
The State of Software for Evolutionary Biology

Diego Darriba,1 Tom�a�s Flouri,1 and Alexandros Stamatakis*,1,2

1Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
2Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany

*Corresponding author: E-mail: alexandros.stamatakis@h-its.org.

Associate editor: Keith Crandall

Abstract

With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational
science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools
in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also
with respect to software complexity. A topic that has received little attention is the software engineering quality of widely
used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential
negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive
tools mainly written in C/Cþþ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of
evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering
quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of
existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from
scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be
addressed for improving software engineering quality as well as ensuring support for developing new and maintaining
existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues
and to emphasize the substantial lack of funding for scientific software development.

Key words: software engineering quality, scientific computing, data analysis, numerical analysis, policy issues,
evolutionary inference software.

Introduction
With Next Generation Sequencing data (NGS) coming off age
and being routinely used, it cannot be disputed that evolu-
tionary biology is becoming an increasingly quantitative and
computational discipline (see Barone et al. 2017). Thus, quan-
titative as well as computational skills are increasingly foun-
dational for the discipline.

The field is also transforming into a computational
science as it increasingly relies on cluster computers and
supercomputers (e.g., Misof et al. 2014 or Jarvis et al. 2014).
This is a transition other disciplines such as astrophysics or
fluid dynamics underwent decades ago. Our perception is
that there exists a lack of funding for accomplishing this
transition.

The common denominator of the above trends is that
researchers have to rely on a growing number of increasingly
complex core software components. By software complexity
we refer to the fact that all widely used tools have grown
considerably, in terms of the number of features as well as
lines of code (LoC). For instance, MrBayes (Ronquist et al.
2012) had �49,000 LoC in 2005 and �94,000 in 2014.
Phylogenetic inference software now supports a substantially
larger set of models (e.g., substitution models), hardware plat-
forms (e.g., GPUs, clusters, etc.), and types of parallelism (e.g.,
fine-grain, coarse-grain, hybrid approaches).

In addition, software complexity can also be quantified by
means of the core component count in current analysis pipe-
lines. For instance, in the “Sanger days,” the analysis pipeline
was rather straightforward, once the sequences were avail-
able. For a phylogenetic study it consisted of the following
steps: align! infer tree! visualize tree. For NGS data and
huge phylogenomic data sets, such as the insect transcrip-
tome (Misof et al. 2014) or bird genome evolution (Jarvis et al.
2014) projects, the data analysis pipelines have become sub-
stantially longer and more complex. They also require user
expertise in an increasing number of Bioinformatics areas (e.g.,
orthology assignment, read assembly, data set assembly, par-
titioning of data sets, divergence time estimates, etc.). In ad-
dition, these pipelines require a plethora of helper scripts to
transform formats, partially automate the workflows, and to
connect the components. Helper scripts are typically written
in languages such as perl, a language that is highly susceptible
to coding errors due to lack of typing, or python that uses
dynamic typing and can thus not be subjected to a compre-
hensive type-check either. The term “typing” refers to the
data types of variables (e.g., integer or floating point) that
are passed to and returned by functions. Without strict typ-
ing, a function expecting an integer argument can be invoked
with a floating point value as an argument and exhibit
undefined or unexpected behavior. Thus, programming

R
eview

� The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
Mol. Biol. Evol. 35(5):1037–1046 doi:10.1093/molbev/msy014 Advance Access publication January 29, 2018 1037Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033

by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

Deleted Text: (
Deleted Text:)
Deleted Text: (
Deleted Text:)
Deleted Text:)
Deleted Text: approximately
Deleted Text:
Deleted Text: about
Deleted Text:
Deleted Text: `Sanger days',
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: `typing'

languages with stricter type control can reduce the potential
for errors.

Our main concern is that, if each code (henceforth, we use
code as synonym for software) or script component i used in
such a pipeline has a probability of being “buggy” Pi, the
probability that there is a bug in the pipeline increases dra-
matically with the number of components. Here, we refer to
bugs that do not lead to crashes which are easily detected and
fixed, but to bugs that yield incorrect results. In ExaML
(Kozlov et al. 2015), for instance, we detected two major
bugs in branch length scaling and bootstrap replicate gener-
ation under specific settings while conducting large-scale
inferences on empirical data. Thus, if detected too late, errors,
and particularly those in early pipeline stages (e.g., NGS
assembly) for large-scale data analysis projects can have a
dramatic impact on downstream analyses such as phylo-
genetic inferences or dating as they will all have to be
repeated. Wilson et al. (2017) provide valuable general
recommendations on good practices in scientific com-
puting and for designing as well as managing scientific
workflows. Given that our field needs to compete with
established computational sciences for scarce supercom-
puting or cloud resources, repeating large phylogenomic
analyses can result in a substantial waste of computa-
tional effort. Current large-scale phylogenomic analysis
projects can require between 10 and 70 million processor
hours on supercomputers.

