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ARTICLE INFO ABSTRACT

Cadmium (Cd) and arsenic (As), non essential, but toxic, elements for animals and plants are frequently present
in paddy fields. Oryza sativa L., a staple food for at least the half of world population, easily absorbs As and Cd by
Auxin the root, and in this organ the pollutants evoke consistent damages, reducing/modifying the root system. Auxins
Cadmium. are key hormones in regulating all developmental processes, including root organogenesis. Moreover, plants
Oryza sativa respond to environmental stresses, such as those caused by Cd and As, by changing levels and distribution of
Root development . . .

endogenous phytohormones. Even though the effects of Cd and As on the roots have been investigated in some
species, it remains necessary to deepen the knowledge about the cross-talk between these toxic elements and
auxin during root formation and development, in particular in agronomically important plants, such as rice.
Hence, the research goal was to investigate the interactions between Cd and As, alone or combined, and auxin
during the development of rice roots. To reach the aim, morphological, histological and histochemical analyses
were carried out on seedlings, exposed or not to Cd and/or As, belonging to the wild type and transgenic lines
useful for monitoring indole-3-acetic acid (IAA) localization, i.e., OsDR5:GUS, and IAA cellular influx and efflux,
i.e., OsAUX1:GUS and OsPIN5b:GUS. Moreover, the transcript levels of the YUCCA2 and ASAZ2, TAA biosynthetic
genes were also monitored in Cd and/or As exposed wild type seedlings. The results highlight that As and Cd
affect cyto-histology and morphology of the roots. In particular, they alter the lateral root primordia organi-
zation and development with negative consequences on root system architecture. This is due to a disturbance of
IAA biosynthesis and transport, as indicated by the altered expression of both ASA2 and YUCCA2 biosynthetic
genes, and AUX1 and PIN5b transporter genes.

Keywords:
Arsenic

1. Introduction

Contamination of ecosystems by metals and metalloids represents a
worldwide concern, endangering agricultural systems, human health
and environment. This is due to the heavy metal and metalloids toxi-
city, to their tendency to bioaccumulte and very persistence in the
environment (Li et al., 2014; Goix et al., 2014). Cadmium (Cd) and
Arsenic (As), non essential heavy metal and metalloid, respectively, can
induce severe toxicity to the all organisms including plants. In fact in
different plant species they, either alone or combined, negatively affect
growth (Zanella et al., 2016; Ronzan et al., 2017; Fattorini et al., 2017)
and reproduction (Ernst et al., 2008). Arsenic and Cd decrease seed
germination, inhibit root growth and induce radial swelling of root tips,
reduce plant biomass, and inhibit chlorophyll biosynthesis (Pourrut

et al., 2013; Tamés et al., 2014; Zanella et al., 2016; Ronzan et al.,
2017; Fattorini et al., 2017). In addition these pollutants also limit the
plant uptake of elements essential for growth, such as iron and zinc
(Duan et al., 2013, Brackhage et al., 2014). Arsenic contamination
derives from natural processes as well as from human activities. In some
countries, especially in densely populated river deltas of the Southeast
Asia, the groundwater, frequently used for irrigation of crops such as
rice, is strongly affected by As contamination. Arsenic is absorbed and
accumulated in plant organs by causing the entrance of the metalloid
into the food chain (Meharg and Rahman, 2003; Norra et al., 2005). It is
present in the environment either in organic or inorganic forms, with
the latter ones most harmful to all organisms. In particular, arsenite
(AsII) and arsenate (AsV) are the most toxic forms and more easily
absorbed by the plant roots. Plants take up As preferentially as As(V)
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and accumulate it in the roots (Neidhardt et al., 2012; Neidhardt et al.,
2015). Arsenate is an analogue of phosphate, and it uses the phosphate
transporters to move into the plant cells (Meharg and MacNair, 1992).
Most of the bioavailable Cd in the environment is of anthropogenic
origin. Cadmium is present only in the inorganic form and only in one
oxidation state (+II). Due to its high mobility, Cd readily enters into
the roots through the epidermis, and can reach the xylem via an apo-
plastic and/or a symplastic way. Frequently polluted environments
show the simultaneous presence of the two toxic elements (Kim et al.,
2003; Loska et al., 2004) and this amplifies the damage caused by the
single elements and makes it more difficult to remedy.

Plant hormones play a crucial role in regulating and coordinating
growth, and are involved in all developmental processes, including
abiotic stress responses (Berger, 2002; Spoel and Dong, 2008). Fur-
thermore, plants respond to the environmental stress, such as heavy
metals/metalloids, by changing the levels and distribution of the en-
dogenous phytohormones (Hu et al., 2013). For instance, indole-3-
acetic acid (IAA) has been suggested to be involved in the response to
abiotic stresses in Arabidopsis (Wang et al., 2001; Vitti et al., 2013;
Fattorini et al., 2017). In accordance, in rice, the expression of genes
encoding for enzymes of the IAA biosynthetic pathway varies in re-
sponse to drought, heat and cold stress (Du et al., 2013).

Auxin is the key phytohormone in almost all plant physiological
processes, including root formation and development. Indole-3-acetic
acid is, in particular, crucial for root meristem organization, with its
action made possible by the realization of an auxin gradient, involving
coordination between its biosynthesis and polar transport (Blilou et al.,
2005). It is known that, in Arabidopsis, an auxin maximum is required
for quiescent centre (QC) and columella definition, and for the correct
lateral root (LR) and adventitious root (AR) organization (Benkova
et al., 2003; Della Rovere et al., 2013). The QC is the organiser of the
root stem cell niche (Kamiya et al., 2003), and its destruction causes
differentiation in the stem cells, and anomalous root development (van
den Berg et al., 1997). A previous paper reported that Cd inhibits root
meristem growth by NO-mediated alteration of auxin homeostasis in
Arabidopsis (Yuan and Huang, 2016). Recently we demonstrated that
Cd and/or As severely affect auxin biosynthesis and transport in Ara-
bidopsis thaliana altering QC definition and, consequently, LR and AR
development (Fattorini et al., 2017). However, information about the
influence of Cd and/or As on auxin pathway during root organogenesis
still needs insights in other plant species, for instance in plants, such as
rice, with a root system consisting of different root types and with a
diverse architecture with respect to Arabidopsis.

