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Abstract

Geochemical and isotopic tracers were often used in mixing models to estimate glacier

melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier

melt tracer signature and its influence on tracer‐based hydrograph separation results

received less attention. We present novel tracer data from a high‐elevation catchment

(17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial,

aswell as the subdaily tomonthly tracer variability of supraglacial meltwater and the tem-

poral tracer variability of winter baseflow to infer groundwater dynamics. The

streamflow tracer variability during winter baseflow conditions was small, and the glacier

melt tracer variationwas higher, especially at the end of the ablation period.We applied a

three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph

separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐

induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median

fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were esti-

mated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier

melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A

sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a

marked effect on the estimated glacier melt contribution during events with large glacier

melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer sig-

nature played a negligible role in applying the mixing model. The results of this study (a)

show the necessity to apply amultiple sampling approach in order to characterize the gla-

cier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff

dynamics in catchments with a glacial flow regime.
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1 | INTRODUCTION

Large parts of the world are highly dependent on glacial meltwater

contribution (originating from ice, snow, firn, and temporally stored
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rain) to streamflow (Barnett, Adam, & Lettenmaier, 2005; Kaser,

Großhauser, & Marzeion, 2010; Lemke et al., 2007), especially during

dry periods (Frenierre & Mark, 2014). Glaciers are important water

reservoirs, which have a compensation effect (Lang, 1986). A
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consistent reduction of global ice mass (IPCC, 2013) may threaten

future water usage in a variety of regions and climates. Meltwater

originating from glaciers can be seen as a nonrenewable water

resource under the scope of negative glacier mass balances

(Immerzeel & Bierkens, 2012), and accurate assessment of its contri-

bution to basin wide runoff is mandatory for climate change related

sustainable water resources management in glacierized watersheds

(Miller, Immerzeel, & Rees, 2012; Schaner, Voisin, Nijssen, &

Lettenmaier, 2012; Viviroli et al., 2011). In the European Alps, stream

water is often used for irrigation and hydro power generation

(Beniston, 2012; Schaefli, Hingray, & Musy, 2007), as well as for snow

making (Rixen et al., 2011). Because mountain streams are composed

of water originating from glaciers, snow, rain, and subsurface storages

(Cable, Ogle, & Williams, 2011; Moser & Stichler, 1980; Yde et al.,

2016), it is crucial to assess the quantification of streamflow compo-

nents, to investigate the origin of water, and to improve the under-

standing of streamflow generation in glacierized catchments under

the scope of a changing climate.

Among different and often used methods to quantify the contribu-

tion of glacial meltwater to streamflow (i.e., hydrological modelling,

direct discharge measurements, hydrological balance equations, and

glaciological approaches), the tracer‐based approach requires the

smallest amount of data (Frenierre &Mark, 2014) and has relative rarely

been used in glacierized environments. By simple mass balances of

tracer concentrations in the stream and in the end‐members that are

forming discharge, the fraction can be determined. The assumption that

end‐member tracer signatures need to be unique is fundamental for

applying this approach but is often given due to different water origins

as a result of hydrological processes in a catchment (Drever, 1997).

Tracers applied within this method should be conservative, that is, no

change in signature (e.g. due to isotopic fractionation or chemical

reaction of solutes with geology) except due to mixing of different

waters (Baraer, McKenzie, Mark, Bury, & Knox, 2009; Mark, McKenzie,

& Gómez, 2005). Environmental tracers, such as electrical conductivity

(EC), and stable isotopes of water, such as oxygen‐18 (δ18O), have been

used in tracer‐based hydrologic studies of glacierized catchments (e.g.,

Engel et al., 2016; Rodriguez, Ohlanders, Pellicciotti, Williams, &

McPhee, 2016; Williams, Wilson, Tshering, Thapa, & Kayastha, 2016).

The spatio‐temporal variability in end‐members violates the assumption

of uniqueness and can be a limiting factor in applying mixing models.

The end‐member tracer signature variability is crucial for applying

mixing models and therefore should be addressed in future studies as

Penna, Engel, Bertoldi, and Comiti (2017) and Frenierre and Mark

(2014) pointed out. As an example, Penna et al. (2017) advise to define

end‐member tracer signature dynamically and call for temporal

sampling at high frequencies, which was rarely done for the glacier melt

or groundwater end‐member. Klaus and McDonnell (2013) highlighted

the importance of spatial variability in end‐member tracer signatures

in their review on isotopic hydrograph separation, which should be

investigated in future studies. This was also rarely done for the glacier

melt and the groundwater end‐member in high‐elevation catchments.

The spatio‐temporal variation in end‐member tracer signatures is diffi-

cult to characterize at the catchment scale (Hoeg, Uhlenbrook, &

Leibundgut, 2000), in particular for glacierized catchments (Jeelani,

Shah, Jacob, & Deshpande, 2017), and is affecting mixing model results
and uncertainty estimates (Penna et al., 2017). In some studies, a limited

number of samples (up to 3) was used to characterize the glacier melt

end‐member (e.g., Kong & Pang, 2012; Liu et al., 2008; Nolin, Phillippe,

Jefferson, & Lewis, 2010), whereas Maurya et al. (2011) used the aver-

age value of 20 samples. Using either a few temporally distributed sam-

ples or one average value per melt season value cannot capture the

natural spatio‐temporal variability and hence potentially leads to an

under‐ or overestimation of the glacier melt fraction and high

uncertainties. Recent studies have used a time‐variant definition of

end‐members at the monthly scale (Penna et al., 2017; Wu et al.,

2016), whereas others used seasonal average tracer signatures (Liu,

Han, Chen, Lin, & Wang, 2016; Maurya et al., 2011). Penna et al.

(2017) pointed out the need for investigating the intra‐ and interannual

tracer signature variability of glacier melt.

Meltwater can frequently represent a high proportion (>50%) of

bankfull discharge (Penna et al., 2017). Recent studies estimated glacier

melt contributions with tracer‐based mixing models in different moun-

tainous regions worldwide up to 70–80% (e.g., Cable et al., 2011; Kong

& Pang, 2012;Penna et al., 2017; Williams et al., 2016). Rainfall contri-

butions to streamflow have often been investigated in temperate humid

catchments (Klaus & McDonnell, 2013), but research on rainfall–runoff

dynamics in glacierized catchments is rare. Despite melt dominance in

those catchments (snow and ice), episodic rainfall events can contribute

to streamflow notably (Dahlke, Lyon, Jansson, Karlin, & Rosqvist, 2014).

