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Abstract: For a non-linear anisotropic permanent magnet synchronous machine (PMSM), a prediction model for model
predictive control (MPC) considering effects like cross-coupling and saturation is developed in a straight forward procedure. The
objective of the designed MPC is either tracking of reference currents or torque tracking. Both approaches use the projected fast
gradient method (PFGM) as optimisation algorithm. The latter approach makes look-up-tables for current references obsolete
and additionally minimises winding losses. This two approaches are compared in a simulation study with a state of the art PI
controller.

1 Introduction
The scope of this paper is torque control of anisotropic permanent
magnet synchronous machines (PMSM) in the rotor-oriented
reference frame (dq-frame). The state of the art method for this
task is PI control of the correspondent current components. For
model predictive control (MPC), often many simplifications in the
modelling of the PMSM and the voltage constraints are done,
which deteriorates the performance compared to PI control. In
general, MPC for drives can be classified in continuous control set
(CCS) MPC with modulator and finite control set (FCS) MPC,
which directly controls the hardware switches. FCS is
advantageous, if constant current quality rather than constant
switching frequency is important [1]. An advantage of CCS MPC
is the higher switching frequency with the same sample time due to
the modulator, which is relevant for computational intensive MPC
approaches. In [2], a CCS was used, but saturation effects are
neglected and voltage constraints are simplified. Also [3] utilises a
CCS but does neither consider saturation nor inherently fulfils
constraints, since it uses a closed-form solution rather than online
optimisation. Infinite d- and q-current pairs can generate a specific
torque value as long as the machine is not operating at the voltage
limitation. Most MPC methods get the reference values for the
current controller from a static mapping, transferring a given
torque reference to a current reference in the dq-frame. The
mapping is carefully calculated offline using maximum torque per
ampere (MTPA) and maximum torque per voltage (MTPV)
methods to select loss minimisation for steady state. See e.g. [1, 4]
for a torque control or [5] for a speed control with CCS MPC
approaches. This kind of MPC method will be denoted as i-MPC in
the following. For loss optimised operation of an electrical drive,
all machine and power electronic losses must be considered. The
biggest impacts have the copper losses in the resistance of the
machine windings, so they will be considered here. In general, one
could incorporate any other losses, but the objective function may
not be convex, what is important for the convergence of the
optimisation algorithm. The control objective is stated as a
weighted combination of torque tracking error and winding losses.
Minimising losses as an additional goal in the objective function of
a CCS MPC for PMSM control is done in [6, 7]. However, a
simple linear machine model and simplified voltage constraints are
used. The projected fast gradient method (PFMG) [8] was already
used as online optimisation algorithm within the MPC for drive
applications. This attests PFGM to be capable for real-time
computation. The usage of this method for solving a MPC problem
similar to this approach was presented in [1]. There, the direct
current and the torque of a PMSM were controlled. However, the

components of the flux vector in the dq-frame were used as states
and no losses were considered in the cost function. Also [9] has
shown that MPC with online optimisation with PFGM is capable
for current control of a AC/DC transmitter.

This contribution presents a novel CCS MPC approach, which
uses no reference values for the currents at all, since in the
objective function the torque control error is penalised. The MPC
will decide which combination of d- and q-voltage needs to be set
to reach the control objective formulated in the cost function. This
makes the generation and usage of look-up-tables for the references
obsolete which simplifies and speeds up controller setup.
Furthermore, the MPC allows online adaption of the model to
varying machine parameters, which makes the regeneration of
tables or changing the controller's parameters obsolete. Hence, this
approach requires the losses to be considered in the objective
function to cope with the freedom in choice of the currents in the
dq-frame. The approach uses two dimensional look-up-tables for
mapping fluxes to currents and thus iron saturation and cross-
coupling effects are considered. Hence, the method is well suited
for high performance interior PMSMs with non-linear magnetics.
The new presented approach is also compared to the state of the art
PI approach as well as to an i-MPC with current references.

