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Chapter 1

Introduction

Wave phenomena play an important role in our everyday life as well as in science and

engineering. For instance, in the form of light and sound, waves provide the most

important source of information for humans and animals to interact with their envi-

ronment. Another example are electro-magnetic waves which represent the founda-

tion for modern data transmission techniques, e.g., used for television, radio, mobile

phones, and for high speed data transfer via intercontinental optical fibers. More-

over, ultra-sound waves and X-rays are important tools for medical diagnosis as well

as for therapeutic applications such as cancer treatment. In order to get a deeper

understanding of the universe, telescopes collect electro-magnetic waves that have

been radiated by interstellar objects. Furthermore, seismic waves excited by earth-

quakes or special devices provide an important source for our knowledge about the

interior of the earth. Hence, extending our knowledge of wave phenomena also leads

to a better understanding of the world.

In this work, we will focus on mathematical aspects concerning the simulation

of acoustic waves in heterogeneous media using modern parallel computers. Since

in our applications the amplitudes are small, we restrict ourselves to linear models

which provide a reasonable approximation of the physical processes in this setting.

The linear acoustic wave equation models the interaction of pressure waves with gas,

liquid and soil. Thus, it acts as a prototype for a variety of different wave phenom-

ena. Mathematically, acoustic waves can be described using time-dependent partial

differential equations (PDEs). In practical applications, the solution of these PDEs

is not accessible in closed form and has to be approximated numerically. A clas-

sical numerical method to deal with time-dependent PDEs is the method of lines.

Here, the problem is first discretized in space leading to a system of finitely many

ordinary differential equations (ODEs). This system can be treated with classi-
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cal time-integration schemes. Another classical approach for time-dependent prob-

lems is Rothe’s method. Here, first time is discretized, e.g. using discrete differ-

ence quotients. This yields a sequence of stationary problems for the chosen time-

discretization. Both approaches, however, yield an inherently iterative procedure in

time that is challenging to parallelize, see e.g. [32] for an overview. Additionally, flex-

ible methods that allow for adaptivity are not straight-forward to implement using

the method of lines as well as Rothe’s method.

To overcome these issues, we consider space-time discretizations. In this approach,

the time variable is treated in the same way as every other space variable. As a

result, a d-dimensional evolutionary problem in space becomes a (d+ 1)-dimensional

stationary problem in space-time, cf. figure 1.1. In case of a linear equation, this

Figure 1.1: Two waves in one space dimension traveling up and down with reflections on the

boundaries. On the left, ten snapshots for different times are shown that have been calculated

successively using the method of lines from left to right. On the right, a space-time plot of the same

waves is depicted. Here, the solution has been calculated at once for all times.

procedure leads to a huge linear system containing all space-time degrees of freedom

to be solved for in one shot. At a first glance, this procedure makes the problem

more challenging than before, since a much larger system has to be solved. However,

assuming that a well-scaling parallel algorithm for large linear systems is available,

the space-time approach yields a scheme that is not only parallel in space but also

parallel in time. Since the classical methods do not parallelize well for large numbers

of processes on huge super-computers space-time approaches can be more efficient

with respect to wall-clock time. In addition to the promising aspects concerning

parallelization, space-time methods are also appealing for adaptivity. Since the time-

dependent evolutionary problem becomes stationary in space-time, all tools that are

available for adaptivity in case of stationary problems can be applied.

In this work, we consider families of space-time discretizations originating from

Least-Squares approaches, also called minimal residual methods. In particular, we

construct two novel Least-Squares methods that minimize the residual norm in space-
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CHAPTER 1. Introduction

time, one of them being an application of the discontinuous Petrov-Galerkin

method (DPG) introduced by Demkowicz et. al. [19]. The stability of Least-

Squares techniques renders them interesting candidates for applications with space-

time adaptivity.

As an application of the space-time discretization schemes, we consider an in-

verse problem originating from seismic imaging. The idea of seismic imaging is to

exploit that a wave after having traveled through a heterogeneous medium contains

information about the medium’s spatially varying structure. For instance, by using

surface measurements of waves that traveled through the earth’s crust, one can try

to reconstruct the spatially changing material properties, see figure 1.2. Then,

this information can be used, e.g. to locate mineral resources without the need of

drilling holes. Especially for areas that are hard to access such as structures below

the seabed, non-invasive methods are appealing, because large areas can be exam-

ined without the need of expensive drilling. A technique to tackle seismic imaging

inversionforward

Figure 1.2: A survey ship exciting a wave that travels through the water and then the earth below

the seabed. The receivers located on top of the sea record the reflected signals, the seismograms,

which are depicted at the bottom. In applications, only these seismograms are available in or-

der to reconstruct the corresponding material distribution. (Image by Thomas Bohlen, personal

communication.)

problems is Full Waveform Inversion (FWI) which, in contrast to other methods, uses

the full information contained in the measurements in order to achieve high accuracy

reconstructions. It is well-known that implementing numerical schemes for FWI is

challenging for two reasons: on the one hand the inverse problem is ill-posed meaning
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1.1. Outline

that small errors in the measurements can significantly change the reconstruction; on

the other hand it is computationally expensive since the state-of-the-art algorithms

are of Newton-type and require high-accuracy solutions of the wave-equation in

every step. Typically, during the inversion dozens to hundreds of wave equations

have to be solved. To address the first issue, a sensible regularization strategy has

to be chosen. In order to improve the computational efficiency, well-scaling parallel

algorithms to solve the required wave equations are of interest.

1.1 Outline

In order to set up a solid framework for the following considerations, we start with

a mostly self-contained overview of linear variational problems in chapter 2 by

summarizing well-known and also some more recent findings for variational problems

in Hilbert spaces.

In chapter 3, we introduce a space-time Hilbert space setting for acoustic

waves that allows for solutions with low regularity such as space-time discontinuities.

Treating time as an additional space dimension, we consider a space-time differential

operator and construct a suitable domain of definition. Furthermore, we provide a

well-defined notion of generalized traces for functions in this enlarged closure.

In chapter 4, we introduce two new families of space-time minimal residual

methods for acoustic waves. Starting from conforming Finite Element Methods of

Least-Squares type in space-time, we introduce a non-conforming generalization us-

ing the framework introduced in chapter 3. Moreover, we describe variants of the

Discontinuous Petrov-Galerkin (DPG) method in space-time including a non-

conforming scheme that features appealing properties from an implementation point

of view. For both methods, we present numerical analysis results including conver-

gence estimates.

Complementing the theoretical considerations in chapter 4, we present an ex-

tensive numerical study in chapter 5. For different variants of methods introduced

in chapter 4, we compare the convergence properties by considering examples in

one and two spatial dimensions.

In chapter 6, we consider the FWI problem using a space-time setting for waves.

We present two points of view, a root-finding point of view originating from the

inverse-problems community and an optimization point that has been used in many

applications. For both, we set up Newton-type algorithms on an abstract level

and explain their relation to each other. To reduce the numerical effort, we employ

the adjoint-state method to tackle linearized problems. Here, using the space-time
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CHAPTER 1. Introduction

framework, we make extensive use of the accessibility to the adjoint equation that

can be interpreted as an evolution problem backward in time. Finally, we show

numerical results for the regularized inexact Newton scheme, CG-REGINN [57],

applied to the FWI problem in a simple test setting. To handle the wave equations

in this algorithm, we employ the space-time DPG method introduced in chapter 4.

Parts of chapter 3 and chapter 4 have been submitted in [27]. Based on the

Python Seismic Imaging Toolbox, PySIT [34], we developed a software to experiment

with the principles of seismic imaging. The program can be downloaded for free from

our website http://www.math.kit.edu/ianm3/seite/seismicimaging/en.

1.2 Acknowledgement

The author gratefully acknowledges the support of the German Research Foundation

(DFG) by CRC 1173. This work has been created as part of joint research projects in

this CRC on space-time discretizations and Full Waveform Inversion in cooperation

with the geophysics department (GPI) at KIT.

Some of the numerical experiments were performed on the computational re-

source ForHLR II funded by the Ministry of Science, Research and the Arts Baden-

Württemberg and DFG.

1.3 Notation and basic terms

To emphasize that an identifier B equals an expression E by definition we write

B := E. We use the Kronecker delta with δij = 1, i = j, and δij = 0, i 6= j.

By R, we denote the set of real numbers and N := {1, 2, 3, . . . } is used for the set

of natural numbers. Furthermore, we write N0 := {0} ∪ N for the natural numbers

including 0. The set of integers is denoted by Z = {0, 1,−1, 2,−2, . . . }.
For two sets A,B, we denote by AB the set of all maps f : B −→ A. For instance,

the set of all sequences in R with natural indices is denoted by RN.

For n ∈ N we denote the space of real vectors with n components by Rn. If x ∈ Rn

we write xd ∈ R, d = 1, . . . , n, for the d-th component of x.

For a normed vector space X, we usually write ‖x‖X for the norm of x ∈ X.

Moreover, if there is an inner product on X that induces ‖ · ‖X , we write (x, y)X for

the inner product of x, y ∈ X. In case that U ∈ Rn is an open set, we also write

(x, y)U for the inner product of x, y ∈ L2(U,Rm). The identity inX is idX : X −→ X,

x 7−→ x. In this work, we only consider vector spaces over the field R.
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1.3. Notation and basic terms

For x ∈ X, r > 0, we denote the open ball with radius r around x by B(r, x) :=

{y ∈ X : ‖x−y‖X < r}. We call A ⊂ X a neighborhood of x ∈ A if there is r > 0 with

B(r, x) ⊂ A. Further, in this case x is called an inner point of A. A ⊂ X is called

closed if for each convergent sequence (xn)n∈N ∈ AN, i.e. ∃x ∈ X : ‖xn − x‖X −→ 0

for n −→ ∞, we have x ∈ A. We call the smallest closed set that contains A the

closure of A and denote it by Ā :=
⋂{B ⊂ X : A ⊂ B, B closed}.

By ∂A := {x ∈ Ā : x is not an interior point of A}, the boundary of A is denoted.

If f : D −→ Y is a mapping from D ⊂ X to another vector space Y , we write

supp f := {x ∈ D : f(x) 6= 0} for the support of f . In particular, we denote by

C1
c(U) := {f ∈ C1(U) : supp f ⊂ U} the set of compactly supported functions

defined on U ⊂ Rn, where C1(U) are the continuously differentiable functions on U .

The space of all m × n-matrices is denoted by Rm×n and we write Mij for the

element of M located at the i-th row and the j-th column. For a matrix M ∈ Rm×n,
we denote the transposed matrix with MT

ij := Mji by MT ∈ Rn×m. We write

In := (δkl)kl for the identity matrix in Rn×n.
Given a subset A ⊂ X of a vector space X, we define the linear hull of A

spanA :=

{
k∑
i=1

αiai : αi ∈ R, ai ∈ A, k ∈ N

}
.

For linear operators between normed vector spaces X and Y , we use the following

notation. We write L
(
X,Y

)
:= {T : X −→ Y : T linear and bounded} and L

(
X
)

:=

L
(
X,X

)
. For a linear operator T : X −→ Y , we denote the image of x ∈ X under

T by Tx := T [x] := T (x). For the special case that X is a normed vector space and

Y = R, we also use the dual-pairing notation
〈
T, x

〉
:=
〈
T, x

〉
X′×X := Tx if T ∈ X ′

is a bounded linear functional. Here, by X ′ := L
(
X,R

)
the topological dual-space

of X is denoted.

For a map f : A −→ B, A,B sets, we denote for a subset C ⊂ A the restriction

of f to C by f |C : C −→ B, c 7−→ f(c), c ∈ C.

The Lebesgue measure of a set B ⊂ Rn is symbolized by |B|.
Often, we consider suprema or infima of quotients silently assuming that the

denominator does not vanish, e.g. supy∈Rn
x>y
‖y‖2 , x ∈ Rn.

For an open set O ⊂ RD, we denote by L2(O) the set of measurable and square

integrable functions on O. The set of vector fields on O into RN that are componen-

twise in L2(O) is denoted by L2(O,RN ).
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Chapter 2

Theory of variational problems in

Hilbert spaces

In this work, we consider a variational space-time framework for acoustic waves and,

based on this framework, different discretization schemes. Because we make extensive

use of variational formulations for partial differential equations, we summarize well-

known results from Finite Element theory and describe links to linear Functional

Analysis for the convenience of the reader. Self-contained textbook references on

this subject include [24], [9] and [7].

2.1 Variational problems in Banach spaces

We start by establishing well-posedness results for linear variational problems.

Definition 2.1. Let X, Y be normed vector spaces. We call b : X×Y −→ R bilinear

if for every x ∈ X the map b(·, y) is a linear form on X and for every y ∈ Y the map

b(x, ·) is a linear form on Y . We define the set of bounded bilinear maps on X × Y

B
(
X × Y,R

)
:=

{
b : X × Y −→ R : ‖b‖ := sup

(x,y)∈X×Y

b(x, y)

‖x‖X‖y‖Y
<∞

}
.

Now, given Banach spaces X,Y , a bounded bilinear form b ∈ B
(
X × Y,R

)
, and

a functional ` ∈ Y ′, we consider the following problem.Find x ∈ X such that

b(x, y) = `(y) for all y ∈ Y .
(VP)

Definition 2.2. We say that problem (VP) is well-posed if for all right-hand sides

` ∈ Y ′, there is a unique solution x = x(`) ∈ X and if this solution depends contin-

uously on `.

7



2.1. Variational problems in Banach spaces

In order to characterize the well-posedness of (VP), we set up an operator frame-

work. Sometimes it is convenient to consider (VP) as an equation in the dual space

Y ′. To this end, we introduce two operators induced by the bilinear form b.

Definition 2.3. For b ∈ B
(
X × Y,R

)
, we define the operators B ∈ L

(
X,Y ′

)
and

B′ ∈ L
(
Y,X ′

)
by〈

Bx, y
〉

= b(x, y) =
〈
B′y, x

〉
, x ∈ X, y ∈ Y .

We write N (B) = {x ∈ X : Bx = 0} and R(B) = {Bx : x ∈ X} for the kernel and

the range of B.

As a result, (VP) can be reformulated by Bx = ` as an equation in Y ′.

In the following, using the close relation between B′ and the Banach adjoint of

B, we apply the closed range theorem and the open mapping theorem to characterize

the solvability of (VP) by duality properties of B and B′.

Sometimes we only need unique solvability of (VP) up to the kernel of B. To this

end, we introduce variants of B and B′ as well as the quotient space.

Definition 2.4. Let X be a Banach space and U ⊂ X a closed subspace. We

consider the quotient space X/U = {x+U : x ∈ X} equipped with the quotient norm

‖x+ U‖X/U := inf
u∈U
‖x+ u‖X , x+ U ∈ X/U ,

which itself is a Banach space, cf. e.g. [72, Section I.II].

Definition 2.5. For a bilinear form b ∈ B
(
X ×Y,R

)
define B̂ : X/N (B) −→ R(B)

and B̂′ : Y/N (B′) −→ R(B′) by〈
B̂
(
x+N (B)

)
, y
〉

= b(x, y) =
〈
B̂′
(
y +N (B′)

)
, x
〉
, x ∈ X, y ∈ Y ,

both of which are well-defined and bijective by construction.

This notation yields the variant B̂
(
x+N (B)

)
= ` in Y ′ of (VP) having solutions

that are only unique up to a difference in N (B). In other words, the solution lives

in the factor space X/N (B).

2.1.1 Relations to Banach’s theory

The characterization of the well-posedness of (VP) relies on classical results from

Functional Analysis. As a first step, we introduce some notation and provide ele-

mentary results.
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CHAPTER 2. Theory of linear variational problems

Definition 2.6 (Annihilators). [60, Chap. 4] Let X be a normed space and U ⊂ X,

Z ⊂ X ′. Then we define the closed subspaces

U⊥ =
{
` ∈ X ′ : `(u) = 0 for all u ∈ U

}
⊂ X ′ ,

⊥Z =
{
x ∈ X : z′(x) = 0 for all z′ ∈ Z

}
⊂ X .

In particular, ⊥
(
U⊥
)
is the closure of U in X if U ⊂ X is a linear space, cf. [60,

Thm. 4.7].

Definition 2.7 (Banach adjoint). For Banach spaces X,Y and L ∈ L
(
X,Y

)
, we

define the Banach adjoint L~ : Y ′ −→ X ′ of L by〈
L~y′, x

〉
= y′(Lx) =

〈
y′, Lx

〉
, x ∈ X, y′ ∈ Y ′

see [72, section VII].

Remark 2.8. It holds L~ ∈ L
(
Y ′, X ′

)
with ‖L~‖ = ‖L‖, cf. [72, Thm. VII.4].

If L is bijective then L~ also is and we have (L−1)~ = (L~)−1, since(
L~(L−1)~x′

)
(x) =

〈
(L−1)~x′, Lx

〉
=
〈
x′, x

〉
= x′(x) ,(

(L−1)~(L~y′)
)
(y) =

〈
L~y′, L−1y

〉
=
〈
y′, y

〉
= y′(y) ,

for all x′ ∈ X ′, x ∈ X, y′ ∈ Y ′, y ∈ Y .

Definition 2.9. Let X be a Banach space. We say that X is reflexive if the

canonical embedding ιX ∈ L
(
X,X ′′

)
defined by

ιX(x)(x′) = x′(x), x ∈ X, x′ ∈ X ′ ,

is an isomorphism. Here, X ′′ := (X ′)′ is the bi-dual of X.

Proposition 2.10. Let X,Y be Banach spaces and b ∈ B
(
X × Y,R

)
. Then, we

have B′ = B~ ◦ ιY for B′ as in definition 2.3.

For reflexive Y , we have R(B′) = R(B~) and N (B′) = ⊥R(B).

Proof. It holds B~ ∈ L
(
Y ′′, X ′

)
and for all x ∈ X, y ∈ Y〈

B~ιY (y), x
〉

=
〈
ιY (y), Bx

〉
= ιY (y)(Bx) =

〈
Bx, y

〉
= b(x, y) =

〈
B′y, x

〉
.

In case that Y is reflexive, we have Y ′′ = ιY (Y ) and therefore

R(B′) = B′(Y ) = B~(ιY (Y )) = B~(Y ′′) = R(B~) .

Using
〈
Bx, y

〉
= b(x, y) =

〈
B′y, x

〉
for x ∈ X, y ∈ Y , we have

⊥R(B) =
{
y ∈ Y :

〈
Bx, y

〉
= 0 ∀x ∈ X

}
=
{
y ∈ Y :

〈
B′y, x

〉
= 0 ∀x ∈ X

}
= N (B′) .

9
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Remark 2.11. Considering the operator B′ instead of B~ can be interpreted as

identifying Y ∼= Y ′′ through ιY which is very common in the literature. In the

following, however, we treat this identification explicitly hoping that this leads to

arguments that are easier to comprehend.

Now, we cite the fundamental results to characterize the well-posedness of (VP).

Theorem 2.12 (Open Mapping, S. Banach). Let X,Y be Banach spaces and let

L ∈ L
(
X,Y

)
be onto. Then, for every open set O ⊂ X in X, the image L(O) ⊂ Y

is open in Y .

Proof. See [72, section II.5].

Theorem 2.13 (Closed Range, S. Banach). Let X,Y be Banach spaces and L ∈
L
(
X,Y

)
. Then the following assertions are equivalent:

1. R(L) is closed in Y .

2. R(L~) is closed in X ′.

3. R(L) = ⊥N (L~).

4. R(L~) = N (L)⊥.

Here, we use the notation of annihilators as introduced in definition 2.6.

Proof. See [72, section VII.5].

Lemma 2.14. Let X,Y be Banach spaces and L ∈ L
(
X,Y

)
. Then, R(L) is closed

in Y if and only if there is α > 0 with ‖Lx‖Y ≥ α‖x+N (L)‖X/N (L) for all x ∈ X.

Proof. See also [24, Lemma A.36]. SinceN (L) ⊂ X is a closed subspace, the quotient

space X/N (L) is a Banach space for the quotient norm, see definition 2.4.

If R(L) is closed in Y , then L̂ : X/N (L) −→ R(L), x + N (L) 7−→ Lx is linear,

bounded and bijective between two Banach spaces. Thus, L̂−1 : R(L) −→ X/N (L)

exists and is bounded by theorem 2.12. Setting α = ‖L̂−1‖−1
Y,X/N (L), the first

implication follows from

‖x+N (L)‖X/N (L) = ‖L̂−1Lx‖X/N (L) ≤ ‖L̂−1‖Y,X/N (L)‖Lx‖Y , x ∈ X.

Conversly, let yn = Lxn ∈ R(L), xn ∈ X, be a sequence in R(L) such that

limn−→∞ yn = y ∈ Y exists. Then,
(
xn+N (L)

)
n
is a Cauchy sequence in X/N (L)

since by assumption

α‖
(
xn +N (L)

)
−
(
xm +N (L)

)
‖X/N (L) ≤ ‖Lxn − Lxm‖Y , n,m ∈ N .

10
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Thus, there is x∞ ∈ X such that xn +N (L) −→ x∞ +N (L) in X/N (L) and

Lx∞ = L̂
(
x∞ +N (L)

)
= lim

n−→∞
L̂
(
xn +N (L)

)
= lim

n−→∞
Lxn = y ,

by the continuity of L̂. Finally, this implies y ∈ R(L).

Using lemma 2.14, we obtain the following reformulation of theorem 2.13.

Theorem 2.15. Let X, Y be reflexive Banach spaces and b ∈ B
(
X×Y,R

)
. Then,

for B, B′ as in definition 2.3 and B̂, B̂′ as in definition 2.5, the following

assertions are equivalent:

1. There is β1 > 0 with ‖Bx‖Y ′ ≥ β1‖x+N (B)‖X/N (B) for all x ∈ X.

2. There is β2 > 0 with ‖B′y‖X′ ≥ β2‖y +N (B′)‖Y/N (B′) for all y ∈ Y .

3. There is β3 > 0 such that B̂ : X/N (B) −→ N (B′)⊥ is an isomorphism and

‖B̂−1‖Y ′,X/N (B) ≤
1

β3
.

4. There is β4 > 0 such that B̂′ : Y/N (B′) −→ N (B)⊥ is an isomorphism and

‖(B̂′)−1‖Y ′,Y/N (B′) ≤
1

β4
.

Proof. Using the reflexivity of Y , straight-forward calculations showN (B~) = ιY
(
N (B′)

)
and ⊥N (B~) = N (B′)⊥. Thus, we see by lemma 2.14 and theorem 2.13

1. ⇐⇒ R(B) closed in Y ′ ⇐⇒ R(B) = ⊥N (B~) = N (B′)⊥ .

For y′ = Bx = B̂
(
x+N (B)

)
∈ R(B), x ∈ X, we have for β > 0

‖Bx‖Y ′ ≥ β‖x+N (B)‖X/N (B) ⇐⇒ ‖y′‖Y ′ ≥ β‖B̂−1y′‖X/N (B)

since B̂ is bijective by definition.

This yields 1.⇐⇒ 3. and, repeating the arguments for B′, 2.⇐⇒ 4..

Using R(B′) = R(B~), proposition 2.10, we see 1. ⇐⇒ 2. by theorem 2.13

and lemma 2.14.

In the following, we characterize the solvability of (VP) using operator notation

as well as using the bilinear form itself.

Proposition 2.16. Let X, Y be reflexive Banach spaces, b ∈ B
(
X × Y,R

)
. Then

B : X −→ Y ′ as in definition 2.3 is an isomorphism if and only if

∃β > 0: ‖Bx‖Y ′ ≥ β‖x‖X ∀x ∈ X and N (B′) = {0} . (2.1)

Given that β > 0 as in (2.1) exists, we have ‖B−1‖Y ′,X ≤ 1
β .

11



2.1. Variational problems in Banach spaces

Proof. If B is an isomorphism, we have ‖x‖X = ‖B−1Bx‖X ≤ ‖B−1‖Y ′,X‖Bx‖Y ′
for all x ∈ X and the first implication follows by N (B′) = ⊥R(B) = {0}, see

proposition 2.10.

Conversely, assuming N (B′) = {0} gives N (B′)⊥ = {0}⊥ = Y ′, and implication

(1. =⇒ 3.) in theorem 2.15 yields that B̂ : X/{0} −→ Y ′ is an isomorphism with

‖B̂−1‖Y ′,X/{0} ≤ 1
β .

Since the quotient map T{0} : X −→ X/{0}, x 7−→ x + {0} is an isometric iso-

morphism, by B̂ ◦ T{0} = B, we obtain that B is an isomorphism as well with

‖B−1‖ ≤ 1
β .

Theorem 2.17 (Banach-Nec̆as-Babus̆ka). For reflexive Banach spaces X,Y

consider b ∈ B
(
X × Y,R

)
and ` ∈ Y ′. Then, we have:

1. (VP) is well-posed if and only if

∃β > 0: inf
x∈X

sup
y∈Y

b(x, y)

‖x‖X‖y‖Y
≥ β , (BNB1)

and

∀y ∈ Y :
(
∀x ∈ X : b(x, y) = 0

)
=⇒ (y = 0) . (BNB2)

2. If (BNB1) holds, a solution x ∈ X of (VP) fulfills ‖x‖X ≤ 1
β‖`‖Y ′.

Proof. See [24, Thm. 2.6]. Considering the operators B, B′ as in definition 2.3,

the equivalence statement is a reformulation of proposition 2.16:

(BNB1)⇐⇒
(
‖Bx‖Y ′ ≥ β‖x‖X ∀x ∈ X

)
, (BNB2)⇐⇒ N (B′) = {0}

Finally, the solution x ∈ X of (VP) fulfills by (BNB1)

‖x‖X ≤
1

β
sup
y∈Y

b(x, y)

‖y‖Y
=

1

β
sup
y∈Y

`(y)

‖y‖Y
=

1

β
‖`‖Y ′ .

An important consequence of theorem 2.17 is the well-known Lax-Milgram

Lemma for Hilbert spaces.

Corollary 2.18 (Lax-Milgram Lemma). Let V be a Hilbert space, ` ∈ V ′ and
let a : V × V −→ R be a bounded and coercive bilinear form, i.e.

∃α > 0: inf
v∈V

a(v, v)

‖v‖2V
≥ α . (2.2)

Then for X = Y = V and b = a, problem (VP) is well-posed and its solution u ∈ V
fulfills ‖u‖V ≤ 1

α‖`‖V ′.

12
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Proof. By the coercivity of a, we obtain (BNB1), since for u ∈ U

inf
v∈V

sup
ṽ∈V

a(v, ṽ)

‖v‖V ‖ṽ‖V
≥ inf

v∈V

a(v, v)

‖v‖2V
≥ α .

Further, a(v, v) ≥ α‖v‖2V , v ∈ V , yields (BNB2) and theorem 2.17 implies the

assertion.

Remark 2.19. Given a bounded and coercive bilinear form a : X × X −→ R for

a Banach space X, defining
(
·, :
)

= a(·, : ) + a( : , ·) gives an inner product that

yields the same topology as ‖·‖X . Thus, the restriction to Hilbert spaces in corol-

lary 2.18 is natural.

Lemma 2.20. Let V be a Hilbert space and V0 ⊂ V be a closed subspace. Then

for every v̂ ∈ V/V0 there is a unique vmin ∈ v̂ such that

‖vmin‖V = inf
v∈v̂
‖v‖V . (2.3)

Proof. This is a consequence of the orthogonal projection theorem in Hilbert

spaces, see e.g. [60, Thm. 4.11].

Before continuing to the approximation theory, we provide a useful result to find

the constants βi from theorem 2.15 in practice.

Remark 2.21. The proof of theorem 2.15 shows that β1 = β3 and β2 = β4 if they

exist. In case that N (B′) = {0}, proposition 2.22 shows that all βi coincide.

Proposition 2.22. Let X, Y be reflexive Banach spaces, b ∈ B
(
X × Y,R

)
such

that B : X −→ Y ′ from definition 2.3 is an isomorphism.

Then, B′ : X −→ Y ′ is an isomorphism as well and both are bounded below by the

same constant, i.e. the largest lower bounds βopt
1 , βopt

3 coincide:

inf
x∈X

‖Bx‖Y ′
‖x‖X

=: βopt
1 = βopt

3 := inf
y∈Y

‖B′y‖X′
‖y‖Y

.

Proof. By proposition 2.16, B is bounded below and B′ is injective. Using impli-

cation (1. =⇒ 2.) of theorem 2.15 and repeating the arguments in the proof of

proposition 2.16, we see that B′ is an isomorphism and bounded below as well.

Since B′ = B~ ◦ ιY and ιY is an isometric isomorphism, we have

βopt
1 = ‖B−1‖ = ‖(B~)−1‖ = ‖ιY ◦ (B′)−1‖ = ‖(B′)−1‖ = βopt

3 .

Remark 2.23. For practical applications, proposition 2.22 gives freedom of choice

whether to prove that B or B′ are bounded below in order to determine a bound for

the constant β. Using this fact is often referred to as by duality in the literature.
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2.2 Approximation of variational problems

To approximate the solution x ∈ X of (VP), we restrict ourselves to discrete sub-

spaces Xh ⊂ X, Yh ⊂ Y and consider the following finite dimensional problem.

Find xh ∈ Xh such that

b(xh, yh) = `(yh) for all yh ∈ Yh .
(VPh)

Applying theorem 2.17, problem (VPh) is uniquely solvable if and only if

∃βh > 0: inf
xh∈Xh

sup
yh∈Yh

b(xh, yh)

‖xh‖X‖yh‖Y
≥ βh , (BNB1h)

and

∀yh ∈ Yh :
(
∀xh ∈ Xh : b(xh, yh) = 0

)
=⇒ (yh = 0) . (BNB2h)

Since the supremum is taken over a smaller space Yh instead of Y , (BNB1) does not

imply (BNB1h) in general. Also the implication (BNB2) =⇒ (BNB2h) is not true

in general.

As a result, we need to verify (BNB1h) and (BNB2h) in order to guarantee the

well-posedness of (VPh). However, there is a link to the rank theorem from linear

algebra for finite dimensional spaces. Let N,M ∈ N such that N = dimXh and

M = dimYh. Using ordered bases (x1, . . . , xN ) of Xh and (y1, . . . , yM ) of Yh, we

define B ∈ RN×M by

Bnm = b(xn, ym), n = 1, . . . , N, m = 1, . . . ,M . (2.4)

In case that N = M , B is a square matrix and both, (BNB1h) and (BNB2h), imply

that B has full rank.

Proposition 2.24. Let Xh, Yh be finite dimensional normed spaces of the same

dimension, i.e. dimXh = dimYh <∞. Then, we have (BNB1h)⇐⇒ (BNB2h).

Proof. See [24, Proposition 2.21].

Remark 2.25. By proposition 2.24, as soon as we ensure dimXh = dimYh, we

only need to check (BNB1h) in order to guarantee well-posedness of (VPh).

Given a variational problem (VP) and approximation spaces Xh, Yh, the truth

of (BNB1h) can be characterized by the existence of a linear operator, the so-called

Fortin operator.
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Lemma 2.26 (Fortin criterium). Let X,Y be reflexive Banach spaces, Xh ⊂ X,

Yh ⊂ Y closed subspaces and let b ∈ B
(
X × Y,R

)
fulfill (BNB1).

Then, (BNB1h) holds true if there is Πh ∈ L
(
Y, Yh

)
with

b(xh,Πhy) = b(xh, y) for all xh ∈ Xh, y ∈ Y . (2.5)

Proof. Given Πh ∈ L
(
Y, Yh

)
with (2.5), we obtain for xh ∈ Xh by Πh(Y ) ⊂ Yh

sup
yh∈Yh

b(xh, yh)

‖yh‖Y
≥ sup

y∈Y

b(xh,Πhy)

‖Πhy‖Y
≥ 1

‖Πh‖
sup
y∈Y

b(xh, y)

‖y‖Y
≥ β

‖Πh‖
‖xh‖X .

This yields (BNB1h) with βh = β
‖Πh‖ .

Remark 2.27. In case that Y is a Hilbert space, the converse of lemma 2.26

holds true, see [15] and [25].

The following lemma provides an easy to prove variant of the converse statement

forBanach spaces. Here, additionally to (BNB1), we assume that (BNB2) is fulfilled

and that we have dimXh = dimYh.

Lemma 2.28. Let X,Y be reflexive Banach spaces, Xh ⊂ X, Yh ⊂ Yh finite

dimensional subspaces with dimXh = dimYh and let b ∈ B
(
X×Y,R

)
fulfill (BNB1)

and (BNB2). Then, (BNB1h) holds true if and only if there is Πh ∈ L
(
Y, Yh

)
with

b(xh,Πhy) = b(xh, y) for all xh ∈ Xh, y ∈ Y .

Proof. Assuming that (BNB1h) holds true, we observe by duality (remark 2.23)

that also the dual discrete problemFind yh ∈ Yh such that

b(xh, yh) = `(xh) for all xh ∈ Xh ,
(VP′h)

is well-posed for every right-hand side ` ∈ X ′.
For fixed y ∈ Y we have ` := b(·, y) ∈ X ′ and we define define Πhy := yh(y) using

the unique solution yh(y) ∈ Yh of (VP′h). Then, Πh is a linear operator and

‖Πhy‖Y = ‖yh(y)‖Y ≤
1

βh
sup
xh∈Xh

b(xh, yh)

‖xh‖X
≤ ‖b‖

βh
‖y‖Y . (2.6)

The remaining implication is a special case of lemma 2.26.

Now, we prove the main approximation result of this section to estimate the

approximation error when instead of (VP) the discrete problem (VPh) is solved. To

this end, we define the operator that maps the continuous solution xsol of (VP) to

the approximate solution xsol
h of (VPh).
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Definition 2.29. Assuming that (VPh) is well-posed, we define Ph ∈ L
(
X,Xh

)
by

solving (VPh) with right-hand side ` := b(x, ·) ∈ Y ′ for fixed x ∈ X. Then, Ph fulfills

‖Ph‖X,Xh
≤ ‖b‖βh by the same calculation as in (2.6).

Theorem 2.30. Let X,Y be reflexive Banach spaces and Xh ⊂ X, Yh ⊂ Y finite

dimensional subspaces and let b ∈ B
(
X × Y,R

)
such that (VP) and (VPh) are well-

posed. Let xsol ∈ X solve (VP) and xsol
h ∈ Xh solve (VPh). Then, it holds

‖xsol − xsol
h ‖X ≤ ‖IX − Ph‖X,X inf

x̃h∈Xh

‖xsol − x̃h‖X . (2.7)

Proof. See [71]. Since b(xsol, yh) = `(yh) = b(xsol
h , yh) for all yh ∈ Yh, we observe

Phx = xh. Thus, for x̃h ∈ Xh, we have Phx̃h = x̃h and we conclude

‖xsol − xsol
h ‖X = ‖(IX − Ph)xsol‖X = ‖(IX − Ph)(xsol − x̃h)‖X

≤ ‖IX − Ph‖X,X‖xsol − x̃h‖X .

The proof of theorem 2.30 shows that Ph is a projection onto Xh. Combined

with a result due to Kato, this gives an improved variant of (2.7).

Lemma 2.31 (Kato). If X is a Hilbert space and P ∈ L
(
X
)
is a projection with

P /∈ {IX , 0}, we have ‖Ph‖X,X = ‖IX − Ph‖X,X .

Proof. See [62] and [71].

Remark 2.32. If X is a Hilbert space, we can improve estimate (2.7) by lemma 2.31,

since ‖IX − Ph‖X,X = ‖Ph‖X,X ≤ ‖b‖βh :

‖xsol − xsol
h ‖X ≤

‖b‖
βh

inf
x̃h∈Xh

‖xsol − x̃h‖X .

For Banach spaces, we get the classical result

‖xsol − xsol
h ‖X ≤

(
‖IX‖X,X + ‖Ph‖X,X

)
inf

x̃h∈Xh

‖xsol − x̃h‖X

≤
(

1 +
‖b‖
βh

)
inf

x̃h∈Xh

‖xsol − x̃h‖X .

The assertion of theorem 2.30 is a generalized version of Céa’s lemma, e.g., see

[24, Lem. 2.8].

2.3 Saddle point problems in Hilbert spaces

In the applications later on, we consider variants of (VP) having a particular struc-

ture, so-called saddle-point problems. For simplicity, we restrict ourselves toHilbert spaces.
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Definition 2.33 (Riesz map). For a Hilbert space V , we define the Riesz map

ΠV : V −→ V ′ by
〈
ΠV (v), ṽ

〉
:=
(
v, ṽ
)
V

for all v, ṽ ∈ V .

Remark 2.34. For a Hilbert space V , we have for v ∈ V , v′ ∈ V ′

ιV (v)(v′) = v′(v) =
(
Π−1
V v′, v

)
V

=
〈
ΠV v,Π

−1
V v′

〉
=
〈
(Π−1

V )~ΠV v, v
′〉,

and as a result ιV = (Π−1
V )~ΠV which is an isometric isomorphism by the Riesz rep-

resentation theorem, cf. [72, Setion III.6]. So, every Hilbert space is reflexive.

Let V,W be Hilbert spaces and a ∈ B
(
V × V,R

)
be a symmetric and positive

bilinear form, i.e. a(v, v) ≥ 0 for v ∈ V . Moreover, let c ∈ B
(
V ×W,R

)
, `V ∈ V ′

and `W ∈W ′. Consider the following variational problem.
Find (v, w) ∈ V ×W such that

a(v, ṽ) + c(ṽ, w) = `V (ṽ), for all ṽ ∈ V ,
c(v, w̃) = `W (w̃) for all w̃ ∈W .

(SP)

Definition 2.35. To consider (SP), we introduce the following operators.

A ∈ L
(
V, V ′

)
,
〈
Av, ṽ

〉
= a(v, ṽ) ,

C ∈ L
(
V,W ′

)
, C ′ ∈ L

(
W,V ′

)
,
〈
Cv,w

〉
= c(v, w) =

〈
C ′w, v

〉
for v, ṽ ∈ V , w ∈ W . We define variants of C with respect to the factor spaces

V/N (C) and W/N (C ′), i.e. Ĉ ∈ L
(
V/N (C),W ′

)
, Ĉ ′ ∈ L

(
W/N (C ′), V ′

)
with

〈
Ĉv̂, w

〉
= c(v, w) =

〈
Ĉ ′ŵ, v

〉
for v̂ = v +N (C) ∈ V/N (C), ŵ = w +N (C ′) ∈W/N (C ′), v ∈ V , w ∈W .

The problem (SP) is called a saddle point problem, because the solution is a

saddle point of the corresponding Lagrange functional.

Proposition 2.36. Define the Lagrange function L : V ×W −→ R by

L(v, w) =
1

2
a(v, v) + c(v, w)−

〈
`V , v

〉
−
〈
`W , w

〉
.

Then, (u, µ) ∈ V ×W solves (SP) if and only if it is a saddle point of L, i.e.

L(u, w̃) ≤ L(u, µ) ≤ L(ṽ, µ) for all (ṽ, w̃) ∈ V ×W .

Proof. We refer to [24, Prop. 2.39].
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Theorem 2.37. Let `W
(
N (C ′)

)
= {0} and α, β > 0 with

inf
v0∈N (C)

a(v0, v0)

‖v0‖V
≥ α, inf

w+N (C′)∈W/N (C′)
sup
v∈V

c(v, w)

‖v‖V ‖w +N (C ′)‖W/N (C′)
≥ β .

Then, there is a unique solution (u, µ̂) ∈ V ×
(
W/N (C ′)

)
of (SP) with

‖u‖V ≤
‖`V ‖V ′
α

+

(
1

β
+
‖a‖
αβ

)
‖`W ‖W ′ ,

‖µ̂‖W/N (C′) ≤
(

1

β
+
‖a‖
α

)
‖`V ‖V ′ +

(‖a‖
β2

+
‖a‖2
αβ2

)
‖`W ‖W ′ .

Proof. By assumption, `W ∈ N (C ′)⊥ and ‖Ĉ ′w‖V ′ ≥ β‖w + N (C ′)‖W/N (C′) for

w ∈ W . By theorem 2.15, there is û1 ∈ V/N (C) such that Ĉu1 = −`W and

‖u1‖V/N (C) ≤ 1
β‖`W ‖W ′ . As a result, we have for all u1 ∈ û1

c(u1, w̃) = −`W (w̃) ∀w̃ ∈W , inf
ṽ0∈N (C)

‖u1 + ṽ0‖V = ‖û1‖V/N (C) ≤
1

β
‖`W ‖W ′ .

Let u1 ∈ û1 be the minimum norm representative, see lemma 2.20, and obtain

‖u1‖V = inf
ṽ0∈N (C)

‖u1 + ṽ0‖V ≤
1

β
‖`W ‖W ′ .

Because the space N (C) is a closed subspace of V , a|N (C)×N (C) fulfills the assump-

tions of corollary 2.18 (Lax-Milgram). Thus, there is u0 ∈ N (C) with

a(u0, ṽ0) = a(u1, ṽ0)− `V (ṽ0) for all ṽ0 ∈ N (C) .

Then, ‖u0‖V ≤ ‖a‖α ‖u1‖V +
‖`V ‖V ′
α and u = u0 − u1 fulfills

c(u, w̃) = c(u0 − u1, w̃) = −c(u1, w̃) = `W (w̃) for all w̃ ∈W .

By the boundedness of `V and a and by the construction of u, we conclude that

`V (·)−a(u, ·) ∈ N (C)⊥. Applying theorem 2.15 again, we find µ̂ ∈W/N (C ′) such

that Ĉ ′µ̂ = `V − a(u, ·). This yields for all µ ∈ µ̂

c(ṽ, µ) = `V (ṽ)− a(u, ṽ) for all ṽ ∈ V , ‖µ̂‖W/N (C′) ≤
1

β

(
‖`V ‖V ′ + ‖a‖‖u‖V

)
.

The stability estimates follow from

‖u‖V ≤ ‖u0‖V + ‖u1‖V ≤
(

1 +
‖a‖
α

)
‖u1‖U +

‖`V ‖V ′
α

,

‖µ̂‖W/N (C′) ≤
1

β
‖`V ‖V ′ +

‖a‖
β

((
1 +
‖a‖
α

)
‖u1‖U +

‖`V ‖V ′
α

)
.

This also gives uniqueness since the difference of two solutions of (SP) solves (SP)

for zero right-hand side.

Remark 2.38. The ellipticity condition for the bilinear form a can be replaced by

a suitable inf-sup condition. In this work, however, the elliptic case is sufficient.
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CHAPTER 2. Theory of linear variational problems

2.4 Approximation of saddle point problems

Under the same assumptions as for (SP), let Vh ⊂ V and Wh ⊂ W be discrete

subspaces and consider the variational problem
Find (vh, wh) ∈ Vh ×Wh such that

a(vh, ṽh) + c(ṽh, wh) = `V (ṽh) for all ṽh ∈ Vh ,
c(vh, w̃h) = `W (w̃h) for all w̃h ∈Wh .

(SPh)

Definition 2.39. Define the discrete kernels

V0,h =
{
vh ∈ Vh : c(vh, w̃h) = 0 for all w̃h ∈Wh

}
,

W0,h =
{
wh ∈Wh : c(ṽh, wh) = 0 for all ṽh ∈ Vh

}
.

We have N (C ′) ⊂ W0,h and N (C) ⊂ V0,h. However, in general the opposite

inclusions are not fulfilled.

Theorem 2.40. Assume that `W (W0,h) = {0} and αh, βh > 0 exist such that

inf
v0∈V0

a(v0, v0)

‖v0‖2V
≥ αh, inf

wh+W0,h∈Wh/W0,h

sup
vh∈Vh

c(vh, wh)

‖vh‖V ‖wh +W0,h‖Wh/W0,h

≥ βh .

Then, (SPh) has a unique solution (uh, µ̂h) ∈ Vh ×Wh/W0,h satisfying

‖uh‖V ≤
‖`V ‖V ′h
αh

+

(
1

βh
+
‖a‖
αhβh

)
‖`W ‖W ′h ,

‖µ̂‖W/N (C′) ≤
(

1

β
+
‖a‖
α

)
‖`V ‖V ′h +

(‖a‖
β2
h

+
‖a‖2
αhβ

2
h

)
‖`W ‖W ′h .

Proof. This is a direct consequence of theorem 2.37.

Theorem 2.41. Let the assumptions of theorem 2.37 and theorem 2.40 be ful-

filled. Then, we have for all (vh, wh) ∈ Vh ×Wh

‖u− uh‖V ≤
(

1 +
‖a‖
αh

)(
1 +
‖c‖
βh

)
‖vh − u‖V +

1

αh
sup

ṽh∈V0,h

c(ṽh, µ− wh)

‖ṽh‖V
,

‖µ̂− µ̂h‖W/W0,h
≤
(

1 +
‖c‖
βh

)
‖µ̂− ŵh‖W/W0,h

+
‖a‖
βh
‖u− uh‖V ,

where (u, µ̂) ∈ V ×W/N (C ′) and (uh, µ̂h) ∈ V ×Wh/W0,h are the solutions of (SP)

and (SPh), respectively.

Proof. Fix arbitrary (vh, wh) ∈ Vh ×Wh. We have c(u − vh, ·) ∈ W⊥0,h ⊂ W ′h since

c(u − vh, w̃h) = `W (w̃h) − c(vh, w̃h) = 0 for w̃h ∈ W0,h by (SPh). Thus, we find

rh ∈ Vh with

c(rh, w̃h) = c(u− vh, w̃h) for all w̃h ∈Wh , ‖rh‖V ≤
1

βh
sup

w̃h∈Wh

c(u− vh, w̃h)

‖w̃h‖W
.
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2.4. Approximation of saddle point problems

As a result, we have for φh := rh + vh ∈ Vh that φh − uh ∈ V0,h. This and

a(u− uh, ṽh) =
(
`V (ṽh)− c(ṽh, µ)

)
−
(
`V (ṽh)− c(ṽh, µh)

)
= c(ṽh, µh − µ) (2.8)

for µ ∈ µ̂, µh ∈ µ̂h and ṽh ∈ Vh imply

αh‖φh − uh‖V ≤ sup
ṽh∈V0,h

a(φh − uh, ṽh)

‖ṽh‖V
= sup

ṽh∈V0,h

a(φh − u, ṽh) + a(u− uh, ṽh)

‖ṽh‖V

= sup
ṽh∈V0,h

a(φh − u, ṽh) + c(ṽh, µh − µ)

‖ṽh‖V

≤ ‖a‖‖φh − u‖V + sup
ṽh∈V0,h

c(ṽh, wh − µ)

‖ṽh‖V
.

Using ‖φh − u‖V ≤ ‖vh − u‖V + ‖rh‖V , we conclude

‖u− uh‖V ≤ ‖u− φh‖V + ‖φh − uh‖

≤
(

1 +
‖a‖
αh

)
‖φh − u‖V +

1

αh
sup

ṽh∈V0,h

c(ṽh, wh − µ)

‖ṽh‖V

≤
(

1 +
‖a‖
αh

)(
‖vh − u‖V +

1

βh
sup

w̃h∈Wh

c(u− vh, w̃h)

‖w̃h‖W

)

+
1

αh
sup

ṽh∈V0,h

c(ṽh, wh − µ)

‖ṽh‖V

≤
(

1 +
‖a‖
αh

)(
1 +
‖c‖
βh

)
‖vh − u‖V +

1

αh
sup

ṽh∈V0,h

c(ṽh, wh − µ)

‖ṽh‖V
.