Dahlke et al. (2014) estimated rainfall contributions to streamflow in a

30% glacierized catchment (21.7 km2) in Sweden at the event scale by

up to 58% during the ablation period in 2011. There exists scarce infor-

mation on the role of groundwater in glacierized high‐elevation catch-

ments, and Frenierre and Mark (2014) emphasize to investigate the

nexus between dynamics of groundwater and glacier melt contribution

to streamflow. Recent studies estimated groundwater fractions at up to

80% in different mountainous regions with contrasting climates at the

event scale (e.g., Baraer et al., 2009; Engel et al., 2016;Wilson,Williams,

Kayastha, & Racoviteanu, 2016).

The variability in the tracer signature of glacier melt is a large source

of uncertainty in estimating glacier melt fractions of streamflow (Cable

et al., 2011) but important for applying tracer‐based hydrograph separa-

tion. Here, we quantify its impact on three‐component hydrograph sep-

aration results and draw implications for further research. The overall

scientific objective is to evaluate dynamics of rain, groundwater, and

glacier melt contribution to streamflow during melt‐induced events in

a high‐elevation catchment. This study specifically aims (a) to quantify

the tracer variability (δ18O, EC) of the end‐members groundwater

(i.e., winter baseflow) and glacier melt at the subdaily to monthly scale,

as well as at the local scale (only for glacier melt; spatial extent

<1,400 m); (b) to estimate streamflow fractions and associated uncer-

tainties by tracer‐based hydrograph separation; and (c) to identify the

sensitivity of the hydrograph separation results to the natural spatio‐

temporal variability of the glacier melt end‐member.
2 | STUDY AREA

The studywas conducted in theHochjochbach catchment, a subbasin of

the Rofenache catchment, which is a long‐term Alpine research site



FIGURE 1 Hochjochbach catchment and sampling locations. Inlays show the location of the study area in Austria (upper right panel) and the
glacier melt sampling locations on both tongues of the Hochjochferner (lower right panel; data source orthophoto: www.geoland.at, 2016)
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with a comprehensive data set of meteorological, hydrological, and gla-

ciological observations (Strasser et al., 2018). The 17.1 km2 high‐eleva-

tion catchment (Figure 1) is located in the Austrian Alps (N46°46′–

N46°49′/E10°47′–E10°51′), is drained by the Hochjochbach stream,

which is trending from southwest to northeast (gauging station at

2,450 m a.s.l.), and ranges up to 3,520 m a.s.l. (mean altitude:

2,950 m a.s.l.). The mean slope of the catchment is 21°. Two glaciers

(Hochjochferner and Kreuzferner) cover an area of 34%. Mean length

change recorded for Hochjochferner is −27 m/year for the period

2007 to 2016 (WGMS, 2017). Mass balance for the Hochjochferner

was estimated (glaciological method) at −244 kg/m2 for the year of

2013/2014 with an Equilibrium‐Line Altitude of 3,055 m a.s.l. (Prantl

et al., 2017). Two tongues of the Hochjochferner are connected with a

debris‐covered part, and their glacier outlet flow directly enters the

Hochjochbach stream (cf. Figure 1). The remaining area of the catch-

ment is covered by bedrock outcrops and unconsolidated bare rocks

(61%), as well as by sparsely vegetated area (5%, alpine meadows;

CLC, 2012). The unconsolidated bare rock area is characterized by gla-

cial deposit (moraine, till), alluvium, alluvial fans, and talus material.

The geology consists of paragneiss and mica schist and is overlain by a

mantle of glacial deposits and soils (<1 m depth). Mean annual temper-

ature and precipitation at the automatic weather station “Latschbloder”

(2,920m a.s.l.) during thewater year 2016 (October to September) were

−1.66 °C and 1,125 mm (54% as snow, when air temperature <0 °C),

respectively. Runoff at the gauging station “Bridge” during the water

year 2016 was 1,619 mm and is seasonally influenced by snow and gla-

cier melt, clearly indicating a glacial flow regime. Approximately 65% of

annual runoff concentrated between July and September.
3 | METHODS

3.1 | Event characterization

Six events (#1 to #6) were defined as single glacier melt‐induced days

during the ablation period (July to September) when most of the snow

has disappeared in the catchment (in mid‐July, there was a patchy snow

cover above 3,000 m a.s.l. at north‐facing slopes that ceased towards

early August). The events were characterized by mean daily tempera-

tures >1 °C at 2,920 m a.s.l., distinct diurnal variation in streamflow

(CV > 0.3, except for event #6), low precipitation amounts (<4 mm; rain-

fall only observed for events #2 and #4), clear sky (during most of the

day), and less or equal than 2 mm rain observed 24 hr prior to the event

(cf. Figure 2b–g). The winter baseflow period (December to March) was

characterized by low air temperatures and low variability in discharge,

when snowmelt, glacier melt, and rain contribution to streamflow is neg-

ligible and streamflow is assumed to be supplied by groundwater only.
3.2 | Hydro‐climatologic measurements, sampling
design, and tracer analyses

Discharge (hourly values) was measured at the gauging station “Bridge”

(at 2,450 m a.s.l., cf. Figure 1). The air temperature and precipitation

(hourly values) were measured at an automatic weather station (Marke &

Strasser, 2017), namely, “Latschbloder” (at 2,920m a.s.l., cf. Figure 1).We

calculated the antecedent precipitation index (API) for 1‐ to 7‐day

periods to capture a wide range of moisture conditions and to relate it

to the rainfall fraction in streamflow. In the next step, we chose API2

http://www.geoland.at


FIGURE 2 Hydro‐climatological conditions during the water year 2016 (a) and during the investigated events (b–g)
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and API7 for further analyses (for correlation analyses, see Section 4.3) to

capture various wetness conditions for each of the events and to make

sure that every event receives a remarkable amount of rainfall (i.e., an

arbitrary threshold of 19 mm). Furthermore, the selection of API2 and

API7 allows for a comparison between conditions that occurred close

and not‐so‐close to an event.

Streamflow was sampled manually (grab samples) at the gauging

station “Bridge” (n = 19 in total) during the events. Two to five sam-

ples between 09:00 and 16:00 (CET) were collected at 1‐ to 5‐

hourly intervals per event. Winter baseflow samples (n = 14) were

collected at the same location on December 22, 2015, January 28,

and March 17, 2016. The samples of March 17, 2016 (nine out of

14) were collected at a 30‐min interval between 11:30 and 15:30

(CET) to identify the potential subdaily variability in the tracer sig-

nature. Supraglacial meltwater (n = 51 in total) was sampled approx-

imately every 100 to 200 m along a contour line parallel transect

(A1 to A5, see inlay in Figure 1) on the ablation area during four

field days (events #1 to #4) at approximately 12:30 (CET) to inves-

tigate the spatial and the intraseasonal variability of glacier melt.

