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Abstract— Nonlinear filtering based on Gaussian densities
is commonly performed using so-called Linear Regression
Kalman Filters (LRKFs). These filters rely on sample-based
approximations of Gaussian densities. We propose a novel
sampling scheme that is based on decomposing the problem
of sampling a multivariate Gaussian into sampling a Chi
distribution and sampling uniformly on the surface of a
hypersphere. The proposed sampling scheme has significant
advantages compared to existing methods because it produces
a user-selectable number of samples with uniform, nonnegative
weights and it does not require any numerical optimization.
We evaluate the novel method in simulations and provide
comparisons to multiple state-of-the-art approaches.

I. INTRODUCTION

Nonlinear estimation has been of interest for a long time
and work in this area dates back to the 1960s, when the
Extended Kalman Filter (EKF) was proposed [1]. Since then,
numerous approaches have been investigated. An important
class of methods are the so-called Linear Regression Kalman
Filters (LRKFs) [2], which use sample-based statistical
linearization in conjunction with the standard Kalman filter [3].
LRKFs, in particular the Unscented Kalman Filter (UKF) [4],
have gained a lot of popularity due to their simplicity and
the ability to provide good results in many scenarios at a
reasonable computational cost. The key distinction between
different LRKFs is the way they choose the set of samples
used for the statistical linearization.

In this paper, we present a novel sampling scheme that can
be used within the LRKF framework. The key idea is splitting
the approximation of a multivariate standard Gaussian in R?
into approximation of the direction as well as the length
of the vectors. The direction can be sampled according to a
uniform distribution on the hypersphere and the length can be
sampled according to a Chi distributiorﬂ For this purpose, we
use an equal area partitioning approach on the hypersphere in
conjunction with a one-dimensional Chi distribution sampling
based on minimization of the squared L? distance of the
cumulative distribution functions. This idea is illustrated in
Fig. [} Our method creates a layered structure, where the
samples are placed on nested hyperspheres.

The high-degree Cubature Kalman Filter (CKF) [5] also
relies on similar ideas. It uses numerical integration rules
that are based on splitting the integral into a spherical and
a radial part. For the third-degree CKF [6], all samples are
located on a sphere, and for the fifth-degree CKEF, all samples—
except for a sample at the origin—are located on a sphere.
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Fig. 1: Idea of the proposed deterministic sampling scheme.
A uniform sampling on the sphere (red balls) is computed
using equal area partitioning. Samples of one-dimensional Chi
distribution (green balls) are placed on the lines emanating
from the center of the sphere through the spherical samples.

The downside compared to our proposed method is that the
number of samples is fixed by the dimension and the cubature
rule. Also, for the fifth-degree rule, negative weights cannot
be avoided for dimensions d > 5, which can cause problems
that we will discuss later.

Furthermore, the proposed approach is somewhat similar to
the filter by Huber et al. [7], which samples a one-dimensional
Gaussian distribution and replicates it on each axis of
the coordinate system to obtain samples for a multivariate
Gaussian distribution. One of the key advantages of the
proposed approach is that the sample locations are not limited
to the axes of the coordinate system, which leads to much
better results.

Another related approach is the randomized UKF by Straka
et al. [8]. It takes multiple UKF sample sets and performs a
random rotation as well as a random scaling on each. While
this approach also relies on the separation of the direction
from the length of the sample vectors, it is inherently nonde-
terministic, which makes it difficult to generate reproducible
results. The quality of the approximation can vary strongly
depending on the chosen random values. Another problem is
the presence of negative weights.

Other LRKFs include the Gaussian Hermite Kalman
Filter [9], [12], a filter based on a quadrature scheme that
requires exponentially many samples with respect to the
dimension. Furthermore, there is the Smart Sampling Kalman
Filter (S?KF) [10], which is based on placing the samples
according to an optimality criterion that minimizes a distance
function between the Gaussian distribution and the samples. A
similar approach with additional moment constraints is taken
in [13]. A downside of these methods is that a computationally
expensive numerical optimization has to be performed to
obtain the sample set. Thus, the optimization is usually