Our goals in this paper are to (1) assess the software engi-
neering quality of current tools irrespective of their accuracy or
algorithmic quality and (2) to propose potential solutions, in-
cluding software analysis tools, for improving the quality of
evolutionary biology software. We wish to emphasize that
the quality measures we deploy only represent one possible
option for assessing software engineering quality. Also, poor
software engineering quality does not automatically induce
that software is incorrect, yet a significant link does exist (e.g.,
Briand et al. 1999, 2000; Casalnuovo et al. 2015). Note that, our
criteria for software engineering quality differ from the afore-
mentioned papers. They have, however, in part been motivated
by these.

There is little related work on the topic of software engineer-
ing quality in Bioinformatics. Kumar and Dudley (2007) discuss
Bioinformatics software engineering quality in terms of usability
and technical requirements from the perspective of the end
user. Rother et al. (2012) describe a software engineering tool-
box for developing Bioinformatics software that reviews devel-
opment practices in the author’s own codes and projects. While
situated at a higher level of abstraction than our work, the
strategies proposed in this paper can be useful for planning
and managing new software projects. Leprevost et al. (2014)
also discuss some best practices for Bioinformatics software
development, but in a rather general setting, without providing
specific suggestions on how to improve quality. Wilson et al.
(2014) provide a list of generic best practices for scientific soft-
ware development and list examples of several high-profile pa-
per retractions due to erroneous software.

With respect to software verification and testing,
Giannoulatou et al. (2014) describe the application of the

so-called metamorphic testing approach (Chen et al. 1998)
to the BWA, Bowtie, and Bowtie2 short read mappers. See
also Chen et al. (2009) for another application of metamor-
phic testing to Bioinformatics software. Metamorphic testing
can only be applied either to a single tool, or to a set of tools
that serve the same purpose. Finally, Kamali et al. (2015)
provide an overview of different testing techniques and dis-
cuss their applicability to Bioinformatics software. We delib-
erately do not focus on assessing result quality as this
substantially limits the scope of tools we can assess (e.g.,
only phylogenetics tools) and the majority of the tools we
selected is well-tested. However, tests exclusively relying on
simulated data need to be treated with caution as there is no
guarantee that data simulation tools are implemented
correctly.

For assessing software engineering quality we downloaded
and scrutinized—using a common set of criteria—16 fre-
quently used and cited codes that often form the basis of
data analyses in evolutionary biology. With the exception of
BEAST (written in JAVA) and despite the emergence of lan-
guages such as R we focus on software written in C/Cþþ as
this is the predominant programming language of the highly
popular and compute-intensive tools we tested. We mainly
focus on compute-intensive tools because errors in these tools
imply a substantial waste of computational resources (e.g.,
CPU time grants) if analyses need to be repeated. For compar-
ison, we also analyzed an Astrophysics code developed at our
research institute because Astrophysics is a more mature com-
putational science discipline. On the basis of the software
analysis results, we provide our personal and subjective list
of best practices and discuss some science policy issues that
need to be addressed for improving software engineering qual-
ity and for better supporting scientific software development.

It is absolutely not our intention to criticize any of the
authors and developers of the codes we assessed as they
have all made major contributions to the field. It is quite
typical that the careers of principal investigators in
Bioinformatics are based on one or more widely used tools
they have developed. As they become more senior and man-
age larger research groups, there is less time available to main-
tain and occasionally redesign the tools, despite the fact that
they know how to properly write software. In addition, they
are mostly reluctant to delegate this task to graduate students
or postdoctoral researchers because they should work on
more interesting projects instead of merely re-engineering
widely used software.

Given that most software for evolutionary biology is dis-
tributed under the GNU GPL license, users and critics should
keep the following quote from the GNU GPL license in mind:
“The copyright holders and/or other parties provide the pro-
gram ‘as is’ without warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the program is
with you. Should the program prove defective, you assume
the cost of all necessary servicing, repair, or correction.”

