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Abstract. In this paper we present a statistical approach to the likelihood computation and adaptive 
resampling algorithm for particle filters using low cost ultrasonic sensors in the context of service robotics. 
This increases the efficiency of the particle filter in the Monte Carlo Localization problem by means of 
preventing sample impoverishment and ensuring it converges towards the most likely particle and 
simultaneously keeping less likely ones by systematic resampling. Proposed algorithms were developed in 
the ROS framework, simulation was done in Gazebo environment. Experiments using a differential drive 
mobile platform with 4 ultrasonic sensors in the office environment show that our approach provides strong 
improvement over particle filters with fixed sample sizes.  

1 Introduction 
Service robotics market is estimated to almost triple by 
2022 from the 2016 level [1]. In comparison to 
industrial robotics, service robots are inexpensive, built 
from low-cost hardware and need to fulfil softer 
requirements for accuracy, repeatability and reliability. 
This also applies to the sensors. For Simultaneous 
Localization and Mapping applications (SLAM) in the 
industry traditionally optical systems, such as 2D/3D 
cameras and LIDAR sensors, are used. Both types of 
the sensors are not beneficial in the light of the above 
requirements, additionally cameras potentially 
threatening customer privacy. On the other hand, 
ultrasonic range sensors or sonars are quite appealing 
for service robotics, the price and power consumption 
are better than those of optical sensors. Moreover, 
sonars have no problems with transparent materials like 
glass and do not acquire any personal data. In this paper 
we focus on the localization problem of a mobile 
platform with sonar sensors.  

To be able to accomplish service tasks, robots must 
be able to estimate its pose with respect to a fixed 
reference frame. This process is known as localization 
problem. Moreover, localization task can be divided 
into two subclasses: weak and strong localization. The 
first one deals only with a qualitative pose estimation 
such as high level spatial reasoning – for example, 
determining the room in which the robot is located. On 
the other hand, strong localization provides numerical 
estimation of the robot pose. We present an approach to 
strong localization on the global context using sonars as 
exteroceptive sensors and odometry as proprioceptive 
ones. The localization problem is solved using particle 

filter with a statistical approach to the computation of 
the likelihood and adaptive resampling algorithm. 
Modelling and simulation implemented in the ROS 
framework and Gazebo simulation environment. The 
evaluation of the proposed approach will be also 
conducted on an experimental setup using differential 
drive mobile robot in the institute/office environment. 

2 Particle Filter Concept 
Uncertainty is a linchpin of the most problems robotics 
faces in the real world applications. Probabilistic 
robotics is a relatively new approach, which represents 
uncertainty using the calculus of probability theory [2]. 
Bayes filter is the most general approach to compute 
beliefs based on observations, action data and prior 
probability. However, in terms of the computational 
tractability, the general Bayes filter is not trackable for 
continuous state spaces [3]. The classical trackable 
solution in probabilistic methods is the Kalman 
Filter [4], this recursive approach to the discrete-data 
linear filtering problem based on Gaussian filters has 
been the subject of extensive research in the SLAM. 
However, due to the use of the normal distribution 
assumption, Kalman filter comes to its limits dealing 
with situations with high ambiguity [5]. The latter is 
especially relevant for ultrasonic sensors due to low 
resolution, multiple reflexions and low sampling rate.  

In 1999, particle filters were introduced in the 
localization context under the name of Monte Carlo 
Localization [6]. In this context, particle filters offer a 
probabilistic approach on how to estimate the state of a 
robot in a known map. They are based on the 
assumption that the measurement of external values is 
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related to the internal state of the robot, i.e. its pose. 
From there on, the particle filter creates semi-random 
states in the world – particles – which will give an 
estimation on their respective states likelihood to 
represent the actual state. This approach is needed, 
because the robot’s odometry diverges over time and 
loses its accuracy. The estimation over external sensors 
corrects this error. A particle filter mainly consists of 
three phases: motion applying, likelihood estimation, 
particle resampling (Figure 1).  

 
Fig. 1. Particle filter concept and its phases. 

This work aims to improve the quality of the particle 
filter by modifying the computation of likelihood and 
the resampling algorithm. Particle initialization is 
uniformly sampled around the map, so the initial state 
of the robot is unknown. Motion from odometry data is 
applied in a frequency of 100 Hz to each particle.  