During two events (#5 and #6), supraglacial meltwater was sampled

approximately every 50 to 250 m along contour line parallel tran-

sects (two transects per sampling day with three samples per tran-

sect, A1 to A3, B1 to B3) at 10:00, 13:00, and 15:30 (CET) to

include a potential subdaily variability and a larger spatial range (cf.

Figure 1). Rain (n = 9 in total) was sampled by collectors at two

sites (“Bridge” and “Glacier,” cf. Figure 1) during the study period

when liquid‐phase precipitation occurred and represents bulk

values. The polyethylene collectors (Ø: 10 cm) were filled with a

0.5 cm mineral oil layer to prevent evaporation and were installed

at 1.20 m above the surface. Rain samples were recovered on June

23, 2016 and during each of the events (for dates, please see

Figure 1).
EC was measured with a portable probe (WTW ProfiLine Cond

3310) with temperature compensation (25 °C) in situ. The measure-

ment precision is 0.1 μS/cm. Water samples collected in the field were

stored in dark and cold in high‐density polyethylene bottles until anal-

yses for δ18O with cavity ring‐down spectroscopy (Picarro L1102‐i) in

the laboratory. The measurement precision is 0.1‰.

3.3 | Hydrograph separation and uncertainty
analyses

Hydrograph partitioning with environmental tracers is based on mass

balances of water (Equation (1)) and tracers (Pinder & Jones, 1969).

A two‐tracer, three‐component mixing model (Ogunkoya & Jenkins,

1993) was applied to partition the streamflow (Qt) into the groundwa-

ter (Qg), rain (Qr), and glacier melt component (Qm). A successful sepa-

ration of streamflow requires that (a) tracer signatures of water

sources differ significantly; (b) contributing water sources maintain

constant tracer signatures or their variability can be quantified; (c)

streamflow is composed solely of those three components; (d) tracers

mix conservatively (a comprehensive description of model assump-

tions can be found in Buttle, 1994; Hinton, Schiff, & English, 1994;

Klaus & McDonnell, 2013; Rodhe, 1987).

Qt ¼ Qg þ Qr þ Qm; (1)

QtCt ¼ QgCg þ QrCr þQmCm; (2)

Qtδt ¼ Qgδg þ Qrδr þ Qmδm: (3)

Equations (2) and (3) show the resulting mass balances of water

and tracer fluxes. Input for Equation (2) are EC values of total

streamflow (Ct) and the conceptual water sources (end‐members)
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groundwater (Cg), rain (Cr), and glacier melt (Cm). δt, δg, δr, and δm rep-

resent the δ18O composition of total streamflow, groundwater, rain,

and melt for Equation (3), respectively. Winter baseflow was assumed

to reflect and integrate the hydrochemistry of (shallow) groundwater,

as used in other studies (e.g., Fischer, Stähli, & Seibert, 2016; Klaus &

McDonnell, 2013; Penna et al., 2017; Sklash, 1990). Hence, the

groundwater end‐member is characterized by the mean tracer signa-

ture of winter baseflow. The rain end‐member was characterized by

the rain samples. For the days where two bulk samples could be

obtained, they were volume‐weighted with rain depths to incorporate

the spatial variability. To account for the temporal variability and slower

flow paths of rain routing through the subsurface, the incremental mean

intensity method after McDonnell, Bonell, Stewart, and Pearce (1990)

was applied for the mixing model. The glacier melt end‐member is char-

acterized by the tracer signature of supraglacial meltwater samples and

can constitute of ice melt, firn melt, snowmelt, and temporally stored

rain. Because glacier melt sampling was conducted mainly during rain‐,

snowmelt‐ and firnmelt‐free periods, we assume icemelt to be the dom-

inant component. In order to reveal the effect of the varying glacier melt

tracer signature on the estimated glacier melt fraction, we performed a

sensitivity analysis and characterized the glacier melt end‐member tem-

porally variable at the event scale (Approach A), seasonally time‐invari-

ant (Approach B), temporally variable at the subdaily scale (Approach

C, subdaily data were only for events #5 and #6 available), and also spa-

tially variable in Approach D (Table 1). A time‐invariant baseflow tracer
TABLE 1 End‐member characterization for the mixing model approaches

Approach

Description of glacier
melt end‐member
tracer variability Glacier melt end‐member

A Time‐variant at
subseasonal scale

Average EC and δ18O of supraglacial
meltwater samples taken during an e

B Time‐invariant Average EC and δ18O of supraglacial
meltwater samples taken during
the ablation season (July to Septemb

C Time‐variant at subdaily
scale (only for events
#5 and #6)

EC and δ18O of individual supraglacial
meltwater samples taken during an e
(before noon, around noon, and afte

D Spatially variable (local
scale; spatial extent
<1,400 m)

EC and δ18O of individual supraglacial
meltwater samples taken at various
locations

Note. EC = electrical conductivity.

TABLE 2 Hydro‐climatologic conditions during the study period

Date

Discharge (m3/s) Air temperature (°C)

Min Mean Max CV Min Mean Ma

2016‐07‐19 1.06 2.26 4.35 0.47 4.93 8.92 12

2016‐07‐30 1.36 2.77 4.26 0.37 5.65 8.77 12

2016‐08‐08 0.49 1.25 2.58 0.56 5.65 8.07 11

2016‐08‐31 1.04 2.79 5.40 0.54 4.40 6.90 9

2016‐09‐13 0.77 2.17 4.41 0.66 4.45 7.00 9

2016‐09‐22 0.34 0.40 0.54 0.17 −1.75 1.91 5

2015‐12‐01
to 2016‐03‐31

0.04 0.06 0.10 0.24 −23.90 −7.10 4

Note. Temperature and precipitation were measured at the “Latschbloder” weath
Spearman correlation coefficient describes the relation between discharge and
signature and a time‐variant rain end‐member characterization were

used for all approaches (as described above). We assumed a negligible

snowmelt contribution to streamflow, except that originating from the

glacier surface. During field work in July, this assumption was visually

ensured as thewinter snowpack has almost disappeared on bare ground

(cf. Section 3.1). Intermittent snowfall events were assumed to have a

small snow water equivalent and negligible influence on the analyses.