Thus, our goal is to emphasize that users should be aware
of the fact that software is imperfect and take software

Darriba et al. . doi:10.1093/molbev/msy014 MBE

1038Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

Deleted Text: `buggy'
Deleted Text: to
Deleted Text: i
Deleted Text: ii
Deleted Text: (
Deleted Text:)
Deleted Text:)
Deleted Text: –
Deleted Text: –
Deleted Text: ++ 
Deleted Text: Based on
Deleted Text: -
Deleted Text: `as is'

engineering quality into account when selecting tools for data
analyses. Furthermore, because of the increasing reliance on
software in current day biology, there exists a substantial
funding, sustainability, and maintenance issue that needs to
be addressed.

Software and Analysis Methods

Software
We selected highly cited open-source tools from the following
areas: phylogenetic inference, population genetics, multiple
sequence alignment, divergence time estimation, multi-
species coalescence, sequence simulation, and de novo as-
sembly. Note that tools from all of these areas can be used
in evolutionary biology data analysis pipelines. We did not
modify our RAxML source code such that it compares favor-
ably to the other tools.

Table 1 lists the codes we assessed in each domain.

Code Analysis Criteria
Since we analyzed a comparatively large number of codes, we
had to deploy rather simple and straightforward techniques
to analyze them. This approach is generally known as the
empirical software engineering and metrics approach. There
exist dedicated conferences on this topic in the broader area
of software engineering (e.g., http://www.esem-conferences.
org/; last accessed February 11, 2018). Researchers in this field
also increasingly browse open-source code on github to ob-
tain quantitative data about software. Alternatively, we could
have analyzed one or two tools in greater depth, but our goal
was to obtain a general overview of software engineering
quality in the field.

Initially, we compiled all codes using the standard GNU
compilers (gcc/gþþ) as well as the clang compiler by Apple.
We enabled all reasonable warning flags in the two C/Cþþ
compilers as well as analogous flags in JAVA for analyzing
BEAST (see supplementary material, Supplementary
Material online for details). We subjectively classified GNU

compiler warnings into major warnings that are potentially
dangerous and minor warnings that are less dangerous, but
should be fixed nonetheless (see supplementary material,
Supplementary Material online for our classification criteria).
We count and classify compiler warnings, because we assume
that the more warnings a code produces, the more likely it is
to behave in an unexpected way. However, this does not
automatically induce that the results computed by these
codes are incorrect, since a code that produces no warnings
can yield incorrect results.

In addition, we executed the codes using valgrind (http://
valgrind.org/; last accessed February 11, 2018), a tool that
detects potential memory leaks, illegal memory accesses,
lost memory blocks, etc. We classified results into three cat-
egories: “clean” when running the codes with valgrind did not
generate any warnings, “invalid” for read or write accesses at
an invalid RAM (Random Access Memory) address, or “leaks”
when allocated memory was not properly freed again.
Memory errors or incorrect usage of memory serves as an
indicator for the probability of crashes or unspecified/unde-
fined behavior, when accessing values at invalid or uninitial-
ized RAM locations.

Thereafter, we used the grep text searching tool to identify
a typical programming error associated with the C malloc()
routine that is used to allocate a memory block of n bytes in
RAM. Frequently, this function is invoked with integer data
types that are too small for representing n to allocate large
chunks of memory. In our analyses, we distinguish between
three malloc() usage errors: “NoCast” (i.e., missing typecast)
and “MisCast” (misplaced cast) and “WrongCast” (incorrect
cast). For the new[] operator in Cþþ we use an analogous
classification. Examples for these error types (e.g., in MrBayes
and ms) are provided in the supplementary material,
Supplementary Material online. While for smaller data sets
this incorrect usage will have no effect, programs are likely to
fail when deployed for analyzing NGS data sets on powerful
multi-core servers which are nowadays often equipped with
128 or 256GB RAM. In fact, we have experienced such crashes

Table 1. Evaluated Software Packages per Application Domain Including Version Numbers.

