

fied in Section 6.3.1 as optimal parameter choice for finding all basins of attrac-
tion, increasing kc may prove beneficial if the residents want to further reduce
the set of candidate schedules. By increasing the neighborhood size, smaller
clusters are usurped into bigger clusters. Thereby, the total number of clusters
identified by TS decreases, which leads to the potential elimination of scalar-
ization optima. Reducing the number of candidate schedules may facilitate a
simplification of the selection process if the Pareto front possesses a large num-
ber of scalarization optima. The results in Table 7.12 show that the number of
optima found decreases as kc increases.

As Table 7.12 reveals, restricting the Pareto front approximation to local scalar-
ization optima greatly reduces the number of candidate schedules. The DM
is thereby enabled to make her selection only among those schedules that are
most relevant to her. To illustrate the benefit of this approach, Figures 7.11
to 7.14 show the Pareto fronts and the scalarization optima of the sum of ob-
jectives, the Nash bargaining solution, angle utility and tradeoff utility, respec-
tively. Depicting the scalarization optima in conjunction with the Pareto front
allows fathoming the tradeoffs that occur between the different schedules. As
explained before, the Pareto fronts of the six problems are mostly segmented
into lines and curves. The scalarization optima show those schedules that are
most desirable in these segments according to the chosen scalarization func-
tion.

The Pareto fronts of the winter segments can be divided into three layers each
of which is characterized by a distinct thermal discomfort level of 0.0, 0.01 and
0.02. The four scalarization functions put a different emphasis on the three
segments across the three scenarios. In RW1, the sum of objectives and the
Nash bargaining solution identify more optima on the layer with the highest
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thermal discomfort. As the flexibility of the household appliances in the winter
scenario increases, more optima are identified featuring no thermal discomfort
at all. Increasing the flexibility therefore seems to increase the number of low
thermal discomfort optima.

The optima identified in the summer scenarios occur at similar positions across
the different scalarization functions. These positions and the corresponding
schedules can be divided into three categories: 1) no thermal discomfort with
high costs and emissions; 2) minor thermal discomfort with small costs and
emissions; 3) small thermal discomfort with minor costs and emissions. The
DM may possess different preferences for the three objectives, making sched-
ules of all three categories eligible candidates for selection. The results of the
summer scenarios illustrate the advantages of the local preference optima ap-
proach for solving MOOP. Local scalarization optima narrow the search results
to a limited number of schedules that are most interesting to the DM. As indi-
cated by the three categories, these schedules are substantially different from
each other with respect to their objective values, such that the DM is presented
with true alternatives that result in noticeable differences if implemented in the
live system. Giving the DM multiple, substantially different options to choose
from, enables her to easily understand the tradeoffs that occur between the ob-
jectives without being required to analyze the composition of the entire Pareto
front. By presenting the DM with multiple options she is enabled to make her
own informed choice that may differ from the solution obtained by a global op-
timization algorithm, because knowledge of the local optima may change her
preconceived preferences.

It would be desirable to quantify how well the methodology proposed in Chap-
ter 6 is able to find the local scalarization optima of the six scenarios. Conduct-
ing a quantitative analysis as done in Section 6.3, however, is difficult, since the
true Pareto fronts of the problem instances are unknown. The nondominated
points obtained by combining the search results of every algorithm across all
runs are only an estimate of the true Pareto front. Since the algorithms that
are considered in the study are heuristics and no closed form description of
the Pareto fronts exist, no formal statement can be made about how well these
points represent the true front. As explained in Section 6.3.1 computing local
scalarization optima and the corresponding basins of attraction of three ob-
jective problems is already challenging even if a closed-form description of the
Pareto front is available. Computing optima and basins of a Pareto front, whose
exact composition is unknown, is unarguably even harder if not impossible.

The issue outlined in the previous paragraph is a general problem of bench-
marking heuristics in the context of SOO and MOO if the global optima or the
Pareto front is unknown. The IGD indicator using a reference front consisting
of all nondominated points across all algorithms and runs is still a viable means
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Table 7.13.: BEMS study – IGD. Median and IQR (as subscript) results after 50 000 (Base-
line) and 900 000 (Exhaustive) function evaluations of SMPSO. Best perfor-
mances are colored in green.

Exhaustive Baseline

RW1 1.25e´11.41e´1 2.42e´11.19e1

RW2 8.25e´21.05e´1 2.75e´14.28

RW3 1.24e´11.13e´1 3.18e´18.63

RS1 6.82e´26.75e´2 1.72e´12.09e´1

RS2 7.82e´24.24e´2 4.29e´14.05e´1

RS3 1.27e´21.79e´2 1.99e´11.33e´1

for comparing MOEA performances even if the generated approximations are
further away from the front. In SOO, objective values can be compared irre-
spective of whether the globally optimal value is known. Such an approach is
not possible for local scalarization optima. An approximation u that features
a smaller scalarization value than a given reference optimum uL may either
be an improvement over uL or an element of a different basin of attraction
that features smaller scalarization values. Using the distance of u to uL, on the
other hand, is not a suitable indicator, since u might indeed be an improvement
over uL.

A sufficiently close and uniform approximation of the Pareto front may usually
be obtained by performing an exhaustive search, i.e. running an MOEA for a
very high number of function evaluations and a large population size. Such
an approach was taken to confirm the quality of the Pareto front approxima-
tion obtained as the nondominated points computed across all algorithms and
runs. As top-performing algorithm, SMPSO was run ten times on all problem
instances for 900 000 function evaluations using a swarm size of 300. The ex-
haustive search manages to improve the existing Pareto front approximation as
indicated by the results Table 7.13. However even after 900 000 function evalu-
ations are executed, SMPSO sometimes gets stuck during the search and does
not manage to converge to the Pareto front (Figure 7.15). It was therefore con-
cluded that no suitable reference data can be generated for a quantitative study
within the chosen experimental environment.

It is imperative to note that benchmarking any component of the framework
for approximating local scalarization optima on a real-world application is be-
yond the scope of this section. Instead, the usefulness of the local scalarization
optima notion in decision-making is illustrated. The qualitative analysis con-
ducted in this section is intended to serve this purpose.
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Figure 7.10.: Pareto fronts of the problems RS1, RS2 and RS3. The values in parenthesis
indicate azimuth and elevation of the perspective.
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Figure 7.11.: BEMS study – illustration of sum of objectives scalarization minima. Scalar-
ization optima were obtained from a TS clustering with a neighborhood
size of kc “ 20. The values in parenthesis indicate azimuth and elevation
of the perspective.
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Figure 7.12.: BEMS study – illustration of Nash scalarization minima. Scalarization
optima were obtained from a TS clustering with a neighborhood size of
kc “ 20. The values in parenthesis indicate azimuth and elevation of the
perspective.
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Figure 7.13.: BEMS study – illustration of angle utility scalarization minima. Scalariza-
tion optima were obtained from a TS clustering with a neighborhood size
of kc “ 20. The values in parenthesis indicate azimuth and elevation of the
perspective.
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Figure 7.14.: BEMS study – illustration of tradeoff utility scalarization minima. Scalar-
ization optima were obtained from a TS clustering with a neighborhood
size of kc “ 20. The values in parenthesis indicate azimuth and elevation
of the perspective.
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tions obtained across all algorithms and runs.
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8. Conclusion and Outlook

The study of scalarized preferences and their importance in MOO have been
the subject of this thesis. A theoretical and algorithmic analysis of preference
has been given and the meaning of scalarization has been explored within this
context. The two main contributions of this work consist of a formal model
to characterize scalarization functions and the development of two methods to
find more than one suitable Pareto optimal solution for implementation from
scalarized preference information. This chapter provides a brief conclusion, in
which the contributions of this work are discussed. Subsequently, the work
is concluded by an outlook on future research topics that emanate from this
work.

8.1. Conclusion

Six key contributions of this thesis have been presented in the introduction in
Section 1.3. In the following, a brief summary is given of how this work has
provided these contributions.

A theoretical framework for describing preferences as problem transformations
has been developed in Chapter 2. Preference predicates define a preferred sub-
set of the set of Pareto optimal solutions. Within the framework, preferences
can be expressed by constraining the domain of the objective function, map-
ping the codomain of the objective function to another set or amending the
order imposed on the codomain of the objective function. Scalarization rep-
resents a transformation of the codomain by mapping the vector of objectives
to a single real value. It has been shown that, in theory, a preference can be
expressed by only applying either one of the three transformation types. A
practical example has been given in the form of tradeoff optimality. Tradeoff
optimal solution can be obtained by introducing additional constraints to the
optimization problem, enforcing a domination relation comparing maximum
and minimum objective differences or by identifying the nondominated points
of the feasible set computed by transforming the objective space using a de-
composition of polyhedral cones.
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A system of axioms that represent desirable properties a scalarization function
may exhibit has been presented in Chapter 3. These axioms are Pareto com-
pliance – if an objective vector u Pareto-dominates another objective vector v,
then the scalarization value of u must be smaller than the one of v; binary in-
dependence – scalarization values do not depend on the composition of the
feasible objective space; non-extremeness – the scalarization function does not
identify an extreme point as global scalarization optimum; contraction consis-
tency – the location of the scalarization optimum does not change if the Pareto
front becomes smaller; monotonicity – if the composition of the Pareto front
changes such that the ideal value of a single objective i becomes smaller and all
other ideal values remain the same, the value of objective i at the scalarization
optimum must decrease; equity – transfers from a larger to a smaller objective
must make the scalarization value smaller; and invariance to scaling – the lo-
cation of the scalarization optimum is not affected by affine transformations of
the objective functions. It has been shown that many scalarization functions
fulfill several of the proposed axioms, however often only if specific conditions
are met.

An approach to characterizing preferences from an algorithmic perspective by
classifying the search result an algorithm delivers has been introduced in Chap-
ter 4. The Pareto front can be described by a mathematical formula as a closed-
form description or approximated uniformly by a finite set of points. Preference-
driven approximations may approximate preferred subsets of the Pareto front
by a finite set of points or identify a single global preference optimum. Two
new paradigms have been identified: 1) preference-biased Pareto front approx-
imations approximate the entire front by a finite set of points but put a stronger
emphasis on regions that are interesting to the DM; 2) local preference optima
represent Pareto optimal solutions that are the most desirable choices in their
immediate neighborhood in the objective space. For each of the two paradigms,
an algorithm has been developed that utilizes scalarized preference informa-
tion.

In Chapter 5, a concept has been presented for defining an optimal distribu-
tion of points on the Pareto front using scalarized preference information for
a fixed number of points. It has been shown that such distributions exist for
real-valued and discrete MOOP under very mild conditions. If the scalariza-
tion function assigns the same scalarization value to all objective vectors a uni-
form distribution of points is achieved. A steady-state, archive-based MOEA—
ESPEA—has been developed to approximate such preference-biased distribu-
tions.

An algorithmic framework for finding local optima of scalarized MOOP has
been developed in Chapter 6. The framework consists of the three steps for
each of which different methods can be applied: 1) Pareto front approximation,
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2) basin identification, 3) local optimization. The Pareto front is approximated
to narrow down the search to the subset of the feasible set that contains the
scalarization optima. Clustering methods are applied to identify the basins of
attraction of the local optima, i.e. the neighborhood around the optimum in
which a local search is expected to converge quickly towards the local opti-
mum. The final step consists of executing a local search by using the clusters
identified in the previous step as initial population.

Both algorithms have been evaluated on artificial and real-world optimization
problems. Different archive-update mechanisms have been tested with ESPEA.
It could be shown that eliminating the archive member that contributes least
to the distribution of points is most beneficial. ESPEA has been compared
to seven other state-of-the-art metaheuristics for obtaining uniform finite set
of points approximations of the Pareto front. The results have revealed that
ESPEA is the second-best performing algorithm among all eight algorithms
and that the performance difference between ESPEA and the top-performing
algorithm—SPEA2—is negligible. A qualitative analysis of ESPEA with differ-
ent scalarization functions has been conducted. The preference-biased Pareto
front approximations show that ESPEA is successful in finding more solutions
in areas that are interesting to the DM, while locating fewer solutions in those
regions that feature high scalarization values. The optimization of the opera-
tion efficiency of a CHP plant has been chosen to test ESPEA on a real-world
application. The results have shown that ESPEA delivers the best performance
among all eight algorithm in generating a uniform approximation of the Pareto
front of the problem. ESPEA has also been able to obtain preference-biased
approximations of the Pareto front using the operation efficiency as scalariza-
tion value. Such an approximation may help the plant operator in choosing an
appropriate schedule if she wishes to deviate from the efficiency optimum.

Two different clustering algorithms—TS and NBC—have been tested for basin
identification on artificial benchmark problems. The simulation results have
shown that their performance greatly depends on the chosen parametrization.
Both algorithms exhibit a similar performance using their best configuration.
Four local optimization algorithms—CMA-ES, a GA, a HC and a PSA—have
been investigated using different parametrizations for finding local scalariza-
tion optima. The PSA has been identified as delivering the best results. The
performance of all algorithms, however, is strongly influenced by their cho-
sen parametrization. A BEMS optimization problem in a residential building
has been presented to assess the usefulness of local scalarization optima from
a decision-making perspective. It could be shown, that by focusing the search
result on local scalarization optima, the number of solutions can be greatly re-
duced such that the DM is only presented with the most relevant schedules.
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8.2. Outlook

The ideas and notions that have been developed within this thesis pave the
way to pursuing new research endeavors. Existing preference notions in MOO
should be categorized within the framework of describing preferences as prob-
lem transformations. This could lead to new insights into how different notions
are related to each other. The implications of Theorem 1 should be further ex-
plored in a theoretical and practical context. It could be investigated, whether it
is possible to design formalisms that allow the transformation of specific types
of preferences predicates into each other. For example, it would be interesting
to assess whether there exists a generalized approach to develop order predi-
cates for scalarization functions as it has been exemplified for tradeoff optimal-
ity in Section 2.3.

The axioms developed in Section 3.2 to characterize desirable properties of
scalarization functions are only a modest proposition. Researchers and busi-
ness practitioners should be asked to evaluate the proposed axioms and de-
scribe properties they deem themselves desirable in the context of scalarized
preferences. For some of the proposed axioms it has been shown that they ap-
ply to specific scalarization functions only under very restrictive circumstances.
A general catalog could be developed that summarizes which conditions must
be met for a scalarization function to satisfy or violate a given axiom.

The energy concept for defining optimal distributions of points on the Pareto
front as presented in Definition 53 tends to overstate the importance of bound-
ary points for three and more objectives. The reason for this behavior is that
boundary points possess only neighboring points towards the interior of the
front. Modifying the energy concept to remedy the boundary issue would be
a promising direction of research, since there exist few well performing nich-
ing techniques in many-objective optimization (MaO) that are not reference-
point based. Improved constraint-handling techniques could be introduced to
ESPEA such that the algorithm is better equipped to handle problems whose
search space is largely infeasible.

Multimodal scalarized preferences need to be further explored from a theoret-
ical and algorithmic perspective. More test problems should be designed that
are tailored to reflect specific challenges that occur in finding local scalarization
optima. It needs to be further investigated how the basin notion as presented
in Definition 60 influences the convergence of the local search. Furthermore,
analytical tools should be developed to compute basins of problems featuring
three and more objectives. Especially, conflicts occurring because of the exis-
tence of multiple paths of descent to several local optima need to be addressed
in this context. It is also worth investigating, whether the basin notion can be
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extended in a meaningful way beyond the Pareto front to the entire feasible ob-
jective space. The robustness of the clustering methods to identify basins of at-
traction with respect to perturbations in the Pareto front approximation needs
to be further investigated. As evidenced by the BEMS optimization problem
presented in Section 7.2, it is often highly difficult or even intractable to obtain
a sufficiently close and uniform approximation of the Pareto front in real-world
applications. The performance of the clustering methods with respect to the
sample size is also an interesting area of research.

Local search for finding local scalarization optima could also be further inves-
tigated. New methodologies that prevent local search to escape its assigned
basin should be developed. An interesting direction worth pursuing might be
using ideas from tabu search to constrain the feasible set during the local search.
The approach presented in Chapter 6 is based on restricting the step size of the
search, which might deter the convergence of the search if the initial point or
population is still further away from the local optimum. In general, the effect of
the quality of the clustering on the local search needs to be further explored.

Local scalarization optima should be specifically examined in the context of
MaO. Pareto fronts of four and more objectives are difficult to visualize. The
notion of local optima is therefore an ideal approach to select a limited number
of Pareto optimal solutions for the DM to choose from. A rigorous computa-
tional study needs to be performed to assess the performance of clustering and
local search algorithms on problems with more than four objectives. The pro-
posed analysis, however, rests on the development of meaningful test problems
and techniques to properly determine basins of attraction and local scalariza-
tion optima for benchmarking.
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A. Declaration of Published Work

The content presented in this thesis is partially based on work that has been
previously published by this author. Each chapter and section in which previ-
ously published work is presented is preceded by a declaration that states its
source of origin. The following list contains all publications of this author that
have contributed to this thesis. For each publication, the relevant contributions
of every author are clarified.

• Marlon Alexander Braun, Pradyumn Kumar Shukla, and Hartmut Schmeck.
Preference ranking schemes in multi-objective evolutionary algorithms.
In Ricardo H.C. Takahashi, Kalyanmoy Deb, Elizabeth F. Wanner, and Sal-
vatore Greco, editors, Evolutionary Multi-Criterion Optimization, volume
6576 of LNCS, pages 226–240. Springer, 2011.

Shukla presented the idea of modifying existing MOEAs to obtain solu-
tions satisfying M-proper Pareto optimality – a concept first published
in [Shu07]. This author developed and implemented the necessary mod-
ifications of the algorithms presented in the article, whereas pNSGA-II
was only reimplemented based on the description in [SHS10a]. Schmeck
provided commentary and advice.

• Pradyumn Kumar Shukla, Marlon Alexander Braun, and Hartmut Schmeck.
Theory and algorithms for finding knees. In Robin C. Purshouse, Peter J.
Fleming, Carlos M. Fonseca, Salvatore Greco, and Jane Shaw, editors, Evo-
lutionary Multi-Criterion Optimization, volume 7811 of LNCS, pages 156–
170. Springer, 2013.

This author provided the idea for the notion of proper utility and U-
domination. Shukla developed the final mathematical formalization for
both concepts. All algorithms were implemented by this author and de-
veloped by Shukla. Schmeck provided commentary and advice.

• Pradyumn Kumar Shukla and Marlon Alexander Braun. Indicator based
search in variable orderings: Theory and algorithms. In Robin C. Pur-
shouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco, and Jane
Shaw, editors, Evolutionary Multi-Criterion Optimization, volume 7811 of
Lecture Notes in Computer Science, pages 66–80. Springer, 2013.
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Conceptual work was carried out by Shukla. This author provided the
implementation and conducted the experimentation.

• Pradyumn Kumar Shukla, Marlon Alexander Braun, and Hartmut Schmeck.
On the interrelationships between knees and aggregate objective func-
tions. In Proceedings of the 2014 Conference Companion on Genetic and Evo-
lutionary Computation Companion, GECCO Comp ’14, pages 95–96, New
York, NY, USA, 2014. ACM.

The publication consists of results developed within the master thesis of
this author of which Shukla was the adviser.

• Marlon Alexander Braun, Pradyumn Kumar Shukla, and Hartmut Schmeck.
Obtaining optimal pareto front approximations using scalarized prefer-
ence information. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15, pages 631–638, New York, NY,
USA, 2015. ACM.

This author developed ESPEA and the concept of using the notion of
electrostatic potential energy to obtain preference-biased Pareto front ap-
proximations. All experimentation and analysis was carried out by this
author. Shukla and Schmeck provided commentary and advice.

• Marlon Alexander Braun, Thomas Dengiz, Ingo Mauser, and Hartmut
Schmeck. Comparison of multi-objective evolutionary optimization in
smart building scenarios. In European Conference on the Applications of Evo-
lutionary Computation, pages 443–458. Springer, Cham, 2016.

The work is a summary and extension of the master thesis of Dengiz, of
which Mauser and this author were advisers. Mauser and this author
aided Dengiz in developing the modeling of the optimization problem.
Furthermore, Mauser identified relevant components of the optimization
and developed a new taxonomy of characterizing optimizable household
devices. This author carried out the analysis of the optimization results.

• Marlon Alexander Braun and Pradyumn Kumar Shukla. On cone based
decompositions of proper Pareto optimality. Optimization Online, 2016.

M-domination and its cone-based decompositions were developed by this
author. Shukla provided assistance in developing mathematical proofs
that are related to both concepts.

• Marlon Alexander Braun, Sandra Seijo, Javier Echanobe, Pradyumn Ku-
mar Shukla, Ines del Campo, Javier Garcia-Sedano, and Harmut Schmeck.
A neuro-genetic approach for modeling and optimizing a complex cogen-
eration process. Applied Soft Computing, 48:347 – 358, 2016.
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Data collection, literature review and training of the neural networks was
carried out by Seijo, Echanobe, del Campo and Garcia-Sedano. Optimiza-
tion and analysis of the results was carried out by Braun. Shukla provided
support in analyzing the results. Schmeck provided commentary and ad-
vice.

• Marlon Alexander Braun, Pradyumn Shukla, and Hartmut Schmeck. Angle-
based preference models in multi-objective optimization. In International
Conference on Evolutionary Multi-Criterion Optimization, pages 88–102. Springer,
2017.

Conceptual work and implementation was carried out by this author.
Shukla and Schmeck provided commentary and advice.