For the uncertainty analysis, the Gaussian error propagation method

(Genereux, 1998) with a confidence level of 95% was applied. Factors

including the spatio‐temporal variability of the end‐members and the lab-

oratory uncertaintywere taken into account. The spatio‐temporal variabil-

ity was accounted for by using the standard deviation of tracer signatures

in the samples collected at different locations over time. According to the

device manuals (measurement precision), 0.1 μS/cm and 0.1‰were used

as the laboratory uncertainty in the analyses for EC and δ18O, respectively.
4 | RESULTS

4.1 | Hydro‐climatological conditions

The winter baseflow period (December to March, Figure 2a) was char-

acterized by an average discharge of 0.06 m3/s and a small variation in

discharge (CV = 0.24). The average air temperature was −7.1 °C, and

the observed precipitation sum (approximately 95% as solid phase)

was 268 mm during this period (Table 2). The six investigated events
(A–D)

Rain end‐member Groundwater end‐member

vent

er)

Incremental mean intensity EC
and δ18O values per event (as
bulk samples)

Average EC and δ18O of
samples taken during
the winter baseflow period
(December to March)

vent
rnoon)

Precipitation (mm) Spearman
correlation
coefficient
(p value)x CV

During the
event

2 days prior
to the event

7 days prior
to the event

.55 0.31 0 0.2 58.9 .46 (.02)

.37 0.26 1 0.2 19.2 .58 (<.01)

.02 0.23 0 0.4 49.2 .39 (.06)

.82 0.27 4 15.3 48.7 .59 (<.01)

.77 0.24 0 5.9 25.9 .51 (.01)

.62 0.71 0 2.8 18.9 .23 (.29)

.45 0.67 268 — — .40 (<.01)

er station and discharge was measured at the gauging station “Bridge.” The
air temperature.
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during the ablation period (July to September) were characterized by

distinct diurnal cycles in air temperature and discharge (Figure 2b–g).

Thehighest variation indischargewasobserved for event#5 (CV=0.66).

Mean values for event air temperature ranged between 1.9 °C (for

event #6) to 8.9 °C (for event #1). Average event discharge was

between 0.40 (event 6#) and 2.79m3/s (event #4). A significant correla-

tion was observed between discharge and air temperature for the

events #1 to #5, with Spearman correlation coefficients ranging

between .39 (event #3) and .59 (event #4) at 10% significance level

(Table 2). Events #1, #3, #5, and #6 were rain‐free, and all events were

at least dominated by clear sky and high radiative energy input. Rainfall

was observed during event #4 (3.9mm) and event #2 (0.9mm). API2was

highest for event #4 (15.3 mm) and smallest for events #1 and #2

(0.2 mm). Maximum API7 was observed for event #1 (58.9 mm), and a

minimum value was observed for event #6 (18.9 mm, Table 2).
4.2 | Tracer variability in water sources and
streamflow

All analysed water samples are split into water sources (glacier melt,

groundwater, rain) and streamflow in Figure 3. Rain δ18O values are

higher compared with glacier melt, groundwater, and streamflow

δ18O values (Figure 3a). Rain isotopic values are significantly different

from glacier melt (Kruskal–Wallis test: p < .001) and groundwater

(Kruskal–Wallis test: p = .002). Figure 3b displays low EC values for

rain and glacier melt, high ones for groundwater and intermediate
TABLE 3 Descriptive statistics of tracer signatures for water sources and

N

EC (μS/cm)

Min 25th percentile Median 75th percentile

Groundwater 14 175.2 182.7 184.1 184.5

Rain 9 4.7 5.9 7.4 11.4

Glacier melt 51 1.3 1.9 2.1 3.7

Streamflow 19 45.8 72.2 89.4 114.1

(a)

FIGURE 3 δ18O (a) and EC (b) signatures of water sources and streamflo
ones for streamflow. There are significant differences in EC between

each of the three water sources observed (pairwise Wilcoxon test

with post hoc Bonferroni correction: p < .001). The groundwater (win-

ter baseflow) tracer signatures (n = 14) were spread between −14.7‰

and −14.5‰ (median = −14.6‰) for δ18O and between 175.2 and

186.0 μS/cm (median = 184.1 μS/cm) for EC. The variation through-

out the December to March period and for an intense sampling day

on March 17 (n = 9, 30‐min interval) was small for both analysed

tracers (Figure 3, Table 3). The variation of rain samples (n = 9) col-

lected during the July to September period was observed for EC and

δ18O (Figure 3, Table 3). Values for EC range from 4.7 to 14.5 μS/

cm (median = 7.4 μS/cm). δ18O data range between −17.7‰ to

−5.3‰ (median = −8.8‰). Streamflow samples (n = 19) collected dur-

ing the events were varying between −14.1‰ and − 13.4‰

(median = −13.8‰) for δ18O and between 45.8 and 158.3 μS/cm

(median = 89.4 μS/cm) for EC. Discharge reveals a strong relationship

to tracer signatures of streamflow (Figure 4a,b). The discharge is pos-

itively correlated with δ18O (Kendall's Tau: τ = 0.69, p < .001) and neg-

atively with EC (Kendall's Tau: τ = −0.58, p < .001). Data for event #6

(green circles) stand out for both relationships and are characterized

by relatively low discharge and relatively high EC and low δ18O values.

These data therefore form a distinct cluster.

Glacier melt samples (n = 51, Table 3, Figure 5) ranged from

−17.0‰ to −12.2‰ in δ18O (median = −14.7‰) and from 1.3 to

10.1 μS/cm in EC (median = 2.1 μS/cm). The inter‐event variability

was marked for both EC and δ18O, and medians of event #6 values
streamflow

δ18O (‰)

Max Min 25th percentile Median 75th percentile Max

186.0 −14.7 −14.7 −14.6 −14.6 −14.5

14.5 −17.7 −11.8 −8.8 −5.8 −5.3

10.1 −17.0 −15.2 −14.7 −14.0 −12.2

158.3 −14.1 −14.0 −13.8 −13.5 −13.4

(b)

w. EC = electrical conductivity



FIGURE 4 Relationship of discharge to streamflow δ18O (a) and EC (b) during the investigated events. EC = electrical conductivity

FIGURE 5 δ18O (a) and EC (b) signatures of glacier melt during the investigated events. EC = electrical conductivity
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were statistically different to most of the remaining event values at

10% significance level (pairwise Wilcoxon test with post hoc

Bonferroni correction). The temporal intra‐event variability (data from

events #5 and #6) was significantly different for EC on September 13

(10:00 and 13:00 values differed with p = .003) but not for δ18O.