It is therefore necessary to investigate the effects of Cd and/or As on
auxin homeostasis during root organogenesis in plants with a root
system consisting of different root types and with a diverse architecture
with respect to Arabidopsis, in order to be able to identify defence/
adaptation strategies common to different plants.

Oryza sativa L. is the staple food especially for Asian people. In the
last decades, increasing evidence has shown that rice grown in con-
taminated paddy soils is seriously contaminated by As or Cd (Stone,
2008). In fact, rice plants are globally the most relevant source of Cd
and As contamination for humans (Uraguchi and Fujiwara, 2013; Zhao
et al.,, 2010) because both elements are easily taken up by its root
system.

Rice is a monocot model plant because its genome is known, and in
the last few years several mutants and transgenic lines have become
available to study metabolic, physiological and organogenic processes.
The root system of O. sativa is fibrous, with five types of embryonic and
postembryonic roots, the radicle, i.e., the primary root (PR), the em-
bryonic crown roots, i.e., the embryonic ARs, the postembryonic crown
roots, i.e., the postembryonic ARs, the large LRs, and the small LRs
(Rebouillat et al., 2009 and references therein). All these root types are
characterized by a meristem different from that present in Arabidopsis
roots. Nonetheless, the QC structure/morphology is similar in rice and
Arabidopsis (Rebouillat et al., 2009). Furthermore, differently from the
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latter plant, the rice QC is a relatively stable structure, with nutrient,
hormone deficiencies (mainly auxin), and environmental pollution
having a poor effect on its patterning. However, similarly to Arabi-
dopsis, alterations in QC functionality inhibit PR growth and LR in-
itiation (Ni et al., 2014). Moreover, some common mechanisms of auxin
polar transport in the root have been suggested for rice and Arabidopsis
(Balzan et al., 2014).

Cadmium has been shown to modify auxin homeostasis in rice by
affecting the expression of specific auxin-related genes, with this event
resulting into altered cell differentiation and inhibition of root growth
(Zhao et al., 2013).

Anthranilate synthase is a key enzyme in the synthesis of trypto-
phan, from which the tryptophan-dependent IAA biosynthesis occurs.
In rice, OsASA2 encodes the anthranilate synthase alpha subunit
(Tozawa et al., 2001). OsOASA2 has been demonstrated to be up-
regulated by abiotic stresses (Du et al., 2013). Downstream of ASA
genes, the YUCCA gene family, encoding for flavinmono-oxygenase,
converts tryptamine to N-hydroxytryptamine, i.e., a direct precursor of
active TAA (Yamamoto et al., 2007, and references therein). Seven
YUCCA genes have been characterized in rice, and six genes of them
(except for OsYUCCA4) have been shown to be regulated by abiotic
stress. In particular, the transcript level of OsYUCCAZ2 is strongly in-
duced by the cold stress (Du et al., 2013). To date, information about
the effects of Cd and As on these auxin biosynthetic genes is limited.

A putative auxin efflux carrier (OsPIN1) has been identified, and a
reduction of its expression is known to inhibit AR emergence (Xu et al.,
2005). The auxin influx carrier AUX1 controls many aspects of root
development in rice, and responds to Cd stresses (Yu et al., 2015; Zhao
et al., 2015). However, the information about how the auxin trans-
porter genes are involved in rice root response to the adverse en-
vironmental conditions, in particular to Cd and/or As toxicity, are still
missing.

The aim of the research was to determine whether the metalloid As
and/or the heavy metal Cd affect AR and LR formation and develop-
ment in rice interacting with IAA biosynthesis, transport and distribu-
tion. To reach the aim, we analysed the root morphological/histological
damages due to Cd and/or As exposure, the expression of the OsASA2
and osYUCCA2 genes, the localization of the IAA-sensitive DR5:GUS
signal, and of those of PIN5b and AUXI1 auxin carriers in seedlings
treated with Cd and/or As. The results showed that As and Cd nega-
tively affect root system morphology and histology, and that this is
correlated to an alteration of the expression of the IAA biosynthetic
genes, ASA2 and YUCCAZ2, but also to a disturbance in the expression of
the IAA transporters genes AUX1 and PIN5b, all together indicating
changes in IAA biosynthesis and distribution, affecting LRs in parti-
cular.

2. Material and methods
2.1. Plant material and growth conditions

The caryopsides of Oryza sativa L. ssp. Japonica (cv. Zhonghua 11)
(wild type, wt) and of OsDR5:GUS (Wang et al., 2014), OsAUX1:GUS
(Yu et al., 2015) and OsPIN5b:GUS (Lu et al., 2015) transgenic lines
were surface sterilized with ethanol 70% (v/v) for 1.30 min, rinsed
three times with ultra-pure water, soaked in a solution of 40% (v/v)
sodium hypochlorite for 25 min, and again rinsed in sterile ultra-pure
water for three times. Afterwards, the seeds were sown on a medium
containing half-strength Murashige and Skoog (MS, 1962), 0.1% su-
crose and 0.8% agar, at pH 5.6-5.8 (Control). To this medium, As(V)
and Cd were added, either separately or combined, with the following
concentrations: 50 uM Na,HAsO47H,0 (i.e., 50 As); 50 uM CdSO, (i.e.,
50 Cd);100 uM Na,HAsO,7H,0 (i.e., 100 As); 100 uM CdSOy4 (i.e., 100
Cd); 100 uM Na,HAsO47H50 plus 50 uM CdSO, (i.e., 100 As + 50 Cd),
100 uM CdSO4 plus 50 uM Na,HAsO47H,0 (i.e., 100 Cd + 50 As) and
50 uM Na,HAsO47H,0 plus 50 uM CdSO, (i.e., 50As + 50 Cd).
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The As and Cd concentrations were selected based on our pre-
liminary unpublished data on rice and because they were used for other
plant species (Zanella et al., 2016; Fattorini et al., 2017). In particular,
the As or Cd concentration of 100 uM, when applied alone, was selected
because higher As or Cd concentrations induce strong damages to the
entire plant and lower concentrations do not induce evident morpho-
logical modifications. Ultra-pure water (Milli-Q) was used for all cul-
ture media.