Sampling Scheme Number of Samples Weights

UKEF [4] 2d+1 neg. weights optional®
RUKEF [8] multiple of 2d + 1 neg. weights

3rd degree CKF [6] 2d equal

Sth degree CKF [5] 2d? + 1 neg. weights”
GHKEF [9] m? nonequal, positive
S2KF [10] arbitrary > 2d equal
proposed arbitrary > 2d equal

Deterministic Numerical
Optimization “ uniform weights are al-
ways possible

yes no b for dimensions > 5
no no ¢ depending on initialization
yes no 4 an implementation of the
yes no numerical  optimization
yes no procedure is available
yes© yes? online [11]
yes no

TABLE I: Overview of LRKFs.

performed offline for a standard normal distribution and the
samples are transformed to the current distribution using a
Mahalanobis transformation [14, Sec. 3.3]. This makes it
difficult to change the number of samples or dimensions at
runtime. An overview of some of the most popular approaches
is given in Table

In general, a sampling scheme for an LRKF has certain
desirable properties. First of all, we want to maintain the first
and second moment of the Gaussian distribution to ensure
that the LRKF is equivalent to the optimal Kalman filter
for linear systems. Matching the first two moments means
that a Gaussian can be converted to samples and vice versa
without losing any information, which is why all LRKFs
considered here fulfill this property. It may be desirable
to maintain higher moments of the Gaussian distribution,
because Gaussian quadrature [15, Sec. 2.7] rules guarantee
optimality of certain moments for polynomial systems up to
a predetermined degree. In practice, however, it may be more
important to have a fairly even distribution of the samples
such that the space is well covered and the shape of the
Gaussian distribution is well matched. It is also beneficial if
the number of samples can be adjusted to perform a trade-off
between computational effort and accuracy. Unfortunately,
many approaches only allow a fixed number of samples or a
choice that is limited to very coarse steps. Another issue is
the computational effort needed to obtain the samples. Some
approaches use very costly numerical optimization methods
that have to be performed offline, in particular for many
samples or dimensions. Moreover, we would like the sample
set to be deterministic, so results are easily reproducible and
the accuracy of the estimate does not depend on the choice
of random numbers.

Finally, it is advantageous if the weights of the samples
are as uniform as possible because in this case, all samples
contribute equally to the result. In particular, samples with
negative weights should be avoided as they can result in
covariance matrices that are not positive definite, as we
illustrate in the following example.

Example 1 (Negative Weights). Consider a standard normal
distribution N'(0,1), which we want to propagate through
the simple yet nonlinear function f(x) = (x —0.2)2

For this purpose, we use an LRKF with negative weights,
say, the UKF with negative weight v; = —1 (Wy = —1
according to the notation used in [4, Sec. IV-A]). This yields
the sample locations

[0, —v/2/2,v/2/2] ~ [0, —0.7071,0.7071]

and weights [y1,7v2,73] = [—1, 1, 1]. The propagated samples

are at locations
[r1,79,15] = [0.0400,0.8228,0.2572]

and their weights stay the same. We obtain the sample mean

N
= v r; =104,
which is identical to the analytic solution. However, the
covariance is

C="N 7 (= — )T

=-1-1+1-0.0472 +I -0.6128 = -0.34 < 0,

i.e., not positive definite. As a result, future filtering steps
based on this covariance are impossible. A common practical
solution is to omit steps that lead to non-positive-definite
covariance matrices, which is clearly suboptimal.

II. KEY IDEA

In the following, we will show how to combine samples
form a Chi distribution and uniform hyperspherical samples to
obtain a sampling scheme for multivariate Gaussian densities.
Consider a multivariate standard Gaussian distribution in d
dimensions, which can be reformulated as

N(z;0,1) = WQXP (—272/2)
= Wexp (*HQHQ/Q) = WN(||§||;Oa 1.

It can be seen that this distribution is uniform distribution
with respect to the direction H%H Note that the direction does
not appear in the equation due to uniformity.

The distribution of the norm r := ||z|| > 0 can be derived
according to

fr) = / N(z;0,T) de
{zeR?:||z||=r}
1 2
= ———exp(—r /2)/ dz
(2m)d/2 {weR:|z]|=r}
214/ pd=1
I'(d/2)

)
Wexp (—r?/2)

r?=1exp (—r2/2)
24/2-11(d/2)
where we use the fact that the surface of a (d—1)-dimensional
. . . . 27Td/2 d—1 .

sphere in d dimensional space is " with Gamma
function I'(-). As can be seen, the resulting density coincides
with a Chi distribution with d degrees of freedom.