• Marlon Alexander Braun, Lars Heling, Pradyumn Shukla, and Hartmut
Schmeck. Multimodal scalarized preferences in multi-objective optimiza-
tion. In Proceedings of the 2017 on Genetic and Evolutionary Computation
Conference. ACM, 2017.

Conceptual work and analysis of the results was done by this author.
Heling carried out the implementation and the experimental planning.
Shukla and Schmeck provided commentary and advice.
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B. Problem Definitions

This appendix contains the mathematical descriptions of the benchmark prob-
lems used in the computational studies of Chapters 5 and 6.

Definition 69 (B problem family). Let n ě 2 and for any x P Rn

g1pxq “
n
ÿ

i“3

xi (B.1a)

g2pxq “
n
ÿ

i“3

x2
i . (B.1b)

The B problem family is a set of MOOPs that is defined as follows:

• B1:

f1pxq “
b

x2
1 ` x2

2 ¨ p1` g1pxqq (B.2a)

f2pxq “
b

x2
1 ` p1´ x2q2 ¨ p1` g1pxqq (B.2b)

f3pxq “ p1´ x1qp1` g1pxqq (B.2c)
s.t. x P r0, 1sn, (B.2d)

• B2:

f1pxq “
b

x2
1 ` x2

2 ¨ p1` g1pxqq (B.3a)

f2pxq “
b

1` x2
1 ´ x2

2 ¨ p1` g1pxqq (B.3b)

f3pxq “
b

1´ x2
1p1` g1pxqq (B.3c)

s.t. x P r0, 1sn, (B.3d)

• B3:

f1pxq “
`

x2
1 ` x2

2

˘ p1` g1pxqq (B.4a)

f2pxq “
`

x2
1 ` p1´ x2q2

˘ p1` g1pxqq (B.4b)

f3pxq “ p1´ x1q2 p1` g1pxqq (B.4c)
s.t. x P r0, 1sn, (B.4d)
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• B4:

f1pxq “
`

x2
1 ` x2

2

˘ p1` g1pxqq (B.5a)

f2pxq “
`

1` x2
1 ´ x2

2

˘ p1` g1pxqq (B.5b)

f3pxq “
`

1´ x2
1

˘ p1` g1pxqq (B.5c)
s.t. x P r0, 1sn, (B.5d)

• B5:

f1pxq “ ´x1p1` g2pxqq (B.6a)

f2pxq “ ´x3
2p1` g2pxqq (B.6b)

f3pxq “ px1 ` x2q p1` g2pxqq (B.6c)
s.t. x P r´1, 1sn, (B.6d)

• B6:

f1pxq “ ´x3
1p1` g2pxqq (B.7a)

f2pxq “ ´x3
2p1` g2pxqq (B.7b)

f3pxq “ px1 ` x2q p1` g2pxqq (B.7c)
s.t. x P r´1, 1sn. (B.7d)

Definition 70 (DEB2DK [BDDO04]). Let n ě 1, k P N and for any x P Rn

gpxq “ 1` 9

n´ 1

n
ÿ

i“2

xi (B.8a)

rpxq “ 5` 10

ˆ

x1 ´ 1

2

˙2

` cosp2kπx1q
K

. (B.8b)

DEB2DK is an MOOP defined as follows:

f1pxq “ sin
´π

2
x1

¯

gpxqrpxq (B.9a)

f2pxq “ cos
´π

2
x1

¯

gpxqrpxq (B.9b)

s.t. x P r0, 1sn. (B.9c)

Definition 71 (DEB3DK [BDDO04]). Let n ě 1, k P N and for any x P Rn

gpxq “ 1` 9

n´ 1

n
ÿ

i“3

xi (B.10a)
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rpx1, x2q “ r1px1q ` r2px2q
2

(B.10b)

ripxiq “ 5` 10

ˆ

xi ´ 1

2

˙2

` cosp2kπxiq
K

. (B.10c)

DE32DK is an MOOP defined as follows:

f1pxq “ sin
´π

2
x1

¯

sin
´π

2
x2

¯

gpxqrpx1, x2q (B.11a)

f2pxq “ cos
´π

2
x1

¯

cos
´π

2
x2

¯

gpxqrpx1, x2q (B.11b)

f3pxq “ cos
´π

2
x1

¯

gpxqrpx1, x2q (B.11c)

s.t. x P r0, 1sn. (B.11d)

Note that the original description of DEB3DK in [BDDO04] contains an error.
In Equation (B.10b) the index of the sum starts at i “ 2 instead of i “ 3. The
index starting at i “ 2 results in the Pareto front of DEB3DK being asymmetric,
which would contradict the illustration in [BDDO04, Fig. 6].

Definition 72 (DO2DK [BDDO04]). Let n ě 1, k P N, s P R` and for any x P Rn

gpxq “ 1` 9

n´ 1

n
ÿ

i“2

xi (B.12a)

rpxq “ 5` 10

ˆ

x1 ´ 1

2

˙2

` 2
s
2 cosp2kπx1q

K
. (B.12b)

DEB2DK is an MOOP defined as follows:

f1pxq “ sin

ˆ

π

2
x1 `

ˆ

1` 2s ´ 1

2s`2

˙

π ` 1

˙

gpxqrpxq (B.13a)

f2pxq “
´

cos
´π

2
x1 ` π

¯

` 1
¯

gpxqrpxq (B.13b)

s.t. x P r0, 1sn. (B.13c)

Definition 73 (DTLZ problem definitions [DTLZ05, JD14]). Let n ě 2. The
DTLZ problem family is a set of MOOPs that is defined as follows:

• DTLZ1 ([DTLZ05])

f1pxq “ 1

2
x1 ¨ ¨ ¨xm´1p1` gpxqq (B.14a)

f2pxq “ 1

2
x1 ¨ ¨ ¨xm´2p1´ xm´1qp1` gpxqq (B.14b)
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f3pxq “ 1

2
x1 ¨ ¨ ¨xm´3p1´ xm´2qp1` gpxq (B.14c)

... “ ... (B.14d)

fm´1pxq “ 1

2
x1p1´ x2qp1` gpxqq (B.14e)

fmpxq “ 1

2
p1´ x1qp1` gpxqq (B.14f)

gpxq “ 100

˜

n´m` 1`
n
ÿ

i“m

ˆ

xi ´ 1

2

˙2

´ cos

ˆ

20π

ˆ

xi ´ 1

2

˙˙

¸

(B.14g)

s.t. x P r0, 1sn, (B.14h)

• inverted DTLZ1 ([JD14])

f1pxq “ p1´ x1 ¨ ¨ ¨xm´1q 1

2
p1` gpxqq (B.15a)

f2pxq “ p1´ x1 ¨ ¨ ¨xm´2p1´ xm´1qq 1

2
p1` gpxqq (B.15b)

f3pxq “ p1´ x1 ¨ ¨ ¨xm´3p1´ xm´2qq 1

2
p1` gpxqq (B.15c)

... “ ... (B.15d)

fm´1pxq “ p1´ x1p1´ x2qq 1

2
p1` gpxqq (B.15e)

fmpxq “ p1´ p1´ x1qq 1

2
p1` gpxqq (B.15f)

gpxq “ 100

˜

n´m` 1`
n
ÿ

i“m

ˆ

xi ´ 1

2

˙2

´ cos

ˆ

20π

ˆ

xi ´ 1

2

˙˙

¸

(B.15g)

s.t. x P r0, 1sn, (B.15h)

• DTLZ3 ([DTLZ05])

f1pxq “ cos
´π

2
x1

¯

¨ ¨ ¨ cos
´π

2
xm´1

¯

p1` gpxqq (B.16a)

f2pxq “ cos
´π

2
x1

¯

¨ ¨ ¨ cos
´π

2
xm´2

¯

sin
´π

2
xm´2

¯

p1` gpxqq (B.16b)

f3pxq “ cos
´π

2
x1

¯

¨ ¨ ¨ cos
´π

2
xm´3

¯

sin
´π

2
xm´2

¯

p1` gpxqq (B.16c)

... “ ... (B.16d)
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fm´1pxq “ cos
´π

2
x1

¯

sin
´π

2
x2

¯

p1` gpxqq (B.16e)

fmpxq “ sin
´π

2
x1

¯

p1` gpxqq (B.16f)

gpxq “ 100

˜

n´m` 1`
n
ÿ

i“m

ˆ

xi ´ 1

2

˙2

´ cos

ˆ

20π

ˆ

xi ´ 1

2

˙˙

¸

(B.16g)

s.t. x P r0, 1sn, (B.16h)

• DTLZ5 ([DTLZ05])

f1pxq “ cos
´π

2
hpx1q

¯

¨ ¨ ¨ cos
´π

2
hpxm´1q

¯

p1` gpxqq (B.17a)

f2pxq “ cos
´π

2
hpx1q

¯

¨ ¨ ¨ cos
´π

2
hpxm´2q

¯

sin
´π

2
hpxm´1q

¯

p1` gpxqq
(B.17b)

f3pxq “ cos
´π

2
hpx1q

¯

¨ ¨ ¨ cos
´π

2
hpxm´3q

¯

sin
´π

2
hpxm´2q

¯

p1` gpxqq
(B.17c)

... “ ... (B.17d)

fm´1pxq “ cos
´π

2
hpx1q

¯

sin
´π

2
hpx2q

¯

p1` gpxqq (B.17e)

fmpxq “ sin
´π

2
hpx1q

¯

p1` gpxqq (B.17f)

hpxiq “ π

4p1` gpxqq p1` 2gpxqxiq (B.17g)

gpxq “
n
ÿ

i“m

ˆ

xi ´ 1

2

˙2

(B.17h)

s.t. x P r0, 1sn, (B.17i)

• DTLZ7 ([DTLZ05])

f1pxq “ x1 (B.18a)
... “ ... (B.18b)

fm´1pxq “ xm´1 (B.18c)

fmpxq “ m´
m´1
ÿ

i“1

ˆ

xi
1` gpxq p1` sinp3πxiq

˙

(B.18d)

gpxq “ 1` 9

n´m` 1

n
ÿ

i“m
xi (B.18e)
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s.t. x P r0, 1sn, (B.18f)

Note that the DTLZ problem family consists of nine MOOPs in total of which
only four are considered in this work.

Definition 74 (Lamé [ED07]). Let n ě 1, γ P R` and for any x P Rn

gpxq “
g

f

f

e

n
ÿ

i“m
x2
i . (B.19)

The Lamé problem is an MOOP defined as follows:

f1pxq “
´

cos
´π

2
x1

¯¯
2
γ p1` gpxqq (B.20a)

f2pxq “
´

sin
´π

2
x1

¯

cos
´π

2
x2

¯¯
2
γ p1` gpxqq (B.20b)

f3pxq “
´

sin
´π

2
x1

¯

sin
´π

2
x2

¯

cos
´π

2
x3

¯¯
2
γ p1` gpxqq (B.20c)

... “ ... (B.20d)

fm´1pxq “
´

sin
´π

2
x1

¯

¨ ¨ ¨ sin
´π

2
xm´2

¯

cos
´π

2
xm´1

¯¯
2
γ p1` gpxqq (B.20e)

fmpxq “
´

sin
´π

2
x1

¯

¨ ¨ ¨ sin
´π

2
xm´2

¯

sin
´π

2
xm´1

¯¯
2
γ p1` gpxqq (B.20f)

s.t. x P r0, 1sn. (B.20g)

Definition 75 (ZDT problem family [ZDT00]). Let n ě 2 and for any x P Rn

gpxq “ 1` 9
n
ÿ

i“2

xi
n´ 1

. (B.21)

The ZDT problem family is a set of MOOPs that is defined as follows:

• ZDT1:

f1pxq “ x1 (B.22a)

f2pxq “ 1´
c

x1

gpxq (B.22b)

s.t. x P r0, 1sn, (B.22c)

• ZDT2:

f1pxq “ x1 (B.23a)
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f2pxq “ 1´
ˆ

x1

gpxq
˙2

(B.23b)

s.t. x P r0, 1sn, (B.23c)

• ZDT3:

f1pxq “ x1 (B.24a)

f2pxq “ 1´
c

x1

gpxq ´
x1

gpxq sinp10πx1q (B.24b)

s.t. x P r0, 1sn. (B.24c)

Note that the ZDT problem family consists of six MOOPs in total of which only
three are considered in this work.
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C. Algorithms

This appendix contains subroutines that are invoked in the algorithms described
in Chapters 5 and 6. The subroutines are discussed in prose in the respective
chapters.

Algorithm 18: update swarm [NDGN`09]

Input : Swarm S :“ px1, . . . ,xN q, velocities Z :“ pz1, . . . , zN q, global best
archive A, personal best archive B, inertia weight w, turbulence
factors c1, c2

Output: Updated swarm S and velocities Z
1 if c1 ` c2 ą 4 then
2 α :“ c1 ` c2
3 else
4 α :“ 1

5 χ :“ 2

2´ α´?α2 ´ 4α
6 for i “ 1 to N do
7 r1 :“ Up0, 1q
8 r2 :“ Up0, 1q
9 zi :“ wzi ` c1r1pBpiq ´ xiq ` c2r2prandom(A)´xq

10 zi :“ χzi

11 xi :“ xi ` zi

12 return pS,Zq

Algorithm 19: hypervolume contributions [BNE07]

Input : Population P :“ px1, . . . ,x|P |q, reference point w
Output: Hypervolume contributions c

1 Let LpP,wq :“ L `ŤxiPP pu P Rm | f i ăp u ăp wq˘
2 Compute c with ci :“ LpP,wq ´ LpP ztxiu,wq
3 return c
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Algorithm 20: update mean [Han06]

Input : population P :“ txiuNi“1, weights λ, parameter µ
Output: Updated mean y

1 y :“ řµ
i“1 λixi

2 return y

Algorithm 21: update isotropic evolution path [Han06]
Input : Isotropic evolution path pσ , parameters cσ , µw, covariance matrix

V, old distribution mean yold, new distribution mean y, step size
σ

Output: Updated isotropic evolution path pσ

1 pσ :“ p1´ cσqpσ `
a

1´ p1´ cσq2
a

µwV ´1 y´yold

σ
2 return pσ

Algorithm 22: update anisotropic evolution path [Han06]
Input : Anisotropic evolution path pc, parameters cc, α, µw, isotropic

evolution path pσ , old distribution mean yold, new distribution
mean y, step size σ

Output: Updated anisotropic evolution path
1 pc :“ p1´ ccqpc ` 1r0,αs p}pσ}2q

a

1´ p1´ ccq2?µw yold´y
σ

2 return pc

Algorithm 23: update covariance matrix [Han06]
Input : Covariance matrix V, parameters c1, cµ, cs, anisotropic evolution

path pσ , weights λ, population P , old distribution mean yold, step
size σ

Output: Update covariance matrix V

1 V :“ p1´ c1 ´ cµ ` csqV ` c1pcpTc ` cµ
řµ
i“1 λi

zi´y
σ

´

zi´y
σ

¯T

2 return V

Algorithm 24: update step size [Han06]
Input : step size σ, parameters cσ , dσ isotropic evolution path pσ
Output: updated step size σ

1 σ :“ σ ¨ exp
´

cσ
dσ

´ }pσ}
Ep}Nmp0,Iq}q ´ 1

¯¯

2 return σ
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D. Basin Construction

The method that was used to find local scalarization optima of three objective
problems and their corresponding basins of attraction is described in this ap-
pendix. As explained in Section 5.3.1, the three objective artificial benchmark
problems considered in this work are non-conflicting in the decision variables
tx3, . . . , xnu. This implies that there exists a vector a such that px3, . . . , xnq “ a
minimizes the objective functions. Let xl and xu denote the lower and upper
bounds of the feasible set X of f . The Pareto optimal set can the be expressed
as

Xp :“ tx P X | @i P t1, 2u : xli ď xi ď xui and px3, . . . , xnq “ au. (D.1)

The basic idea of the basin construction approach consists of discretizing the
bounding box of px1, x2q into a grid such that it forms a lattice graph. Nodes
that are adjacent in G are also adjacent in the objective space. The algorithm
then builds a directed graph G in a similar manner as done in TS and NBC. Let
ai,j denote a node in the lattice graph at position pi, jq in the grid. The node
ai,j is compared to all nodes ak,l in every cardinal and intermediate cardinal
direction. If an ak,l possesses a smaller scalarization value than ai,j , an edge
pointing from ai,j to ak,l is added to G. Any node that possesses no outgoing
edges is an estimate of a local scalarization optimum. Any path inG from ai,j to
a local optimum represents a descending search path in the scalarization space
(see function α in Definition 60).

If G consists of disconnected subgraphs, these form the basins of f for a given
scalarization function Ψ. Depending on the topology of the scalarization land-
scape, it may happen that multiple local optima are reachable from a ai,j . If
this is the case ai,j is assigned to the basin of the closest local optimum. The
distance is defined as the minimum number of nodes that need to be traversed
for traveling from ai,j to the local minimum.

In order to make the results of the algorithm more robust, a parameter t was
introduced that defines the minimum neighborhood, in which a node ai,j has
to have the smallest scalarization value to qualify as local optimum. The neigh-
borhood consists of all those nodes that lie within t steps in horizontal or verti-
cal direction of ai,j . The parameter t can be interpreted as minimum size for a
subgraph to qualify as basin.
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D. Basin Construction

Note that there exist problems for which the set Xp as given in Equation (D.1)
also contains Pareto-dominated solutions. This is for example the case for
DEB3DK. For this reason, Pareto-dominated elements of the lattice graph are
ignored in constructing the graph G. The complete procedure is summarized
in Algorithm 25.The resolution of the grid, i.e. the number of nodes in each
dimension, is controlled by the parameter s.

Algorithm 25: basin construction algorithm
Input : MOOP f , scalarization function Ψ, parameters s, t
Output: Local optima L, basin system B

1 L :“ pq, B :“ pq
2 Let xl and xu be the lower and upper bounds of the feasible set of f
3 Let ai,j :“ pxl1 ` pi´ 1qpxu1 ´ xl1q{s, xl2 ` pj ´ 1qpxu2 ´ xl2q{sq
4 Create directed graph G :“ pV,Eqwith V :“ tai,j | ai,j P Xpu and E :“ H
5 forall ai,j with i, j P rs` 1s do
6 if ai,j P Xp then

// find local optima
7 if @k P ri´ t, i` ts and l P rj ´ t, j ` ts with ak,l P Xp:

fpak,lq ćp fpai,jq and Ψpai,jq ď Ψpak,lq then
8 L :“ pL, tai,juq

// build directed graph
9 forall ak,l P Xp with k P ri´ 1, i` 1s and l P rj ´ 1, j ` 1s do

10 if Ψpfpak,lqq ď Ψpfpai,jqq then
11 E :“ E Y pai,j , ak,lq

// construct basins
12 B :“ ptLp1qu, . . . , tLp|L|quq
13 forall ai,j P G do
14 k “ arg minlPr|L|spdpai,j ,Lplqq
15 Bpkq :“ Bpkq Y ai,j
16 return pL,Bq
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E. Experimental Settings

This appendix summarizes the experimental settings for the computational
studies reported throughout this work. The setup depicted in Table E.1 was
used in the study described in Section 5.3.1. The values listed in Table E.2
were utilized for the studies in Sections 5.3.2 and 7.1.2. The setup of ESPEA
contained in Table E.2 was also used in the studies in Section 5.3.3 and Sec-
tion 6.3.

Table E.1.: Experimental settings in the replacement strategies study.

replacement strategies tBFP, LED, WINu
performance indicators tRE, IGDu
archive size N “ 50
function evaluations 50 000
number of runs 100
sampling of initial population

RE study uniform
IGD study latin hypercube

normalized objectives for Euclidean distance
RE study false
IGD study true

mating selection random selection
crossover

archive not full SBX
distribution index ηc “ 20
recombination probability pc “ 1

archive full DE
reproduction scheme current-to-rand/1/bin
coefficient ck ck “ 0.5
coefficient cf cf “ 0.5
recombination probability pc “ 0.5

mutation polynomial mutation
distribution index ηm “ 20
mutation probability 1{m
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Table E.2.: Experimental settings in the comparative study of ESPEA and the cogenera-
tion study.

performance indicators tIGDu
population/archive size N “ 100
function evaluations 50 000
number of runs 100
sampling of initial population latin hypercube
crossover

SBX
recombination probability pc “ 1

DE
coefficient ck ck “ 0.5
coefficient cf cf “ 0.5
recombination probability pc “ 0.5

mutation polynomial mutation
distribution index ηm “ 20
mutation probability 1{m

ESPEA
mating selection random selection
replacement strategy WIN
crossover

archive not full SBX with ηc “ 20
archive full DE with current-to-rand/1/bin

mutation polynomial mutation

IBEA
scaling factor κ “ 0.05
mating selection binary tournament

selection criterion fitness
crossover SBX with ηc “ 20
mutation polynomial mutation

MOEAD
neighborhood size 20
neighborhood selection probability pb “ 0.9
max neighbors to replace cN “ 2
reference points unit simplex ([DD98, Sec. 5])
crossover DE with rand/1/bin
mutation polynomial mutation

NSGA-II
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mating selection binary tournament
selection criterion rank and crowding distance

crossover SBX with ηc “ 20
mutation polynomial mutation

NSGA-III
mating selection binary tournament

selection criterion Pareto dominance
reference points unit simplex ([DD98, Sec. 5])
crossover SBX with ηc “ 30
mutation polynomial mutation

SMPSO inertia weight w “ 0.1
turbulence factor range c1, c2 P r1.5, 2.5s
mutation polynomial mutation

SMS-EMOA mating selection binary tournament
selection criterion hypervolume contributions

reference point 10m

crossover SBX with ηc “ 20
mutation polynomial mutation

SPEA2
nearest neighbor k “ 1
mating selection binary tournament

selection criterion fitness
crossover SBX with ηc “ 30
mutation polynomial mutation

Table E.3.: ESPEA configuration in the multimodal preference study.

archive size 200
function evaluations 25 000
number of runs 100
replacement strategy WIN
sampling of initial population latin hypercube
mating selection random selection
crossover

archive not full SBX
distribution index ηc “ 20
recombination probability pc “ 1
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archive full DE
reproduction scheme current-to-rand/1/bin
coefficient ck ck “ 0.5
coefficient cf cf “ 0.5
recombination probability pc “ 0.5

mutation polynomial mutation
distribution index ηm “ 20
mutation probability 1{m

Table E.4.: Experimental settings in the basin identification study.

performance indicators tUCF, DBFu
Pareto front approximation ESPEA (see Table E.3)
number of runs 100
TS kc P t2, 4, 6, 10, 20u
NBC φc P t1.5, 2, 2.5, 3, 3.5u
bc see Equation (6.1)

Table E.5.: Experimental settings in the local search study.

performance indicators tPD, PR, FPu
Pareto front approximation ESPEA (see Table E.3)
basin identification TS with kc “ 6
number of runs 100
CMA-ES σ P t1e´5, 1e´4, 1e´3, 1e´2, 1e´1u
GA ηm, ηc P t20, 30, 40, 80, 120u

recombination SBX with pc “ 1
mutation polynomial mutation with pm “ 1{m

HC ηm P t20, 30, 40, 80, 120u
mutation polynomial mutation with pm “ 1{m

PSA w P t0.1, 0.25, 0.5, 0.75, 1u
turbulence factors c1 “ c2 “ 1
constriction factor χ “ 1
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Table E.6.: Overview of CMA-ES strategy parameters and their chosen values.