The media were poured into sterile Phytatray™ containers (Sigma-
Aldrich) and at least 30 seeds were sown per each treatment and gen-
otype (5 seeds per Phytatray™). The cultures were kept in dark condi-
tions, at 28 °C, for 2 to 3 days until germination. After germination, the
seedlings were exposed to 14h light/10h dark/day conditions for
10 days. The cultures were kept at 210 umol/m? s~ intensity of white
light and at the relative humidity of 70%.

2.2. Morphological analysis and GUS signal detection

The morphological analysis was carried out on the root system of
30wt seedlings per treatment after 10 days from sowing. The root
system was separated from the leaves and the fresh weight was eval-
uated for both systems. The root system was harvested and fixed in 70%
(v/v) ethanol. The mean length of the embryonic adventitious roots
(ARs), the mean density of the lateral roots (LRs) and of the lateral root
primordia (LRPs), coming from these ARs, were evaluated under a
LEICA MZ8 stereomicroscope using the AxioVision Release 4.7.2 soft-
ware from digital images captured with Zeiss AxioCam camera.

Stocks of 30 DR5:GUS, AUX1:GUS and PIN5b:GUS seedlings per
treatment were processed for 3-glucuronidase (GUS) staining according
to Wang et al. (2014). Samples were cleared with chloral hydrate so-
lution (Weigel and Glazebrook, 2002), mounted on microscope slides,
and observed with Nomarski optics applied to a Leica DMRB optical
microscope equipped with a Leica DC 500 camera. The image analysis
was performed using LEICA IM1000 Image Manager Software. After
treatments with Cd and/or As, the DR5:GUS signal in ARs and their
LRPs and LRs, was classified as “Regular”, “Reduced”, “Diffuse” or
“Absent” and their number expressed as mean percentage ( + S.E.).

2.3. Histological analysis

Ten randomly chosen wt ARs non-exposed (Control) or exposed to
100 uM Na,HAsO47H50 (i.e., 100 As), 100 uM CdSO, (i.e., 100 Cd),
100 uM Na,HAsO47H,0 plus 50 uM CdSO, (i.e., 100 As + 50 Cd) and
50 uM Na,HAsO47H,0 plus 100 pM CdSOy4 (i.e. 50 As+ 100 Cd), were
fixed in 70% (v/v) ethanol, dehydrated by an ethanol series, embedded
in Technovit 7100 (Heraeus Kulzer, Germany), longitudinally sectioned
at 8 um with a Microm HM 350 SV microtome (Microm, Germany),
stained with 0.05% toluidine blue, and observed under light micro-

scopy.

2.4. Elements analysis

Wild type seedlings were harvested, rinsed with ultra-pure water
and divided into root and shoot and dried in the oven for 3 days at
55°C. The As and Cd concentrations in different plant organs were
measured with ICP-MS (X-Series II, Thermo Fisher) after microwave
acid digestion (MLS Start 1500) using HNO3 (65%, subboiled) and H,0,
(30%, p.a.). Blanks and certified plant standard material (NIES CRM
No. 10-c, rice unpolished) were included in the process to verify di-
gestion quality. The recovery for As and Cd was around 80%.
Additionally, the certified reference material CRM-TMDW-A (High-
Purity standards, Inc.) was included into the protocol (accuracy: = 5%
for most elements) to check the quality of the ICP-MS measurements.
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2.5. Quantitative RT-PCR analysis

The root system of 10 seedlings grown in the presence/absence of
Cd and/or As was harvested, frozen in liquid nitrogen and stored at
—80°C prior to RNA extraction. Total RNA was isolated using The
Spectrum Plant Total RNA Kits (Sigma-Aldrich) according to the man-
ufacturer’s instructions. RNA concentration and purity was evaluated
spectrophotometrically on the NanoDrop” ND-1000 spectrophotometer
(ThermoFisher Scientific Inc., MI., Italy).

For cDNA synthesis 1 pg of total RNA was reversely transcribed with
M-MuLV Reverse Transcriptase (New England Biolabs) according to the
manufacturer’s instructions. Relative levels of OsASA2 and OsYUCCA2
mRNAs were examined by real-time PCR, using 96 microwell plates and
a CFX qPCR system (Biorad), basically as described by Svyatyna et al.
(2014) with modifications as described below. Specific primers were
designed (Table Supplementary information 1) using NCBI Primer-
BLAST for both genes of interest, reference genes were OsGAPDH
(Banba et al., 2008) and OsUBQ10.

The qRT-PCR experiments were carried out in triplicate using 1 pl of
diluted cDNA (1:10) as template for each reaction as described in
Svyatyna et al. (2014). Amongst several candidates OsUBQ10 and Os-
GAPDH genes were selected as reference genes and used for normal-
ization. Standard curves were measured using a dilution series of the
cDNA to obtain amplification efficiency values (E) for each reaction,
and for calculation of normalized relative quantity (NRQ) according to
Hellemans et al. (2007). Amplification parameters were: 95°C for
3 min; 40 amplification cycles (95 °C for 15s, 60 °C for 305s).