2 Modelling of the PMSM
Since the MPC utilises a modulator, the complete modelling and
control scheme will be shown in the dq-frame. First, the machine
model from [10] will be presented in Section 2.1 with the
properties mentioned above. In addition, all equations and the
modelling will be shown in normalised variables. Hence, the
system is described as per unit system.

2.1 Machine equations

As motivated before, the non-linear magnetics have to be
considered. Hence, the functions describing the relation between
the magnetic flux and the current

ψd(id, iq), (1a)

ψq(id, iq), (1b)

in the dq-frame have to be known. Typically (see e.g. [10]), they
are considered in the form of look-up-tables depending on the
currents in the dq-frame. Time dependencies of the currents id and
iq, the voltages ud and uq, the electrical angular velocity ωel and the
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fluxes ψd and ψq are suppressed for better readability. This leads to
the voltage equations

ud = rsid + ψ̇d − ωelψq, (2a)

uq = rsiq + ψ̇q − ωelψd, (2b)

describing the dynamics of the PMSM with the normalised stator
resistance rs. To handle the dynamics of the plant, it is assumed
that for every single optimisation step, the electrical angular
velocity ωel is constant. This may be appropriate in many
applications, where the mechanical time constant is much bigger
than the electrical one. The number of pole pairs and the constant
2/3 resulting from the amplitude invariant Park Transformation are
included in the base of the normalisation constant, so the torque
can be calculated as

m = ψdiq − ψqid . (3)

2.2 Affine state space model

Starting from the machine equations, the model is customised to
allow MPC operation. To receive a convex optimisation function,
we deduce an affine state space model. Applying the total
differential to ψd and ψq given by (1) yields

ψ̇d = ∂ψd
∂id

i̇d + ∂ψd
∂iq

i̇q, (4a)

ψ̇q = ∂ψq
∂id

i̇d + ∂ψq
∂iq

i̇q . (4b)

Now (4) and (2) can be combined to a non-linear system of
differential equations. After some calculus, one gets two coupled
differential equations for the d- and q-current. Using the currents as
states xT = id iq ∈ ℝ2, the voltages as inputs
uT = ud uq ∈ ℝ2, and the torque as output m ∈ ℝ, an affine state
space description depending on look-up-tables of the flux is
derived. Using the flux as state would lead to simpler dynamics
(only integrator dynamics) and a time-invariant model [4].
Nevertheless, this is not appropriate for considering the winding
losses in the objective function since they depend on the currents.
We assume that in the neighbourhood of the current state, which is
reachable within the prediction horizon of the MPC, it is sufficient
to use a linearisation of the system dynamics. This can be validated
by simulations as explained in Section 3. Then, a first-order Taylor
approximation for the equations of the derivatives of id and iq can
be done. The system matrices of the affine system description
depend on the current operating point zT = [xT uT] ∈ ℝ4.The
equations for the matrices describing this affine PMSM model are
the basis for the discretisation step. As discussed later, simulations
showed that discretisation with Euler approximation is not
sufficient, which is in accordance with [11, 12]. The system was
discretised with a third-order Picard Iteration [13] to provide
remedy to that problem. This equals a third-order Taylor
approximation of the transition matrix and leads to the affine
discrete state space system

x+ = A(z)x + B(z)u + G(z) (5a)

m = C(z)x + F(z) . (5b)

The equations for the matrix elements are rather complex but can
be determined as explicit equations in advance. Online they are
evaluated with the current operating point. From now on, the state
dependency of the matrices will be left out for better readability.

2.3 MPC design

Getting a torque set point and the measurement of the currents in
the dq-frame and the angular frequency ωel, the MPC will provide

a voltage vector in the dq-frame. In the following, the MPC
controller synthesis is explained in detail, but first the model
presented in the former chapter is included in the objective
function of the MPC.