α 1.4` 2

n` 1

cc
4` µw{n

n` 4` 2µw{n
cs

µw ` 2

n` µw ` 5

c1
2

ppn` 1.3q2 ` µwq
cµ min

ˆ

1´ c1, 2pµw ´ 2` 1{µwq
pn` 2q2 ` µw

˙

dσ 1` cσ ` 2 ¨max

ˆ

0,

c

µw ´ 1

n` 1
´ 1

˙

λ λi “ λ1i
řµ
i“1 λ

1
i

with λ1i “ log

ˆ

µ` 1

2pi` 1q
˙

µ N{2
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F. BEMS Study Documentation

This appendix contains the extended documentation of the BEMS study. A
technical documentation of the devices used in the study is provided and an
illustration of the time series data, i.e. load profiles, price curves, temperature
curves, solar irradiance, electricity and hot water consumption. Note that these
data are also contained in the digital appendix.
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Figure F.1.: Profiles of outside temperature. Data obtained from wetter.com: 7.1.2015 and
4.6.2015, both Karlsruhe.
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Figure F.2.: Solar irradiance. Data obtained from measurements the ESHL.
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Figure F.3.: Residential building base load. Data is based on the H0 load profile pro-
vided by the German Association of Energy and Water Industries. The load of
optimizable devices was subtracted.
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Figure F.4.: Hot water consumption profile of a residential building. Data obtained from
Directive 2010/30/EU of the European Commission.
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Figure F.5.: Load limitation signal above which the household has to pay a penalty for
electricity consumption. Data obtained from [All14].

00:00 06:00 12:00 18:00 00:00

25

30

time/hh:mm

Pr
ic

e/
c
t
k
W

´
1
h

´
1 January

June

Figure F.6.: Price in cent per kilowatt hour of electricity purchased from the grid. Data
obtained from [Dal13].
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Figure F.7.: Carbon dioxide emissions of consuming a unit of electricity from the grid in
January and June. Data obtained from Fraunhofer Institute of Solar Energy.
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Figure F.8.: Load profiles of the different operation modes of the washing machine. Op-
eration mode 2 was chosen as load profile of the deferrable washing ma-
chine. Data obtained from measurements in the ESHL.
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Figure F.9.: Load profiles of the different operation modes and phases of the tumble
dryer. Operation mode 2 was chosen as load profile of the deferrable wash-
ing machine. Data obtained from measurements in the ESHL.
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Figure F.10.: Load profiles of the different operation modes and phases of the dish-
washer. Operation mode 2 was chosen as load profile of the deferrable and
interruptible dishwasher. Data obtained from measurements in the ESHL.

Table F.1.: General parameter overview of the BEMS problem.

A 130 m2

h 2 m

cair 1005 J kg´1 K´1

cwater 4181 J kg´1 K´1

eg 247 g kW´1 h´1

pgptq 9.16 ct kW´1 h´1

pCHP 12.56 ct kW´1 h´1

pPV 8.53 ct kW´1 h´1

Qmax
WS 10 000 J

Qotherptq 200 J for all t
ρair 1.204 kg m´3

ρwater 988 kg m´3

T heat
WS 50˝

T l 19.5˝ (winter), 21.5 psummer)
Tmax 25˝
Tmax

WS 90˝
Tmin 18˝
Tmin

WS 40˝
T set 20˝ (winter), 22˝ (summer)
T u 20.5˝ (winter), 22.5 psummer)
VWS 0.4 m3
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Table F.2.: Overview of appliances in summer and winter scenarios in the BEMS study.
RW1/RS1 RW2/RW2 RW3/RS3

Washing machine deferrable deferrable deferrable and load-flexible
Tumble dryer deferrable interruptible interruptible and load-flexible
Dishwasher deferrable interruptible interruptible and load-flexible

CHP plant available
Condensing boiler available
Air-conditioning available
PV system available only in summer

Table F.3.: Temporal degree of freedom and standby consumptions of devices. The vari-
able Estandby,init

j denotes the electricity consumption of device j before its first
phase has been executed.

Release Deadline E
standby,init
j E

standby
j

Washing machine 8:00 17:00 2 W 5 W
Tumble dryer 18:00 21:00 2 W 5 W
Dishwasher 10:00 18:00 2 W 5 W
CHP plant 0:00 n/A 2 W 5 W
Condensing boiler 0:00 n/A 2 W 5 W
Air-conditioning 0:00 n/A 2 W 5 W

Table F.4.: Technical specification of the air-conditioning. The air-conditioning possesses
four different operation modes.

Cooling power 0.75 kW 1.5 kW 2.25 kW 3 kW
Electricity consumption 0.25 kW 0.5 kW 0.75 kW 1 kW

Minimum phase runtime 5 min
Maximum phase runtime 333 min
Minimum standby time 5 min
Energy efficiency ratio 3
Maximum number of phases 15

Table F.5.: Technical specification of the CHP plant and the condensing boiler. The con-
densing boiler possesses four different operation modes.

CHP plant Condensing boiler

Heating power 2 kW 2 kW 4 kW 8 kW 14 kW
Electricity consumption ´1 kW 15 kW 30 kW 60 kW 110 kW

Minimum phase runtime 5 min 5 min
Maximum phase runtime 500 min 500 min
Minimum standby time 10 min 10 min
Energy conversion efficiency 70 % thermal, 25 % electrical 95 % thermal
Maximum number of phases 15 15
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Table F.6.: Nomenclature of parameters, variables and objectives used for the BEMS op-
timization problem.

aj Vector of operation modes for each phase
aj,k,l Operation mode l of device j in phase k
A Area of the building (m2)
Aenv Area of the building envelope (m2)
Bptq Carbon dioxide emissions in time slot t (g)
B Total carbon dioxide emissions the optimization horizon (g)
cair Specific heat capacity of air (J kg´1 K´1)
cwater Specific heat capacity of water (J kg´1 K´1)
C Total costs for energy consumption across the optimization horizon (ct)
Cptq Energy costs that occur in time slot t (ct)
dj Deadline of device j, i.e. its latest time to finish
D Average thermal discomfort across the optimization horizon (˝C)
Dptq Thermal discomfort that occurs in time slot t (˝C)
ebptq CO2 emissions of consuming a unit of electricity from the grid in time slot t (g kW´1 h´1)
eg CO2 emissions of consuming a unit of natural gas (g kW´1 h´1)
h Height of the building (m)
hloss Heat transfer coefficient of the building (W m´2 K´1)
hloss

WS Heat transfer coefficient of the hot water storage (W m´2 K´1)
J The set of all devices in the building
j Identifier of a device
k Identifier of a phase
l Identifier of an operation mode
nj Number of operation cycles of device j
Ejptq Electricity consumed/generated by device j in time slot t (kW h)
Ej,k,lptrefq Electricity consumption/provision of device j in phase k in operation mode l (kW h)
E

standby
j

Standby electricity consumption of device j in a single time slot (kW h)
G Total gas consumption across the optimization horizon (kW h)
Gjptq Natural gas consumption of device j in time slot t (kW h)
Gj,k,lptrefq Natural gas consumption of device j in phase k in operation mode l (kW h)
H The set of all time slots within the optimization horizon
rj Release time of device j, i.e. its earliest time of execution
ρair Density of air (kg m´3)
ρwater Density of water (kg m´3)
pj Vector of lengths of each individual phase
pj,k Phase length of phase k of device j
pptq Price paid per unit of electricity bought from/sold to the utility (ct kW´1 h´1)
pgptq Price paid per unit of gas consumed (ct kW´1 h´1)
pbptq Price paid per unit of electricity bought from to the utility (ct kW´1 h´1)
pCHP Price paid per unit of electricity sold generated by the micro-CHP plant (ct kW´1 h´1)
pPV Price paid per unit of electricity sold generated by the PV system (ct kW´1 h´1)
Qjptq Heating/cooling generated by device j in time slot t (J)
Qj,k,lptrefq Generated heat/cooling of device j in phase k in operation mode l (J)
Q∆ptq Heating/cooling added to regulate temperature inside the building (J)
Qinptq Heat generated by burning gas (J)
Qheatptq Heat extracted from the hot water storage tank for heating (J)
Qlossptq Heating/cooling loss caused by difference between inside and outside temperature (J)
Qmax

WS Maximum heat extractable from the hot water storage (J)
QNHptq Required heat/cooling to maintain building temperature (J)
Qotherptq Waste heat generated by devices and residents (J)
Qwaterptq Energy of warm water used by residents (J)
sj Vector of delays for each individual phase
sj,k Delay of phase k of device j
t The variable identifying individual time slots
tref Referred time in the load profileEj,k,l
T ptq Temperature in the building at time t
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T heat
WS Minimum water temperature for warm water extraction
T l Lower thermal comfort threshold p˝Cq
Tmax Maximum allowed temperature in building p˝Cq
Tmax

WS Maximum allowed temperature of the hot water storage p˝Cq
Tmin Minimum allowed temperature in building p˝Cq
Tmin

WS Minimum allowed temperature of the hot water storage p˝Cq
T outptq Outside temperature at time t p˝Cq
T set Target temperature of the building set by the residents p˝Cq
T u Upper thermal comfort threshold p˝Cq
TWS Temperature of the hot water storage p˝Cq
VWS Volume of the hot water storage p˝Cq
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Table G.1.: Local search study – PD of CMA-ES. Median and IQR (as subscript) results for different step sizes σ across 100 runs.
Best performances are colored in green, second-best performances in blue. Smallest PDs are achieved for step sizes of
1e´3 and 1e´2. These values provide a balance between a narrow and broad search within the assigned basin.

Sum of objectives Nash

1e´5 1e´4 1e´3 1e´2 1e´1 1e´5 1e´4 1e´3 1e´2 1e´1

DEB2DK k “ 1 3.29e´31.61e´3 2.58e´12.45e´1 3.46e´44.06e´4 8.76e´41.21e´3 4.94e´12.26e´3 5.60e´35.98e´3 8.34e´44.77 1.18e´31.36e´3 2.50e´33.47e´3 3.54e´34.06e´3

DEB2DK k “ 2 4.54e´38.61e´2 1.23e´11.23e´1 7.97e´45.65e´4 1.48e´31.19e´3 2.48e´11.97e´3 1.98e´11.97e´1 1.97e´11.97e´1 1.31e´31.04e´3 3.47e´32.66e´3 4.87e´33.73e´3

DEB2DK k “ 3 3.73e´27.06e´2 7.27e´27.23e´2 9.18e´45.26e´4 2.35e´31.87e´3 1.45e´11.48e´3 1.08e´12.03e´1 1.05e´11.04e´1 1.37e´39.32e´4 3.42e´31.98e´3 2.07e´11.14e´3

DEB2DK k “ 4 4.56e´24.60e´2 4.71e´24.68e´2 8.73e´44.92e´4 2.63e´34.63e´2 9.38e´21.46e´3 1.24e´18.18e´2 1.34e´15.53e´2 2.03e´31.63e´3 5.03e´34.47e´3 1.34e´18.41e´4

DEB3DK k “ 1 4.65e´29.15e´2 4.53e´29.12e´2 2.70e´11.73e´1 2.52e´31.11e´1 1.12e´19.04e´4 2.81e´21.23e´2 2.92e´21.36e´2 1.98e´25.76 3.24e´32.68e´3 2.99e´32.70e´3

DEB3DK k “ 2 5.78e´22.53e´2 6.03e´22.88e´2 9.76e´26.39e´2 1.90e´25.46e´2 2.20e´11.56e´2 6.63e´22.71e´2 7.11e´23.13e´2 3.30e´15.22 4.34e´22.16e´1 4.41e´21.70e´1

DO2DK k “ 1 s “ 1 2.58e´33.04e´3 1.23e´33.40e´3 7.05e´48.89e´4 8.63e´41.74e´3 1.19e´31.37e´3 2.44e´32.63e´3 2.50e´35.13 5.31e´46.49e´4 6.63e´41.08e´3 7.95e´48.72e´4

DO2DK k “ 2 s “ 1 5.31e´34.54e´3 1.50e´15.30e´2 1.87e´32.07e´3 4.08e´34.37e´3 1.50e´11.25e´3 4.07e´33.46e´3 1.54e´11.53e´1 7.90e´48.52e´4 2.05e´31.62e´3 2.38e´31.92e´3

DO2DK k “ 3 s “ 1 3.56e´32.22e´3 3.25e´31.39e´1 8.88e´46.69e´4 1.58e´31.37e´3 1.46e´11.47e´1 3.77e´35.41e´3 4.31e´43.60e´3 6.08e´46.96e´4 1.04e´31.10e´3 1.12e´31.56e´3

DO2DK k “ 4 s “ 1 5.97e´39.18e´2 1.39e´15.88e´2 1.69e´39.35e´2 3.36e´39.23e´2 1.57e´14.92e´4 4.36e´39.37e´2 9.55e´29.47e´2 6.03e´44.93e´4 1.01e´39.97e´4 1.28e´31.14e´3

DTLZ7 3.92e´21.15e´2 4.03e´21.28e´2 2.10e´14.03e´1 8.72e´33.48e´3 1.03e´25.10e´3 5.705.18 6.105.60 1.72e´11.53e´1 1.95e´27.72e´3 1.95e´26.96e´3

ZDT3 4.74e´31.17e´3 1.77e´11.13e´1 2.42e´41.99e´4 2.12e´41.40e´4 6.46e´26.01e´2 2.801.37e´1 2.822.75 4.10e´21.58e´3 4.10e´21.36e´3 2.16e´11.22e´1

Angle utility Tradeoff utility

1e´5 1e´4 1e´3 1e´2 1e´1 1e´5 1e´4 1e´3 1e´2 1e´1

DEB2DK k “ 1 3.08e´35.42e´1 3.41e´41.10e´3 1.34e´41.73e´4 1.34e´41.73e´4 1.34e´41.73e´4 2.92e´31.37e´3 2.55e´31.26e´3 2.11e´34.90e´4 3.09e´31.42e´3 3.09e´31.42e´3

DEB2DK k “ 2 2.09e´12.08e´1 2.08e´12.07e´1 1.53e´31.03e´3 3.38e´32.72e´3 4.52e´32.47e´3 3.48e´31.09e´3 2.47e´31.15e´3 1.62e´36.20e´4 3.72e´31.21e´3 3.72e´31.21e´3

DEB2DK k “ 3 1.21e´12.27e´1 1.16e´11.15e´1 1.21e´38.40e´4 2.51e´31.65e´3 2.94e´31.67e´3 3.49e´31.05e´3 2.81e´31.05e´3 2.30e´38.60e´4 3.67e´39.60e´4 3.67e´39.60e´4

DEB2DK k “ 4 1.49e´11.89e´1 7.91e´21.00e´1 1.37e´38.85e´4 2.67e´31.51e´3 4.06e´31.80e´3 3.63e´31.11e´3 2.62e´39.13e´4 2.21e´37.42e´4 3.80e´39.92e´4 3.80e´39.92e´4

DEB3DK k “ 1 2.89e´21.86e´2 3.06e´21.89e´2 3.43e´22.84e´1 3.05e´32.68e´3 2.89e´13.20e´3 6.45e´21.62e´2 6.43e´21.66e´2 5.88e´21.25e´2 4.39e´21.54e´2 6.49e´21.57e´2

DEB3DK k “ 2 6.50e´21.01e´2 6.47e´21.30e´2 3.13e´11.86e´1 5.22e´21.55e´1 1.94e´11.40e´1 1.19e´11.45e´2 1.19e´11.77e´2 1.20e´11.76e´2 1.23e´11.43e´2 1.19e´11.64e´2

DO2DK k “ 1 s “ 1 3.45e´34.45e´1 1.66e´21.35 1.55e´41.90e´4 1.60e´41.94e´4 1.50e´41.98e´4 2.63e´39.99e´4 2.23e´36.10e´4 3.97e´41.35e´3 3.11e´31.64e´3 3.11e´31.64e´3

DO2DK k “ 2 s “ 1 5.06e´35.23e´3 1.996.39 9.58e´58.59e´5 9.39e´58.45e´5 9.34e´58.46e´5 3.34e´31.44e´3 2.34e´31.22e´3 1.79e´31.27e´3 3.59e´31.60e´3 3.59e´31.60e´3

DO2DK k “ 3 s “ 1 8.62e´38.31 2.846.74 3.27e´41.46e´4 3.31e´41.55e´4 3.31e´41.48e´4 3.71e´31.34e´3 3.13e´31.51e´3 3.58e´31.27e´3 3.86e´31.28e´3 3.86e´31.28e´3

DO2DK k “ 4 s “ 1 3.81e´38.08 1.758.17e´1 7.12e´44.36e´4 7.23e´44.36e´4 7.23e´44.34e´4 3.98e´31.69e´3 2.97e´31.12e´3 1.88e´31.15e´3 4.04e´31.72e´3 4.04e´31.72e´3

DTLZ7 1.051.70 8.75e´16.84e´1 2.26e´16.38e´2 1.80e´17.36e´3 2.44e´11.52e´1 7.23e´22.16e´2 7.02e´22.03e´2 8.07e´22.90e´2 1.42e´13.42e´2 7.23e´22.16e´2

ZDT3 1.553.10e´1 7.41e´12.96e´2 1.91e´31.90e´4 1.95e´32.50e´4 3.68e´16.93e´3 4.30e´31.75e´3 2.74e´31.29e´3 1.27e´33.41e´4 4.66e´31.32e´3 4.66e´31.37e´3
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Table G.2.: Local search study – PD of the GA. Median and IQR results for different distribution indices η across 100 runs. Best
performances are colored in green, second-best performances in blue. Smallest PDs are achieved for a distribution
index of 120, since estimates of the local scalarization optima found in the initial populations are already very close to
the true optima. Further increasing η might improve the performance, however would narrow the search too much if
the initial estimate would be located further away from the true optimum.