2.6. Statistical analysis

Statistical analysis was performed using one way ANOVA test fol-
lowed by Tukey’s post-test through GraphPad Prism 6.07 software.

3. Results
3.1. Arsenic and cadmium affect root system morphology

To assess the morphological alterations induced by Cd and/or As on
the root system architecture of rice we evaluated the mean length of the
embryonic ARs and the mean density of their LRPs and LRs in wt
seedlings exposed or not to the toxic elements. Cadmium and As, alone
or combined, at 50 pM did not affect the mean length of the embryonic
ARs (Fig. Supplementary information 2), and for this reason these
treatments were excluded from the other experiments. Arsenic and Cd,
alone (100 uM) or together (100 uM + 50 uM), significantly (P < 0.01)
reduced AR length in comparison with the Control. The greatest in-
hibition of AR length was observed in the presence of the combination
of 100 uM As and 50 uM Cd (Fig. 1A, G). The two toxic elements also
significantly (P < 0.01) reduced LRP formation in comparison with the
Control (Fig. 1B, D-H). However, the most drastic effects were observed
on LRP development, because only a few primordia developed into
mature LRs in the presence of As and Cd alone, and no mature LR was
observed in the combined treatments (Fig. 1B, G and H). Moreover, the
mean fresh weight of roots and leaves was also evaluated (Fig. 1C). The
treatments with As, alone or combined with Cd, induced the greatest
reduction of fresh weight in both roots and leaves (Fig. 1C).

3.2. Arsenic and cadmium alter LRP formation and development

A histological analysis was carried out in wt seedlings exposed or
not to As and/or Cd with the aim to verify if the toxic effects of the
elements affected LRPs from their origin.

The analysis was restricted to the LRPs because they seemed to be
more affected by the treatments than the ARs (Fig. 1A and B), and
because the histological organization of the ARs was rather stable, i.e.,
not-damaged by the toxic elements, as a possible consequence of their
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Fig. 1. Mean adventitious root (AR) length (A), mean lateral root primordia (LRPs) and lateral roots (LRs) density (B) and mean fresh weight of roots and leaves (C)
( £ SE) of Zonghuall (wt) seedlings non treated (Control) or treated with 100 pM Na,HAsO47H,0 (100 As), 100 pM CdSO, (100 Cd), 100 uM Na,HAsO47H,0 plus
50 uM CdSO, (100 As + 50 Cd) and 100 uM CdSO,4 plus 50 Na,HAsO47H,0 uM (100 Cd + 50 As) for 10 days. Letters show statistical differences among the
treatments within the same parameter. Letter a, P < 0.01 difference with respect to the other treatments. Letter b, P < 0.01 difference with respect to 100 As, 100
Cd and 100 Cd + 50 As. Letter ¢, P < 0.01 difference with respect 100As, 100As + 50Cd and 100 Cd + 50As. Columns followed by no letter or the same letter are
not significantly different. N = 30. D-H root system morphology of wt seedlings of Control (D),100 As treatment (E), 100 Cd treatment (F), 100 As + 50 Cd

treatment (G), and 100 Cd + 50 As treatment (H) at day 10.

embryonic origin. In accordance with Ni et al. (2014), in the Control,
the LRPs were formed starting from anticlinal divisions of the pericycle
founder cells, followed by anticlinal divisions in the endodermis. The
latter cell divisions resulted into the formation of a sheath covering the
LRP, later developing into the root cap and the rhizodermis. After some
rounds of anticlinal divisions in the pericycle and endodermis deriva-
tives, periclinal divisions occurred contributing to the bulk of the LRP
(Fig. 2A and B). The definition of the quiescent centre (QC) took place
at the VI-VII stages of LRP development (Fig. 2B, rectangle) in ac-
cordance with Kamiya et al. (2003), and similarly to what has been
reported for LRPs and ARPs of Arabidopsis thaliana (Malamy and
Benfey, 1997; Della Rovere et al., 2013). The correct formation and
development of the LRs in the Control was also shown by the regular
definition of the radial pattern of the meristematic tissues in the root
apex (Fig. 2C). Moreover, the histological analysis confirmed the high
density of the LRPs in the Control (Fig. 2D) with respect to the heavy
metal/metalloid treatments (Fig. 1B).

Cadmium alone induced severe damages to the LRP starting from
the first divisions in the pericycle and endodermis cells.In fact, cell
divisions with anomalous orientation planes occurred, leading to al-
tered LRP formation (Fig. 2E), without a QC or with an irregular QC
definition (Fig. 2F).

These LRPs were unable to evolve correctly into LRs, with this de-
termining a frequent LRP arrest at this stage (Fig. 1B). Transverse
sections of the few elongated LRs revealed an altered radial organiza-
tion of the meristematic apical tissues (Fig. 2G), and the appearance of
numerous vacuoles in the meristematic cells (Fig. 2H, arrows). Cad-
mium also induced a precocious differentiation of the aerenchyma in
the elongation region of these LRs (Fig. 21I).

Arsenic alone also altered LRP origin and development. In fact,
anomalous cell divisions of the pericycle and endodermis derivatives
led to the formation of irregular LRPs (Fig. 2J). These LRPs were
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characterized by uneven cell division planes and by the presence of
differentiated cells in the root meristem (Fig. 2J, arrow). In most of the
LRPs, the QC was not properly organized, such as the root cap (Fig. 2K).
The altered cell divisions caused by As were also evident in the trans-
verse sections of the apical meristem (Fig. 2L). Moreover, As alone
frequently induced hypertrophy in the cortical cells of the ARs and a
wild proliferation of the pericycle cells that determined a widespread
meristematization throughout the parental AR (Fig. 2M), which was not
followed by LRP formation.

The major cyto-histological damage due to the combined exposure
to As and Cd was the diffuse plasmolysis in the cortical cells and in the
endodermis of the parental AR (Figs. 2N, arrows, and Inset, and
Fig. 20). The plasmolysis compromised the regular formation and de-
velopment of the LRPs which remained blocked at very early devel-
opmental stages (Figs. 2N and O).