To obtain the estimate for ‖µ̂− µ̂h‖W/W0,h
, we again use (2.8) and get

c(vh, wh − µh) = −a(u− uh, vh)− c(vh, µ− wh)

for all µ ∈ µ̂ and µh ∈ µ̂h. The discrete inf-sup stability of c yields

βh‖wh − µh‖W ≤ sup
vh∈Vh

c(vh, wh − µh)

‖vh‖V

= sup
vh∈Vh

c(vh, µ− wh) + a(u− uh, vh)

‖vh‖V
≤ ‖c‖‖µ− wh‖W + ‖a‖‖u− uh‖V

and the triangle inequality finishes the proof by

‖µ− µh‖W ≤ ‖µ− wh‖W + ‖wh − µh‖W .

Theorem 2.42. Assume that the assumptions of theorem 2.37 and theorem 2.40

are satisfied. Further, assume that `W = 0 ∈W ′.
Then, we have u ∈ N (C) and uh ∈ Vh,0 and

‖u− uh‖V ≤
(

1 +
‖a‖
αh

)
inf

vh,0∈Vh,0
‖u− vh,0‖V +

1

αh
sup

vh,0∈Vh,0

a(u, vh,0)− `V (vh,0)

‖vh,0‖V
.
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Proof. (SP) and (SPh) directly imply u ∈ N (C) and uh ∈ Vh,0 since

c(u,w) = 0 for all w ∈W and c(uh, wh) = 0 for all wh ∈Wh .

For vh,0 ∈ Vh,0 by a(uh, vh,0) = `V (vh,0)−c(vh,0, wh) = `V (vh,0), wh ∈Wh, we obtain

αh‖uh − vh,0‖2V ≤ a(uh − vh,0, uh − vh,0)

= a(u− vh,0, uh − vh,0)− a(u− uh, uh − vh,0)

= a(u− vh,0, uh − vh,0)− a(u, uh − vh,0) + `V (uh − vh,0)

≤ ‖a‖‖u− vh,0‖V ‖uh − vh,0‖V
+ ‖a(u, ·)− `V (·)‖V ′h,0‖uh − vh,0‖V

which yields by the triangle inequality

αh‖u− uh‖V ≤ αh‖u− vh,0‖V + αh‖vh,0 − uh‖V

≤
(
αh + ‖a‖

)
‖u− vh,0‖V + sup

vh,0∈Vh,0

a(u, vh,0)− `V (vh,0)

‖vh,0‖V
.

This finishes the proof.
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Chapter 3

Mathematical modeling of

acoustic waves

3.1 The acoustic wave equation

We consider a bounded Lipschitz domain Ω ⊂ Rd and a time interval (0, T ) yielding

the space-time cylinder Q = Ω × (0, T ). For given right hand-side b(x, t) = (f, g),

as well as density and compression modulus distributions ρ(x), κ(x), we search for

solutions of the acoustic wave equation, i.e.

κ−1 ∂tp− div v = f ,

ρ ∂tv −∇p = g ,
(3.1)

where the unknown y = (p,v) is the space-time wavefield.

Introducing the block operators M and A by

M(x) =

(
κ−1(x) 0

0 ρ(x)Id

)
, A =

(
0 div

∇ 0

)
,

we can rewrite (3.1) as Ly = b for the space-time differential operator

Ly = M∂ty −Ay =
(
κ−1∂tp− div v, ρ ∂tv −∇p

)
.

Now we establish an analytic Hilbert space setting for a unique solution of

L(p,v) = (f, g) (3.2)

(subject to initial and boundary conditions) which depends continuously on the data.

To keep our notation simple, we restrict ourselves to the case ρ ≡ κ ≡ 1 in the

following, i.e. M ≡ I1+d.
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3.1. The acoustic wave equation

3.1.1 The semigroup setting

We consider the ODE

∂t(p,v) = A(p,v) + (f, g) , A(p,v) =
(
∇ · v,∇p

)
,

where the operator A is associated with a dense domain

D(A) ⊂ L2(Ω;R× Rd) .

Here, we choose D(A) = H1
0(Ω)×H(div,Ω) including homogeneous Dirichlet bound-

ary conditions for the pressure on ∂Ω.

We show that the operator A with domain D(A) generates a semigroup. There-

fore, we check the requirements of the Lumer-Phillips theorem.

Theorem 3.1 (Lumer-Phillips). Let Y be a Hilbert space and let A be a linear

operator in Y satisfying the following conditions for an ω ∈ R

1. D(A) is dense in Y .

2.
(
y,Ay

)
Y
≤ ω‖y‖2Y for every y ∈ D(A).

3. There exists λ0 > ω such that A− λ0 id is onto.

Then A generates a quasicontraction semigroup with ‖ exp(tA)‖ ≤ exp(ωt).

Proof. See e.g. [56, Thm. 12.22].

To check the requirements, we choose ω = 0 in theorem 3.1 since(
A(p,v), (p,v)

)
Ω

= 0 , (p,v) ∈ D(A) . (3.3)

Then, we set λ0 = 1 > ω and show that id−A is surjective. For a given right-hand

side (f, g) ∈ L2(Ω;R× Rd), we define p ∈ H1
0(Ω) solving

(∇p,∇q)Ω + (p, q)Ω = (f, q)Ω − (g,∇q)Ω , q ∈ H1
0(Ω) ,

and then we define v = g +∇p. We observe

(v,∇q)Ω = (f, q)Ω − (p, q)Ω , q ∈ C1
c(Ω) ,

i.e., v ∈ H(div,Ω) and ∇ · v = p− f , so that together (p,v)−A(p,v) = (f, g). This

gives surjectivity.

According to theorem 3.1, the operator A generates a semigroup. See also [36,

Sect. 2.2] and [43] for the application to general linear wave equations, in particular

for the case of non-constant material parameters.

24



CHAPTER 3. Mathematical modeling of acoustic waves

3.1.2 Duality, adjoint operators and the Hilbert adjoint

In the next section, many arguments rely on duality. For this purpose, we introduce

the Hilbert adjoint A? of the operator A with domain D(A?), cf. [56, Sect. 8.4.2].

Remark 3.2. In case of acoustic waves, we have A? = −A. However, since the

considerations also apply for operators with a different adjoint, we treat A? explicitly.

The adjoint operator is defined in the domain

D(A?) =
{

(q,w) ∈ L2(Ω;R× Rd) : (f, g) ∈ L2(Ω;R× Rd) exists

such that
(
(f, g), (p,v)

)
Ω

=
(
(q,w), A(p,v)

)
Ω
for (p,v) ∈ D(A)

}
.

For the acoustic wave equation we have D(A?) = H1
0(Ω)×H(div,Ω) = D(A).

Then, for (q,w) ∈ D(A?) we define A? by(
A?(q,w), (p,v)

)
Ω

=
(
(q,w), A(p,v)

)
Ω
, (p,v) ∈ D(A) , (q,w) ∈ D(A?) .

Since D(A) ⊂ L2(Ω;R× Rd) is dense, this defines A?(q,w) ∈ L2(Ω;R× Rd).
Correspondingly, for the space-time operator L = ∂t−A the formal adjoint of the

differential operator is given by L? = −∂t −A?, and we obtain in Q = (0, T )× Ω(
L?(q,w), (p,v)

)
Q

=
(
(q,w), L(p,v)

)
Q
, (p,v), (q,w) ∈ C1

c(Q;R× Rd) .

In our application the adjoint problem describes a wave equation backward in time.

In the next section we define suitable domains for the operators L and L? extend-

ing the domains D(A) and D(A?) in L2(Ω;R × Rd) to domains of the space-time

operators in L2

(
(0, T ) × Ω;R × Rd

)
, so that L? is the Hilbert adjoint of L in this

setting.

3.2 A variational space-time setting

We consider the ODE

∂ty = Ay + b in [0, T ] , y(0) = 0 , (3.4)

where A is an operator with a dense domain D(A) in Y = L2(Q;Rm). We assume

that the operator A generates a semigroup. Then, for all

b ∈W1,1
(
(0, T );Y

)
a solution y ∈ C1

(
[0, T ];Y

)
∩ C0

(
[0, T ];D(A)

)
of (3.4) exists and is of the form

y(t) =

∫ t

0
exp

(
(t− s)A

)
[b(s)] ds , t ∈ [0, T ] .
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3.2. A variational space-time setting

This directly implies

‖y(t)‖Ω ≤
∫ t

0

∥∥ exp
(
(t− s)A

)∥∥
Ω

∥∥b(s)∥∥
Ω

ds , t ∈ [0, T ] .

In case of hyperbolic operators satisfying (3.3) we have ‖ exp(tA)‖Ω = 1, see, e.g.,

[56, Thm. 12.22]. Then, ‖y(t)‖Ω ≤
∫ t

0 ‖b(s)‖Ω ds for t ∈ (0, T ) and integration in

time yields

‖y‖Ω×(0,T ) ≤
(∫ T

0

(∫ t

0
‖b(s)‖Ω ds

)2

dt

)1/2

≤
(∫ T

0
t ‖b‖2Ω×(0,t)dt

)1/2

≤
(∫ T

0
t dt ‖b‖2Ω×(0,T )

)1/2

≤ T√
2
‖b‖Ω×(0,T ) .

(3.5)

The ODE solution (3.4) belongs to the Banach space

V =
{
y ∈ C1

(
[0, T ];Y

)
∩ C0

(
[0, T ];D(A)

)
: y(0) = 0

}
,

and we obtain for all b ∈ W1,1
(
(0, T );Y

)
a solution y ∈ V with Ly = b, see [56,

Thm. 12.16]. Note that L is not a closed operator in V.
Since W1,1

(
(0, T );Y

)
is dense in L2

(
(0, T );Y

)
, we obtain the following result.

Lemma 3.3. L(V) is dense in L2

(
(0, T );Y

)
.

In our application also the adjoint operator A? generates a semigroup. Thus, this

result transfers to the adjoint problem, given by the ODE backward in time

−∂tz = A?z + c in [0, T ] , z(T ) = 0 . (3.6)

Thus, for c ∈W1,1
(
(0, T );Y

)
the solution of L?z = c is given by

z(t) =

∫ T

t
exp

(
(s− t)A?

)
[c(s)] ds .

Defining

V? =
{
z ∈ C1

(
[0, T ];Y

)
∩ C0

(
[0, T ];D(A?)

)
: z(T ) = 0

}
this shows that L?(V?) is dense in L2

(
(0, T );Y

)
, and we have(

L?(q,w), (p,v)
)
Q

=
(
(q,w), L(p,v)

)
Q
, (p,v) ∈ V , (q,w) ∈ V? .

3.2.1 A space-time Hilbert space setting

In W = L2

(
(0, T );Y

)
= L2(Q;Rm) we define the space

H(L,Q) :=
{
y ∈W : Ly ∈W

}
:=
{
y ∈W : b ∈W exists such that (3.7)

(b, z)Q = (y, L?z)Q for z ∈ C1
c(Q;Rm)

}
.
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For y ∈ H(L,Q), we define Ly := b with b ∈W as in (3.7). Since C1
c(Q;Rm) is dense

in W , this uniquely defines Ly and we have
(
Ly, z

)
Q

=
(
y, L?z

)
Q
for y ∈ H(L,Q),

z ∈ C1
c(Q,Rm).

Proposition 3.4. H(L,Q) is a Hilbert space with respect to the graph norm

‖y‖L,Q =
√
‖y‖2Q + ‖Ly‖2Q , y ∈ H(L,Q) .

Proof. Straight-forward calculations show that H(L,Q) is a vector space and that

(y, ỹ)L,Q :=
(
y, ỹ

)
Q

+
(
Ly, Lỹ

)
Q
, y, ỹ ∈ H(L,Q), is an inner product.

In order to show that H(L,Q) is complete, we consider a Cauchy sequence

(yn)n ∈ H(L,Q)N. Then, (yn)n and (Lyn)n are Cauchy sequences in W possessing

limits y ∈W and b ∈W , respectively, by the completeness of W . Using the triangle

inequality and
(
Lyn, z

)
Q

=
(
yn, L

?z
)
Q
, z ∈ C1

c(Q,Rm), n ∈ N, we conclude

∣∣(b, z)
Q
−
(
y, L?z

)
Q

∣∣ ≤ ∣∣(b, z)
Q
−
(
Lyn, z

)
Q

∣∣+
∣∣(Lyn, z)Q − (y, L?z)Q∣∣

≤ ‖b− Lyn‖Q‖z‖Q + ‖yn − y‖Q‖L?z‖Q
−→ 0 for n −→∞ .

Thus,
(
b, z
)
Q

=
(
y, L?z

)
Q
for all z ∈ C1

c(Q,Rm) implying y ∈ H(L,Q).

Analogously, we define H(L?, Q) =
{
y ∈W : L?y ∈W

}
and let H(L?, Q)′ denote

its dual space. We define the operator D ∈ L
(
H(L,Q),H(L?, Q)′

)
by〈

Dy, z
〉

= (Ly, z)Q − (y, L?z)Q , y ∈ H(L,Q) , z ∈ H(L?, Q) ,

and we denote the kernel of D by

N (D) =
{
y ∈ H(L,Q) : Dy = 0

}
.

By definition of the adjoint operator L?, we have C1
c

(
Q;Rm

)
⊂ N (D). Thus, the

operator D describes traces obtained using integration by parts in abstract form.

Let H0(L,Q) ⊂ H(L,Q) be the closure of C1
c

(
Q;Rm

)
⊂ N (D). Then, also

H0(L,Q) ⊂ N (D).

In fact, we can establish equality. The proof is based on a duality argument using

the operator D′ ∈ L
(
H(L?, Q),H(L,Q)′

)
with〈

D′z,y
〉

= (Ly, z)Q − (y, L?z)Q =
〈
Dy, z

〉
.

Theorem 3.5. We have

H0(L,Q) = N (D) .
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Proof. We only have to show N (D) ⊂ H0(L,Q). Provided we have established

C1
c

(
Q;Rm

)⊥ ⊂ D′(H(L?, Q)
)
, see definition 2.6, the assertion follows from

N (D) =
{
y ∈ H(L,Q) :

〈
Dy, z

〉
= 0 = 〈D′z,y

〉
for z ∈ H(L?, Q)

}
= ⊥D′

(
H(L?, Q)

)
⊂ ⊥

(
C1

c

(
Q;Rm

)⊥)
= H0(L,Q) .

The proof uses the technique in [26, Lem. 2.4], see also [14, Lem. 2.2] and [67, Lem. 1].

For a given functional ` ∈ C1
c

(
Q;Rm

)⊥ ⊂ H(L,Q)′, we construct z ∈ H(L?, Q) with

D′z = `. Therefore, we define y ∈ H(L,Q) as the Riesz representative of ` in

H(L,Q) solving (
Ly, Lφ

)
Q

+
(
y,φ

)
Q

=
〈
`,φ
〉
, φ ∈ H(L,Q) . (3.8)

Then, since
〈
`,w

〉
= 0 for test functions w ∈ C1

c

(
Q;Rm

)
, we observe(

y,φ
)
Q

= −
(
Ly, Lφ

)
Q
, φ ∈ C1

c

(
Q;Rm

)
.

Inserting z = Ly and using the definition of H(L?, Q), we observe z ∈ H(L?, Q) and

L?z = −y. From (3.8), we now obtain〈
D′z,φ

〉
=
(
Lφ, z

)
Q
−
(
φ, L?z

)
Q

=
(
Lφ, Ly

)
Q

+
(
φ,y

)
Q

=
〈
`,φ
〉
, φ ∈ H(L,Q) ,

i.e., D′z = ` in H(L,Q)′.

Example 3.6. It is a natural question to ask whether the space H(L,Q) is larger

than solution space S := C1
(
[0, T ];Y

)
∩ C0

(
[0, T ];D(A)

)
in the semigroup setting.

Here, we provide an example (p,v) ∈ H(L,Q) \ S.

0.0 0.25 0.5
0.0

0.5

1.
x

t

R1

R3

R2

t

p = 1

p = 0

p = 0
t

v = 0

v = 1

v = −1

Figure 3.1: A function in H(L,Q) \ C1
(
[0, T ];Y

)
∩ C0

(
[0, T ];D(A)

)
, d = 1.

Let d = 1, Ω = (0, 1), T = 1
2 and Q = (0, 1)× (0, 1

2) the space-time cylinder. We

partition Q into three triangular subdomains R1, R2, R3 with

R1 =
{

(x, t) ∈ Q : x > t, x < 1− t
}
, R2/3 =

{
(x, t) ∈ Q \R1 : x ≶ 1/2

}
,
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CHAPTER 3. Mathematical modeling of acoustic waves

see figure 3.1. Following [45], we define (p,v) ∈ L2(Q,R2) by

(
p,v
)
(x, t) =


(1, 0) (x, t) ∈ R1 ,

(0,−1) (x, t) ∈ R2 ,

(0, 1) (x, t) ∈ R3 .

Fixing (ψ,φ) ∈ C1
c(Q,R2), we obtain by applying the product rule

(∂t, ∂x) · (fψ, fφ) = (∂tf, ∂xf) · (ψ,φ) + f (∂tψ + ∂xφ) , f ∈ C1(Q) .

as a point-wise equality. Using Gauß’ divergence theorem in every subdomain Rk,

k = 1, 2, 3, and L?(ψ,φ) = −
(
∂tψ+∂xφ
∂tφ+∂xψ

)
, this yields

−
(
(p,v), L?(ψ,φ)

)
Rk

=
(
p, (ψ,φ) · nRk

)
∂Rk

+
(
v, (φ, ψ) · nRk

)
∂Rk

since (p,v) is subdomain-wise constant making the volume terms vanish. By the

definition of (p,v), we have

(
p, (ψ,φ) · nR1

)
∂R1

=
1√
2

∫ 1/2

0

(
ψ(s, s)− φ(s, s) + ψ(s, 1− s) + φ(s, 1− s)

)
ds ,

(
v, (φ, ψ) · nR2

)
∂R2

=
1√
2

∫ 1/2

0

(
− ψ(s, s) + φ(s, s)

)
ds ,

(
v, (φ, ψ) · nR3

)
∂R3

=
1√
2

∫ 1/2

0

(
− φ(s, 1− s)− ψ(s, 1− s)

)
ds .

All remaining integrals vanish by definition of (p,v) giving (p,v) ∈ H(L,Q) by

(
(p,v), L?(ψ,φ)

)
Q

=
3∑

k=1

(
(p,v), L?(ψ,φ)

)
Rk

= 0 for all (ψ,φ) ∈ C1
c(Q,R2) ,

which means L(p,v) = 0.

On the other hand, for every t ∈ (0, 1
2) we have p(·, t),v(·, t) /∈ C(0, 1). How-

ever, by Sobolev’s embedding theorem, it holds H1(0, 1) ⊂ C(0, 1) implying that

p(·, t),v(·, t) /∈ H1(0, 1). Since we have for the domain D(A) = H1
0(0, 1)2, we con-

clude (p,v) /∈ S.

3.2.2 The closure of the space-time operator (L,V)

We assume that CL > 0 exists such that

‖y‖Q ≤ CL ‖Ly‖Q , y ∈ V . (3.9)

In case of hyperbolic operators, this is obtained from (3.5) with CL = 1√
2
T , see also

[55, Thm. 3.1], [23, Lem. 1], and [68, Lem. 6].
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3.2. A variational space-time setting

In particular, L is injective on V. Now, we define

V := ⊥(V⊥) ⊂ H(L,Q) ,

i.e., V is the closure of V in H(L,Q) with respect to the graph norm, see defini-

tion 2.6. By continuity, the estimate (3.9) also holds for the closure, i.e.,

‖y‖Q ≤ CL ‖Ly‖Q , y ∈ V . (3.10)

Theorem 3.7. L ∈ L(V,W ) is a bijection.

Proof. From (3.10) we observe that L is injective, and since V ⊂ H(L,Q) is closed,

L(V ) ⊂W has closed range. This is shown as follows: for any sequence (yn)n ∈ V N

with limn−→∞ Lyn = b ∈W we have

‖yn − yk‖Q + ‖Lyn − Lyk‖Q ≤ (CL + 1)‖Lyn − Lyk‖Q −→ 0 , k, n −→∞.

Thus, (yn)n is a Cauchy sequence in H(L,Q) and since V ⊂ H(L,Q) is closed,

y := limn−→∞ yn ∈ V with Ly = b exists. Since L(V) ⊂ W is dense (lemma 3.3),

we obtain L(V ) = W .

Remark 3.8. The assertion of theorem 3.7 is a general result for operators: if L

satisfies (3.9) and L(V) ⊂ W is dense, then L extends to a bijection in the closure

V = ⊥(V)⊥.

The estimate (3.9) transfers to the adjoint operator, i.e., we have for z ∈ V?

‖z‖Q = sup
b∈W

(z, b)Q
‖b‖Q

= sup
y∈V

(z, Ly)Q
‖Ly‖Q

= sup
y∈V

(L?z,y)Q
‖Ly‖Q

≤ CL ‖L?z‖Q

again using the density of L(V) in W , and exploiting〈
D′z,y

〉
= (Ly, z)Q − (y, L?z)Q = 0 , y ∈ V , z ∈ V? , (3.11)

which holds by construction of V and V?. Defining V ? := ⊥(V?)⊥ ⊂ H(L?, Q), the

estimate corresponding to (3.10) also holds for the closure of the adjoint operator

L?, i.e.,

‖z‖Q ≤ CL ‖L?z‖Q , z ∈ V ? . (3.12)

Theorem 3.9. We have

V = ⊥D′
(
V?
)

=
{
y ∈ H(L,Q) : (Ly, z)Q = (y, L?z)Q for all z ∈ V?

}
.
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Proof. We have V ⊂ ⊥D′
(
V?
)
by (3.11), so that V ⊂ ⊥D′

(
V?
)
, since ⊥D′

(
V?
)
is

closed in H(L,Q), see definition 2.6.

Now, for w ∈ ⊥D′
(
V?
)
⊂ H(L,Q) set b = Lw ∈ W and let y ∈ V be the unique

solution of Ly = b, cf. theorem 3.7, yielding L(y−w) = 0. Since y ∈ V ⊂ ⊥D′(V?),
we have y −w ∈ ⊥D′

(
V?
)
, and we obtain for all z ∈ V?

0 =
〈
D′z,y −w

〉
=
(
L(y −w), z

)
Q
−
(
y −w, L?z

)
Q

= −
(
y −w, L?z

)
Q
.

Since L?(V?) ⊂W is dense, we obtain w = y ∈ V .

theorem 3.9 shows that the operator L with domain V is the Hilbert adjoint

of the operator L? with domain V ? in the sense of [56, Def. 8.58].

Corollary 3.10. L : H(L,Q) ⊃ V −→ W and L? : H(L?, Q) ⊃ V ? −→ W are

densely defined closed surjective operators and we have(
Ly, z

)
Q

=
(
y, L?z

)
Q
, y ∈ V, z ∈ V ∗ .

In the following section, we break the space H(L,Q) by considering functions that

are piece-wise defined on subdomains of Q.

3.3 Space-time substructuring

For a decompositionQh =
⋃
R∈Rh

R into open disjoint space-time cellsR, we consider

the corresponding discontinuous space H(L,Qh) =
∏
R∈Rh

H(L,R).

Remark 3.11. For vector spaces X1, . . . , XN , we denote by
∏N
n=1Xn the Carte-

sian product of X1, . . . , XN . In the special case XR = L2(R,Rm), R ∈ Rh, we

identify W = L2(Q,Rm) and
∏
R∈Rh

L2(R,Rm).

Introducing local operators DR ∈ L
(
H(L,R),H(L?, R)′

)
, defined by〈

DRyR, zR
〉

= (LyR, zR)R − (yR, L
?zR)R , yR ∈ H(L,R) , zR ∈ H(L?, R) ,

we extend the operator D to Dh ∈ L
(
H(L,Qh),H(L?, Qh)′

)
by〈

Dhy, z
〉

=
∑
R∈Rh

〈
DRyR, zR

〉
, y ∈ H(L,Qh) , z ∈ H(L?, Qh) ,

with yR = y|R and zR = z|R. In particular, we obtain〈
Dy, z

〉
=
∑
R∈Rh

(
(Ly)|R, z|R

)
R
−
(
y|R, (L?z)|R

)
R

=
〈
Dhy, z

〉
(3.13)

for conforming functions y ∈ H(L,Q) and z ∈ H(L?, Q).

Analogously, we define D′h ∈ L
(
(H(L?, Qh),H(L,Qh)′

)
.
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3.3. Space-time substructuring

Remark 3.12. Note that we abuse notation, writing L for the operator defined in

all of Q as well as for the operator that is subdomain-wise defined.

Lemma 3.13. We have

V = ⊥D′h
(
V ?
)

=
{
y ∈ H(L,Qh) :

〈
Dhy, z

〉
= 0 for all z ∈ V ?

}
.

Proof. It is sufficient to show ⊥D′h(V ?) ⊂ H(L,Q). Then, (3.13) yields the assertion

by ⊥D′h(V ?) ∩H(L,Q) = ⊥D′(V ?) = V , cf. theorem 3.9.

For y ∈ ⊥D′h(V ?) ⊂ H(L,Qh) and b = Ly ∈ W , we have
〈
Dhy, z

〉
= 0 for

z ∈ C1
c(Q,Rm) ⊂ V ?. Thus, we obtain

(b, z)Q = (Ly, z)Qh
= (y, L?z)Qh

= (y, L?z)Q , z ∈ C1
c(Q,Rm) ,

so that indeed y ∈ H(L,Q) by definition (3.7).

Lemma 3.14. We have

H0(L,Qh) = N (Dh) .

Proof. We have H0(L,R) = N (DR), cf. theorem 3.5. Thus, the assertion follows

from

H0(L,Qh) =
∏
R∈Rh

H0(L,R) =
∏
R∈Rh

N (DR) = N (Dh) .

This shows that the operator Dh is well-defined on the quotient space associated

with the quotient norm that is denoted by

Ĥ(L,Qh) = H(L,Qh)/H0(L,Qh) , ‖ŷ‖L;∂Qh
= inf
ŷ=y+H0(L,Qh)

‖y‖L,Qh
,

i.e., D̂h ∈ L
(
Ĥ(L,Qh),H(L?, Qh)′

)
is well-defined with〈

D̂hŷ, z
〉

=
〈
Dhy, z

〉
, ŷ = y + H0(L,Qh) . (3.14)

By construction, D̂h is injective, i.e., N (D̂h) = {0}.

Remark 3.15. Note that the roles of L and L? in the above construction are sym-

metric to each other. Thus, following the proofs of the assertions above with L and

L? interchanged yields V ? = ⊥D′h(V ) and H0(L?, Qh) = N (D′h).
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Chapter 4

Space-time minimal residual

methods for waves

In this chapter, we consider different variants of Least-Squares Finite Element meth-

ods. Before we deal with the weakly conforming variant and the Discontinuous

Petrov-Galerkin method, we briefly discuss the classical conforming situation in sec-

tion 4.1. The newly constructed methods presented in section 4.2 and section 4.3

generalize the classical situation in different ways.

Space-time discretizations yield promising schemes for exascale parallel comput-

ers since they allow by construction for parallelism in space and in time as soon as a

well-scaling preconditioner for the full space-time system is available. For instance,

a competitive space-time discretization for the heat-equation with outstanding par-

allel scaling properties has been constructed for instance in [51]. Moreover, since

evolution problems become stationary when treated in space-time, adaptivity by

locally refining the space-time mesh or by locally increasing polynomial degrees is

easily accessible. See [30] for an example for space-time adaptivity applied to electro-

magnetic waves where the author considers a discontinuous Galerkin method for

hyperbolic evolution equations featuring a parallel multilevel preconditioner for the

full space-time problem.

4.1 Least-Squares Finite Elements

This section summarizes well-known textbook contents that we provide for the con-

venience of the reader, see e.g. [6] for a self-contained reference. See also [1, 5, 13].

Before considering Least-Squares Finite Elements for acoustic waves, we start with

a general operator equation Lu = b. For a real Hilbert space W and a subspace
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4.1. Least-Squares Finite Elements

V ⊂ W , we consider a bijective operator L : V −→ W and assume that CL > 0

exists, such that

‖v‖W ≤ CL‖Lv‖W , v ∈ V . (4.1)

We select ‖v‖V =
√
‖v‖2W + ‖Lv‖2W , v ∈ V , and assume that V is closed in W with

respect to ‖ · ‖V . For acoustic waves, a setting like this is introduced in chapter 3.

Since the operator L is a bijection, for any given b ∈ W a unique u ∈ V exists

fulfilling Lu = b. Since Lu − b = 0, u is also characterized by the Least-Squares

problem

u = argmin
v∈V

1

2
‖Lv − b‖2W . (4.2)

The functional J̃ : V −→ R with v 7−→ 1
2‖Lv − b‖2W can be rewritten as follows

J̃(v) =
1

2

(
Lv − b, Lv − b

)
W

=
1

2

(
Lv, Lv

)
W
−
(
b, Lv

)
W

+
1

2
‖b‖2W .

Minimizing J̃ is equivalent to minimizing J : V −→ R instead with

J(v) =
1

2
a(v, v)− `(v) ,

where a : V × V −→ R and ` : V −→ R are defined by

a(v, ṽ) =
(
Lv, Lṽ

)
W
, `(v) =

(
b, Lv

)
W
, v, ṽ ∈ V .

The minimizer u ∈ V is a critical point of J and fulfills J ′(u) = 0, i.e.

a(u, v) = `(v), for all v ∈ V . (4.3)

Lemma 4.1. For Hilbert spaces V ⊂W let L : V −→W be a linear operator with

‖v‖W ≤ CL‖Lv‖W for v ∈ V and let b ∈W .

Then for ‖ · ‖V :=
√
‖ · ‖2W + ‖L(·)‖2W we have

1. The bilinear form a ∈ B
(
V × V,R

)
with a(v, ṽ) = (Lv,Lṽ)W , v, ṽ ∈ V , is

bounded below by α = (C2
L + 1)−1, i.e. a(v, v) ≥ (C2

L + 1)−1‖v‖2V , v ∈ V , and

it holds ‖a‖ ≤ 1.

2. The linear form ` ∈ V ′ fulfills ‖`‖V ′ ≤ ‖b‖W .

Proof. For v, ṽ ∈ V , it holds

|a(v, ṽ)| ≤ ‖Lv‖W ‖Lṽ‖W ≤ ‖v‖V ‖ṽ‖V , |`(v)| ≤ ‖b‖W ‖Lv‖W ≤ ‖b‖W ‖v‖V
‖v‖2V = ‖v‖2W + ‖Lv‖2W ≤ (C2

L+1)‖Lv‖2W = (C2
L + 1)a(v, v) .
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CHAPTER 4. Space-time minimal residual methods

Remark 4.2. In [68], estimates of the form ‖v‖W ≤ CL‖Lv‖W are established

for various first-order systems, e.g. for diffusion-convection-reaction, variants of

Maxwell’s equations, the Helmholtz problem, linear elasticity, and Stokes

equation.

As a result, the Lax-Milgram lemma (corollary 2.18) yields the existence of

a unique u ∈ V solving (4.3) and fulfilling ‖u‖V ≤ 1
α‖`‖V ′ .

Selecting a conforming approximation space Vh ⊂ V , we obtain the discrete coun-

terpart of (4.2) for the approximation uh ∈ Vh as

uh = argmin
vh∈Vh

1

2
‖Lvh − b‖2W . (4.4)

This also yields the following variant of (4.3)

a(uh, vh) = `(vh), for all vh ∈ Vh . (4.5)

Since Vh ⊂ V , the restrictions ah : Vh × Vh −→ R and `h : Vh −→ R fulfill the

assumptions of the Lax-Milgram lemma with the same constants. Therefore, (4.5)

uniquely determines the discrete solution uh ∈ Vh with ‖uh‖V ≤ 1
α‖`h‖V ′h ≤

1
α‖`‖V ′ .

Now, (4.3) and (4.5) yield Galerkin orthogonality

a(u− uh, vh) = 0, vh ∈ Vh ,

and we obtain quasi best-approximation, since by

α‖u− uh‖2V ≤ a(u− uh, u− uh) = a(u− uh, u− vh) ≤ ‖u− uh‖V ‖u− vh‖V

we conclude

‖u− uh‖V ≤
1

α
inf

vh∈Vh
‖u− vh‖V . (4.6)

To solve (4.5), we select an ordered basis (v1
h, . . . , v

n
h) of Vh, n = dimVh, and define

A ∈ Rn×n, b ∈ Rn by

Akl = a(vkh, v
l
h) , bk = `(vkh), k, l = 1, . . . , n .

Then finding u ∈ Rn with Au = b yields uh =
∑n

k=1 ukv
k
h that is a solution of (4.5).

Since Akl = a(vkh, v
l
h) = a(vlh, v

k
h) = Alk and for vh =

∑n
k=1 vkv

k
h, v ∈ Rn, it holds

v>Av =
n∑

k,l=1

vkAklvl =
n∑

k,l=1

vka(vkh, v
l
h)vl = a

(
n∑
k=1

vkv
k
h,

n∑
l=1

vlv
l
h

)

= a(vh, vh) ≥ α‖vh‖2V ,

the system matrix A is symmetric and positive definite.
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4.1. Least-Squares Finite Elements

Discussion This short summary gives an insight, why Least-Squares Finite Ele-

ments are so powerful: given a very general setting as described in the beginning

by (4.6), Least-Squares Finite Elements yield a convergent scheme for all sequences

of approximation spaces (Vh)h>0 such that
⋃
h>0 Vh is dense in V with respect to

‖ · ‖V . In addition, if dimVh <∞ the finite dimensional linear system (4.5) yields a

symmetric and positive definite system Matrix A independently of the properties of

the differential operator L. In particular, for hyperbolic problems like the acoustic

wave equation, the Least-Squares system matrix is symmetric and positive definite.

However, since (4.3) is a normal equation, the condition number for (4.5) is

squared compared to other approaches. Another disadvantage is that the discrete

solution converges with respect to the norm ‖ · ‖V that may not be the norm we are

interested in. In section 4.3, we discuss a variant of the Least-Squares method for

dual norms with in some sense optimal stability properties.

The discretization schemes presented in the following posses various appealing

features. The weakly conforming Least-Squares variant discussed in the following

chapter minimizes the residual in a larger discrete space compared to the conform-

ing scheme described here. Since the approximation space contains discontinuous

functions, we expect improved properties for solutions with low regularity.

All methods presented in the following use spaces that are coupled along the

space-time cells only. Since we do not have nodal degrees of freedom and thus, no

nodal coupling, the resulting system matrices have an appealing sparsity structure.

Furthermore, the methods allow for eliminating the interior degrees of freedom

inside the cells yielding a system matrix of reduced size. The additional effort for

this elimination procedure can be performed on each space-time cell separately. This

is an appealing property for parallel implementations of the methods.

The Discontinuous Petrov-Galerkin method has been proven to allow for ro-

bust schemes with respect to singular perturbations, see [22]. In the long run, we

want to transfer this property to obtain robust approximations for the wave equation

in case of jumping material coefficients.

In this work we focus on two variants of a larger family of space-time methods.

It is beyond the scope of this thesis to provide an exhausting evaluation.

Remark 4.3 (Space-Time Least-Squares in scaled L2 norms). A simple general-

ization of the standard Least-Squares approach uses L2 norms scaled by a weight.

Let W = L2(Q,Rm) and ω : Q −→ R a bounded function that fulfills ω > 0 almost

everywhere in Q = Ω× (0, T ). Then, we have for v ∈ V

Lv = b ⇐⇒ ω · (Lv − b) = 0 ⇐⇒ v = argmin
ṽ∈V

1

2
‖ω · (Lṽ − b)‖2L2(Q) .
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Choosing a rapidly decaying function ω in time like ω(t) = αe−αt/T , α > 0, yields

solutions that were less diffusive at material jumps compared to solutions of the un-

scaled variant. Furthermore, the iterative solver needs significantly less steps for

solving the scaled linear system.

Finding a suitable scaling of the local norm for problems with large spatial variation

of the material parameters is a promising future challenge.

4.2 Weakly conforming Least-Squares Finite Elements

To improve the conforming Least-Squares method presented in section 4.1, we

investigate a different choice of the approximation space Vh.

Here, we use the variational framework and the notation introduced in chap-

ter 3.

4.2.1 A weakly conforming approximation space

In section 3.3, we introduced the operator Dh ∈ L
(
H(L,Qh),H(L?, Qh)′

)
using

abstract integration by parts on a mesh Qh of Q

〈
Dhy, z

〉
=
∑
R∈Rh

〈
DRy|R, z|R

〉
,
〈
DRyR, zR

〉
=
(
LyR, zR

)
R
−
(
yR, L

?zR
)
R
.

Using this operator, lemma 3.13 provides a characterization of what is needed for

a cell-wise defined function to be conforming in V . More precisely, for a cell-wise

defined y ∈ H(L,Qh) we have

y ∈ V ⇐⇒
〈
Dhy, z

〉
= 0 ∀z ∈ V ? . (4.7)

In this section, we weaken (4.7) to obtain a larger approximation space Vh.

To illustrate the following construction, we consider a analogous situation for a

stationary problem.

Example 4.4. We interpret (4.7) in case of the classical situation L = ∇ and

L? = −div. Here, the boundary of a connected Lipschitz domain Ω ⊂ Rd is

partitioned into ΓD∪ΓN where ΓD has non-zero (d−1)-dimensional measure. Then,

we have H(L,Ω) = H1(Ω) and choose V = H1
0(Ω), V ? = H0(div,Ω) with

H1
0(Ω) =

{
v ∈ H1(Ω): v|ΓD

= 0
}
,

H0(div,Ω) =
{
w ∈ H(div,Ω): (w · nΩ)|ΓN

= 0
}
.
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All restrictions to the boundary are understood in the sense of trace operators. In

every cell K, integration by parts yields for v ∈ H1(K), w ∈ H(div,K)〈
DKv, w

〉
:=

∫
K
∇v · w dx+

∫
K
v divw dx =

∫
∂K

v w · nK da .

For an inner face f = K ∩K ′, we have nK |f = −nK′ |f and thus

〈
DKv, w

〉
+
〈
DK′v, w

〉
=

∫
f
(vK − vK′)w · nK da

+

∫
∂K\f

v w · nK da+

∫
∂K′\f

v w · nK′ da .

This implies for all w ∈ H(div,Ω) having vanishing normal traces on ∂
(
K ∪K ′

)
\ f

〈
DKv, w

〉
+
〈
DK′v, w

〉
=

∫
f
(vK − vK′)w · nK da .

Therefore, the characterization (4.7) means that a cell-wise defined function v ∈
H1(Ωh) is conforming in H1(Ω) if and only if the Dirichlet traces coincide on every

face between two cells when tested with normal traces of functions in H(div,Ω).

Following the spirit of example 4.4, we obtain for the acoustic wave operator

L and cell-wise smooth functions y = (p,v) ∈ V , z = (ψ,φ) ∈ V ? on every cell

R = K × (t−, t
+) by Gauß’ divergence theorem

〈
DRy, z

〉
=

∫
K×{t+}

(
pψ + v · φ

)
dx−

∫
K×{t−}

(
pψ + v · φ

)
dx

+

∫
∂K×(t−,t+)

(
pφ · nR + v · nR ψ

)
d(a, t)

=
(
(p,v), (ψ,φ)

)
K×{t+} −

(
(p,v), (ψ,φ)

)
K×{t−}

+
(
(p,v · nR), (φ · nR, ψ)

)
∂K×(t−,t+)

.

(4.8)

Fixing a space-time face F with adjacent cells R and R′, we restrict the test space

to functions vanishing on all other faces. This yields the following compatibility

conditions, where we have to distinguish faces in time from faces in space.

• For a face in time having the form F = K × {t} continuity on p and of all

components of v is required.

• For a face F = f × (t−, t
+) in space (f ⊂ ∂K in space) the p component and

the normal part of the v component need to be continuous.

Using the variational characterization in (4.7), we can relax these compatibility con-

ditions by testing with a smaller space than V ?. This yields our approximation space
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Vh. Given locally conforming spaces VR, i.e. VR ⊂ H(L,R), and a globally conform-

ing coupling space V ?
h ⊂ V ?, we set VRh

=
∏
R VR, V

?
Rh

=
∏
R(V ?

h )|R and define the

space of weakly conforming functions with respect to V ?
h by

V wc
h = V wc

h (V ?
h ) =

{
yh ∈ VRh

:
〈
Dhyh, zh

〉
= 0 for all zh ∈ V ?

h

}
. (4.9)

By construction, we have V ∩VRh
⊂ V wc

h but V wc
h 6⊂ V in general, i.e. the approxima-

tion space V wc
h is larger than a conforming space that is locally given by VR. Thus,

V wc
h is non-conforming in V . Since we weakened the conformity condition (4.7), we

say that V wc
h is weakly conforming.

Example 4.5. To illustrate the definition of V wc
h , we continue the considerations

from example 4.4. For a mesh Kh of a domain Ω ⊂ R2 consisting of rectangular

cells K, we take locally bilinear functions VK := Ql(K) ⊂ H1(K) and the H(div,Ω)

conforming Raviart-Thomas space V ?
h := RTk(Ω) as a test space, see e.g. [24,

Sec. 1.26].

This yields functions in V wc
h (V ?

h ) having Dirichlet traces that coincide from

both sides when tested with polynomials up to k-th order. In particular, if k ≥ l we

end up with a conforming space V wc
h ⊂ V . The special case l = 1, k = 0 yields

the Crouzeix-Raviart approximation space (e.g. [7, Sec. 2.4.1]), see figure 4.1.

Note that not only the coupling along faces, but also the boundary conditions are

enforced in a weak sense for functions in V wc
h .

Figure 4.1: Plot of a weakly conforming function in VRh =
∏

R Q1(R) that is weakly coupled by

V ?
h = RT0(Q) along the faces of rectangular cells. On the left, you can see that the functions

coincide at the face midpoints, since their mean values are the same from both neighboring cells.

In the following, we consider the Least-Squares minimization problem (4.4) for

Vh = V wc
h where we apply the operator L locally in every space-time cell R ∈ Rh.
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4.2.2 Saddle point reformulation

For the numerical analysis and also for the implementation, weakly conforming Least-

Squares FEM feature additional challenges in contrast to the conforming case.

Before we consider the approximation of y by a function in V wc
h , we transform the

analytic minimization problem (4.2) into cell-wise problems that are coupled along

the faces. Since the approximation space is non-conforming, i.e. V wc
h 6⊂ V , we need

to extend the bilinear form a and the right-hand side ` to V wc
h .

To this end, we define for broken functions y, z ∈ H(L,Qh) and R ∈ Rh

ah(y, z) :=
∑
R∈Rh

aR(y|R, z|R), aR(y|R, z|R) :=
(
LRy|R, LRz|R

)
R
,

`h(y) :=
∑
R∈Rh

`R(y|R), `R(y|R) :=
(
b, LRy|R

)
R
,

Jh(y) :=
∑
R∈Rh

JR(y|R), JR(y|R) :=
1

2
aR(y|R,y|R)− `R(y|R) .

Now, (4.2) can be reformulated as the constrained minimization problem

min Jh(y) subject to y ∈ H(L,Qh) :
〈
Dhy, z

〉
= 0 ∀z ∈ V ? . (4.10)

Lemma 4.6. The problems (4.2) and (4.10) are equivalent:

1. If y ∈ V solves (4.2) then y also solves (4.10).

2. If y ∈ H(L,Qh) solves (4.10), then y ∈ V and y solves (4.2).

Proof. We haveM =
{
y ∈ H(L,Qh) :

〈
Dhy, ỹ

〉
= 0, ỹ ∈ V ?

}
= V for the admissi-

ble setM of (4.10) by lemma 3.13. Now, Jh|V = J yields the assertion.

Problem (4.10) can be analyzed as a saddle point problem in H(L,Qh) × V ? as

shown in lemma 4.7.

Lemma 4.7. Let (ysol, zsol) ∈ H(L,Qh)× V ? be a saddle point of

Fh(y, z) = Jh(y) +
〈
Dhy, z

〉
, (y, z) ∈ H(L,Qh)× V ? .

Then, we have ysol ∈ V and Lysol = b.

Proof. A saddle point (ysol, zsol) ∈ H(L,Qh)× V ? of Fh fulfills

Fh(ysol, z̃) ≤ Fh(ysol, zsol) ≤ Fh(ỹ, zsol) for all (ỹ, z̃) ∈ H(L,Qh)× V ? .

This yields 0 ≥ Fh(ysol, z̃)− Fh(ysol, zsol) =
〈
Dhy

sol, z̃ − zsol
〉
for all z̃ ∈ V ?. Since

V ? is a vector space, lemma 3.13 implies ysol ∈ V .
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On the other hand by y ∈ V and by lemma 3.13, we obtain for ỹ ∈ V ⊂ H(L,Qh)

the estimate 0 ≥ Fh(ysol, zsol) − Fh(ỹ, zsol) = J(ysol) − J(ỹ). So, ysol ∈ V is the

minimizer of J = Jh|V .

Since a saddle-point (ysol, zsol) ∈ H(L,Qh)× V ? of Fh is also a critical point, we

obtain the following linear system, cf. proposition 2.36〈
Ahy

sol, ỹ
〉

+
〈
D′hz

sol, ỹ
〉

= `V (ỹ), for all ỹ ∈ H(L,Qh) ,〈
Dhy

sol, z̃
〉

= 0, for all z̃ ∈ V ? .
(4.11)

We define the operators AR ∈ L
(
H(L,R),H(L,R)′

)
by
〈
ARyR, ỹR

〉
= aR(yR, ỹR)

and Ah ∈ L
(
H(L,Qh),H(L,Qh)′

)
by
〈
Ahy, ỹ

〉
=
∑

R∈Rh

〈
ARyR, ỹR

〉
for functions

y = (yR)R, ỹ = (ỹR)R ∈ H(L,Qh).

Remark 4.8. Note that the saddle point is not unique, since for y ∈ V and z ∈ V ?
h ,

we have Fh(y, z) = Fh(y, z + z0) for all z0 ∈ H0(L?, Qh), in the kernel space

H0(L?, Qh) =
{
z ∈ H(L?, Qh) :

〈
Dhỹ, z

〉
= 0 for all ỹ ∈ H(L,Qh)

}
.

Due to lemma 3.13 and remark 3.15, we see H0(L?, Qh) ⊂ V ?.

Following the arguments in [14, Lem. 2.2], we can show that the saddle point

problem is inf-sup stable in the quotient space

V̂ ? = V ?/H0(L?, Qh) ⊂ Ĥ(L?, Qh),

where Ĥ(L?, Qh) = H(L?, Qh)/H0(L?, Qh), see section 3.3, normed by

‖ẑ‖L;∂Qh
= inf
ẑ=z+H0(L?,Qh)

‖z‖L?,Qh
, ẑ ∈ Ĥ(L?, Qh) .

By remark 3.15, we have N (D′h) = H0(L?, Qh) and furthermore we see that the

operator D̂′h ∈ L
(
Ĥ(L?, Qh),H(L,Qh)′

)
is well-defined with

〈
D̂′hẑ,y

〉
=
〈
D′hz,y

〉
, ẑ = z + H0(L?, Qh) .

By construction, D̂′h is injective, i.e., N (D̂′h) = {0}. We show that D̂′h is indeed

bounded below with stability constant 1 using similar arguments as in theorem 3.5.

Lemma 4.9. We have for z ∈ H(L?, Qh)

inf
z0∈H0(L?,Qh)

‖z + z0‖L?,Qh
= sup
y∈H(L,Qh)

〈
D′hz,y

〉
‖y‖L,Qh

.
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Proof. For given z ∈ H(L?, Qh) define y∗ ∈ H(L,Qh) solving(
y∗,φ

)
L,Qh

=
〈
Dhφ, z

〉
for all φ ∈ H(L,Qh) . (4.12)

Then we set z∗ = Ly∗, and by
〈
Dhφ, z

〉
= 0, φ ∈ C1

c(Qh,Rm), (4.12) yields

0 =
(
y∗,φ

)
L,Qh

=
(
y∗,φ

)
Qh

+
(
z∗, Lφ

)
Qh
, φ ∈ C1

c(Qh,Rm) .