Kruskal–Wallis tests on medians of different sampling sites for events

#1 to #4 (sampling sites A1 to A5) and for events #5 and #6 (sampling

sites A1 to B3) revealed no statistical significant difference for EC and

δ18O. Tests in tracer signature differences for both investigated glacier

tongues (A, B, cf. Figure 1) revealed no statistical significant differences

(Kruskal–Wallis for EC and δ18O). The temporal variation and the spa-

tial variation between the sampling locations in tracer signatures of gla-

cier melt are displayed in Figure 6. There is no clear spatial pattern

observable, and the colour variation along the x‐axis (i.e., temporal var-

iability) seems to be larger compared with the one along the y‐axis (i.e.,
spatial variability). EC values (Figure 6b,d) display at the lower end of

the colour range (more blueish pixels) whereas δ18O values seem to

cover the colour range (from blue to red) more evenly distributed over

thewhole observation period (Figure 6a,c). The glacier melt δ18O values

at A1 on September 13 (reddish pixels in Figure 6c), as well as the higher

varying EC values on September 22 (blue to red pixels in Figure 6d)

compared with the remaining EC values stand out.
4.3 | Hydrograph separation results and their
uncertainties

The end‐members glacier melt, groundwater, and rain span a triangle

around the stream samples in the EC‐δ18O mixing space and allow

for applying a three‐component mixing model (Figure 7; end‐member



(a) (b)

(c) (b)

FIGURE 6 Spatio‐temporal pattern of glacier melt sampled on events #1 to #4 for δ18O (a) and EC (b), and δ18O (c) and EC (d) glacier melt
signatures for events #5 and #6. Grey pixels indicate missing data. EC = electrical conductivity
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values for the different events are shown in Table S3). The event #6

streamflow samples (green circles) group apart from the main cluster

(event #1 to #5) and are located closer to the groundwater end‐mem-

ber in the mixing space. Figure 8 displays the average streamflow

component fractions and associated uncertainties per event, esti-

mated with the mixing model and Approach A (mean glacier melt

end‐member tracer signature per event). It becomes obvious that

streamflow is composed differently in each event, and this reflects

the variability throughout the ablation period. The lowest mean glacier

melt fraction was observed for event #6 (5±5%) and was accompanied

by the lowest air temperatures (mean daily air temperature: 1.9 °C).

The highest mean glacier melt fraction was observed for event #2

(69±10%), concomitant with the highest runoff (14 mm). The median

glacier melt fraction of all six events was 35±11%. The average rain

fraction of streamflow per event ranged between 0±10% (event #2)

and 23±6% (event #4) with a median of 16±11% for all events. The

mixing model applied for event #2 revealed no rain contribution to
streamflow. Hence, we conducted a two‐component hydrograph sep-

aration with EC (Pinder & Jones, 1969) for event #2 that revealed a

mean glacier melt fraction of 69±2%. The maximum rain contribution

(24±6%) was observed during event #4 (12:00 CET). The median

groundwater contribution to streamflow for all events was 49±2%.

Mean fractions per event ranged between 31±2% (event #2) and

81±3% (event #6). A maximum fraction (86±4%) was estimated for

event #6 (11:00 CET) and a minimum fraction (24±1%) for event #2

(14:00 CET). The glacier melt fraction was also varying at the subdaily

scale (Figure 9). The glacier melt fraction shows a similar pattern for

each event, that is, an increase over the course of the day with a max-

imum range observed for event #5 (increase from 24±11% to

48±20%). Subdaily glacier melt fractions ranged between 2±5% (Sep-

tember 22, 11:00 CET) and 76±11% (July 30, 14:00 CET), and the

highest uncertainty was estimated for event #5 (up to ±20%).

Figure 10 shows the sensitivity of the estimated glacier melt

fractions to the sampling time of glacier melt (Approach C). The



FIGURE 7 EC–δ18O mixing plot. The end‐members (rain, glacier
melt, groundwater) are represented by mean values (error bars
indicate the standard deviation) and span a triangle around the
streamflow samples. EC = electrical conductivity

FIGURE 8 Average streamflow component fraction and uncertainty
(error bars) per event (estimated with Approach A)

FIGURE 9 Glacier melt fraction and uncertainty (error bars)
estimated with Approach A. Please note that x‐axis scale is not
continuous

FIGURE 10 Sensitivity of estimated glacier melt contribution to
subdaily glacier melt end‐member characterization (Approach C) for
events #5 and #6. Crosses represent glacier melt fractions estimated
with Approach A. Please note that x‐axis scale is not continuous
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variations are not marked, and the values are close to the Approach A

values (represented by crosses in Figure 10), but event #5 (September

13) reveals a slightly higher spread compared with event #6 (Septem-

ber 22). During event #5, the glacier melt sampling time before noon

(10:00 CET) led to slightly higher glacier melt contributions compared

with the average value (Approach A; for the exact values, see Table

S1). Figure 11 highlights the sensitivity of the estimated glacier melt
fractions to the sampling location of glacier melt (Approach D). Over-

all, the scatter around the average value (results from Approach A) is

limited (<7% absolute difference), except for event #1 (sampling loca-

tion A5) and event #5 (sampling location A1) an outlier appears. A

maximum absolute difference of +15% and +24% for both events

was calculated, respectively (exact values are shown in Table S2).

Figure 12 shows the glacier melt contribution to streamflow and



FIGURE 11 Sensitivity of estimated glacier melt contribution to the
glacier melt sampling location (Approach D). Red stars represent
glacier melt fractions of Approach A. Please note that x‐axis scale is
not continuous

FIGURE 12 Comparison of glacier melt fraction and uncertainty
estimated with Approach A and B
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associated uncertainties estimated with Approach B (mean seasonal

glacier melt end‐member tracer signature) against those estimated

with Approach A (mean event glacier melt end‐member tracer signa-

ture). Glacier melt fractions estimated with Approach B revealed on

average 5% lower glacier melt fractions compared with those of

Approach A. Glacier melt fractions estimated with Approach B

revealed similar estimates (close to the 1:1 line in Figure 12) for events
#1, #4, #5, and #6. Maximum deviations were observed for events #2

and #3 (−17% of Approach A value).

The mean rain fraction of streamflow during the events is posi-

tively correlated with API2 (Kendall's Tau: τ = 0.73, p = .06) but not

with API7. The rain fraction of streamflow has a positive relationship

with δ18O (Kendall's Tau: τ = 0.54, p < .001) but none with EC. The

groundwater fraction of streamflow is correlated with EC (Kendall's

Tau: τ = 0.99, p < .001) and δ18O (Kendall's Tau: τ = −0.52,

p < .001). The mean fraction of glacier melt during the event is posi-

tively correlated with mean event air temperature (Kendall's Tau:

τ = 0.73, p = .06). The relationship between glacier melt fraction

(Approach A) and streamflow tracer signatures is displayed in

Figure 13a,b. The glacier melt fraction is positively correlated with

streamflow δ18O (Kendall's Tau: τ = 0.32, p = .06) and negatively cor-

related with EC (Kendall's Tau: τ = −0.81, p < .001). The data in the

scatterplot show the event‐wise grouping for both tracers (see col-

our‐coding of the events).
5 | DISCUSSION

5.1 | Tracer variability in water sources and
streamflow

The spatio‐temporal variability in tracer signatures of water sources

represents a large source of uncertainty in applying mixing models

(Pu et al., 2013; Uhlenbrook & Hoeg, 2003). Therefore, adequate sam-

pling strategies (e.g., not sampling peak flow or sampling during wet

antecedent days potentially leads to underestimated glacier melt frac-

tions) are necessary for the planning of field campaigns, as already

noted by Penna et al. (2017). Sampled water sources (glacier melt, rain,

and winter baseflow as a proxy for shallow groundwater) revealed sig-

nificant differences in EC and marked differences in δ18O (Figure 3).