3.3. Arsenic and cadmium mainly accumulate in the rice roots

Arsenic and Cd were up taken from the media and accumulated
mainly in the roots (Fig. 3A). Arsenic was accumulated in the root more
than Cd, either when present alone in the culture medium or when
combined with Cd (Fig. 3A). The combined treatments significantly
(P < 0.01) reduced As and Cd uptake in comparison with the single
treatments (Fig. 3A). The transport to the aerial organs of both elements
was very low. However, Cd was translocated to the shoot more than As
(Fig. 3B). The combined treatments also reduced the transport of the
two elements to the aerial organs (Fig. 3B).

3.4. Arsenic and cadmium affect the expression of auxin biosynthetic genes

To verify if the damages observed in the root system and in the LRP
formation and development after Cd and/or As exposure were due to an
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alteration of auxin biosynthesis, the levels of ASA2 and YUCCA2 gene
transcripts were evaluated in the ARs, including their LRPs and LRs of
wt seedlings exposed to the toxic elements (Fig. 4).

The qRT-PCR analysis using OsGAPDH and OsUBQI0 as reference
genes showed that As alone significantly (P < 0.01) increased ASA2
expression in comparison with the Control, Cd alone and 100 Cd plus
50 As treatments (Fig. 4). Cadmium alone did not change significantly
ASA2 expression in comparison with the Control. The effects of As and
Cd alone on YUCCA2 expression were similar with no statistical dif-
ference compared to the Control. The combined treatment with 100 Cd
and 50 As did not affect ASA2 expression in comparison with 100 As
plus 50 Cd, on the contrary strongly increased (P < 0.01) YUCCA2
expression in comparison with the Control and the other treatments
(Fig. 4).

3.5. Arsenic and cadmium disrupt auxin localization

To evaluate the effects of Cd and/or As on IAA distribution in ARs,
LRPs and LRs we carried out a histochemical analysis on OsDR5:GUS
(auxin-responsive reporter DR5:GUS) in seedlings exposed or not to the
toxic elements (Fig. 5). Similarly to the nomenclature adopted for
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Fig. 2. Histological sequence of LRP develop-
ment in Zonghuallseedlings (wt) non exposed
(Control, A-D) or exposed to either 100 pM
CdSO, (100 Cd, E-I), or 100uM
Na,HAsO4,7H,O (100 As, J-M), or 100 uM
Na,HAsO,7H,O + 50uM  CdSO, (100
As + 50Cd,N) or 100uM CdSO, + 50 uM
Na,HAsO,7H,0 (100Cd + 50 As, O). A-C,
longitudinal (A and B) and transversal sections
(C) showing regular formation of LRPs, the
rectangle in B shows the QC. D, mature AR in
longitudinal section with a high LRP density. E
and F, anomalous LRs at different develop-
mental stages. G-I, transections in different
regions of the developing LRPs. J and K,
anomalous LRPs at different developmental
stages. L, transection of a LRP. M, mature AR
with hypertrophy in the cortical cells and dif-
fuse meristematization. N, anomalous LRP and
cortical cells of the parental AR showing plas-
molysis events (Inset). O, anomalous LRP at a
very initial stage, and plasmolysis in the en-
dodermal cells of parental AR. Bars = 10 um
(L), 20 um (C, E-H, J and K, N and O, inset in
N), 50 um (A and B, I, M), 100 um (D).

Arabidopsis (Fattorini et al., 2017) the GUS signal was classified as
“Regular” when present in the QC cells, root cap and vascular cells of the
ARs and mature LRs, and in the basal region of the LRPs, “Absent” when
not observed in the root meristem and in the vascular cells, “Diffuse” if
spread to the entire root meristem and the root cap and “Reduced” when
present only in the columella cells and the vascular cells.