Thus, z∗ ∈ H(L?, Qh) with L?z∗ = −y∗ and ‖z∗‖L?,Qh
= ‖y∗‖L,Qh

. By (4.12),〈
Dhφ, z − z∗

〉
=
〈
Dhφ, z

〉
− (Lφ, z∗)Qh

+ (φ, L?z∗)Qh

= (y∗,φ)L,Qh
− (Lφ, Ly∗)Qh

− (φ,y∗)Qh
= 0

for φ ∈ H(L,Qh), i.e., z − z∗ ∈ H0(L?, Qh). This finally yields

inf
z0∈H0(L?,Qh)

‖z + z0‖L?,Qh
≤ ‖z∗‖L?,Qh

= ‖y∗‖L,Qh
=

〈
Dhy

∗, z
〉

‖y∗‖L,Qh

≤ sup
φ∈H(L,Qh)

〈
Dhφ, z

〉
‖φ‖L,Qh

= inf
z0∈H0(L?,Qh)

sup
φ∈H(L,Qh)

〈
Dhφ, z + z0

〉
‖φ‖L,Qh

≤ inf
z0∈H0(L?,Qh)

‖z + z0‖L?,Qh

where we use |
〈
Dhφ,ψ

〉
| ≤ ‖φ‖L,Qh

‖ψ‖L,Qh
.

As an immediate consequence, we obtain

Corollary 4.10. For ẑ ∈ Ĥ(L?, Qh), y ∈ H(L,Qh), we have

‖ẑ‖L?;∂Qh
= sup
y∈H(L,Qh)

〈
D̂′hẑ,y

〉
‖y‖L,Qh

.

Remark 4.11. corollary 4.10 shows that

D̂′h : Ĥ(L?, Qh) −→ D̂′h
(
Ĥ(L?, Qh)

)
⊂ H(L,Qh)′

is an isometry identifying the trace space Ĥ(L?, Qh) with a subspace of H(L,Qh)′.

From the proof of lemma 4.9, we conclude that z∗ is the function in z+H0(L?, Qh)

having the minimal ‖·‖L?,Qh
norm. Since z+H0(L?, Qh) is the trace of z, we interpret

z∗ as the continuation of traces of z having minimal norm.

Theorem 4.12. There is a unique (ysol, ẑsol) ∈ H(L,Qh) × V̂ ? solving (4.11) and

fulfilling

‖y‖L,Qh
≤
(
1 + C2

L

)
‖`V ‖V ′ , ‖ẑsol‖L?;∂Qh

≤
(
2 + C2

L

)
‖`V ‖V ′ .
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Proof. We apply the theory in section 2.3 to (4.11). To this end, we consider (4.11)

on the product space H(L,Qh)× V̂ ? setting `V̂ ? = 0 ∈ (V̂ ?)′ and

c ∈ B
(
H(L,Qh)× V̂ ?,R

)
, c(y, ẑ) :=

〈
D̂′hẑ,y

〉
, y ∈ H(L,Qh), ẑ ∈ V̂ ? .

By corollary 4.10, c is inf-sup stable. We see by lemma 3.13 that

V =
{
y ∈ H(L,Qh) : c(y, ẑ) = 0 for all ẑ ∈ V̂ ?

}
and since a is elliptic on V by lemma 4.1, the assumptions of theorem 2.37 are

fulfilled.

This yields the existence of a unique saddle-point (y, ẑ) ∈ H(L,Qh)× V̂ ?. Since

‖a‖ ≤ 1, ‖`V ‖H(L,Qh)′ ≤ ‖b‖Qh
and α = (C2

L + 1)−1 by lemma 4.1, the stability

bound follows.

4.2.3 Discrete ellipticity and inf-sup stability

In this section, we establish criteria for the stable approximation of the saddle point

problem (4.11) using the weakly conforming approximation space V wc
h from (4.9).

Using the extended bilinear form ah and right-hand side `h from section 4.2.2,

we obtain the following variational problem for ysol
h ∈ V wc

h :

ah(ysol
h , ỹh) = `h(ỹh) for all ỹh ∈ V wc

h . (4.13)

Given that ah is elliptic in V wc
h , i.e. there is α0 > 0 such that

ah(yh,yh) ≥ α0 ‖yh‖2L,Qh
, for all yh ∈ V wc

h , (4.14)

we obtain the discrete counterpart of lemma 4.7 as in

Lemma 4.13. Let (ysol
h , zsol

h ) ∈ VRh
×V ?

h be a saddle point of Fh|VRh
×V ?

h
. Then, we

have ysol
h ∈ V wc

h and ysol
h is a minimizer of Jh in V wc

h .

Proof. Repeat the arguments from lemma 4.7.

To compute the discrete solution (ysol
h , zsol

h ) ∈ VRh
× V ?

h , we consider the discrete

counterpart of (4.11) given by〈
Ahy

sol
h , ỹ

〉
+
〈
D′hz

sol
h , ỹh

〉
= `V (ỹh), for all ỹh ∈ VRh

,〈
Dhy

sol
h , z̃h

〉
= 0, for all z̃h ∈ V ?

h .
(4.15)

Again, the Lagrange multiplier zsol
h ∈ V ?

h is not uniquely determined in general.

Similarly to the continuous case, we have Fh(yh, zh) = Fh(yh, zh + z0,h) for all

z0,h ∈ V ?
0,h, where V

?
0,h is the discrete kernel space

V ?
0,h :=

{
zh ∈ V ?

h :
〈
Dhỹh, zh

〉
= 0 for all ỹh ∈ VRh

}
. (4.16)
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To ensure V ?
0,h = {0}, we aim to show discrete inf-sup stability of the constraint

locally, i.e. there exists β0 > 0 with

sup
yh∈VRh

〈
D′hzh,yh

〉
‖yh‖L,Qh

≥ β0‖zh‖L?,Qh
, for all zh ∈ V ?

h . (4.17)

Theorem 4.14. Assume that α0, β0 > 0 exist satisfying (4.14) and (4.17). Then,

a unique saddle point (ysol
h , zsol

h ) ∈ VRh
× V ?

h of Fh|VRh
×V ?

h
exists and we have the

following error estimate with C = (1 + α−1
0 )

‖ysol − ysol
h ‖L,Qh

≤ C inf
yh∈V wc

h

‖ysol − yh‖L,Qh
+

1

α0
sup

yh∈V wc
h

ah(ysol,yh)− `h(yh)

‖yh‖L,Qh

.

Proof. Since in (4.11) the second right-hand side is 0 ∈ (V ?)′, we can apply theo-

rem 2.40 and theorem 2.42. By lemma 4.1, we have ‖ah‖ ≤ 1.

The proof of the inf-sup stability in lemma 4.9 is a local construction, i.e.

inf
z∈H(L?,R)

sup
y∈H(L,R)

〈
DRyR, zR

〉
‖y‖L,R‖z‖L?,R

= 1 for all R ∈ Rh .

Thus, we choose discrete spaces so that also the discrete local inf-sup constant is

bounded independently of R.

Lemma 4.15. For every zh = (zR)R ∈ V ?
Rh

there is y∗h = (y∗R)R ∈ VRh
with

sup
yh∈VRh

〈
Dhyh, zh

〉
‖yh‖L,Qh

= ‖y∗h‖L,Qh
, ∀R ∈ Rh : sup

yR∈VR

〈
DRyR, zR

〉
‖yR‖L,R

= ‖y∗R‖L,R .

(4.18)

Proof. Let zh = (zR)R ∈ V ?
Rh

. Then D′RzR ∈ V ′R and there is y∗R ∈ VR solving(
y∗R,φR

)
L,R

=
〈
DRφR, zR

〉
, φR ∈ VR . (4.19)

Summing all cells yields for y∗h := (y∗R)R ∈ VRh
and all φh = (φR)R ∈ VRh(

y∗h,φh
)
L,Qh

=
∑
R∈Rh

(
y?R,φR

)
L,R

=
∑
R∈Rh

〈
DRφR, zR

〉
=
〈
Dhφh, zh

〉
. (4.20)

Finally, by (4.19) and (4.20), we obtain for all φh = (φR)R ∈ VRh〈
DRφR, zh

〉
‖φR‖L,R

=

(
y∗R,φR

)
L,R

‖φR‖L,R
≤ ‖y∗R‖L,R ,〈

Dhφh, zh
〉

‖φh‖L,Qh

=

(
y∗h,φh

)
L,Qh

‖φh‖L,Qh

≤ ‖y∗h‖L,Qh
,

finishing the proof by choosing φh = y∗h.
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Lemma 4.16. Assume that for all R ∈ Rh there is βR > 0 satisfying

sup
yR∈VR

〈
DRyR, zR

〉
‖yR‖L,R

≥ βR‖zR‖L?,R , zR ∈ V ?
h |R . (4.21)

Then, the discrete inf-sup stability (4.17) holds with β0 = minR∈Rh
βR > 0.

Proof. By lemma 4.15, for zh = (zR)R ∈ V ?
h there is y∗h = (y∗R)R ∈ VRh

with (4.18).

This yields(
sup

yh∈VRh

〈
Dhyh, zh

〉
‖yh‖L,Qh

)2

= ‖y∗h‖2L,Qh
=
∑
R∈Rh

‖y∗R‖2L,R

=
∑
R∈Rh

(
sup
yR∈VR

〈
DRyR, zR

〉
‖yR‖L,R

)2

≥
∑
R∈Rh

(
βR‖zR‖L?,R

)2
≥ β2

0 ‖zh‖2L?,Qh
.

Remark 4.17. Note that βR can be calculated locally in each cell R ∈ Rh by a

small eigenvalue problem, see (A.1) in appendix A. Thus, lemma 4.16 provides a

computationally accessible criterion to prove discrete inf-sup stability.

4.2.4 The skeleton reduction

Addressing equation (4.15) for (ysol
h , zsol

h ) directly, leads to an unnecessary large linear

system. In the following, we use a technique that is known as Schur-complement

reduction, see e.g. [24, Sec. 4.4.4], to reduce the size of the globally coupled linear

system at the cost of many uncoupled local equations to be solved.

Similarly to (4.16), we define the discrete local kernel spaces for R ∈ Rh
V0,R :=

{
yR ∈ VR :

〈
DRyR,ψR

〉
= 0 for all ψR ∈ V ?

h |R
}
,

V ?
0,R :=

{
zR ∈ V ?

h |R :
〈
DRφR, zR

〉
= 0 for all φR ∈ VR

} (4.22)

yielding the uncoupled spaces V0,Rh
=
∏
R∈Rh

V0,R and V ?
0,Rh

=
∏
R∈Rh

V ?
0,R.

As a result, for yR ∈ VR and y0,R ∈ V0,R, we have in every cell R ∈ Rh〈
D′RψR,yR + y0,R

〉
=
〈
DR(yR + y0,R),ψR

〉
, ψR ∈ V ?

h |R .

Further, we define D̃R ∈ L
(
VR/V0,R, (V

?
h |R)′

)
and D̃′R ∈ L

(
V ?
h |R, (VR/V0,R)′

)
by〈

D̃RŷR,ψR
〉

:=
〈
D̃′RψR, ŷR

〉
:=
〈
DRyR,ψR

〉
, yR ∈ ŷR ∈ VR/V0,R , ψR ∈ V ?

h |R ,

and we obtain D̃h ∈ L
(
V wc
h /V0,Rh

, (V ?
h )′
)
and D̃′h ∈ L

(
V ?
h , (V

wc
h /V0,Rh

)′
)
with〈

D̃hŷh,ψh
〉

:=
〈
D̃′hψh, ŷh

〉
:=

∑
R∈Rh

〈
D̃RŷR,ψR

〉
for yh = (yR)R ∈ ŷh = (ŷR)R ∈ V wc

h /V0,Rh
, ψh = (ψR)R ∈ V ?

h .
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Remark 4.18. Note that the operator D̃R differs from D̂R, since a discrete space is

factored out.

Following [68], we introduce a new unknown ŷsol
h ∈ V wc

h /V0,Rh
to approximate the

skeleton trace of ysol. To this end, we consider the extended discrete saddle-point

functional F̂h : VRh
× V ?

Rh
×
(
V wc
h /V0,Rh

)
−→ R given by

F̂h(yh, zh, ŷh) =
∑
R∈Rh

JR(yR) +
〈
DRyR − D̃RŷR, zR

〉
=
∑
R∈Rh

1

2

〈
ARyR,yR

〉
−
〈
`R,yR

〉
+
〈
DRyR − D̃RŷR, zR

〉
.

A saddle point (ysol
h , zsol

h , ŷsol
h ) of F̂h is characterized by

∀R ∈ Rh :

{
ARy

sol
R +D′Rz

sol
R = `R ∈ V ′R,

DRy
sol
R = D̃Rŷ

sol
R ∈ (V ?

h |R)′,
(4.23)

and

D̃′hz
sol
h = 0 ∈ (V wc

h /V0,Rh
)′ . (4.24)

To ensure V ?
0,Rh

= {0}, we assume local inf-sup stability as formulated in

Lemma 4.19. Assume that for all cells R ∈ Rh there is β̄R > 0 such that

sup
yR∈VR

〈
DRyR, zR

〉
‖yR‖L,R

≥ β̄R‖zR‖L?,R , zh ∈ V ?
Rh

. (4.25)

Then, with β̄0 := minR∈Rh
β̄R, we have for all zh ∈ V ?

Rh

sup
yh∈VRh

〈
D′hzh,yh

〉
‖yh‖L,Qh

≥ β̄0‖zh‖L?,Qh
.

Proof. Repeat the arguments in the proof of lemma 4.16.

Remark 4.20. Note that (4.25) implies (4.17).

Proposition 4.21. If (ysol
h , zsol

h , ŷsol
h ) ∈ VRh

× V ?
Rh
× (V wc

h /V0,Rh
) is a saddle point

of F̂h, i.e. fulfilling (4.23) and (4.24), then we have ysol
h ∈ V wc

h and ysol
h is a solution

of (4.13).

Proof. Let y0
h ∈ ŷsol

h ∩ V wc
h , i.e. ŷsol

h = y0
h + V0,Rh

. Then, by the second identity in

(4.23) we obtain

〈
Dhy

sol
h , zh

〉
=
〈
D̃h(y0

h + V0,Rh
), zh

〉
=
〈
Dhy

0
h, zh

〉
for all zh ∈ V ?

h .
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This implies ysol
h − y0

h ∈ V wc
h yielding ysol

h ∈ V wc
h . Finally, restricting the test space

for the first equation in (4.23) and exploiting (4.24) imply for yh ∈ V wc
h

ah(ysol
h ,yh)− `h(yh) =

∑
R∈Rh

(〈
ARy

sol
R ,yR

〉
−
〈
`R,yR

〉)
+
〈
D̃′hz

sol
h ,yh + V0,Rh

〉
=
∑
R∈Rh

〈
ARy

sol
R ,yR

〉
+
〈
D′Rz

sol
R ,yR

〉
−
〈
`R,yR

〉
= 0

This yields the assertion.

In the following, we provide a construction to obtain a saddle point of F̂h which

allows for the reduction of the saddle point system (4.23), (4.24) to ŷsol
h .

Provided the operator SR :=
(
AR D′R
DR 0

)
∈ L

(
VR×V ?

h |R, (VR×V ?
h |R)′

)
is invertible

in every cell R ∈ Rh, we can solve the local system (4.23) for (ysol
R , zsol

R ) and obtain

(ysol
R , zsol

R ) = S−1
R (`R, D̃Rŷ

sol
R ). Inserting into (4.24), this yields

0 =
∑
R∈Rh

(
0

D̃R

)′(
AR D′R

DR 0

)−1(
`R

D̃Rŷ
sol
R

)

=
∑
R∈Rh

( 0

D̃R

)′(
AR D′R

DR 0

)−1(
0

D̃R

)
ŷsol
R +

(
0

D̃R

)′(
AR D′R

DR 0

)−1(
`R

0

)
as an equation in (V wc

h /V0,Rh
)′. Finally, we obtain the globally coupled system

Ŝhŷ
sol
h = ˆ̀

h in (V wc
h /V0,Rh

)′ (4.26)

for the skeleton traces ŷsol
h with

Ŝh = −
∑
R∈Rh

(
0

D̃R

)′(
AR D′R

DR 0

)−1(
0

D̃R

)
∈ L

(
V wc
h /V0,Rh

, (V wc
h /V0,Rh

)′
)
,

ˆ̀
h =

∑
R∈Rh

(
0

D̃R

)′(
AR D′R

DR 0

)−1(
`R

0

)
∈ (V wc

h /V0,Rh
)′ .

Remark 4.22. This reduction process gives rise to a solution procedure as formulated

in algorithm 1. This algorithm is appealing for a parallel implementation, since

the dimension of the globally coupled system (4.26) is reduced from dim(VRh
× V ?

h )

to dim V̂h and all local contributions to Ŝh and ˆ̀
h can be assembled in parallel on

each space-time cell R ∈ Rh. Further, once the skeleton variable ŷsol
h has been calcu-

lated, also the local reconstruction of ysol
h can be achieved efficiently in parallel. See

chapter 5 for practical computations.
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Algorithm 1 Find saddle point of F̂h

1: Assemble Ŝh and ˆ̀
h (no communication)

2: Solve the system (4.26) for ŷsol
h (requires communication)

3: For each R ∈ Rh: solve (4.23) for ysol
R (no communication)

Proposition 4.23. Assume that α0, β̄0 > 0 satisfying (4.14) and (4.25) exist.

Then, Ŝh is well-defined and symmetric, i.e.
〈
Ŝhφ̂h, ŷh

〉
=
〈
Ŝhŷh, φ̂h

〉
for all

ŷh, φ̂h ∈ V wc
h /V0,Rh

. Further, Ŝh satisfies the spectral bounds

α0‖ŷh‖2V wc
h /V0,Rh

≤
〈
Ŝhŷh, ŷh

〉
≤ 1

α0β̄2
0

‖ŷh‖2V wc
h /V0,Rh

, ŷh ∈ V wc
h /V0,Rh

.

Proof. We consider the linear operators SRh
∈ L

(
VRh

× V ?
Rh
, (VRh

× V ?
Rh

)′
)
and

Gh ∈ L
(
V wc
h /V0,h, (VRh

× V ?
Rh

)′
)
defined by

〈
SRh

(yh, zh), (φh,ψh)
〉

:=
∑
R∈Rh

〈
ARyR,φR

〉
+
〈
D′RzR,φR

〉
+
〈
DRyR,ψR

〉
,

〈
GRŷR, (φR,ψR)

〉
:=
〈
D̃RŷR,ψR

〉
,〈

Ghŷh, (φh,ψh)
〉

:=
∑
R∈Rh

〈
GRŷR, (φR,ψR)

〉
for yh ∈ VRh

, ŷh ∈ V wc
h /V0,Rh

and (φh,ψh) ∈ VRh
×V ?
Rh

. For fixed ŷh ∈ V wc
h /V0,Rh

,

a pair (yh, zh) ∈ VRh
× V ?

Rh
with yh = (yR)R, zh = (zR)R, fulfills the identity

SRh
(yh, zh) = Ghŷh if and only if

∀R ∈ Rh :

{ 〈
ARyR,φR

〉
+
〈
D′RzR,φR

〉
= 0 , φR ∈ VR,〈

DRyR,ψR
〉

=
〈
D̃RŷR,ψR

〉
, ψR ∈ V ?

h |R,
(4.27)

Since V ?
h ⊂ V ?

Rh
, we see V0,Rh

⊂ V wc
h by (4.22) and (4.9). Applying (4.14), this yields

ah(y0,h,y0,h) ≥ α0‖y0,h‖2L,Qh
for y0,h ∈ V0,Rh

. Using lemma 4.19, we obtain that the

adjoint kernel space V ?
0,Rh

is trivial. Thus, theorem 2.37 yields the well-posedness

of (4.27). For every cell R ∈ Rh, we define yR ∈ VR, zR ∈ V ?
h |R by(

yR

zR

)
=

(
AR D′R

DR 0

)−1(
0

D̃Rŷh

)
.

By the second identity in (4.27), we see yh := (yR)R ∈ ŷh and thus, yh ∈ V wc
h . Using

the definition of Ŝh and (4.27), we obtain

〈
Ŝhŷh, ŷh

〉
= −

∑
R∈Rh

〈
D̃′RzR, ŷR

〉
= −

∑
R∈Rh

〈
DRŷR, zR

〉
=
∑
R∈Rh

〈
ARyR,yR

〉
.
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Exploiting (4.14) and the definition of the quotient norm in V wc
h /V0,Rh

, we obtain

the lower bound by
〈
Ŝhŷh, ŷh

〉
≥ α0‖yh‖2L,Qh

≥ α0‖ŷh‖2V wc
h /V0,Rh

.

To show the upper bound, we calculate using (4.25)

β̄0‖zh‖L?,Qh
≤ sup
φh∈VRh

〈
D′hzh,φh

〉
‖φh‖L,Qh

= sup
φh∈VRh

∑
R∈Rh

〈
ARyR,φR

〉
‖φR‖L,Qh

≤ ‖yh‖L,Qh

and by the definition of the quotient norm, we have

α0‖yh‖2L,Qh
≤ ah(yh,yh) = −

∑
R∈Rh

〈
DRyR, zR

〉
= −

∑
R∈Rh

〈
D̃RŷR, zR

〉
≤ ‖ŷh‖V wc

h /V0,Rh
‖zh‖L?,Qh

≤ 1

β̄0
‖ŷh‖V wc

h /V0,Rh
‖yh‖L,Qh

.

This implies〈
Ŝhŷh, ŷh

〉
= −

∑
R∈Rh

〈
D̃′RzR, ŷR

〉
≤ ‖ŷh‖V wc

h /V0,Rh
‖zh‖L?,Qh

≤ 1

α0β̄2
0

‖ŷh‖2V wc
h /V0,Rh

.

Since Ŝh is symmetric by its structure, this finishes the proof.

Remark 4.24. The result in proposition 4.23 shows that the skeleton reduction

procedure yields a symmetric and positive definite system.

4.2.5 Discussion

In section 5.2, we provide numerical experiments demonstrating the performance

of this weakly conforming Least-Squares method. For one space dimension, we know

various pairings VRh
and V ?

h fulfilling (4.14), (4.25) and the numerical results are

promising.

Unfortunately, in two space dimensions we were not able to find such a pairing,

since either the local saddle point matrix SR or the globally reduced system matrix

Ŝh are singular in all examples we tested.

It turns out that (4.14) and (4.25) can build up each other. On the one hand,

(4.14) requires strong coupling along the faces meaning that for a given space VRh

the test space V ?
h needs to be large. On the other hand, the space VRh

has to be

large enough to make the supremum in (4.25) positive.

In case that (4.14) holds but (4.25) is not fulfilled, there still might exist a saddle

point of Fh. However, the Lagrange multiplier z ∈ V ? is not unique anymore.

Since we are interested in the primal unknown yh ∈ V wc
h , any Lagrange multi-

plier would do the job. It might be possible to drop condition (4.25) and solve the

singular problem, e.g. using Least-Squares approaches.

A similar strategy for an overdetermined problem is considered in [39].
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4.3. The Discontinous Petrov-Galerkin method

4.3 The Discontinous Petrov-Galerkin method

In this section, we present a space-time DPG method that is another variant of a

minimal residual method. Before we apply the Discontinuous Petrov-Galerkin

(DPG) methodology to the acoustic wave equation, we explain some key concepts

on an abstract level using a similar notation as in section 4.1.

There is vast literature on the DPG method covering the theory and wide ranges

of different applications. The fundamental ideas are summarized in e.g. [11, 14, 20].

Also see [11, 52, 73] for applications to Friedrichs systems and wave equations.

More recently, the DPG method has been applied to space-time variational formula-

tions. In [21], a space-time formuation for the Schrödinger equation is considered

and in [33], the authors consider acoustic waves in space-time.

4.3.1 Continuous and discrete well-posedness

For Hilbert spaces V and Z, a bilinear form b ∈ B
(
V × Z,R

)
and ` ∈ Z ′, we

consider the general variational problem as in chapter 2Find u ∈ V such that

b(u, z) = `(z) for all z ∈ Z ,
(VP)

and briefly revisit the well-posedness results.

theorem 2.17 tells us that (VP) is well-posed for all right-hand sides ` ∈ Z ′ if
and only if we have inf-sup stability and definiteness, i.e.

∃β > 0: inf
v∈V

sup
z∈Z

b(v, z)

‖v‖V ‖z‖Z
≥ β , (BNB1)

and

∀z ∈ Z :
(
∀v ∈ V : b(v, z) = 0

)
=⇒ (z = 0) . (BNB2)

Assuming we are considering a well-posed problem, i.e. (BNB1) and (BNB2) are

fulfilled, we can construct a discrete approximation by choosing finite-dimensional

spaces Vh ⊂ V and Zh ⊂ Z. This yields a discrete counterpart of (VP) given byFind uh ∈ Vh such that

b(uh, zh) = `(zh) for all zh ∈ Zh .
(VPh)

Again, theorem 2.17 guarantees that (VPh) is well-posed if and only if we have

discrete inf-sup stability and discrete definiteness, i.e.

∃βh > 0: inf
vh∈Vh

sup
zh∈Zh

b(vh, zh)

‖vh‖V ‖zh‖Z
≥ βh , (BNB1h)
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and

∀zh ∈ Zh :
(
∀vh ∈ Vh : b(vh, zh) = 0

)
=⇒ (zh = 0) . (BNB2h)

Since the supremum in (BNB1h) is taken over the smaller set Zh compared to Z

in (BNB1), the inf-sup stability of the original problem does not carry over to the

discrete problem in general. According to proposition 2.24, at least (BNB2h) holds

true as soon as (BNB1h) is fulfilled and dimVh = dimZh.

One key idea of the Discontinuous Petrov-Galerkin (DPG) methodology arises

from the following question: Given a trial space Vh ⊂ V , how to construct an optimal

test space Zh ⊂ Z such that the discrete inf-sup constant βh is not worse than the

continuous constant β?

4.3.2 Optimal test functions – the trial-to-test operator

The answer to that question leads to the trial-to-test operator T : V −→ Z mapping

each trial function v ∈ V to the test function T v ∈ Z that realizes the supremum in

(BNB1). We define T as follows.

For v ∈ V , we calculate the Riesz-representative T v ∈ Z of the linear form

b(v, ·) ∈ Z ′, i.e. (
T v, z̃

)
Z

= b(v, z̃) for all z̃ ∈ Z , (4.28)

Then, we obtain the supremum using the Cauchy-Schwarz inequality by

sup
z∈Z

b(v, z)

‖z‖Z
= sup

z∈Z

(
T v, z

)
Z

‖z‖Z
=

(
T v, T v

)
Z

‖T v‖Z
=
b(v, T v)

‖T v‖Z
. (4.29)

Thus, choosing the optimal test space Zh := T (Vh), we obtain for vh ∈ Vh

sup
zh∈Zh

b(vh, zh)

‖zh‖Z
=
b(vh, T vh)

‖T vh‖Z
= sup

z∈Z

b(vh, z)

‖z‖Z
≥ β‖vh‖V . (4.30)

Here, the first equality in (4.30) holds since for each vh ∈ Vh the maximizer T vh
is contained in Zh. As a result, the Petrov-Galerkin scheme (VPh) using the

optimal test space Zh = T (Vh) is inf-sup stable by construction with the same or

even a larger constant compared to the continuous problem. Furthermore, we have

dimVh = dimZh resulting in the well-posedness of (VPh). However, as soon as the

norm in Z involves a differential operator, in general, solving (4.28) can be as hard

as solving (VP) itself.

The second key idea of the DPG methodology comes up with a localized way to

solve (4.28).

Remark 4.25. Using the operator B ∈ L
(
V,Z ′

)
from definition 2.3 fulfilling〈

Bv, z
〉

= b(v, z) =
〈
B′z, v

〉
for v ∈ V , z ∈ Z, and inserting the Riesz-isomorphism

ΠZ ∈ L
(
Z,Z ′

)
, we derive T = Π−1

Z B from (4.28).
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4.3.3 Breaking the test space – the ideal DPG method

In the following, we assume that V and Z are function spaces on a space-time domain

Q ⊂ R1+d. Furthermore, we assume that b, ` and ‖ · ‖Z are localizeable, i.e. they can

be written as sums of cell-wise defined local counterparts. More precisely, given a

triangulation Rh of Q, we assume that of cell-wise defined bR ∈ B
(
V |R × Z|R,R

)
,

`R ∈
(
Z|R

)′ and a norm ‖ · ‖Z,R : Z|R −→ R on Z|R exist such that

b(v, z) =
∑
R∈Rh

bR
(
v|R, z|R

)
, `(z) =

∑
R∈Rh

`R
(
z|R
)
, ‖z‖2Z =

∑
R∈Rh

∥∥z|R∥∥2

Z,R
,

for all v ∈ V , z ∈ Z. Note that by summation, we can extend b and ` to the cell-wise

defined space ZRh
:=
∏
R∈Rh

Z|R. These extensions are denoted by

bRh
(v, zRh

) :=
∑
R∈Rh

bR
(
v|R, zR

)
, `Rh

(zRh
) :=

∑
R∈Rh

`R(zR) ,

for v ∈ V , zRh
= (zR)R ∈ ZRh

.

Often, the local bilinear form bR is constructed using integration by parts on

the broken domain Qh. To this end, additionally to the volume term bR, usually a

boundary pairing term occurs on every cell boundary. In this abstract outline, we

assume that there is a space V̂ =
∏
R∈Rh

V̂R representing traces of the solution on

the cell boundaries and that a bilinear form b̂R ∈ B
(
V̂R × Z|R,R

)
exists such that

the result of locally integrating by parts can be written as

bR(v|R, zR) + b̂R(γRv|R, zR) , zR ∈ Z|R ,

for sufficiently regular functions v ∈ V regular ⊂ V . Here, γR : V regular −→ V̂R is a

suitable trace operator acting on the cell R.

Finally, we assume that problem (VP) remains unchanged, when testing with

a cell-wise defined test space, i.e. v ∈ V solves (VP) if and only if there exists a

v̂ = (v̂R)R ∈ V̂ such that

∑
R∈Rh

bR(v|R, zR) + b̂R(v̂R, zR) = `Rh
(zR) for all (zR)R ∈

∏
R∈Rh

Z|R . (4.31)

By assumption also the variational problem with broken test space is well-posed

and therefore inf-sup stable with a constant βRh
> 0 by theorem 2.17. In [14,

Thm. 3.1], criteria for the assumptions above are provided.

Before constructing the space-time DPG method for acoustic waves in the next

section, we consider a static Poisson problem to illustrate the ideas.
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Example 4.26. For a domain Ω ⊂ Rd and f ∈ L2(Ω), we consider the problemσ −∇p = 0 ,

divσ = f ,
in Ω , p = 0 on ∂Ω .

Assuming that (σ, p) is sufficiently smooth, we multiply by a smooth test function

(φ, ψ) and integrate by parts to obtain in every open subset U ⊂ Ω(
(σ −∇p,divσ), (φ, ψ)

)
U

=
(
σ,φ

)
U

+
(
p,divφ

)
U
−
(
σ,∇ψ

)
U

−
〈
p,φ · nU

〉
∂U

+
〈
σ · nU , ψ

〉
∂U
.

(4.32)

In particular the choice U = Ω in (4.32) yields using the boundary condition p = 0

on ∂Ω and testing with Z := H(div,Ω)×H1
0(Ω) a variational problem in the form of

(VP) where V := L2(Ω,Rd+1) and, for (σ, p) ∈ V , (φ, ψ) ∈ Z,

b
(
(σ, p), (φ, ψ)

)
=
(
σ,φ

)
Ω

+
(
p,divφ

)
Ω
−
(
σ,∇ψ

)
Ω
,

`
(
(φ, ψ)

)
=
(
f, ψ

)
Ω
.

This problem is discussed more in depth by [17].

In order to construct a variational problem with broken test space, we apply (4.32)

in every cell K ∈ Kh, where Kh is a mesh of Ω, and obtain

bK
(
(σ, p), (φ, ψ)

)
=
(
σ,φ

)
K

+
(
p,divφ

)
K
−
(
σ,∇ψ

)
K
,

b̂K
(
(σ̂n, p̂), (φ, ψ)

)
= −

〈
p̂,φ · nK

〉
∂K

+
〈
σ̂n, ψ

〉
∂K

,

`K
(
(φ, ψ)

)
=
(
f, ψ

)
K

for (σ̂n, p̂) ∈ V̂K := γK
(
H(div,Ω) × H1

0(Ω)
)
⊂ H−1/2(∂K) × H1/2(∂K). Here,

γK(σ, p) =
(
(σ · nK)|∂K , p|∂K

)
is the pair of normal and Dirichlet traces in the

sense of trace operators.

This gives rise to the broken problem as in (4.31)

Find
(
(σ, p), (σ̂n, p̂)

)
∈ V ×

∏
K∈Kh

V̂K such that

∑
K∈Kh

bK
(
(σ, p), (φK , ψK)

)
+ b̂K

(
(σ̂n, p̂), (φK , ψK)

)
= `Kh

(φK , ψK)

for all (φK , ψK)K ∈
∏
K∈Kh

Z|K .

See [14] where variants of this problem are considered.

Using the same construction as in the previous section, we define the trial-to-test

operator TRh
: V × V̂ −→ ZRh

as in (4.28). However, since the new test space ZRh
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consists of discontinuous functions, for (v, v̂) ∈ V × V̂ the optimal test function

TRh
(v, v̂) ∈ ZRh

is defined locally in every cell, i.e. introducing the local bilinear

form b̄R
(
(v, v̂), z̃R

)
:= bR(v, z̃R) + b̂R(v̂, z̃R), equation (4.28) becomes(

TRh
(v, v̂)|R, z̃R

)
Z,R

= b̄R
(
(v, v̂), z̃R

)
for all z̃R ∈ Z|R , R ∈ Rh . (4.33)

Using the broken variant, we repeat the reasoning in (4.29)

sup
zRh
∈ZRh

b̄Rh

(
(v, v̂), zRh

)
‖zRh

‖ZRh

= sup
zRh
∈ZRh

(
TRh

(v, v̂), zRh

)
ZRh

‖zRh
‖ZRh

=

(
TRh

(v, v̂), TRh
(v, v̂)

)
ZRh

‖TRh
(v, v̂)‖ZRh

=
b̄Rh

(
(v, v̂), TRh

(v, v̂)
)

‖TRh
(v, v̂)‖ZRh

.

Again, choosing the optimal test space ZRh,h := TRh
(Vh × V̂h) for a given ansatz

space Vh × V̂h ⊂ V × V̂ as in (4.30), we obtain for (vh, v̂h) ∈ Vh × V̂h

sup
zRh,h∈ZRh,h

bRh

(
(vh, v̂h), zRh,h

)
‖zRh,h‖ZRh

= sup
zRh
∈ZRh

bRh

(
(vh, v̂h), zRh

)

‖zRh
‖ZRh

≥ βRh
‖(vh, v̂h)‖V×V̂ ,

(4.34)

where βRh
> 0 is the inf-sup constant of the variational problem (4.31) with broken

test space.

4.3.4 Approximate optimal testing – the practical DPG method

Breaking the test space at the cost of introducing new trace unknowns in the space

V̂ yields a construction, where the optimal test function can be obtained locally

in every cell. However, the variational problem (4.33) still searches in the infinite

dimensional space ZRh
and thus, is practically infeasible in most applications. For

a simple example, where the ideal DPG method can be realized in practice, see [18].

To obtain a practical scheme, we solve (4.33) in a finite dimensional enriched

test space Zenriched
R,h ⊂ Z|R, R ∈ Rh, and Zenriched

h =
∏
R∈Rh

Zenriched
R,h fulfilling

dimZenriched
h > dim(Vh × V̂h). For the practical computation, we replace (4.33)

by its Galerkin approximation(
TR,h(v, v̂), z̃R,h

)
Z,R

= b̄R
(
(v, v̂), z̃R,h

)
, for all z̃R,h ∈ Zenriched

R,h , R ∈ Rh ,

searching for TR,h(v, v̂) ∈ Zenriched
R,h for every pair (v, v̂) ∈ V × V̂ . This defines the

approximate trial-to-test operator TR,h : V × V̂ −→ Zenriched
R,h and accordingly, the

approximate optimal test space ZR,h := TR,h(Vh × V̂h) ⊂ Zenriched
R,h .

It has been observed in many applications that for polynomial ansatz spaces of

degree p ∈ N, typically polynomials of degree p +4p, 4p ∈ {2, 3}, in Zenriched
R,h are

sufficient to guarantee the stability of the resulting DPG scheme.
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4.3.5 DPG as a minimal residual method

The DPG method can also be interpreted as a minimal residual method in the dual

space Z ′. To see this, we reconsider the trial-to-test operator from (4.28) for v ∈ V(
T v, z̃

)
Z

= b(v, z̃) =
〈
Bv, z̃

〉
, for all z̃ ∈ Z ,

where we use the operator B ∈ L
(
V,Z ′

)
as in definition 2.3. Consequently, we

have T = Π−1
Z B for the Riesz isomorphism ΠZ ∈ L

(
Z,Z ′

)
yielding for v, ṽ ∈ V

b(v, T ṽ)− `(T ṽ) =
〈
Bv − `,Π−1

Z Bṽ
〉
Z

=
(
Π−1
Z (Bv − `),Π−1

Z Bṽ
)
Z
. (4.35)

Now, we select an approximation space Vh ⊂ V and the corresponding optimal test

space Zh = T (Vh) ⊂ Z. Using the same arguments as for the conforming Least-

Squares method in section 4.1, we see that vh ∈ Vh solves (VPh) if and only if vh
is the minimizer of Jh : Vh −→ R given by

J(vh) =
1

2

(
Π−1
Z (Bvh − `),Π−1

Z (Bvh − `)
)
Z

=
1

2
‖Π−1

Z (Bvh − `)‖2Z

=
1

2
‖Bvh − `‖2Z′ .

(4.36)

Here, we exploit that the Riesz isomorphism is an isometry. As a result, the DPG

method can be interpreted as a generalized Least-Squares method in the dual space

Z ′.

4.3.6 Built-in residual error-estimator

The DPG method provides a built-in error estimator that can be evaluated numeri-

cally. To see this, for the solution uh ∈ Vh of (VPh), we define the Riesz representa-

tive of the residual by ψ := Π−1
Z (`−Buh), i.e.

(
ψ, z̃

)
Z

=
〈
`−Buh, z̃

〉
= `(z̃)−b(uh, z̃)

for z̃ ∈ Z. Using the energy norm ‖v‖E := ‖Bv‖Z′ , v ∈ V , this implies for the solu-

tion u ∈ V of (VP)

‖u− uh‖E = ‖Bu−Buh‖Z′ = ‖`−Buh‖Z′ = ‖Π−1
Z (`−Buh)‖Z = ‖ψ‖Z ,

being the reason to call ψ the error representing function.

Then, (VP) and (4.35) yield the following system for the new group unknown

(uh, ψ) ∈ Vh × Z that is also called the mixed formulation of the DPG method{
b(ṽh, ψ) = 0 , for all ṽh ∈ Vh ,(
ψ, z̃

)
Z

+ b(uh, z̃) = `(z̃) , for all z̃ ∈ Z .
(4.37)

Now, approximating (uh, ψ) simultaneously in Vh × Zenriched
h gives a residual error

estimator.

55



4.3. The Discontinous Petrov-Galerkin method

4.3.7 Skeleton reduction

In [67] a reduction procedure for DPG similar to the skeleton reduction for weakly

conforming Least-Squares, see section 4.2.4, is described. We sketch the construc-

tion for the case of acoustic waves in section 4.6.2.
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4.4 Acoustic waves – the ideal DPG method

In the following, we use the notation introduced in chapter 3.

To apply the DPG-method to acoustic waves, we select a finite decomposition

Qh =
⋃
R∈Rh

R of Q = Ω× (0, T ) into open disjoint space-time cells R.

Breaking the space H(L,Q), we consider the corresponding discontinuous space

H(L,Qh) =
∏
R∈Rh

H(L,R).

Now, the ideal DPG method is constructed as follows. With respect to the sub-

structuring Qh, we introduce a new unknown for the skeleton traces and repre-

sent the solution in the product space W × Ĥ(L,Qh) with W = L2(Q,R1+d). For

given b ∈ W let ysol ∈ V be the unique solution of Ly = b, and define its trace

ŷsol = ysol + H0(L,Qh) ∈ Ĥ(L,Qh). Then, inserting D̂h, see (3.14), yields

(
b, z
)
Q

=
(
Lysol, z

)
Q

=
(
ysol, L?z

)
Qh

+
〈
D̂hŷ

sol, z
〉
, z ∈ H(L?, Qh) .

For the corresponding Petrov-Galerkin method in W × Ĥ(L,Qh), we define

the operator

Bh ∈ L
(
W × Ĥ(L,Qh),H(L?, Qh)′

)
,

〈
Bh(y, ŷ), z

〉
=
(
y, L?z

)
Q

+
〈
D̂hŷ, z

〉
for trial functions (y, ŷ) ∈W × Ĥ(L,Qh) and test functions z ∈ H(L?, Qh).

As a result, the pair (ysol, ŷsol) solves the equation

〈
Bh(y, ŷ), z

〉
=
(
b, z
)
Q
, z ∈ H(L?, Qh) . (4.38)

The norm in W × Ĥ(L,Qh) is denoted by ‖(y, ŷ)‖Q;L,∂Qh
=
√
‖y‖2Q + ‖ŷ‖2L,∂Qh

.

Now, we show that (4.38) is well-posed by proving that the restriction of Bh to

W × V̂ with V̂ = V/H0(L,Qh) ⊂ Ĥ(L,Qh) is invertible.

Theorem 4.27. For (y, ŷ) ∈W × V̂ , we have

sup
z∈H(L?,Qh)

〈
Bh(y, ŷ), z

〉
‖z‖L?,Qh

≥ 1√
4C2

L + 2
‖(y, ŷ)‖Q;L,∂Qh

(4.39)

and (4.38) is well-posed for all b ∈W .

Proof. We apply theorem 2.15 and make use of proposition 2.22.

In the first step, we establish

sup
(y,ŷ)∈W×V̂

〈
Bh(y, ŷ), z

〉
‖(y, ŷ)‖Q;L,∂Qh

≥ 1√
4C2

L + 2
‖z‖L?,Qh

, z ∈ H(L?, Qh) . (4.40)
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By theorem 3.7, for given z ∈ H(L?, Qh) ⊂ W we find a unique y0 ∈ V with

Ly0 = z, and we set ŷ0 = y0 + H0(L,Qh) ∈ V̂ . Then, it holds〈
Bh(y0, ŷ0), z

〉
=
(
y0, L

?z
)
Qh

+
〈
D̂hŷ0, z

〉
=
(
y0, L

?z
)
Qh

+
(
Ly0, z

)
Qh
−
(
y0, L

?z
)
Qh

=
(
Ly0, z

)
Q

= ‖z‖2Q ,

and exploiting (3.10) yields

‖(y0, ŷ0)‖2Q;L,∂Qh
= ‖y0‖2Q + ‖ŷ0‖2L,∂Qh

≤ ‖y0‖2Q + ‖y0‖2L,Q = 2‖y0‖2Q + ‖Ly0‖2Q
≤ (2C2

L + 1)‖Ly0‖2Q = (2C2
L + 1)‖z‖2Q ,

so that we obtain

sup
(y,ŷ)∈W×V̂

〈
Bh(y, ŷ), z

〉
‖(y, ŷ)‖Q;L,∂Qh

≥
〈
Bh(y0, ŷ0), z

〉
‖(y0, ŷ0)‖Q;L,∂Qh

=
‖z‖2Q

‖(y0, ŷ0)‖Q;L,∂Qh

≥ 1√
2C2

L + 1
‖z‖Q .

Then, choosing (y, ŷ) = (L?z,0) yields

sup
(y,ŷ)∈W×V̂

〈
Bh(y, ŷ), z

〉
‖(y, ŷ)‖Q;L,∂Qh

≥
〈
Bh(L?z,0), z

〉
‖(L?z,0)‖Q;L,∂Qh

= ‖L?z‖Q .

Now, (4.40) follows from ‖z‖2L?,Qh
≤ 2 max

{
‖z‖2Q, ‖L?z‖2Q

}
, i.e.,

max
{
‖z‖Q, ‖L?z‖Q

}
≥ 1√

2
‖z‖L?,Qh

.

In the second step, we show that the operator Bh is injective in W × V̂ . Then,

the Bh is an isomorphism by theorem 2.15 and (4.39) is obtained by duality, see

remark 2.23.

Therefore, we consider (y, ŷ) ∈W × V̂ with〈
Bh(y, ŷ), z

〉
= 0 , z ∈ H(L?, Qh) .

This yields

0 =
〈
Bh(y, ŷ), z

〉
=
(
y, L?z

)
Qh
, z ∈ C1

c(Qh,Rm) ,

i.e., y ∈ H(L,Qh) and Ly = 0. Thus, from ŷ ∈ V̂ and
〈
D̂hŷ, z

〉
= 0 for z ∈ V ∗, see

corollary 3.10, we conclude for all z ∈ V ∗

0 =
〈
Bh(y, ŷ), z

〉
−
(
Ly, z

)
Qh

=
(
y, L?z

)
Qh

+
〈
D̂hŷ, z

〉
−
(
Ly, z

)
Qh

=
〈
D̂hŷ, z

〉
−
〈
Dhy, z

〉
= −

〈
Dhy, z

〉
,
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which shows y ∈ V , cf. lemma 3.13. Together with Ly = 0 and (3.10) this implies

y = 0. Thus,

0 =
〈
Bh(y, ŷ), z

〉
=
〈
D̂hŷ, z

〉
, z ∈ H(L?, Qh) ,

which finally yields ŷ = 0, see lemma 3.14.

The following proposition provides an upper bound for Bh.

Proposition 4.28. We have for all (y, ŷ) ∈W × Ĥ(L,Qh) and z ∈ H(L?, Qh)

〈
Bh(y, ŷ), z

〉
≤
√

2‖(y, ŷ)‖Q;L,∂Qh
‖z‖L?,Qh

.

Proof. Fix (y, ŷ) ∈ W × H(L,Qh)/H0(L,Qh) and z ∈ H(L?, Qh). Then for ȳ ∈ ŷ,
we have

〈
Bh(y, ŷ), z

〉
=
(
y, L?z

)
Q

+
(
Lȳ, z

)
Q
−
(
ȳ, L?z

)
Q

≤ ‖y‖Q‖L?z‖Q + ‖Lȳ‖Q‖z‖Q + ‖ȳ‖Q‖L?z‖Q
≤
√
‖y‖2Q + ‖Lȳ‖2Q + ‖ȳ‖2Q

√
2‖L?z‖2Q + ‖z‖2Q

≤
√

2‖(y, ȳ)‖Q;L,Qh
‖z‖L?,Qh

.

Taking the infimum for ȳ ∈ ŷ yields the assertion.

Now, we obtain the convergence result for the ideal DPG method as follows. For

a fixed discrete approximation space Wh× V̂h ⊂W × V̂h, we choose the optimal test

space Zopt = Π−1
H(L?,Qh)Bh(Wh× V̂ ), see (4.34). Then, the continuous problem (4.38)

and its discrete counterpartfind (yh, ŷh) ∈Wh × V̂h with〈
Bh(yh, ŷh), zh

〉
=
(
b, zh

)
Q
, zh ∈ Zopt

are well-posed by theorem 4.27 with inf-sup constant βh = β = (4CL + 2)−
1
2 .