EC is a proxy for total dissolved solids and was relatively high in shal-

low groundwater. This suggests that the catchment hydrology is dom-

inated by slower, subsurface flow paths of water during the December

to March period. Little variation in δ18O values of stream discharge

(−14.7‰ to −14.5‰) during this period also supports the evidence

of a well‐mixed groundwater reservoir that supplies winter baseflow

similar to Ambach et al. (1976), Penna et al. (2017), and Rodriguez

et al. (2016). Lower EC values were observed in the Hochjochbach

stream during the summer ablation period (July to September) com-

pared with the EC values during the winter baseflow period

(Figure 3b). Higher EC values during winter and lower values in sum-

mer are typical for glacierized catchments (e.g., Penna et al., 2017).

This indicates marked contributions of glacial meltwater, which is typ-

ically diluted in solutes (Figure 3b). During the events (July to Septem-

ber), streamflow δ18O varies between −14.1‰ and −13.4‰ and

indicates changing contributions of water sources with different signa-

tures. Analogously, the varying EC content of streamflow (range:

45.8–158.3 μS/cm) indicates the contribution of high EC groundwater

or the low EC rain/glacier melt component, under the assumption of

homogenous geology and flow paths. The negative relation between

discharge and streamflow EC (dilution effect) in melt‐dominated

catchments was already intensively studied (Collins & Young, 1981;



FIGURE 13 Relationship between glacier melt fraction (Approach A) and streamflow δ18O (a) and EC (b). EC = electrical conductivity
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Dzikowski & Jobard, 2012; Engel et al., 2016) and was also significant

within this study (Figure 4b). A significant positive relationship of dis-

charge and streamflow δ18O was found (Figure 4a). Spatio‐temporal

variation in rain isotope signatures (Figure 3a) is observed (range

between −17.7‰ and −5.3‰) but is not the main interest in this

study. EC of rain varies between 4.7 and 14.5 μS/cm, most likely vary-

ing due to air masses originating from Mediterranean (favours more

salty rain and higher EC values) or Atlantic (favour less salty rain and

lower EC values) moisture sources. Variations in EC of rain may also

occur due to atmospheric deposition (e.g., dust). Penna et al. (2014)

also observed a similar range in EC of rain in a catchment close to

our study area.

The sample size (n = 51 in total) of this study to characterize the

glacier melt tracer signature is one order of magnitude greater com-

pared with most other studies and therefore allows to draw a solid

conclusion on the temporal and spatial variability (at the local scale).

The temporal variability in glacier melt tracer signature was higher

compared with the spatial variability. The intraseasonal variation was

larger compared with the within‐day variation for δ18O. A decreasing

tendency in the isotopic composition of glacier melt from events #2

to #6 is visible, which is contrary to the findings of Penna et al.

(2017) and Yde et al. (2016), who observed an increase in glacier melt

isotopic signatures during the ablation period. Other authors found no

intraseasonal variability in glacier melt tracer signatures (Cable et al.,

2011; Maurya et al., 2011; Ohlanders, Rodriguez, & McPhee, 2013;

Racoviteanu, Armstrong, & Williams, 2013). The within‐day variability

in EC and δ18O was marked for event #6; however, this variability was

not observable during the other events (Figure 5). The high variation is

likely related to an intermittent snowfall event, where a thin layer

(<2 cm) of new snow covered the Hochjochferner (all snow was

melted in the afternoon). Typically, snow is characterized by lower

δ18O values due to the temperature effect (Dansgaard, 1964). The

intradaily variation in EC of glacier melt on September 22 was likely

caused by the dilution effect. Due to the low radiative energy input,

the resulting melt rate was low in magnitude, which was visually

ensured. At 10:00 (CET) when melt was minimal, meltwater draining
from the abovementioned new snow on the glacier surface, which is

typically higher in EC compared with glacier meltwater (Fountain,

1996), led to relatively high EC values (yellow to reddish pixels in

Figure 6d). These became progressively lower with a minimum at

15:30 (CET) in the afternoon when the melt rate was highest. Jeelani

et al. (2017) found higher EC values in meltwater originating from a

debris‐covered glacier compared with a clean glacier. Because glacier

melt tracer signatures depend on the water origin (e.g., supraglacial

meltwater vs. glacier outflow), the origin of the air masses that form

precipitation and the post‐depositional processes, a direct comparison

is solely valuable for catchments with similar climate conditions and

physical characteristics. As an example, Penna et al. (2014) sampled

rivulets on the glacier surface in a catchment close to the

Hochjochbach catchment and revealed medians of approximately

−14‰ and 5 μS/cm for δ18O and EC (extracted from figure), respec-

tively, which are close to our values. A small spatial variation but a

marked intraseasonal pattern in the tracer signature of glacier melt

was observed by Penna et al. (2017). A clear intraseasonal enrichment

of glacier melt isotope values could not be identified within this study,

but a variation that should be accounted for in mixing models was

observed (Figure 5). The spatial variation was negligible (Figure 6)

but should be investigated at a larger spatial scale, although assump-

tions exist on missing isotope variability of different glaciers within a

catchment (Cable et al., 2011). S. Zhou, Wang, and Joswiak (2014)

found no clear altitude gradient in the isotopic signal of glacier melt,

whereas Wu et al. (2016) found an altitude effect (−0.34‰/100 m

for δ18O). For the Hochjochferner, this would result in a total change

of −2.38‰/700 m. This effect, if observed, would play a minor role

because the value lies within the observed range of the

Hochjochferner glacier melt values and most of the glacier melt origi-

nates from the ablation area (glacier tongue), where the sampling was

conducted. Despite our efforts to capture the variability in the glacier

melt tracer signature, identification of it at a larger spatial scale (sam-

pling various glaciers in a catchment >20 km2) remains an open issue.

Future work is also required in estimating the interannual variability of

the glacier melt tracer signature.
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5.2 | Hydrograph separation results and their
uncertainties

In a variety of mountain catchments worldwide and different mixing

model settings, subsurface water, rain, and melt contributions to

streamflow at the seasonal scale were quantified by 2–76, 20–22, and

13–53%, respectively (e.g., Cable et al., 2011; Zhou et al., 2015).