Sum of objectives Nash

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 4.93e´12.89e´3 4.91e´12.44e´1 2.48e´13.16e´1 2.18e´36.99e´4 2.08e´37.07e´4 2.62e´32.24e´3 2.17e´32.03e´3 2.19e´32.07e´3 2.11e´31.96e´3 1.78e´31.89e´3

DEB2DK k “ 2 2.48e´13.35e´3 2.49e´12.23e´3 2.49e´12.08e´3 1.24e´11.23e´1 2.74e´31.90e´3 3.32e´31.57e´3 3.24e´31.97e´3 3.25e´31.95e´3 3.05e´31.74e´3 2.91e´31.67e´3

DEB2DK k “ 3 1.45e´12.69e´3 1.45e´12.15e´3 1.45e´11.79e´3 1.44e´17.48e´3 7.37e´25.73e´2 2.05e´14.38e´3 1.05e´11.04e´1 4.12e´39.96e´2 3.23e´31.33e´3 3.14e´31.46e´3

DEB2DK k “ 4 9.91e´21.04e´1 9.38e´22.20e´3 9.39e´21.74e´3 9.40e´21.33e´3 9.32e´22.25e´2 1.34e´11.85e´3 1.34e´11.50e´3 1.34e´11.27e´3 1.24e´16.56e´2 5.53e´36.48e´2

DEB3DK k “ 1 1.25e´16.80e´3 1.19e´12.66e´3 1.16e´11.68e´2 3.19e´21.11e´1 8.09e´31.11e´1 7.90e´34.74e´3 5.47e´33.03e´3 4.59e´33.42e´3 3.75e´32.36e´3 3.75e´32.79e´3

DEB3DK k “ 2 1.02e´17.45e´3 9.80e´23.65e´3 9.52e´21.36e´2 4.44e´23.74e´2 4.13e´23.80e´2 4.86e´23.71e´2 4.58e´23.87e´2 4.39e´23.75e´2 4.30e´23.76e´2 4.25e´23.87e´2

DO2DK k “ 1 s “ 1 1.79e´31.69e´3 1.70e´31.63e´3 1.41e´31.66e´3 1.32e´31.51e´3 1.19e´31.49e´3 1.96e´31.35e´3 1.53e´31.32e´3 1.27e´39.99e´4 1.16e´37.48e´4 1.31e´31.25e´3

DO2DK k “ 2 s “ 1 1.51e´12.14e´3 1.51e´11.50e´3 1.50e´11.96e´3 3.69e´32.87e´3 3.16e´32.41e´3 2.81e´31.67e´3 2.57e´31.50e´3 2.68e´31.54e´3 2.37e´31.47e´3 2.26e´31.50e´3

DO2DK k “ 3 s “ 1 1.46e´11.45e´1 3.11e´32.33e´3 2.60e´31.82e´3 2.46e´31.39e´3 2.19e´31.50e´3 2.00e´31.52e´3 2.02e´31.63e´3 2.01e´31.63e´3 1.92e´31.44e´3 1.56e´31.48e´3

DO2DK k “ 4 s “ 1 1.56e´11.67e´3 1.57e´11.80e´3 1.55e´16.19e´2 9.45e´21.81e´3 9.36e´29.22e´2 3.22e´39.28e´2 2.70e´31.30e´3 2.60e´31.12e´3 2.22e´31.21e´3 2.08e´39.83e´4

DTLZ7 2.26e´27.61e´3 1.87e´25.94e´3 1.63e´25.42e´3 1.06e´23.60e´3 8.78e´32.65e´3 3.08e´21.17e´1 2.23e´28.18e´3 2.16e´28.80e´3 2.04e´28.36e´3 1.98e´28.93e´3

ZDT3 7.06e´29.76e´2 6.45e´26.23e´2 3.41e´33.20e´2 2.46e´35.24e´4 1.61e´34.85e´4 2.16e´11.09e´1 1.07e´11.61e´3 4.56e´26.11e´2 4.28e´22.79e´3 4.21e´22.21e´3

Angle utility Tradeoff utility

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 1.96e´31.15e´3 1.83e´31.08e´3 1.70e´37.99e´4 1.48e´35.68e´4 1.24e´35.30e´4 2.56e´38.17e´4 2.49e´37.12e´4 2.51e´38.78e´4 2.29e´36.41e´4 2.24e´35.21e´4

DEB2DK k “ 2 3.60e´31.36e´3 3.46e´31.54e´3 3.32e´31.75e´3 3.04e´31.68e´3 3.15e´31.89e´3 3.00e´31.19e´3 3.00e´39.49e´4 2.88e´31.10e´3 2.63e´38.40e´4 2.34e´36.76e´4

DEB2DK k “ 3 3.83e´31.13e´1 3.10e´31.48e´3 3.08e´31.43e´3 2.91e´31.33e´3 2.49e´31.17e´3 3.83e´32.15e´2 3.32e´31.23e´3 3.02e´31.24e´3 2.72e´37.44e´4 2.40e´36.40e´4

DEB2DK k “ 4 8.12e´27.80e´2 3.63e´33.50e´3 3.29e´31.19e´3 3.11e´37.30e´4 2.97e´39.76e´4 1.39e´21.60e´2 4.15e´31.55e´2 4.07e´31.40e´2 2.79e´36.86e´4 2.57e´35.65e´4

DEB3DK k “ 1 5.06e´22.76e´1 7.79e´33.52e´3 6.41e´33.87e´3 4.92e´32.65e´3 3.73e´33.27e´3 4.54e´21.33e´2 4.12e´21.69e´2 4.19e´21.43e´2 4.46e´21.23e´2 4.53e´21.33e´2

DEB3DK k “ 2 4.31e´22.46e´2 4.04e´22.63e´2 4.05e´22.55e´2 3.96e´22.32e´2 3.96e´22.55e´2 1.57e´12.39e´2 1.46e´12.32e´2 1.36e´11.62e´2 1.20e´11.90e´2 1.16e´11.69e´2

DO2DK k “ 1 s “ 1 1.37e´31.56e´3 1.29e´31.22e´3 9.91e´47.40e´4 1.03e´36.77e´4 9.34e´46.55e´4 2.37e´38.96e´4 2.37e´39.32e´4 2.26e´37.06e´4 2.23e´38.95e´4 2.13e´37.58e´4

DO2DK k “ 2 s “ 1 2.81e´32.42e´3 2.32e´31.44e´3 2.14e´31.50e´3 1.51e´37.78e´4 1.29e´34.50e´4 2.68e´31.23e´3 2.51e´38.08e´4 2.40e´38.90e´4 2.15e´39.49e´4 1.91e´37.49e´4

DO2DK k “ 3 s “ 1 4.19e´33.35e´3 3.80e´32.97e´3 3.14e´32.25e´3 2.30e´39.88e´4 1.66e´39.69e´4 4.11e´31.42e´2 3.07e´39.62e´3 3.05e´37.21e´3 2.57e´31.20e´3 2.30e´31.06e´3

DO2DK k “ 4 s “ 1 2.18e´32.09e´3 1.96e´31.96e´3 1.87e´32.21e´3 1.45e´31.51e´3 1.29e´31.02e´3 4.03e´35.93e´2 3.42e´32.87e´3 3.13e´31.45e´3 2.46e´31.01e´3 2.26e´38.39e´4

DTLZ7 1.82e´16.58e´3 1.82e´16.52e´3 1.83e´16.69e´3 1.85e´18.25e´3 1.79e´11.35e´2 1.51e´12.61e´2 1.68e´11.29e´2 1.71e´18.25e´3 1.72e´14.11e´3 1.64e´12.54e´2

ZDT3 1.26e´16.00e´2 5.13e´36.24e´2 4.38e´31.29e´3 3.39e´37.41e´4 2.72e´36.90e´4 4.37e´32.15e´2 2.33e´22.32e´2 2.53e´22.33e´2 2.54e´29.43e´4 2.49e´22.38e´2
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StatisticsTable G.3.: Local search study – PD of the HC. Median and IQR (as subscript) results for different distribution indices η across
100 runs. Best performances are colored in green, second-best performances in blue. Smallest PDs are achieved for a
distribution index of 120, since estimates of the local scalarization optima found in the initial populations are already
very close to the true optima. Further increasing η might improve the performance, however would narrow the search
too much if the initial estimate would be located further away from the true optimum. Such a performance deterioration
is already partially observable for tradeoff utility.

Sum of objectives Nash

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 4.97e´12.80e´4 4.97e´16.67e´4 2.49e´12.48e´1 2.08e´53.24e´5 1.26e´52.20e´5 2.18e´43.58e´4 2.05e´42.35e´4 1.24e´42.35e´4 5.69e´51.04e´4 4.62e´57.98e´5

DEB2DK k “ 2 2.49e´12.63e´4 2.49e´11.24e´4 2.49e´11.22e´4 2.33e´11.25e´1 7.04e´51.25e´1 4.04e´44.46e´4 2.75e´42.90e´4 2.28e´41.71e´4 1.40e´41.10e´4 1.20e´48.06e´5

DEB2DK k “ 3 1.45e´13.18e´4 1.45e´11.89e´4 1.45e´11.33e´4 1.45e´16.65e´5 1.24e´17.24e´2 2.08e´13.27e´4 1.04e´11.04e´1 9.68e´21.04e´1 1.81e´41.21e´4 1.67e´49.16e´5

DEB2DK k “ 4 1.99e´11.05e´1 9.35e´21.83e´4 9.35e´21.08e´4 9.35e´27.05e´5 9.35e´28.72e´5 1.34e´11.78e´4 1.34e´11.17e´4 1.34e´11.09e´4 1.34e´17.25e´4 3.73e´26.70e´2

DEB3DK k “ 1 1.13e´11.74e´4 1.13e´18.76e´5 1.13e´19.46e´5 1.44e´41.13e´1 1.14e´41.13e´1 2.98e´38.33e´4 3.10e´36.99e´4 3.16e´35.79e´4 3.15e´36.33e´4 3.15e´36.45e´4

DEB3DK k “ 2 9.09e´22.08e´4 9.09e´21.02e´2 9.09e´21.82e´4 3.98e´23.77e´2 1.57e´22.41e´2 4.24e´23.82e´2 4.23e´23.83e´2 4.25e´23.83e´2 2.40e´23.83e´2 4.26e´23.83e´2

DO2DK k “ 1 s “ 1 1.06e´42.20e´4 7.92e´51.30e´4 8.27e´51.09e´4 4.35e´57.28e´5 2.74e´56.04e´5 1.00e´41.38e´4 8.93e´51.35e´4 5.84e´51.03e´4 3.18e´56.14e´5 2.70e´54.82e´5

DO2DK k “ 2 s “ 1 1.50e´11.46e´4 1.50e´11.17e´4 1.50e´17.52e´5 1.12e´41.84e´4 6.78e´57.80e´5 2.71e´42.92e´4 1.93e´42.22e´4 1.47e´41.54e´4 9.14e´58.00e´5 6.80e´56.85e´5

DO2DK k “ 3 s “ 1 1.48e´11.65e´3 2.72e´43.77e´4 1.55e´42.12e´4 8.60e´59.20e´5 6.88e´57.04e´5 2.94e´44.49e´4 1.94e´42.27e´4 1.55e´42.46e´4 7.12e´51.27e´4 4.99e´58.80e´5

DO2DK k “ 4 s “ 1 1.58e´12.24e´4 1.58e´12.42e´4 1.58e´14.27e´4 9.40e´28.14e´5 9.39e´29.39e´2 4.34e´29.52e´2 2.64e´43.35e´4 2.05e´41.82e´4 9.57e´51.10e´4 6.46e´55.53e´5

DTLZ7 7.02e´34.18e´4 7.07e´32.69e´4 7.06e´32.02e´4 7.09e´31.23e´4 7.12e´37.31e´5 1.54e´11.07e´1 2.30e´28.87e´3 2.32e´28.50e´3 2.34e´28.15e´3 2.36e´28.57e´3

ZDT3 1.86e´16.55e´2 6.45e´25.25e´3 3.77e´46.42e´2 1.51e´41.03e´4 9.69e´55.79e´5 2.16e´11.28e´3 1.06e´14.48e´4 4.38e´26.28e´2 4.10e´21.83e´3 4.08e´21.47e´3

Angle utility Tradeoff utility

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 2.69e´44.01e´4 2.22e´43.01e´4 1.81e´42.28e´4 1.52e´42.32e´4 1.36e´41.70e´4 1.41e´42.39e´4 1.00e´42.09e´4 1.21e´41.66e´4 1.35e´41.91e´4 1.24e´42.27e´4

DEB2DK k “ 2 3.76e´44.17e´4 3.32e´42.18e´4 2.77e´43.03e´4 1.97e´41.34e´4 1.81e´48.75e´5 4.87e´29.96e´2 4.27e´24.83e´2 2.50e´41.47e´4 2.38e´41.16e´4 2.40e´49.92e´5

DEB2DK k “ 3 1.15e´11.15e´1 4.58e´43.48e´4 4.12e´42.36e´4 3.00e´42.19e´4 2.82e´41.98e´4 1.45e´11.22e´3 9.56e´24.92e´2 4.72e´24.63e´4 2.41e´22.31e´2 1.19e´33.53e´4

DEB2DK k “ 4 1.57e´17.85e´2 8.62e´47.86e´2 3.31e´42.43e´4 1.87e´41.07e´4 1.59e´47.29e´5 1.04e´13.97e´4 1.04e´11.28e´3 7.49e´22.88e´2 3.17e´21.84e´4 1.64e´22.45e´2

DEB3DK k “ 1 2.90e´19.13e´2 1.36e´36.26e´4 1.45e´36.13e´4 1.42e´34.70e´4 1.46e´35.19e´4 4.40e´21.63e´2 4.27e´21.36e´2 4.28e´21.46e´2 4.39e´21.39e´2 4.56e´21.31e´2

DEB3DK k “ 2 4.06e´22.70e´2 4.06e´22.73e´2 4.07e´22.71e´2 4.10e´22.71e´2 4.10e´22.72e´2 2.06e´12.79e´2 1.77e´13.18e´2 1.49e´11.95e´2 1.20e´11.98e´2 1.16e´11.88e´2

DO2DK k “ 1 s “ 1 2.92e´44.26e´4 2.32e´44.10e´4 1.61e´43.34e´4 1.41e´42.41e´4 1.12e´42.11e´4 6.36e´51.77e´4 8.84e´52.09e´4 9.00e´52.33e´4 1.35e´43.14e´4 1.25e´43.02e´4

DO2DK k “ 2 s “ 1 2.75e´44.68e´4 1.63e´42.58e´4 1.04e´41.77e´4 7.87e´51.12e´4 7.18e´58.23e´5 2.30e´12.30e´1 4.48e´44.12e´4 4.54e´43.81e´4 5.12e´43.34e´4 5.20e´43.91e´4

DO2DK k “ 3 s “ 1 3.65e´43.80e´4 2.71e´42.95e´4 2.46e´42.12e´4 2.01e´41.93e´4 2.15e´42.25e´4 1.18e´14.95e´4 1.18e´11.01e´3 1.53e´21.03e´1 1.52e´23.53e´4 1.52e´23.45e´4

DO2DK k “ 4 s “ 1 1.56e´31.57e´3 1.19e´31.13e´3 1.19e´37.71e´4 9.34e´46.78e´4 8.71e´45.85e´4 8.19e´26.09e´2 8.15e´23.41e´4 8.15e´23.75e´4 6.00e´42.77e´4 5.72e´42.20e´4

DTLZ7 1.95e´11.63e´2 1.96e´11.66e´2 1.95e´11.43e´2 1.95e´11.35e´2 1.95e´11.22e´2 2.11e´11.13e´3 1.94e´11.80e´2 1.75e´11.75e´2 1.75e´11.26e´3 1.63e´13.34e´2

ZDT3 1.27e´11.21e´1 6.19e´26.60e´2 1.88e´33.21e´4 1.85e´31.62e´4 1.84e´31.04e´4 2.48e´22.19e´4 2.47e´21.61e´4 2.47e´21.29e´4 2.48e´28.38e´5 2.48e´26.98e´5
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Table G.4.: Local search study – PD of the PSA. Median and IQR (as subscript) results for different inertia weights w across 100
runs. Best performances are colored in green, second-best performances in blue. Smallest PDs are achieved for an
inertia weight of 0.75, which gives a large weight to the personal and global best position during the search.

Sum of objectives Nash

0.1 0.25 0.5 0.75 1 0.1 0.25 0.5 0.75 1

DEB2DK k “ 1 2.35e´33.70e´4 2.18e´33.80e´4 1.30e´34.20e´4 1.80e´91.09e´9 3.40e´34.92e´3 1.63e´33.85e´4 1.52e´33.83e´4 1.25e´36.45e´4 1.22e´51.57e´5 8.85e´31.75e´2

DEB2DK k “ 2 2.33e´33.73e´4 2.18e´34.00e´4 1.49e´34.53e´4 3.67e´95.58e´10 5.64e´31.35e´2 2.02e´33.11e´4 1.95e´34.05e´4 1.63e´35.62e´4 9.88e´51.50e´5 1.91e´11.83e´1

DEB2DK k “ 3 2.17e´34.10e´4 2.09e´33.49e´4 1.58e´34.72e´4 4.04e´96.11e´10 1.34e´16.70e´3 1.99e´32.98e´4 1.94e´33.26e´4 1.74e´36.03e´4 1.30e´42.38e´5 1.98e´11.22e´2

DEB2DK k “ 4 2.19e´33.54e´4 2.09e´33.86e´4 1.62e´33.79e´4 5.20e´93.63e´10 9.54e´22.67e´3 2.24e´35.32e´4 2.10e´35.06e´4 6.78e´26.63e´2 1.34e´11.79e´7 1.36e´19.13e´3

DEB3DK k “ 1 4.03e´21.01e´1 3.68e´29.91e´2 2.04e´21.03e´1 1.73e´41.13e´1 1.32e´21.05e´1 1.91e´23.34e´3 1.82e´23.09e´3 1.32e´24.86e´3 3.27e´37.02e´4 2.02e´22.85e´2

DEB3DK k “ 2 4.86e´23.52e´2 4.68e´23.41e´2 3.54e´22.86e´2 1.60e´23.75e´2 2.79e´11.31e´5 5.80e´23.16e´2 5.70e´23.23e´2 5.29e´23.48e´2 4.26e´23.78e´2 2.27e´11.73e´2

DO2DK k “ 1 s “ 1 1.09e´34.15e´4 1.07e´34.25e´4 9.73e´48.58e´4 5.31e´91.17e´9 5.06e´31.01e´2 1.09e´32.64e´4 1.06e´32.78e´4 9.51e´45.32e´4 1.66e´52.19e´5 5.14e´38.67e´3

DO2DK k “ 2 s “ 1 1.90e´34.83e´4 1.85e´36.39e´4 2.14e´32.17e´3 1.50e´19.60e´10 1.50e´12.66e´3 1.77e´33.11e´4 1.70e´32.79e´4 1.47e´34.76e´4 4.43e´51.02e´5 1.53e´15.20e´3

DO2DK k “ 3 s “ 1 1.95e´33.90e´4 1.96e´35.01e´4 1.51e´36.18e´4 5.67e´91.09e´9 1.45e´11.25e´2 1.47e´33.14e´4 1.42e´33.91e´4 1.14e´34.49e´4 2.98e´51.96e´5 9.83e´31.76e´2

DO2DK k “ 4 s “ 1 2.17e´39.27e´2 2.33e´39.25e´2 9.42e´29.21e´4 9.39e´27.78e´10 1.50e´19.78e´3 1.65e´33.41e´4 1.59e´33.20e´4 1.28e´33.64e´4 2.05e´51.55e´5 8.93e´28.23e´2

DTLZ7 2.53e´25.11e´3 2.38e´24.28e´3 1.86e´24.89e´3 7.12e´31.17e´9 2.17e´12.05e´2 2.92e´29.08e´3 2.73e´27.61e´3 2.33e´27.65e´3 2.22e´29.28e´3 4.58e´11.37e´2

ZDT3 3.97e´39.36e´4 3.91e´38.32e´4 2.96e´37.48e´4 6.27e´91.89e´10 5.74e´15.07e´2 6.49e´31.39e´3 1.76e´24.16e´3 4.28e´22.18e´3 4.08e´21.32e´3 2.15e´11.63e´2

Angle utility Tradeoff utility

0.1 0.25 0.5 0.75 1 0.1 0.25 0.5 0.75 1

DEB2DK k “ 1 1.73e´34.07e´4 1.71e´33.88e´4 1.67e´34.20e´4 2.78e´46.63e´4 9.13e´31.77e´2 2.71e´35.11e´4 2.47e´34.70e´4 1.50e´33.96e´4 1.75e´42.00e´4 1.62e´33.41e´3

DEB2DK k “ 2 2.08e´34.34e´4 2.03e´33.71e´4 1.68e´37.15e´4 1.88e´42.89e´5 2.06e´11.46e´2 2.36e´33.21e´4 2.26e´33.22e´4 1.69e´34.45e´4 3.01e´41.39e´4 1.29e´18.59e´2

DEB2DK k “ 3 2.07e´32.86e´4 2.08e´35.40e´4 1.87e´35.90e´4 2.94e´42.16e´4 2.18e´19.62e´3 2.41e´33.96e´4 2.33e´34.45e´4 1.89e´34.43e´4 1.04e´33.24e´4 1.02e´15.69e´2

DEB2DK k “ 4 2.08e´33.30e´4 2.02e´33.90e´4 1.71e´35.10e´4 1.42e´42.54e´5 1.57e´16.95e´3 2.36e´34.02e´4 2.24e´33.56e´4 1.83e´33.64e´4 1.11e´35.52e´4 8.26e´23.67e´2

DEB3DK k “ 1 2.37e´24.55e´3 2.21e´24.45e´3 1.52e´24.14e´3 1.50e´36.41e´4 1.83e´21.68e´2 6.05e´21.22e´2 5.99e´21.17e´2 5.36e´21.45e´2 4.40e´21.57e´2 4.52e´21.60e´2

DEB3DK k “ 2 5.22e´25.19e´3 5.17e´24.43e´3 4.77e´26.60e´3 4.12e´23.30e´3 2.37e´13.36e´2 1.19e´11.50e´2 1.19e´11.63e´2 1.18e´11.79e´2 1.21e´11.98e´2 1.66e´12.33e´2

DO2DK k “ 1 s “ 1 2.10e´35.94e´4 2.11e´36.07e´4 1.96e´35.87e´4 2.21e´43.98e´4 1.03e´21.38e´2 2.72e´37.96e´4 2.61e´37.89e´4 1.58e´35.92e´4 2.00e´43.00e´4 4.79e´47.22e´4

DO2DK k “ 2 s “ 1 2.06e´34.66e´4 2.06e´34.68e´4 1.98e´35.11e´4 1.80e´48.11e´4 7.82e´31.15e´2 2.44e´37.36e´4 2.35e´36.84e´4 1.69e´35.40e´4 5.84e´43.17e´4 1.12e´15.93e´3

DO2DK k “ 3 s “ 1 2.84e´36.14e´4 2.82e´36.54e´4 2.66e´36.47e´4 3.74e´44.17e´4 1.17e´21.57e´2 2.58e´36.45e´4 2.50e´35.82e´4 2.01e´38.02e´4 1.45e´21.29e´2 8.30e´26.52e´3

DO2DK k “ 4 s “ 1 2.57e´37.54e´4 2.56e´37.30e´4 2.23e´38.47e´4 6.62e´45.44e´4 1.67e´23.81e´2 2.60e´34.73e´4 2.43e´35.28e´4 1.64e´34.95e´4 6.41e´42.15e´4 1.30e´15.22e´2

DTLZ7 4.33e´28.34e´3 6.74e´21.67e´2 1.57e´13.47e´2 1.85e´16.23e´3 1.89e´18.60e´3 5.93e´22.26e´2 6.15e´22.13e´2 7.17e´22.40e´2 1.15e´13.31e´2 3.64e´13.79e´2

ZDT3 4.88e´31.03e´3 4.95e´31.03e´3 3.88e´38.47e´4 1.85e´39.00e´6 2.33e´11.20e´1 4.30e´38.50e´4 4.18e´39.31e´4 3.49e´38.22e´4 1.30e´33.41e´4 1.21e´14.82e´2
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Table G.5.: Local search study – PR of CMA-ES. Median and IQR (as subscript) results for different step sizes σ across 100 runs.
Best performances are colored in green, second-best performances in blue. The largest PRs are obtained for a step size
of 1e´2, which constitutes a good balance between a narrow and a broad search within the basin.