2.1 Ultrasonic sensors 

In comparison with laser scanners and 3D camera 
systems, ultrasonic range finders exhibit several 
shortcomings such as low resolution, cross-talk, 
multiple reflexions and low sampling rate. Nevertheless, 
sonars are quite appealing in the context of the service 
robotics by virtue of the low price, small size and low 
power consumption. Different research groups have 
validated the usage of the ultrasonic sensors in 
localization task [7-9] and even in SLAM [10, 11]. In 
this paper we exploit the widely used ultrasonic sensor 
in the robotics community – HC-SR04. The example of 
the range data from the sensor captured in the test 
environment is shown in Figure 2.  

For the sonar sensor simulation, the hector sonar 
plugin has been used in Gazebo [12]. This plugin uses 
the Gazebo integrated ray sensor plugin which scans a 

cone, originating from the sensor. The plugin then 
returns the smallest distance it found to simulate sonar 
data. The simulated sensors were configured to work 
similar to the real sensors which have been shown to 
produce reliable results with small variance. 

 
Fig. 2. Raw range measurements (above) and average mean 
filtered data (below) from HC-SR04 in the test environment. 

In the particle filter, sonar sensor measurements 
must be estimated for each particle. As the number of 
particles varies from a few hundred to a few thousand, 
this estimation needs to have low computational cost. 
The particle filter contains a black and white image in 
a PNG format representing the real map. Black pixels 
indicate objects, while white ones indicate free space. 
Each particle’s position is projected onto this bitmap. 
Using the robot’s universal robot description and the 
sensor attributes, three rays are shot from each 
particle’s sensors. The rays cover the sonar sensor 
cone’s edges as well as the center line. The breadth-
first search ray sweep is interrupted, as soon as an 
object is found by one of the rays, imitating the real 
sonar’s ability to detect only the smallest distance as 
well as reducing the computational cost. The distance 
measured for each sensor is then translated from pixels 
to meters and saved for each particle.  

2.2 Likelihood update 

After having applied the robot’s motion model to all 
particles, their likelihoods must be updated by including 
the system observations into the particle filter. The 
algorithm must assess how well each particle’s 
estimated system observation coincide with the real 
observation or measurements. The sonar sensors used in 
this work exhibit a Gaussian noise with standard 
deviation of 0.005m. Taking this distribution into 
account, an estimation of likelihood of one estimated 
sensor measurement to the true measurement can be 
calculated by 

���� � �
√���� �

���������� ,    (1) 

where ��  denotes the actual sensor reading and �  the 
standard deviation. Taking the arithmetic mean over all 
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probabilities gives a measurement on how likely a 
particle is to represent the robot state. This calculation 
has been slightly altered to accommodate differences 
between particles. Often enough, one sensor reading 
differs from one particle to another, which contributes 
only a quarter to the actual likelihood calculated in the 
end. However, one sensor’s reading can be enough to 
discern a particle with actually high likelihood from a 
particle with actually low likelihood. For this matter, a 
particle which has a single sensor reading deviating 
more than two times the standard deviation σ receives a 
penalty and has its overall likelihood reduced by 10% 
for every penalty it got. The resulting likelihood of each 
sensor of one particle is then saved in a set containing 
the likelihoods of this particle’s ancestors’ likelihoods 
for a fixed size of generations as the most current 
likelihood. To get a measurement of the particle’s final 
estimation towards the robot state, a weighted average 
is calculated over the set � ̅  of current and ancestor 
likelihoods. A particle’s ancestor is defined as the 
particle it originated from during previous resampling 
steps. The weighted average is calculated as 

������̅� � 	 � � ∑ � � ��� � �� � �� , 
  (2) 

	�̅ � ���, . . , ���, � � ��, ��.	 

2.3 Resampling algorithm 

Resampling is the last step in particle filter localization 
algorithms. Particles are deleted, newly generated or 
altered by taking into consideration previous system 
observation. This procedure aims to compensate the 
steadily increasing error of odometry feedback. 
However, traditional resampling runs into several issues 
whose consequences can be detrimental for the 
accuracy of the particle filter.  

One of these issues is kidnapping, where the robot is 
placed somewhere else by an external force which is not 
measured and from which it must recover to find its 
actual state again. The traditional particle filter does not 
recover from such a scenario while the proposed 
method finds the next possible states, leading to good 
estimations, but not excluding ambiguities (Fig. 2). 
Another problem one encounters is the local optimum, 
i.e. places where the particles get stuck. This usually 
occurs when estimating the wrong state at a given point 
in time due to the sensor readings giving high 
probabilities for this particular state. As the robot moves 
on, the particles should diverge, as they follow the 
movement and escape the apparent optimum. However, 
resampling may lead the particles back to the previous 
state, resulting in erroneous estimations again. 