Nevertheless, those studies are often hard to compare due to

(a) different glacier melt definitions (Frenierre & Mark, 2014), (b) differ-

ences in glacierized area, (c) climate variability, (d) spatio‐temporal scale

issues (Penna et al., 2017), (e) varying characterization of end‐members

(e.g., predetermined or determined by geochemical streamflow data),

and (f) sampling of different components (e.g., sampling glacial outflow

vs. supraglacial meltwater to characterize the glacier melt end‐member

or sampling winter baseflow vs. spring water to characterize the

groundwater end‐member).
5.2.1 | Glacier melt fraction in streamflow and its
sensitivity to the glacier melt end‐member
characterization

The median glacier melt contribution to streamflow for six events

during July to September was 35±11% and was in the range of sea-

sonal glacier melt contributions (28–59%) estimated in other studies

for similar catchments (Cable et al., 2011; Engel et al., 2016; Penna

et al., 2017). If one assumes that annual glacier melt contribution

occurs solely within the July to September period and runoff consti-

tutes of 35% glacier melt (367 mm) during that period, glacier melt

contributes approximately 23% to annual runoff (1619 mm) in the

Hochjochbach catchment (October 2015 to September 2016). Maxi-

mum event contribution was 69±10% (event #2) and compares well

with maximum estimates from Penna et al. (2017) and Engel et al.

(2016) at the event scale (71% and 65%, respectively). This represents

the importance and dominance of the glacier melt streamflow fraction

in headwater catchments during summer in the Alps, and future

changes in glacial meltwater contribution in that region are likely (e.

g., Hanzer, Förster, Nemec, & Strasser, 2017). A dominant role of gla-

cier melt in summer and late summer streamflow was also observed

in the Rocky Mountains (Cable et al., 2011), Andes (Ohlanders et al.,

2013), and the Arctic (Blaen, Hannah, Brown, & Milner, 2014). In this

study, a decreasing pattern in glacier melt fraction was observed from

July 30 (69±10%, event #2) to September 22 (5±5%, event #6). This

dynamic behaviour was contrary to the findings of Williams et al.

(2016) and Racoviteanu et al. (2013) who revealed an increase in gla-

cier melt contribution for the July to September period in the

Himalaya. Our observed pattern could be related to the observation

period, starting when snow cover was almost depleted and annual

peak glacier melt likely occurred close to the beginning of the summer

sampling work (end of July) and was followed by a subsequent reces-

sion of the glacier melt contribution. Penna et al. (2017) also observed

most of the glacier mass loss between end of July and mid‐August.

Further estimates on the interannual glacier melt contribution vari-

ability are required. The relatively high uncertainty during event #5

(up to ±20%; see Figure 9) is likely caused due to a combination of

the highly varying glacier melt δ18O signature and a high glacier melt

fraction (up to 48%), both affecting the uncertainty estimation (cf.
Genereux, 1998). The mixing model results were partly sensitive to

the characterization of the glacier melt end‐member. Using the sea-

sonal average of the glacier melt tracer signature for applying the

mixing model (Approach B) led to underestimated glacier melt frac-

tions (average: −5%) compared with the use of the event mean glacier

melt tracer signature (Approach A), especially when glacier melt was

the dominant contributor. Hence, the highest deviation was observed

for events #2 and #3 (−17%). We infer that it is necessary to use a

time‐varying glacier melt end‐member at least at the subseasonal

scale as already done recently by Penna et al. (2017) and Wu et al.

(2016) at the monthly scale. Furthermore, our data show that it is

important to incorporate the temporal variability of glacier melt tracer

signature below a monthly resolution, because the δ18O values to

describe the glacier melt end‐member (Figure 5) varied from event

to event. However, the sensitivity of the glacier melt contribution to

the subdaily characterization of the glacier melt end‐member

(Approach C) is not marked. There is a small deviation observable if

one samples glacier melt in the morning (10:00 CET) (event #5 in

Figure 10). This effect is caused by the higher δ18O values (yellow

pixels in Figure 6c) compared with those at 13:00/15:30 (CET). This

was not the case for event #6, and we want to point out that those

two events are likely not sufficient to draw a general conclusion of

such an emergence as observed for event #5. Hence, we hypothesize

that the subdaily variation of the glacier melt end‐member tracer sig-

nature may not be important, but further data from different catch-

ments are absolutely needed to test it. The sensitivity of the glacier

melt estimations to the spatial variability of the glacier melt tracer sig-

nature (Figure 11) is also not marked, but two outliers (sampling loca-

tions A1 and A5) become obvious. Both, for event #1 the sampling

location A5 and for event #5 the sampling location A1, led to mark-

edly higher glacier melt estimates compared with the average value.

Both cases were caused by high δ18O values (cf. Figure 6). We cannot

explain the abovementioned outliers, but our data showed that sam-

pling either at different locations on the ablation area, or sampling

both tongues of the glacier (cf. Figure 1 and Section 2) does not seem

to be of particular importance. The correlation of the glacier melt

fraction of Approach A and the streamflow tracer signature were sig-

nificant for both δ18O and EC at 10% significance level (Figure 13).

The observed relationship is stronger for the glacier melt fraction

and streamflow EC, similar to the dilution effect described in other

studies (e.g., Dzikowski & Jobard, 2012). The less strong relationship

between streamflow δ18O and the glacier melt fraction (Figure 13a)

could likely be attributed to the similarity of the glacier melt and

the groundwater δ18O values (cf. Figure 3 and Table 3). However,

data for events #1 to #3 seem to deviate from the relationship for

both, EC and δ18O.

5.2.2 | Groundwater fraction in streamflow and its
end‐member characterization

Groundwater, characterized by the winter baseflow tracer signature

was the dominant contributor to streamflow (49±2%) for the studied

six melt events during the period July to September 2016. At the

event scale, we observed an increase in groundwater contribution to

streamflow from event #2 (31±2%) to event #6 (81±3%) that is

inversely related to the glacier melt contribution. Engel et al. (2016)
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determined groundwater contribution up to 62% for melt events

analysed in a small headwater catchment (12% glacierized area) in

the Alps and found that groundwater was the major streamflow

component for seven observed melt events (38% to 62%). Penna

et al. (2017) investigated a tendency of increasing groundwater

contribution between July and September in the same catchment,

with a maximum contribution >80% (approximate value extracted

from figure). Large groundwater contributions and its storage in soils

and unconsolidated sediment (such as talus, moraines, alluvium, allu-

vial fans, and rockslides) are frequently observed in high‐elevation

catchments and likely play a major role for future water supply, espe-

cially under changing climatic conditions and system states of those

catchments (Jasechko, Kirchner, Welker, & McDonnell, 2016;

Staudinger et al., 2017). Baseflow is a combination of shallow and

deep groundwater (Ward & Robinson, 2000), can have long residence

times (Ambach et al., 1976; Stewart & McDonnell, 1991), and is a mix-

ture of snowmelt, rain, and glacier melt, as quantified by Cable et al.