Domain Software Version Number

Phylogenetics PAML (Yang 2007) 4.8
PHYML (Guindon et al. 2010) 20141009
MrBayes (Ronquist et al. 2012) 3.2.4-svn(r926)
RAxML (Stamatakis 2014) 8.2.11

Population genetics MS (Hudson 2002) Sep 8, 2014
SweepFinder (Nielsen et al. 2005) Feb 23, 2015

Seq. alignment MAFFT (Katoh and Standley 2013) 7.205
T-Coffee (Notredame et al. 2000) 20141026_23: 18
Prank (Löytynoja and Goldman 2005) 140603

Div. times Beast (Drummond and Rambaut 2007) 1.8.0
FDPPDIV (Heath et al. 2014) 1.3

Multi.-Sp. coalescence BP&P (Yang and Rannala 2010) 3.0
Seq. simulation Seq-Gen (Rambaut and Grass 1997) 1.3.3

INDELible (Fletcher and Yang 2009) 1.0.3
De novo assembly SOAP (Li et al. 2009) r240

Abyss (Simpson et al. 2009) 1.5.2
Astrophysics Gadget-2 (Springel 2005) 2.0.7

NOTE.—As MS and SweepFinder do not have version numbers we show the download dates.

Evolutionary Biology Software Quality . doi:10.1093/molbev/msy014 MBE

1039Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

Deleted Text: &
http://www.esem-conferences.org/
http://www.esem-conferences.org/
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
http://valgrind.org/
http://valgrind.org/
Deleted Text: `clean'
Deleted Text: `invalid'
Deleted Text: `leaks'
Deleted Text: `NoCast'
Deleted Text: `MisCast'
Deleted Text: `WrongCast'
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data

with our own ExaML (Kozlov et al. 2015) code as well as with
MrBayes.

Another code feature that we consider as being important
is the use of so-called assertions (e.g., the assert() function in
C, see supplementary material, Supplementary Material on-
line for a classic assert() example). We assessed the usage of
assertions by calculating the number of assertions per 1,000
LoC. Assertions contain logical clauses about variables that
must be true when the program conducts an assertion call,
otherwise the program fails. The use of assertions is associated
with code correctness. In theoretical computer science, there
exists a formal framework, the so-called Hoare logic (Hoare
1969), for proving program correctness. It works by inserting
assertions (Boolean statements about variable states) at ap-
propriate positions in the code and proving that they will
never fail. While proving the correctness of the complex sci-
entific codes we scrutinize here using Hoare logic is not fea-
sible, the frequent use of assertions in a program is an
indicator of code quality. Assertions are also helpful for doc-
umenting and debugging code as the part that fails can easily
be identified. A recent software engineering study using a
large collection of C/Cþþ codes from github suggests that
functions with assertions do have significantly fewer defects in
collaborative development projects (Casalnuovo et al. 2015)
which are also common in Bioinformatics.

To obtain a rough estimate of code complexity, we also
counted the LoC in each of the programs using the cloc
(https://github.com/AlDanial/cloc; last accessed February
11, 2018) command that excludes comments and empty
lines. For some programs we also generated histograms that
illustrate code growth over the last years (see supplementary
material, Supplementary Material online). The LoC metric
does, of course, not directly reflect code complexity, but
can serve as a rough proxy.

A more elaborate criterion for assessing code complexity is
the degree of code duplication, that is, how many copies of
identical code are present in the source files. In general, code
duplication represents a bad programming practice. If a bug is
detected and fixed in one copy of the duplicated code, it
needs to be fixed in all duplicates. Mostly, these duplicates
are not properly documented and potentially difficult to find.
Thus, software with a high degree of code duplication is more
difficult to maintain and thus also more likely to contain

errors. For instance, a large-scale software engineering study
(Juergens et al. 2009) of commercial and open source software
found that (1) inconsistent changes to code clones are very
frequent and (2) induce a significant number of faults.

Overall, the above criteria have been selected (1) because
they are easy to apply to a large number of diverse codes and
because (2) there exists a link (e.g., Briand et al. 1999, 2000;
Casalnuovo et al. 2015; Juergens et al. 2009) between quality
and the probability of erroneous program behavior, that is,
crashes or calculation of incorrect results.

There also exist more elaborate methods for analyzing and
improving code quality such as the pmccabe tool, for in-
stance, that assesses function complexity.

Software Analysis Results
A detailed analysis of all codes, including source code exam-
ples where appropriate, is provided in the supplementary
material, Supplementary Material online.

We summarize the results from our standard tests in ta-
ble 2 for individual PAML components and in table 3 for all
other programs including the PAML core code. The results
obtained by the Simian tool (http://www.harukizaemon.com/
simian/; last accessed February 11, 2018) that reports the de-
gree of code duplication are summarized in table 4.