In this work, the resampling part is based on a 
systematic resampling approach and extended to 
increase the accuracy of the state estimation [13]. The 
particles, sorted by ascending likelihood, are used to 
generate a set of normalized accumulated likelihoods 
over all particles, where each accumulation is associated 

with the respective particle. This approach then 
generates � ordered equidistant numbers where � equals 
the size of the resampled particles.  

 
Fig. 3. Ambiguity of states: sensor observations correspond to 
multiple possible states in the map. 

With systematic resampling, one random number 
 � � ��, ����  is generated and then used to 

systematically compute equidistant numbers 

�� � �
� � �, � � �.     (3) 

For each ��  the first particle whose accumulated 
likelihood satisfies  

�� � ����, �, � � �     (4) 

is drawn for resampling. This accomplishes three 
things: 
1. Prevents sample impoverishment, as the number of 
resampled particles will be the same as the numbers of 
previous particles. 
2. If there are high likely particles, the algorithm will 
converge towards them. 
3. Systematically ensures that less likely particles will 
still be picked in contrary to e.g. multinomial 
resampling. 

Drawn particles receive a resampling noise in �, � and 
� and are then placed into the new set of particles. The 
noise added to the drawn particles is restricted to not 
overstep more than half the distance the motion model had 
applied to it before. This measurement is taken to ensure 
the advance of particles along the line of the applied 
velocity, which in turn guarantees that particle cannot get 
stuck in local minima. Lastly, the most likely particle is 
added once more without generating additional noise. This 
prevents diverging of particles when the odometry error is 
low. After resampling, the variance of resampling noise 
and the number of particles is increased, if the best 
particle’s likelihood is underneath a certain threshold. By 
spreading the particles further out, yet keeping a high 
density, the particle filter searches for better estimations of 
the robot state. Starting in the vicinity of the previous 
particles, small errors in odometry can be detected and 
corrected. This approach further increases the chance to 
recover from the kidnapping problem, especially if the 
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robot has not been moved very far from its previous state, 
i.e. when replacing the robot, because he was in the way of 
the user. As soon as a state which promises a good 
estimation is discovered, the number of particles as well as 
the variance is reduced again. As a result of this approach, 
only a small number of particles can be used as the default 
size for the particle filter, thus decreasing the 
computational cost. 

3 Mobile robotic platform “Slamdog” 
A low-cost mobile robotic platform “Slamdog” was 
developed within several student lab projects for 
teaching and research purposes. This medium sized 
platform was built upon the commercial children toy 
vehicle “Feber Dareway 12V” with differential drive 
kinematics, which was heavily modified: new wheels 
from BLICKLE for better grip, 14-bit rotatory position 
sensors AMS AS5047P for odometry, IMU Invense 
MPU-9150, ultrasonic sensors HC-SR04, IBT H-Bridge 
etc. Raspberry Pi 3 Model B was used as a low level 
controller. Furthermore, the platform was expanded 
with NVIDIA Jetson TX2 development kit as a high 
level controller, which is mainly used for machine 
learning tasks and for interfacing with 3D ToF cameras. 
In this paper, only ultrasonic sensors and the low level 
controller were used, the localization node was running 
either on a normal desktop PC or Jetson TX2. 

The software for the platform was developed in 
C++11 under the Robot Operating System (ROS) 
framework. A ROS hardware driver was implemented 
as a “Slamdog” ROS node, which provides interfaces 
for the motor control, ultrasonic sensors, encoders and a 
buzzer. For simulation of the environment, the robot 
and the sensors, this work relies on Gazebo 7, for the 
visualization of particles RViz is used. 

4 Evaluation 
The high level test scenario for the “Slamdog” was a 
postman’s task: to deliver package inside an office 
space. In order to be able to do this successfully, it was 
necessary to navigate in a weakly structured space. The 
localization problem, presented in this paper, 
complements the path planning problem within this task. 
As it was already mentioned one of issue for the 
localization in this task is the kidnapping of the robot. 
Figure 4 shows a scenario, where the robot is pushed 
from its original pose into a different state. This 
example of small distance kidnapping can be solved by 
the resampling algorithms dynamically adapting 
variance and particle numbers.  

To further analyze the capabilities of this particle 
filter approach, different scenarios were simulated 
multiple times. For each scenario, the distance from the 
particle filter’s best particle as well as the mean distance 
for all particles and the standard deviation will be 
reported. Convergence of the particles will be measured 
by the standard deviation σ and is further defined as σ ≤ 
0.25 meters, which roughly equals the radius of the 
“Slamdog” robot. Measurements were taken every 

second over twenty seconds. For all scenarios, the initial 
particle orientation was uniformly distributed over [-π, π].  