As a result, we can sample the Chi distribution on ||z||
and the uniform distribution on ﬁ separately (using the
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Fig. 2: Example for a 1D deterministic approximation of a Gaussian distribution and a Chi distribution for d = 3 degrees of

freedom.

techniques presented in Sec. [[V|and Sec. and then obtain
samples for the multivariate Gaussian by considering their
Cartesian product.

To obtain our sample set, we scale each hyperspherical
sample s; with each of the Chi distribution samples f;
according to

{ry,..

where M is the number of spherical samples and L is the
number of Gaussian samples or layers. Hence, each Gaussian
sample creates one layer of samples. The weights of the
combined samples are obtained by multiplying the weights
of the individual samples. In our case, we obtain uniform
weights yp = -+ =Yy = ﬁ for all samples.

Samples for a non-standard Gaussian distribution N'(p, C)
can be obtained by performing a Mahalanobis transformation,
ie, [E-ra“f‘”med =pu+ \E[j for 1 < j < N, where v/C can
be computed using the Cholesky decomposition.

III. DETERMINISTIC HYPERSPHERICAL SAMPLING

In this section, we focus on the problem of computing a
set of samples uniformly distributed on the surface of the
unit hypersphere S¢~1 = {z € R? : ||z|| = 1}, i.e., the
set of vectors with Euclidean norm 1. We seek to obtain a
subset {s;,...,5,,} C S?! of M € N vectors that covers
the surface of the unit hypersphere evenly. While uniform
random sampling on the surface of the unit hypersphere is
very easy, deterministic sampling can be quite tricky. This
problem has been studied quite extensively, especially for
the case d = 3, i.e., the sphere in R3 [16]. It arises in many
applications, sometimes in slight variations as far as the
measure of uniformity is concerned. For instance, in physics,
the Thompson problem [17], [18, Sec. 18.7] considers the
question of distributing electrons on the surface of a sphere
such that the Coulomb energy is minimized. Another related
example is the Tammes problem in botany, which considers
the distribution of pores on pollen grains [18, Sec. 18.9].
Optimal quantization, though usually on real vector spaces
rather than the sphere, is also a closely related issue [19],
[20]. Many approaches for the spherical problem can be
found in literature, e.g., [21], [16], and also some for the
hyperspherical case [22], [23].

We use the equal area partitioning approach proposed
by Leopardi [24], [25], which partitions the surface of the
sphere into regions of equal area. The regions are chosen
such that their diameter, i.e., the largest distance between any
two points in the region, is small. Leopardi proves an upper
bound for the diameter that converges to zero if the number

of regions goes to infinity. We use the center of each region as
a hyperspherical sample. The algorithm is based on recursive
partitioning of the hypersphere in d dimensions by reducing
its partition to that of the hypersphere in d — 1 dimensions.
A MATLAB implementation is available online [26].

Leopardi’s algorithm has a number of beneficial properties.
As it is not based on numerical optimization of an optimality
criterion, it is extremely fast, does not get stuck in local
optima, and is independent of initialization. Also, it can be
applied to an arbitrary number of dimensions d > 2 and an
arbitrary numbers of samples M € N.

Due to the recursive construction, the resulting samples
are not spread perfectly evenly on the hypersphere, but it can
be verified empirically that the results are very close to a
uniform distribution. Furthermore, the bound on the diameter
of the regions and the symmetry of the construction provide
theoretical guarantees. Examples for the resulting partitions
and samples are shown in Fig. [

IV. DETERMINISTIC CHI DISTRIBUTION SAMPLING

In this section, we consider the problem of approximating a
Chi distribution with a set of samples. To be specific, we are
looking for the parameters wy,...,wy >0 and Sy,...,0L
of a Dirac mixture

fl@; B,

L

Lwp) = Zi:l w;d(xz —B;) (1)

with L € N components, where Zle w; = 1 holds. In the
following, we restrict ourselves to equally weighted samples,
: _ _ _ 1
1.6, Wy =+ =W = 7.