In the mature ARs and LRs of the Control seedlings the GUS staining
was mainly present in the QC, vascular tissue and root cap (Fig. 5A, C, N
and O). Most of the LRPs showed DR5 signal in the basal part (Fig. 5B).
Moreover, in about the 20% of LRP/LRs the signal was reduced, be-
cause it was restricted to the columella cells and to the vascular cells
only (Fig. 50). Arsenic alone strongly caused a diffused DR5 expression,
or reduced or inhibited it in ARs, LRPs and LRs (Fig. 5D and F, N and
0). On the contrary, Cd reinforced and delocalized the GUS staining in
the root apex and in the elongation region of ARs and mature LRs
(Fig. 5G, I, N and O). The LRPs showed DR5 expression above all in the
basal part of the primordia (Fig. 5H) likewise to the Control. The
combined treatment with 100 As plus 50 Cd showed a trend similar to
As alone with a strong reduction of the GUS signal, that remained lo-
calized in a few columella cells, and in the provascular cells, either of
the ARs or of LRPs/LRs (Fig. 5J and K, N and O). The combined
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Fig. 3. Mean concentrations ( = SE) of As and
A —~ Cd in roots (A) and shoots (B) of Zonghuall
B 3500 (wt) seedlings not exposed (Control) and ex-
[a) posed for 10 days to 100 uM Na,HAsO,7H,0
o g b (100 As), 100pM CdSO, (100 Cd), 100 M
g Na,HAsO47H,O plus 50pM  CdSO, (100
oY) As + 50 Cd) and 100 uM CdSO,4 plus 50 uM
g 2500 Na,HAsO4,7H,O (100 Cd + 50 As). Letters
;/ show statistical differences for the same ele-
E 2000 ment among the treatments. Letter a,
> P < 0.01 difference with respect to the other
2 1500 treatments. Letter b, P < 0.01 difference with
o respect to 100 As + 50 Cd and 100 Cd + 50
O As. Letter ¢, P < 0.01 difference with respect
g (1 to 100 As+50 Cd. Letter d,
< P < 0.05difference with respect to 100
@« 500 As + 50 Cd. Columns followed by the same
fE a a a letters are not significantly different. Means of
o 0 three technical replicates.
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Fig. 4. Expression of ASA2 and YUCCAZ2 genes (QRT-PCR
35 analysis) in roots non exposed (Control) or exposed to
. 100uM As, 100uM Cd, 100uM As + 50 Cd puM, and
% mASAZ BITCCAZ 2%‘ 100 uM Cd + 50 pM As. The expression levels of the two
o 3 genes in the Control were set to 1. Letters show statistical
E differences for the same gene among the treatments. Letter
2 25 . a, P < 0.0ldifference with respect to the other treat-
< a,b ments. Letter b, P < 0.01 difference with respect to
% 100 uM Cd. Columns followed by no letter or by the same
i?: 2 letters are not significantly different. Mean of two tech-
S b nical replicates.
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Fig. 5. Expression pattern of DR5:GUS in adventitious roots (ARs), lateral root primordia (LRPs) and lateral roots (LRs) of OsDR5:GUS seedlings non exposed
(Control, A-C) or exposed to 100 yM Na,HAsO,7H,0 (100 As, D-F), 100 pM CdSO, (100 Cd, G-I), 100 uM Na,HAsO,7H,0 + 50 pM CdSO, (100As + 50Cd, J and
K) and 100 pM CdSO,4 + 50 uM Na,HAsO47H,0 (100 Cd+ 50 As, L and M). Bars = 50 pum (B) and 100 um (A, C-M). N and O, mean percentage ( = SE) of ARs (N)
and LRPs/LRs (0) with Regular, Diffuse, Reduced or Absent DR5:GUS expression signal. Letters show statistical differences for the same signal category among the
treatments. Letter a, P < 0.01difference with respect to the other treatments. Letter a', P < 0.01 difference with respect to 100Cd, 100As + 50Cd and 100Cd + 50
As. Letters b, b,b% P < 0.01 difference with respect to the Control and among them. Letter ¢, P < 0.01 difference with respect to the Control and 100Cd. Letter d,
P < 0.05 difference with respect to the Control and 100 As. Letters h,h',h%h%h* P < 0.01 difference among them. Letters i,i’,i%i%i*, P < 0.01difference among
them. Letters j,j',j%, P < 0.01 difference among them. Letters, k,k',k%k>, P < 0.01difference among them. Columns followed by no letter or the same letters are not

significantly different. N = 30.

treatment with 100 Cd plus 50 As mainly induced a diffusion of the DR5 3.6. Arsenic and cadmium disturb auxin transporters

signal in the entire root meristem of the ARs, but caused a reduction or

an absence of the signal in the main part of the LRPs/LRs (Fig. 5L and To evaluate Cd and/or As effects on auxin transport in ARs, LRPs
M, N and O). and LRs, the expression of the AUXI auxin-influx transporter was
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Fig. 6. Expression pattern of AUX1:GUS in adventitious
roots (ARs), lateral root primordia (LRPs) and lateral
roots (LRs) of OsAUXI:GUS seedlings non exposed
(Control, A-D) or exposed to 100 uM Na,HAsO,7H,0
(100 As, E-H), 100 uM CdSO, (100 Cd, I-L), 100 uM
Na,HAsO,7H,O + 50 uM CdSO, (100As + 50Cd, M
and N) and 100puM CdSO4 + 50 uM Na,HAsO,7H-,O
(100 Cd+ 50 As, O and P). Bars = 20 um (J), 50 um (B,
F-G) and 100 um (A, C-E, H and I, K-P). Q and R, mean
percentage ( = SE) of ARs (Q) and LRPs/LRs (R) with
Regular, Diffuse, Reduced or Absent AUXI1:GUS ex-
pression. Letters show statistical differences for the
same signal category among the treatments. Letter a,
P < 0.01difference with respect to the other treat-
ments. Letter a!, P < 0.01 difference with respect to
100 Cd. Letter b, P < 0.01 difference with respect to
the Control. Letter ¢, P < 0.01 difference with respect
to 100 Cd and 100As + 50Cd. Letter d, P < 0.01 dif-
ference with respect to 100 uM As and 100As + 50Cd.
Letter e, P < 0.01 difference with respect to 100As,
100Cd and 100Cd + 50As. Letter e!, P < 0,01 differ-
ence with respect to 100Cd and 100Cd + 50As. Letter f,
P < 0.0ldifference with respect to the Control,
100As + 50 and 100Cd + 50As. Letter f', P < 0.01
difference with respect to the Control and
100As + 50Cd. Columns followed by no letter or by the
same letters are not significantly different. N = 30.
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monitored by the use of the AUX1:GUS line, and the expression of PIN5 the vascular cells of mature ARs and LRs, and in the entire LRP and

auxin-efflux transporter by the use of the PIN5b:GUS line. elongating LR, in accordance with Zhao et al. (2015). The signal was
The AUX1:GUS signal was classified as “Regular”, when present in classified as “Diffuse”, when present in the entire mature ARs, LRs, and
the elongation zone, the root apical meristem, including the cap, and LRPs, “Reduced”, if present only in the root meristem, and as “Absent”
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when completely not observed in the entire root.

Independently of the type and developmental stage, the majority of
the roots non-exposed to the toxic elements (Control) showed a regular
GUS signal (Fig. 6A-D, Q and R ). Arsenic induced a significant re-
duction of the GUS signal in the ARs (Fig. 6Q) in comparison with the
Control. However, some ARs with regular GUS localization were also
observed (Fig. 6E). The metalloid strongly reduced, up to inhibit, the
GUS signal in the LRPs/LRs (Fig. 6F-H, R). On the contrary, the heavy
metal significantly increased AUX1 expression, both in the ARs and in
LRPs/LRs (Fig. 61-L), but also increased the diffuse signal (Fig. 6Q and
R). The treatment with 100 As plus 50 Cd mainly induced a diffusion of
the GUS signal in the apical meristem of the ARs and LRPs (Fig. 6M and
N, Q and R).