Sum of objectives Nash

1e´5 1e´4 1e´3 1e´2 1e´1 1e´5 1e´4 1e´3 1e´2 1e´1

DEB2DK k “ 1 1.000.00 0.500.33 1.000.00 1.000.00 0.330.00 1.000.00 1.001.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 1.000.25 0.750.25 1.000.00 1.000.00 0.500.00 0.500.50 0.500.50 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 0.800.40 0.800.20 1.000.00 1.000.00 0.600.00 0.670.33 0.670.33 1.000.00 1.000.00 0.330.00

DEB2DK k “ 4 0.830.33 0.830.17 1.000.00 1.000.17 0.670.00 0.500.50 0.500.00 1.000.00 0.750.25 0.500.00

DEB3DK k “ 1 0.000.00 0.000.20 0.400.20 1.000.20 0.800.00 0.000.00 0.000.00 0.001.00 1.000.00 1.000.00

DEB3DK k “ 2 0.000.10 0.000.10 0.400.20 0.800.10 0.500.10 0.000.00 0.000.00 0.250.25 0.750.50 0.500.25

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.001.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.50 0.500.00 1.000.00 1.000.00 0.500.00 1.000.00 0.500.50 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.50 1.000.00 1.000.00 0.500.50 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 1.000.33 0.330.33 1.000.33 1.000.33 0.330.00 1.000.50 0.500.50 1.000.00 1.000.00 1.000.00

DTLZ7 0.000.00 0.000.00 0.500.25 0.750.25 0.500.50 0.000.00 0.000.00 0.000.25 0.250.50 0.250.25

ZDT3 1.000.00 0.600.20 1.000.00 1.000.00 0.800.20 0.000.00 0.000.20 0.800.00 0.800.00 0.400.20

Angle utility Tradeoff utility

1e´5 1e´4 1e´3 1e´2 1e´1 1e´5 1e´4 1e´3 1e´2 1e´1

DEB2DK k “ 1 1.000.75 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 0.500.50 0.500.50 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 0.330.33 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 4 0.500.50 0.750.25 1.000.00 1.000.00 1.000.25 1.000.00 1.000.00 1.000.00 1.000.11 1.000.11

DEB3DK k “ 1 0.000.50 0.000.50 0.500.50 1.000.00 0.500.00 0.000.00 0.000.00 0.000.00 0.330.17 0.000.00

DEB3DK k “ 2 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.04 0.040.04 0.000.00

DO2DK k “ 1 s “ 1 1.001.00 0.501.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 0.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.001.00 0.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.20 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 1.001.00 0.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 0.000.00 0.000.00 0.000.20 0.000.20 0.000.20 0.000.00 0.000.08 0.080.08 0.080.00 0.000.00

ZDT3 0.000.00 0.000.00 1.000.00 1.000.00 0.400.20 1.000.00 1.000.00 1.000.00 1.000.17 1.000.17
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Table G.6.: Local search study – PR of the GA. Median and IQR results for different distribution indices η across 100 runs. Best
performances are colored in green, second-best performances in blue. Largest PRs are obtained for a distribution index
of 120. Smaller distribution indices broaden the search too far such that the GA escapes its assigned basin.

Sum of objectives Nash

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 0.330.00 0.330.33 0.670.67 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 0.500.00 0.500.00 0.500.00 0.750.25 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 0.600.00 0.600.00 0.600.00 0.600.00 0.800.20 0.330.00 0.670.33 1.000.33 1.000.00 1.000.00

DEB2DK k “ 4 0.500.17 0.670.00 0.670.00 0.670.00 0.670.00 0.500.00 0.500.00 0.500.00 0.500.25 0.750.25

DEB3DK k “ 1 0.200.20 0.600.20 0.800.20 0.800.20 0.800.20 1.001.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB3DK k “ 2 0.100.20 0.400.20 0.550.30 0.800.10 0.800.20 0.000.25 0.250.25 0.500.25 0.750.00 0.750.25

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 0.500.00 0.500.00 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 0.500.50 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 0.330.00 0.330.00 0.330.33 0.670.00 0.670.33 1.000.50 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 0.000.00 0.000.25 0.250.25 0.500.44 0.750.25 0.000.25 0.000.25 0.250.25 0.250.25 0.250.00

ZDT3 0.600.20 0.800.20 1.000.15 1.000.00 1.000.00 0.400.20 0.600.00 0.800.20 0.800.00 0.800.00

Angle utility Tradeoff utility

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 1.000.33 1.000.00 1.000.00 1.000.00 1.000.00 1.000.14 1.000.11 1.000.00 1.000.00 1.000.00

DEB2DK k “ 4 0.750.25 1.000.25 1.000.00 1.000.00 1.000.00 0.890.19 0.890.11 0.890.11 1.000.00 1.000.00

DEB3DK k “ 1 0.500.00 1.000.50 1.000.50 1.000.00 1.000.00 0.000.17 0.170.29 0.170.17 0.330.17 0.170.17

DEB3DK k “ 2 0.000.25 0.250.50 0.250.25 0.250.50 0.250.50 0.000.00 0.040.04 0.040.04 0.090.04 0.090.08

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.20 1.000.20 1.000.20 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.20 1.000.20 1.000.00 1.000.00 1.000.00

DTLZ7 0.000.00 0.000.00 0.000.00 0.000.00 0.000.20 0.000.00 0.080.08 0.170.17 0.250.17 0.250.17

ZDT3 0.600.20 1.000.20 1.000.00 1.000.00 1.000.00 1.000.17 0.830.17 0.830.17 0.830.00 0.830.17
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Table G.7.: Local search study – PR of the HC. Median and IQR (as subscript) results for different distribution indices η across
100 runs. Best performances are colored in green, second-best performances in blue. Largest PRs are obtained for a
distribution index of 120. Smaller distribution indices broaden the search too far such that the HC escapes its assigned
basin.

Sum of objectives Nash

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 0.330.00 0.330.00 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 0.500.00 0.500.00 0.500.00 0.500.25 1.000.25 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 0.600.00 0.600.00 0.600.00 0.600.00 0.600.20 0.330.00 0.670.33 0.670.33 1.000.00 1.000.00

DEB2DK k “ 4 0.500.17 0.670.00 0.670.00 0.670.00 0.670.00 0.500.00 0.500.00 0.500.00 0.500.00 0.750.25

DEB3DK k “ 1 0.800.00 0.800.00 0.800.00 1.000.20 1.000.20 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB3DK k “ 2 0.700.00 0.700.08 0.700.00 0.900.10 0.900.00 0.750.25 0.750.25 0.750.25 0.880.25 0.750.25

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 0.500.00 0.500.00 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 4 s “ 1 0.330.00 0.330.00 0.330.00 0.670.00 0.670.33 0.750.50 1.000.00 1.000.00 1.000.00 1.000.00

DTLZ7 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.250.25 0.250.19 0.250.00 0.250.00 0.250.00

ZDT3 0.600.00 0.800.00 1.000.20 1.000.00 1.000.00 0.400.00 0.600.00 0.800.20 0.800.00 0.800.00

Angle utility Tradeoff utility

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DEB2DK k “ 2 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.800.20 0.800.20 1.000.00 1.000.00 1.000.00

DEB2DK k “ 3 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00 0.430.00 0.570.14 0.710.00 0.860.14 1.000.00

DEB2DK k “ 4 0.500.25 1.000.25 1.000.00 1.000.00 1.000.00 0.440.00 0.440.00 0.560.11 0.780.00 0.890.22

DEB3DK k “ 1 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 0.170.17 0.170.17 0.250.17 0.170.17 0.170.17

DEB3DK k “ 2 0.000.25 0.000.25 0.000.25 0.000.25 0.000.25 0.040.04 0.040.09 0.040.04 0.090.04 0.070.04

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.670.33 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.600.00 0.600.00 0.800.20 0.800.00 0.800.00

DO2DK k “ 4 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00 0.800.20 0.800.00 0.800.00 1.000.00 1.000.00

DTLZ7 0.000.20 0.000.20 0.000.00 0.000.00 0.000.00 0.080.00 0.080.00 0.080.00 0.080.00 0.080.00

ZDT3 0.600.20 0.800.20 1.000.00 1.000.00 1.000.00 0.830.00 0.830.00 0.830.00 0.830.00 0.830.00
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Table G.8.: Local search study – PR of the PSA. Median and IQR (as subscript) results for different inertia weights w across 100
runs. Best performances are colored in green, second-best performances in blue. Largest PRs are obtained for an inertia
weight of 0.75. Smaller inertia weights also achieve high PRs suggesting that the PSA is robust considering the chosen
value for w. On the other hand, an inertia weight of w “ 1 results in erratic movements that makes the PSA leaving its
assigned basin.

Sum of objectives Nash

0.1 0.25 0.5 0.75 1 0.1 0.25 0.5 0.75 1

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 0.830.33 1.000.00 1.000.00 1.000.00 1.000.00 1.001.00

DEB2DK k “ 2 1.000.00 1.000.00 1.000.00 1.000.00 0.750.25 1.000.00 1.000.00 1.000.00 1.000.00 0.500.00

DEB2DK k “ 3 1.000.00 1.000.00 1.000.00 1.000.00 0.600.00 1.000.00 1.000.00 1.000.00 1.000.00 0.330.00

DEB2DK k “ 4 1.000.00 1.000.00 1.000.00 1.000.00 0.670.17 1.000.00 1.000.00 0.750.25 0.500.00 0.500.25

DEB3DK k “ 1 0.000.00 0.000.00 0.000.20 1.000.20 0.600.20 0.000.00 0.000.00 0.000.00 1.000.00 0.000.00

DEB3DK k “ 2 0.000.00 0.000.00 0.000.10 0.900.10 0.400.00 0.000.00 0.000.00 0.000.00 0.750.25 0.000.25

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.001.00 1.000.00 1.000.00 1.000.00 1.000.00 1.001.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 0.500.00 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 0.500.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 0.500.50 1.000.00 1.000.00 1.000.00 1.000.00 1.001.00

DO2DK k “ 4 s “ 1 1.000.33 1.000.33 0.670.00 0.670.00 0.330.00 1.000.00 1.000.00 1.000.00 1.000.00 0.500.00

DTLZ7 0.000.00 0.000.00 0.000.00 1.000.00 0.250.25 0.000.00 0.000.00 0.000.00 0.250.00 0.250.00

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 0.200.00 0.800.00 0.800.00 0.800.00 0.800.00 0.400.20

Angle utility Tradeoff utility

0.1 0.25 0.5 0.75 1 0.1 0.25 0.5 0.75 1

DEB2DK k “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.001.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.33

DEB2DK k “ 2 1.000.00 1.000.00 1.000.00 1.000.00 0.500.00 1.000.00 1.000.00 1.000.00 1.000.00 0.600.00

DEB2DK k “ 3 1.000.00 1.000.00 1.000.00 1.000.00 0.330.25 1.000.00 1.000.00 1.000.00 1.000.00 0.570.14

DEB2DK k “ 4 1.000.00 1.000.00 1.000.00 1.000.00 0.500.25 1.000.00 1.000.00 1.000.00 1.000.00 0.440.00

DEB3DK k “ 1 0.000.00 0.000.00 0.000.00 1.000.00 0.500.50 0.000.00 0.000.00 0.000.00 0.250.17 0.330.17

DEB3DK k “ 2 0.000.00 0.000.00 0.000.00 0.000.25 0.250.25 0.000.00 0.000.00 0.000.00 0.090.04 0.130.04

DO2DK k “ 1 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 0.001.00 1.000.00 1.000.00 1.000.00 1.000.00 1.000.00

DO2DK k “ 2 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 1.001.00 1.000.00 1.000.00 1.000.00 1.000.00 0.670.00

DO2DK k “ 3 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 0.001.00 1.000.00 1.000.00 1.000.00 0.800.20 0.600.20

DO2DK k “ 4 s “ 1 1.000.00 1.000.00 1.000.00 1.000.00 0.001.00 1.000.00 1.000.00 1.000.00 1.000.00 0.400.20

DTLZ7 0.000.00 0.000.00 0.000.00 0.000.15 0.000.00 0.000.00 0.000.00 0.000.08 0.080.08 0.250.08

ZDT3 1.000.00 1.000.00 1.000.00 1.000.00 0.400.20 1.000.00 1.000.00 1.000.00 1.000.00 0.500.17323
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Table G.9.: Local search study – FP of CMA-ES. Median results for different step sizes σ
across 100 runs. Best performances are colored in green, second-best perfor-
mances in blue. Choosing a step size of 1e´2 results in the least FPs. Smaller
step sizes tend to narrow the search too much such that CMA-ES does not
properly converge.

Sum of objectives Nash

1e´5 1e´4 1e´3 1e´2 1e´1 1e´5 1e´4 1e´3 1e´2 1e´1

DEB2DK k “ 1 0 1 0 0 2 0 0 0 0 0
DEB2DK k “ 2 0 1 0 0 2 1 1 0 0 0
DEB2DK k “ 3 0 1 0 0 2 1 1 0 0 2
DEB2DK k “ 4 1 1 0 0 2 2 2 0 0 2
DEB3DK k “ 1 0 0 2 0 1 0 0 0 0 0
DEB3DK k “ 2 0 0 2 0 4 0 0 3 0 0
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 0 1 0 0 1 0 1 0 0 0
DO2DK k “ 3 s “ 1 0 0 0 0 1 0 0 0 0 0
DO2DK k “ 4 s “ 1 0 1 0 0 1 0 0 0 0 0
DTLZ7 0 0 1 0 0 4 4 1 0 0
ZDT3 0 2 0 0 1 5 5 1 1 3

Angle utility Tradeoff utility

1e´5 1e´4 1e´3 1e´2 1e´1 1e´5 1e´4 1e´3 1e´2 1e´1

DEB2DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB2DK k “ 2 1 1 0 0 0 0 0 0 0 0
DEB2DK k “ 3 1 1 0 0 0 0 0 0 0 0
DEB2DK k “ 4 2 1 0 0 0 0 0 0 0 0
DEB3DK k “ 1 0 0 0 0 1 0 0 0 0 0
DEB3DK k “ 2 0 0 3 0 2 5 5 5 5.5 5
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 0 1 0 0 0 0 0 0 0 0
DO2DK k “ 3 s “ 1 0 1 0 0 0 0 0 0 0 0
DO2DK k “ 4 s “ 1 0 1 0 0 0 0 0 0 0 0
DTLZ7 5 4 2 2 3 1 1 2 4 1
ZDT3 5 5 0 0 3 0 0 0 0 0
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Table G.10.: Local search study – FP of the GA. Median results for different distribution
indices η across 100 runs. Best performances are colored in green, second-
best performances in blue. The least number of FPs are obtained for a distri-
bution index of 120. The results are mostly homogenous across the different
scalarization functions and parametrizations suggesting that the GA con-
verges well irrespective of the chosen distribution index.

Sum of objectives Nash

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 2 2 1 0 0 0 0 0 0 0
DEB2DK k “ 2 2 2 2 1 0 0 0 0 0 0
DEB2DK k “ 3 2 2 2 2 1 2 1 0 0 0
DEB2DK k “ 4 2 2 2 2 2 2 2 2 2 0
DEB3DK k “ 1 1 1 1 0 0 0 0 0 0 0
DEB3DK k “ 2 2 2 2 1 1 0 0 0 0 0
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 1 1 1 0 0 0 0 0 0 0
DO2DK k “ 3 s “ 1 1 0 0 0 0 0 0 0 0 0
DO2DK k “ 4 s “ 1 1 1 1 1 1 0 0 0 0 0
DTLZ7 0 0 0 0 0 0 0 0 0 0
ZDT3 1 1 0 0 0 3 2 1 1 1

Angle utility Tradeoff utility

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB2DK k “ 2 0 0 0 0 0 0 0 0 0 0
DEB2DK k “ 3 0 0 0 0 0 0 0 0 0 0
DEB2DK k “ 4 1 0 0 0 0 0 0 0 0 0
DEB3DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB3DK k “ 2 0 0 0 0 0 10 9 7 6 6
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 3 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 4 s “ 1 0 0 0 0 0 0 0 0 0 0
DTLZ7 2 2 2 2 2 5 5 5 5 5
ZDT3 2 0 0 0 0 0 0 0 0 0

325



G. Statistics

Table G.11.: Local search study – FP of the HC. Median results for different distribution
indices η across 100 runs. Best performances are colored in green, second-
best performances in blue. The least number of FPs are obtained for a dis-
tribution index of 120.

Sum of objectives Nash

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 2 2 1 0 0 0 0 0 0 0
DEB2DK k “ 2 2 2 2 2 0 0 0 0 0 0
DEB2DK k “ 3 2 2 2 2 2 2 1 1 0 0
DEB2DK k “ 4 3 2 2 2 2 2 2 2 2 0
DEB3DK k “ 1 1 1 1 0 0 0 0 0 0 0
DEB3DK k “ 2 2 2 2 1 0 0 0 0 0 0
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 1 1 1 0 0 0 0 0 0 0
DO2DK k “ 3 s “ 1 1 0 0 0 0 0 0 0 0 0
DO2DK k “ 4 s “ 1 1 1 1 1 1 0 0 0 0 0
DTLZ7 0 0 0 0 0 1 0 0 0 0
ZDT3 2 1 0 0 0 3 2 1 1 1

Angle utility Tradeoff utility

20 30 40 80 120 20 30 40 80 120

DEB2DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB2DK k “ 2 0 0 0 0 0 1 1 0 0 0
DEB2DK k “ 3 1 0 0 0 0 2 1 0 0 0
DEB2DK k “ 4 2 0 0 0 0 2 2 1 0 0
DEB3DK k “ 1 1 0 0 0 0 0 0 0 0 0
DEB3DK k “ 2 0 0 0 0 0 14 11 9 6 6
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 0 0 0 0 0 1 0 0 0 0
DO2DK k “ 3 s “ 1 0 0 0 0 0 1 1 0 0 0
DO2DK k “ 4 s “ 1 0 0 0 0 0 1 1 1 0 0
DTLZ7 2 2 2 2 2 7 6 5 5 5
ZDT3 2 1 0 0 0 0 0 0 0 0
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Table G.12.: Local search study – FP of the PSA. Median results for different inertia
weights w across 100 runs. Best performances are colored in green, second-
best performances in blue. The least number of FPs are obtained for inertia
weights of 0.1 and 0.25. Larger inertia weights appear to impede the PSA
to converge.

Sum of objectives Nash

0.1 0.25 0.5 0.75 1 0.1 0.25 0.5 0.75 1

DEB2DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB2DK k “ 2 0 0 0 0 0 0 0 0 0 1
DEB2DK k “ 3 0 0 0 0 2 0 0 0 0 2
DEB2DK k “ 4 0 0 0 0 2 0 0 1 2 2
DEB3DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB3DK k “ 2 0 0 0 0 6 0 0 0 0 2
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 0 0 0 1 1 0 0 0 0 1
DO2DK k “ 3 s “ 1 0 0 0 0 1 0 0 0 0 0
DO2DK k “ 4 s “ 1 0 0 1 1 1 0 0 0 0 0
DTLZ7 0 0 0 0 1 0 0 0 0 3
ZDT3 0 0 0 0 4 0 0 1 1 3

Angle utility Tradeoff utility

0.1 0.25 0.5 0.75 1 0.1 0.25 0.5 0.75 1

DEB2DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB2DK k “ 2 0 0 0 0 1 0 0 0 0 2
DEB2DK k “ 3 0 0 0 0 2 0 0 0 0 2
DEB2DK k “ 4 0 0 0 0 2 0 0 0 0 2
DEB3DK k “ 1 0 0 0 0 0 0 0 0 0 0
DEB3DK k “ 2 0 0 0 0 2 5 5 5 6 10
DO2DK k “ 1 s “ 1 0 0 0 0 0 0 0 0 0 0
DO2DK k “ 2 s “ 1 0 0 0 0 0 0 0 0 0 1
DO2DK k “ 3 s “ 1 0 0 0 0 0 0 0 0 0 1
DO2DK k “ 4 s “ 1 0 0 0 0 0 0 0 0 0 2
DTLZ7 0 0 2 2 2 1 1 2 4 7
ZDT3 0 0 0 0 3 0 0 0 0 2
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Table G.13.: Cogeneration study – IGD. Median and IQR (as subscript) results after 50 000 function evaluations. Best performances
are colored in green, second best in blue. ESPEA outperforms all other algorithms on each problem instance.