2.3.1 Model adaption for MPC: First, the model from (5) is
expanded over the prediction horizon np. This method is known as
stacking [8]. Therefore, the new vectors
xs(k) ∈ ℝnp × 2, us(k) ∈ ℝnp × 2 and ms(k) ∈ ℝnp encapsulate the
discrete time values as shown for the states:

xs(k)T = [x(k)⋯x(k + np − 1)] . (6)

So far, the dependencies from instant of time k were omitted, but to
make things clear they are used temporarily now. From now on, all
variables indexed with an s are determined by the above scheme.
This leads to a new stacked model

xs(k + 1) = Asx(k) + Bsus(k) + Gs (7a)

ms(k) = Csxs(k) + Fs . (7b)

Note that in (7a), x(k) is the current state rather than a stacked
variable. The matrices are calculated by repeatedly applying (5)
over the prediction horizon np.

2.3.2 Optimisation with constraints: First and most important,
we want the torque m of the PMSM to track the reference m^ .
Hence, in the objective function, it is natural to penalise the control
deviation Δm = m − m^ . This is different to i-MPC, which will
penalise Δx = x − x^ .The subsidiary control objective for the first
approach is to minimise the function P(x) = xT·Ix, where I is the
identity matrix, hence it is already in quadratic form, which is
standard for the cost function in MPC. This represents the winding
losses. The winding resistance has not to be taken into account,
since in the objective function the losses will be multiplied by a
weighting factor anyway. The stacked variables can be used to
formulate the objective functions in a single matrix equation

J1(k, xs(k), ms(k), m^
s(k)) = ∥ Δms(k) ∥2

2 + λP(xs(k)) . (8)

The weighting factor λ is introduced to adjust the dynamic
behaviour. For comparison, also an i-MPC is implemented using
the objective function

J2(k, xs(k), x^s(k)) = ∥ Δxs(k) ∥2
2 . (9)

From now on, the time step dependency will be omitted again for
better readability. Using the stacked model (7), (8) and (9) can be
expressed solely depending on the voltage vector us, since the
current state and the stacked reference are constant during an
optimisation cycle. This yields in

Ji(us) = us
THius + hi

Tus, i ∈ {1, 2} (10)

Note that here the matrices Hi and hi depend on the operating point
z of the previous iterate k − 1 and the stacked reference. Constant
terms are omitted since they do not affect the optimisation result.
This procedure is known as substitution or condensing [8], which is
a crucial step in modifying the objective function in order to use
projective algorithms like the PFGM. Due to thermal constraints, it
is desirable to constraint the currents i.e. the states to a maximum
rating. The substitution approach comes with the drawback that no
hard state constraints are possible, since the objective does not
depend on xs anymore. Since hard state constraints are not
desirable anyway – because of feasibility problems [8] – this may
not be a disadvantage. By accepting small and short violations of
the current limits during transients and the assumption on steady
feasible references, we drop the state constraint in accordance with
[1]. However, maximum current could be penalised by soft
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constraints also transformed to the voltage space, which will be
ellipsoids in each subspace of one prediction step. The voltage
constraint of a standard two-level three-phase voltage source
inverter (VSI) in the voltage plane is a hexagon in the dq-frame
rotating with ωel. Hence, the orientation depends on the rotor angle
θ. It will be described by the constraint u ∈ U(θ) . Us(θs) is the
expansion of U(θ) over the prediction horizon using θs. The
resulting optimisation problem

us
∗ = arg min

us ∈ Us(θs)
(Ji(us)) (11)

with the shown objectives is solved by the optimisation algorithm.
The PFGM algorithm in Fig. 1 can now be used to efficiently solve
(11) for both objectives J1 and J2. 