The PIN5b:GUS signal was classified as “Regular”, when present in
the elongation zone and in the vasculature of the ARs and LRs, ac-
cording to Lu et al. (2015). The signal was defined “Diffuse”, when
spread to the entire root meristem, “Reduced”, if present in the vascular
cells only, and “Absent”, when completely not observed in the root
tissues. The GUS signal was mostly Regular in the ARs of the Control
treatment (Fig. 7A, M). Lateral root primordia did not show PIN5b:GUS
expression (Fig. 7B), however, in the elongating and mature LRs, the
signal became evident in the vascular cells (Fig. 7C and D). Collectively,
the percentage of roots with a regular signal was high, independently of
the root type (Fig. 7M and N).

Arsenic reduced, and significantly (P < 0.01) inhibited, PIN5b ex-
pression in the ARs and LRPs/LRs in comparison with the Control
treatment (Fig. 7E, M and N). Cadmium treatment also reduced the GUS
signal in the ARs, but mainly inhibited it, and in particular in 80% of
the LRPs and mature LRs (Fig. 7F and H, M and N). The combined
treatment with 100 As and 50 Cd induced an inhibition of the PIN5b
expression in the ARs, and a higher inhibition and diffuse signal in the
LRPs (Fig. 71 and J, M and N). The treatment of 100 Cd and 50 As
mainly inhibited the GUS signal in the ARs and LRPs (Fig. 7K and L-N),
even if a weak signal was observed in the vascular tissues of some
mature ARs (Fig. 7L).

4. Discussion

The results show that the heavy metal Cd and the metalloid As,
alone or combined, alter auxin (IAA) homeostasis in the rice root
system through detrimental effects on the IAA biosynthetic genes ASA2
and YUCCAZ2, on the transport by AUX1 and PIN5, and the consequent
distribution of the hormone. Recently, we have demonstrated that Cd
and As disrupt the QC in the ARs and LRs of Arabidopsis thaliana
(Fattorini et al., 2017), with these effects caused by an unbalance of IAA
during their formation/development. Similarly, Bruno et al. (2017)
have reported that Cd impacts on Arabidopsis PR growth by altering
auxin homeostasis.

The root system of rice is composed by embryonic and post-em-
bryonic ARs and by LRs of these ARs. The root meristem is different
from that present in Arabidopsis roots, but the QC is similarly defined in
both species (Ni et al., 2014). However, differently from Arabidopsis,
the QC of the rice roots is a rather stable structure (Ni et al., 2014), but,
as in Arabidopsis, Cd and As, alone or combined, inhibit AR growth and
LRP initiation and development (Fig. 1 of present results, and Dubey
et al., 2014). Again in accordance with the reported stability of the rice
AR meristem the apical meristem of embryonic-in-origin ARs was not
significantly affected by As and Cd toxicity.

On the contrary, the cyto-histological organization of the root
meristem during LRP formation was impaired by the toxicity of the
elements, with relevant effects on LR development, up to a complete
inhibition of the LRP growth in the presence of both elements (Figs. 1
and 2). Cadmium and As negatively affected LRP starting from its in-
itiation. In fact, the orientation of the cell division planes starting in the
first pericycle and endodermis derivatives was altered, with this im-
pairing the correct construction of the primordium. In rice, the LRP has
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been demonstrated to be initiated by anticlinal divisions of the founder
cells of both pericycle and endodermis (Ni et al., 2014 and references
therein). Thus, the observed anomalies in the first divisions lead to an
anomalous LRP, unable to define its QC correctly, because lacking the
stem cell organizer essential for its development into a mature LR. Si-
milarly, Doncheva et al. (2005) showed a change in cell division ac-
tivity in the root meristems of maize exposed for short time to alumi-
nium.

It is known that the ions reach the xylem via symplastic and/or
apoplastic ways and these mechanisms are more pronounced near the
root tip, and in the region where LRs are initiated (White, 2001).
Seregin et al. (2004) have reported that maize rhizodermis and cortex,
and mainly the apoplast of these tissues, accumulate the greatest heavy
metal levels while the pericycle and the endodermis detain only insig-
nificant levels. Thus, it is possible that also in rice roots, whose struc-
ture is similar to maize (Rebouillat et al., 2009), the toxic elements are
accumulated in a similar way in the tissues. This might induce the
pericycle and endodermis, i.e., the tissues less-accumulating, but stress-
responding to the toxic elements, to either divide in an anomalous
manner causing altered LRPs, or to stop cell division activity at all, with
this resulting into a reduced LR formation, as indeed observed (Figs. 1
and 2). The extensive plasmolysis observed in the cortical and en-
dodermis cells, under the combined treatments in particular (Fig. 2), is
also consistent with this interpretation, because high levels of Cd and As
in the apoplast might inhibit cell divisions in the endodermis, con-
tributing to the blockage of LRP development. In addition, Cd exposure
induced extensive vacuolization in the meristematic cells (Fig. 2), in
accordance with what has been reported for the meristematic cells of
Allium cepa and Nicotiana tabacum roots after Cd, and Cd plus As
treatments, respectively (Liu and Kottke, 2004; Zanella et al., 2016).
This event is known to be caused by abiotic stresses (Chen et al., 1988),
including Cd stress (Sanita di Toppi et al., 2012), and indicates cell
suffering.