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

CG0 2.87e´42.77e´6 3.35e´49.13e´8 4.29e´44.71e´6 4.86e´45.49e´5 4.38e´41.11e´4 4.55e´45.26e´5 4.80e´41.29e´5 3.58e´43.33e´5
CG1 1.69e´42.18e´6 1.48e´31.65e´8 1.47e´39.95e´5 3.56e´46.62e´5 1.20e´33.18e´4 3.37e´45.55e´5 1.49e´33.87e´6 2.27e´43.17e´5
CG2 1.70e´42.34e´6 1.48e´31.46e´8 1.47e´38.81e´5 3.59e´45.52e´5 1.15e´32.87e´4 3.44e´45.43e´5 1.49e´35.43e´6 2.32e´43.67e´5
CG3 1.70e´42.17e´6 1.48e´31.25e´8 1.47e´33.50e´5 3.60e´46.01e´5 1.14e´33.07e´4 3.28e´44.79e´5 1.49e´34.32e´6 2.36e´43.44e´5
CG4 1.70e´42.21e´6 1.47e´31.10e´8 1.46e´34.57e´5 3.63e´46.51e´5 1.20e´33.56e´4 3.36e´45.53e´5 1.47e´35.27e´6 2.35e´43.46e´5
CG5 1.69e´41.82e´6 1.48e´31.20e´8 1.47e´38.08e´5 3.64e´45.97e´5 1.15e´33.14e´4 3.29e´44.89e´5 1.49e´34.36e´6 2.34e´42.50e´5
CG6 1.70e´41.97e´6 1.48e´31.38e´8 1.46e´34.80e´5 3.54e´46.20e´5 1.18e´33.12e´4 3.27e´44.86e´5 1.48e´34.87e´6 2.35e´43.14e´5
CG7 1.69e´42.39e´6 1.47e´31.17e´8 1.46e´35.64e´5 3.54e´46.09e´5 1.21e´32.65e´4 3.30e´44.65e´5 1.48e´34.92e´6 2.28e´42.66e´5
CG8 1.70e´42.35e´6 1.49e´31.29e´8 1.47e´38.80e´5 3.65e´45.17e´5 1.26e´33.11e´4 3.27e´45.50e´5 1.49e´34.77e´6 2.32e´43.45e´5
CG9 1.69e´42.18e´6 1.47e´31.34e´8 1.46e´37.09e´5 3.57e´46.90e´5 1.23e´33.12e´4 3.34e´45.54e´5 1.48e´35.25e´6 2.29e´42.90e´5
CG10 1.70e´42.51e´6 1.48e´31.43e´8 1.47e´36.65e´5 3.64e´46.38e´5 1.19e´33.10e´4 3.35e´45.75e´5 1.49e´33.70e´6 2.33e´43.06e´5
CG11 1.69e´42.10e´6 1.46e´31.32e´8 1.45e´35.62e´5 3.56e´46.05e´5 1.23e´32.89e´4 3.40e´44.34e´5 1.47e´33.80e´6 2.28e´43.09e´5
CG12 1.70e´41.78e´6 1.48e´31.22e´8 1.46e´38.00e´5 3.75e´46.61e´5 1.19e´32.51e´4 3.38e´46.37e´5 1.48e´34.72e´6 2.33e´43.77e´5
CG13 1.68e´42.68e´6 1.48e´31.39e´8 1.47e´38.51e´5 3.68e´46.47e´5 1.21e´33.06e´4 3.32e´44.45e´5 1.49e´34.38e´6 2.29e´43.51e´5
CG14 1.69e´42.37e´6 1.48e´31.32e´8 1.46e´37.76e´5 3.60e´46.52e´5 1.20e´32.88e´4 3.32e´44.20e´5 1.49e´34.01e´6 2.35e´43.07e´5
CG15 1.70e´42.41e´6 1.49e´31.08e´8 1.46e´35.40e´5 3.51e´45.99e´5 1.19e´33.24e´4 3.30e´44.90e´5 1.49e´34.92e´6 2.29e´43.69e´5
CG16 1.69e´42.46e´6 1.48e´31.47e´8 1.46e´36.26e´5 3.52e´45.45e´5 1.22e´32.48e´4 3.38e´45.94e´5 1.49e´34.32e´6 2.30e´43.75e´5
CG17 1.70e´41.98e´6 1.48e´39.46e´9 1.47e´35.62e´5 3.60e´45.87e´5 1.17e´33.35e´4 3.36e´45.18e´5 1.49e´34.61e´6 2.34e´43.69e´5
CG18 1.68e´42.54e´6 1.48e´31.14e´8 1.46e´39.28e´5 3.58e´45.72e´5 1.21e´33.51e´4 3.35e´44.25e´5 1.48e´34.18e´6 2.30e´43.70e´5
CG19 1.69e´42.01e´6 1.48e´31.31e´8 1.46e´37.09e´5 3.56e´45.09e´5 1.24e´33.15e´4 3.37e´45.27e´5 1.49e´35.09e´6 2.31e´42.66e´5
CG20 1.69e´42.55e´6 1.48e´31.42e´8 1.47e´37.50e´5 3.59e´45.60e´5 1.21e´32.99e´4 3.41e´44.35e´5 1.49e´34.32e´6 2.32e´42.41e´5
CG21 1.69e´42.83e´6 1.49e´31.34e´8 1.48e´34.40e´5 3.56e´45.35e´5 1.22e´33.21e´4 3.34e´44.68e´5 1.49e´33.85e´6 2.30e´43.32e´5
CG22 1.69e´42.53e´6 1.47e´31.34e´8 1.45e´39.30e´5 3.59e´44.77e´5 1.18e´33.51e´4 3.33e´44.67e´5 1.48e´35.10e´6 2.27e´44.19e´5
CG23 1.69e´42.34e´6 1.47e´31.66e´8 1.46e´34.92e´5 3.58e´45.35e´5 1.22e´32.49e´4 3.36e´44.95e´5 1.48e´34.51e´6 2.28e´42.73e´5
CG24 1.69e´41.91e´6 1.48e´31.56e´8 1.46e´31.05e´4 3.57e´46.96e´5 1.21e´32.69e´4 3.39e´45.93e´5 1.49e´34.80e´6 2.38e´43.33e´5
CG25 1.68e´42.70e´6 1.48e´31.20e´8 1.47e´36.73e´5 3.57e´46.51e´5 1.23e´32.88e´4 3.32e´44.46e´5 1.49e´34.36e´6 2.30e´42.73e´5
CG26 1.69e´42.63e´6 1.47e´31.55e´8 1.46e´38.10e´5 3.65e´46.65e´5 1.16e´33.35e´4 3.39e´44.54e´5 1.48e´35.28e´6 2.33e´42.92e´5
CG27 1.70e´42.59e´6 1.48e´31.47e´8 1.46e´37.73e´5 3.57e´46.68e´5 1.24e´32.99e´4 3.45e´45.05e´5 1.49e´35.10e´6 2.31e´43.26e´5
CG28 1.68e´42.02e´6 1.46e´31.30e´8 1.44e´38.23e´5 3.57e´45.21e´5 1.25e´32.94e´4 3.31e´46.50e´5 1.47e´34.38e´6 2.32e´43.30e´5
CG29 1.69e´42.09e´6 1.47e´31.46e´8 1.46e´37.01e´5 3.61e´46.37e´5 1.23e´32.28e´4 3.32e´45.80e´5 1.48e´33.82e´6 2.33e´43.44e´5
CG30 1.70e´42.40e´6 1.48e´31.32e´8 1.46e´34.67e´5 3.70e´45.12e´5 1.17e´33.15e´4 3.36e´46.38e´5 1.48e´35.20e´6 2.35e´43.47e´5
CG31 1.70e´42.37e´6 1.48e´31.26e´8 1.47e´33.82e´5 3.69e´46.17e´5 1.17e´33.52e´4 3.38e´44.97e´5 1.48e´34.78e´6 2.29e´43.86e´5
CG32 1.67e´42.17e´6 1.48e´31.35e´8 1.46e´39.80e´5 3.72e´45.83e´5 1.22e´32.61e´4 3.34e´44.96e´5 1.48e´34.53e´6 2.35e´43.97e´5
CG33 1.68e´42.68e´6 1.47e´31.29e´8 1.45e´35.32e´5 3.53e´47.03e´5 1.20e´32.84e´4 3.32e´45.00e´5 1.47e´35.27e´6 2.32e´42.67e´5
CG34 1.69e´42.32e´6 1.48e´31.47e´8 1.47e´34.86e´5 3.63e´45.68e´5 1.16e´32.44e´4 3.39e´46.54e´5 1.48e´33.80e´6 2.34e´43.29e´5
CG35 1.69e´41.96e´6 1.47e´31.32e´8 1.46e´33.38e´5 3.60e´46.89e´5 1.20e´32.22e´4 3.41e´44.30e´5 1.47e´34.96e´6 2.31e´43.24e´5
CG36 1.69e´42.04e´6 1.47e´31.14e´8 1.46e´34.47e´5 3.56e´44.62e´5 1.20e´32.55e´4 3.35e´44.95e´5 1.47e´34.08e´6 2.31e´43.28e´5
CG37 1.69e´42.04e´6 1.48e´31.11e´8 1.46e´39.72e´5 3.70e´45.94e´5 1.25e´33.35e´4 3.46e´46.08e´5 1.48e´34.05e´6 2.30e´43.29e´5
CG38 1.69e´42.40e´6 1.49e´39.96e´9 1.48e´36.72e´5 3.58e´46.33e´5 1.22e´33.54e´4 3.41e´44.39e´5 1.49e´34.73e´6 2.27e´42.53e´5
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Table G.14.: Cogeneration study – fuel efficiency. Median and IQR (as subscript) results after 50 000 function evaluations. Best
performances are colored in green, second best in blue. Results are rounded to three significant digits. Fuel efficiencies
are highly similar across the algorithms and problem instances.

ESPEA DE IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

CG0 70.5608.351e´5 70.5590.001 70.5601.588e´6 70.4770.136 70.4920.067 70.5600.000 70.8120.025 70.2970.221

CG1 70.5601.065e´4 70.5608.843e´4 70.5609.220e´7 70.4930.125 70.5020.042 70.5600.000 70.5380.029 70.2640.278

CG2 70.5601.259e´4 70.5609.916e´4 70.5601.241e´6 70.4710.168 70.5070.064 70.5600.000 70.5350.027 70.2460.187

CG3 70.5602.470e´4 70.5600.002 70.5601.279e´6 70.4890.127 70.5070.041 70.5600.000 70.5400.030 70.2070.229

CG4 70.5601.121e´4 70.5600.001 70.5601.306e´6 70.4750.154 70.5070.047 70.5600.000 70.5400.028 70.2290.261

CG5 70.5609.279e´5 70.5600.001 70.5601.332e´6 70.4930.123 70.5100.049 70.5600.000 70.5380.027 70.2480.256

CG6 70.5601.535e´4 70.5600.001 70.5601.444e´6 70.4730.149 70.5090.046 70.5600.000 70.5340.037 70.2530.261

CG7 70.5601.081e´4 70.5600.001 70.5601.263e´6 70.4990.121 70.5020.062 70.5600.000 70.5380.031 70.2970.240

CG8 70.5602.722e´4 70.5609.587e´4 70.5601.406e´6 70.4480.187 70.4990.061 70.5600.000 70.5400.032 70.2670.257

CG9 70.5608.413e´5 70.5600.001 70.5601.281e´6 70.4670.159 70.5030.057 70.5600.000 70.5410.025 70.2490.185

CG10 70.5602.290e´4 70.5600.001 70.5601.403e´6 70.4820.152 70.5020.051 70.5600.000 70.5380.025 70.2340.242

CG11 70.5601.309e´4 70.5608.668e´4 70.5601.552e´6 70.4940.147 70.5060.056 70.5600.000 70.5370.032 70.2560.223

CG12 70.5601.646e´4 70.5600.001 70.5601.224e´6 70.4720.151 70.5070.049 70.5600.000 70.5380.023 70.2610.294

CG13 70.5601.291e´4 70.5606.912e´4 70.5601.540e´6 70.4730.113 70.5070.055 70.5600.000 70.5380.023 70.2630.279

CG14 70.5602.248e´4 70.5600.001 70.5601.422e´6 70.4740.139 70.4930.060 70.5600.000 70.5430.029 70.2280.254

CG15 70.5602.952e´4 70.5600.001 70.5601.344e´6 70.4810.122 70.4970.050 70.5600.000 70.5380.028 70.2470.234

CG16 70.5601.442e´4 70.5606.398e´4 70.5601.466e´6 70.4980.119 70.5060.052 70.5600.000 70.5370.030 70.2830.235

CG17 70.5603.216e´4 70.5609.659e´4 70.5601.238e´6 70.4760.122 70.5040.053 70.5600.000 70.5410.030 70.2540.246

CG18 70.5601.545e´4 70.5600.001 70.5601.422e´6 70.4650.121 70.5020.053 70.5600.000 70.5410.024 70.2330.248

CG19 70.5601.131e´4 70.5608.269e´4 70.5609.418e´7 70.4900.135 70.5070.050 70.5600.000 70.5410.025 70.2500.225

CG20 70.5601.253e´4 70.5600.001 70.5601.314e´6 70.4990.107 70.5020.053 70.5600.000 70.5380.030 70.2660.225

CG21 70.5609.220e´5 70.5600.002 70.5601.219e´6 70.4890.164 70.5060.041 70.5600.000 70.5420.026 70.2740.204

CG22 70.5601.224e´4 70.5600.001 70.5601.427e´6 70.4610.183 70.4930.065 70.5600.000 70.5390.031 70.2790.225

CG23 70.5604.028e´4 70.5609.208e´4 70.5601.045e´6 70.4620.164 70.5100.067 70.5600.000 70.5370.026 70.2440.241

CG24 70.5606.275e´5 70.5606.531e´4 70.5601.162e´6 70.4810.154 70.5030.052 70.5600.000 70.5390.030 70.2410.271

CG25 70.5602.581e´4 70.5609.179e´4 70.5601.390e´6 70.4870.092 70.4990.047 70.5600.000 70.5400.025 70.2580.300

CG26 70.5601.073e´4 70.5600.001 70.5601.393e´6 70.4860.145 70.5030.039 70.5600.000 70.5400.024 70.2370.202

CG27 70.5602.373e´4 70.5609.735e´4 70.5601.407e´6 70.4850.195 70.5020.042 70.5600.000 70.5420.027 70.2620.268

CG28 70.5609.731e´5 70.5600.001 70.5601.355e´6 70.4660.142 70.5090.042 70.5600.000 70.5340.029 70.2560.237

CG29 70.5601.434e´4 70.5600.001 70.5601.294e´6 70.4930.087 70.5050.054 70.5600.000 70.5390.025 70.2500.242

CG30 70.5601.337e´4 70.5600.001 70.5601.370e´6 70.4810.167 70.5070.051 70.5600.000 70.5440.026 70.2330.242

CG31 70.5601.550e´4 70.5600.001 70.5601.513e´6 70.4890.159 70.5040.044 70.5600.000 70.5390.029 70.2480.251

CG32 70.5608.438e´5 70.5600.001 70.5601.059e´6 70.4800.120 70.5030.047 70.5600.000 70.5400.031 70.2300.252

CG33 70.5602.003e´4 70.5608.869e´4 70.5601.409e´6 70.4840.143 70.4980.053 70.5600.000 70.5370.033 70.2320.265

CG34 70.5602.688e´4 70.5600.001 70.5601.371e´6 70.4760.147 70.4990.048 70.5600.000 70.5350.025 70.2610.227

CG35 70.5609.429e´5 70.5609.146e´4 70.5601.389e´6 70.4770.168 70.4970.053 70.5600.000 70.5380.024 70.2430.231

CG36 70.5605.714e´5 70.5600.001 70.5601.167e´6 70.4860.170 70.5060.042 70.5600.000 70.5400.036 70.2360.260

CG37 70.5609.181e´5 70.5609.653e´4 70.5601.615e´6 70.4770.159 70.5080.056 70.5600.000 70.5410.023 70.2520.278

CG38 70.5601.513e´4 70.5600.002 70.5601.145e´6 70.4860.130 70.5030.067 70.5600.000 70.5380.025 70.2650.234
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Table G.15.: Comparative study of ESPEA - IGD. The table reports p-values of the Anderson-Darling and Kruskal-Wallis tests.
Significant results at a 5 % level for the Kruskal-Wallis test are highlighted in green.

Anderson-Darling Kruskal-Wallis

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

B1 0.6424 0.7638 0.1660 0.8433 0.0593 0.0810 0.0005 0.6305 0.0000
B2 0.0287 0.0734 0.0026 0.0532 0.5539 0.6786 0.0005 0.2897 0.0000
B3 0.3559 0.2339 0.0005 0.7626 0.0012 0.0026 0.5145 0.3879 0.0000
B4 0.1582 0.1883 0.6124 0.0339 0.5122 0.0005 0.0005 0.7094 0.0000
B5 0.6799 0.4108 0.0005 0.0253 0.0118 0.6566 0.2506 0.1707 0.0000
B6 0.3496 0.5024 0.0260 0.0215 0.2224 0.0502 0.8920 0.0005 0.0000
DEB2DK k “ 1 0.0012 0.2541 0.0005 0.0021 0.0005 0.1413 0.3059 0.0031 0.0000
DEB2DK k “ 3 0.0005 0.0005 0.0005 0.0029 0.0005 0.5033 0.7275 0.0271 0.0000
DEB3DK k “ 1 0.3693 0.0918 0.0005 0.0005 0.4095 0.0005 0.8341 0.9077 0.0000
DEB3DK k “ 2 0.8975 0.3051 0.0005 0.3243 0.0111 0.0005 0.0005 0.2323 0.0000
DO2DK k “ 2 s “ 1 0.0005 0.0005 0.0085 0.0005 0.0005 0.1101 0.3585 0.8467 0.0000
DO2DK k “ 4 s “ 1 0.0005 0.0005 0.0764 0.0310 0.0005 0.0005 0.9319 0.0145 0.0000
DTLZ1 0.0005 0.0918 0.2768 0.0005 0.0005 0.0226 0.7328 0.0089 0.0000
DTLZ3 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0000
DTLZ5 0.0005 0.2209 0.7028 0.1786 0.7349 0.0020 0.2464 0.3308 0.0000
DTLZ7 0.0005 0.0005 0.0005 0.0005 0.0005 0.0023 0.0005 0.0005 0.0000
invDTLZ1 0.6547 0.0005 0.0053 0.0005 0.5033 0.2472 0.0005 0.0019 0.0000
Lamém “ 2 γ “ 0.25 0.0236 0.0005 0.0005 0.0013 0.0005 0.2172 0.3021 0.0351 0.0000
Lamém “ 3 γ “ 0.5 0.9880 0.0005 0.1869 0.0107 0.0005 0.0756 0.8861 0.0031 0.0000
Lamém “ 2 γ “ 4 0.0971 0.7606 0.3616 0.0009 0.0005 0.3537 0.6047 0.0653 0.0000
ZDT1 0.0005 0.6084 0.0005 0.5585 0.0005 0.0592 0.0005 0.0446 0.0000
ZDT2 0.0005 0.0123 0.0005 0.0080 0.0005 0.3832 0.8269 0.4332 0.0000
ZDT3 0.3637 0.0005 0.0076 0.0005 0.0005 0.1839 0.0005 0.0565 0.0000
ZDT6 0.0005 0.0055 0.0373 0.0005 0.0005 0.3906 0.0005 0.0017 0.0000
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Table G.16.: Comparative study of ESPEA – IGD. The table shows p-values of the
Anderson-Darling and Kruskal-Wallis tests based on the grouping by
Pareto front curvature. Significant results at a 5 % level for the Kruskal-
Wallis test are highlighted in green. Significant performance differences are
observed on all problem instances.

Anderson-Darling Kruskal-Wallis

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

Convex 0.0005 0.0005 0.0005 0.0026 0.0005 0.0005 0.0005 0.0005 0.0000
Concave 0.0069 0.0215 0.0049 0.1710 0.1934 0.0005 0.0006 0.0173 0.0000
Multimodal 0.2735 0.0005 0.0008 0.0096 0.0005 0.5969 0.0176 0.5258 0.0000

Table G.17.: Comparative study of ESPEA – spread. The table shows p-values of
the Anderson-Darling and Kruskal-Wallis tests based on the grouping by
Pareto front curvature. Significant results at a 5 % level for the Kruskal-
Wallis test are highlighted in green. Significant performance differences are
observed on all problem instances.

Anderson-Darling Kruskal-Wallis

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

Convex 0.5007 0.0005 0.0005 0.7835 0.0005 0.0005 0.0005 0.0005 0.0000
Concave 0.2348 0.0006 0.0005 0.0713 0.0005 0.0005 0.0056 0.0005 0.0000
Multimodal 0.4679 0.0005 0.0759 0.2789 0.0005 0.7207 0.4314 0.2010 0.0000
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Table G.18.: Local search study – PD. The table shows p-values of the Anderson-Darling
and ANOVA/Kruskal-Wallis tests. Significant results at a 5 % level for the
ANOVA/Kruskal-Wallis tests are highlighted in green. Significant perfor-
mance differences are observed on all problem instances.