Exploiting proposition 4.28, remark 2.32 yields the quasi best approximation

result

‖(ysol
h , ŷsol

h )− (ysol, ŷsol)‖Q;L,∂Qh
≤
√

2

βh
inf

(yh,ŷh)∈Wh×V̂h
‖(yh, ŷh)− (ysol, ŷsol)‖Q;L,∂Qh

Note that the optimal test space is not computationally accessible. Thus, in the

following, we replace Zopt
h by a discrete approximation yielding the practical DPG

method.
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4.5 Acoustic waves – the practical DPG method

Now we select a globally conforming discrete ansatz space V̂h ⊂ V̂ on the skeleton

and local ansatz and test spaces WR,h ⊂ L2(R,Rm) and ZR,h ⊂ H(L?, R). We set

V̂R,h = V̂h|∂R, Wh =
∏
R∈Rh

WR,h and Zh =
∏
R∈Rh

ZR,h.

For the practical DPG, the optimal test space Zopt is replaced by the approx-

imation Zopt
h = C−1

h Bh(Wh × V̂h), where C−1
h is an approximation of the Riesz

operator in the test space Z. Thus, it is no longer guaranteed that the discrete

stability constant equals the continuous constant βh. In order to analyze this loss of

stability, we construct a suitable local Fortin operator ΠR,h ∈ L
(
H(L?, R), ZR,h

)
,

see lemma 2.26, in every space-time cell R following the approach presented in [21,

Sect. 3.1.4], see also the construction in [25, Thm. 1]. This yields a mesh-dependent

estimate. Then, we show by scaling argument that it is sufficient to construct a lo-

cal Fortin operator on a reference cell, so that finally a mesh-independent a-priori

bound for the DPG approximation is obtained.

4.5.1 Local construction of the Fortin operator

We define BR ∈ L
(
L2(R,Rm)× Ĥ(L,R),H(L?, R)′

)
by〈

BR(yR, ŷR), zR
〉

=
(
yR, L

?zR
)
R

+
〈
D̂RŷR, zR

〉
.

We assume that for given V̂R,h and WR,h the local test spaces ZR,h are large enough,

so that for all zR ∈ H(L?, R) the affine space

N (zR) =
{
zR,h ∈ ZR,h :

〈
BR(yR,h, ŷR,h), zR,h

〉
=
〈
BR(yR,h, ŷR,h), zR

〉
,

(yR,h, ŷR,h) ∈WR,h × V̂R,h
}

is not empty, cf. (2.5). Then, a Fortin operator with ΠR,hzR ∈ N (zR) exists. For

the scaling argument below we require the additional property

|ΠR,hzR|L?,R ≤ |zR|L?,R , zR ∈ H(L?, R) ,

with respect to the semi-norm |zR|L?,R = ‖L?zR‖R. This can easily be achieved by

extending WR,h to W ext
R,h ⊃WR,h + L?(ZR,h), since the orthogonality

0 =
〈
BR(yR,h,0), zR,h − zR

〉
=
(
yR,h, L

?(zR,h − zR)
)
R
, yR,h ∈W ext

R,h

implies |zR,h|L?,R ≤ |zR|L?,R by choosing yR,h = L?zR,h and

|zR,h|2L?,R =
(
L?zR,h, L

?zR,h
)
R

=
(
L?zR,h, L

?zR
)
R
≤ |zR,h|L?,R|zR|L?,R .
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We assume that also N ext(zR) ⊂ N (zR) obtained by testing with the larger space

W ext
R,h ⊃WR,h is not empty.

In order to compute a bound for the norm of ΠR,h numerically, we assume that

extensions VR,h ⊂ H(L,R) of V̂R,h exist with dimVR,h = dim V̂R,h, so that for every

trace function ŷR,h ∈ V̂R,h a unique extension ȳR,h ∈ VR,h exists which can be locally

evaluated in R and which satisfies〈
DRȳR,h, zR

〉
=
〈
D̂RŷR,h, zR

〉
, zR ∈ H(L?, R) , (4.41)

i.e., ŷR,h = ȳR,h + H0(L,Qh). This defines a well-defined bijection

ÎR,h : VR,h −→ V̂R,h

such that ŷR,h = ÎR,hȳR,h satisfies (4.41). As a result, we have

N ext(zR) =
{
zR,h ∈ ZR,h :

〈
BR(yR,h, ÎR,hȳR,h), zR,h

〉
=
〈
BR(yR,h, ÎR,hȳR,h), zR

〉
,

(yR,h, ŷR,h) ∈WR,h × VR,h
}

The minimizer zR,h = ΠR,hzR ∈ N ext(zR) with respect to the norm in H(L?, R)

can be computed by a discrete linear saddle point problem as follows. We define the

discrete operators

BR,h ∈ L
(
W ext
R,h × VR,h, Z ′R,h

)
,

CR,h ∈ L
(
ZR,h, Z

′
R,h

)
,

GR,h ∈ L
(
W ext
R,h × VR,h, (W ext

R,h × VR,h)′
)

by 〈
BR,h(yR,h, ȳR,h), zR,h

〉
=
〈
BR(yR,h, ÎR,hȳR,h), zR,h

〉
,〈

CR,hzR,h,ψR,h
〉

=
(
zR,h,ψR,h

)
L?,R

,〈
GR,h(yR,h, ȳR,h), (φR,h, φ̄R,h)

〉
=
(
yR,h,φR,h

)
R

+
(
ȳR,h, φ̄R,h

)
L,R

,

(4.42)

and the embedding ER,h ∈ L
(
W ext
R,h × VR,h,W × Ĥ(L,R)

)
given by

ER,h(yR,h, ȳR,h) = (yR,h, ÎR,hȳR,h) , (yR,h, ȳR,h) ∈W ext
R,h × VR,h . (4.43)

Then, zR,h = ΠR,hzR solves the discrete saddle point problem

CR,hzR,h +BR,h(yR,h, ȳR,h) = 0 ,

B′R,hzR,h = E′R,hB
′
RzR ,

(4.44)

where (yR,h, ȳR,h) ∈W ext
R,h × VR,h is the Lagrange multiplier.
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Remark 4.29. Inf-sup stability requires that the operator Bh is injective in Wh× V̂h.
However, locally we cannot expect that BR,h is injective, since BR,h(yR,h,−ȳR,h) = 0

for all functions yR,h ∈ WR,h ∩ N (L) and ȳR,h ∈ VR,h having the same traces,

i.e. yR,h ∈ ȳR,h+H0(L,Qh). Thus, as soon as both, WR,h and V̂R,h, contain constant

functions, we have N (BR,h) 6= {0}.
On the other hand, since we assume that N ext(zR) is not empty for all zR, (4.44)

always has a solution, and since CR,h is positive definite, zR,h = ΠR,hzR is the unique

solution of the optimization problem. The Lagrange parameter (yR,h, ȳR,h) is only

unique up to N (BR,h).

Inserting zR,h = −C−1
R,hBR,h(yR,h, ȳR,h) yields

SR,h(yR,h, ȳR,h) = −E′R,hB′RzR

with the Schur complement operator

SR,h = B′R,hC
−1
R,hBR,h ∈ L

(
W ext
R,h × VR,h, (W ext

R,h × VR,h)′
)
.

Inserting the pseudo-inverse (with respect to the inner product in W ext
R,h × VR,h)

S+
R,h = lim

δ−→0

(
SR,hG

−1
R,hSR,h + δGR,h

)−1
SR,hG

−1
R,h ,

see [2, Thm. (3.4)], satisfying S+
R,hSR,hS

+
R,h = S+

R,h, defines

ΠR,h = C−1
R,hBR,hS

+
R,hE

′
R,hB

′
R . (4.45)

We compute αR,h > 0 such that

〈
`R,h, S

+
R,h`R,h

〉
≤ αR,h

〈
`R,h, G

−1
R,h`R,h

〉
, `R,h ∈ (W ext

R,h × VR,h)′ (4.46)

i.e., we determine the largest eigenvalue of a finite dimensional symmetric generalized

eigenvalue problem, see appendix A. For given zR ∈ H(L?, R) we select the discrete

functional `R,h = E′R,hB
′
RzR, and the norm of the Fortin operator is estimated by

‖ΠR,hzR‖2L?,R =
〈
BR,hS

+
R,h`R,h, C

−1
R,hBR,hS

+
R,h`R,h

〉
=
〈
`R,h, S

+
R,hSR,hS

+
R,h`R,h

〉
=
〈
`R,h, S

+
R,h`R,h

〉
≤ αR,h

〈
`R,h, G

−1
R,h`R,h

〉
≤ 2αR,h‖zR‖2L?,R
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using√〈
`R,h, G

−1
R,h`R,h

〉
≤ sup

(yR,h,ȳR,h)∈W ext
R,h×VR,h

〈
`R,h, (yR,h, ȳR,h)

〉√〈
GR,h(yR,h, ȳR,h), (yR,h, ȳR,h)

〉
= sup

(yR,h,ȳR,h)∈W ext
R,h×VR,h

〈
E′R,hB

′
RzR, (yR,h, ȳR,h)

〉
‖(yR,h, ȳR,h)‖R;L,R

= sup
(yR,h,ȳR,h)∈W ext

R,h×VR,h

〈
BRER,h(yR,h, ȳR,h), zR

〉
‖(yR,h, ȳR,h)‖R;L,R

≤
√

2‖zR‖L?,R

with
〈
GR,h(yR,h, ȳR,h), (yR,h, ȳR,h)

〉
= ‖(yR,h, ȳR,h)‖2R;L,R and〈

BR(yR,h, ÎR,hȳR,h), zR
〉

=
(
yR,h, L

?zR
)
R

+
(
LȳR,h, zR

)
R
−
(
ȳR,h, L

?zR
)
R

≤ ‖yR,h‖R‖L?zR‖R + ‖LȳR,h‖R‖zR‖R + ‖ȳR,h‖R‖L?zR‖R

≤
√
‖yR,h‖2R + ‖LȳR,h‖2R + ‖ȳR,h‖2R

√
2‖L?zR‖2R + ‖zR‖2R

≤
√

2‖(yR,h, ȳR,h)‖R;L,R‖zR‖L?,R .

using (4.43). The construction is completely local, so that it extends to

‖Πhz‖L?,Qh
≤
√

2αh ‖z‖L?,Qh
, z ∈ H(L?, Qh) (4.47)

with αh = maxαR,h. Since the continuous problem is inf-sup stable, cf. theo-

rem 4.27, this implies discrete inf-sup stability using the Fortin criterion, see

lemma 2.26. As a result, we have

sup
zh∈Zh

〈
Bh(yh, ŷh), zh

〉
‖zh‖L?,Qh

≥ βh‖(yh, ŷh)‖Q;L,∂Qh
(4.48)

for (yh, ŷh) ∈Wh × V̂h with βh = 1√
2αh

√
4C2

L+2
, see lemma 2.26.
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4.5. Acoustic waves – the practical DPG method

4.5.2 A scaling argument

Numerically, we observe that the eigenvalue estimate (4.46) is mesh-dependent.

Thus, we compute α0 = αR0,h0 on a reference element R0 = (0, h0)d × (0, ch0),

and we analyze the transformation ϕR : R0 −→ R ∈ Rh. For simplicity, we only

discuss an affine transformation of the form ϕR(x, t) = (xR, tR) + (h/h0)(x, t) with

R = (xR, tR) + (0, h)d × (0, ch).

Let ΠR0,h0 be a local Fortin operator on the reference cell R0. For the space-time

L2 norm, the semi-norm |zR|L?,R = ‖L?zR‖R, and the operator BR, we assume the

scaling properties

h−d−1 ‖zR‖2R = h−d−1
0 ‖zR ◦ ϕR‖2R0

,

h−d+1 |zR|2L?,R = h−d+1
0 |zR ◦ ϕR|2L?,R0

,

h−d
〈
BR(yR,h, ŷR,h), zR

〉
= h−d0

〈
BR0(yR,h ◦ ϕR, ŷR,h ◦ ϕR), zR ◦ ϕR

〉
.

By the integral transformation formula, this holds for acoustic waves with constant

coefficients. Then, the transformed operator

ΠR,hzR =
(

ΠR0,h0(zR ◦ ϕR)
)
◦ ϕ−1

R , zR ∈ H(L?, R) ,

defines a local Fortin operator in R. By scaling we obtain for h ≤ h0

h−d−1 ‖ΠR,hzR‖2R = h−d−1
0 ‖(ΠR,hzR) ◦ ϕR‖2R0

= h−d−1
0 ‖ΠR0,h0(zR ◦ ϕR)‖2R0

≤ h−d−1
0 ‖ΠR0,h0(zR ◦ ϕR)‖2L?,R0

≤ h−d−1
0 ‖ΠR0,h0‖2L?,R0

‖zR ◦ ϕR‖2L?,R0
,

h−d−1
0 ‖zR ◦ ϕR‖2L?,R0

= h−d−1 ‖zR‖2R + h−2
0 h−d+1 |zR|2L?,R

≤ h−d−1 ‖zR‖2L?,R ,

h−d+1 |ΠR,hzR|2L?,R = h−d+1
0 |(ΠR,hzR) ◦ ϕR|2L?,R0

= h−d+1
0 |ΠR0,h0(zR ◦ ϕR)|2L?,R0

≤ h−d+1
0 |zR ◦ ϕR|2L?,R0

= h−d+1 |zR|2L?,R ,

which together yield

‖ΠR,hzR‖L?,R0 ≤
√

1 + ‖ΠR0,h0‖2L?,R0
‖zR‖L?,R .

For simple meshes, this results into the computable inf-sup constant

βh =
1√

1 + 2αR0,h0

√
4C2

L + 2
. (4.49)
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4.5.3 An a-priori error estimate for the practical DPG method

To obtain the discrete solution corresponding to the practical DPG method, we

replace the optimal test space Zopt = Π−1
H(L?,Qh)Bh(Wh × V̂ ) by the approximation

Zopt
h = C−1

h Bh(Wh × V̂h). Here,

Ch ∈ L
(
Zh, Z

′
h

)
,

〈
Chzh, z̃h

〉
=
∑
R∈Rh

〈
CR,hzR,h, z̃R,h

〉
is the approximate Riesz isomorphism in Zh =

∏
R∈Rh

ZR,h with CR,h as in (4.42).

Then, the approximate solution (ysol
h , ŷsol

h ) ∈Wh × V̂h is defined by〈
Bh(ysol

h , ŷsol
h ), zh

〉
=
(
b, zh

)
Q
, zh ∈ Zopt

h . (4.50)

Since Bh is continuous and since we assume that Zh is large enough (so that a com-

putable but in general mesh dependent inf-sup constant exists), Petrov-Galerkin

estimates apply. In simple cases where the scaling argument applies, this yields a

mesh-independent estimate for αh and thus for the inf-sup constant βh in (4.49).

Summarizing our results, we obtain

Theorem 4.30. Let ysol ∈ V be the solution of Ly = b and define its trace by

ŷsol = ysol + H0(L,Qh) ∈ V̂ . If a Fortin operator can be constructed and bounded

by (4.47), a unique solution (ysol
h , ŷsol

h ) ∈ Wh × V̂h of (4.50) exists and satisfies the

a-priori error estimate

‖(ysol − ysol
h , ŷsol − ŷsol

h )‖Q;L,∂Qh
≤
√

2

βh
inf

(φh,φ̂h)∈Wh×V̂h
‖(ysol − φh, ŷsol − φ̂h)‖Q;L,∂Qh

.

Proof. Apply theorem 2.30 and remark 2.32 using theorem 4.27, (4.49) and

proposition 4.28.

4.6 Acoustic waves – the simplified DPG method

For the realization of the practical DPG method it is advantageous to use traces on

the skeleton ∂Qh. This process depends on the application and is now described for

linear acoustic waves. For space-time tensor-product decompositions with space-time

cells R = K × (a, b) ⊂ Ω× (0, T ), we define a trace mapping I∂R to L2(∂R;R×Rd)
by

I∂R(pR,vR) =

(pR,vR)|K×{t} for traces at time t ∈ {a, b},(
pR, (vR · nF )nF

)
|F×(a,b) in space with F ⊂ ∂K
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4.6. Acoustic waves – the simplified DPG method

for all sufficiently smooth functions (pR,vR). We define local the trace bilinear form

obtained using integration by parts, cf. (4.8),

γR
(
(p̃R, ṽR), (qR,wR)

)
=
(
(p̃R, ṽR), (qR,wR)

)
K×{b} −

(
(p̃R, ṽR), (qR,wR)

)
K×{a}

+
∑
F⊂∂K

(
p̃R,wR · nK

)
F×(a,b)

+
(
ṽR · nK , qR

)
F×(a,b)

for (p̃R, ṽR) ∈ L2(∂R;R × Rd) and (qR,wR) ∈ H(L?, R) sufficiently smooth with

I∂R(qR,wR) ∈ L2(∂R;R× Rd). Further, we define

bh
((

(p,v), (p̃, ṽ)
)
, (q,w)

)
=
(
(p,v), L?(q,w)

)
Qh

+ γh
(
(p̃, ṽ), (q,w)

)
for (p,v) ∈ L2(Q;R×Rd), (p̃, ṽ) ∈ L2(∂Qh;R×Rd) and for (q,w) ∈ H(L?, Qh) with

traces in L2, where γh
(
(p̃, ṽ), (q,w)

)
=
∑

R∈Rh
γR
(
(p̃R, ṽR), (qR,wR)

)
.

By construction, we observe

γR
(
I∂R(pR,vR), (qR,wR)

)
=
〈
DR(pR,vR), (qR,wR)

〉
(4.51)

for sufficiently smooth (pR,vR) ∈ H(L,R) and (qR,wR) ∈ H(L?, R) both having

traces in L2, and

bh
((

(p,v), I∂Qh
(p̄, v̄)

)
, (q,w)

)
=
〈
Bh
(
(p,v), (p̄, v̄) + H(L,Qh)

)
, (q,w)

〉
for (p,v) ∈ L2(Q;R × Rd), and for (p̄, v̄) ∈ H(L,Qh), and (q,w) ∈ H(L?, Qh) with

traces in L2.

Thus, in the realization of the DPG method we can replace the operator Bh by

the bilinear form bh(·, : ), so that it is sufficient to represent V̂h by its trace values

on ∂Qh.

In the simplified DPG method, we select independently polynomial ansatz spaces

for the traces on every space-time face of the skeleton ∂Qh, i.e., we choose a discon-

tinuous space

Ṽh =
∏

K×{a}⊂∂Qh

VK×{a},h ×
∏

F×(a,b)⊂∂Qh

VF×(a,b),h ⊂ L2(∂Qh;R× Rd) .

The representation of Neumann traces for (p̃h, ṽh) ∈ Ṽh requires to select an orien-

tation nF ∈ {±nK}. Then, ṽh|F×(a,b) = ṽhnF with ṽh ∈ L2

(
F × (a, b)

)
.

In case that Ṽh is the trace of a conforming subspace Vh ⊂ V , i.e., Ṽh = I∂Qh
Vh,

the simplified method coincides with a conforming DPG method. In general, the

skeleton space Ṽh may be nonconforming. Then, we assume a weaker condition

which is described in the following.
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In order to obtain a well-defined method and to provide an a-priori error analysis,

we assume that a conforming reconstruction Vh ⊂ V of Ṽh exists such that for given

(p̃h, ṽh) ∈ Ṽh the reconstruction (p̄h, v̄h) ∈ Vh is uniquely defined by

γR
(
(p̃R,h, ṽR,h), (qR,h,wR,h)

)
= γR

(
I∂R,h(p̄h, v̄h), (qR,h,wR,h)

)
(4.52)

for all (qR,h,wR,h) ∈ ZR,h and all space-time cells R ∈ Rh. In particular, this implies

dimVh = dim Ṽh. Note that the traces in Vh only coincide with functions Ṽh when

tested with the finite dimensional space ZR,h. See section 4.6.1 for an example of

this construction.

Then, by construction, the simplified method with ansatz space Wh × Ṽh and

test space Zh yields the same discrete linear system as the practical method with

Ṽh replaced by V̂h = Vh/H0(L,Qh). For the error analysis we introduce the discrete

norm

‖(p̃h, ṽh)‖Z′h := sup
(qh,wh)∈Zh

γh
(
(p̃h, ṽh), (qh,wh)

)
‖(qh,wh)‖L?,Qh

, (p̃h, ṽh) ∈ Ṽh . (4.53)

This extends to a (mesh-dependent) semi-norm in L2(∂Qh;R × Rd). Further, we

obtain the following

Lemma 4.31. For (p,v) ∈ V with trace (p̃, ṽ) = I∂Qh
(p,v) ∈ L2(∂Qh;R× Rd) and

(p̂, v̂) = (p,v) + H0(L,Qh) ∈ V̂ , we have ‖(p̃, ṽ)‖Z′h ≤ ‖(p̂, v̂)‖L,∂Qh
.

Proof. It holds using (4.51) and (4.52)

‖(p̃, ṽ)‖Z′h = sup
(qh,wh)∈Zh

γh
(
(p̃, ṽ), (qh,wh)

)
‖(qh,wh)‖L?,Qh

= sup
(qh,wh)∈Zh

inf
(p0,v0)∈H0(L,Qh)

〈
Dh(p+ p0,v + v0), (qh,wh)

〉
‖(qh,wh)‖L?,Qh

≤ sup
(q,w)∈H(L?,Qh)

inf
(p0,v0)∈H0(L,Qh)

〈
Dh(p+ p0,v + v0), (q,w)

〉
‖(q,w)‖L?,Qh

≤ inf
(p0,v0)∈H0(L,Qh)

‖(p+ p0,v + v0)‖L,Qh
= ‖(p̂, v̂)‖L,∂Qh

.

With respect to the semi-norm (4.53), we can transfer the result in theorem 4.30

to the simplified DPG method.

Theorem 4.32. Assume that a conforming reconstruction Vh ⊂ V of Ṽh exists

satisfying (4.52) and dimVh = dim Ṽh.

1. If a Fortin operator can be constructed and bounded by (4.47), a unique

Petrov-Galerkin approximation
(
(ph,vh), (p̃h, ṽh)

)
∈Wh×Ṽh exists solving

bh
((

(ph,vh), (p̃h, ṽh)
)
, (qh,wh)

)
=
(
(f, g), (qh,wh)

)
Q
, (qh,wh) ∈ Zopt

h .

(4.54)
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2. Let (p,v) ∈ V be the solution of (3.2), and assume that (p,v) is sufficiently

regular with traces (p̃, ṽ) = I∂Qh
(p,v) ∈ L2(∂Qh;R× Rd).

Then, the error can be bounded by

∥∥((p,v)− (ph,vh)
)
,
(
(p̃, ṽ)− (p̃h, ṽh)

)∥∥
W×Z′h

≤ (1 +
√

2β−1
h )

inf
((φh,ψh),(φ̃h,ψ̃h))∈Wh×Ṽh

∥∥((p,v)− (φh,ψh)
)
,
(
(p̃, ṽ)− (φ̃h, ψ̃h)

)∥∥
W×Z′h

.

Proof. The first assertion is a direct consequence of theorem 4.30 since the discrete

system for the simplified DPG method in (4.54) is the same as the system (4.50) for

the practical DPG method with V̂h = Vh/H0(L,Qh).

To prove the second assertion, and let (p,v) ∈ V be the solution of (3.2), let

(p̃, ṽ) = I∂Qh
(p,v) ∈ L2(∂Qh;R× Rd) its trace, and set (p̂, v̂) = (p,v) + H0(L,Qh),

implying (p̂, v̂) ∈ V̂ .

For the discrete solution
(
(ph,vh), (p̃h, ṽh)

)
∈Wh×Ṽh let (p̄h, v̄h) ∈ Vh be the con-

forming reconstruction of (p̃h, ṽh) according to (4.52), and set (p̂h, v̂h) = (p̄h, v̄h) +

H0(L,Qh) ∈ V̂h. Then, we have ‖(p̃h, ṽh)‖Z′h = ‖I∂R,h(p̄h, v̄h)‖Z′h ≤ ‖(p̂h, v̂h)‖L,∂Qh

by (4.52) and (4.53).

Now, for some
(
(φh,ψh), (φ̃h, ψ̃h)

)
∈Wh× Ṽh let (φ̄h, ψ̄h) ∈ Vh be the conforming

reconstruction of (φ̃h, ψ̃h) as in (4.52), and set (φ̂h, ψ̂h) = (φ̄h, ψ̄h) + H0(L,Qh).

Then, using discrete inf-sup stability (4.48) it holds

βh
∥∥((ph,vh)− (φh,ψh), (p̂h, v̂h)− (φ̂h, ψ̂h)

)∥∥
Q;L,∂Qh

≤ sup
(qh,wh)∈Zh

〈
Bh
(
(ph,vh)− (φh,ψh), (p̂h, v̂h)− (φ̂h, ψ̂h)

)
, (qh,wh)

〉
‖(qh,wh)‖L?,Qh

≤
∥∥(p,v)− (φh,ψh)

∥∥
W

+ sup
(qh,wh)∈Zh

〈
D̂h

(
(p̂, v̂)− (φ̂h, ψ̂h)

)
, (qh,wh)

〉
‖(qh,wh)‖L?,Qh

=
∥∥(p,v)− (φh,ψh)

∥∥
W

+ sup
(qh,wh)∈Zh

γh
(
(p̃, ṽ)− (φ̃h, ψ̃h), (qh,wh)

)
‖(qh,wh)‖L?,Qh

=
∥∥(p,v)− (φh,ψh)

∥∥
W

+
∥∥(p̃, ṽ)− (φ̃h, ψ̃h)

∥∥
Z′h

≤
√

2
∥∥((p,v)− (φh,ψh), (p̃, ṽ)− (φ̃h, ψ̃h)

)∥∥
W×Z′h

.

By lemma 4.31, we have

∥∥(φ̃h, ψ̃h)− (p̃h, ṽh)
∥∥
Z′h
≤
∥∥(φ̂h, ψ̂h)− (p̂h, v̂h)

∥∥
L,∂Qh
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which finally implies∥∥((p,v)− (ph,vh), (p̃, ṽ)− (p̃h, ṽh)
)∥∥
W×Z′h

≤
∥∥((p,v)− (φh,ψh), (p̃, ṽ)− (φ̃h, ψ̃h)

)∥∥
W×Z′h

+
∥∥((φh,ψh)− (ph,vh), (φ̃h, ψ̃h)− (p̃h, ṽh)

)∥∥
W×Z′h

≤
∥∥((p,v)− (φh,ψh), (p̃, ṽ)− (φ̃h, ψ̃h)

)∥∥
W×Z′h

+
∥∥((φh,ψh)− (ph,vh), (φ̂h, ψ̂h)− (p̂h, v̂h)

)∥∥
Q;L,∂Qh

≤
(

1 +

√
2

βh

)∥∥((p,v)− (φh,ψh), (p̃, ṽ)− (φ̃h, ψ̃h)
)∥∥
W×Z′h

.

On the one hand the reconstruction space Vh is completely virtual, since it is not

required for the realization of the simplified DPG solution. On the other hand, one

needs an explicit representation of Vh for the estimate of the discrete inf-sup constant

as it is described in the previous section.

Remark 4.33 (Skeleton reduction). In section 4.2.4, we described a technique

to eliminate the interior degrees of freedom for the weakly conforming Least-Squares

method. For the numerical solution, the discrete Petrov-Galerkin is reduced to

a positive definite Schur complement problem for (p̃h, ṽh) using an analogous pro-

cedure; see [67, Lem. 9] for explicit estimates for the Schur complement depending

on βh and CL.

4.6.1 The construction of the Fortin Operator

In case of conforming trace approximations Ṽh and simple meshes it is sufficient to

construct the Fortin operator in a reference element R0, and then the estimates for

the Fortin operator in R ⊂ Qh follows from the scaling argument in section 4.5.2.

In the nonconforming case, a conforming reconstruction Vh ⊂ V with (4.52) has to

be computed. Therefore, we compute a minimum energy extension of trace functions

in ṼR,h. On each cell R we select a basis {(p̃1, ṽ1), . . . , (p̃N , ṽN )} of ṼR,h and an

extension space VR,h ⊂ H(L,R). Then, we obtain (p̄1, v̄1), . . . , (p̄N , v̄N ) ∈ VR,h by

solving the discrete minimization problem

min
(p̄n,v̄n)∈VR,h(p̃n,ṽn)

‖(p̄n, v̄n)‖L,R

in the affine space

VR,h(p̃n, ṽn) =
{

(p̄n, v̄n) ∈ VR,h : γR
(
(p̄n, v̄n)− (p̃n, ṽn), (qR,h,wR,h)

)
= 0

for (qR,h, wR,h) ∈ ZR,h
}
,
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4.6. Acoustic waves – the simplified DPG method

see figure 4.2 for an illustration. The resulting estimates for the Fortin operator

for different polynomial degrees are listed in table 4.1.
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Figure 4.2: Conforming reconstructions in VR,h = Q6(R) × Q6(R) for d = 1 of the trace space

ṼK = P2 × P2 on a face K ⊂ ∂R, and test space ZR,h = Q4(R)2. We show the extensions p̄n and

v̄n for the three nodal basis functions in P2.

‖ΠR,h‖L∗,R h0 h1 h2 h3 h0

p = 0 2.067 2.161 2.182 2.19 2.91

p = 1 12.039 18.817 32.87 123.71 34.85

p = 2 35.861 64.140 116.78 239.71 144.78

Table 4.1: Considering R = (0, a1hk) × (0, a2hk) × (0, chk) with a1 ≈ a2 ≈ c ≈ 1, we present two

upper bounds for ‖ΠR,h‖L∗,R in two space-dimension.

Left: Numerical norm estimates with ansatz space WR,h = Qp(R)3, test space ZR,h = Qp+2(R)3,

and extension space Qp+4(R)3 ⊃ ṼR,h. The estimates depend on the mesh size hk = 2k and the

polynomial degree p.

Right: Numerical estimate on the reference cell R0 with W ext
R,h = Qp+1(R)3. This yields an inf-sup

constant independent of h by the scaling argument in section 4.5.2.

4.6.2 Skeleton reduction

Using a similar procedure as described in section 4.2.4 for weakly conforming Least-

Squares, also the DPG method allows for a reduction of the global linear system.

In [67], the procedure is explained for variational problems resulting from first-order

systems Ly = b such as the space-time Hilbert space setting that we consider in

this chapter. Here, we restrict ourselves to a rough sketch of the procedure. We use
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the following operators in every cell R ∈ Rh〈
BR,hvR, zR

〉
=
(
yR,h, L

?zR,h
)
, yR,h ∈WR,h , zR,h ∈ ZR,h ,〈

CR,hzR,h, z̃R,h
〉

=
(
zR,h, z̃R,h

)
L?,R

, zR,h, z̃R,h ∈ ZR,h ,〈
D̂R,hyR,h, zR,h

〉
=
〈
D̂hŷR,h, zR,h

〉
, ŷR,h ∈ V̂R,h zR,h ∈ ZR,h ,〈

`R,h, zR,h
〉

=
(
b, zR,h

)
R
, zR,h ∈ ZR ,

to obtain the reduced system Ŝhv̂h = ˆ̀
h with

Ŝh = −
∑
R∈Rh

 0

D̂R,h

′ 0 B′R,h
BR,h CR,h

−1 0

D̂R,h

 ,

ˆ̀
h =

∑
R∈Rh

 0

D̂R

′ 0 B′R
BR CR

−1 0

`R

 .

This allows for an analogous implementation as in algorithm 1, see section 4.2.4.

This procedure is well-defined if (4.48) is fulfilled, i.e. in case a Fortin operator

exists.
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4.7. A-priori error estimates for smooth solutions

4.7 A-priori error estimates for smooth solutions

According to theorem 4.30, the approximation error for the DPG method can be

bounded by an estimate of the following form

‖(ysol
h , ŷsol

h )− (ysol, ŷsol)‖Q;L,∂Qh
≤
√

2

βh
inf

(yh,ŷh)∈Wh×V̂h
‖(yh, ŷh)− (ysol, ŷsol)‖Q;L,∂Qh

(4.55)

where βh > 0 is the stability constant obtained by the Fortin operator.

For the weakly conforming Least-Squares method, we have the following error

estimate according to theorem 4.14

‖ysol − ysol
h ‖L,Qh

≤ C inf
yh∈V wc

h

‖ysol − yh‖L,Qh
+

1

α0
sup

yh∈V wc
h

ah(ysol,yh)− `h(yh)

‖yh‖L,Qh

.

(4.56)

In both estimates, (4.55) and (4.56), the best-approximation error in the graph norm

‖·‖2L,Qh
= ‖·‖2Qh

+‖L(·)‖2Qh
needs to be bounded.1 To obtain a-priori error estimates,

we use standard interpolation theory, see e.g. [24, Sec. 1.5]. To this end, we briefly

recall the definition of the Sobolev semi-norm in the Hilbert spaces Hs.

Definition 4.34 (Sobolev semi-norm). Let U ⊂ RD be open and s ∈ N. For

v ∈ Hs(U) we define the Sobolev semi-norm |v|s,U by

|v|2s,U :=
∑
|α|=s

‖∂αv‖2U .

Here, α ∈ ND0 is a multiindex, |α| := ∑D
r=1 αr and ∂α := ∂α1

x1 · · · ∂αd
xd
.

In particular, for |α| = 1 there is d ∈ {1, . . . , D} with ∂α = ∂xd, and therefore we

have |u|21,U =
∑D

d=1 ‖∂xdu‖2U .
For vector fields v ∈ Hs(U,RM ), we set |v|2s,U :=

∑M
m=1 |vm|2s,U .

The following theorem is standard and a variant can be found in any textbook on

Finite Element theory. We use [24] as a reference.

Theorem 4.35. Let {R̂, P̂ , Σ̂} be a finite element with associated normed vector

space V (R̂) and assume that k ∈ N exists with

Pk ⊂ P̂ ⊂ Hk+1(R̂) ⊂ V (R̂) .

Let (Rh)h be a shape regular family of affine meshes of Q and let Ikh be the cell-

wise defined interpolation operator. Let l ∈ [0, k] such that Hl+1(R̂) ⊂ V (R̂) with

continuous embedding.
1In case of the DPG estimate, a part of the norm is hidden inside the norm for the skeleton

trace.
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CHAPTER 4. Space-time minimal residual methods

Then, there is a constant C > 0 depending on the shape regularity of the mesh

and k such that for all v ∈ H l+1(Qh) we have

‖v − Ikhv‖Qh
+

l+1∑
m=1

hm

 ∑
R∈Rh

|v − Ikhv|2m,R

 1
2

≤ Chl+1|v|l+1,Q .

Proof. See [24, Thm. 1.103 and Cor. 1.109].

Example 4.36. A typical example for this setting is V (R̂) = C0(R̂), P̂ = Qk for

k ∈ N. Where Ikh : C0(Q) −→ C0(Q) ∩∏R∈Rh
Qk(R) is defined by

v 7−→
∑
z∈N

v(z)φz , v ∈ C0(Q) .

Here, N ⊂ Q is a set of nodal points and the corresponding nodal basis of Vh is{
φz : z ∈ N

}
⊂ Vh :=

{
φz ∈ C0(Q) : φz|R ∈ Qk(R), R ∈ Rh} .

To apply theorem 4.35 we make use of the following lemma.

Lemma 4.37. Let L : C1(R,RM ) −→ C0(R,RN ) be a differential operator of first

order in R ⊂ Rd of the form

Ly =

D∑
d=1

Ad∂xdy , y ∈ C1(R,RM ) ,

where Ad ∈ L∞(R,RN×M ), d ∈ {1, . . . , D}.
Then there is a real constant C > 0 such that for y ∈ C1(R,RM )

‖Ly‖R ≤ C|y|1,R ,

where C depends on (Ad)d, M , N , D.

Proof. For y ∈ C1(R,RM ), d ∈ {1, . . . , D} and n ∈ {1, . . . , N}, we get

∥∥(Ad∂xdy)n
∥∥2

R
=

∫
R

(
M∑
m=1

(Ad)nm(x)∂xdym(x)

)2

dx

≤
∫
R

(
M∑
m=1

(Ad)nm(x)2

)(
M∑
m=1

∂xdym(x)2

)
dx

≤M sup
m=1,...,M

‖(Ad)nm‖2R,∞‖∂xdy‖2R

yielding

‖Ad∂xdy‖2R =
N∑
n=1

∥∥(Ad∂xdy)n∥∥2

R
≤MN sup

n=1,...,N
m=1,...,M

‖(Ad)nm‖2R,∞‖∂xdy‖2R .
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4.7. A-priori error estimates for smooth solutions

This finishes the proof, since

‖Ly‖R ≤
D∑
d=1

‖Ad∂xdy‖R ≤
√
MN sup

n=1,...,N, m=1,...,M
d=1,...,D

‖(Ad)nm‖R,∞
D∑
d=1

‖∂xdy‖R

giving C =
√
DMN supn=1,...,N, m=1,...,M

d=1,...,D
‖(Ad)mn‖R,∞.

Application the DPG-Estimate

Let the solution of Lysol = b fulfill y ∈ Hk+1(Q,R1+d) for a k ∈ N. Applying the

abstract result theorem 4.35 to (4.55) is done in two steps.

1. We use tensor-product elements P̂ = Qk−1 yielding Pk−1 ⊂ P̂ . We choose

V (R̂) = C0(R̂) and the standard Lagrange interpolation in every cell.

Then, setting l = k−1, we obtain by using theorem 4.35 in every component

‖ysol − Ik−1
h ysol‖Qh

≤ Chk|ysol|k,Q (4.57)

2. The quotient norm on the skeleton is given by

‖ŷ‖L,∂Qh
= inf
y∈ŷ
‖y‖L,Qh

= inf
y∈ŷ

(
‖y‖2Qh

+ ‖Ly‖2Qh

) 1
2 , ŷ ∈ Ĥ(L,Qh) .

Since ŷsol = ysol + H0(L,Qh) by construction, we select the global Lagrange

interpolation Ikhy
sol. Choosing y0 = 0 ∈ H0(L,Qh), we obtain for the interpo-

lation’s trace, ŷh := Ikhy
sol + H0(L,Qh)

‖ŷsol − ŷh‖L,∂Qh
= inf
y0∈H0(L,Qh)

‖ysol − Ikhysol + y0‖L,Qh

≤
(
‖ysol − Ikhysol‖2Qh

+ ‖L(ysol − Ikhysol)‖2Qh

) 1
2
.

As an approximation space V̂h of V̂ , we use traces of polynomials such that

in every cell R ∈ Rh, we have Qk(R) + H0(L,Qh) ⊂ V̂h(R). Again, choosing

V (R) = C0(R) yields for l = k as in step 1. by theorem 4.35

‖ysol − Ikhysol‖Qh
≤ Chk+1|ysol|k+1,Q . (4.58)

For remaining part of the graph norm, we obtain using lemma 4.37

‖L(ysol − Ikhysol)‖Qh
≤ C̃

 ∑
R∈Rh

|ysol − Ikhysol|21,R

 1
2

≤ Ĉhk|ysol|k+1,Q .

(4.59)
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Now we can insert (4.57), (4.58) and (4.59) into (4.55) yielding the expected conver-

gence order k

‖ysol − ysol
h ‖Qh

+ ‖ŷsol − ŷsol
h ‖L;∂Qh

≤ Chk|ysol|k+1,Q . (4.60)

Corollary 4.38. For k ∈ N, we expect convergence of order k of the DPG approxi-

mation to the analytical solution in ‖ ·‖Qh
+‖ ·‖L;∂Qh

under the following conditions:

1. The solution of Lysol = b fulfills ysol ∈ Hk+1(Q,R1+d),

2. P̂ = Qk−1,

3. Qk(R) + H0(L,R) ⊂ V̂h(R) for all R ∈ Rh.

Application to the weakly conforming Least-Squares method

To obtain an estimate for the weakly conforming Least-Squares method, we assume

that the second addend in (4.56) can be neglected.

Then, using the same arguments as for the DPG method in (4.59), we obtain the

following result.

Corollary 4.39. For k ∈ N, we expect convergence of order k in ‖ · ‖L,Qh
for the

weakly conforming Least-Squares method under the following conditions:

1. The solution of Ly = b fulfills y ∈ Hk+1(Q,R1+d),

2. P̂ = Qk,

3. The second addend in (4.56) decays at least with order k.

Remark 4.40. Note that by theorem 4.14, the test space V ?
h does not need to

have any approximation quality since it just provides coupling conditions over cell

interfaces.

The convergence rate/reduction factor

Since we use families of meshes that result from dividing the mesh-width by factor

2 on each refinement, we obtain the expected reduction factor2 θk = 2k for

θk :=
‖(y, ŷ)− (yhk , ŷhk)‖L;Q;∂Q

‖(y, ŷ)− (yhk+1
, ŷhk+1

)‖L;Q;∂Q
, hl :=

h0

2l
.

2We also call this quantity the (convergence) rate.
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Chapter 5

Numerical Experiments

5.1 Numerical setup

The numerical experiments presented in the following sections have been imple-

mented using the parallel Finite Element framework M++ described in [66]. A key

feature of M++ is its parallel programming model which hides the details of par-

allelism from the developer. Furthermore, its modular structure is designed for the

implementation of new FEM spaces and methods. This enables rapid development

of parallel FEM software while being able to control the whole numerical algorithm,

including mesh-refinement, load-balancing, FEM bases, quadrature formulas, pre-

conditioners as well as linear and non-linear solvers.

5.1.1 Discretizations and error quantities

We consider discretizations originating from the simplified Discontinuous-Petrov-

Galerkin method described in section 4.6 and the weakly conforming Least-

Squares method that was introduced in section 4.2.

Before comparing the performance of these methods with respect to different

examples, we provide general remarks on the numerical setup.

Considered error quantities

Fitting our analytical setting, we consider the difference of the numerical approxi-

mation to the exact solution in component-wise L2(Q) norms.

However, for some configurations we observed convergence of increased order when

looking at the cell-wise means. To this end, for y ∈ L1(Q,Rm), we define the cell-wise

77



5.1. Numerical setup

mean value Π0
Qh
y : Q −→ Rm on a space-time mesh Rh of Q by

(
Π0
Qh
y
)
(x) :=

1

|R|

∫
R
y(z) dz , x ∈ R , R ∈ Rh .

Straight-forward calculations show the bound ‖Π0
Qh
y‖L1(Q,Rm) ≤ ‖y‖L1(Q,Rm) and

(Π0
Qh

)2 = Π0
Qh

. For y ∈ L2(Q,Rm), one can show ‖Π0
Qh
y‖L2(Q,Rm) ≤ ‖y‖L2(Q,Rm).

As a result, the mapping Π0
Qh

: Ll(Q,Rm) −→ Ll(Q,Rm) is a bounded linear

projection in Ll(Q,Rm), l ∈ {1, 2}.
In following convergence considerations, the Ll-mean error refers to the quantity

‖Π0
Qh
y − Π0

Qh
yh‖Ll(Q,Rm), l ∈ {1, 2}, for the exact solution y ∈ H(L,Q) and the

discrete numerical approximation yh.

5.1.2 Mesh refinements

The calculations are performed on sequences of space-time meshes. The coarsest

mesh, we say level 0, is cell-wise refined using bisection of all edges yielding the mesh

on level 1, level 2 and so forth. In one spatial dimension, the space-time cells are

rectangles. Thus, each cell is divided into 4 congruent rectangles on refinement. In

two spatial dimensions, we consider space-time cells that are cuboids each of which

is refined into 8 congruent cuboids.

Figure 5.1: A space-time mesh in 2D on level ` (left) and the refined version using bisection of edges

on level `+ 1 (right).

Remark 5.1. Note that for our demonstration-of-concept implementation, we re-

stricted ourselves to rectangular meshes. However, the method can also be imple-

mented using other types of meshes as long as each cell is of the form K × (a, b) for

a spatial cell K ⊂ Rd. Extending our implementation to more general meshes is a

promising future challenge.
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5.1.3 Local Schur complements and problem sizes

On each level, we provide the number of global degrees of freedom, DoFs that re-

main after eliminating the interior cell degrees of freedom using Schur-complement

reduction, see section 4.2.4 for the weakly conforming Least-Squares method and

section 4.6.2 for the DPG method.

Furthermore, we provide the amount of total DoFs including the eliminated inte-

rior degrees of freedom in the column all DoFs.

For the Schur-complement process, we need to assemble and invert a local saddle-

point matrix in each space-time cell R ∈ Rh. According to section 4.6.2, for the

DPG-method, these matrices have the following structure

SR,h =

 0 B′R,h
BR,h CR,h

 ∈ R(dimWR,h+dimZR,h)×(dimWR,h+dimZR,h) ,

where BR,h, CR,h are defined by〈
BR,hyR,h, zR,h

〉
=
(
yR,h, L

?zR,h
)
R
,〈

CR,hzR,h, z̃R,h
〉

=
(
zR,h, z̃R,h

)
L?,R

,
yR,h ∈WR,h , zR,h, z̃R,h ∈ ZR,h

for the cell-wise defined ansatz space WR,h ⊂ L2(R,R1+d) and the cell-wise defined

test space ZR,h ⊂ H(L?, R). Since we use cell-wise tensor-product polynomial spaces

in each of the 1 + d components, i.e.

WR,h = Qk(R)1+d , ZR,h = Ql(R)1+d , k, l ∈ N0 ,

and by using dimQk(R) = (k + 1)1+d we conclude that

dimWR,h = (1 + d) · (k + 1)1+d , dimZR,h = (1 + d) · (l + 1)1+d ,

and that SR,h is a square matrix with (1 + d) ·
(
(k + 1)1+d + (l + 1)1+d

)
rows, see

table 5.1.

As a result, at the expense of inverting a locally defined dense matrix, we can

eliminate up to a few hundreds of local unknowns.

Analogous considerations also hold for the weakly conforming Least-Squares method.

See section 4.2.4 for the detailed structure of the local saddle-point matrix in this

case.

Quadrature formulas – the curse of dimensions

The local saddle-point matrices for the DPGmethod and also for the weakly-conforming

Least-Squares method contain cell-wise L2 inner products of polynomials in each

component.
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d k l dimWR,h dimZR,h rows in SR,h d k l dimWR,h dimZR,h rows in SR,h

1 0 3 2 32 34 2 0 3 3 192 195

1 1 4 8 50 58 2 1 4 24 375 399

1 2 5 18 72 90 2 2 5 81 648 729

1 3 6 32 98 130 2 3 6 192 1029 1221

1 4 7 50 128 178 2 4 7 375 1536 1911

1 5 8 72 162 234 2 5 8 648 2187 2835

Table 5.1: Dimensions of WR,h, ZR,h and the number of rows for SR,h in one and two space-

dimensions for different configurations of the DPG-method.

Choosing ZR,h = Ql(R)1+d, we need to integrate products of polynomials in

Ql(R) ·Ql(R) = Q2l(R) in order to assemble the matrix CR,h.

Using a 1D Gauß quadrature with n ∈ N nodes in all d + 1 space-time axes,

we are able to integrate functions in Q2n−1(R) exactly. Thus, to compute L2(R)

inner products of functions in Ql(R), we need n ≥ l + 1 quadrature nodes in every

space-time axis, resulting in at least nentry = (l + 1)1+d operations to assemble a

single entry of CR,h. Thus, exploiting the symmetry CR,h, we need at least

N =
1

2
· nentry ·

(
dimZR,h

)2
=

1

2
· (l + 1)1+d ·

(
(1 + d) · (l + 1)1+d

)2
to assemble the dense matrix CR,h in a single cell when using a naive implementation

with nested loops.