It can be seen as a modified gradient search for the minimum of
the functions Ji. In the PFGM algorithm (Fig. 1), the index s of the
stacked voltage vector us is omitted to give space for the iteration
index k. The parameter µ is the convexity parameter of Ji and L is
the Lipschitz constant of ∇Ji. Whereas µ and L for a quadratic
function can be defined as the smallest and the greatest eigenvalue
of the Hessian, respectively [8]. Since the objectives Ji in form of
(10) are quadratic functions µ and L are determined by calculating

the eigenvalue of 2Hi. Since Hi is changing during operation, µ and
L are determined online. Also indicated in the PFGM algorithm
(Fig. 1) is the utilisation of the optimisation result from the
previous optimisation result as starting point u1. This is known as
warmstarting [8]. Two termination criteria are implemented. First,
the optimisation is stopped, if the Euclidean norm of the deviation
of the voltage vector from one step to another is smaller than the
design parameter ϵ. Second, to speed up the computation, the
iteration also terminates if a maximum number of Kmax iterations is
reached. The latter criterion is also called early termination. It leads
to suboptimal optimisation results. Together with the warmstarting
in steady states, very precise results are reached.

The projection operator π(·) in the PFGM algorithm (Fig. 1) is

π(u) =
arg min

w ∈ Us(θs)
∥ u − w ∥, u ∉ Us(θs)

u, u ∈ Us(θs)
. (12)

This projection on the symmetrical polytopic constraint set Us(θs)
can be calculated explicitly without further optimisation. This is
the reason for the efficient deployment of the PFGM in the MPC.
The projection ensures that every iteration k ends with feasible uk,
that lies within the voltage constraint of the VSI.

2.3.3 Overall scheme: In Fig. 2, an overview of the resulting
controller structure is given. Applications may not provide
knowledge of future reference values, hence m^

s is solely the np
times repetition of m^  and is used for the calculation of Δms. The
same holds for x^s if i-MPC is used. In the right Prediction block,
the calculation of θs is straight forward, since the sample time and
ωel are known and assumed to be constant. The steps to calculate
the matrices of the operating point-dependent affine state space
model from Section 2.2 are encapsulated in the block Matrix
Generation. In this block, also a prediction of the state one sample
time step ahead x~ is calculated with the generated model to
compensate the delay time of one sample due to the computation.
The procedure presented in Section 2.3.2 is contained in the blocks
Objective Function, Constraint Generation, and PFGM. In the
Projection block, the function π(us) from (12) is implemented.
Note that as typical for MPC, the receding horizon strategy is
applied. Hence, the PFGM block in Fig. 2 only applies the first
entry of us

∗ to the PMSM and the others are discarded. 

3 Simulation study
The PMSM model used for the simulation is experimentally
validated, it was also used in [10]. This machine model is
implemented in MATLAB Simscape and simulated with a variable-
step solver using a relative tolerance of 0.2%. The MPC is
implemented in MATLAB Simulink and runs with a constant
sampling time of 125 µs which corresponds to a switching
frequency of the VSI of 8 kHz. The VSI is assumed to be a two-
level inverter with a DC link voltage of 400 V and is modelled as
an ideal voltage source. All simulations are done in the dq-frame,
thus the set voltage from the controller is directly applied as input
to the machine model. The PI controller with a static mapping from
reference torque to reference currents (classical MTPA and MTPV
strategy) used for comparison is the same as in [14].

The model of the PMSM, which is designed for electric
vehicles, has parameters as seen in Table 1. The machine has
interior permanent magnets and hence shows a reluctance torque.
The flux depends on currents as shown in Figs. 3 and 4. Therefore,
cross-coupling and saturation effects are present. The very same
tables are used in (1) for the MPC model generation. 

3.1 Simulation results

Simulations shown here are carried out at constant angular velocity
of the drive i.e. 5000 1/min. This imitates an experimental setup
with a much stronger machine as load. Before the controller is
tested, simulations are used to verify the affine state space model,

Fig. 1  Projected fast gradient method (PFGM) [8]
 

Fig. 2  Simulation setup and controller overview
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which will be used for the MPC. As mentioned before, the
discretisation with Euler approximation is not sufficient. As a
result, the simulations showed that a third-order Picard iteration is
a good choice. At lower orders, the model becomes instable at
higher speed but a further increase does not lead to a significant
increase in model accuracy.