Anderson-Darling Bartlett ANOVA /

Baseline CMA-ES GA HC PSA Kruskal-Wallis

Sum of objectives

DEB2DK k “ 1 0.0005 0.0005 0.0005 0.0005 0.0682 n/a 0.0000
DEB2DK k “ 2 0.1916 0.0083 0.0005 0.0005 0.0577 n/a 0.0000
DEB2DK k “ 3 0.0519 0.0944 0.0005 0.0005 0.0005 n/a 0.0000
DEB2DK k “ 4 0.0802 0.0240 0.0005 0.0005 0.0005 n/a 0.0000
DEB3DK k “ 1 0.0005 0.0007 0.0005 0.0005 0.0005 n/a 0.0000
DEB3DK k “ 2 0.0005 0.0642 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 1 s “ 1 0.0005 0.0005 0.0005 0.0005 0.5847 n/a 0.0000
DO2DK k “ 2 s “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 3 s “ 1 0.0208 0.0131 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 4 s “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0007
DTLZ7 0.0228 0.0005 0.0585 0.8327 0.0005 n/a 0.0000
ZDT3 0.8949 0.0005 0.1245 0.0072 0.0005 n/a 0.0000

Nash

DEB2DK k “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DEB2DK k “ 2 0.0192 0.0098 0.0066 0.0005 0.7460 n/a 0.0000
DEB2DK k “ 3 0.1566 0.0005 0.0656 0.0094 0.0382 n/a 0.0000
DEB2DK k “ 4 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DEB3DK k “ 1 0.0113 0.0005 0.0974 0.0391 0.0005 n/a 0.0000
DEB3DK k “ 2 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 1 s “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 2 s “ 1 0.0005 0.0005 0.0010 0.0005 0.0231 n/a 0.0000
DO2DK k “ 3 s “ 1 0.0005 0.0080 0.0005 0.0005 0.3373 n/a 0.0000
DO2DK k “ 4 s “ 1 0.0439 0.0149 0.1151 0.0005 0.0005 n/a 0.0000
DTLZ7 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
ZDT3 0.1758 0.3964 0.0639 0.5905 0.3955 0.0005 0.0000

Angle utility

DEB2DK k “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DEB2DK k “ 2 0.0117 0.0005 0.0012 0.0102 0.7129 n/a 0.0000
DEB2DK k “ 3 0.0031 0.0725 0.0023 0.0005 0.0005 n/a 0.0000
DEB2DK k “ 4 0.0005 0.0014 0.5948 0.1115 0.5757 n/a 0.0000
DEB3DK k “ 1 0.0005 0.0005 0.0005 0.0111 0.0005 n/a 0.0000
DEB3DK k “ 2 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 1 s “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 2 s “ 1 0.0005 0.0005 0.1513 0.0029 0.0005 n/a 0.0000
DO2DK k “ 3 s “ 1 0.0190 0.0005 0.0273 0.0262 0.0005 n/a 0.0000
DO2DK k “ 4 s “ 1 0.0005 0.1147 0.0005 0.0053 0.0011 n/a 0.0000
DTLZ7 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
ZDT3 0.8731 0.0116 0.5389 0.1182 0.0005 n/a 0.0000

Tradeoff utility

DEB2DK k “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DEB2DK k “ 2 0.4330 0.0005 0.0028 0.2696 0.0005 n/a 0.0000
DEB2DK k “ 3 0.0008 0.0005 0.0418 0.0005 0.0005 n/a 0.0000
DEB2DK k “ 4 0.6378 0.0079 0.6759 0.0005 0.0005 n/a 0.0000
DEB3DK k “ 1 0.0052 0.1303 0.0005 0.0780 0.0965 n/a 0.0000
DEB3DK k “ 2 0.3292 0.4768 0.7412 0.7958 0.7087 0.5193 0.0037
DO2DK k “ 1 s “ 1 0.0005 0.0005 0.0005 0.0005 0.0005 n/a 0.0000
DO2DK k “ 2 s “ 1 0.0165 0.4309 0.0005 0.1268 0.4248 n/a 0.0000
DO2DK k “ 3 s “ 1 0.0005 0.0005 0.0005 0.0217 0.0005 n/a 0.0000
DO2DK k “ 4 s “ 1 0.0463 0.0017 0.0908 0.4947 0.6233 n/a 0.0000
DTLZ7 0.9478 0.9900 0.0005 0.0005 0.5290 n/a 0.0000
ZDT3 0.0485 0.6030 0.0005 0.0005 0.0005 n/a 0.0000
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Table G.19.: Cogeneration study – IGD. The table shows p-values of the Anderson-
Darling and Kruskal-Wallis tests. Significant results at a 5 % level for the
Kruskal-Wallis test are highlighted in green. Significant performance differ-
ences are observed on all problem instances.

Anderson-Darling Kruskal-Wallis

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

CG0 0.0005 0.0005 0.0005 0.0005 0.0005 0.0034 0.0005 0.0005 0.0000
CG1 0.0005 0.0005 0.0005 0.0005 0.0060 0.0234 0.0005 0.0005 0.0000
CG2 0.0005 0.0005 0.0005 0.0399 0.1293 0.0016 0.0005 0.0005 0.0000
CG3 0.0005 0.0005 0.0005 0.0637 0.2012 0.0005 0.0005 0.0005 0.0000
CG4 0.0005 0.0005 0.0005 0.0077 0.0011 0.0005 0.0005 0.0005 0.0000
CG5 0.0005 0.0032 0.0005 0.0079 0.0749 0.0808 0.0005 0.0005 0.0000
CG6 0.0005 0.0005 0.0005 0.0021 0.0072 0.0024 0.0005 0.0005 0.0000
CG7 0.0174 0.0005 0.0005 0.2900 0.0435 0.0014 0.0005 0.0005 0.0000
CG8 0.0005 0.0005 0.0005 0.0371 0.0005 0.0005 0.0005 0.0005 0.0000
CG9 0.5710 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0000
CG10 0.2269 0.0005 0.0005 0.0366 0.5427 0.0012 0.0005 0.0005 0.0000
CG11 0.0005 0.0005 0.0005 0.7094 0.0028 0.0021 0.0005 0.0005 0.0000
CG12 0.0005 0.0005 0.0005 0.4539 0.0008 0.0115 0.0005 0.0005 0.0000
CG13 0.0005 0.0005 0.0005 0.0005 0.0210 0.0008 0.0005 0.0005 0.0000
CG14 0.1018 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0000
CG15 0.0098 0.0005 0.0005 0.0005 0.2587 0.0509 0.0005 0.0005 0.0000
CG16 0.0470 0.0005 0.0005 0.0005 0.0044 0.0005 0.0005 0.0005 0.0000
CG17 0.0149 0.0005 0.0005 0.0012 0.0550 0.0008 0.0005 0.0005 0.0000
CG18 0.0032 0.0005 0.0005 0.0729 0.0005 0.0005 0.0005 0.0005 0.0000
CG19 0.0005 0.0092 0.0005 0.0102 0.0024 0.0045 0.0005 0.0005 0.0000
CG20 0.0098 0.0005 0.0005 0.0026 0.0162 0.3997 0.0005 0.0005 0.0000
CG21 0.0631 0.0005 0.0005 0.0005 0.0072 0.0099 0.0005 0.0005 0.0000
CG22 0.0005 0.0005 0.0005 0.0090 0.0393 0.0005 0.0005 0.0005 0.0000
CG23 0.0005 0.0005 0.0005 0.0006 0.0022 0.0005 0.0005 0.0005 0.0000
CG24 0.0005 0.0005 0.0005 0.0005 0.0668 0.0109 0.0005 0.0005 0.0000
CG25 0.0525 0.0005 0.0005 0.0298 0.0866 0.0561 0.0005 0.0005 0.0000
CG26 0.0558 0.0005 0.0005 0.0057 0.0120 0.0006 0.0005 0.0005 0.0000
CG27 0.0005 0.0005 0.0005 0.0030 0.0635 0.0005 0.0005 0.0005 0.0000
CG28 0.0005 0.0005 0.0005 0.0005 0.0035 0.0159 0.0005 0.0005 0.0000
CG29 0.0374 0.0005 0.0005 0.3678 0.0569 0.0062 0.0031 0.0005 0.0000
CG30 0.2192 0.0005 0.0005 0.0008 0.3649 0.0005 0.0005 0.0005 0.0000
CG31 0.0228 0.0005 0.0005 0.4628 0.1153 0.0005 0.0005 0.0005 0.0000
CG32 0.1135 0.0005 0.0005 0.4391 0.0078 0.0355 0.0005 0.0005 0.0000
CG33 0.0005 0.0005 0.0005 0.0005 0.0029 0.0026 0.0005 0.0005 0.0000
CG34 0.0005 0.0005 0.0005 0.0672 0.0815 0.0260 0.0005 0.0005 0.0000
CG35 0.1272 0.0005 0.0005 0.0005 0.0262 0.0926 0.0005 0.0005 0.0000
CG36 0.0007 0.0005 0.0005 0.0005 0.0007 0.0005 0.0005 0.0005 0.0000
CG37 0.0005 0.0005 0.0005 0.0171 0.0005 0.2030 0.0005 0.0005 0.0000
CG38 0.0018 0.0005 0.0005 0.0005 0.0069 0.1136 0.0005 0.0005 0.0000
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Table G.20.: Cogeneration study – IGD. The table shows p-values of the post-hoc anal-
ysis. Green cell color indicates that ESPEA outperforms the corresponding
algorithm with confidence at a 95 % level. All performance differences are
found to be significant.

IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

CG0 0.0188 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CG1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0347
CG2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0402
CG3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0363
CG4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0388
CG5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0413
CG6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0292
CG7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0366
CG8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0371
CG9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0367
CG10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0382
CG11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0467
CG12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0299
CG13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0342
CG14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0273
CG15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0331
CG16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0356
CG17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0322
CG18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0458
CG19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0319
CG20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0415
CG21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0373
CG22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0329
CG23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0356
CG24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0373
CG25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0474
CG26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0455
CG27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0435
CG28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0254
CG29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0312
CG30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0420
CG31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0343
CG32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0319
CG33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0302
CG34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0289
CG35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0363
CG36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0449
CG37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0342
CG38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0282
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Table G.21.: Performance rank table for the Friedman test in Section 5.3.2. Each column
features the number of times the respective algorithm significantly outper-
forms another algorithm on the given test problem.

ESPEA IBEA MOEAD NSGA-II NSGA-III SMPSO SMS-EMOA SPEA2

B1 6 4 3 0 4 0 0 6
B2 5 3 3 0 5 0 2 6
B3 6 0 1 1 5 1 4 6
B4 4 5 2 0 4 0 2 6
B5 5 0 1 3 5 3 1 7
B6 5 0 2 2 5 2 0 7
DEB2DK k “ 1 5 0 1 1 4 7 3 3
DEB2DK k “ 3 4 0 1 1 4 7 3 4
DEB3DK k “ 1 4 0 1 1 5 3 5 6
DEB3DK k “ 2 5 0 1 2 6 3 2 6
DO2DK k “ 2 s “ 1 6 0 0 3 1 6 4 4
DO2DK k “ 4 s “ 1 5 0 1 3 1 6 3 4
DTLZ1 4 0 2 1 5 1 7 5
DTLZ3 6 0 1 1 6 2 1 2
DTLZ5 5 0 1 3 1 7 3 5
DTLZ7 1 0 2 4 5 3 1 7
invDTLZ1 6 0 2 4 4 3 0 6
Lamém “ 2 γ “ 0.25 6 0 1 3 1 5 3 4
Lamém “ 3 γ “ 0.5 6 0 1 3 0 5 3 6
Lamém “ 2 γ “ 4 5 0 2 2 2 7 0 5
ZDT1 4 2 0 1 1 6 6 4
ZDT2 6 0 2 1 4 6 1 4
ZDT3 5 0 0 2 1 7 5 3
ZDT6 7 0 2 0 6 2 2 2

338



G.4. Performance Rank Tables

Table G.22.: Performance rank table for the Friedman test in Section 6.3.2. Each column
features the number of times the respective algorithm significantly outper-
forms another algorithm on the given test problem.

Sum of objectives Nash

Baseline CMA-ES GA HC PSA CMA-ES GA HC PSA

DEB2DK k “ 1 0 2 1 3 4 0 2 1 3 4
DEB2DK k “ 2 0 2 0 2 4 0 2 0 3 3
DEB2DK k “ 3 2 3 0 0 4 0 2 1 3 3
DEB2DK k “ 4 2 3 0 0 4 1 4 2 1 0
DEB3DK k “ 1 1 0 1 3 3 0 1 2 2 2
DEB2DK k “ 2 1 0 2 3 3 1 0 2 2 2
DO2DK k “ 1 s “ 1 0 2 1 3 4 0 2 1 3 3
DO2DK k “ 2 s “ 1 1 2 2 4 0 0 2 0 3 3
DO2DK k “ 3 s “ 1 0 2 0 3 4 0 2 0 3 3
DO2DK k “ 4 s “ 1 0 2 1 0 0 0 2 1 3 4
DTLZ7 0 0 2 3 3 0 0 2 2 2
ZDT3 0 2 1 3 4 4 1 0 1 1

Angle utility Tradeoff utility

DEB2DK k “ 1 0 3 1 3 2 0 1 1 3 3
DEB2DK k “ 2 0 2 1 3 3 0 2 1 3 3
DEB2DK k “ 3 0 2 1 3 3 0 1 1 3 3
DEB2DK k “ 4 0 2 1 3 3 0 2 2 0 4
DEB3DK k “ 1 0 0 2 3 3 0 1 2 2 2
DEB2DK k “ 2 1 0 2 2 2 0 0 1 1 0
DO2DK k “ 1 s “ 1 0 3 1 3 2 0 2 1 3 3
DO2DK k “ 2 s “ 1 0 3 1 3 2 0 1 1 3 3
DO2DK k “ 3 s “ 1 0 2 1 4 2 1 1 4 0 1
DO2DK k “ 4 s “ 1 0 3 1 2 3 0 1 1 3 3
DTLZ7 4 0 3 0 2 3 3 0 0 2
ZDT3 0 2 1 3 2 1 3 0 1 3
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[BF03] Ş İlker Birbil and Shu-Chering Fang. An electromagnetism-like
mechanism for global optimization. Journal of global optimiza-
tion, 25(3):263–282, 2003.

[BF09] Karl Bringmann and Tobias Friedrich. Approximating the least
hypervolume contributor: NP-hard in general, but fast in prac-
tice. In Evolutionary Multi-Criterion Optimization, pages 6–20.
Springer, 2009.

[BHSS17] Marlon Alexander Braun, Lars Heling, Pradyumn Shukla, and
Hartmut Schmeck. Multimodal scalarized preferences in multi-
objective optimization. In Proceedings of the 2017 on Genetic and
Evolutionary Computation Conference. ACM, 2017.

[BKS01] Jürgen Branke, Thomas Kaußler, and Harmut Schmeck. Guid-
ance in evolutionary multi-objective optimization. Advances in
Engineering Software, 32(6):499–507, 2001.

342



Bibliography

[BKSG15] Slim Bechikh, Marouane Kessentini, Lamjed Ben Said, and
Khaled Ghédira. Chapter four-preference incorporation in evo-
lutionary multiobjective optimization: A survey of the state-of-
the-art. Advances in Computers, 98:141–207, 2015.

[BNE07] Nicola Beume, Boris Naujoks, and Michael Emmerich. SMS-
EMOA: Multiobjective selection based on dominated hypervol-
ume. European Journal of Operational Research, 181(3):1653–1669,
2007.

[Bou54] Nicolas Bourbaki. Éléments de mathématique: Les structures fon-
damentales de l’analyse. Théorie des ensembles. Hermann, 1954.

[Bra] Marlon Alexander Braun. jMetal Plus. https://
sourceforge.net/projects/jmetalbymarlonso/. Ac-
cessed 29.12.2017.

[Bra14] Marlon A. Braun. Theory and algorithms for identifying knees
in multi-objective optimization. Master’s thesis, Karlsruhe In-
stitute of Technology, 2014.

[Bri22] Percy Williams Bridgman. Dimensional analysis. Yale University
Press, 1922.

[Bri81] Anne Brindle. Genetic algorithms for function optimization. PhD
thesis, Edmonton: University of Alberta, Department of Com-
puter Science, 1981.

[BS07] Hans-Georg Beyer and Bernhard Sendhoff. Robust optimiza-
tion – a comprehensive survey. Computer Methods in Applied
Mechanics and Engineering, 196(33):3190 – 3218, 2007.

[BS16] Marlon Alexander Braun and Pradyumn Kumar Shukla. On
cone based decompositions of proper Pareto optimality. Opti-
mization Online, 2016.

[BSE`16] Marlon Alexander Braun, Sandra Seijo, Javier Echanobe,
Pradyumn Kumar Shukla, Ines del Campo, Javier Garcia-
Sedano, and Harmut Schmeck. A neuro-genetic approach for
modeling and optimizing a complex cogeneration process. Ap-
plied Soft Computing, 48:347 – 358, 2016.

[BSS11] Marlon Alexander Braun, Pradyumn Kumar Shukla, and Hart-
mut Schmeck. Preference ranking schemes in multi-objective
evolutionary algorithms. In Ricardo H.C. Takahashi, Kalyan-
moy Deb, Elizabeth F. Wanner, and Salvatore Greco, editors,
Evolutionary Multi-Criterion Optimization, volume 6576 of LNCS,
pages 226–240. Springer, 2011.

343

https://sourceforge.net/projects/jmetalbymarlonso/
https://sourceforge.net/projects/jmetalbymarlonso/


Bibliography

[BSS15] Marlon Alexander Braun, Pradyumn Kumar Shukla, and Hart-
mut Schmeck. Obtaining optimal pareto front approximations
using scalarized preference information. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO ’15, pages 631–638, New York, NY, USA, 2015. ACM.

[BSS17] Marlon Alexander Braun, Pradyumn Shukla, and Hartmut
Schmeck. Angle-based preference models in multi-objective
optimization. In International Conference on Evolutionary Multi-
Criterion Optimization, pages 88–102. Springer, 2017.

[BZ11] Johannes Bader and Eckart Zitzler. Hype: An algorithm for fast
hypervolume-based many-objective optimization. Evolutionary
Computation, 19(1):45–76, 2011.

[CAA14] Pedro Carrasqueira, Maria João Alves, and Carlos Henggeler
Antunes. An improved multiobjective electromagnetism-like
mechanism algorithm. In Applications of Evolutionary Computa-
tion, pages 627–638. Springer, 2014.

[CAA15] Pedro Carrasqueira, Maria João Alves, and Carlos Henggeler
Antunes. A multiobjective electromagnetism-like algorithm
with improved local search. In Operational Research, pages 123–
144. Springer, 2015.

[Can82] Georg Cantor. Über unendliche, lineare punktmannich-
faltigkeiten. Mathematische Annalen, 20(1):113–121, 1882.

[CCLVV07] Carlos Coello Coello, Gary Lamont, and David Van Veld-
huizen. Evolutionary Algorithms for Solving Multi-Objective Prob-
lems. Springer, 2007.

[CD28] Charles W Cobb and Paul H Douglas. A theory of production.
The American Economic Review, 18(1):139–165, 1928.

[Cho54] Gustave Choquet. Theory of capacities. In Annales de l’institut
Fourier, volume 5, pages 131–295. Association des Annales de
l’Institut Fourier, 1954.

[CM75] Jared L Cohon and David H Marks. A review and evaluation
of multiobjective programing techniques. Water Resources Re-
search, 11(2):208–220, 1975.

[cma] https://www.lri.fr/~hansen/cmaes_inmatlab.
html#practical. Accessed 23.10.2017.

344

https://www.lri.fr/~hansen/cmaes_inmatlab.html#practical
https://www.lri.fr/~hansen/cmaes_inmatlab.html#practical


Bibliography

[Coe00] CA Coello Coello. Handling preferences in evolutionary multi-
objective optimization: A survey. In Evolutionary Computation,
2000. Proceedings of the 2000 Congress on, volume 1, pages 30–37.
IEEE, 2000.

[Coe02] Carlos A Coello Coello. Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a sur-
vey of the state of the art. Computer methods in applied mechanics
and engineering, 191(11):1245–1287, 2002.

[Cor09] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[CSB`12] Michael P Cipold, Pradyumn Kumar Shukla, Claus C Bach-
mann, Kaibin Bao, and Hartmut Schmeck. An evolutionary
optimization approach for bulk material blending systems. In
Parallel Problem Solving from Nature-PPSN XII, pages 478–488.
Springer, 2012.

[Dal13] David Dallinger. The contribution of vehicle-to-grid to balance
fluctuating generation: Comparing different battery ageing ap-
proaches. Technical report, Working Paper Sustainability and
Innovation, 2013.

[Das99] Indraneel Das. On characterizing the "knee" of the pareto curve
based on normal-boundary intersection. Structural Optimiza-
tion, 18(2-3):107–115, 1999.

[DD97] I. Das and J.E. Dennis. A closer look at drawbacks of mini-
mizing weighted sums of objectives for Pareto set generation
in multicriteria optimization problems. Structural optimization,
14(1):63–69, 1997.

[DD98] Indraneel Das and John E Dennis. Normal-boundary intersec-
tion: A new method for generating the pareto surface in nonlin-
ear multicriteria optimization problems. SIAM Journal on Opti-
mization, 8(3):631–657, 1998.