Although the assembling process can be done in parallel for every cell, it turned

out that the resulting local costs grow significantly for high-order configurations, see

table 5.2.

d 1

l 3 4 5 6 7 8

N ≥ 8 192 31 250 93 312 235 298 524 288 1 062 882

d 2

l 3 4 5 6 7 8

N ≥ 1 179 648 8 789 062 45 349 632 181 591 232 603 979 776 1 743 392 200

Table 5.2: Lower bound for the amount of elementary operations needed to assemble CR,h.

In the future, we would like to exploit the structure of our polynomial spaces

to reduce these assembling costs. In [50, 70], approaches to handle this effect are

considered.
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Solving the global linear system

To solve the linear systems, for most examples we use a GMRES iterative solver

preconditioned by a symmetric Gauß-Seidel method in every parallel subdomain.

To eliminate errors resulting from preliminary stopping of this iteration scheme, in

some of the academic examples we make use of the parallel direct solver described

in [47].

Both preconditioners perform suboptimal in our experiments, since the symmetric

Gauß-Seidel preconditioner needs by far too many steps (up to tens of thousands)

for high-order variants on high levels and the parallel direct solver requires a large

amount of memory due to fill-in effects.

It is a future challenge, to construct efficient preconditioners for the methods

presented in this work.

Remark 5.2. Since the Schur complement matrices for the weakly conforming

Least-Squares method as well as for the DPG method are symmetric and positive def-

inite, instead of the GMRES solver, a conjugate gradient (CG) scheme is a straight-

forward choice. However, in our experiments the CG algorithm combined with the

Gauß-Seidel preconditioner performs significantly worse than the GMRES solver.

Configurations of the DPG method

As shown in section 4.7, for the DPG method it is reasonable to select a polynomial

space of degree k ∈ N on each space-time face and a space of degree k − 1 for the

variables inside each cell. By corollary 4.38, this yields a scheme converging with

order k in the L2(Q) norm in case that the solution is smooth enough.

Remark 5.3. In our calculations, see e.g. figure 5.3 and figure 5.4, we observe

that using polynomials of degree k instead of k−1 inside the cells increases the order

of convergence by 1 for 1D examples. Thus, we also present numerical results for

these configurations.

Further enrichment of the local ansatz spaces does not lead to additional improve-

ments in our examples. Therefore, we do not provide results for these configurations.

We select for both beforehand mentioned configurations polynomials of degree

k + 2 as a test space which performed well in the experiments.

See table 5.3 and table 5.4 for the DPG configuration used in the numerical

experiments. The configuration names are used to label the provided convergence

results in the following sections.
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configuration name D1 D2 D3 D4 D5

cell polynomial degree k − 1 0 1 2 3 4

face polynomial degree k 1 2 3 4 5

test polynomial degree k + 2 3 4 5 6 7

expected order of convergence in L2(Q) 1 2 3 4 5

Table 5.3: Considered configurations for the DPG method as suggested by section 4.7.

configuration name D1+ D2+ D3+ D4+ D5+

cell polynomial degree k 1 2 3 4 5

face polynomial degree k 1 2 3 4 5

test polynomial degree k + 2 3 4 5 6 7

expected order of convergence in L2(Q) 1 2 3 4 5

Table 5.4: Considered configurations for the DPG method converging with increased order in our

experiments.

Configurations of the weakly conforming Least-Squares method

By theorem 4.14 and the discussion section 4.2.5, we note that for the weakly

conforming Least-Squares method, the stability conditions (4.14) and (4.25) are suf-

ficient to obtain a convergent method. However, these two conditions only hold for

some well-balanced pairings of ansatz and test space.

We present numerical results for the following configurations in one spatial di-

mension that we found by numerical experiments.

For different choices k ∈ N, we select polynomials in Qk(R) for the pressure as

well as for the velocity component in V wc
h . For the discrete coupling space V ?

h , we

distinguish faces in time having the form F = (t−, t
+) × {a} ⊂ ∂Qh and faces in

space of the form F = {t}× (a, b) ⊂ ∂Qh. We choose spaces of face bubbles on each

face, where we use the same coupling for the pressure and velocity component. More

precisely, we set

V ?
h |F = span


φ1

0

 , . . . ,

φkF
0

 ,

 0

φ1

 , . . . ,

 0

φkF

 ,

for kF ∈ N that can be chosen for each face F individually. In table 5.5, we list the

configurations that have been used in the experiments.

Again, the configuration names are used to label the provided convergence results

in the following section.
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configuration name W2 W3 W4 W5 W6 W7 W8

cell polynomial degree k 2 3 4 5 6 7 8

kF,space, F = (t−, t
+)× {a} (face in space) 1 2 3 3 4 4 5

kF,time, F = {t} × (a, b) (face in time) 2 3 3 4 4 5 5

expected order of convergence in L2(Q) 1 2 3 4 5 6 7

Table 5.5: Considered configurations for the weakly conforming Least-Squares method.

The basis functions φl are chosen as follows, where the choice of ηl ensures that

‖φl‖L1((0,1)) = 1 for scaling reasons:1

φj(s) = ηj ·
j∏
i=0

(s− i/j)

5.1.4 A remark on the upcoming sections

In the following, we provide a large collection of numerical results for different prob-

lems and schemes. Due to its structure, the following sections are not intended for

being read sequentially in detail. The reader may have a look at the summary in

section 5.5 before digging into the examples. He or she also may focus on the more

interesting examples in two spatial dimensions, section 5.3.2, section 5.3.3, as

well as the low-regularity example in 1D, section 5.2.3, or the space-time adaptiv-

ity example in section 5.4.

The author provides this extensive data set hoping that this is useful for further

comparisons to other methods. Since a detailed description for each benchmark

problem and numerical method is provided, the reader might reproduce the presented

results using his or her own implementation.

1Using this scaling leads to better conditioned system matrices in our experiments.
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5.2 Numerical examples (1D)

In this section, we present different numerical examples in one spacial dimension.

Some of these are designed to verify the convergence rates of the methods that

follow from the theory.

5.2.1 A smooth example

To compare convergence rates, we consider a smooth example given by

p(x, t) = a sin
(
ωπ(x+ t)

)
= −v(x, t) , (x, t) ∈ Ω× (0, T ) , (5.1)

with Ω = (0, 1), T = 3
π and a = 10, ω = 4.124324523. We select homogeneous

material parameters ρ ≡ κ ≡ 1 in Ω and a space-time plot of this solution is presented

in figure 5.2.

Figure 5.2: Plots of p (left) and v (right) component of (5.1). The vertical axis corresponds to

space and the horizontal axis is time, left to right.

Since we have (p,v) ∈ C∞(Q,R2), we expect to observe at least the convergence

rates predicted by section 4.7 that are maximal with respect to the used polynomial

degree.

See figure 5.3 to figure 5.5 for a convergence study. A detailed collection of

the results is provided in table 5.6 to table 5.8.
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Figure 5.3: Convergence results for DPG with configurations according to table 5.3.
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Figure 5.4: Convergence results for DPG with configurations according to table 5.4.
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Figure 5.5: Convergence results for WC with configurations according to table 5.5.
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5.2.1. A smooth example

Discussion: DPG. The DPG method configured as described by table 5.3 shows

a convergence behaviour that is in agreement with the theoretical predictions pro-

vided by section 4.7, see figure 5.3. After leaving the pre-asymptotic regime, the

convergence rates are matching the predictions precisely.

Interestingly, the convergence order of the cell-wise mean value in L2 norms and

also L1 norms is increased, i.e. if the L2 norm converges with order k in these exper-

iments, we observe a convergence order of k +4k with 4k ∈ [1, 3] for the cell-wise

mean. Furthermore, the schemes display pre-asymptotic behavior of the mean error

as well as round-off errors for high levels.

Discussion: DPG – increased cell degree. Increasing the polynomial degree

in every cell by 1, we observe convergence rates that are higher than the theoretical

predictions provided by section 4.7. All configurations show a by approximately 1

increased convergence rate of the error in the L2(Q) norm.

Also the convergence of the cell-wise mean values benefits from the enriched poly-

nomial spaces. While the absolute error is reduced for all configurations, only the

low-order schemes show increased orders for the mean-values.

Discussion: weakly conforming Least-Squares. In this benchmark, the weakly

conforming Least-Squares method converges in most examples with a increased order

compared the theoretical prediction. For the lowest order case, see table 5.8, the

rate is oscillating.

Looking at the mean values, we do not observe increased convergence rates.

In comparison to the DPG method with enriched cell spaces, the required amount

of global DoFs to achieve a certain accuracy is comparably large.

However, the weakly conforming Least-Squares method is more sensitive to round-

off errors in the high-order variants in comparison to the DPG method.
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5.2. Numerical examples (1D)

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1 0 1 16 18 9.746 · 100 − − 2.983 · 10−2 − − 3.751 · 10−2 − −

D1 1 4 48 56 9.747 · 100 1.00 0.00 1.115 · 10−1 0.27 −1.90 1.426 · 10−1 0.26 −1.93

D1 2 16 160 192 9.725 · 100 1.00 0.00 4.769 · 10−1 0.23 −2.10 4.433 · 10−1 0.32 −1.64

D1 3 64 576 704 5.769 · 100 1.69 0.75 6.865 · 10−1 0.69 −0.53 6.897 · 10−1 0.64 −0.64

D1 4 256 2 176 2 688 3.078 · 100 1.87 0.91 2.555 · 10−1 2.69 1.43 2.663 · 10−1 2.59 1.37

D1 5 1 024 8 448 10 496 1.562 · 100 1.97 0.98 7.079 · 10−2 3.61 1.85 7.438 · 10−2 3.58 1.84

D1 6 4 096 33 280 41 472 7.84 · 10−1 1.99 0.99 1.817 · 10−2 3.90 1.96 1.907 · 10−2 3.90 1.96

D2 0 1 24 32 9.736 · 100 − − 7.597 · 10−2 − − 7.429 · 10−2 − −

D2 1 4 72 104 9.751 · 100 1.00 0.00 2.604 · 10−2 2.92 1.54 3.07 · 10−2 2.42 1.27

D2 2 16 240 368 4.436 · 100 2.20 1.14 8.344 · 10−2 0.31 −1.68 9.446 · 10−2 0.33 −1.62

D2 3 64 864 1 376 1.237 · 100 3.59 1.84 3.146 · 10−2 2.65 1.41 3.406 · 10−2 2.77 1.47

D2 4 256 3 264 5 312 3.178 · 10−1 3.89 1.96 2.715 · 10−3 11.59 3.53 2.847 · 10−3 11.96 3.58

D2 5 1 024 12 672 20 864 7.999 · 10−2 3.97 1.99 1.896 · 10−4 14.32 3.84 1.989 · 10−4 14.31 3.84

D2 6 4 096 49 920 82 688 2.003 · 10−2 3.99 2.00 1.223 · 10−5 15.50 3.95 1.289 · 10−5 15.43 3.95

D3 0 1 32 50 9.703 · 100 − − 6.4 · 10−2 − − 6.236 · 10−2 − −
D3 1 4 96 168 6.58 · 100 1.47 0.56 8.017 · 10−3 7.98 3.00 1.03 · 10−2 6.05 2.60

D3 2 16 320 608 1.218 · 100 5.40 2.43 6.364 · 10−3 1.26 0.33 7.119 · 10−3 1.45 0.53

D3 3 64 1 152 2 304 1.665 · 10−1 7.32 2.87 8.692 · 10−4 7.32 2.87 8.954 · 10−4 7.95 2.99

D3 4 256 4 352 8 960 2.129 · 10−2 7.82 2.97 2.489 · 10−5 34.92 5.13 2.713 · 10−5 33.00 5.05

D3 5 1 024 16 896 35 328 2.675 · 10−3 7.96 2.99 5.086 · 10−7 48.94 5.61 5.576 · 10−7 48.65 5.61

D3 6 4 096 66 560 140 288 3.349 · 10−4 7.99 3.00 2.002 · 10−8 25.40 4.67 1.521 · 10−8 36.66 5.20

D4 0 1 40 72 9.686 · 100 − − 3.636 · 10−2 − − 3.542 · 10−2 − −

D4 1 4 120 248 2.902 · 100 3.34 1.74 4.578 · 10−3 7.94 2.99 5.947 · 10−3 5.96 2.57

D4 2 16 400 912 2.477 · 10−1 11.71 3.55 6.819 · 10−4 6.71 2.75 6.349 · 10−4 9.37 3.23

D4 3 64 1 440 3 488 1.672 · 10−2 14.82 3.89 2.519 · 10−5 27.07 4.76 2.913 · 10−5 21.80 4.45

D4 4 256 5 440 13 632 1.065 · 10−3 15.70 3.97 2.832 · 10−7 88.95 6.48 3.037 · 10−7 95.92 6.58

D4 5 1 024 21 120 53 888 6.686 · 10−5 15.93 3.99 3.592 · 10−9 78.84 6.30 3.401 · 10−9 89.30 6.48

D4 6 4 096 83 200 214 272 4.183 · 10−6 15.98 4.00 8.352 · 10−11 43.01 5.43 6.36 · 10−11 53.47 5.74

D5 0 1 48 98 8.902 · 100 − − 3.456 · 10−2 − − 3.367 · 10−2 − −

D5 1 4 144 344 9.818 · 10−1 9.07 3.18 1.803 · 10−3 19.17 4.26 1.856 · 10−3 18.14 4.18

D5 2 16 480 1 280 4.011 · 10−2 24.48 4.61 8.074 · 10−5 22.33 4.48 8.981 · 10−5 20.67 4.37

D5 3 64 1 728 4 928 1.337 · 10−3 30.00 4.91 1.022 · 10−6 79.00 6.30 1.154 · 10−6 77.82 6.28

D5 4 256 6 528 19 328 4.248 · 10−5 31.47 4.98 1.231 · 10−8 83.02 6.38 1.126 · 10−8 102.49 6.68

D5 5 1 024 25 344 76 544 1.333 · 10−6 31.87 4.99 1.671 · 10−10 73.67 6.20 1.045 · 10−10 107.75 6.75

D5 6 4 096 99 840 304 640 4.17 · 10−8 31.97 5.00 1.07 · 10−10 1.56 0.64 1.108 · 10−10 0.94 −0.08

Table 5.6: Convergence results for the DPG method according to table 5.3.
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5.2.1. A smooth example

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1+ 0 1 16 24 9.738 · 100 − − 2.716 · 10−2 − − 3.41 · 10−2 − −
D1+ 1 4 48 80 9.749 · 100 1.00 0.00 1.255 · 10−1 0.22 −2.21 1.575 · 10−1 0.22 −2.21

D1+ 2 16 160 288 4.791 · 100 2.03 1.03 5.386 · 10−1 0.23 −2.10 4.782 · 10−1 0.33 −1.60

D1+ 3 64 576 1 088 1.34 · 100 3.57 1.84 9.744 · 10−2 5.53 2.47 9.755 · 10−2 4.90 2.29

D1+ 4 256 2 176 4 224 3.555 · 10−1 3.77 1.91 1.299 · 10−2 7.50 2.91 1.226 · 10−2 7.96 2.99

D1+ 5 1 024 8 448 16 640 9.042 · 10−2 3.93 1.98 2.313 · 10−3 5.62 2.49 2.169 · 10−3 5.65 2.50

D1+ 6 4 096 33 280 66 048 2.271 · 10−2 3.98 1.99 5.199 · 10−4 4.45 2.15 4.867 · 10−4 4.46 2.16

D2+ 0 1 24 42 9.779 · 100 − − 3.323 · 10−2 − − 3.238 · 10−2 − −
D2+ 1 4 72 144 7.247 · 100 1.35 0.43 5.875 · 10−2 0.57 −0.82 8.04 · 10−2 0.40 −1.31

D2+ 2 16 240 528 1.22 · 100 5.94 2.57 2.403 · 10−2 2.44 1.29 2.647 · 10−2 3.04 1.60

D2+ 3 64 864 2 016 1.817 · 10−1 6.72 2.75 7.185 · 10−3 3.34 1.74 7.074 · 10−3 3.74 1.90

D2+ 4 256 3 264 7 872 2.459 · 10−2 7.39 2.89 3.037 · 10−4 23.66 4.56 3.317 · 10−4 21.33 4.42

D2+ 5 1 024 12 672 31 104 3.06 · 10−3 8.04 3.01 8.906 · 10−6 34.10 5.09 9.428 · 10−6 35.18 5.14

D2+ 6 4 096 49 920 123 648 3.851 · 10−4 7.95 2.99 4.38 · 10−7 20.33 4.35 3.246 · 10−7 29.04 4.86

D3+ 0 1 32 64 9.746 · 100 − − 7.02 · 10−2 − − 6.84 · 10−2 − −
D3+ 1 4 96 224 2.913 · 100 3.35 1.74 4.278 · 10−3 16.41 4.04 4.726 · 10−3 14.47 3.86

D3+ 2 16 320 832 2.681 · 10−1 10.87 3.44 7.057 · 10−3 0.61 −0.72 6.509 · 10−3 0.73 −0.46

D3+ 3 64 1 152 3 200 1.809 · 10−2 14.82 3.89 3.75 · 10−4 18.82 4.23 3.659 · 10−4 17.79 4.15

D3+ 4 256 4 352 12 544 1.258 · 10−3 14.38 3.85 1.526 · 10−5 24.57 4.62 1.556 · 10−5 23.52 4.56

D3+ 5 1 024 16 896 49 664 7.962 · 10−5 15.80 3.98 2.927 · 10−7 52.14 5.71 3.256 · 10−7 47.79 5.58

D3+ 6 4 096 66 560 197 632 4.834 · 10−6 16.47 4.04 4.919 · 10−9 59.51 5.90 5.717 · 10−9 56.95 5.83

D4+ 0 1 40 90 9.252 · 100 − − 4.633 · 10−2 − − 4.514 · 10−2 − −
D4+ 1 4 120 320 1.019 · 100 9.08 3.18 3.921 · 10−3 11.82 3.56 4.64 · 10−3 9.73 3.28

D4+ 2 16 400 1 200 4.042 · 10−2 25.22 4.66 2.078 · 10−4 18.87 4.24 2.318 · 10−4 20.02 4.32

D4+ 3 64 1 440 4 640 1.475 · 10−3 27.40 4.78 2.425 · 10−5 8.57 3.10 2.763 · 10−5 8.39 3.07

D4+ 4 256 5 440 18 240 4.644 · 10−5 31.76 4.99 2.47 · 10−7 98.18 6.62 2.713 · 10−7 101.84 6.67

D4+ 5 1 024 21 120 72 320 1.427 · 10−6 32.54 5.02 1.937 · 10−9 127.51 7.00 2.174 · 10−9 124.79 6.96

D4+ 6 4 096 83 200 288 000 4.426 · 10−8 32.24 5.01 2.914 · 10−11 66.47 6.06 3.057 · 10−11 71.12 6.15

D5+ 0 1 48 120 6.244 · 100 − − 1.689 · 10−2 − − 1.646 · 10−2 − −
D5+ 1 4 144 432 2.752 · 10−1 22.69 4.50 3.525 · 10−4 47.92 5.58 4.192 · 10−4 39.25 5.30

D5+ 2 16 480 1 632 5.851 · 10−3 47.03 5.56 6.564 · 10−5 5.37 2.43 7.358 · 10−5 5.70 2.51

D5+ 3 64 1 728 6 336 9.958 · 10−5 58.76 5.88 1.113 · 10−6 58.98 5.88 1.28 · 10−6 57.48 5.85

D5+ 4 256 6 528 24 960 1.598 · 10−6 62.31 5.96 6.692 · 10−9 166.32 7.38 7.84 · 10−9 163.26 7.35

D5+ 5 1 024 25 344 99 072 2.558 · 10−8 62.47 5.97 4.602 · 10−11 145.42 7.18 5.283 · 10−11 148.40 7.21

D5+ 6 4 096 99 840 394 752 1.634 · 10−9 15.65 3.97 1.231 · 10−10 0.37 −1.42 1.245 · 10−10 0.42 −1.24

Table 5.7: Convergence results for the DPG method according to table 5.4.
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5.2. Numerical examples (1D)

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

W2 0 1 12 30 1.073 · 101 − − 3.952 · 100 − − 5.012 · 100 − −

W2 1 4 36 108 1.016 · 101 1.06 0.08 2.714 · 100 1.46 0.54 3.073 · 100 1.63 0.71

W2 2 16 120 408 1.967 · 101 0.52 −0.95 1.062 · 101 0.26 −1.97 1.333 · 101 0.23 −2.12

W2 3 64 432 1 584 1.273 · 100 15.45 3.95 6.515 · 10−1 16.30 4.03 7.39 · 10−1 18.04 4.17

W2 4 256 1 632 6 240 1.556 · 10−1 8.18 3.03 9.248 · 10−2 7.04 2.82 1.005 · 10−1 7.35 2.88

W2 5 1 024 6 336 24 768 2.378 · 10−2 6.54 2.71 1.817 · 10−2 5.09 2.35 1.819 · 10−2 5.53 2.47

W2 6 4 096 24 960 98 688 4.619 · 10−3 5.15 2.36 4.205 · 10−3 4.32 2.11 4.012 · 10−3 4.53 2.18

W3 0 1 20 52 1.407 · 101 − − 2.318 · 100 − − 2.859 · 100 − −

W3 1 4 60 188 1.005 · 101 1.40 0.49 3.481 · 100 0.67 −0.59 4.58 · 100 0.62 −0.68

W3 2 16 200 712 7.433 · 10−1 13.52 3.76 1.98 · 10−1 17.58 4.14 2.293 · 10−1 19.97 4.32

W3 3 64 720 2 768 1.556 · 10−1 4.78 2.26 3.515 · 10−2 5.63 2.49 3.847 · 10−2 5.96 2.58

W3 4 256 2 720 10 912 8.307 · 10−3 18.73 4.23 2.013 · 10−3 17.46 4.13 2.367 · 10−3 16.25 4.02

W3 5 1 024 10 560 43 328 4.992 · 10−4 16.64 4.06 1.374 · 10−4 14.65 3.87 1.603 · 10−4 14.77 3.88

W3 6 4 096 41 600 172 672 3.093 · 10−5 16.14 4.01 8.863 · 10−6 15.50 3.95 1.035 · 10−5 15.49 3.95

W4 0 1 24 74 1.043 · 101 − − 2.052 · 100 − − 2.618 · 100 − −

W4 1 4 72 272 3.885 · 100 2.69 1.43 3.323 · 10−1 6.17 2.63 3.933 · 10−1 6.66 2.74

W4 2 16 240 1 040 3.863 · 10−1 10.06 3.33 6.02 · 10−2 5.52 2.47 6.563 · 10−2 5.99 2.58

W4 3 64 864 4 064 1.994 · 10−2 19.38 4.28 1.959 · 10−3 30.73 4.94 2.212 · 10−3 29.67 4.89

W4 4 256 3 264 16 064 8.245 · 10−4 24.18 4.60 6.562 · 10−5 29.85 4.90 6.984 · 10−5 31.67 4.99

W4 5 1 024 12 672 63 872 2.484 · 10−5 33.19 5.05 4.696 · 10−6 13.97 3.81 4.811 · 10−6 14.52 3.86

W4 6 4 096 49 920 254 720 8.151 · 10−7 30.48 4.93 3.739 · 10−7 12.56 3.65 3.54 · 10−7 13.59 3.76

W5 0 1 28 100 1.527 · 101 − − 4.109 · 100 − − 5.66 · 100 − −
W5 1 4 84 372 2.459 · 100 6.21 2.63 2.609 · 10−1 15.75 3.98 2.775 · 10−1 20.40 4.35

W5 2 16 280 1 432 4.868 · 10−2 50.52 5.66 9.257 · 10−3 28.18 4.82 1.147 · 10−2 24.20 4.60

W5 3 64 1 008 5 616 2.207 · 10−3 22.06 4.46 2.572 · 10−4 35.99 5.17 2.787 · 10−4 41.14 5.36

W5 4 256 3 808 22 240 6.265 · 10−5 35.23 5.14 4.124 · 10−6 62.37 5.96 4.498 · 10−6 61.96 5.95

W5 5 1 024 14 784 88 512 8.828 · 10−7 70.97 6.15 6.84 · 10−8 60.29 5.91 7.268 · 10−8 61.89 5.95

W5 6 4 096 58 240 353 152 1.21 · 10−8 72.96 6.19 1.002 · 10−9 68.26 6.09 9.9 · 10−10 73.41 6.20

W6 0 1 32 130 1.239 · 101 − − 5.993 · 10−1 − − 6.25 · 10−1 − −

W6 1 4 96 488 4.229 · 10−1 29.29 4.87 5.217 · 10−2 11.49 3.52 5.797 · 10−2 10.78 3.43

W6 2 16 320 1 888 1.668 · 10−2 25.35 4.66 4.604 · 10−4 113.32 6.83 5.128 · 10−4 113.05 6.82

W6 3 64 1 152 7 424 1.83 · 10−4 91.16 6.51 1.906 · 10−5 24.16 4.59 2.136 · 10−5 24.01 4.59

W6 4 256 4 352 29 440 1.961 · 10−6 93.32 6.55 5.581 · 10−7 34.15 5.09 5.457 · 10−7 39.14 5.29

W6 5 1 024 16 896 117 248 2.172 · 10−8 90.29 6.50 1.394 · 10−8 40.03 5.32 1.298 · 10−8 42.04 5.39

W6 6 4 096 66 560 467 968 4.494 · 10−9 4.83 2.27 4.467 · 10−9 3.12 1.64 4.687 · 10−9 2.77 1.47

W7 0 1 36 164 1.191 · 101 − − 1.217 · 100 − − 1.676 · 100 − −

W7 1 4 108 620 5.091 · 10−1 23.40 4.55 7.255 · 10−2 16.78 4.07 9.339 · 10−2 17.95 4.17

W7 2 16 360 2 408 1.656 · 10−3 307.43 8.26 1.472 · 10−4 492.88 8.95 1.517 · 10−4 615.59 9.27

W7 3 64 1 296 9 488 1.084 · 10−5 152.77 7.26 1.036 · 10−6 142.08 7.15 1.12 · 10−6 135.45 7.08

W7 4 256 4 896 37 664 4.226 · 10−8 256.50 8.00 4.436 · 10−9 233.54 7.87 4.557 · 10−9 245.78 7.94

W7 5 1 024 19 008 150 080 1.44 · 10−9 29.35 4.88 1.338 · 10−9 3.32 1.73 1.375 · 10−9 3.31 1.73

W7 6 4 096 74 880 599 168 3.435 · 10−9 0.42 −1.25 3.202 · 10−9 0.42 −1.26 3.301 · 10−9 0.42 −1.26

W8 0 1 40 202 7.269 · 100 − − 2.73 · 10−1 − − 3.4 · 10−1 − −

W8 1 4 120 768 2.984 · 10−2 243.63 7.93 2.32 · 10−3 117.66 6.88 2.522 · 10−3 134.82 7.08

W8 2 16 400 2 992 2.58 · 10−4 115.64 6.85 1.425 · 10−5 162.81 7.35 1.544 · 10−5 163.34 7.35

W8 3 64 1 440 11 808 7.597 · 10−7 339.60 8.41 5.608 · 10−8 254.10 7.99 5.464 · 10−8 282.58 8.14

W8 4 256 5 440 46 912 4.923 · 10−9 154.31 7.27 4.152 · 10−9 13.51 3.76 4.306 · 10−9 12.69 3.67

W8 5 1 024 21 120 187 008 1.524 · 10−8 0.32 −1.63 1.47 · 10−8 0.28 −1.82 1.547 · 10−8 0.28 −1.85

W8 6 4 096 83 200 746 752 5.279 · 10−8 0.29 −1.79 5.207 · 10−8 0.28 −1.82 5.477 · 10−8 0.28 −1.82

Table 5.8: Convergence results for the WC method according to table 5.5.
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5.2.2. A traveling wave in a homogeneous medium

5.2.2 A traveling wave in a homogeneous medium

In this example, we consider the superposition of two traveling wave fronts with

opposite traveling directions, both of which are reflected five times at the boundaries

of Ω = (0, 1) due to homogeneous Dirichlet boundary values in p. The initial value

(p0,v0) = (aleft
0 − aright

0 ,−aleft
0 − aright

0 ) is given by

aleft
0 (x) =

2 cos
(
x−mleft

wleft

)k
, x ∈ mleft + (−wleft, wleft) ,

0 , else ,

aright
0 (x) =

cos
(
x−mright

wright

)k
, x ∈ mright + (−wright, wright) ,

0 , else ,

with k = 7, mleft = 7
9 , w

left = 0.25 · 3
π and mright = 2

9 , w
right = 0.4 · 3

π , resulting in

(p0,v0) ∈ C6
(
(0, 1),R2

)
. By setting ρ(x) = κ(x) = 1, x ∈ Ω, the wave travels with

speed c = 1. To prevent alignment of the characteristics with the mesh, we used a

grid with six cells congruent to Ω× (0, 3
π ) of the space-time domain Q = Ω× (0, T ),

T = 6 · 3
π .

Using a periodic extension of the initial value, we obtain an analytical solution as

depicted in figure 5.6.

Figure 5.6: Two traveling waves with opposite directions. The top plot shows p and the plot at the

bottom shows v in space-time. The horizontal axis is time, left to right.

figure 5.7 to figure 5.9 visualize the convergence results. For a detailed com-

parison, the reader may refer to table 5.9, table 5.10 and table 5.11.
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5.2. Numerical examples (1D)
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Figure 5.7: Convergence results for DPG with configurations according to table 5.3.
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Figure 5.8: Convergence results for DPG with configurations according to table 5.4.
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Figure 5.9: Convergence results for WC with configurations according to table 5.5.
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5.2.2. A traveling wave in a homogeneous medium

Discussion: DPG. From the experiments, we see that the predicted convergence

rates are also achieved in practice for this non-trivial example with boundary reflec-

tions.

Since this solution features a fine structure, it is reasonable to expect that the

error does not change heavily in a pre-asymptotic regime as long as the mesh is not

fine enough to resolve the solution’s structure. This is also what we observe in the

experiment. However, after leaving this regime the method converges as predicted

until the error stalls again due to round-off errors.

Again, we observe increased rates for the mean-values except for the lowest order

method.

Discussion: DPG – increased cell degree. We observe by 1 increased conver-

gence rates in this example with boundary reflections as well.

As in the configuration above, the convergence rate of the mean values is increased

for the L1(Q) as well as the L2(Q) norm in all examples except for the lowest order

scheme.

Interestingly, when looking at the convergence rates of the mean values, the

schemes D2+ and D3+ show comparable rates despite using different polynomial

degrees inside the cells.

Discussion: weakly conforming Least-Squares. In this example, the weakly

conforming Least-Squares method does not behave as foreseeable as in the smooth

example.

All configurations show oscillating convergence rates and for W5 to W8 we observe

round-off problems occurring earlier in comparison to the DPG method.

Also the high-order schemes W7 and W8 do not show improved approximation

qualities. However, since the solution is a C6(Q,R2) function only, we do not expect

significant improvements for these schemes compared to the other variants.

92



5.2. Numerical examples (1D)

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1 0 6 76 88 1.794 · 100 − − 2.483 · 10−1 − − 7.364 · 10−1 − −

D1 1 24 248 296 1.668 · 100 1.08 0.11 3.975 · 10−1 0.62 −0.68 9.351 · 10−1 0.79 −0.34

D1 2 96 880 1 072 1.617 · 100 1.03 0.04 5.972 · 10−1 0.67 −0.59 1.526 · 100 0.61 −0.71

D1 3 384 3 296 4 064 1.462 · 100 1.11 0.15 7.706 · 10−1 0.77 −0.37 1.787 · 100 0.85 −0.23

D1 4 1 536 12 736 15 808 1.176 · 100 1.24 0.31 8.063 · 10−1 0.96 −0.07 1.657 · 100 1.08 0.11

D1 5 6 144 50 048 62 336 8.119 · 10−1 1.45 0.53 6.472 · 10−1 1.25 0.32 1.154 · 100 1.44 0.52

D1 6 24 576 198 400 247 552 4.513 · 10−1 1.80 0.85 3.719 · 10−1 1.74 0.80 5.844 · 10−1 1.97 0.98

D1 7 98 304 790 016 986 624 1.991 · 10−1 2.27 1.18 1.514 · 10−1 2.46 1.30 2.158 · 10−1 2.71 1.44

D2 0 6 114 162 1.79 · 100 − − 2.435 · 10−1 − − 7.213 · 10−1 − −

D2 1 24 372 564 1.566 · 100 1.14 0.19 3.113 · 10−1 0.78 −0.35 6.915 · 10−1 1.04 0.06

D2 2 96 1 320 2 088 1.347 · 100 1.16 0.22 2.652 · 10−1 1.17 0.23 5.935 · 10−1 1.17 0.22

D2 3 384 4 944 8 016 9.59 · 10−1 1.40 0.49 2.896 · 10−1 0.92 −0.13 6.26 · 10−1 0.95 −0.08

D2 4 1 536 19 104 31 392 4.67 · 10−1 2.05 1.04 2.091 · 10−1 1.38 0.47 3.697 · 10−1 1.69 0.76

D2 5 6 144 75 072 124 224 1.255 · 10−1 3.72 1.90 7.274 · 10−2 2.87 1.52 1.013 · 10−1 3.65 1.87

D2 6 24 576 297 600 494 208 2.317 · 10−2 5.42 2.44 8.853 · 10−3 8.22 3.04 1.103 · 10−2 9.19 3.20

D2 7 98 304 1 185 024 1 971 456 5.336 · 10−3 4.34 2.12 6.363 · 10−4 13.91 3.80 7.767 · 10−4 14.20 3.83

D3 0 6 152 260 1.722 · 100 − − 2.375 · 10−1 − − 6.986 · 10−1 − −

D3 1 24 496 928 1.42 · 100 1.21 0.28 1.303 · 10−1 1.82 0.87 2.914 · 10−1 2.40 1.26

D3 2 96 1 760 3 488 1.074 · 100 1.32 0.40 7.012 · 10−2 1.86 0.89 1.58 · 10−1 1.84 0.88

D3 3 384 6 592 13 504 5.633 · 10−1 1.91 0.93 6.058 · 10−2 1.16 0.21 1.294 · 10−1 1.22 0.29

D3 4 1 536 25 472 53 120 1.327 · 10−1 4.24 2.09 2.882 · 10−2 2.10 1.07 4.442 · 10−2 2.91 1.54

D3 5 6 144 100 096 210 688 1.231 · 10−2 10.79 3.43 3.057 · 10−3 9.43 3.24 3.845 · 10−3 11.55 3.53

D3 6 24 576 396 800 839 168 1.461 · 10−3 8.42 3.07 8.062 · 10−5 37.92 5.25 9.867 · 10−5 38.97 5.28

D3 7 98 304 1 580 032 3 349 504 1.838 · 10−4 7.95 2.99 1.431 · 10−6 56.34 5.82 1.75 · 10−6 56.38 5.82

D4 0 6 190 382 1.604 · 100 − − 2.373 · 10−1 − − 6.928 · 10−1 − −

D4 1 24 620 1 388 1.278 · 100 1.26 0.33 9.286 · 10−2 2.56 1.35 1.998 · 10−1 3.47 1.79

D4 2 96 2 200 5 272 8.309 · 10−1 1.54 0.62 2.33 · 10−2 3.99 2.00 5.396 · 10−2 3.70 1.89

D4 3 384 8 240 20 528 3.043 · 10−1 2.73 1.45 9.371 · 10−3 2.49 1.31 1.875 · 10−2 2.88 1.53

D4 4 1 536 31 840 80 992 2.586 · 10−2 11.77 3.56 2.244 · 10−3 4.18 2.06 3.312 · 10−3 5.66 2.50

D4 5 6 144 125 120 321 728 1.372 · 10−3 18.85 4.24 7.652 · 10−5 29.32 4.87 9.759 · 10−5 33.94 5.09

D4 6 24 576 496 000 1 282 432 8.828 · 10−5 15.54 3.96 5.336 · 10−7 143.40 7.16 6.903 · 10−7 141.37 7.14

D4 7 98 304 1 975 040 5 120 768 5.565 · 10−6 15.86 3.99 2.666 · 10−9 200.15 7.65 3.773 · 10−9 182.95 7.52

D5 0 6 228 528 1.534 · 100 − − 2.374 · 10−1 − − 6.923 · 10−1 − −

D5 1 24 744 1 944 1.157 · 100 1.33 0.41 9.027 · 10−2 2.63 1.40 1.893 · 10−1 3.66 1.87

D5 2 96 2 640 7 440 6.375 · 10−1 1.81 0.86 1.623 · 10−2 5.56 2.48 3.704 · 10−2 5.11 2.35

D5 3 384 9 888 29 088 1.424 · 10−1 4.48 2.16 4.682 · 10−3 3.47 1.79 8.396 · 10−3 4.41 2.14

D5 4 1 536 38 208 115 008 4.399 · 10−3 32.37 5.02 1.091 · 10−4 42.91 5.42 1.626 · 10−4 51.64 5.69

D5 5 6 144 150 144 457 344 1.468 · 10−4 29.97 4.91 1.246 · 10−6 87.56 6.45 1.657 · 10−6 98.13 6.62

D5 6 24 576 595 200 1 824 000 4.751 · 10−6 30.90 4.95 1.971 · 10−9 632.16 9.31 3.083 · 10−9 537.46 9.07

D5 7 98 304 2 370 048 7 285 248 1.498 · 10−7 31.72 4.99 8.633 · 10−10 2.28 1.19 1.505 · 10−9 2.05 1.03

Table 5.9: Convergence results for the DPG method according to table 5.3.
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5.2.2. A traveling wave in a homogeneous medium

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1+ 0 6 76 124 1.791 · 100 − − 2.436 · 10−1 − − 7.282 · 10−1 − −

D1+ 1 24 248 440 1.591 · 100 1.13 0.17 3.355 · 10−1 0.73 −0.46 7.706 · 10−1 0.94 −0.08

D1+ 2 96 880 1 648 1.329 · 100 1.20 0.26 2.519 · 10−1 1.33 0.41 5.641 · 10−1 1.37 0.45

D1+ 3 384 3 296 6 368 9.855 · 10−1 1.35 0.43 3.037 · 10−1 0.83 −0.27 6.462 · 10−1 0.87 −0.20

D1+ 4 1 536 12 736 25 024 5.126 · 10−1 1.92 0.94 2.424 · 10−1 1.25 0.33 4.179 · 10−1 1.55 0.63

D1+ 5 6 144 50 048 99 200 1.448 · 10−1 3.54 1.82 9.341 · 10−2 2.60 1.38 1.296 · 10−1 3.22 1.69

D1+ 6 24 576 198 400 395 008 3.122 · 10−2 4.64 2.21 2.048 · 10−2 4.56 2.19 2.667 · 10−2 4.86 2.28

D1+ 7 98 304 790 016 1 576 448 7.258 · 10−3 4.30 2.11 4.441 · 10−3 4.61 2.21 5.846 · 10−3 4.56 2.19

D2+ 0 6 114 222 1.738 · 100 − − 2.376 · 10−1 − − 7.006 · 10−1 − −

D2+ 1 24 372 804 1.42 · 100 1.22 0.29 1.224 · 10−1 1.94 0.96 2.735 · 10−1 2.56 1.36

D2+ 2 96 1 320 3 048 1.106 · 100 1.28 0.36 6.793 · 10−2 1.80 0.85 1.625 · 10−1 1.68 0.75

D2+ 3 384 4 944 11 856 6.193 · 10−1 1.79 0.84 6.312 · 10−2 1.08 0.11 1.355 · 10−1 1.20 0.26

D2+ 4 1 536 19 104 46 752 1.556 · 10−1 3.98 1.99 3.235 · 10−2 1.95 0.96 4.966 · 10−2 2.73 1.45

D2+ 5 6 144 75 072 185 664 1.371 · 10−2 11.36 3.51 3.514 · 10−3 9.21 3.20 4.278 · 10−3 11.61 3.54

D2+ 6 24 576 297 600 739 968 1.627 · 10−3 8.42 3.08 7.118 · 10−5 49.37 5.63 8.488 · 10−5 50.40 5.66

D2+ 7 98 304 1 185 024 2 954 496 2.103 · 10−4 7.74 2.95 1.041 · 10−6 68.38 6.10 1.233 · 10−6 68.84 6.11

D3+ 0 6 152 344 1.587 · 100 − − 2.372 · 10−1 − − 6.928 · 10−1 − −

D3+ 1 24 496 1 264 1.3 · 100 1.22 0.29 9.481 · 10−2 2.50 1.32 2.067 · 10−1 3.35 1.75

D3+ 2 96 1 760 4 832 8.641 · 10−1 1.50 0.59 2.496 · 10−2 3.80 1.93 6.094 · 10−2 3.39 1.76

D3+ 3 384 6 592 18 880 3.407 · 10−1 2.54 1.34 8.535 · 10−3 2.92 1.55 1.727 · 10−2 3.53 1.82

D3+ 4 1 536 25 472 74 624 3.357 · 10−2 10.15 3.34 2.491 · 10−3 3.43 1.78 3.548 · 10−3 4.87 2.28

D3+ 5 6 144 100 096 296 704 1.472 · 10−3 22.80 4.51 1.073 · 10−4 23.22 4.54 1.408 · 10−4 25.20 4.66

D3+ 6 24 576 396 800 1 183 232 9.937 · 10−5 14.81 3.89 2.372 · 10−6 45.24 5.50 3.15 · 10−6 44.70 5.48

D3+ 7 98 304 1 580 032 4 725 760 6.243 · 10−6 15.92 3.99 3.995 · 10−8 59.37 5.89 5.323 · 10−8 59.18 5.89

D4+ 0 6 190 490 1.527 · 100 − − 2.374 · 10−1 − − 6.914 · 10−1 − −

D4+ 1 24 620 1 820 1.177 · 100 1.30 0.38 9.169 · 10−2 2.59 1.37 1.925 · 10−1 3.59 1.84

D4+ 2 96 2 200 7 000 6.524 · 10−1 1.80 0.85 1.65 · 10−2 5.56 2.47 3.744 · 10−2 5.14 2.36

D4+ 3 384 8 240 27 440 1.756 · 10−1 3.72 1.89 5.626 · 10−3 2.93 1.55 1.049 · 10−2 3.57 1.84

D4+ 4 1 536 31 840 108 640 4.9 · 10−3 35.83 5.16 2.068 · 10−4 27.21 4.77 3.204 · 10−4 32.73 5.03

D4+ 5 6 144 125 120 432 320 1.676 · 10−4 29.24 4.87 7.891 · 10−6 26.21 4.71 1.084 · 10−5 29.56 4.89

D4+ 6 24 576 496 000 1 724 800 5.109 · 10−6 32.80 5.04 6.12 · 10−8 128.94 7.01 8.454 · 10−8 128.22 7.00

D4+ 7 98 304 1 975 040 6 890 240 1.56 · 10−7 32.75 5.03 4.405 · 10−10 138.93 7.12 7.467 · 10−10 113.22 6.82

D5+ 0 6 228 660 1.462 · 100 − − 2.375 · 10−1 − − 6.91 · 10−1 − −

D5+ 1 24 744 2 472 1.052 · 100 1.39 0.47 8.721 · 10−2 2.72 1.45 1.767 · 10−1 3.91 1.97

D5+ 2 96 2 640 9 552 4.926 · 10−1 2.14 1.09 8.642 · 10−3 10.09 3.34 1.905 · 10−2 9.28 3.21

D5+ 3 384 9 888 37 536 7.142 · 10−2 6.90 2.79 2.586 · 10−3 3.34 1.74 4.474 · 10−3 4.26 2.09

D5+ 4 1 536 38 208 148 800 8.781 · 10−4 81.33 6.35 1.444 · 10−5 179.09 7.49 2.405 · 10−5 186.03 7.54

D5+ 5 6 144 150 144 592 512 1.493 · 10−5 58.81 5.88 1.086 · 10−7 132.96 7.06 1.661 · 10−7 144.79 7.18

D5+ 6 24 576 595 200 2 364 672 2.545 · 10−7 58.66 5.88 2.32 · 10−9 46.81 5.55 3.524 · 10−9 47.13 5.56

D5+ 7 98 304 2 370 048 9 447 936 5.091 · 10−9 49.99 5.64 1.496 · 10−9 1.55 0.63 2.155 · 10−9 1.64 0.71

Table 5.10: Convergence results for the DPG method according to table 5.4.
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5.2. Numerical examples (1D)

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

W2 0 6 52 160 1.847 · 100 − − 6.635 · 10−1 − − 1.767 · 100 − −
W2 1 24 176 608 4.23 · 100 0.44 −1.20 2.542 · 100 0.26 −1.94 7.777 · 100 0.23 −2.14

W2 2 96 640 2 368 1.708 · 100 2.48 1.31 7.122 · 10−1 3.57 1.84 1.94 · 100 4.01 2.00

W2 3 384 2 432 9 344 1.772 · 100 0.96 −0.05 9.463 · 10−1 0.75 −0.41 2.43 · 100 0.80 −0.33

W2 4 1 536 9 472 37 120 1.531 · 100 1.16 0.21 9.502 · 10−1 1.00 −0.01 2.423 · 100 1.00 0.00

W2 5 6 144 37 376 147 968 5.434 · 10−1 2.82 1.49 4.264 · 10−1 2.23 1.16 7.733 · 10−1 3.13 1.65

W2 6 24 576 148 480 590 848 1.313 · 10−1 4.14 2.05 1.21 · 10−1 3.52 1.82 1.513 · 10−1 5.11 2.35

W2 7 98 304 591 872 2 361 344 2.886 · 10−2 4.55 2.19 2.828 · 10−2 4.28 2.10 3.398 · 10−2 4.45 2.16

W3 0 6 90 282 1.835 · 100 − − 6.29 · 10−1 − − 1.684 · 100 − −
W3 1 24 300 1 068 1.67 · 100 1.10 0.14 4.564 · 10−1 1.38 0.46 1.203 · 100 1.40 0.48

W3 2 96 1 080 4 152 1.462 · 100 1.14 0.19 5.103 · 10−1 0.89 −0.16 1.313 · 100 0.92 −0.13

W3 3 384 4 080 16 368 1.028 · 100 1.42 0.51 3.593 · 10−1 1.42 0.51 8.569 · 10−1 1.53 0.62

W3 4 1 536 15 840 64 992 6.116 · 10−1 1.68 0.75 3.244 · 10−1 1.11 0.15 6.742 · 10−1 1.27 0.35

W3 5 6 144 62 400 259 008 2.006 · 10−1 3.05 1.61 1.467 · 10−1 2.21 1.14 2.331 · 10−1 2.89 1.53

W3 6 24 576 247 680 1 034 112 1.73 · 10−2 11.59 3.54 1.514 · 10−2 9.69 3.28 2.024 · 10−2 11.52 3.53

W3 7 98 304 986 880 4 132 608 3.268 · 10−4 52.94 5.73 3.126 · 10−4 48.42 5.60 4.027 · 10−4 50.27 5.65

W4 0 6 114 414 2.172 · 100 − − 1.263 · 100 − − 3.402 · 100 − −
W4 1 24 372 1 572 1.531 · 100 1.42 0.50 3.071 · 10−1 4.11 2.04 8.566 · 10−1 3.97 1.99

W4 2 96 1 320 6 120 1.149 · 100 1.33 0.41 1.27 · 10−1 2.42 1.27 3.027 · 10−1 2.83 1.50

W4 3 384 4 944 24 144 6.418 · 10−1 1.79 0.84 7.182 · 10−2 1.77 0.82 1.752 · 10−1 1.73 0.79

W4 4 1 536 19 104 95 904 1.876 · 10−1 3.42 1.77 4.713 · 10−2 1.52 0.61 8.648 · 10−2 2.03 1.02

W4 5 6 144 75 072 382 272 1.235 · 10−2 15.19 3.93 7.536 · 10−3 6.25 2.64 9.887 · 10−3 8.75 3.13

W4 6 24 576 297 600 1 526 400 2.897 · 10−4 42.62 5.41 2.407 · 10−4 31.31 4.97 3.064 · 10−4 32.27 5.01

W4 7 98 304 1 185 024 6 100 224 9.749 · 10−6 29.72 4.89 9.234 · 10−6 26.07 4.70 1.151 · 10−5 26.62 4.74

W5 0 6 128 560 2.271 · 100 − − 1.175 · 100 − − 3.359 · 100 − −
W5 1 24 424 2 152 1.334 · 100 1.70 0.77 1.254 · 10−1 9.37 3.23 2.886 · 10−1 11.64 3.54

W5 2 96 1 520 8 432 9.644 · 10−1 1.38 0.47 8.177 · 10−2 1.53 0.62 2.052 · 10−1 1.41 0.49

W5 3 384 5 728 33 376 4.932 · 10−1 1.96 0.97 2.764 · 10−2 2.96 1.56 6.356 · 10−2 3.23 1.69

W5 4 1 536 22 208 132 800 1.053 · 10−1 4.68 2.23 1.823 · 10−2 1.52 0.60 3.064 · 10−2 2.07 1.05

W5 5 6 144 87 424 529 792 2.076 · 10−3 50.74 5.67 1.025 · 10−3 17.79 4.15 1.395 · 10−3 21.96 4.46

W5 6 24 576 346 880 2 116 352 1.863 · 10−5 111.44 6.80 1.507 · 10−5 68.02 6.09 1.849 · 10−5 75.45 6.24

W5 7 98 304 1 381 888 8 459 776 3.841 · 10−7 48.50 5.60 3.536 · 10−7 42.62 5.41 4.213 · 10−7 43.89 5.46

W6 0 6 152 740 1.675 · 100 − − 3.544 · 10−1 − − 9.928 · 10−1 − −
W6 1 24 496 2 848 1.241 · 100 1.35 0.43 1.385 · 10−1 2.56 1.36 4.036 · 10−1 2.46 1.30

W6 2 96 1 760 11 168 7.307 · 10−1 1.70 0.76 9.621 · 10−2 1.44 0.53 2.399 · 10−1 1.68 0.75

W6 3 384 6 592 44 224 2.359 · 10−1 3.10 1.63 1.653 · 10−2 5.82 2.54 3.403 · 10−2 7.05 2.82

W6 4 1 536 25 472 176 000 1.238 · 10−2 19.06 4.25 1.446 · 10−3 11.43 3.52 2.321 · 10−3 14.66 3.87

W6 5 6 144 100 096 702 208 1.202 · 10−4 102.97 6.69 5.599 · 10−5 25.83 4.69 7.524 · 10−5 30.85 4.95

W6 6 24 576 396 800 2 805 248 1.984 · 10−6 60.58 5.92 1.729 · 10−6 32.38 5.02 2.154 · 10−6 34.93 5.13

W6 7 98 304 1 580 032 11 213 824 8.659 · 10−8 22.91 4.52 8.395 · 10−8 20.60 4.36 1.097 · 10−7 19.64 4.30

W7 0 6 166 934 1.678 · 100 − − 4.668 · 10−1 − − 1.319 · 100 − −
W7 1 24 548 3 620 1.448 · 100 1.16 0.21 3.087 · 10−1 1.51 0.60 8.257 · 10−1 1.60 0.68

W7 2 96 1 960 14 248 5.837 · 10−1 2.48 1.31 3.086 · 10−2 10.00 3.32 7.041 · 10−2 11.73 3.55

W7 3 384 7 376 56 528 1.398 · 10−1 4.18 2.06 6.405 · 10−3 4.82 2.27 1.157 · 10−2 6.08 2.61

W7 4 1 536 28 576 225 184 3.666 · 10−3 38.12 5.25 1.824 · 10−4 35.11 5.13 2.803 · 10−4 41.29 5.37

W7 5 6 144 112 448 898 880 9.537 · 10−6 384.40 8.59 3.83 · 10−6 47.62 5.57 4.714 · 10−6 59.46 5.89

W7 6 24 576 446 080 3 591 808 9.248 · 10−8 103.12 6.69 7.113 · 10−8 53.84 5.75 1.043 · 10−7 45.20 5.50

W7 7 98 304 1 776 896 14 359 808 1.398 · 10−7 0.66 −0.60 1.392 · 10−7 0.51 −0.97 2.013 · 10−7 0.52 −0.95

W8 0 6 190 1 162 2.657 · 100 − − 5.951 · 10−1 − − 1.52 · 100 − −
W8 1 24 620 4 508 1.115 · 100 2.38 1.25 2.015 · 10−1 2.95 1.56 5.849 · 10−1 2.60 1.38

W8 2 96 2 200 17 752 4.67 · 10−1 2.39 1.26 4.483 · 10−2 4.49 2.17 1.061 · 10−1 5.51 2.46

W8 3 384 8 240 70 448 5.257 · 10−2 8.88 3.15 6.587 · 10−3 6.81 2.77 1.396 · 10−2 7.60 2.93

W8 4 1 536 31 840 280 672 4.056 · 10−4 129.60 7.02 3.184 · 10−5 206.88 7.69 5.233 · 10−5 266.77 8.06

W8 5 6 144 125 120 1 120 448 5.953 · 10−6 68.13 6.09 2.978 · 10−6 10.69 3.42 4.101 · 10−6 12.76 3.67

W8 6 24 576 496 000 4 477 312 1.216 · 10−7 48.96 5.61 1.185 · 10−7 25.13 4.65 1.791 · 10−7 22.90 4.52

W8 7 98 304 1 975 040 17 900 288 2.982 · 10−7 0.41 −1.29 2.939 · 10−7 0.40 −1.31 4.489 · 10−7 0.40 −1.33

Table 5.11: Convergence results for the WC method according to table 5.5.
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5.2.3. A low regularity model problem

5.2.3 A low regularity model problem

The examples considered in the previous sections are smooth up to a certain degree

to verify the predicted rates obtained in section 4.7. Here, we consider a model

problem that is not even continuous in order to evaluate the performance of the DPG

method the weakly conforming Least-Squares method for low-regularity solutions.