The receding linearisation technique proposed in [15] can only
marginally improve the model accuracy. It uses multiple operating
points over the prediction horizon determined by applying the
predicted voltage vector from the optimisation of the previous
instant of time to (7). This shows that the linearisation approach
with a constant operating point during one prediction horizon is
well suited for the matter in hand. The receding linearisation
technique was also used for model generation during the presented
controller simulations.

Fig. 5 shows the comparison of the response to a torque
reference step of three controllers. The presented i-MPC is shown,
using the same look-up-tables as the PI controller for the mapping

from torque reference to current references. It can be seen that the
proposed MPC reaches very similar performance compared to the
i-MPC. Both of them show superior performance compared to the
PI controller. The current plane in the dq-frame in Fig. 6 shows
also close relation of the MPC approaches and their difference to
PI control. Note that the maximum current circle (grey) has a
smaller radius than one, since for the basis of the normalisation is
chosen as the maximum current of the simulation model. The MPC
spreads in transients the voltage vector over d- and q-axes
differently compared to PI control. This results in faster q-current
dynamics but slower d-current dynamics in the very beginning,
which can also be seen in Fig. 7. This setup has the aim to reach
short computation times while preserving good performance. Even
in the case of early termination after Kmax = 6 iterations, the PFGM
algorithm leads to a good control performance. The termination
bound can be chosen to ɛ = 1.9 × 10−3, which corresponds to 0.5 V.
To reach minimal computation times, the prediction horizon is
determined of course to a minimum, which reaches still good
performance. For the shown simulation, it was set to np = 3. In
general, the choice of the loss factor λ affects the dynamics. Higher
values will increase the importance of the losses, which will slow
down the dynamic behaviour. For the proposed MPC, it has an
additional effect. In Fig. 7, it can also be seen that the currents
oscillate much more compared to i-MPC approach. However, they
oscillate exactly along the torque hyperbola, which can be seen in
Fig. 6. This leads to the fact that the torque settles as fast as the i-
MPC, while the currents still move towards their steady state. The
oscillation will settle much quicker as λ is increased, but this again
will slow down dynamics. For the shown simulations, a good trade
off was found for λ = 5 × 10−3. The computation time of the
optimisation with a desktop PC (Intel Core i5 CPU @ 2.5 GHz and
8 GB RAM @ 800 MHz) is within 20 ms. 

4 Conclusions
The proposed MPC method that directly controls the torque makes
the usage of look-up-tables for current references obsolete.
Therefore, this novel method follows first and foremost the
minimisation of the torque tracking error during a transient. When
the torque tracking error is settled at the end of the transient, the

Table 1 Machine properties
nom. power Pn 90.32 kW
nom. speed Ωn 5000 1/min
max. torque at Ωn Mmax,N 170 Nm
number of pole pairs p 3
resistance Rs 0.0284 Ω
PM flux linkage ΨPM 0.1019 Wb

 

Fig. 3  Look-up-table used for Ψd
 

Fig. 4  Look-up-table used for Ψq
 

Fig. 5  Torque reference step to maximum torque
 

Fig. 6  Current trajectory for reference step in Fig. 5
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loss minimisation increases its influence and hence the currents
ensue their winding loss optimal steady state. However, compared
to the presented i-MPC approach, the tuning is more complex since
additionally to the parameters of PFGM the loss weighting factor
has to be chosen carefully to restrict the oscillations in the currents.
Both MPC approaches show good performance even at steps to
maximum torque compared to state of the art PI control. This
confirms that the presented linearisation and discretisation
approach is well suited for the generation of prediction models for
MPC controlling anisotropic PMSM in saturation. The PI
controller could also be tuned to be faster, but this will result in
overshoots, which is not observed for the MPC approaches.
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