In [27], Schrempf et al. proposed a sampling scheme
for one-dimensional densities based on minimization of the
squared L? distance of cumulative distribution function. The

distance measure for densities f1(-) and f2(-) is given by

D= [7 (Fi(z) - Fa(x))*dz

7/8L7w17"

where Fi(z) = [*_ fi(t)dt is the cumulative distribution
function. If f5(-) is a Dirac mixture as defined in (I and is
assumed to have equal weights, then it can be shown that
the optimal approximation of fi(-) given by

Bi=Fy (20 —1)/(2L)) )

according to [27, Theorem III.1].

However, this approach does not, in general, preserve
any moments of the density f;(-). For symmetric densities
(such as the Gaussian), the first moment is maintained, but
higher moments are not. In [7], Huber et al. introduced
a constraint for the second moment to resolve this issue,
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Fig. 3: Examples of the sample sets produced by the novel sampling scheme.

which requires numerical optimization. The main problem
with this approach is that using the one-dimensional samples
in multiple dimensions will once again violate the second
moment constraint. For this reason, our approach does
not use any moment constraints, but instead enforces the
second moment retroactively in n dimensions by using the
Mahalanobis transformation (see Sec. [V)).

As discussed in Sec. [l we obtain samples from the
hypersphere, which correspond to rays starting at origin to
a certain direction. Thus, we need to approximate the a Chi
distribution for each ray by computing its inverse cdf as given
by (@). For practical implementation, the square root of the
Chi squared distribution inverse cdf can be used because
implementations of this function are more readily available
(e.g., chi2inv in MATLAB).

An example of the results can be seen in Fig. 2}

V. MOMENT CORRECTION

As the samples obtained this way do not necessarily
have exactly the mean and covariance of a standard normal
distribution, we subtract the actual mean

N
pi=Ez) =3 viry

from each sample. Then, we apply the Mahalanobis transfor-
mation to correct the covariance as is done in the S2KF [10].
For this purpose, we compute the sample covariance

C:= E(@T) = sz\il %‘Ei&‘T

and obtain its Cholesky decomposition, i.e., we obtain an
upper triangular matrix R such that R” - R = C. Then, we
multiply each sample from the left with R~!, which yields
samples with covariance I. Examples of the resulting sample

sets in 2D and 3D for different values of L and M are shown
in Fig. 3
VI. FILTER

We can use the samples derived above in the standard
LRKF framework [2], [10, Sec. 2].

A. Prediction Step, Time Update

The system model is given by

Ty1 = ap (T, wy,)

where w;, ~ N (0, CY) is non-additive zero-mean Gaussian
process noise. To handle the non-additive noise, we sample
from joint density of state and noise

[lkawk]T NN([@;Q}T7diag( ivc}éu)) .

T T o
Based on the samples [@k,l,yk)l}. ,...,[@k)N,Qk)N} with
weights ~v1,...,7yn, we can obtain mean and covariance of
the predicted density according to
PO o\ SN
Lpi1 ™~ Zi:l Vlgk(lk,iawk,i) s
p NN AP
Ck+1 ~ 21':1 'Yz(Qk(Qk,iyﬂk,i) - £k+1)
~AD T
: (Qk@k,mwk,i) - $k+1)

For additive noise, we only need to sample from the state
density and the equations can be simplified [28, Sec. 2.4.4].

B. Correction Step, Measurement Update

We assume a measurement model

Y. = Iy (zgs 1)
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Fig. 4: Equal area partitioning on the sphere S2.

where v, ~ N (0, C}) is non-additive zero-mean Gaussian
measurement noise. Once again, we sample from the joint
density of state and noise

[lkaﬂk]T ~ N([xkyo]

Then, we compute the expected measurement

,diag(C}, C})) -

. N
Y, ~ Dot Vil (Tg 45 vk )

and its covariance

N N N
Cl~>i, Vil (T 55 50) — yk) (hy (g 50 ) — Qk)T
as well as the cross-covariance of state and measurement

N . N
Co¥ m 3 vilay — 27) - (hy (g g5 00) — 9,07

Using the actual measurement y, , we perform the Kalman
update to obtain the mean and covarlance of the estimated
state according to

i =2+ G- (C) (3, — ) -
= Cp-Cpv (e (cp)T
If the noise is additive, it is sufficient to sample from the state
density and we can simplify the equations [28, Sec. 2.4.4].
VII. EVALUATION

We evaluate the proposed approach in comparison with
LRKFs found in literature. For this purpose, we rely on
the implementations available in the Nonlinear Estimation
Toolbox [11] for MATLAB.