Setting Ω = (0, 1) and Q = Ω× (0, T ), T > 0, we look at the problem

∂tp+ ∂xv = 0 , p(·, 0) = 1 , v(·, 0) = 0 in Ω ,

∂tv + ∂xp = 0 , p(0, ·) = p(1, ·) = 0 in (0, T ) ,

having a weak solution (p,v) ∈ H(L,Q) that can be obtained by extending the argu-

ments in example 3.6, also see [45]. This solution has the following representation

p(x, t) =
1

2

(
f0(x+ t) + f0(x− t)

)
, v(x, t) =

1

2

(
− f0(x+ t) + f0(x− t)

)

with f0(x) =


1 x ∈ (0, 1) + 2Z ,

0 x ∈ Z ,

−1 x ∈ (−1, 0) + 2Z .

A space-time plot of p is given in figure 5.10.

Figure 5.10: Space-time plot of the exact solution’s pressure component.

Note that the solution fulfills (p,v) ∈ BV(Q,R2), see appendix C, and that we

have (p,v) /∈ Hs(Q,R2), s ≥ 1
2 . Due to its low regularity, this model problem is an

interesting candidate to compare different discretization schemes. figure 5.11 shows

approximations by a finite difference scheme on staggered grids in comparison to a

conforming Least-Squares Finite Element discretization as described in section 4.1

and the weakly conforming Least-Squares method introduced in section 4.2. The

simulations are performed on the same grid as in the previous sections.

96



5.2. Numerical examples (1D)

Leap-frog Finite Differences

Conforming space-time Least-Squares FEM using cell-wise Q1

Conforming space-time Least-Squares FEM using cell-wise Q2

Weakly conforming Least-Squares using W4

Figure 5.11: We choose T ≈ 8 and wave speed c = 1 so that the jumps are not aligned with

the mesh and plot the pressure component of the numerical solution for different schemes. All

discretizations shown in the figures use approximately 150 000 global DoFs. The first picture shows

that an explicit leap-frog Finite Difference method generates oscillations. The second and third plot

correspond to the conforming Least-Squares FEM with Q1 and Q2 elements where the first order

scheme is highly diffusive and the second order scheme develops over and undershoots at the jumps.

The last picture shows the cell-wise mean value of the approximation for the weakly conforming

Least-Squares method with Q4 polynomials in each cell. Visually, it is hard to distinguish this

approximation from the exact solution.
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5.2.3. A low regularity model problem
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Figure 5.12: Convergence results for DPG with configurations according to table 5.3.
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Figure 5.13: Convergence results for DPG with configurations according to table 5.4.
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Figure 5.14: Convergence results for WC with configurations according to table 5.5.
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5.2. Numerical examples (1D)

Discussion: DPG. The DPG method converges with a rate of about
√

2 with

respect to the L2(Q) norm. When looking at the approximation error in L2(Q), there

is no clear benefit for the high-order variants. Only the lowest order configuration

D1 performs significantly worse than the others.

Remarkably, for all methods except D3, we observe a convergence rate of the cell-

wise mean value with approximately order 1. Considering the cell-wise mean value,

the high-order methods D3 to D5 outperform D1 and D2.

Discussion: DPG – increased cell degree. The results are mostly the same

compared to the DPG configurations using polynomials of one degree less inside the

cells. For most of the configurations, the errors coincide approximately except for

the lowest order method D1+ where a significant improvement can be observed.

However, the configurations D1+, D2+ and D3+ indicate a loss of convergence for

the cell-wise means. We did not observe this phenomenon for the DPG configurations

without increased polynomial degree in the cells.

Discussion: weakly conforming Least-Squares. In this low-regularity exam-

ple, the weakly conforming Least-Squares method converges with a rate of about 4
3

in L2(Q) norms.

Considering the cell-wise means, we do not observe improved convergence for the

low-order schemes in W2 to W5.

For the high-order methods in W6 to W8 however, the order of convergence in

L1(Q) norm of the cell-wise mean appears to tend to 1, similarly as for the DPG

method. The configurations shown in W5 and W6 suffer from a loss of convergence

for the mean-values.

Comparing the accuracy per degree of freedom to the DPG method, the weakly

conforming Least-Squares method delivers a comparable performance in this exam-

ple.
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5.2.3. A low regularity model problem

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1 0 6 76 88 2.38 · 100 − − 5.903 · 10−1 − − 1.14 · 100 − −

D1 1 24 248 296 2.091 · 100 1.14 0.19 1.336 · 100 0.44 −1.18 3.653 · 100 0.31 −1.68

D1 2 96 880 1 072 1.589 · 100 1.32 0.40 1.104 · 100 1.21 0.28 2.814 · 100 1.30 0.38

D1 3 384 3 296 4 064 1.069 · 100 1.49 0.57 6.981 · 10−1 1.58 0.66 1.825 · 100 1.54 0.62

D1 4 1 536 12 736 15 808 7.455 · 10−1 1.43 0.52 4.779 · 10−1 1.46 0.55 1.123 · 100 1.63 0.70

D1 5 6 144 50 048 62 336 5.276 · 10−1 1.41 0.50 3.397 · 10−1 1.41 0.49 6.342 · 10−1 1.77 0.82

D1 6 24 576 198 400 247 552 3.737 · 10−1 1.41 0.50 2.408 · 10−1 1.41 0.50 3.365 · 10−1 1.88 0.91

D1 7 98 304 790 016 986 624 2.649 · 10−1 1.41 0.50 1.714 · 10−1 1.41 0.49 1.752 · 10−1 1.92 0.94

D2 0 6 114 162 1.844 · 100 − − 4.411 · 10−1 − − 8.113 · 10−1 − −

D2 1 24 372 564 1.081 · 100 1.71 0.77 2.915 · 10−1 1.51 0.60 7.434 · 10−1 1.09 0.13

D2 2 96 1 320 2 088 7.965 · 10−1 1.36 0.44 2.085 · 10−1 1.40 0.48 5.403 · 10−1 1.38 0.46

D2 3 384 4 944 8 016 5.634 · 10−1 1.41 0.50 1.405 · 10−1 1.48 0.57 3.259 · 10−1 1.66 0.73

D2 4 1 536 19 104 31 392 4.006 · 10−1 1.41 0.49 1.015 · 10−1 1.38 0.47 1.817 · 10−1 1.79 0.84

D2 5 6 144 75 072 124 224 2.855 · 10−1 1.40 0.49 7.47 · 10−2 1.36 0.44 9.833 · 10−2 1.85 0.89

D2 6 24 576 297 600 494 208 2.04 · 10−1 1.40 0.48 5.334 · 10−2 1.40 0.49 5.197 · 10−2 1.89 0.92

D2 7 98 304 1 185 024 1 971 456 1.463 · 10−1 1.39 0.48 3.935 · 10−2 1.36 0.44 2.84 · 10−2 1.83 0.87

D3 0 6 152 260 1.104 · 100 − − 1.787 · 10−1 − − 3.521 · 10−1 − −

D3 1 24 496 928 8.602 · 10−1 1.28 0.36 8.673 · 10−2 2.06 1.04 2.495 · 10−1 1.41 0.50

D3 2 96 1 760 3 488 6.052 · 10−1 1.42 0.51 6.589 · 10−2 1.32 0.40 1.633 · 10−1 1.53 0.61

D3 3 384 6 592 13 504 4.329 · 10−1 1.40 0.48 4.378 · 10−2 1.50 0.59 8.725 · 10−2 1.87 0.90

D3 4 1 536 25 472 53 120 3.112 · 10−1 1.39 0.48 3.136 · 10−2 1.40 0.48 4.685 · 10−2 1.86 0.90

D3 5 6 144 100 096 210 688 2.249 · 10−1 1.38 0.47 2.333 · 10−2 1.34 0.43 2.552 · 10−2 1.84 0.88

D3 6 24 576 396 800 839 168 1.634 · 10−1 1.38 0.46 1.741 · 10−2 1.34 0.42 1.482 · 10−2 1.72 0.78

D3 7 98 304 1 580 032 3 349 504 1.191 · 10−1 1.37 0.46 1.365 · 10−2 1.28 0.35 9.323 · 10−3 1.59 0.67

D4 0 6 190 382 9.94 · 10−1 − − 1.459 · 10−1 − − 3.011 · 10−1 − −

D4 1 24 620 1 388 7.12 · 10−1 1.40 0.48 7.935 · 10−2 1.84 0.88 2.173 · 10−1 1.39 0.47

D4 2 96 2 200 5 272 5.103 · 10−1 1.40 0.48 5.495 · 10−2 1.44 0.53 1.195 · 10−1 1.82 0.86

D4 3 384 8 240 20 528 3.67 · 10−1 1.39 0.48 3.676 · 10−2 1.49 0.58 6.362 · 10−2 1.88 0.91

D4 4 1 536 31 840 80 992 2.653 · 10−1 1.38 0.47 2.556 · 10−2 1.44 0.52 3.246 · 10−2 1.96 0.97

D4 5 6 144 125 120 321 728 1.927 · 10−1 1.38 0.46 1.844 · 10−2 1.39 0.47 1.698 · 10−2 1.91 0.93

D4 6 24 576 496 000 1 282 432 1.404 · 10−1 1.37 0.46 1.312 · 10−2 1.41 0.49 8.826 · 10−3 1.92 0.94

D4 7 98 304 1 975 040 5 120 768 1.025 · 10−1 1.37 0.45 9.298 · 10−3 1.41 0.50 4.706 · 10−3 1.88 0.91

D5 0 6 228 528 8.961 · 10−1 − − 1.446 · 10−1 − − 2.982 · 10−1 − −
D5 1 24 744 1 944 6.296 · 10−1 1.42 0.51 7.98 · 10−2 1.81 0.86 2.169 · 10−1 1.37 0.46

D5 2 96 2 640 7 440 4.518 · 10−1 1.39 0.48 5.463 · 10−2 1.46 0.55 1.185 · 10−1 1.83 0.87

D5 3 384 9 888 29 088 3.26 · 10−1 1.39 0.47 3.67 · 10−2 1.49 0.57 6.253 · 10−2 1.89 0.92

D5 4 1 536 38 208 115 008 2.362 · 10−1 1.38 0.46 2.539 · 10−2 1.45 0.53 3.182 · 10−2 1.97 0.97

D5 5 6 144 150 144 457 344 1.717 · 10−1 1.38 0.46 1.831 · 10−2 1.39 0.47 1.658 · 10−2 1.92 0.94

D5 6 24 576 595 200 1 824 000 1.249 · 10−1 1.37 0.46 1.302 · 10−2 1.41 0.49 8.385 · 10−3 1.98 0.98

D5 7 98 304 2 370 048 7 285 248 9.093 · 10−2 1.37 0.46 9.174 · 10−3 1.42 0.51 4.201 · 10−3 2.00 1.00

Table 5.12: Convergence results for the DPG method according to table 5.3.
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5.2. Numerical examples (1D)

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1+ 0 6 76 124 1.785 · 100 − − 4.385 · 10−1 − − 8.342 · 10−1 − −

D1+ 1 24 248 440 1.088 · 100 1.64 0.71 3.304 · 10−1 1.33 0.41 8.692 · 10−1 0.96 −0.06

D1+ 2 96 880 1 648 7.915 · 10−1 1.37 0.46 2.048 · 10−1 1.61 0.69 5.279 · 10−1 1.65 0.72

D1+ 3 384 3 296 6 368 5.684 · 10−1 1.39 0.48 1.455 · 10−1 1.41 0.49 3.246 · 10−1 1.63 0.70

D1+ 4 1 536 12 736 25 024 4.134 · 10−1 1.38 0.46 1.122 · 10−1 1.30 0.37 1.903 · 10−1 1.71 0.77

D1+ 5 6 144 50 048 99 200 3.046 · 10−1 1.36 0.44 9.106 · 10−2 1.23 0.30 1.247 · 10−1 1.53 0.61

D1+ 6 24 576 198 400 395 008 2.278 · 10−1 1.34 0.42 7.598 · 10−2 1.20 0.26 8.866 · 10−2 1.41 0.49

D1+ 7 98 304 790 016 1 576 448 1.729 · 10−1 1.32 0.40 6.729 · 10−2 1.13 0.18 6.723 · 10−2 1.32 0.40

D2+ 0 6 114 222 1.108 · 100 − − 1.833 · 10−1 − − 3.574 · 10−1 − −

D2+ 1 24 372 804 8.558 · 10−1 1.30 0.37 8.693 · 10−2 2.11 1.08 2.497 · 10−1 1.43 0.52

D2+ 2 96 1 320 3 048 6.128 · 10−1 1.40 0.48 6.452 · 10−2 1.35 0.43 1.568 · 10−1 1.59 0.67

D2+ 3 384 4 944 11 856 4.445 · 10−1 1.38 0.46 4.412 · 10−2 1.46 0.55 8.824 · 10−2 1.78 0.83

D2+ 4 1 536 19 104 46 752 3.254 · 10−1 1.37 0.45 3.476 · 10−2 1.27 0.34 5.651 · 10−2 1.56 0.64

D2+ 5 6 144 75 072 185 664 2.4 · 10−1 1.36 0.44 2.947 · 10−2 1.18 0.24 3.924 · 10−2 1.44 0.53

D2+ 6 24 576 297 600 739 968 1.782 · 10−1 1.35 0.43 2.647 · 10−2 1.11 0.15 2.874 · 10−2 1.37 0.45

D2+ 7 98 304 1 185 024 2 954 496 1.333 · 10−1 1.34 0.42 2.483 · 10−2 1.07 0.09 2.117 · 10−2 1.36 0.44

D3+ 0 6 152 344 9.958 · 10−1 − − 1.472 · 10−1 − − 3.03 · 10−1 − −

D3+ 1 24 496 1 264 7.177 · 10−1 1.39 0.47 7.954 · 10−2 1.85 0.89 2.172 · 10−1 1.40 0.48

D3+ 2 96 1 760 4 832 5.198 · 10−1 1.38 0.47 5.504 · 10−2 1.45 0.53 1.198 · 10−1 1.81 0.86

D3+ 3 384 6 592 18 880 3.798 · 10−1 1.37 0.45 3.681 · 10−2 1.50 0.58 6.398 · 10−2 1.87 0.90

D3+ 4 1 536 25 472 74 624 2.787 · 10−1 1.36 0.45 2.569 · 10−2 1.43 0.52 3.314 · 10−2 1.93 0.95

D3+ 5 6 144 100 096 296 704 2.047 · 10−1 1.36 0.44 1.87 · 10−2 1.37 0.46 1.85 · 10−2 1.79 0.84

D3+ 6 24 576 396 800 1 183 232 1.505 · 10−1 1.36 0.44 1.363 · 10−2 1.37 0.46 1.071 · 10−2 1.73 0.79

D3+ 7 98 304 1 580 032 4 725 760 1.107 · 10−1 1.36 0.44 1.024 · 10−2 1.33 0.41 6.554 · 10−3 1.63 0.71

D4+ 0 6 190 490 8.804 · 10−1 − − 1.44 · 10−1 − − 2.959 · 10−1 − −

D4+ 1 24 620 1 820 6.299 · 10−1 1.40 0.48 7.989 · 10−2 1.80 0.85 2.18 · 10−1 1.36 0.44

D4+ 2 96 2 200 7 000 4.608 · 10−1 1.37 0.45 5.477 · 10−2 1.46 0.54 1.191 · 10−1 1.83 0.87

D4+ 3 384 8 240 27 440 3.363 · 10−1 1.37 0.45 3.678 · 10−2 1.49 0.57 6.312 · 10−2 1.89 0.92

D4+ 4 1 536 31 840 108 640 2.461 · 10−1 1.37 0.45 2.547 · 10−2 1.44 0.53 3.199 · 10−2 1.97 0.98

D4+ 5 6 144 125 120 432 320 1.801 · 10−1 1.37 0.45 1.835 · 10−2 1.39 0.47 1.66 · 10−2 1.93 0.95

D4+ 6 24 576 496 000 1 724 800 1.318 · 10−1 1.37 0.45 1.304 · 10−2 1.41 0.49 8.42 · 10−3 1.97 0.98

D4+ 7 98 304 1 975 040 6 890 240 9.644 · 10−2 1.37 0.45 9.186 · 10−3 1.42 0.51 4.288 · 10−3 1.96 0.97

D5+ 0 6 228 660 7.686 · 10−1 − − 1.434 · 10−1 − − 2.926 · 10−1 − −

D5+ 1 24 744 2 472 5.761 · 10−1 1.33 0.42 8.02 · 10−2 1.79 0.84 2.205 · 10−1 1.33 0.41

D5+ 2 96 2 640 9 552 4.174 · 10−1 1.38 0.46 5.443 · 10−2 1.47 0.56 1.174 · 10−1 1.88 0.91

D5+ 3 384 9 888 37 536 3.043 · 10−1 1.37 0.46 3.667 · 10−2 1.48 0.57 6.203 · 10−2 1.89 0.92

D5+ 4 1 536 38 208 148 800 2.222 · 10−1 1.37 0.45 2.525 · 10−2 1.45 0.54 3.162 · 10−2 1.96 0.97

D5+ 5 6 144 150 144 592 512 1.622 · 10−1 1.37 0.45 1.823 · 10−2 1.39 0.47 1.658 · 10−2 1.91 0.93

D5+ 6 24 576 595 200 2 364 672 1.184 · 10−1 1.37 0.45 1.299 · 10−2 1.40 0.49 8.427 · 10−3 1.97 0.98

D5+ 7 98 304 2 370 048 9 447 936 8.637 · 10−2 1.37 0.46 9.161 · 10−3 1.42 0.50 4.219 · 10−3 2.00 1.00

Table 5.13: Convergence results for the DPG method according to table 5.4.
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5.2.3. A low regularity model problem

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

W2 0 6 52 160 3.484 · 100 − − 1.619 · 100 − − 3.575 · 100 − −

W2 1 24 176 608 1.137 · 100 3.06 1.62 2.764 · 10−1 5.86 2.55 7.831 · 10−1 4.57 2.19

W2 2 96 640 2 368 1.106 · 100 1.03 0.04 4.96 · 10−1 0.56 −0.84 1.264 · 100 0.62 −0.69

W2 3 384 2 432 9 344 9.478 · 10−1 1.17 0.22 4.699 · 10−1 1.06 0.08 1.24 · 100 1.02 0.03

W2 4 1 536 9 472 37 120 7.224 · 10−1 1.31 0.39 3.93 · 10−1 1.20 0.26 1.03 · 100 1.20 0.27

W2 5 6 144 37 376 147 968 5.635 · 10−1 1.28 0.36 3.362 · 10−1 1.17 0.23 8.352 · 10−1 1.23 0.30

W2 6 24 576 148 480 590 848 4.375 · 10−1 1.29 0.37 2.836 · 10−1 1.19 0.25 6.582 · 10−1 1.27 0.34

W2 7 98 304 591 872 2 361 344 3.41 · 10−1 1.28 0.36 2.385 · 10−1 1.19 0.25 5.041 · 10−1 1.31 0.38

W3 0 6 90 282 1.212 · 100 − − 3.642 · 10−1 − − 8.008 · 10−1 − −

W3 1 24 300 1 068 1.017 · 100 1.19 0.25 1.317 · 10−1 2.77 1.47 3.653 · 10−1 2.19 1.13

W3 2 96 1 080 4 152 7.629 · 10−1 1.33 0.42 1.71 · 10−1 0.77 −0.38 4.493 · 10−1 0.81 −0.30

W3 3 384 4 080 16 368 5.928 · 10−1 1.29 0.36 1.726 · 10−1 0.99 −0.01 4.297 · 10−1 1.05 0.06

W3 4 1 536 15 840 64 992 4.486 · 10−1 1.32 0.40 1.581 · 10−1 1.09 0.13 3.396 · 10−1 1.27 0.34

W3 5 6 144 62 400 259 008 3.401 · 10−1 1.32 0.40 1.421 · 10−1 1.11 0.15 2.406 · 10−1 1.41 0.50

W3 6 24 576 247 680 1 034 112 2.586 · 10−1 1.32 0.40 1.235 · 10−1 1.15 0.20 1.602 · 10−1 1.50 0.59

W3 7 98 304 986 880 4 132 608 1.971 · 10−1 1.31 0.39 1.062 · 10−1 1.16 0.22 1.04 · 10−1 1.54 0.62

W4 0 6 114 414 1.028 · 100 − − 1.305 · 10−1 − − 2.594 · 10−1 − −

W4 1 24 372 1 572 8.099 · 10−1 1.27 0.34 8.306 · 10−2 1.57 0.65 2.32 · 10−1 1.12 0.16

W4 2 96 1 320 6 120 6.093 · 10−1 1.33 0.41 6.276 · 10−2 1.32 0.40 1.567 · 10−1 1.48 0.57

W4 3 384 4 944 24 144 4.579 · 10−1 1.33 0.41 4.871 · 10−2 1.29 0.37 1.103 · 10−1 1.42 0.51

W4 4 1 536 19 104 95 904 3.405 · 10−1 1.34 0.43 4.145 · 10−2 1.17 0.23 8.265 · 10−2 1.33 0.42

W4 5 6 144 75 072 382 272 2.523 · 10−1 1.35 0.43 3.717 · 10−2 1.12 0.16 6.234 · 10−2 1.33 0.41

W4 6 24 576 297 600 1 526 400 1.875 · 10−1 1.35 0.43 3.498 · 10−2 1.06 0.09 4.723 · 10−2 1.32 0.40

W4 7 98 304 1 185 024 6 100 224 1.418 · 10−1 1.32 0.40 3.516 · 10−2 0.99 −0.01 3.823 · 10−2 1.24 0.30

W5 0 6 128 560 1.012 · 100 − − 1.088 · 10−1 − − 2.297 · 10−1 − −

W5 1 24 424 2 152 7.296 · 10−1 1.39 0.47 5.572 · 10−2 1.95 0.97 1.708 · 10−1 1.34 0.43

W5 2 96 1 520 8 432 5.576 · 10−1 1.31 0.39 5.257 · 10−2 1.06 0.08 1.197 · 10−1 1.43 0.51

W5 3 384 5 728 33 376 4.188 · 10−1 1.33 0.41 3.727 · 10−2 1.41 0.50 7.197 · 10−2 1.66 0.73

W5 4 1 536 22 208 132 800 3.141 · 10−1 1.33 0.41 2.958 · 10−2 1.26 0.33 4.841 · 10−2 1.49 0.57

W5 5 6 144 87 424 529 792 2.356 · 10−1 1.33 0.42 2.681 · 10−2 1.10 0.14 3.675 · 10−2 1.32 0.40

W5 6 24 576 346 880 2 116 352 1.766 · 10−1 1.33 0.42 2.591 · 10−2 1.03 0.05 2.83 · 10−2 1.30 0.38

W5 7 98 304 1 381 888 8 459 776 1.326 · 10−1 1.33 0.41 2.526 · 10−2 1.03 0.04 2.136 · 10−2 1.32 0.41

W6 0 6 152 740 8.597 · 10−1 − − 1.226 · 10−1 − − 2.369 · 10−1 − −

W6 1 24 496 2 848 6.405 · 10−1 1.34 0.42 7.967 · 10−2 1.54 0.62 2.226 · 10−1 1.06 0.09

W6 2 96 1 760 11 168 4.805 · 10−1 1.33 0.41 6.382 · 10−2 1.25 0.32 1.632 · 10−1 1.36 0.45

W6 3 384 6 592 44 224 3.566 · 10−1 1.35 0.43 4.305 · 10−2 1.48 0.57 9.475 · 10−2 1.72 0.78

W6 4 1 536 25 472 176 000 2.623 · 10−1 1.36 0.44 2.988 · 10−2 1.44 0.53 5.154 · 10−2 1.84 0.88

W6 5 6 144 100 096 702 208 1.929 · 10−1 1.36 0.44 2.12 · 10−2 1.41 0.49 2.753 · 10−2 1.87 0.90

W6 6 24 576 396 800 2 805 248 1.455 · 10−1 1.33 0.41 1.602 · 10−2 1.32 0.40 1.561 · 10−2 1.76 0.82

W6 7 98 304 1 580 032 11 213 824 1.129 · 10−1 1.29 0.37 1.335 · 10−2 1.20 0.26 1.002 · 10−2 1.56 0.64

W7 0 6 166 934 8.167 · 10−1 − − 9.858 · 10−2 − − 2.094 · 10−1 − −

W7 1 24 548 3 620 5.957 · 10−1 1.37 0.46 6.217 · 10−2 1.59 0.67 1.771 · 10−1 1.18 0.24

W7 2 96 1 960 14 248 4.401 · 10−1 1.35 0.44 5.201 · 10−2 1.20 0.26 1.193 · 10−1 1.48 0.57

W7 3 384 7 376 56 528 3.287 · 10−1 1.34 0.42 3.457 · 10−2 1.50 0.59 6.481 · 10−2 1.84 0.88

W7 4 1 536 28 576 225 184 2.457 · 10−1 1.34 0.42 2.39 · 10−2 1.45 0.53 3.287 · 10−2 1.97 0.98

W7 5 6 144 112 448 898 880 1.835 · 10−1 1.34 0.42 1.69 · 10−2 1.41 0.50 1.697 · 10−2 1.94 0.95

W7 6 24 576 446 080 3 591 808 1.371 · 10−1 1.34 0.42 1.23 · 10−2 1.37 0.46 8.866 · 10−3 1.91 0.94

W7 7 98 304 1 776 896 14 359 808 1.023 · 10−1 1.34 0.42 8.862 · 10−3 1.39 0.47 4.787 · 10−3 1.85 0.89

W8 0 6 190 1 162 9.472 · 10−1 − − 1.361 · 10−1 − − 2.805 · 10−1 − −

W8 1 24 620 4 508 5.982 · 10−1 1.58 0.66 7.811 · 10−2 1.74 0.80 2.215 · 10−1 1.27 0.34

W8 2 96 2 200 17 752 4.237 · 10−1 1.41 0.50 6.348 · 10−2 1.23 0.30 1.606 · 10−1 1.38 0.46

W8 3 384 8 240 70 448 3.036 · 10−1 1.40 0.48 4.195 · 10−2 1.51 0.60 9.117 · 10−2 1.76 0.82

W8 4 1 536 31 840 280 672 2.202 · 10−1 1.38 0.46 2.952 · 10−2 1.42 0.51 5.28 · 10−2 1.73 0.79

W8 5 6 144 125 120 1 120 448 1.619 · 10−1 1.36 0.44 2.088 · 10−2 1.41 0.50 2.859 · 10−2 1.85 0.88

W8 6 24 576 496 000 4 477 312 1.217 · 10−1 1.33 0.41 1.504 · 10−2 1.39 0.47 1.51 · 10−2 1.89 0.92

W8 7 98 304 1 975 040 17 900 288 9.192 · 10−2 1.32 0.41 1.064 · 10−2 1.41 0.50 7.861 · 10−3 1.92 0.94

Table 5.14: Convergence results for the WC method according to table 5.5.
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5.3. Numerical examples (2D)

5.3 Numerical examples (2D)

In this section, we present different numerical examples in two spacial dimensions.

Again, we start with an example that is designed to verify the convergence rates that

are predicted by the theory. More realistic examples demonstrate the flexibility of

the methods.

Remark 5.4. Up until now, it is an open question whether stable pairing of test and

ansatz spaces for the weakly conforming Least-Squares method exist in two spatial

dimensions. Thus, no results for this method are presented here.

5.3.1 A smooth example

We consider a smooth solution y = (p,v) ∈ C∞
(
R2+1,R1+2

)
of Ly = b withDirich-

let boundary conditions in the pressure component. The solution and the right-hand

side b = (bp, bv) are given by

p(x, t) = sin(ωx) sin(ωy), v(x, t) =

−(t− 1)ω sin(ωy) cos(ωx)

−(t− 1)ω sin(ωx) cos(ωy)

 ,

bp(x, t) = 2(t− 1)ω2 sin(ωx) sin(ωy), bv(x, t) = 0 ,

see figure 5.15. We choose ω = 0.6 and Q = (0, 3/π)× (0, e/3)× (0, 1) to prevent

alignment of the characteristics with the mesh.

Figure 5.15: The pressure and velocity components of the analytic solution. Note that the color

map of the pressure is scaled differently from the color map of two velocity components to improve

the contrast of the plots.

See figure 5.16, figure 5.17 for a comparison of different DPG configurations.

The detailed results can be found in table 5.15 and table 5.16.
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5.3.1. A smooth example
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Figure 5.16: Convergence results for DPG with configurations according to table 5.3.
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Figure 5.17: Convergence results for DPG with configurations according to table 5.4.

Discussion: DPG. The numerical experiments demonstrate that also in two spa-

tial dimensions, the space-time DPG method complies with the predictions made

by section 4.7, since the predicted rates are attained with high accuracy. For the

cell-wise mean values, we observe an increased convergence rate where the rates are

approximately the same as for the smooth example in one spatial dimension. For

high levels, we observe round-off errors in the high-order configurations D4 and D5.

Discussion: DPG – increased cell degree Differently than from the one-

dimensional case, increasing the polynomial degree inside the cells does not lead

to a significant improvement of the convergence rate.

However, the approximation error in L2(Q) norms drops by about an order of

magnitude compared to the configurations with lower polynomial degree. In con-

trast to the schemes D1-D5, for D1+-D5+ the convergence rates on L2(Q) oscillate.

Interestingly, when considering the convergence of the cell-wise mean value, we ob-
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5.3. Numerical examples (2D)

serve a loss in the rate as well as in the error itself.

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1 0 1 56 59 1.49 · 100 − − 1.278 · 10−1 − − 1.392 · 10−1 − −

D1 1 8 336 360 1.048 · 100 1.42 0.51 7.806 · 10−2 1.64 0.71 1.056 · 10−1 1.32 0.40

D1 2 64 2 240 2 432 5.737 · 10−1 1.83 0.87 3.159 · 10−2 2.47 1.31 3.286 · 10−2 3.21 1.68

D1 3 512 16 128 17 664 2.936 · 10−1 1.95 0.97 1.029 · 10−2 3.07 1.62 1.007 · 10−2 3.26 1.71

D1 4 4 096 121 856 134 144 1.476 · 10−1 1.99 0.99 2.973 · 10−3 3.46 1.79 2.952 · 10−3 3.41 1.77

D1 5 32 768 946 176 1 044 480 7.392 · 10−2 2.00 1.00 7.781 · 10−4 3.82 1.93 7.819 · 10−4 3.78 1.92

D1 6 262 144 7 454 720 8 241 152 3.697 · 10−2 2.00 1.00 1.958 · 10−4 3.97 1.99 1.98 · 10−4 3.95 1.98

D2 0 1 126 150 9.006 · 10−1 − − 2.252 · 10−2 − − 2.095 · 10−2 − −

D2 1 8 756 948 2.456 · 10−1 3.67 1.87 4.376 · 10−3 5.15 2.36 6.199 · 10−3 3.38 1.76

D2 2 64 5 040 6 576 6.417 · 10−2 3.83 1.94 3.763 · 10−4 11.63 3.54 4.382 · 10−4 14.15 3.82

D2 3 512 36 288 48 576 1.62 · 10−2 3.96 1.99 2.483 · 10−5 15.15 3.92 2.81 · 10−5 15.59 3.96

D2 4 4 096 274 176 372 480 4.059 · 10−3 3.99 2.00 1.746 · 10−6 14.22 3.83 2.012 · 10−6 13.97 3.80

D2 5 32 768 2 128 896 2 915 328 1.016 · 10−3 4.00 2.00 1.224 · 10−7 14.26 3.83 1.384 · 10−7 14.54 3.86

D2 6 262 144 16 773 120 23 064 576 2.541 · 10−4 4.00 2.00 9.18 · 10−9 13.33 3.74 9.249 · 10−9 14.96 3.90

D3 0 1 224 305 2.557 · 10−1 − − 4.272 · 10−4 − − 3.974 · 10−4 − −

D3 1 8 1 344 1 992 3.933 · 10−2 6.50 2.70 7.772 · 10−5 5.50 2.46 9.742 · 10−5 4.08 2.03

D3 2 64 8 960 14 144 5.035 · 10−3 7.81 2.97 4.343 · 10−6 17.90 4.16 4.603 · 10−6 21.16 4.40

D3 3 512 64 512 105 984 6.337 · 10−4 7.95 2.99 2.421 · 10−7 17.94 4.17 2.438 · 10−7 18.88 4.24

D3 4 4 096 487 424 819 200 7.932 · 10−5 7.99 3.00 1.161 · 10−8 20.85 4.38 8.98 · 10−9 27.15 4.76

D3 5 32 768 3 784 704 6 438 912 9.915 · 10−6 8.00 3.00 6.175 · 10−10 18.80 4.23 3.287 · 10−10 27.32 4.77

D4 0 1 350 542 6.898 · 10−2 − − 3.329 · 10−4 − − 3.097 · 10−4 − −

D4 1 8 2 100 3 636 4.396 · 10−3 15.69 3.97 6.05 · 10−6 55.02 5.78 6.837 · 10−6 45.30 5.50

D4 2 64 14 000 26 288 2.837 · 10−4 15.50 3.95 1.935 · 10−7 31.27 4.97 2.019 · 10−7 33.86 5.08

D4 3 512 100 800 199 104 1.787 · 10−5 15.88 3.99 4.888 · 10−9 39.59 5.31 4.608 · 10−9 43.81 5.45

D4 4 4 096 761 600 1 548 032 1.119 · 10−6 15.97 4.00 1.197 · 10−9 4.08 2.03 1.426 · 10−9 3.23 1.69

D4 5 32 768 5 913 600 12 205 056 7.004 · 10−8 15.98 4.00 1.235 · 10−9 0.97 −0.05 1.451 · 10−9 0.98 −0.03

D5 0 1 504 879 1.125 · 10−2 − − 9.046 · 10−6 − − 8.415 · 10−6 − −

D5 1 8 3 024 6 024 4.208 · 10−4 26.74 4.74 4.793 · 10−7 18.87 4.24 5.822 · 10−7 14.45 3.85

D5 2 64 20 160 44 160 1.335 · 10−5 31.52 4.98 6.613 · 10−9 72.48 6.18 6.959 · 10−9 83.66 6.39

D5 3 512 145 152 337 152 4.19 · 10−7 31.86 4.99 8.091 · 10−11 81.73 6.35 6.131 · 10−11 113.51 6.83

D5 4 4 096 1 096 704 2 632 704 1.312 · 10−8 31.94 5.00 6.261 · 10−12 12.92 3.69 7.017 · 10−12 8.74 3.13

D5 5 32 768 8 515 584 20 803 584 2.982 · 10−9 4.40 2.14 9.847 · 10−12 0.64 −0.65 1.093 · 10−11 0.64 −0.64

Table 5.15: Convergence results for the DPG method according to table 5.3.
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5.3.1. A smooth example

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1 0 1 56 80 1.036 · 100 − − 1.106 · 10−1 − − 1.087 · 10−1 − −

D1 1 8 336 528 2.762 · 10−1 3.75 1.91 4.766 · 10−2 2.32 1.22 6.8 · 10−2 1.60 0.68

D1 2 64 2 240 3 776 7.861 · 10−2 3.51 1.81 1.453 · 10−2 3.28 1.71 1.639 · 10−2 4.15 2.05

D1 3 512 16 128 28 416 2.476 · 10−2 3.17 1.67 5.601 · 10−3 2.59 1.38 5.932 · 10−3 2.76 1.47

D1 4 4 096 121 856 220 160 9.074 · 10−3 2.73 1.45 1.811 · 10−3 3.09 1.63 1.931 · 10−3 3.07 1.62

D1 5 32 768 946 176 1 732 608 3.886 · 10−3 2.34 1.22 4.877 · 10−4 3.71 1.89 5.248 · 10−4 3.68 1.88

D2 0 1 126 207 2.973 · 10−1 − − 4.05 · 10−4 − − 3.767 · 10−4 − −

D2 1 8 756 1 404 4.587 · 10−2 6.48 2.70 1.615 · 10−3 0.25 −2.00 2.395 · 10−3 0.16 −2.67

D2 2 64 5 040 10 224 8.878 · 10−3 5.17 2.37 1.666 · 10−4 9.69 3.28 1.934 · 10−4 12.38 3.63

D2 3 512 36 288 77 760 2.036 · 10−3 4.36 2.12 1.246 · 10−5 13.37 3.74 1.36 · 10−5 14.22 3.83

D2 4 4 096 274 176 605 952 6.268 · 10−4 3.25 1.70 8.922 · 10−7 13.97 3.80 9.389 · 10−7 14.48 3.86

D2 5 32 768 2 128 896 4 783 104 1.321 · 10−4 4.74 2.25 8.027 · 10−8 11.12 3.47 7.132 · 10−8 13.16 3.72

D3 0 1 224 416 7.438 · 10−2 − − 1.382 · 10−3 − − 1.286 · 10−3 − −

D3 1 8 1 344 2 880 4.996 · 10−3 14.89 3.90 6.236 · 10−5 22.16 4.47 7.609 · 10−5 16.90 4.08

D3 2 64 8 960 21 248 4.131 · 10−4 12.09 3.60 3.178 · 10−6 19.62 4.29 3.722 · 10−6 20.44 4.35

D3 3 512 64 512 162 816 4.716 · 10−5 8.76 3.13 2.193 · 10−7 14.49 3.86 2.137 · 10−7 17.42 4.12

D3 4 4 096 487 424 1 273 856 5.875 · 10−6 8.03 3.01 1.15 · 10−8 19.07 4.25 9.089 · 10−9 23.51 4.56

D3 5 32 768 3 784 704 10 076 160 6.397 · 10−7 9.18 3.20 6.691 · 10−10 17.19 4.10 3.865 · 10−10 23.52 4.56

D4 0 1 350 725 1.38 · 10−2 − − 3.515 · 10−4 − − 3.27 · 10−4 − −

D4 1 8 2 100 5 100 5.952 · 10−4 23.19 4.54 8.951 · 10−6 39.27 5.30 1.008 · 10−5 32.44 5.02

D4 2 64 14 000 38 000 2.844 · 10−5 20.93 4.39 2.496 · 10−7 35.86 5.16 2.417 · 10−7 41.70 5.38

D4 3 512 100 800 292 800 1.622 · 10−6 17.53 4.13 5.929 · 10−9 42.10 5.40 5.302 · 10−9 45.59 5.51

D4 4 4 096 761 600 2 297 600 9.807 · 10−8 16.54 4.05 1.199 · 10−9 4.94 2.31 1.428 · 10−9 3.71 1.89

D4 5 32 768 5 913 600 18 201 600 1.084 · 10−8 9.05 3.18 1.235 · 10−9 0.97 −0.04 1.451 · 10−9 0.98 −0.02

D5 0 1 504 1 152 2.203 · 10−3 − − 1.735 · 10−5 − − 1.614 · 10−5 − −

D5 1 8 3 024 8 208 4.582 · 10−5 48.08 5.59 5.291 · 10−7 32.79 5.04 7.044 · 10−7 22.91 4.52

D5 2 64 20 160 61 632 1.262 · 10−6 36.31 5.18 8.411 · 10−9 62.90 5.98 8.79 · 10−9 80.14 6.33

D5 3 512 145 152 476 928 3.162 · 10−8 39.91 5.32 9.811 · 10−11 85.73 6.42 7.479 · 10−11 117.53 6.88

D5 4 4 096 1 096 704 3 750 912 1.147 · 10−9 27.57 4.79 3.306 · 10−11 2.97 1.57 3.624 · 10−11 2.06 1.05

D5 5 32 768 8 515 584 29 749 248 3.421 · 10−9 0.34 −1.58 6.031 · 10−11 0.55 −0.87 6.67 · 10−11 0.54 −0.88

Table 5.16: Convergence results for the DPG method according to table 5.4.
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5.3. Numerical examples (2D)

5.3.2 A traveling wave-front in an inhomogeneous medium

As another example with analytically known solution, we consider a rectangular

domain Ω = (−2, 2) × (0, 1) with a non-homogeneous material distribution for the

mass density ρ and the compression module κ given by

(
ρ(x1, x2), κ(x1, x2)

)
=


(1, 1) x1 < 0 ,

(2, 0.5) x1 ∈ (0, 1) ,

(0.5, 2) x1 > 1 .

such that the system

∂tp = κdiv v , ρ∂tv = ∇p

has a plane wave solution with amplitude α : R −→ R

p(x1, x2, t)

v(x1, x2, t)

 =


1−1

0


 ·


α(x1 − t) x1 < 0 ,

α(2x1 − t) x1 ∈ (0, 1) ,

α(1.5 + 0.5x1 − t) x1 > 1 .

(5.2)

We test with α(s) = cos(πs/2)4, |s| < 1, and α(s) = 0 else, implying α ∈ C3(Ω).

We use homogeneous Neumann boundary conditions v ·n = 0 for y = 0 and y = 1,

and homogeneous Dirichlet boundary conditions p = 0 for x = ±2.

Note that due to the special choice of material parameters, the analytical solution

does not feature reflections at the material interfaces, cf. [31, Sec. 3.5]. figure 5.18

illustrates the solution’s evolution inside the space-time cylinder.