(2011). There was an intense discussion on the characterization of

the subsurface end‐member as condensed by Buttle (2006). Charac-

terizing the groundwater end‐member by the tracer signature of (win-

ter) baseflow can be more reliable than using averaged spring water,

because the isotopic and geochemical signature of streamflow during

baseflow conditions is known to integrate and represent the

hydrochemistry of (shallow) groundwater at the catchment scale

(Fischer, Rinderer, Schneider, Ewen, & Seibert, 2015; Kendall &

Doctor, 2003; Klaus & McDonnell, 2013; Sklash, 1990). Nevertheless,

using winter baseflow instead of average spring water tracer signa-

tures could lead to underestimated glacier melt fractions, as shown

by Penna et al. (2017). We considered winter baseflow tracer signa-

ture to characterize the groundwater end‐member, as used elsewhere

(e.g., Miller, Buto, Susong, & Rumsey, 2016). Because small mountain-

ous headwater catchments typically tend to favour shallow subsurface

flow paths (Frisbee, Phillips, Campbell, Liu, & Sanchez, 2011), whereas

deeper longer flow path bypass first‐order (headwater) streams

through fractured bedrock and supply stream water at a larger scale

downstream (Gleeson & Manning, 2008), the groundwater end‐mem-

ber is considered to represent shallow subsurface flow in this study.

Unconsolidated material such as glacial deposit, moraine, till, and loose

rock of talus slopes likely functions as storage of this water source,

which is not negligible in high‐elevation catchments as the

Hochjochbach basin. Accounting for the temporal variation of the

groundwater tracer signature is difficult, but a distinct variation could

not be shown within this study. Therefore, the use of the (time‐

invariant) average tracer signature of winter baseflow during the

December to March period seemed reliable to characterize the

groundwater end‐member.

5.2.3 | Rain fraction in streamflow and inferred
runoff mechanisms

The median rain fraction in streamflow during the six investigated

eventswas estimated at 16±11%.Minimumandmaximumevent contri-

bution was 0±10% (event #2) and 23±6% (event #4). Dahlke et al.

(2014) investigated rainfall–runoff events in a 30% glacierized catch-

ment (21.7 km2) in Northern Sweden with very similar characteristics

and climate as the Hochjochbach catchment using a two‐component
hydrograph separation with δ18O. The event water end‐member was

characterized by rain samples and was on average 11% and 22% for

two nonconsecutive ablation periods, depending on interplay between

the rainfall event timing, snow cover, and soil moisture conditions.

Related rain contributions during melt‐induced events are very rare

hence a comparison is hampered. As an example, Engel et al. (2016) esti-

mated a marked rain contribution of 11% for a rainfall–runoff event

(<10 mm/day precipitation) by a two‐tracer (EC and δ18O) three‐com-

ponent mixing model (rain, glacier melt, groundwater), well comparable

with our results and highlighting the importance of rain contribution in

glacierized catchments. It should be mentioned that our results were

related to antecedent rainfall. Because rainfall–runoff dynamic was

not the major part of interest in this study and sampling was conducted

on almost rain‐free events (except on events #2 and #4 rainfall

occurred, but sampling on those days was finished before), our esti-

mated rain fractions in the streamfloware not negligible. The correlation

analysis of the 2‐day antecedent rainfall sum and the rain fraction of

streamflowwere significant and support the assumption of longer tran-

sit times (longer than 1 day as assumed for the glacier melt end‐mem-

ber). Two‐day residence time is short but seems reasonable due to

thin soils and unconsolidated material (deposit, moraine), which likely

favours a higher hydraulic conductivity (see Weiler, McDonnell, Van

Meerveld, & Uchida, 2005). Baraer et al. (2015) underscored in their

Andean catchment the importance of groundwater contribution in

proglacial regions and suggested talus deposits as controlling landscape

features that regulate shallow groundwater movement and routing of

rain water through the subsurface. This is also typical for the

Hochjochbach catchment. Therefore, including the rain component is

crucial in glacierized catchments. Furthermore, the EC‐δ18Omixing dia-

gram (Figure 7) indicates that streamflow tracer signature cannot be

explained by using one tracer only (streamflow samples display not on

a line between two water sources). Glaciers are known to have a low

retention capacity for rain water (especially if the snow cover is

depleted) and provide a fast routing of rainwater to the stream (Dahlke

et al., 2014). Due to this fact and the investigation of antecedent (not

event) rainfall–runoff dynamics, wemust conclude that catchment stor-

age (not glacier storage) is the key to better understand rainfall–runoff

dynamics in glacierized catchments at a scale that is larger than one

day. Future work on the relation between rainfall and runoff should be

conducted in those environments.
6 | CONCLUSION

In this study, we presented novel research including (a) winter

baseflow tracer variation in a glacierized catchment, (b) high temporal

and spatial resolution of the glacier melt tracer signature (large

dataset), and (c) tracer‐based streamflow partitioning (glacier melt,

rain, groundwater) and its sensitivity to the glacier melt tracer variabil-

ity. Our work is representative for headwater catchments (30–40%

glacier coverage) with a glacial flow regime. We investigated six

melt‐induced events during the ablation period from July to Septem-

ber 2016 in a 17.1 km2 catchment (34% glacierized area) in the Euro-

pean Alps and assessed the spatio‐temporal variability of end‐member

tracer signatures (δ18O, EC). The winter baseflow tracer signatures



14 SCHMIEDER ET AL.
served as a proxy for shallow groundwater and revealed a very small

variation, supporting the evidence of a well‐mixed reservoir. The tem-

poral tracer variation of glacier melt (EC and δ18O) is marked at the

subseasonal scale (July to September) and is more pronounced for

δ18O. Subdaily and spatial variation plays a minor role, but also varia-

tions in δ18O are more pronounced. The glacier melt fraction at the

daily (event) scale ranged between 5±5% and 69±10% (median:

35±11%), with an annual contribution of 23%, that likely represents

the lower threshold. Groundwater (median: 49±2%) was the dominant

contributor during the investigated events, likely becoming more

important due to further retreat of the glacier and expected future

decrease in the glacier melt contribution. Antecedent rain played a

minor but not negligible role (median: 16±11%). We have shown that

including a time‐variant glacier melt end‐member characterization (if

possible at the submonthly scale) in mixing models is important,

because using a time‐invariant glacier melt tracer signature led to 5%

lower glacier melt fractions on average and up to 17% underestima-

tion per event. Spatial (at the scale of 100 of meters) and subdaily var-

iation in the glacier melt end‐member tracer signature revealed no

distinct effect on the mixing model results.
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