One general observation is that the clang compiler issues
substantially more warnings than the GNU compilers. This is
because it performs a more thorough static code analysis than
gcc, that is, a more in depth check, including stricter type
checking. Another general trend is the infrequent use of asser-
tions as well as a rather sloppy memory management. While
memory leaks can be harmless, invalid memory accesses
(Prank, MrBayes, MAFFT) are likely to yield unspecified behav-
ior. In fact, most bugs in C code used to be memory-related (Lu
et al. 2005) but there also seems to be a tendency for them to
decrease due to the availability of tools such as valgrind (Li et al.
2006) which are apparently not used on a regular basis for
developing the majority of the tools we have tested here.

We also observe a high degree of code duplication in some
codes (e.g., MrBayes, SOAP, MAFFT, Prank, BEAST).

Overall, the perfect software does not seem to exist, with
the exception of Abyss maybe, if we ignore the clang warn-
ings. The Astrophysics code is not perfect either (e.g., using no

Table 2. PAML Components.

PAML component LoC (own) LoC (total) Major W. Minor W. Clang W. Malloc Valgrind Assert

baseml 1,304 14,212 0.0 4.6 623.0 NoCast Clean 0.0
basemlg 685 13,593 7.2 4.37 452.7 NoCast Leaks 0.0
chi2 185 185 0.0 27.0 37.85 NoCast Clean 0.0
codeml 5,309 18,217 4.7 8.5 229.62 NoCast Clean 0.0
evolver 1,123 14,031 4.5 58.8 297.6 NoCast Leaks 0.0
mcmctree 2,970 8,079 2.4 11.1 184.1 NoCast Clean 0.0
pamp 514 13,422 1.9 9.7 485.4 NoCast Leaks 0.0
yn00 712 927 4.2 50.8 315.5 NoCast Leaks 0.0

NOTE.—LoC(own) is the number of effective lines of code that belong only to the component. LoC(total) is the total number of effective lines of code for each component,
including code shared with other components. Columns “Major W.” and “Minor W.” give the major and minor GNU compiler warnings and “Clang W.” reports the number of
clang warnings, all normalized to 1,000 lines of own code. Column “Malloc” provides the malloc() casting error, “Valgrind” the memory behavior and “assert” the number of
assertions per 1,000 lines of code.

Darriba et al. . doi:10.1093/molbev/msy014 MBE

1040Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://github.com/AlDanial/cloc
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
Deleted Text: on-line
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
http://www.harukizaemon.com/simian/
http://www.harukizaemon.com/simian/

assertions at all), despite the fact that it comes from a more
traditional field of computational science. We believe that our
set of criteria allows to identify potential problems that can, in
most cases, easily be fixed.

Discussion
We have scrutinized 16 widely used codes for evolutionary
data analyses using a simple set of tools and criteria that can
be deployed to improve code quality, sometimes without
fully understanding the source code. Evidently, software en-
gineering quality can only be assessed with open-source
codes, hence we strongly advocate in favor of open-source
such that users do have a chance to assess code quality.

We have detected several errors that are common to al-
most all tools and that are comparatively easy to fix. Again, we
do not intend to criticize the authors of the tools, given their
time and resource constraints with respect to extending and
maintaining software. We want to emphasize that more
awareness about code quality and, perhaps more importantly,
worrying about correctness is necessary (albeit the tools we
scrutinized do yield high quality results) since the research
produced by our community heavily relies on the results pro-
duced by an entire zoo of core tools in long analysis pipelines.

Another concern is that evolutionary analysis software is
frequently used as a black box with default parameters and
without a proper understanding of the underlying theory or
algorithms. Given the large set of tools modern evolutionary
biologists need to deploy to “get a paper published,” this user
behavior is nonetheless understandable. There is an evident
trade-off between the thoroughness of computational anal-
yses and the publication rate. While this is difficult to change,
the issue could be addressed at the teaching level. Our per-
ception is that graduate and undergraduate training in biol-
ogy needs to focus more on covering mathematical and
computational topics.

We initially discuss some good practices for code develop-
ment in the hope that they will be broadly adopted by the
community and that they might help to reduce the number
of potential bugs. Then, we discuss issues pertaining to
floating-point arithmetics and reproducibility of numerical
results. Finally, we discuss funding policy issues, that is,
what sort of mechanisms might be required to ensure sus-
tainable maintenance, support, and quality improvements in
scientific software.