[Deb01] Kalyanmoy Deb. Multi-Objective optimization using evolutionary
algorithms, volume 16. John Wiley & Sons, 2001.

[Deb03] Kalyanmoy Deb. Multi-objective Evolutionary Algorithms: In-
troducing Bias Among Pareto-optimal Solutions, pages 263–292.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[DG96] Kalyanmoy Deb and Mayank Goyal. A combined genetic adap-
tive search (GeneAS) for engineering design. Computer Science
and Informatics, 26:30–45, 1996.

345



Bibliography

[dG02] Claude d’Aspremont and Louis Gevers. Chapter 10 social wel-
fare functionals and interpersonal comparability. In Handbook
of Social Choice and Welfare, volume 1 of Handbook of Social Choice
and Welfare, pages 459 – 541. Elsevier, 2002.

[DG11] Kalyanmoy Deb and Shivam Gupta. Understanding knee
points in bicriteria problems and their implications as preferred
solution principles. Engineering optimization, 43(11):1175–1204,
2011.

[DJ14] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-
objective optimization algorithm using reference-point-based
nondominated sorting approach, part I: Solving problems with
box constraints. Evolutionary Computation, IEEE Transactions on,
18(4):577–601, 2014.

[DM60] Augustus De Morgan. Syllabus of a proposed system of logic. Wal-
ton and Maberly, 1860.

[DN11] Juan J. Durillo and Antonio J. Nebro. jMetal: A java framework
for multi-objective optimization. Advances in Engineering Soft-
ware, 42:760–771, 2011.

[DNLA09] Juan José Durillo, Antonio J Nebro, Francisco Luna, and En-
rique Alba. On the effect of the steady-state selection scheme
in multi-objective genetic algorithms. In EMO, pages 183–197.
Springer, 2009.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Me-
yarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. Evolutionary Computation, IEEE Transactions on,
6(2):182–197, 2002.

[DS05] Kalyanmoy Deb and Dhish Kumar Saxena. On finding pareto-
optimal solutions through dimensionality reduction for cer-
tain large-dimensional multi-objective optimization problems.
Technical report, Kanpur Genetic Algorithms Laboratory, 2005.

[DTLZ05] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart
Zitzler. Scalable test problems for evolutionary multiobjective
optimization. In Lakhmi Jain, Xindong Wu, Ajith Abraham,
Lakhmi Jain, and Robert Goldberg, editors, Evolutionary Mul-
tiobjective Optimization, Advanced Information and Knowledge
Processing, pages 105–145. Springer, 2005.

[Dun64] Olive Jean Dunn. Multiple comparisons using rank sums. Tech-
nometrics, 6(3):241–252, 1964.

346



Bibliography

[ED07] Michael TM Emmerich and André H Deutz. Test problems
based on Lamé superspheres. In Evolutionary Multi-Criterion
Optimization, pages 922–936. Springer, 2007.

[Edg81] Francis Ysidro Edgeworth. Mathematical psychics: An essay on the
application of mathematics to the moral sciences, volume 10. Kegan
Paul, 1881.

[EH89] Jon Elster and Aanund Hylland. Foundations of social choice the-
ory. CUP Archive, 1989.

[Ehr05] Matthias Ehrgott. Multicriteria optimization, volume 2. Springer,
2005.

[Eic12] Gabriele Eichfelder. Variable ordering structures in vector opti-
mization. Springer, 2012.

[Eic14] Gabriele Eichfelder. Numerical procedures in multiobjective
optimization with variable ordering structures. Journal of Op-
timization Theory and Applications, 162(2):489–514, 2014.

[Ert11] Wolfgang Ertel. Introduction to artificial intelligence. Springer
Science & Business Media, 2011.

[ES`03] Agoston E Eiben, James E Smith, et al. Introduction to evolution-
ary computing, volume 53. Springer, 2003.

[Fau] Kjell Magne Fauske. Neural network illustration.
http://www.texample.net/tikz/examples/
neural-network/. Accessed: 06.11.2017.

[FF96] Carlos M Fonseca and Peter J Fleming. On the performance
assessment and comparison of stochastic multiobjective opti-
mizers. In Parallel problem solving from nature - PPSN IV, pages
584–593. Springer, 1996.

[FKN13] Tobias Friedrich, Trent Kroeger, and Frank Neumann. Weighted
preferences in evolutionary multi-objective optimization. Inter-
national Journal of Machine Learning and Cybernetics, 4(2):139–148,
Apr 2013.

[FKPT12] Ludwig Fahrmeier, Rita Künstler, Iris Pigeot, and Gerhard Tutz.
Statistik: Der Weg zu Datenanalyse. Springer, 2012.

[Flu13] Dandolo Flumini. Weak well orders. PhD thesis, Universität
Bern, 2013.

347

http://www.texample.net/tikz/examples/neural-network/
http://www.texample.net/tikz/examples/neural-network/


Bibliography

[Fri37] Milton Friedman. The use of ranks to avoid the assumption
of normality implicit in the analysis of variance. Journal of the
American Statistical Association, 32(200):675–701, 1937.

[GC17] Raquel Hernández Gómez and Carlos A. Coello Coello. A
hyper-heuristic of scalarizing functions. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’17,
pages 577–584, New York, NY, USA, 2017. ACM.

[GEF16] Salvatore Greco, Matthias Ehrgott, and José Figueira, editors.
Multiple criteria decision analysis: state of the art surveys. Springer
Science & Business Media, 2016.

[Geo68] A. M. Geoffrion. Proper efficiency and the theory of vector
maximization. Journal of Mathematical Analysis and Applications,
22:618–630, 1968.

[Gra96] Michel Grabisch. The application of fuzzy integrals in multicri-
teria decision making. European Journal of Operational Research,
89(3):445 – 456, 1996.

[Han06] Nikolaus Hansen. The cma evolution strategy: A comparing
review. In Jose A. Lozano, Pedro Larrañaga, Iñaki Inza, and
Endika Bengoetxea, editors, Towards a New Evolutionary Com-
putation: Advances in the Estimation of Distribution Algorithms,
pages 75–102. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006.

[HHBW06] Simon Huband, Philip Hingston, Luigi Barone, and Lyndon
While. A review of multiobjective test problems and a scalable
test problem toolkit. IEEE Transactions on Evolutionary Computa-
tion, 10(5):477–506, 2006.

[Hil01] Claus Hillermeier. Nonlinear multiobjective optimization, volume
135 of International Series of Numerical Mathematics. Birkhäuser
Verlag, Basel, 2001.

[HJL15] Lixia Han, Shujuan Jiang, and Shaojiang Lan. Novel
electromagnetism-like mechanism method for multiobjective
optimization problems. Journal of Systems Engineering and Elec-
tronics, 26(1):182–189, 2015.

[HR88] Terry P Harrison and Richard E Rosenthal. Optimizability
of utility and value functions. Naval Research Logistics (NRL),
35(3):411–418, 1988.

[HRW10] David Halliday, Robert Resnick, and Jearl Walker. Fundamentals
of physics extended. John Wiley & Sons, 2010.

348



Bibliography

[IHK12] GH Isazadeh, R Hooshmand, and A Khodabakhshian. Design
of an adaptive dynamic load shedding algorithm using neural
network in the steelmaking cogeneration facility. Iranian Jour-
nal of Science and Technology, Transactions of Electrical Engineering,
36(1):67–82, 2012.

[IHR07] Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance
matrix adaptation for multi-objective optimization. Evolution-
ary computation, 15(1):1–28, 2007.

[IISN17] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima.
Hypervolume subset selection for triangular and inverted tri-
angular pareto fronts of three-objective problems. In Proceedings
of the 14th ACM/SIGEVO Conference on Foundations of Genetic Al-
gorithms, pages 95–110. ACM, 2017.

[ITN08] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima.
Evolutionary many-objective optimization: A short review.
In IEEE congress on evolutionary computation, pages 2419–2426.
Citeseer, 2008.

[JD14] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-
objective optimization algorithm using reference-point based
nondominated sorting approach, part II: Handling constraints
and extending to an adaptive approach. Evolutionary Computa-
tion, IEEE Transactions on, 18(4):602–622, 2014.

[JLS82] E. Jacquet-Lagreze and J. Siskos. Assessing a set of additive util-
ity functions for multicriteria decision-making, the uta method.
European Journal of Operational Research, 10(2):151 – 164, 1982.

[Kar72] Richard M Karp. Reducibility among combinatorial problems.
In Complexity of computer computations, pages 85–103. Springer,
1972.

[KD06] Saku Kukkonen and Kalyanmoy Deb. Improved pruning of
non-dominated solutions based on crowding distance for bi-
objective optimization problems. In Proceedings of the World
Congress on Computational Intelligence, pages 1179–1186, Van-
couver, Canada, 2006. IEEE Press.

[Kee09] Ralph L Keeney. Value-focused thinking: A path to creative deci-
sionmaking. Harvard University Press, 2009.

[Kha14] Majid Khalili. A multi-objective electromagnetism algorithm
for a bi-objective hybrid no-wait flowshop scheduling problem.

349



Bibliography

The International Journal of Advanced Manufacturing Technology,
70(9):1591–1601, Feb 2014.

[Kno06] J. Knowles. Parego: a hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization prob-
lems. IEEE Transactions on Evolutionary Computation, 10(1):50–
66, Feb 2006.

[KOW04] Michael M Kostreva, Włodzimierz Ogryczak, and Adam
Wierzbicki. Equitable aggregations and multiple criteria anal-
ysis. European Journal of Operational Research, 158(2):362–377,
2004.

[KR93] Ralph L Keeney and Howard Raiffa. Decisions with multiple ob-
jectives: preferences and value trade-offs. Cambridge university
press, 1993.

[KT79] Daniel Kahneman and Amos Tversky. Prospect theory: An
analysis of decision under risk. Econometrica: Journal of the
Econometric Society, pages 263–291, 1979.

[KW52] William H Kruskal and W Allen Wallis. Use of ranks in one-
criterion variance analysis. Journal of the American statistical As-
sociation, 47(260):583–621, 1952.

[Lee10] John Lee. Introduction to topological manifolds, volume 940.
Springer Science & Business Media, 2010.

[LFWB03] Yusheng Li, Georges M. Fadel, Margaret Wiecek, and Vincent Y.
Blouin. Minimum effort approximation of the pareto space
of convex bi-criteria problems. Optimization and Engineering,
4(3):231–261, Sep 2003.

[LYBF`16] Longmei Li, Iryna Yevseyeva, Vitor Basto-Fernandes, Heike
Trautmann, Ning Jing, and Michael Emmerich. An ontology of
preference-based multiobjective evolutionary algorithms. arXiv
preprint arXiv:1609.08082, 2016.

[LYBF`17] Longmei Li, Iryna Yevseyeva, Vitor Basto-Fernandes, Heike
Trautmann, Ning Jing, and Michael Emmerich. Building and
using an ontology of preference-based multiobjective evolu-
tionary algorithms. In Heike Trautmann, Günter Rudolph,
Kathrin Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu
Jin, and Christian Grimme, editors, Evolutionary Multi-Criterion
Optimization: 9th International Conference, EMO 2017, Mün-
ster, Germany, March 19-22, 2017, Proceedings, pages 406–421.
Springer International Publishing, Cham, 2017.

350



Bibliography

[LZ09] Hui Li and Qingfu Zhang. Multiobjective optimization prob-
lems with complicated pareto sets, MOEA/D and NSGA-II.
Evolutionary Computation, IEEE Transactions on, 13(2):284–302,
2009.

[MA04] R Timothy Marler and Jasbir S Arora. Survey of multi-objective
optimization methods for engineering. Structural and multidis-
ciplinary optimization, 26(6):369–395, 2004.

[MBC79] M. D. McKay, R. J. Beckman, and W. J. Conover. A compar-
ison of three methods for selecting values of input variables
in the analysis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[Mes96] Achille Messac. Physical programming-effective optimization
for computational design. AIAA journal, 34(1):149–158, 1996.

[Mie99] Kaisa Miettinen. Nonlinear multiobjective optimization, vol-
ume 12. Springer, 1999.

[MMAS16] Ingo Mauser, Jan Müller, Florian Allerding, and Hartmut
Schmeck. Adaptive building energy management with mul-
tiple commodities and flexible evolutionary optimization. Re-
newable Energy, 87(Part 2):911 – 921, 2016. Optimization Meth-
ods in Renewable Energy Systems Design.

[MMD91] Ravi Mazumdar, Lorne G Mason, and Christos Douligeris. Fair-
ness in network optimal flow control: Optimality of product
forms. IEEE Transactions on communications, 39(5):775–782, 1991.

[MMVRCC06] Efrñn Mezura-Montes, Jesús Velázquez-Reyes, and Carlos A.
Coello Coello. A comparative study of differential evolution
variants for global optimization. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’06,
pages 485–492, New York, NY, USA, 2006. ACM.

[MPSM00] Achille Messac, Cyriaque Puemi-Sukam, and Emanuel
Melachrinoudis. Aggregate objective functions and Pareto
frontiers: Required relationships and practical implications.
Optimization and Engineering, 1(2):171–188, 2000.

[MW47] Henry B Mann and Donald R Whitney. On a test of whether one
of two random variables is stochastically larger than the other.
The annals of mathematical statistics, pages 50–60, 1947.

[Nas50] John Forbes Nash. The bargaining problem. Econometrica: Jour-
nal of the Econometric Society, pages 155–162, 1950.

351



Bibliography

[NDGN`09] A.J. Nebro, J.J. Durillo, J. Garcia-Nieto, C.A. Coello Coello,
F. Luna, and E. Alba. SMPSO: A new PSO-based metaheuristic
for multi-objective optimization. In IEEE symposium on compu-
tational intelligence in multi-criteria decision-making, 2009. MCDM
’09, pages 66–73, March 2009.

[NLA`08] A.J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J.J. Durillo, and
A. Beham. AbYSS: Adapting scatter search to multiobjective
optimization. IEEE Transactions on Evolutionary Computation,
12(4):439–457, Aug 2008.

[NSH`13] Iman Noshadi, Abdolhamid Salahi, Mahmood Hemmati, Fate-
meh Rekabdar, and Toraj Mohammadi. Experimental and anfis
modeling for fouling analysis of oily wastewater treatment us-
ing ultrafiltration. Asia-Pacific Journal of Chemical Engineering,
8(4):527–538, 2013.

[Ogr09] Włodzimierz Ogryczak. Inequality measures and equitable lo-
cations. Annals of Operations Research, 167(1):61–86, 2009.

[Pad13] Dhanesh Padmanabhan. A clustering-based methodology for
discontinuous pareto frontier representation. Journal of Multi-
Criteria Decision Analysis, 20(5-6):235–253, 2013.

[Par96] Vilfredo Pareto. Cours d’économie politique. Librairie Droz, 1896.

[PGE09] Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott.
Computational results for four exact methods to solve the three-
objective assignment problem. Lect. Notes Econ. Math. Syst,
618:79–88, 2009.

[PKB07] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle
swarm optimization. Swarm intelligence, 1(1):33–57, 2007.

[Pre15] Mike Preuss. Multimodal Optimization by Means of Evolutionary
Algorithms. Springer, 2015.

[Raw71] John Rawls. A Theory of Justice. Harvard, 1971.

[RM06] Laura C Rodman and Ross K Meentemeyer. A geographic anal-
ysis of wind turbine placement in northern california. Energy
Policy, 34(15):2137–2149, 2006.

[Roe98] John E Roemer. Theories of distributive justice. Harvard Univer-
sity Press, 1998.

[Roy96] Bernard Roy. Multicriteria Methodology for Decision Aiding.
Springer, 1996.

352



Bibliography

[RS06] L. Rachmawati and D. Srinivasan. Preference incorporation
in multi-objective evolutionary algorithms: A survey. In 2006
IEEE International Conference on Evolutionary Computation, pages
962–968, 2006.

[RVMB14] Francesco Rossi, David Velázquez, Iñigo Monedero, and Félix
Biscarri. Artificial neural networks and physical modeling for
determination of baseline consumption of CHP plants. Expert
Systems with Applications, 41(10):4658 – 4669, 2014.

[RW05] S. Ruzika and M. M. Wiecek. Approximation methods in mul-
tiobjective programming. Journal of Optimization Theory and Ap-
plications, 126(3):473–501, Sep 2005.

[SB13] Pradyumn Kumar Shukla and Marlon Alexander Braun. In-
dicator based search in variable orderings: Theory and algo-
rithms. In Robin C. Purshouse, Peter J. Fleming, Carlos M.
Fonseca, Salvatore Greco, and Jane Shaw, editors, Evolution-
ary Multi-Criterion Optimization, volume 7811 of Lecture Notes
in Computer Science, pages 66–80. Springer, 2013.

[SBS13] Pradyumn Kumar Shukla, Marlon Alexander Braun, and Hart-
mut Schmeck. Theory and algorithms for finding knees. In
Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salva-
tore Greco, and Jane Shaw, editors, Evolutionary Multi-Criterion
Optimization, volume 7811 of LNCS, pages 156–170. Springer,
2013.

[SBS14] Pradyumn Kumar Shukla, Marlon Alexander Braun, and Hart-
mut Schmeck. On the interrelationships between knees and
aggregate objective functions. In Proceedings of the 2014 Con-
ference Companion on Genetic and Evolutionary Computation Com-
panion, GECCO Comp ’14, pages 95–96, New York, NY, USA,
2014. ACM.

[SCBS14] Pradyumn Kumar Shukla, Michael P Cipold, Claus Bachmann,
and Hartmut Schmeck. On homogenization of coal in longitu-
dinal blending beds. In Proceedings of the 2014 conference on Ge-
netic and evolutionary computation, pages 1199–1206. ACM, 2014.

[Sch13] Richard Evan Schwartz. The five-electron case of thomson’s
problem. Experimental Mathematics, 22(2):157–186, 2013.

[SDS14] Pradyumn Kumar Shukla, Nadja Doll, and Hartmut Schmeck.
A theoretical analysis of volume based pareto front approxima-
tions. In Proceedings of the 2014 conference on Genetic and evolu-
tionary computation, pages 1415–1422. ACM, 2014.

353



Bibliography

[SED13] Pradyumn Kumar Shukla, Michael Emmerich, and André
Deutz. A theoretical analysis of curvature based preference
models. In Robin C. Purshouse, Peter J. Fleming, CarlosM.
Fonseca, Salvatore Greco, and Jane Shaw, editors, Evolution-
ary Multi-Criterion Optimization, volume 7811 of Lecture Notes
in Computer Science, pages 367–382. Springer, 2013.

[Sen70] A Sen. Collective choice and social welfare holden-day san
francisco. California Google Scholar, 1970.

[SHS10a] Pradyumn Kumar Shukla, Christian Hirsch, and Hartmut
Schmeck. A framework for incorporating trade-off information
using multi-objective evolutionary algorithms. In Parallel Prob-
lem Solving from Nature, PPSN XI, pages 131–140. Springer, 2010.

[SHS10b] Pradyumn Kumar Shukla, Christian Hirsch, and Hartmut
Schmeck. In Search of Equitable Solutions Using Multi-objective
Evolutionary Algorithms, pages 687–696. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[Shu07] Pradyumn Kumar Shukla. In search of proper pareto-optimal
solutions using multi-objective evolutionary algorithms. In
Computational Science–ICCS 2007, pages 1013–1020. Springer,
2007.

[Sia16] Patrick Siarry, editor. Metaheuristics. Springer, 2016.

[SIR11] Hemant Kumar Singh, Amitay Isaacs, and Tapabrata Ray. A
pareto corner search evolutionary algorithm and dimensional-
ity reduction in many-objective optimization problems. IEEE
Transactions on Evolutionary Computation, 15(4):539–556, 2011.

[SK97] E. B. Saff and A. B. J. Kuijlaars. Distributing many points on a
sphere. The Mathematical Intelligencer, 19(1):5–11, 1997.

[Som81] Dan M. Somers. Design and experimental results for a natural-
laminar-flow airfoil for general aviation applications. Technical
report, NASA, 1981.

[Sör15] Kenneth Sörensen. Metaheuristics—the metaphor exposed. In-
ternational Transactions in Operational Research, 22(1):3–18, 2015.

[SP97] Rainer Storn and Kenneth Price. Differential evolution - a sim-
ple and efficient heuristic for global optimization over continu-
ous spaces. Journal of global optimization, 11(4):341–359, 1997.

354



Bibliography

[SS13] Deepak Sharma and Prem Soren. Infeasibility driven approach
for bi-objective evolutionary optimization. In Evolutionary Com-
putation (CEC), 2013 IEEE Congress on, pages 868–875. IEEE,
2013.

[Sta79] Wolfram Stadler. A survey of multicriteria optimization or the
vector maximum problem, part I: 1776–1960. Journal of Opti-
mization Theory and Applications, 29(1):1–52, 1979.

[SW13] S. Sudeng and N. Wattanapongsakorn. Adaptive geometric
angle-based algorithm with independent objective biasing for
pruning pareto-optimal solutions. In Science and Information
Conference (SAI), 2013, pages 514–523, Oct 2013.

[SWSJ11] Kin Cheong Sou, James Weimer, Henrik Sandberg, and
Karl Henrik Johansson. Scheduling smart home appliances us-
ing mixed integer linear programming. In Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE Con-
ference on, pages 5144–5149. IEEE, 2011.

[TF07] Tea Tušar and Bogdan Filipič. Differential evolution versus ge-
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