A. Sample Analysis

Before we evaluate the novel approach in a filtering
scenario, we take a close look at the sample placement

and perform a comparison to other sampling schemes.

Examples of samples produced by different methods for a
two-dimensional scenario can be seen in Fig. [S| The S?KF
produces the most homogeneous samples in this case.

To visualize the behavior of the sampling schemes in higher
dimensions, we consider the distance of each sample to the
origin. Although this does not capture all aspects of the

sampling schemes, it helps to understand the radial component.

The results for the proposed filter, the S’KF and the RUKF
are shown in Fig. [6]and Fig.[7] We do not depict the UKF and
the CKF as their samples are exactly located on a hypersphere
(except for a single sample at the origin). It can be seen that
the samples of the proposed filter are not exactly located on

hyperspheres due to the covariance correction (see Sec. [V).

In the 5D case, the S2KF also creates a structure resembling
multiple hyperspheres in some cases, whereas the RUKEF is

quite random. While the different behaviors of the considered
sampling schemes are highly interesting, it is not obvious
which choice of samples yields the best results in a filtering
application, so we will look at this aspect in Sec. [VII-B|

Furthermore, we investigate the expected squared distance
of a Gaussian-distributed random vector from the closest
sample. Intuitively, the closer this vector is located to a sample
point, the better the nonlinear mapping will be approximated.
For z ~ N(0,1I), we consider

E (minlgigN l|lz — L”%) :

This expectation value can be computed for a given sample
set using numerical integration. It corresponds to the squared
distortion measure used in [20, Sec. 2.1]. The results for
the 2D case are shown in Fig. [§] It can be seen that the
S2KF performs very well because it spreads the samples very
evenly. The proposed approach can achieve similar results
for a sufficient number of layers L. It can also be observed
that increasing the number of layers only pays off when the
total number of samples N is sufficiently high.

B. Filter Comparison

We evaluate the novel filter in scenarios with different
numbers of dimensions. As the measurement update is
typically the more challenging part, we assume a linear
random walk system model

T =T + Wy

where w, ~ N(0,1072 - I) is additive zero-mean system
noise. The measurement model is given by

sin(c - xg,2)
h(zy) =z +

sin(c - g q)
sin(c- xg,1)

+yk,

where v, ~ N(0,107% - I) is zero-mean measurement noise.
We choose the constant parameter ¢ = 10. This model is
interesting because the behavior strongly depends on the
uncertainty at the current time step. Also, it can be used
in an arbitrary number of dimensions. The true initial state
is given by z, = 0 and the initial estimate is given by
x5~ N(0,1072 - 1).

In our evaluation, we compare the proposed approach to the
EKF, the UKF, the 5th degree CKF, the S2KF, the randomized
UKEF, and the GHKF (with m = 3 points in each dimension).
For the proposed approach, the S?KF, and the RUKF, we
used N = 2d® + 1 samples. Furthermore, we use L = 5
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layers in our method, which has empirically been found to
work quite well as long as N is large enough.

We performed the evaluation in 2D, 3D, and 5D for 50
time steps each. The results of 100 Monte Carlo runs are
shown in Fig. [0] We use the RMSE averaged across all runs
as the evaluation criterion. The novel method achieves a
similar estimation accuracy as the S?’KF and RUKF in the
considered scenario, while being deterministic and avoiding
slow precomputation. These three methods clearly outperform

combination of Chi distribution sampling and uniform hyper-
spherical sampling. This approach has significant advantages
compared to state-of-the-art methods, namely, no negative
weights, a flexible number of components, no randomness,
and no need for costly numerical optimization.

Based on this sampling scheme, we have proposed a
new filter based on the LRKF-principle. We have evaluated
the novel filter in multiple simulations and shown that its
performance is clearly superior to the EKF, UKF, CKF, and
GHKEF. It is comparable to the RUFK and the S2KF, while
avoiding their disadvantages, namely the nondeterminism
and negative weights of the RUKF and the expensive
precomputation of the S?KF.
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