Basic Best Practices
Readers should keep in mind that our recommendations are
subjective as they are based on our proper programming
experience and on empirical software engineering studies.
Some recommendations can be directly derived from the
simple criteria we have deployed. Therefore, a good code
should:

• be compiled with all compiler warning flags enabled using
several compilers (e.g., icc, clang, gcc)

• should be analyzed with valgrind for memory leaks and
invalid read/write accesses

• should be checked for malloc() type casting errors
• should use as many assertions as necessary and feasible to

ensure the correctness of the algorithm

It might represent a good idea to ask reviewers of
Bioinformatics software papers to check software they review
according to the above straightforward criteria. Alternatively,
journals could impose upon authors that the codes they
submit for publication need to be compiled and checked
accordingly prior to submission. This could be implemented
by asking authors to provide appropriate code quality analysis
transcripts. Part of these processes could also be automated.
Finally, one should also put special emphasis on software
engineering quality issues (e.g., no clang warnings, usage of

Table 3. PAML Values Refer to Parts of the Source Code that is Shared Among All Individual Components that are Listed in table 2.

Code Language LoC Major W. Minor W. Clang W. Malloc Valgrind Assert

PAML C 12,908 0.9 9.4 18.8 NoCast clean 0.0
PHYML C 56,456 0.0 0.0 56.5 NoCast clean 0.16
MrBayes C 94,432 0.02 0.0 9.6 MisCast Invalid/leaks 2.37
RAxML C 57,233 0.0 0.0 16.8 No-Error Leaks 17.5
SOAP C/Cþþ 37,020 3.9 17.0 155.5 NoCast Leaks 0.0
Abyss C 43,189 0.0 0.0 134.8 No-Error Clean 23.11
MS C 2,063 4.8 10.7 62.3 WrongCast Leaks 0.0
SweepFinder C 4,465 0.0 32.3 52.4 NoCast Clean 1.56
MAFFT C 57,688 1.1 1.3 27.3 NoCast Invalid/leaks 0.0
T-Coffee C 160,223 2.2 3.9 34.2 NoCast Leaks 0.44
Prank Cþþ 23,947 6.8 0.3 121.4 NoCast Invalid 9.19
BEAST JAVA 302,611 0.07 12.5 N/A No-Error N/A 0.0
FDPPDIV Cþþ 11,474 3.0 3.5 61.7 No-Error Leaks 0.26
BP&P C 16,593 3.0 5.8 49.0 NoCast Leaks 0.0
Seq-Gen C 3,977 0.0 1.0 51.3 No-Error Leaks 0.0
INDELible Cþþ 11,402 0.0 22.8 182.5 No-Error Clean 0.0
Gadget-2 C 12,509 0.0 2.9 48.8 NoCast Probably clean 0.0

NOTE.—Column “Language” denotes the programming language and column “LoC” is the total number of effective lines of code. Columns “Major W.” and “Minor W.” give the
major and minor GNU compiler warnings and “Clang W.” reports the number of clang warnings, all normalized to 1,000 lines of code. Column “Malloc” provides the malloc()
casting error, “Valgrind” the memory behavior. We denote the Gadget-2 code as “probably clean” since we interrupted the valgrind analysis that did not report any errors after
30 min of run-time. Finally, column “assert” represents the number of assertions per 1,000 lines of code.

Evolutionary Biology Software Quality . doi:10.1093/molbev/msy014 MBE

1041Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

Deleted Text: `get a paper published',
Deleted Text: on

assertions, checks with valgrind) when teaching programming
practicals at the graduate and undergraduate level.

Assertions are also particularly useful for debugging, since
users often provide incomplete bug reports. In contrast to
this, when an assertion fails, users will typically report the
failed assertion including the source file name and the line
in the code which substantially accelerates problem identifi-
cation. Also, assertions are the only mechanism we consid-
ered that helps to partially assess actual code correctness and
not only identify potential programming errors or bad pro-
gramming practice.

While invalid read/write accesses need to be fixed, memory
leaks, in particular when programs do not free all the memory
they use upon termination (e.g., several PAML components
and RAxML), should be addressed as well. Such program
termination leaks may become problematic when one
intends to integrate leaky code as a library component into
some larger project. Unfortunately, it is always hard to predict
which software one writes will become widely used and how
much effort should be spent on code quality.

The above best practices can be easily applied without
investing too much effort but will certainly improve code qual-
ity as well as help to reduce the number of implementation-
induced bugs. Evidently, we also need to worry about concep-
tual errors that affect correctness, such as the (for a long time
undetected) error in Hastings ratio calculations (Holder et al.
2005) in Bayesian inference programs.