 
Fig. 4. Slamdog robotic platform in the test environment. 

The first scenario “Converged” initialized the 
particles with a uniformly distribution of 0.5 meters 
centered at the robot pose to measure the filter’s ability 
to correctly keep a converged state. The second scenario 
“Kidnapped” is similar to the scenario in Figure 5. The 
particle filter was initialized with the same distribution 
as “Converged”, but the centered particle pose was 
offset by 1.0 meter to simulate kidnapping. The third 
scenario “Ambiguity” was supposed to measure the 
filter’s ability to deal with ambiguities. The robot was 
placed in the long corridor as depicted in Figure 3 and 
the particles were initialized over the whole corridor by 
using a uniformly distribution of 20.0 meters in x- and 
8.0 meters in y-direction. The fourth scenario “Diverged” 
was meant to measure the filter’s overall ability to 
converge to the robot’s pose once non-ambiguous 
measurements exist. The robot was placed at the right 
end of the long corridor (Fig. 3) and drove to the right. 
The particles were initially uniformly distributed like in 
the third scenario. Each experiment was simulated ten 
times. The results are presented in Table 1. 

 
Fig. 5. A kidnapping problem: Robot is forcibly translated and 
reoriented a small distance from the previous converged state (1). 
Resampling diverges the state and searches the closer vicinity (2). 
The particles converge (3) and reach their new best estimation.
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Table 1. Results of the particle filter evaluation. Values are measured in distance to the correct robot state in meters for ‘best’, mean 
(µ) and standard deviation (σ) or in the time t (in seconds) it took the filter to converge. 

 
 

The results show that the particle filter is able to keep 
a fitting state once converged as depicted in “Converged” 
(see Table 1.). The filter did not expand and converged to 
a small standard deviation of 0.14 meters overall. The 
“Kidnapped” scenario illustrated the filter’s ability to 
expand and search its vicinity. The filter needed less than 
4 seconds to converge and did so correctly all ten tries. 
The largest errors were measured in the third scenario. 
Five times out of ten the particle filter converged in 
multiple places which shared the same characteristics, i.e. 
ambiguities (s. Table 1 “Ambiguity” where σ ≥ 0.25). 
However, three times it has converged correctly. The 
“Diverged” scenario displays how the particle filter keeps 
searching the map for a fitting state until at around 11 
seconds where salient measurements are taken.  

One aspect which can be noted over all the 
experiments is the range of the best particle found when 
converged correctly, whose distance to the actual robot 
spans from 0.08 meters (“Kidnapped”, second set) to 0.5 
meters (e.g. “Converged”, sixth set). This relatively large 
difference can be explained by the beam angle of the 
sonar sensors and the distance to the walls on each side in 
the map. This increases the possible states near the 
correct state, especially in x-direction and negatively 
affects finding the best particle. Overall, the particle filter 
manages to converge correctly in 33 of the 40 
experiments undertaken to depict the correct robot state. 

5 Conclusions and future work 
In this paper we have presented a resampling method, 
which increases the probability to recover from problems 
such as stuck particles or kidnapping. This was 
accomplished by dynamically adapting the configuration 
of the particle filter to the quality of the state estimation. 
The algorithm prevents sample impoverishment and 
converges to high likely states once they are found. The 
usually high computational cost of estimating the sensor 
reading for each particle has been simplified while 
keeping satisfying estimations. Ambiguity of robot states 

is reduced unless the robot is kidnapped far away to a 
region that resembles the previous one. 

As this particle filter works on comparatively low cost 
and computational power, the robot system is kept 
inexpensive. Furthermore, as the main focus lies on 
applications in the service market, the sonar sensors which 
have minimal invasiveness regarding privacy and safety, 
present desired attributes for the sector of service robotics. 

In our current implantation we deliberately use only 
sonar sensors for the localization. This approach can be 
extended using sensor fusion methods for the sonars, IMU 
and visual odometry data based on the 2D/3D cameras. 

To further analyze the capabilities of this particle 
filter approach, different scenarios were simulated 
multiple times. For each scenario, the distance from the 
particle filter’s best particle as well as the mean distance 
for all particles and the standard deviation will be 
reported. Convergence of the particles will be measured 
by the standard deviation σ and is further defined as σ ≤ 
0.25 meters, which roughly equals the radius of the 
“Slamdog” robot. Measurements were taken every second 
over twenty seconds. For all scenarios, the initial particle 
orientation was uniformly distributed over [-π, π].  
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