Figure 5.18: A wave front traveling from right to the left through three different materials. On

the right, the mesh is truncated resulting in 1 284 984 DoFs compared to 3 193 344 DoFs in the full

space-time mesh while the approximation quality remains unchanged, see table 5.17 and table 5.19
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5.3.2. A traveling wave-front in an inhomogeneous medium

Locally increased polynomial degrees

Now, we exploit that the support of the solution is contained in a small fraction of the

space-time cylinder Q. The analysis in section 4.7 shows that the approximation

error for the DPG method can be bounded by the interpolation error in the discrete

space. Thus, we intend to choose an approximation space that contains polynomials

of high degree only in areas where the solution does not vanish. Everywhere else, we

want to select the lowest possible amount of degrees of freedom.

As a first step towards a space-time adaptive method, we demonstrate that an

approximation space with locally increased polynomial degree yields the same ap-

proximation quality compared to the corresponding uniform space. To this end, we

choose the lowest-order uniform configuration for the DPG method, i.e.

WR = Q0(R)2 , ZR = Q2(R)2 , ṼF,h = Q0(F )2 ,

in every space-time cell R and for all space-time faces F . We call this configuration

D0, see table 5.3 for the remaining DPG configurations. Then, we exploit that

the solution in this case is known and increase the polynomial degree according the

DPG configurations D1-D5 in the solution’s space-time support, see figure 5.19.

The convergence results are presented in figure 5.21 and table 5.18.

Figure 5.19: Space-time regions where the polynomial degree is increased on levels 1, 3, 5.

In practical applications, the solution’s support is unknown. However, the same

procedure can be used in combination with an error estimator, see section 5.4 for

an example.

Trunctation of the space-time cylinder

Another possibility to reduce the degrees of freedom consists in truncating the space-

time mesh by dropping cells where the solution vanishes. The resulting new space-

time boundaries are equipped with zero boundary or initial conditions. As a result,

we have reduced the amount of DoFs to approximate the solution while conserving

the approximation quality. See figure 5.18 for an example of this procedure and

figure 5.22, table 5.19 for the convergence results.

108



5.3. Numerical examples (2D)
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Figure 5.20: Convergence results for DPG with configurations as in table 5.3 on the full mesh.
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Figure 5.21: Convergence results for locally increased polynomial degrees on the full mesh.
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Figure 5.22: Convergence results for the truncated mesh. Level 0 corresponds to level 3 in fig-

ure 5.20 with respect to the mesh width.
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5.3.2. A traveling wave-front in an inhomogeneous medium

Discussion: DPG – full mesh In this example with non-homogeneous mate-

rial distribution, we reproduce the convergence rates predicted by the theoretical

considerations in section 4.7 for the configurations D2 and D3 as well.

The lowest order method D1 does not show the expected behavior. Possibly, this

happens because the pre-asymptotic regime is not left for these coarse meshes.

For the higher order methods in D4 and D5, the rates are better than the theo-

retical prediction, since the solution is C3 only.

All methods except for D1 show improved convergence rates for the cell-wise mean

values. However, differently than for the smooth example in the previous section,

there is no further improvement for the highest-order methods. Thus, concerning

the convergence of the mean-values, the methods in D3 to D5 behave similarly for

small mesh-sizes.

Discussion: DPG – locally increased polynomial degrees The results show

that the approximation quality stays the same when the polynomial degree is in-

creased locally instead of everywhere in the mesh while the number of global degrees

of freedom is reduced by a factor of about 1
2 up to less than 1

4 .

Discussion: DPG – truncated mesh Since we solve the same problem on a

truncated mesh, the results in figure 5.22 extend those provided in figure 5.20

where level 0 of the truncated mesh corresponds to level 3 of the full mesh.

Therefore, we expect the overlapping values to coincide for the different methods.

This is true for the point-wise L2(Q) error and also for the difference of the cell-wise

mean values up to small differences. For the L1(Q) norm of the cell-wise mean value,

we observe larger discrepancies.

Considering the expected convergence rates, all methods except for the low-order

scheme D1 behave as expected. However, since the rate in table 5.19 approaches

the expected rate 2 for finer grids, preasymptotic behavior remains as a possible

explanation.
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5.3. Numerical examples (2D)

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1 0 12 504 540 9.527 · 10−1 − − 2.46 · 10−1 − − 8.89 · 10−1 − −
D1 1 96 3 360 3 648 8.451 · 10−1 1.13 0.17 3.382 · 10−1 0.73 −0.46 1.018 · 100 0.87 −0.20

D1 2 768 24 192 26 496 7.31 · 10−1 1.16 0.21 4.437 · 10−1 0.76 −0.39 1.025 · 100 0.99 −0.01

D1 3 6 144 182 784 201 216 5.819 · 10−1 1.26 0.33 4.467 · 10−1 0.99 −0.01 8.817 · 10−1 1.16 0.22

D1 4 49 152 1 419 264 1 566 720 4.3 · 10−1 1.35 0.44 3.802 · 10−1 1.17 0.23 7.12 · 10−1 1.24 0.31

D1 5 393 216 11 182 080 12 361 728 2.933 · 10−1 1.47 0.55 2.748 · 10−1 1.38 0.47 4.932 · 10−1 1.44 0.53

D2 0 12 1 134 1 422 8.291 · 10−1 − − 1.176 · 10−1 − − 3.692 · 10−1 − −
D2 1 96 7 560 9 864 6.155 · 10−1 1.35 0.43 1.287 · 10−1 0.91 −0.13 3.631 · 10−1 1.02 0.02

D2 2 768 54 432 72 864 3.521 · 10−1 1.75 0.81 1.242 · 10−1 1.04 0.05 2.794 · 10−1 1.30 0.38

D2 3 6 144 411 264 558 720 1.286 · 10−1 2.74 1.45 6.844 · 10−2 1.82 0.86 1.31 · 10−1 2.13 1.09

D2 4 49 152 3 193 344 4 372 992 3.267 · 10−2 3.93 1.98 1.928 · 10−2 3.55 1.83 3.698 · 10−2 3.54 1.83

D2 5 393 216 25 159 680 34 596 864 6.196 · 10−3 5.27 2.40 9.529 · 10−4 20.23 4.34 1.735 · 10−3 21.31 4.41

D3 0 12 2 016 2 988 7.236 · 10−1 − − 5.073 · 10−2 − − 1.56 · 10−1 − −

D3 1 96 13 440 21 216 4.24 · 10−1 1.71 0.77 4.366 · 10−2 1.16 0.22 1.091 · 10−1 1.43 0.52

D3 2 768 96 768 158 976 1.409 · 10−1 3.01 1.59 2.547 · 10−2 1.71 0.78 5.486 · 10−2 1.99 0.99

D3 3 6 144 731 136 1 228 800 1.998 · 10−2 7.05 2.82 4.627 · 10−3 5.50 2.46 9.024 · 10−3 6.08 2.60

D3 4 49 152 5 677 056 9 658 368 2.447 · 10−3 8.17 3.03 1.742 · 10−4 26.56 4.73 3.44 · 10−4 26.23 4.71

D3 5 393 216 44 728 320 76 578 816 3.073 · 10−4 7.96 2.99 4.674 · 10−6 37.27 5.22 9.03 · 10−6 38.10 5.25

D4 0 12 3 150 5 454 6.085 · 10−1 − − 2.283 · 10−2 − − 6.575 · 10−2 − −

D4 1 96 21 000 39 432 2.673 · 10−1 2.28 1.19 1.414 · 10−2 1.61 0.69 3.588 · 10−2 1.83 0.87

D4 2 768 151 200 298 656 4.457 · 10−2 6.00 2.58 3.293 · 10−3 4.29 2.10 6.108 · 10−3 5.87 2.55

D4 3 6 144 1 142 400 2 322 048 3.295 · 10−3 13.53 3.76 2.055 · 10−4 16.02 4.00 3.997 · 10−4 15.28 3.93

D4 4 49 152 8 870 400 18 307 584 2.235 · 10−4 14.74 3.88 5.076 · 10−6 40.48 5.34 1.051 · 10−5 38.03 5.25

D4 5 393 216 69 888 000 145 385 472 1.438 · 10−5 15.54 3.96 1.673 · 10−7 30.34 4.92 3.489 · 10−7 30.12 4.91

D5 0 12 4 536 9 036 5.197 · 10−1 − − 1.465 · 10−2 − − 3.921 · 10−2 − −

D5 1 96 30 240 66 240 1.559 · 10−1 3.33 1.74 5.145 · 10−3 2.85 1.51 1.33 · 10−2 2.95 1.56

D5 2 768 217 728 505 728 1.344 · 10−2 11.60 3.54 4.306 · 10−4 11.95 3.58 8.811 · 10−4 15.10 3.92

D5 3 6 144 1 645 056 3 949 056 5.657 · 10−4 23.75 4.57 1.737 · 10−5 24.79 4.63 3.565 · 10−5 24.72 4.63

D5 4 49 152 12 773 376 31 205 376 2.096 · 10−5 26.99 4.76 4.431 · 10−7 39.20 5.29 9.007 · 10−7 39.58 5.31

D5 5 393 216 100 638 720 248 094 720 7.554 · 10−7 27.75 4.79 1.222 · 10−8 36.26 5.18 2.323 · 10−8 38.77 5.28

Table 5.17: Convergence results for the DPG method according to table 5.3 for the full mesh.
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5.3.2. A traveling wave-front in an inhomogeneous medium

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D0+D1 0 12 369 405 9.526 · 10−1 − − 2.556 · 10−1 − − 8.815 · 10−1 − −

D0+D1 1 96 2 016 2 304 8.462 · 10−1 1.13 0.17 3.409 · 10−1 0.75 −0.42 9.296 · 10−1 0.95 −0.08

D0+D1 2 768 12 222 14 526 7.39 · 10−1 1.14 0.20 4.568 · 10−1 0.75 −0.42 9.501 · 10−1 0.98 −0.03

D0+D1 3 6 144 79 008 97 440 5.878 · 10−1 1.26 0.33 4.544 · 10−1 1.01 0.01 7.966 · 10−1 1.19 0.25

D0+D1 4 49 152 564 714 712 170 4.217 · 10−1 1.39 0.48 3.707 · 10−1 1.23 0.29 6.124 · 10−1 1.30 0.38

D0+D1 5 393 216 4 297 398 5 477 046 2.78 · 10−1 1.52 0.60 2.584 · 10−1 1.43 0.52 4.077 · 10−1 1.50 0.59

D0+D2 0 12 774 957 8.228 · 10−1 − − 1.138 · 10−1 − − 3.52 · 10−1 − −

D0+D2 1 96 3 976 5 104 6.157 · 10−1 1.34 0.42 1.309 · 10−1 0.87 −0.20 3.562 · 10−1 0.99 −0.02

D0+D2 2 768 22 512 29 772 3.526 · 10−1 1.75 0.80 1.257 · 10−1 1.04 0.06 2.645 · 10−1 1.35 0.43

D0+D2 3 6 144 134 528 181 856 1.308 · 10−1 2.70 1.43 7.154 · 10−2 1.76 0.81 1.217 · 10−1 2.17 1.12

D0+D2 4 49 152 914 544 1 255 200 3.311 · 10−2 3.95 1.98 1.997 · 10−2 3.58 1.84 3.175 · 10−2 3.83 1.94

D0+D2 5 393 216 6 800 528 9 416 240 6.186 · 10−3 5.35 2.42 9.526 · 10−4 20.97 4.39 1.544 · 10−3 20.56 4.36

D0+D3 0 12 1 341 1 923 7.182 · 10−1 − − 5.789 · 10−2 − − 1.736 · 10−1 − −

D0+D3 1 96 6 720 10 128 4.233 · 10−1 1.70 0.76 4.536 · 10−2 1.28 0.35 1.136 · 10−1 1.53 0.61

D0+D3 2 768 36 918 57 630 1.4 · 10−1 3.02 1.60 2.548 · 10−2 1.78 0.83 5.074 · 10−2 2.24 1.16

D0+D3 3 6 144 212 256 338 016 1.99 · 10−2 7.04 2.81 4.632 · 10−3 5.50 2.46 7.562 · 10−3 6.71 2.75

D0+D3 4 49 152 1 404 306 2 269 362 2.426 · 10−3 8.20 3.04 1.671 · 10−4 27.72 4.79 2.805 · 10−4 26.96 4.75

D0+D3 5 393 216 10 304 910 16 818 510 3.061 · 10−4 7.93 2.99 4.112 · 10−6 40.64 5.35 6.04 · 10−6 46.44 5.54

D0+D4 0 12 2 070 3 429 5.988 · 10−1 − − 2.665 · 10−2 − − 8.312 · 10−2 − −

D0+D4 1 96 10 248 18 096 2.677 · 10−1 2.24 1.16 1.459 · 10−2 1.83 0.87 3.622 · 10−2 2.30 1.20

D0+D4 2 768 55 440 102 348 4.445 · 10−2 6.02 2.59 3.434 · 10−3 4.25 2.09 6.736 · 10−3 5.38 2.43

D0+D4 3 6 144 312 192 590 688 3.287 · 10−3 13.52 3.76 2.271 · 10−4 15.12 3.92 4.476 · 10−4 15.05 3.91

D0+D4 4 49 152 2 034 000 3 920 256 2.224 · 10−4 14.78 3.89 5.292 · 10−6 42.91 5.42 8.973 · 10−6 49.88 5.64

D0+D4 5 393 216 14 810 544 28 914 768 1.43 · 10−5 15.55 3.96 1.986 · 10−7 26.65 4.74 2.49 · 10−7 36.04 5.17

D0+D5 0 12 2 961 5 601 5.047 · 10−1 − − 1.189 · 10−2 − − 3.319 · 10−2 − −

D0+D5 1 96 14 560 29 728 1.561 · 10−1 3.23 1.69 5.01 · 10−3 2.37 1.25 1.324 · 10−2 2.51 1.33

D0+D5 2 768 78 078 168 174 1.338 · 10−2 11.67 3.55 4.545 · 10−4 11.02 3.46 8.704 · 10−4 15.21 3.93

D0+D5 3 6 144 434 336 −1 5.626 · 10−4 23.78 4.57 1.972 · 10−5 23.05 4.53 3.723 · 10−5 23.38 4.55

D0+D5 4 49 152 2 803 626 −1 8.483 · 10−5 6.63 2.73 5.765 · 10−7 34.20 5.10 8.558 · 10−7 43.50 5.44

Table 5.18: Convergence results for DPG with locally increased polynomial degree on the full mesh.

conf level cells DoFs all DoFs L2-error rate order L2-error (mean) rate order L1-error (mean) rate order

D1 0 2 424 74 904 82 176 5.789 · 10−1 − − 4.427 · 10−1 − − 8.222 · 10−1 − −
D1 1 19 392 571 104 629 280 4.301 · 10−1 1.35 0.43 3.802 · 10−1 1.16 0.22 6.852 · 10−1 1.20 0.26

D1 2 155 136 4 456 320 4 921 728 2.932 · 10−1 1.47 0.55 2.747 · 10−1 1.38 0.47 4.667 · 10−1 1.47 0.55

D1 3 1 241 088 35 200 512 38 923 776 1.736 · 10−1 1.69 0.76 1.657 · 10−1 1.66 0.73 2.753 · 10−1 1.70 0.76

D2 0 2 424 168 534 226 710 1.285 · 10−1 − − 6.826 · 10−2 − − 1.222 · 10−1 − −
D2 1 19 392 1 284 984 1 750 392 3.267 · 10−2 3.93 1.98 1.917 · 10−2 3.56 1.83 3.474 · 10−2 3.52 1.82

D2 2 155 136 10 026 720 13 749 984 6.202 · 10−3 5.27 2.40 9.499 · 10−4 20.18 4.34 1.68 · 10−3 20.68 4.37

D2 3 1 241 088 79 201 152 108 987 264 1.544 · 10−3 4.02 2.01 6.656 · 10−5 14.27 3.84 1.099 · 10−4 15.29 3.93

D3 0 2 424 299 616 495 960 1.999 · 10−2 − − 4.67 · 10−3 − − 8.41 · 10−3 − −
D3 1 19 392 2 284 416 3 855 168 2.443 · 10−3 8.18 3.03 1.847 · 10−4 25.28 4.66 3.497 · 10−4 24.05 4.59

D3 2 155 136 17 825 280 30 391 296 3.079 · 10−4 7.93 2.99 6.995 · 10−6 26.40 4.72 1.044 · 10−5 33.50 5.07

D4 0 2 424 468 150 933 558 3.297 · 10−3 − − 2.146 · 10−4 − − 4.203 · 10−4 − −
D4 1 19 392 3 569 400 7 292 664 2.229 · 10−4 14.79 3.89 5.888 · 10−6 36.45 5.19 1.091 · 10−5 38.52 5.27

D4 2 155 136 27 852 000 57 638 112 1.436 · 10−5 15.52 3.96 5.543 · 10−7 10.62 3.41 6.049 · 10−7 18.04 4.17

D5 0 2 424 674 136 1 583 136 5.663 · 10−4 − − 2.093 · 10−5 − − 4.149 · 10−5 − −
D5 1 19 392 5 139 936 12 411 936 2.084 · 10−5 27.17 4.76 5.611 · 10−7 37.30 5.22 9.18 · 10−7 45.20 5.50

D5 2 155 136 40 106 880 98 282 880 7.598 · 10−7 27.43 4.78 1.68 · 10−8 33.40 5.06 2.497 · 10−8 36.76 5.20

Table 5.19: Results for DPG on the truncated mesh. Here, level 0 corresponds to level 3 in table 5.17.
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5.3. Numerical examples (2D)

5.3.3 A double slit experiment in a homogeneous medium

Here, we consider a classical experiment from optical physics. See also [23] for

applications of space-time Discontinuous-Galerkin methods to a similar example.

Two coherent wave fronts enter the domain through a pair of small slits. By

Huygens principle, a circular wave is propagated from each of the slits yielding a

characteristic inference pattern, cf. figure 5.23 for a description of the setup and

figure 5.24 for visualizations of the solution. The boundary ∂Ω = ΓN ∪ ΓD is

partitioned in a Neumann part ΓN and a Dirichlet part ΓD, where we use v ·nΩ = 0

on ΓN× (0, T ) and p(x, t) = sin
(
2πω(x− t)

)
for (x, t) ∈ ΓD× (0, T ) with ω = 2 and

T = 10.

a

b

s2

δ

s1

d

Ω

y

x

Figure 5.23: The spatial domain Ω is described on the left, where the slit dimensions are d =

s1 = s2 = 0.25, their distance is δ = 1, and the dimensions of the large rectangle are a = 6,

b = 12. The domain Ω is substructured using a regular mesh Ωh of squares with side lengths 0.25.

The corresponding space-time cylinder Q = Ω× (0, T ) is discretized using tensor-product elements

R = K × (tn−1, tn) for each cell K ∈ Ωh and tn = T/N , n = 0, . . . , N , with T = 10 and N = 50.

The dashed portion of ∂Ω indicates ΓN and the remaining faces, marked by three lines, represent

ΓD. On the right, a space-time plot of the solution is given on a two times refined version of this

mesh featuring 3 692 800 space-time cells and 234 210 528 face DoFs.

This example demonstrates that the space-time DPG method is able to simulate

complex waveforms in homogeneous media.
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5.3.3. A double slit experiment in a homogeneous medium

Figure 5.24: Snapshots of the pressure component at times t = 0.6, 2.08, 3.56, 5.04, 6.52, 8. These

were obtained by slicing the space-time solution from Fig. 5.23 along planes that are orthogonal to

the time direction.
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5.4. Adaptivity with respect to the polynomial degree

5.4 Adaptivity with respect to the polynomial degree

In order to demonstrate the space-time adaptivity features of the DPG method, we

revisit the example considered in section 5.3.2. Since the solution given by (5.2)

is invariant with respect to translations in y direction, for simplicity, we restrict

ourselves to the one-dimensional projection, see figure 5.25.

Since in practical applications, we do not know the solutions structure, we make

use of DPG’s built-in error estimator, cf. (4.37), to determine the parts of the mesh

where high-degree polynomials are useful. As a second step, we adjust the local

polynomial degrees similar to section 5.3.2

0 27322 75072

10−4

10−3

10−2

10−1

100

‖𝑢
−

𝑢 ℎ
‖ L

2(
𝑄

)

uniform
adaptive

Figure 5.25: Left: space-time plot of the projected solution from (5.2) with time-axis from left

to right. Center: the space-time mesh with 3072 cells used for adaptivity in the polynomial de-

gree. Right: evolution of the approximation error for uniform and adaptive refinement where the

horizontal axis corresponds to global degrees of freedom.

Then, we apply for fixed ϑ ∈ (0, 1), here ϑ = 0.98, the iterative procedure de-

scribed in algorithm 2. The resulting refinements and corresponding solutions are

shown in figure 5.26 and the errors are shown in figure 5.25.

Algorithm 2 Adaptive refinement
1: while not converged do

2: Obtain the numerical solution yh ∈ Vh for the current discretization.

3: Calculate the error-representing function ψ and
(
‖ψ‖L?,R

)
R∈Rh

.

4: Select τ : {1, . . . , |Rh|} −→ Rh: ‖ψτ(1)‖L?,τ(1) ≤ · · · ≤ ‖ψτ(|Rh|)‖L?,τ(Rh).

5: Identify the minimal k ∈ N such that
√∑k+1

l=1 ‖ψτ(l)‖2L?,τ(l) ≥ ϑ‖ψ‖L?,Qh
.

6: For R ∈ τ
(
{1, . . . , k}

)
, change DPG configuration from Dl to D(l+1) if l < 4.

7: For adjacent cells of τ
(
{1, . . . , k}

)
use the largest test space of their neighbors.

The error estimator identifies a superset of the solution’s support following a

marching-like pattern in time. After about 11 iterations, the error has reached the

quality for uniform refinement. However, about a third of global degrees of freedom

is needed. See [33, 52] for similar examples.
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5.4.0. A double slit experiment in a homogeneous medium

D0 D1 D2 D3 D4 D5

Figure 5.26: Space-time plots of areas with increased polynomial degree (rows 1, 3) and space time

plot of the corresponding numerical solution’s pressure component (rows 2, 4).
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CHAPTER 5. Numerical Experiments

5.5 Summary

Considering the experiments, the results largely fit or are better than the theoretical

predictions provided by section 4.7.

For the DPG method, increasing the polynomial degree inside the cells by 1

improves the rate of convergence in one spatial dimension. In two spatial dimen-

sions, the increased cell degree affects the order less strongly compared to the one-

dimensional case. However, at least for smooth examples, the approximation quality

for the same amount of global degrees of freedom improves while the convergence

rates oscillate. Since we do not observe further improvements when raising the poly-

nomial degree inside the cells by more than one, we do not provide examples for this

case.

For one and two spatial dimensions, we observe an improved rate of convergence

of the DPG approximation when considering the distance of cell-wise mean values.

In particular, this can be observed for the low regularity example in one spatial

dimension.

We demonstrate that the DPG method is well suited for space-time adaptivity.

Both approaches, the locally increased polynomial degrees as well as the truncation

of the space-time cylinder, yield the same approximation quality than a calculation

on the full mesh with uniform polynomial degree distribution. Exploiting DPG’s

built-in error estimator, we present a way to automatically determine the space-time

regions where refinement is advantageous.

The weakly conforming Least-Squares method delivers comparable performance

considering the difference in L2(Q) norms, while being restricted to one spatial di-

mension in its current state, see section 4.2.5.

For this method, however, we do not observe the effect of improved convergence

rates for the cell-wise mean values in general. We only observe this effect for the low

regularity example.
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5.5. Summary
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Chapter 6

Full Waveform Inversion (FWI)

In this chapter, we consider the problem of Full Waveform Inversion (FWI). The

challenge in FWI consists in reconstructing spatial material properties from surface

measurements of the wave field. FWI plays an important role to investigate the

subsurface structure of the earth, see [61, 65] for an extensive overview and [63] for

the foundation paper.

In the geophysics community, many strategies to tackle FWI have been evaluated.

Usually, gradient-based iterative inversion schemes are the methods of choice, cf. [48]

for a toolbox implementing various examples. Here, Finite Difference discretization

are the standard method to solve the forward problems numerically, see e.g. [8, 59,

64].

Since gradient-based algorithms rely on linearization, the differentiability of the

parameter-to-solution map is required and thus, has been investigated in [41, 43].

For practical implementations, usually a technique called adjoint-state method is

used to efficiently handle the linearized problem, see e.g. [53].

Mathematically, FWI is an inverse problem, i.e. one tries to reconstruct the cause

(material properties and the source signal) from its impacts (resulting wave field at

the receiver positions). Typically, inverse problems are ill-posed in the sense that the

unknown does not depend continuously on the data, see [43] for a proof that this also

applies for FWI and e.g. [40, 58] for introductory monographs on inverse problems.

Due to this ill-posedness, solving inverse problems using numerical methods is a

challenging task.
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6.1. Mathematical setting and notation

Outline

We set up an abstract variational framework to derive different algorithms to solve

the FWI problem numerically. In particular, we compare a root finding approach

and an optimization approach both using Newton-type methods. We consider

an inexact Newton-type method using a regularized CG-scheme as a solver for

the linearized problem called CG-REGINN that has been considered in [57]. Here,

inexact means that the linearized problem inside the Newton iteration is solved

approximately. This preliminary stopping results in a regularization effect to handle

the ill-posedness.

Under certain assumptions on the problem, there exists a convergence proof for

the CG-REGINN algorithm, see [57]. This analysis is extended to special classes

of Banach spaces, see [46] where also Kaczmarz variants of this algorithm are

studied.

CG-REGINN has been successfully applied to other inverse problems such as Elec-

trical Impedance Tomography, see e.g. [69]. For defect detection of elastic structures,

CG-REGINN has been applied in [44]. Here, we would like to start a discussion of

regularized inexact Newton algorithms for FWI.

Although to the knowledge of the author it is an open question whether the

convergence results for CG-REGINN can be transferred to the FWI problem, we

provide a numerical example using CG-REGINN and the DPG method for acoustic

waves as described in section 4.3 to address a simple model problem.

6.1 Mathematical setting and notation

In this chapter, we drop mathematical rigor to focus on the formal derivation of

the inversion algorithms. Beforehand, we introduce some notation that is needed

in the following. In particular, we extend the language that has been introduced in

chapter 3.

We consider a space of material parameters P and a subset of admissible material

parameters Padm ⊂ P. Further, let W be the space of right-hand sides for the wave

equation and let V ⊂W be aW -dense subspace of wave-fields. For a linear operator

A : V −→W and fixed m ∈ Padm, we consider the operator

Lmy := M(m)∂ty +Ay ,

where M : P −→ L
(
W
)
is a differentiable mapping.
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CHAPTER 6. Full Waveform Inversion (FWI)

For the acoustic wave equation, we have

P := L∞(Ω,R2), Padm ⊂ L∞(Ω,R2)+ ,

W := L2(Q,R1+d), V ⊂ H(Lm, Q)

for the space

L∞(Ω)+ =
{
f ∈ L∞(Ω): ∃c > 0 such that f(x) ≥ c for almost all x ∈ Ω

}
and the operators

M
(
κ(x), ρ(x)

)
=

κ(x)−1 0

0 ρ(x)Id

 , x ∈ Ω ; A =

 0 div

∇ 0

 . (6.1)

We assume that the space V remains unchanged for different material parameters

m ∈ Padm and that ∂ty ∈W is well-defined for all y ∈ V .

Remark 6.1. To our knowledge, it is an open question, whether a unified domain

for the family of operators (Lm)m∈Padm can be chosen in a Hilbert space setting as

described in chapter 3.

In the simplest case, however, the following calculations can be performed after

replacing the operator A by an approximation in a finite dimensional subspace.

6.1.1 The forward problem and the adjoint problem

For a given right hand side b ∈ W and material parameter m ∈ Padm solving the

forward problem means finding y ∈ V with

Lmy = b i. e., M(m)∂ty +Ay = b. (6.2)

This defines the parameter-to-solution map

F : Padm −→ V ,m 7−→ ysol , where ysol solves (6.2) for m.

Further, we assume that there is an operator L?m : V ? −→W such that(
Lmy, z

)
Q

=
(
y, L?mz

)
Q

y ∈ V, z ∈ V ?,

for a subspace V ? ⊂ W . We assume that both, Lm : V −→ W and L?m : V ? −→ W ,

are isomorphisms. This ensures that the parameter-to-solution map is well-defined.

Example 6.2. For the acoustic wave-equation, we have L? = −L defined on a space

featuring final conditions instead of initial conditions, see chapter 3.
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6.1. Mathematical setting and notation

Remark 6.3. Note that in practical applications, the right-hand side b is not known

and has to be reconstructed as well, see [54]. However, for simplicity we assume that

only the material parameters m have to be reconstructed.

In practice, we do not have access to the full wavefield in space and time. Typi-

cally, finitely many measuring devices yield sequences of approximate point evalua-

tions being the only accessible data. In the next section, we model this measurement

procedure.

6.1.2 Observations and the parameter-to-seismogram map

For a finite set of space-time receiver points M ⊂ Q, we consider the space of

seismograms S :=
(
R1+d)M equipped with the L2 inner product and corresponding

norm

(
s, s̃
)
S :=

∑
r∈M

d+1∑
i=1

s(r)is̃(r)i, ‖s‖S =

(∑
r∈M
|s(r)|22

) 1
2

, s, s̃ ∈ S .

We consider a linear observation operator Ψ: W −→ S mapping a wave (p,v) ∈
W to a seismogramm s = Ψ

[
(p,v)

]
∈ S.

Often, the observation operator is realized by approximate point evaluations using

measurement kernels ϕr ∈ C∞c (Q), r ∈M, by

Ψ
[
(p,v)

]
:=
((
ϕr, p

)
Q
,
(
ϕr,v1

)
Q
, . . . ,

(
ϕr,vd

)
Q

)
r∈M

(6.3)

Here, the measurement kernels are chosen as representatives of a Dirac sequence in

space-time approximating the delta distribution.

For the inversion algorithm, we need the L2(Q) adjoint of Ψ. A straight-forward

calculation shows that this adjoint Ψ? ∈ L
(
S,W

)
is given by

Ψ?s =
∑
r∈M


s(r)1 ϕr

...

s(r)1+d ϕr

 ∈W . (6.4)

As a consequence, for given s ∈ S, the object Ψ?s yields a right-hand side for the wave

equation consisting of approximate point sources at all space-time receiver positions.

These sources are scaled by the value of the seismogram s at the receivers.

Remark 6.4. The observation operator Ψ in (6.3) measures all components of the

wave field (p,v). In practical applications, the measurements might be restricted due

to physical or technical reasons.
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CHAPTER 6. Full Waveform Inversion (FWI)

Remark 6.5. Note that for simplicity, all components in the inner product are scaled

with a constant 1. To respect the physical scaling of the quantities, a differently scaled

product can be chosen.

6.1.3 The problem in FWI

Using the observation operator Ψ and the parameter-to-solution map F , we define

the parameter-to-seismogram operator by

Φ: Padm −→ S, m 7−→ Ψ
[
F(m)

]
.

In the application, we have access to a seismogram sobs ∈ S generated by an

unknown material parameter msol ∈ P. Now, the problem of FWI consists in finding

msol ∈ P such that Φ(msol) fits the data sobs. Formally, we define the problem of

Full Waveform inversion byGiven sobs ∈ S,
find msol ∈ Padm with Φ(msol) = sobs .

(6.5)

Remark 6.6. Often, the right-hand side b models a point source with a specific

location. In this case a pair of source and corresponding seismograms, i.e.
(
b, sobs

)
,

is called a shot gather or a shot.

Typically, the input data consist of more than a single shot. However, for the

simplicity of notation, we restrict the presentation to the single-shot case.

It turned out that (6.5) is a challenging problem for two reasons. On the one hand,

it is highly non-linear and iterative schemes require high-accuracy solutions of at least

one wave equation in every step. On the other hand, numerical experiments showed

that the robust reconstruction of m is a non-trivial task since typically spurious

artifacts occur during the inversion. A mathematically satisfying explanation for

this phenomenon was given in [42] by showing that (6.5) is locally ill-posed in the

following sense.

Theorem 6.7. The equation F(m) = y is locally ill-posed in every m ∈ Padm, i.e.

in any neighborhood of m there is a sequence (mk)k ∈ (Padm)N such that

lim
k−→∞

∥∥F(mk)−F(m)
∥∥

L2(Q,R3)
= 0,

∥∥mk −m
∥∥

L∞(Ω,R2)
6−→ 0, k −→∞.

Proof. See [42].

Since the result in theorem 6.7 assumes knowledge of the whole space-time

wavefield and thus, does not depend on any observation operator, the ill-posedness

is an inherent property of the wave equation and does not result from a lack of data.
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6.2. Root-finding approach

Remark 6.8. In [43], the authors prove a variant of theorem 6.7 for abstract

evolution equations. This result shows the ill-posedness of the FWI problem for the

elastic wave equation as well as for Maxwell’s equations.

State of the art methods to solve non-linear ill-posed problems numerically are

regularized Newton type methods. In the following, we consider variants of these

methods for (6.5). We present two different points of view to tackle (6.5) numerically:

a root-finding approach and an optimization approach.

6.2 Root-finding approach

Problem (6.5) can be considered as a root-finding procedure for the mapping

Θ: Padm −→ S, m 7−→ Φ(m)− sobs .

Then, a Newton-type method can be used to find the solution of Θ(m) = 0. For

the comfort of the reader, we briefly revisit the construction of Newton’s method.

Given a guess1 mk ∈ P, we consider the Taylor expansion of Θ(msol) in a neigh-

borhood of mk, i.e.

Θ
(
msol

)
= Θ(mk) + Θ′(mk)

[
msol −mk

]
+O

(
‖msol −mk‖2

)
.

Since Θ(msol) = 0, the (unknown) update hk := msol −mk fulfills approximately

Φ′(mk)[hk] = Θ′(mk)[hk] ≈ −Θ(mk) = sobs − Φ(mk) . (6.6)

The idea is to find an approximation for the update hk by solving (6.6). Thus,

Newton’s method can be formulated as in algorithm 3.

Algorithm 3 Newton’s method for root finding

1: Choose m0 ∈ Padm, k ← 0

2: while not converged do

3: rk ← sobs − Φ(mk) ∈ S
4: Find hk ∈ P with Φ′(mk)[hk] = rk

5: mk+1 ← mk + hk

6: k ← k + 1

Often, the linearized problem that has to be solved in step 4 is also ill-posed and

requires regularization, see e.g. [37, 38]. One way to do this is applying a linear

regularization method to the corresponding normal equation

Φ′(mk)?Φ′(mk)[hk] = Φ′(mk)?rk, (6.7)
1The index k corresponds to the Newton iteration.
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CHAPTER 6. Full Waveform Inversion (FWI)

where the adjoint Φ′(mk)? : S −→ P is chosen such that

(
Φ′(mk)[m̃], s

)
S =

(
m̃,Φ′(mk)?s

)
Ω
, for all m̃ ∈ P , s ∈ S .

Since we have Φ = Ψ ◦ F , we obtain by the linearity of Ψ

Φ′(mk)[m̃] = Ψ′
(
F(mk)

)[
F ′(mk)[m̃]

]
= Ψ

[
F ′(mk)[m̃]

]
, mk ∈ Padm, m̃ ∈ P ,

and thus

Φ′(mk)?[s] = F ′(mk)?
[
Ψ?[s]

]
, mk ∈ P, s ∈ S .

Here, the adjoints Ψ? and F ′(mk)?, mk ∈ Padm, are chosen such that for all m̃ ∈ P,
s ∈ S and y ∈ V it holds

(
Ψ[y], s

)
S =

(
y,Ψ?[s]

)
Q

and
(
F ′(mk)[m̃],y

)
Q

=
(
m̃,F ′(mk)?[y]

)
Ω
.

Remark 6.9. Note that the adjoint operators strongly depend on the inner products(
·, :
)
S ,
(
·, :
)
Q
and

(
·, :
)

Ω
.

For our considerations in this work, we use standard unscaled L2 products. How-

ever, it is an interesting future challenge to construct and evaluate other variants

of these products. In [69], a scaled L2 norm in the parameter space reduces spuri-

ous oscillations in the reconstructions for an inverse problem in electrical impedance

tomography (EIT).

6.3 The derivative of F and its adjoint

We assume that the regularization scheme only needs – apart from basic vector

algebra – to evaluate

Φ′(mk)[h] and Φ′(mk)?[s]

for different choices of mk ∈ Padm, h ∈ P and s ∈ S. Thus, in each Newton step,

we need to evaluate F ′(mk)[m̃] for given m̃ ∈ P at the current iterate mk ∈ Padm.

In the following, we formally construct algorithms to explicitly evaluate Φ′(mk)[h]

and Φ′(mk)?[s].

As described e.g. in [16], we define the state mapping E : Padm × V × V ? −→ R,

E(m,y, z) =
(
Lmy − b, z

)
Q

=
(
M(m)∂ty +Ay − b, z

)
Q
,

fulfilling E
(
m,F(m), z

)
= 0 for all m ∈ P, z ∈ V ? by the definition of F .
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6.3.1 The derivative F ′(mk)

We carry out a formal derivation for a computable representation of the derivative.

The justification that this indeed yields a proper derivative in a strict mathematical

sense is a question that has been addressed for instance in [41], also see [35].

For arbitrary m ∈ Padm, m̃ ∈ P and z ∈ V ?, we formally have

0 =
〈 d

dm

(
E(m,F(m), z)

)
, m̃
〉

=
〈
∂1E(m,F(m), z), m̃

〉
+
〈
∂2E(m,F(m), z),F ′(m)[m̃]

〉
=
(
M ′(m)[m̃]∂tF(m), z

)
Q

+
(
LmF ′(m)[m̃], z

)
Q
.

(6.8)

As a result, for given m̃ ∈ P the linearized parameter-to-solution map F ′(mk)[m̃]

fulfills at the current iterate mk ∈ Padm

Lmk

[
F ′(mk)[m̃]

]
= −M ′(mk)[m̃]∂tF(mk) (6.9)

which means that solving the forward problem (6.9) yields F ′(mk)[m̃] ∈ V , see

algorithm 4.

Algorithm 4 Evaluate the linearized parameter-to-wavefield map F ′(mk)[m̃]

Input: mk ∈ Padm, m̃ ∈ P, ymk := F(mk) ∈ V
Output: y := F ′(mk)[m̃] ∈ V
1: Find y ∈ V with Lmky = −M ′(mk)[m̃]∂tymk

Example 6.10 (Linear acoustics). In case of the linear acoustic wave equation, we

have for mk = (κ, ρ) ∈ Padm

M ′(κ, ρ)[(κ̃, ρ̃)] =

−κ−2κ̃ 0

0 ρ̃ Id

 . (κ̃, ρ̃) ∈ P ,

With y = (p,v) = F ′(mk)[(κ̃, ρ̃)] and ymk = (pmk ,vmk), this yields for step 1 in

algorithm 4
1

κ
∂tp+ div v =

κ̃

κ2
∂tpmk ,

ρ ∂tv +∇p = −ρ̃vmk ,

for all (κ̃, ρ̃) ∈ P, cf. also [4, Thm. 8] and [43, Thm. 3.6].

6.3.2 The adjoint F ′(mk)? of the derivative F ′(mk)

Continuing the calculation in (6.8) for m = mk ∈ Padm yields(
F ′(mk)?[L?mkz], m̃

)
Ω

= −
(
M ′(mk)[m̃]∂tF(mk), z

)
Q
.
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Thus, to obtain F ′(mk)?[b̃] ∈ P for given b̃ ∈W , find z ∈ V ? such that

L?mkz = b̃ (6.10)

and in a second step find m ∈ P solving(
m, m̃

)
Ω

= −
(
M ′(m)[m̃]∂tF(mk), z

)
Q

for all m̃ ∈ P, (6.11)

as shown in algorithm 5.

Algorithm 5 Adjoint F ′(mk)?[b̃] of linearized parameter-to-wavefield map

Input: mk ∈ Padm, ymk := F(mk) ∈ V , b̃ ∈W
Output: z ∈ V ? solving (6.10), m := F ′(mk)?[b̃] ∈ P
1: Find z ∈ V ? with L?

mkz = b̃

2: Find m ∈ P with
(
m, m̃

)
Ω

= −
(
M ′(mk)[m̃]∂tymk , z

)
Q
for all m̃ ∈ P

Solving the problem in (6.10) is referred to as solving the adjoint problem for the

material parameter mk ∈ Padm with right-hand side b̃ ∈ W . Since equation (6.10)

can be interpreted as solving the wave equation backward in time, it is also called

the backward wave equation or back propagation problem, see section 3.2.

Example 6.11 (Linear acoustics). Continuing example 6.10, we obtain for step 2

in algorithm 5 for mk = (κk, ρk) ∈ Padm and m = (κ, ρ) ∈ P

(
(κ, ρ), (κ̃, ρ̃)

)
Ω

= −
∫ T

0

∫
Ω

−κk(x)−2 κ̃(x) ∂tpmk(x, t)

ρ̃(x) ∂tvmk(x, t)

 ·
zp(x, t)
zv(x, t)

 dx dt

=

∫
Ω

κ̃(x)

ρ̃(x)

 · ∫ T

0

κk(x)−2 ∂tpmk(x, t) zp(x, t)

−∂tvmk(x, t) · zv(x, t)

 dt dx

for all (κ̃, ρ̃) ∈ P. This implies

(
κ(x), ρ(x)

)
=

∫ T

0

κk(x)−2 ∂tpmk(x, t) zp(x, t)

−∂tvmk(x, t) · zv(x, t)

 dt , x ∈ Ω ,

see also [43, Thm. 3.8].

Remark 6.12. In a space-time variational setting, the adjoint problem is easily

available using integration by parts. This is an appealing feature from an implemen-

tation point of view, since with minimal modifications, the subroutines to handle the

forward problem can be reused to solve the adjoint problem. Moreover, using a space-

time distributed data structure for the forward and backward wavefields, step 2 in

algorithm 5 can be handled in parallel without extra communication overhead.
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6.3.3 The CG-REGINN algorithm

As an example of a regularized inexact Newton method, we consider the Conjugate

Gradient REgularized INexact Newton (CG-REGINN) algorithm, see [57].

CG-REGINN is a special case of algorithm 3 where the normal equation (6.7)

is solved by a linear Conjugate Gradients (CG) algorithm, see algorithm 6. It

exploits that CG acts as a regularization scheme when stopped preliminary by a

discrepancy principle, see [40], [58].

Algorithm 6 Conjugate Gradient algorithm for (6.7)

1: l← 0, β ← 0, r̃0 ← rk ∈ S
2: p̃0, h̃0 ← 0 ∈ P
3: while not converged do

4: l← l + 1

5: d← Φ′(mk)?[r̃l−1] ∈ P
6: pl ← d+ β ‖d‖2Ω pl−1

7: q ← Φ′(mk)[pl] ∈ S
8: α← ‖d‖2Ω/‖q‖2S
9: h̃l ← h̃l−1 + αpl

10: r̃l ← r̃l−1 − α q
11: β ← 1/‖d‖2Ω

Most steps in algorithm 6 involve basic linear algebra operations only. The

main effort is concentrated in the highlighted steps 5 and 7, where wave equations

have to be solved.

To obtain regularizing properties, the stopping criterion for the CG iteration is

crucial. We use a heuristic proposed in [69] based on [57] that relies on an estimate for

the local ill-posedness of the current iteratemk ∈ Padm that is obtained by comparing

the iteration count of the CG iteration from previous non-linear iterations.

More precisely, for k ∈ N we denote the number of CG-iterations in the k-th

iteration of Newton’s algorithm until the inner iteration is stopped by nk ∈ N.
Then, we choose ϑk ∈ (0, 1) according to the estimate of the local ill-posedness and

stop the CG-iteration as soon as we have

∥∥Φ′(mk)[h̃l]− rk
∥∥
S ≤ ϑk

∥∥rk∥∥S or lk ≥ lk,max . (6.12)
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To this end, we select γ ∈ (0, 1), ϑ0 ∈ (0, 1) and

ϑk =



1, n = 0,

‖r1‖S/‖r0‖S , n = 1 ,

1− nk−2

nk−1
(1− ϑk−1), ill-posedness became worse (nk−1 ≥ nk−2) ,

γϑk−1, ill-posedness became better ,

nk,max =


1, k = 0 ,

2, k = 1 ,

nk−1 + nk−2, k ≥ 2 .

(6.13)

A numerical example for this heuristic is presented in section 6.5.

In the next section, we relate the CG-REGINN algorithm to another approach

motivated from optimization theory.

Remark 6.13. For the outer Newton loop, a discrepancy principle can be chosen

as a stopping criterion, see e.g. [40], [58] or [57]. In this work, we focus on the inner

iteration and leave systematic stopping of the outer loop as a future challenge.

6.4 Minimization approach

Another approach to consider the FWI problem replaces (6.5) by an optimization

problem as in (6.14).Given sobs ∈ S ,
find m ∈ P with F

(
Φ(m),m

)
−→ min!

(6.14)

Here, the map F : S ×P −→ R is a measure of the misfit between the observed data

sobs and the data Φ(m) corresponding to the material m.

The direct dependence of F on the material m can encounter a-priori information

on the material. Typical examples have the following structure

F (s,m) = f(s) + p(m) , s ∈ S , m ∈ P ,

with a penalty term p(m) and straight-forward choices are

f(s) =
1

2
‖s− sobs‖2S =

1

2

∑
r∈M
|s(r)− sobs(r)|22 , (6.15)

p(m) =
γ

2
‖m‖2∗ , (6.16)
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where ‖ · ‖∗ : P −→ R denotes a norm or a semi-norm on the material parameters

and γ > 0 is a regularization parameter.2 However, we set p ≡ 0 for simplicity in

our considerations.

Using the function F and the parameter-to-seismogram operator Φ, we define the

parameter-to-misfit function

J : Padm −→ R , m 7−→ F
(
Φ(m),m

)
.

Then, problem (6.14) is equivalent to finding a minimizer of J .

In the simplest case, this minimization problem can be tackled using a gradient

method.

6.4.1 A gradient descent method

The Riesz representative ∇J(mk) ∈ P of the objective function’s derivative J ′(mk)

yields a descent direction, i.e. there is α > 0: J
(
mk − α∇J(mk)

)
< J(mk). This

motivates the algorithm shown in algorithm 7.

Algorithm 7 A gradient descent method

1: Choose m0 ∈ Padm, k ← 0

2: while not converged do

3: Find ∇J(mk) ∈ P with
(
∇J(mk), m̃

)
P =

〈
J ′(mk), m̃

〉
for all m̃ ∈ P

4: Find step length α > 0 such that J
(
mk − α∇J(mk)

)
< J(mk)

5: mk+1 ← mk − α∇J(mk)

6: k ← k + 1

Since the problem in step 3 is a variational problem with the derivative J ′(mk)

as a right-hand side, algorithm 7 relies on an efficient evaluation of the expression〈
J ′(mk), m̃

〉
for all m̃ ∈ P. By the definition of J and F , we can rewrite the equation

in step 3 as follows(
∇J(mk), m̃

)
P =

〈
J ′(mk), m̃

〉
=
〈
f ′
(
Φ(mk)

)
,Φ′(mk)[m̃]

〉
m̃ ∈ P .

(6.17)

In order to assemble the linear system that has to be solved in (6.17), the expression

Φ′(mk)[m̃] has to be evaluated for each test material m̃ ∈ P. According to sec-

tion 6.3.1, this requires to solve dimP forward problems to assemble the right-hand

side in each step of algorithm 7 which is practically infeasible.