Present data show that the uptake of As, in the form of As (V), and
its accumulation in the rice root system, was higher than that of Cd,
when the plant was exposed to the single elements. The simultaneous
presence of Cd and As significantly reduced the root accumulation of
both elements, however As remained the main element accumulated in
the roots (Fig. 3), contrary to what has been observed in tobacco plants
exposed to Cd plus As (Zanella et al., 2016). In our conditions and with
our rice genotype, As and Cd were transported to the shoot at very low
levels, either when individually present in the culture medium, or when
combined. However, Cd was transferred to the aerial organs in a greater
quantity than As.

We showed that As alone or combined with 50 Cd increased OsASA2
expression, but increased OsYUCCAZ2 expression only when combined
with 100 Cd. By contrast, Cd alone had fewer effects on gene expression
(Fig. 4). The strong overexpression of OsYUCCAZ2 induced by 100Cd
plus 50As could be due to a very high level of toxicity reached in rice
roots when the highest Cd level is combined with As. Thus, the results
indicate that Cd and As induce in rice a different modulation of IAA
biosynthesis gene expression, depending on their presence in combi-
nation or not, and, when combined, the respective concentration. In
accordance, Du et al. (2013) have reported that, in rice, the transcript
levels of many genes of ASA and YUCCA families change in different
ways under different abiotic stresses (cold and drought treatments). Our
results suggest that the auxin homeostasis is also closely related to
tolerance of the toxic elements.

Present data on the auxin inducible OsDR5:GUS reporter show that
the effects of Cd and/or As on IAA synthesis induced an anomalous
auxin distribution in the ARs, but mainly in their LRPs (Fig. 5), resulting
into a frequent failure in achieving the correct construction of the LRP
apical meristem, with this blocking further development into LR. Ar-
senic mainly reduced/inhibited DR5:GUS signal in the ARs and LRPs/
LRs, whereas Cd increased and delocalized it (Fig. 5). These results are
partially in contrast with the data reported for other plants. In fact,
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Biicker-Neto et al. (2017) recently reviewed that the heavy metal/me-
talloid stress leads to a decrease in the endogenous levels of auxins
based on the evidence that As alters the levels of IAA and of indole-3-
butyric acid (IBA) in Brassica juncea, and Cd disturbs IAA homeostasis
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Fig. 7. Expression pattern of PIN5b:
GUS in adventitious roots (ARs), lateral
root primordia (LRPs) and lateral
roots (LRs) of OsPIN5b:GUS seedlings
non exposed (Control, A-D) or
exposed to 100uM Na,HAsO47H,0
(100 As, E), 100puM CdSO, (100 Cd,
F-H), 100pyM Na,HAsO,7H,O +
50uM CdSO, (100As + 50Cd, I
and J) and 100pM CdSO,4 + 50 uM
Na,HAsO,7H,0 (100 Cd + 50 As, K and
L). Bars = 50 um. M and N, mean per-
centage ( = SE) of ARs (M) and LRPs/
LRs (N) with Regular, Diffuse, Reduced
or Absent PIN5b:GUS expression. Letters
show statistical differences for the same
signal category among the treatments.
Letter a, P < 0.01ldifference with re-
spect to the other treatments. Letter b,
P < 0.0ldifference with respect to
Control, 100As and 100As + 50Cd.
Letter ¢, P < 0.01difference with re-
spect to 100As and 100As + 50Cd.
Letter d, P < 0.01difference with re-
spect to Control, 100Cd and
100As + 50Cd. Letter e, P < 0.01
difference with respect to 100Cd. Letter
f, P < 0.01difference with respect to
100As + 50Cd and 100Cd + 50As.
Letter g, P < 0.01difference with re-
spect to 100As + 50Cd. Letter h,
P < 0.0ldifference with respect to
Control and 100As + 50 Cd. Letter i,
P < 0.01difference with respect to
Control. Columns followed by no letter
or by the same letters are not sig-
nificantly different. N = 30.

in barley root tips (Srivastava et al., 2013; Zelinova et al., 2015). Also in
rice, a reduction of DR5:GUS signal after Cd treatment has been re-
ported (Yu et al., 2015). Moreover, the effects of As on the expression of
OsDR5:GUS are in line with those obtained in Arabidopsis (Fattorini
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et al., 2017). On the contrary, present data show that Cd differently
affected DR5 expression in rice and Arabidopsis roots (Fattorini et al.,
2017). However, in both species, these elements induced an anomalous
auxin distribution.

It is widely known that IAA distribution is fine-tuned by IAA
transporters’ activity. The present results show that As reduced/in-
hibited the expression of AUX1 and PIN5, IAA influx and efflux carriers,
respectively. Cadmium, instead, increased AUX1 expression, also ex-
tending it to more cells, but strongly inhibited PIN5 expression (Figs. 6
and 7). These effects of Cd on AUX1 expression in the rice roots are in
accordance with those previously reported in the same plant by Yu et al.
(2015). It is known that OsPIN5b is implicated in the modulation of IAA
homeostasis, transport and distribution (Lu et al., 2015). The present
data show that the expression of this efflux-carrier is affected by Cd and
As. In accordance, it has been reported that Cd down-regulates some
PIN proteins in Arabidopsis PR (Bruno et al., 2017). The comparison of
the effects of Cd and As on these auxin carriers in AR and LR formation/
development (present data) with those in Arabidopsis PR (Bruno et al.,
2017) underlines a similar behaviour of Cd on the expression of the
influx and efflux carriers in both plants, but highlights a different action
of As on the same carriers, and mainly on the efflux one.

5. Conclusions

In conclusion, our results demonstrate that Cd and As affect rice root
system, by interfering with the formation of the LRPs and their devel-
opment into LRs, in particular. This results into an important change in
the root system architecture, which may negatively affect plant survival
in highly polluted paddy soils. The negative effects of Cd and As occur
on auxin (IAA) biosynthesis, transport and distribution. Having in mind
the value of this crop as a food all over the world, the consequences of
the reactivity of its root system to these pollutants is very important for
evaluating possible economic losses, and for executing repair strategies.
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