2This is often referred to as Tikhonov regularization.
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However, assuming that the misfit-function’s derivative is computationally acces-

sible, we can find the gradient ∇f
(
Φ(mk)

)
∈ S of the misfit-function by(

∇f
(
Φ(mk)

)
, s̃
)
S =

〈
f ′
(
Φ(mk)

)
, s̃
〉
, s̃ ∈ S .

Then, continuing the calculation in (6.17), we obtain(
∇J(mk), m̃

)
P =

(
∇f
(
Φ(mk)

)
,Φ′(mk)[m̃]

)
S

=
(

Φ′(mk)?
[
∇f
(
Φ(mk)

)]
, m̃
)

Ω
, m̃ ∈ P ,

(6.18)

which means

∇J(mk) = Φ′(mk)?
[
∇f
(
Φ(mk)

)]
. (6.19)

Using the results in section 6.3.2, after solving a single backward wave equation

for the right-hand side v = Ψ?
[
∇f
(
Φ(mk)

)]
∈ H according to algorithm 5 yields

the expression on the right-hand side of (6.19).

Remark 6.14. This procedure to efficiently evaluate the derivative of the misfit-

function is usually referred to as the adjoint-state method. Here, the solution of the

backward equation for the right-hand side v = Ψ?
[
∇f
(
Φ(mk)

)]
is called the adjoint

state, see e.g. [53] for an overview and further variants.

Remark 6.15. Note that in the infinite dimensional setting, the solution ∇J(mk) in

(6.18) fulfills ∇J(mk) ∈ L2(Ω). Since L2(Ω) 6⊂ L∞(Ω) = P, we cannot guarantee that
the iterates obtained by mk+1 = mk−α∇J(mk) belong to the space P. Furthermore,

even in case that mk+1 ∈ P, it might violate the positivity constraints in Padm,

i.e. mk+ /∈ Padm. In our implementation, we assume that mk+1 ∈ Padm on discrete

level leaving a systematic treatment of these problems as a future challenge.

Example 6.16 (L2 misfit). We consider the misfit function given in (6.15). In this

case, we have the following derivative and gradient for all s, s̃ ∈ S〈
f ′(s), s̃

〉
=
(
s− sobs, s̃

)
S , ∇f(s) = s− sobs .

In this case, we obtain the gradient by

∇J(mk) = Φ′(mk)?
[
Φ(mk)− sobs

]
= F ′(mk)?

[
Ψ?
[
Φ(mk)− sobs

]]
. (6.20)

Note that rk := Φ(mk)−sobs ∈ S is the current non-linear residual in the seismograms

space and by (6.4), Ψ?rk ∈W is a right-hand side consisting of point sources located

at the receiver positions.

Considering algorithm 5 to evaluate F ′(mk)?, the gradient ∇J(mk) is obtained

by propagating the residual backwards in time from the receiver positions.
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Remark 6.17. In case that CG-REGINN is stopped after the first inner iteration,

cf. algorithm 3 and algorithm 6, we obtain as a result of the conjugate gradient

algorithm for the Newton update h̃0

h̃0 = αp0 = αd = α ·
(

Φ′(mk)?
[
sobs − Φ′(mk)

])
, α =

‖p0‖2Ω∥∥Φ′(mk)[p0]
∥∥2

S

.

Thus, CG-REGINN stopped after a single inner iteration yields a gradient method.

Finding a suitable step length

Given the descent direction ∇J(mk), a proper scaling is required in order to obtain

a convergent algorithm. A straight-forward approach is the line-search that try to

find the minimizer α > 0 in

min
α̃>0

J
(
mk − α̃∇J(mk)

)
.

Solving this minimization problem is practically infeasible in case of FWI and thus,

approximation strategies are employed. See [65] for references.

Convergence properties

Gradient based optimization methods are known to suffer from slow convergence

rates. Even in simple model examples, the descent directions can oscillate such that

the algorithms yields a “zig-zag” path through the search space.

The Newton-type methods presented in the following are known to have more

appealing convergence properties.

6.4.2 Newton-type methods for minimization

In this section, we consider Newton-type methods to solve (6.14) numerically. For

the reader’s convenience, we provide a short derivation of Newton’s method for

optimization problems. Using a second order Taylor-expansion of J , we obtain for

the (unknown) exact update hk := msol −mk

J(msol) = J(mk) +
〈
J ′(mk), hk

〉
+

1

2
J ′′(mk)[hk, hk] +O

(
‖hk‖3

)
.

This yields an approximation of J(msol) by a quadratic function in h

h 7−→ J(mk) +
〈
J ′(mk), h

〉
+

1

2
J ′′(mk)[h, h] , h ∈ P .

In case that hk ∈ P is a minimizer of this quadratic approximation, the corresponding

derivative with respect to h is vanishing at hk, i. e.

J ′′(mk)[hk, h̃] = −
〈
J ′(mk), h̃

〉
for all h̃ ∈ P . (6.21)
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This gives rise to Newton’s method for optimization problems, see algorithm 8.

Algorithm 8 Newton’s method for optimzation (abstract form)

1: Choose m0 ∈ Padm, k ← 0

2: while not converged do

3: Find hk ∈ P with J ′′(mk)[hk, h̃] = −
〈
J ′(mk), h̃

〉
for all h̃ ∈ P

4: mk+1 ← mk + hk

5: k ← k + 1

Comparing step 3 in algorithm 7 and step 3 in algorithm 8, we see that both

linear problems have – up to the sign – the same right-hand sides. Thus, we can use

the same technique as in the previous section to efficiently handle J ′(mk).

Unlike the Riesz map in algorithm 7, the second derivative J ′′(mk) cannot be

assembled efficiently as an operator in B
(
P ×P,R

)
. Thus, practical algorithms rely

on an approximation of J ′′(mk). Typical approaches use the Gauß-Newton or

variants of L-BFGS approximation, see [12], and apply an iterative linear solver for

the resulting system.

Remark 6.18. It has been evaluated in [29] that incorporating the second order

derivative for the inversion can improve the reconstruction quality.

Thus, in another approach, J ′′(mk)[m̃1, m̃2] is evaluated for given m̃1, m̃2 ∈ P
exploiting second-order adjoint states. For completeness, we provide a derivation of

this method in appendix B using our space-time variational setting.

However, stopping strategies originating from optimization theory for the linear

iteration have been employed, see e.g. [49]. It is a promising future challenge to

implement and evaluate this method combined with regularizing stopping criteria.

Due to the relation to the CG-REGINN algorithm, in the following, we restrict

ourselves to the Gauß-Newton variant.

6.4.3 Gauß-Newton approximation of J ′′

From (6.17) we obtain the following expression for the second derivative of J

J ′′(mk)[m̃, m̂] = f ′′
(
Φ(mk)

)[
Φ′(mk)[m̃],Φ′(mk)[m̂]

]
+
〈
f ′
(
Φ(mk)

)
,Φ′′(mk)[m̃, m̂]

〉
.

We call the first addend the Gauß-Newton approximation of J ′′(mk)[m̃, m̂].
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Remark 6.19. Let f be the simple L2 functional from example 6.16. Then, using

f ′′(s)[s̃, ŝ] =
(
s̃, ŝ
)
S for s, s̃, ŝ ∈ S, we obtain for all m̃, m̂ ∈ P

J ′′(mk)[m̃, m̂] ≈
(
Φ′(mk)[m̃],Φ′(mk)[m̂]

)
S =

(
Φ′(mk)?Φ′(mk)[m̃], m̂

)
P .

Using the definition of ∇J(mk) and (6.20), for the Gauß-Newton approximation,

the equation in step 3 of algorithm 8 becomes

Φ′(mk)?Φ(mk)[hk] = Φ′(mk)?
[
sobs − Φ(mk)

]
.

Therefore, the normal equation (6.7) that is solved in the regularized root finding

version of Newton’s method can be interpreted as a result of the Gauß-Newton

approximation for the linearized system in Newton’s method for optimization.

6.5 A numerical example for FWI

In this section, we provide a numerical experiment to demonstrate that CG-REGINN

in combination with the space-time DPG method as a forward solver yields a working

algorithm.

6.5.1 The experimental setup

We set Ω = (−9
8 ,

3
2) × (0, 5

4) and T = 1.94 yielding Q = Ω × (0, T ) as the space-

time cylinder. As boundary conditions, we use p = 0 on the left, right and bottom

boundaries of Ω. At the top boundary, we set v · nΩ = 0 and in the beginning, the

system is at rest, i.e. p(0) = 0, v(0) = 0.

We add external energy to the system using a point-source at space-time position

(xc, tc) =
(
(−1

8 , 0), 0.05
)
in the pressure component given by

b(x, t) =

a · exp
(
−6 · |(x,t)−(xc,tc)|22

δ2

)
, |(x, t)− (xc, tc)|2 < δ ,

0 , else ,

where δ = 0.0625 and a = 10 000. The material distribution is homogeneous in Ω

except for a horizontal layer at H := (−9
8 ,

3
2)×(5

8 ,
3
4), cf. figure 6.1. More precisely,

we have ρ(x) = 1, x ∈ Ω, and

κ(x) = vback, x ∈ Ω \H, κ(x) = vback + 0.55 · sin
(
x2 − 5/8

3/4− 5/8

)
, x ∈ H ,

with vback = 1.

The pressure component of the numerical solution for this setting is visualized in

figure 6.2 and figure 6.3.

134



CHAPTER 6. Full Waveform Inversion (FWI)

Figure 6.1: Experimental setup for the reconstruction of an inhomogeneous layer. On the top, the

source location and receiver positions are depicted. The two lines illustrate parts of the signal being

reflected at the top and the bottom of the inclusion. The area in between these lines indicates that

part of the inclusion generating reflections which are recorded by the receivers. This is the only

part of the inclusion, the seismograms contain information about.

Remark 6.20. The material distribution in this example is inspired by the horizontal

reflector example of the Python Toolbox for Seismic Imaging, PySIT, see [34].

Remark 6.21. Since we do not utilize absorbing boundary conditions or absorbing

layers, we choose the size of Ω in such a way that boundary reflections cannot reach

the receivers during the simulation time (0, T ) due to the finite speed of wave propa-

gation. This is a technical simplification that we would like to drop in the future.

Figure 6.2: Space-time plot showing a numerical approximation of the solution’s pressure compo-

nent. Here, the time axis is pointing towards the reader. The simulation was performed using the

DPG method setup as described in (6.24) and (6.25) on a mesh with 84 ·40 ·64 = 215 040 space-time

cuboids yielding a linear system with 13 781 088 degrees of freedom in V̂h.
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Figure 6.3: Pressure component at times t = 0.15, 0.5, 0.85, 1.2, 1.55, 1.9. These images were ob-

tained by slicing the space-time cylinder from figure 6.2. Here, reflections at the homogeneity

layer as well as at the boundary of Ω can be observed.

The measurement setup

For the measurements, we selectN = 40 equidistant spatial receivers, see figure 6.1.

MΩ :=

{
−0.1 + n · 1.1− (−0.1)

N − 1
: n = 0, . . . , N − 1

}
(6.22)

and M = 92 measurement times

MT :=

{
0.05 +m · 1.88− 0.05

M − 1
: m = 0, . . . ,M − 1

}
(6.23)

yielding the space-time receiver positions M := MΩ ×MT and the total number

of space-time receivers |M| = 40 · 92 = 3680. As a result, the whole measurement

vector consists of 3 · |M| = 11 040 entries since we measure in every component of

(p,v). To approximate point evaluations of the state
(
p(x, t),v(x, t)

)
, (x, t) ∈ Q, we

use

ϕr(x, t) =

a · exp
(
−7 · |(x,t)−r|

2
2

δ2

)
, |(x, t)− r|2 < δ ,

0 , else ,

as measurement kernels, see (6.3). We choose δ = 0.05 and select a > 0 such that

‖ϕr‖L1(Q) = 1. In figure 6.4 the observed seismogram is depicted.
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Figure 6.4: Pressure component of a seismogram obtained by averaged point measurements at the

space-time receivers given in (6.22) and (6.23). The signal clearly shows the directly traveled wave

followed by the reflections at the material inhomogeneity.

An example for the adjoint state

Inside the CG-loop of the algorithm, linearized forward and backward wave equa-

tions are solved one after another. In the backwards wave equation, the current

residual seismogram acts as an array of sources located at the receiver positions, see

example 6.16. Thus, the residual is propagated backwards in time, see figure 6.5

and figure 6.6 for an example.

Figure 6.5: Space-time plot of an adjoint state’s pressure component. Note that the time direction

is pointing towards the reader. Also see the more detailed explanation given in figure 6.6.
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6.5. A numerical example for FWI

Figure 6.6: Numerical approximation of an adjoint state’s pressure component plotted for t =

0.15, 0.5, 0.85, 1.2, 1.55, 1.9. It was obtained using the DPG method setup as in (6.24) and (6.25).

The backpropagated residual resulted from a forward simulation for an homogeneous κ distribution.

6.5.2 Application of CG-REGINN

We apply the CG-REGINN algorithm described in section 6.3.3 to the example

described above. In this demonstration-of-concept example, we commit the inverse

crime by using the same forward solver to generate the data that is also used during

the inversion. Moreover, we did not add noise to the data.

Configuration of the DPG forward solver

To solve the forward an backward problems arising in steps 5 and 7 of algorithm 6,

we use the space-time Discontinuous Petrov-Galerkin method as described in

section 4.3. For the face degrees of freedom, we apply the simplified DPG method

as described in section 4.6. Using a second-order variant D2 of the DPG method,

see table 5.3, we choose for the ansatz and test spaces

WR,h = Q1(R)×Q1(R)2, ZR,h = Q4(R)×Q4(R)2 (6.24)

inside the space-time cells R = K × (a, b), and on the skeleton ∂Qh we use

ṼK×{t},h = Q2(K)×Q2(K)2 for faces in time, and

ṼF×(a,b),h = Q2

(
F × (a, b)

)
×Q2

(
F × (a, b)

)
nF for faces in space.

(6.25)

According to section 4.7, this yields a second order method in space-time.
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Discretization of the material parameters

To discretize the material parameters, we use cell-wise constant functions as an

approximation for κ(x) and ρ(x), x ∈ Ω. Since we use 84 · 40 cells in space, this

results in 3360 degrees of freedom for each of κ and ρ.

In order to simplify the implementation, we replace the map M from (6.1) by

another map M̃ : P −→M given by

M̃
(
ρ(x), κ̃(x)

)
=

κ̃(x) 0

0 ρ(x)Id

 , x ∈ Ω .

Here M̃ is obtained by replacing κ(x)−1 with κ̃(x), x ∈ Ω. Since the map

Padm −→ Padm , f 7−→ f−1

is one-to-one, we can reconstruct κ̃ in first step and in a second step obtain κ itself.

Since M̃ is a linear map, this simplification eliminates inner derivatives of κ in

the implementation of the inversion scheme.

Protocol of a CG-REGINN iteration

For the application of CG-REGINN, we use the stopping criterion for the inner loop

as described in (6.13), The parameters have are chosen as follows

γ = 0.9, ϑ0 = 0.999 .

Since we do not add noise to the data, instead of using a discrepancy principle to

stop the outer loop, for simplicity, we limited the Newton iteration count by 11.

As a starting value, we use m0 = (ρ0, κ0) ≡ (1, 1) in Ω.

Remark 6.22. During the iteration, we fix ρ ≡ 1 such that only κ̃ is reconstructed.

In figure 6.8, the squared non-linear residual for each iteration is shown. More-

over, the count of CG iterations inside the inner loop, nk, is plotted as well as the

values of ϑk chosen by the heuristic in (6.13). According to this heuristic, the local

ill-posedness increases in the beginning and then oscillates.

The evolution of the seismograms during the Newton iteration is visualized by

figure 6.9. After about 10 iterations, the reconstructed seismogram is in good

match with the observation.

However, the ill-posedness of the FWI problem becomes obvious when looking

at the iterates for the reconstructions of κ: although the seismograms coincide with

high accuracy, the reconstruction of the material is far away from the real material

corresponding to the observed seismogram. Here, we can distinguish two effects:
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6.5. A numerical example for FWI

1. The only region where the inhomogeneity is reconstructed in an acceptable

way is located at the horizontal center. The reason for that is the measurement

geometry. Since our measurements were taken using a single source and a small

array of receivers over a short period of time, we can only expect meaningful

reconstructions in that part of the domain where the signal traveled through

before being recorded. This part is located at the center of the domain where

the algorithm obtained something meaningful, see figure 6.1.

2. There are also reconstruction artifacts resulting from the ill-posedness. Espe-

cially, close to the source position these artifacts occur in our experiments.

The only way to tackle the first effect consists in investing more data. This can be

done, e.g. by using a larger receiver array or more than one source-receivers pair.

Investigating the reduction of artifacts is a challenging task where many geophysi-

cists and engineers have worked on for a long time. As a future challenge, we would

like to transfer approaches from the inverse-problems community such as weighted

norms or other regularization strategies to address this problem.

0 5 10

10−1

100 ‖sk − sobs‖2S

0 5 10

5

10

15 nk

0 5 10

0.6

0.7

0.8

0.9

1.0
ϑk

Figure 6.7: On the left, the squared non-linear residual (misfit) for each Newton-step k is shown.

Here, k corresponds to the x-axis in all plots. The number of inner iterations nk is depicted at the

center and the chosen value for ϑk is shown by the right plot.

Remark 6.23. In every Newton-step, at least one wave equation has to be solved

to obtain the non-linear residual. Further, each CG iteration solves a linearized

forward problem and another adjoint problem. In table 6.1, the amounts of solved

wave equations are listed.
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Figure 6.8: Evolution of linear residuals for each Newton-stop k. The vertical dashed line and

the horizontal dotted line indicate the current choice of maximal linear iterations nk,max and the

stopping tolerance ϑk‖rk‖S for the residual according to (6.13).

k 0 1 2 3 4 5 6 7 8 9 10 11

nk 1 2 3 4 3 5 4 7 5 11 5 16

ck 3 5 7 9 7 11 9 15 11 23 11 33

Ck 3 8 15 24 31 42 51 66 77 100 111 144

Table 6.1: Number of wave equations solved in the k-th Newton step, ck. By Ck the total number

of wave equations after finishing the k-th Newton step is denoted.
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Figure 6.9: The plot at the top right shows the pressure component of the observed seismogram

where the receiver at the bottom is highlighted. The remaining images show the observed signal

for this receiver compared to the reconstruction in the k-th Newton step.
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Figure 6.10: The top plot shows the real material used for data generation and the remaining images

depict Newton iterates of κ̃ = κ−1. The inclusion is reconstructed only at the center as expected,

see figure 6.1.
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6.5.3 A remark on the computational effort

Comparing the performance of the algorithm to Finite Difference based codes, e.g.

PySIT [34], we draw the conclusion that in its current state, the space-time DPG

method is by far not competitive to the established schemes.

Using the software PySIT, a compareable example can be solved within minutes

on a standard desktop computer. The method using space-time DPG as a forward

solver, however, takes about half an hour to solve a single wave equation using a

parallel computer featuring two MD EPYC 7551 processors each of which having 32

cores. As a result, implementing CG-REGINN using more efficient discretization to

solve the wave equation, remains an interesting challenge.

Possibilities for space-time adaptivity in FWI

In this demonstration-of-concept example, we use the space-time DPG method hav-

ing the same ansatz and test spaces in every space-time cell. However, since in typical

scenarios for FWI applications, we consider waves originating from point sources, the

solution’s support is contained in small fraction of the space-time cylinder due to the

finite speed of wave propagation. This applies to the waves propagated forward

in time, see figure 6.2 and figure 6.3, as well as to the solutions of the adjoint

problem originating from sources at the receiver positions, see figure 6.5 and fig-

ure 6.6. Therefore, FWI is an application where space-time adaptivity as presented

in section 5.3.2 and section 5.4 can be applied to reduce the computational effort.

Considering step 2 of algorithm 5, we have to solve the variational problem

Find m ∈ P with
(
m, m̃

)
Ω

= −
(
M ′(mk)[m̃]∂tymk , z

)
Q
, m̃ ∈ P , (6.26)

in order to find the update directions for the material reconstruction in all considered

algorithms to address the FWI problem, see also example 6.11.

Since the right-hand side of (6.26) only takes into account space-time positions

(x, t) ∈ Q, where both, ymk(x, t) and z(x, t), are non-zero, both ymk and z need to

be approximated with high accuracy in the intersection of their space-time support,

see figure 6.11. Adaptively chosen approximation spaces as well as truncation tech-

niques for the space-time cylinder as presented in section 5.3.2 might be applied.
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Source

Receivers
Ω

0 Tt

Q

Figure 6.11: The space-time region where the both, the forward wave ymk as well as the back

propagated wave z, are supported is highlighted in gray. The left picture is an illustration for

the situation in 1D and the right picture corresponds to the solutions shown in figure 6.2 and

figure 6.5.
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Chapter 7

Summary and outlook

Classically, wave equations are considered as evolution equations where the deriva-

tive with respect to time is treated in a stronger way than the spatial differential

operators. This results in an ordinary differential equation (ODE) with values in a

function space, e.g. in a Hilbert space, with respect to the spatial variable. For

instance, acoustic waves in a spatial domain Ω ⊂ Rd for a given right-hand side b

can be considered in terms of the following ODE

∂ty = Ay + b in [0, T ] , y(0) = 0 , A =

 0 div

∇ 0

 ,

where the solution y is an element of the space C0
(
0, T ;D(A)

)
∩ C1

(
0, T ; L2(Ω)

)
with D(A) ⊂ H1(Ω)×H(div,Ω). In order to analyze this ODE, space and time are

treated separately and hence tools for partial differential equations are used in space

and tools for ODEs are used in time. Typically, this separation carries over to the

analysis of numerical schemes to approximate solutions of the equation.

By contrast, in this work, we consider the space-time operator

L(p,v) =

∂tp+ div v

∂tv +∇p

 ,

in Q = (0, T )× Ω as a whole treating time and space dependence simultaneously in

a variational manner. Using this approach, we constructed a space-time Hilbert

space setting that allows for irregular solutions, e.g. with space-time discontinuities.

In particular, we defined the Hilbert space H(L,Q) and extended the operator L

to H(L,Q) in a space-time weak sense. Using generalized integration by parts, we

established a notion of space-time traces for functions in H(L,Q). By employing

semi-group theory, we constructed a space V ⊂ L2(Q) featuring initial and bound-

ary conditions, such that the full space-time operator L : V −→ L2(Q) defines an
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isomorphism. As a result, for every given right-hand side b ∈ L2(Q), the problem of

finding y ∈ V such that

Ly = b

is well-posed in our framework.

Within this variational framework, we constructed and analyzed two classes of

non-conforming discretization schemes for acoustic waves. On the one hand, we

considered a weakly conforming Least-Squares method that finds the approximate

solution by minimizing the residual in an enlarged approximation space allowing for

space-time discontinuities. On the other hand, we present a variant of the discon-

tinuous Petrov-Galerkin method (DPG) for acoustic waves. The construction of

both methods heavily relies on the generalized space-time traces that we introduced

earlier. Expecting that an ansatz space containing functions of low regularity can

lead to improved approximation quality for irregular solutions, we considered a non-

conforming variant of the DPG method. This method allows for face-wise defined

traces on the space-time skeleton.

For both methods, we provided a convergence analysis exploiting tools from classi-

cal Finite Element theory for space and also time dependence. By applying standard

polynomial interpolation theory, we demonstrated how to design discretization with

high order of convergence for both methods. These theoretical predictions are com-

plemented by extensive numerical experiments showing that the high convergence

rates are attained in practice. We compared schemes up to 8th order in case of the

weakly conforming Least-Squares and up to 5th order for the DPG method solving

various benchmark problems in one and two spatial dimensions. In particular, we

considered a low-regularity example to explore the method’s properties beyond the

theory. Interestingly, we observed increased convergence rates for cell-wise average

values in case of the DPG method.

Moreover, we demonstrated the flexibility of space-time methods with respect to

adaptivity by varying the polynomial degree in the space-time cylinder. Considering

an example with sparse space-time support, we used DPG’s built-in error estimator

to selectively increase the polynomial degree resulting in a severe reduction of degrees

of freedom for the resulting linear system.

While considering the problem of Full Waveform Inversion (FWI), we focused on

the derivation of Newton-type algorithms to tackle this inverse problem numeri-

cally. Here, we made extensive use of the space-time L2(Q) adjoint L? that is easily

accessible within our variational space-time framework. We implemented a regular-

ized inexact Newton method, CG-REGINN, and provided a numerical example for
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a benchmark problem.

Future challenges

The following paragraphs provide promising and open questions for the future.

While yielding promising numerical results, our considerations of the weakly con-

forming Least-Squares method are not fully satisfactory, since the construction of

stable pairings of ansatz and test spaces in 2D remains an open question.

Currently, we use black-box solving techniques to handle the large linear system

containing all space-time degrees of freedom for both discretization methods. More

precisely, we use a restarted GMRES linear solver preconditioned by a subdomain-

wise symmetric Gauß-Seidel scheme. As a result, the number of needed iterations

to obtain an acceptable accuracy increases with the refinement of the mesh. Even

worse, since the preconditioner operates locally on every parallel subdomain, using

more parallel processes decreases its efficiency. In order to render these space-time

discretizations competitive to classical schemes, a preconditioner is necessary that

scales well with respect to the mesh size as well as with the number of processes

used. Promising candidates in this respect are multigrid-algorithms, see e.g. [23] for

a space-time discontinuous Galerkin method.

By numerical experiments which we do not provide in this work, we obtained

numerical indication that using scaled L2 in time can improve the performance of

the iterative solver for minimal residual methods. A systematic investigation of this

phenomenon remains as a future challenge.

To keep our first implementation simple, we restricted ourselves to rectangular

meshes. We believe that the discussed methods also work for more general meshes,

e.g. for triangular cells in space. Evaluating the performance of both methods with

respect to adaptively refined meshes is a promising challenge. Furthermore, we

would like to implement more efficient quadrature schemes in order to reduce the

computational costs to assemble the local cell matrices.

In the computational experiments, we observed improved convergence rates when

considering projections of the exact and numerical solution to cell-wise constant func-

tions. Obtaining a better understanding of this effect may yield to other quantities

converging with increased rates or even the construction of schemes that provide

high-order convergence for specific quantities. This is a promising challenge since it

may be applicable for low-regularity solutions where classical convergence estimates

fail.

For the algorithmic considerations in chapter 6, we assumed that a Hilbert
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space V exists such that all differential operators Lm with m ∈ Padm, are iso-

morphisms from V to L2(Q). However, our variational framework gives a different

domain Vm for each material parameter and thus cannot be applied directly. Finding

a variational setting working around this problem could justify the formal consider-

ations in chapter 6.
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Appendix A

Explicit estimates using

generalized symmetric eigenvalue

problems

Let X be a discrete space and A,M ∈ L(X,X ′) self-adjoint positive operators defin-

ing norms ‖x‖A =
√
〈Ax, x〉 and ‖x‖M =

√
〈Mx, x〉.

Let λ1, . . . , λNX
be the eigenvalues of Ax = λMx. Then, we obtain

‖x‖M ≤
(

minλn

)−1/2
‖x‖A , x ∈ X .

Let Y be second discrete space and D ∈ L(Y, Y ′) a self-adjoint positive operator.

We observe for B ∈ L(X,Y ′)

‖A−1B′y‖A = sup
x∈X

〈Bx, y〉
‖x‖A

.

Let µ1, . . . , µNY
be the eigenvalues of BA−1B′y = µDy. Then, we obtain

sup
x∈X

〈Bx, y〉
‖x‖A

≥
(

minµk

)−1/2
‖y‖D , y ∈ Y . (A.1)

Moreover, we obtain

〈Bx, y〉 ≤
(

maxµk

)1/2
‖x‖A‖y‖D , x ∈ X , y ∈ Y .
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Appendix B

Evaluate J ′′ by the adjoint state

method

We summarize how the second order derivative of the parameter-to-misfit map can be

evaluated using adjoint states using the notation of section 6.4, see [35, Sec. 1.65].

In [29], the authors report that taking into account the second derivative of Φ can

increase the reconstruction quality, but assembling the discretized counterpart of

J ′′(mk) is practically infeasible.

Since E
(
m,F(m), z

)
= 0 for m ∈ Padm, z ∈ V ?, we obtain by (6.8), (6.17)

〈
J ′(mk), m̃

〉
=
(
M ′(mk)[m̃]∂tF(mk), z

)
Q

+
(
LM(mk)F ′(mk)[m̃], z

)
Q

+
〈
f ′
(
Φ(mk)

)
,Φ′(mk)[m̃]

〉
.

To calculate the second derivative of J , we use Φ′′(mk)[m̃, m̂] = Ψ
[
F ′′(mk)[m̃, m̂]

]
.

Exploiting y(0) = 0, z(T ) = 0 for y ∈ V , z ∈ V ? and writing Hf for the Hesse

matrix of the misfit-function f yield

J ′′(mk)[m̃, m̂] =
(
M ′′(mk)[m̃, m̂]∂tF(mk), z

)
Q

+
(
M ′(mk)[m̃]∂tF ′(mk)[m̂], z

)
Q

+
(
M ′(mk)[m̂]∂tF ′(mk)[m̃], z

)
Q

+
(
LM(mk)F ′′(mk)[m̃, m̂], z

)
Q

+ f ′′
(
Φ(mk)

)[
Φ′(mk)[m̃],Φ′(mk)[m̂]

]
+
〈
f ′
(
Φ(mk)

)
,Φ′′(mk)[m̃, m̂]

〉
=
(
M ′′(mk)[m̃, m̂]∂tF(mk), z

)
Q
−
(
m̂,F ′(mk)?

[
M ′(mk)[m̃]?∂tz

])
Ω

+
(
M ′(mk)[m̂]∂tF ′(mk)[m̃], z

)
Q

+
(
F ′′(mk)[m̃, m̂], L?M(mk)z

)
Q

+
(
F ′(mk)?

[
Ψ?Hf

(
Φ(mk)

)
Φ′(mk)[m̃]

]
, m̂
)
S

+
(
Ψ?
[
∇f
(
Φ(mk)

)]
,F ′′(mk)[m̃, m̂]

)
Q
.
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Reordering finally yields

J ′′(mk)[m̃, m̂] =
(
L?M(mk)z + Ψ?

[
∇f
(
Φ(mk)

)]
,F ′′(mk)[m̃, m̂]

)
Q

+
(
F ′(mk)?

[
Ψ?Hf

(
Φ(mk)

)
Φ′(mk)[m̃]−M ′(mk)[m̃]?∂tz

]
, m̂
)

Ω

+
(
M ′(mk)[m̂]∂tF ′(mk)[m̃], z

)
Q

+
(
M ′′(mk)[m̃, m̂]∂tF(mk), z

)
Q

Given m̃ ∈ P, the second derivative applied to m̃, i.e. J ′′(mk)[m̃, ·] can be evaluated

efficiently by the following procedure.

Solve an adjoint problem to get rid of the first addend by finding zadjoint ∈ V ?

L?M(mk)zadjoint = −Ψ?
[
∇f
(
Φ(mk)

)]
. (B.1)

In the k-th Newton step, the non-linear residual has to be evaluated. Thus, the

value of ymk := F(mk) is known already. As a result, also Φ(mk) = Ψ[F(mk)]

is known and thus, the right-hand side of (B.1) be evaluated efficiently without

significant additional costs.

Then, calculate Φ′(mk)[m̃] ∈ S, yielding also ylin := F ′(mk)[m̃] ∈ V and

madjoint := F ′(mk)?
[
Ψ?Hf

(
Φ(mk)

)
Φ′(mk)[m̃]−M ′(mk)[m̃]?∂tzadjoint

]
∈ P .

As a result, we obtain the following representation of the second derivative that

can be evaluated efficiently for every m̂ ∈ P by scalar products only:

J ′′(mk)[m̃, m̂] =
(
madjoint, m̂

)
Ω

+
(
M ′(mk)[m̂]∂tylin, zadjoint

)
Q

+
(
M ′′(mk)[m̃, m̂]∂tymk , zadjoint

)
Q

(B.2)

The whole procedure is summarized in algorithm 9 and requires solving three

additional wave equations to the non-linear residual.

Algorithm 9 Evaluate second order derivative J ′′(mk)[m̃, ·]
Input: mk ∈ Padm, m̃ ∈ P, ymk := F(mk) ∈ V
Output: zadjoint ∈ V ?, ylin ∈ V , madjoint ∈ P fulfilling (B.2)

1: Set smk := Ψ[ymk ] ∈ S.
2: Find zadjoint ∈ V ? with L?

M(mk)
zm = −Ψ?

[
∇f(smk)

]
.

3: Set ylin := F ′(mk)[m̃] ∈ V .

4: Set slin := Ψ[ylin] ∈ S.
5: Assemble b := Ψ?Hf (smk)[slin]−M ′(mk)[m̃]?∂tzadjoint ∈W
6: Set madjoint := F ′(mk)?[b] ∈ P.

Note that in the steps 2, 3, and 6 a wave equation needs to be solved.
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Appendix C

An L1-setting in 1D

In chapter 5, we observed higher order convergence of the piecewise defined mean-

value compared the norm convergence order. In particular, we observed an improved

convergence rate in the L1(Q) norm even for a solution with low regularity, see

section 5.2.3. In order to systematically analyze this phenomenon, a non-Hilbert

space setting might be required. In the following, we sketch an L1 setting for waves

using BV regularity. All considerations in the following are performed in one spatial

dimension.

Furthermore, this setting might also help to set up a Banach space framework

to consider the FWI problem, see chapter 6.

Functions with bounded variation

The total variation of a function f : Ω −→ R, Ω = R, is defined as

|f |BV(Ω) := sup

{
K∑
k=1

∣∣f(xk−1)− f(xk)
∣∣ : x0 < x1 < · · · < xK , K ∈ N

}

and the space of functions with bounded variation in 1D is given by

BV(Ω) :=
{
f : Ω −→ R : ‖f‖L1(Ω), |f |BV(Ω) <∞

}
.

For a function of multiple variables u : U −→ R, U ⊂ Rn open, we define the

variation as in [28, Sec. 5, p. 166] by

|u|BV(U) := sup

{∫
U
u divϕdx : ϕ ∈ C1

c (U,Rn), |ϕ| ≤ 1

}
.

The space of functions with bounded variation is then defined by

BV(U) :=
{
u ∈ L1(U) : |u|BV(U) <∞

}
.
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Remark C.1. In [28, Sec. 5.10, Thm. 1, p. 217], it is shown that for n = 1 both

definitions of |f |BV(Ω) are compatible.

By [28, Section 5.5, p. 185] the variation of u can also be written in terms of the

level set Et := {x ∈ U : u(x) > t} of u, i.e.

|u|BV(U) =

∫ ∞
−∞
‖∂Et‖(U) dt, (C.1)

where ‖∂Et‖(U) is the perimeter of Et in U , cf. [28, Sec. 5, p. 169].

Example C.2. Let U = U1 ∪ U2 be a disjoint partition and u(x) = αi for x ∈ Ui.
Then, by (C.1), we have |u|BV(U) = λn−1(∂U1 \ ∂U) · |α1 − α2|.

Define for k ∈ 1
2N0

Sk =

Z, k /∈ N0 ,

1
2 + Z, k ∈ N0 ,

and consider a grid of staggered diamonds Dk
n ⊂ Q, (k, n) ∈ 1

2N0 × Sk, with

Dk
n := conv

(
(nh, k4t)±

{
(h/2, 0), (0,4t/2)

})
⊂ Ω× (0, T ) .

Here, 4t = h/c for the speed of sound c > 0. A piece-wise constant weak solution

(p, q) of the acoustic wave equation on the grid of these diamonds fulfills

pkn =
1

2

(
p
k−1/2
n−1/2 + q

k−1/2
n−1/2 + p

k−1/2
n+1/2 − q

k−1/2
n+1/2

)
,

qkn =
1

2

(
p
k−1/2
n−1/2 + q

k−1/2
n−1/2 − p

k−1/2
n+1/2 + q

k−1/2
n+1/2

)
,

(C.2)

for k ∈ 1
2N, n ∈ Sk, see figure C.1 and figure C.2 for illustrations and exam-

ple 3.6 for the idea of proof that his yields indeed a weak solution.

x

t

Figure C.1: Space-time plot of an ultra-weak solution that is piece-wise constant on the a diamond

grid. The initial value is
(
p0, q0

)
=
(
1(0.2,0.4), 0

)

Lemma C.3. We have for k ∈ 1
2N, n ∈ Sk

pkn =
1

2

(
p0
n−k + q0

n−k + p0
n+k − q0

n+k

)
,

qkn =
1

2

(
p0
n−k + q0

n−k − p0
n+k + q0

n+k

)
.
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CHAPTER C. An L1-setting in 1D

t

n

n-½

n+½

k+½k

x
left

right

next

Figure C.2: Illustration of (C.2).

Proof. We only consider the p-component since the proof for q works analogously.

We proof by induction that for m ∈ N, m ≤ 2k, it holds

pkn =
1

2

(
p
k−m/2
n−m/2 + q

k−m/2
n−m/2 + p

k−m/2
n+m/2 − q

k−m/2
n+m/2

)
. (C.3)

For m = 1, (C.3) states the result from the weak formulation. Assuming that (C.3)

is fulfilled for m ∈ N, m < 2k, we obtain

pkn =
1

2

(
p
k−m/2
n−m/2 + q

k−m/2
n−m/2 + p

k−m/2
n+m/2 − q

k−m/2
n+m/2

)
=

1

4

(
p
k−(m+1)/2
n−(m+1)/2 + q

k−(m+1)/2
n−(m+1)/2 + p

k−(m+1)/2
n−(m−1)/2 − q

k−(m+1)/2
n−(m−1)/2

+ p
k−(m+1)/2
n−(m+1)/2 + q

k−(m+1)/2
n−(m+1)/2 − p

k−(m+1)/2
n−(m−1)/2 + q

k−(m+1)/2
n−(m−1)/2

+ p
k−(m+1)/2
n+(m−1)/2 + q

k−(m+1)/2
n+(m−1)/2 + p

k−(m+1)/2
n+(m+1)/2 − q

k−(m+1)/2
n+(m+1)/2

− pk−(m+1)/2
n+(m−1)/2 − q

k−(m+1)/2
n+(m−1)/2 + p

k−(m+1)/2
n+(m+1)/2 − q

k−(m+1)/2
n+(m+1)/2

)
=

1

2

(
p
k−(m+1)/2
n−(m+1)/2 + q

k−(m+1)/2
n−(m+1)/2 + p

k−(m+1)/2
n+(m+1)/2 − q

k−(m+1)/2
n+(m+1)/2

)
.

Now, inserting m = 2k yields the assertion.

Lemma C.4. For k ∈ 1
2N0 it holds

‖pk‖L1(Ω), ‖qk‖L1(Ω) ≤ ‖(p0, q0)‖L1(Ω),

|pk|BV(Ω), |qk|BV(Ω) ≤
∣∣(p0, q0)

∣∣
BV(Ω)

.

Proof. By Lemma C.3 we obtain

‖pk‖L1(Ω) =
∑
n∈Sk

h · |pkn| =
∑
n∈Sk

h

2
·
∣∣p0
n−k + q0

n−k + p0
n+k − q0

n+k

∣∣
≤ h

2

∑
n∈Sk

|p0
n|+

∑
n∈Sk

|q0
n|+

∑
n∈Sk

|p0
n|+

∑
n∈Sk

|q0
n|


= h ·

∑
n∈S0

|p0
n|+

∑
n∈S0

|q0
n|

 = ‖p0‖L1(Ω) + ‖q0‖L1(Ω),

‖qk‖L1(Ω) ≤ ‖p0‖L1(Ω) + ‖q0‖L1(Ω),
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proving the first assertion.

With [[η]]kn := ηkn+1/2 − ηkn−1/2, η = p, q and n ∈ Sk+1/2, we obtain for n ∈ Sk+1/2

as a direct consequence of Lemma C.3

[[p]]kn =
1

2

(
[[p]]0n−k + [[q]]0n−k + [[p]]0n+k − [[q]]0n+k

)
,

[[q]]kn =
1

2

(
[[p]]0n−k + [[q]]0n−k − [[p]]0n+k−1 + [[q]]0n+k−1

)
.

yielding to

|pk|BV(Ω) =
∑

n∈Sk+1/2

∣∣[[p]]kn∣∣ =
∑

n∈Sk+1/2

1

2

∣∣∣[[p]]0n−k + [[q]]0n−k + [[p]]0n+k − [[q]]0n+k

∣∣∣
≤
∑
n∈S0

∣∣[[p]]0n∣∣+
∑
n∈S0

∣∣[[q]]0n∣∣ =
(
|p0|BV(Ω) + |q0|BV(Ω)

)
= |(p0, q0)|BV(Ω).

The proof for |qk|BV(Ω) ≤ |(p0, q0)|BV(Ω) is done using the same argument.

Lemma C.5. With 4t = h
c , T = K4t, K ∈ 1

2N0 it holds

‖p‖L1(Ω×(0,T )), ‖q‖L1(Ω×(0,T )) ≤ T · ‖(p0, q0)‖L1(Ω)

Proof. Set Ik :=
(
k−1

2 4t, k24t
)
, Ωn := h ·

(
n− 1

2 , n+ 1
2

)
for k ∈ N, n ∈ 1

2Z.

‖p‖L1(Ω×(0,T )) =

∫
Ω×(0,K·4t)

|p(x, t)| =
2K∑
k=1

∫
Ω×Ik

|p(x, t)|

=

2K∑
k=1

( ∑
n∈S(k−1)/2

∫
Ωn×Ik

|p(k−1)/2(x, t)|+
∑

n∈Sk/2

∫
Ωn×Ik

|pk/2(x, t)|
)

=
4t
4

2K∑
k=1

( ∑
n∈S(k−1)/2

h · |p(k−1)/2
n |+

∑
n∈Sk/2

h · |pk/2n |
)

=
4t
4

2K∑
k=1

(
‖p(k−1)/2‖L1(Ω) + ‖pk/2‖L1(Ω)

)
≤ 4t

4
· 2K · 2‖(p0, q0)‖L1(Ω) = T · ‖(p0, q0)‖L1(Ω).

The estimate for q is obtained in the same way.

Lemma C.6. With 4t = h
c , T = K4t, K ∈ 1

2N0 it holds

|p|BV(Ω×(0,T )), |q|BV(Ω×(0,T )) ≤ 2T
√

1 + c2‖(p0, q0)‖BV(Ω)
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Proof. Let k ∈ 1
2N, n ∈ Sk. Then by Lemma C.3∣∣∣pk−1/2
n−1/2 − p

k
n

∣∣∣ =

∣∣∣∣pk−1/2
n−1/2 −

1

2

(
p
k−1/2
n−1/2 + p

k−1/2
n+1/2 − q

k−1/2
n+1/2

)∣∣∣∣
=

1

2

∣∣∣pk−1/2
n−1/2 − p

k−1/2
n+1/2 + q

k−1/2
n+1/2 − q

k−1/2
n−1/2

∣∣∣
≤ 1

2

(∣∣∣[[p]]k−1/2
n

∣∣∣+
∣∣∣[[q]]k−1/2

n

∣∣∣)
and analogously ∣∣∣pk−1/2

n+1/2 − p
k
n

∣∣∣ ≤ 1

2

(∣∣∣[[p]]k−1/2
n

∣∣∣+
∣∣∣[[q]]k−1/2

n

∣∣∣) .
Setting δ :=

√
h2

4 + 4t2
4 = h

2

√
1 + c−2 yields

|p|BV(Ω×Ik) = δ ·

∑
n∈Sk

∣∣∣pk−1/2
n−1/2 − p

k
n

∣∣∣+
∣∣∣pk−1/2
n+1/2 − p

k
n

∣∣∣


≤ δ ·

∑
n∈Sk

∣∣∣[[p]]k−1/2
n

∣∣∣+
∣∣∣[[q]]k−1/2

n

∣∣∣


= δ ·
(
|pk−1/2|BV(Ω) + |qk−1/2|BV(Ω)

)
.

Thus, by Lemma C.4 we obtain

|p|BV(Ω×Ik) ≤ 2δ ·
(
|p0|BV(Ω) + |q0|BV(Ω)

)
.

Finally, we calculate

|p|BV(Ω×(0,K4t)) =

2K∑
k=1

|p|BV(Ω×Ik) ≤
2K∑
k=1

2δ ·
(
|p0|BV(Ω) + |q0|BV(Ω)

)
=
(
|p0|BV(Ω) + |q0|BV(Ω)

)
· 2Kh

√
1 + c−2

=
(
|p0|BV(Ω) + |q0|BV(Ω)

)
· 2T

√
c2 + 1.

The estimate for q is obtained in the same way.

Theorem C.7. For the piece-wise constant weak solution (p, q) of the acoustic wave

equation with piece-wise constant initial value (p0, q0), we have in Q = Ω× (0, T )

‖(p, q)‖L1(Q) ≤ 2T‖(p0, q0)‖L1(Ω) ,

|(p, q)|BV(Q) ≤ 2T
√

1 + c2|(p0, q0)|BV(Ω) .

Proof. Apply lemma C.6 and lemma C.5.
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Approximation discussion

Consider the L2 projection Π0
h : L1(Ω) −→ ∏

K P0(K). We assume that for there is

a constant C > 0 such that for all u ∈ BV(Ω), we have

|Π0
hu|BV(Ω) ≤ C|u|BV(Ω) . (C.4)

Similar interpolation estimates can be found in [3] and [10].

For (p0, q0) ∈ L1(Ω), we have by Lebesgue’s differentiation theorem and the

theorem of dominated convergence∥∥(p0, q0)−
(
Π0
hp0,Π

0
hq0

)∥∥
L1(Ω)

−→ 0 , h −→ 0 .

Let (ph, qh) ∈ P0(Qh) be the weak solution of the wave equation with initial value(
Π0
hp0,Π

0
hq0

)
obtained by (C.2).

Then, we conclude using theorem C.7 for h, τ > 0

‖(ph, qh)− (pτ , qτ )‖L1(Q) ≤ 2T
∥∥(Π0

hp0,Π
0
hq0

)
−
(
Π0
τp0,Π

0
τq0

)∥∥
L1(Ω)

≤
∥∥(Π0

hp0,Π
0
hq0

)
− (p0, q0)

∥∥
L1(Ω)

+
∥∥(p0, q0)−

(
Π0
τp0,Π

0
τq0

)∥∥
L1(Ω)

Thus, for every null sequence (hn)n ∈ (0,∞)N,
(
(phn , qhn)

)
n
is a Cauchy sequence

having an L1(Q) limit (p, q) ∈ L1(Q).

Applying theorem C.7 again and setting C := 2T
√

1 + c2, we see that (ph, qh)

is bounded in BV(Q) since by (C.4)

|(ph, qh)|BV(Qh) ≤ C
∣∣(Π0

hp0,Π
0
hq0

)∣∣
BV(Ω)

≤ C|(p0, q0)|BV(Ω) .

Using the compact embedding of BV(Q) into L1(Q), see [28, Thm. 4, Sec. 5.2.4,

p. 176], this yields a function (p̃, q̃) ∈ BV(Q) and a subsequence of (ph, qh) converging

to (p̃, q̃) in L1(Q).

This implies (p, q) = (p̃, q̃) ∈ BV(Q), since the whole sequence (ph, qh) converges

to (p, q) in L1(Q).

Outlook

This setting provides a constructive proof that for every initial value in BV(Ω) a

weak solution in BV(Q) exists that is bounded by the norm of the initial value.

In the future, we would like to elaborate a similar setting for 2 or even 3 spatial

dimensions using the same or similar arguments. However, in order to make this

possible, we need a sensible generalization of the BV-space for vector-fields that

does not treat all components separately.
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