Advanced Best Practices
Another question is what else could be done to improve code
quality in an ideal setting. Users often tend to forget that
many codes, specifically in population genetics and phyloge-
netics, use statistical models defined on real numbers. As a
consequence, they are at the mercy of floating point arith-
metics with round-off errors and numerical under or over-
flows. Therefore, every programmer in the field should read

the classic paper “What Every Computer Scientist Should
Know About Floating Point Arithmetic” by Goldberg
(1991). The most important property one should be aware
of is that in floating point arithmetics associativity (i.e.,
ðxþ ðyþ zÞÞ ¼ ððxþ yÞ þ zÞ) does not necessarily hold
because of round-off errors. Note that, the order of arithmetic
operations and thus the degree of deviations due to round-off
errors depends on (1) the compiler used (2) the hardware
features that are being used, and (3) on how the programmer
orders the arithmetic operations. Therefore, different ML pro-
gram implementations (e.g., RAxML and PHYML) can yield
different log likelihood scores.

However, even the same program can return different
values when the likelihood calculations are parallelized over
sites, depending on the number of processors being used due
to round-off errors. Thus, different numbers of processors can
yield different tree topologies and, as a consequence, ML in-
ference results may not be reproducible, even if (1) exactly the
same tree search heuristic is applied and (2) likelihood calcu-
lations are generally sufficiently accurate despite round off
errors. For instance, we executed the AVX version of
RAxML twice (data available at https://github.com/stama-
tak/softwareQuality; last accessed February 11, 2018), once
in the sequential version and once with the PThreads version
as follows:

raxmlHPC-AVX -p 12345 -m GTRGAMMA

-s 354 -n T1

raxmlHPC-PTHREADS-AVX -T 2 -p 12345

-m GTRGAMMA -s 354 -n T2

The only difference between the two calls is that the ad-
dition order of per-site log likelihoods and per-site derivatives
for optimizing branch lengths is changed due to the paralle-
lization. The data set we used is a single-gene alignment of 354
ITS sequences with 460 sites (Grimm et al. 2006) that was
known to have a “rough” likelihood surface. In other words, it

Table 4. Results of a Code Duplication Analysis Using the Simian Tool.

Code Lines Checked Files Checked Duplicate Lines Duplication % Blocks Files

PAML 22,200 17 1,210 5.5% 120 11
PHYML 42,786 73 5,878 13.7% 549 32
MrBayes 70,680 19 21,862 30.9% 1,680 10
RAxML 55,873 25 17,137 30.7% 1,304 22
SOAP 27,514 116 10,107 36.7% 527 72
Abyss 37,038 212 4,245 11.5% 441 71
MS 1,718 24 186 10.8% 21 9
SweepFinder 3,777 12 293 7.8% 28 3
MAFFT 45,045 72 28,630 63.6% 1,647 59
T-Coffee 82,758 196 19,345 23.4% 1,325 58
Prank 16,124 67 5,318 33.0% 462 43
BEAST 228,316 2,336 64,024 28.0% 4,786 1,151
BP&P 14,332 5 502 3.5% 56 3
Seq-Gen 3,244 44 206 6.4% 25 6
INDELible 9,840 7 1,954 19.9% 106 5
Gadget-2 9,770 31 3,314 33.9% 180 31

NOTE.—The column “Lines checked” refers to the total number of source lines and “Files checked” to the total number of source files analyzed with Simian. Note that, the “Lines
checked” number is not identical to the LoC numbers reported in tables 2 and 3, since the Simian tool does not take header files into account. Column “Duplicate lines” provides
the number of duplicate lines detected, “duplication %” the relative amount of code duplication, and “Blocks” provides the total number of contiguous duplicated blocks of
code. Finally, column “Files” gives the number of files in which duplicated code was detected.

Darriba et al. . doi:10.1093/molbev/msy014 MBE

1042Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

https://github.com/stamatak/softwareQuality
https://github.com/stamatak/softwareQuality
Deleted Text: `rough'

exhibits numerous local maxima that cannot be distinguished
from each other using statistical significance tests. Simply
because the numerical deviations make the tree searches fol-
low distinct paths, the two, in theory identical invocations,
yield different final trees with log likelihood scores of –
6562.158295 versus –6562.158171 and a relative Robinson–
Foulds distance (Robinson and Foulds 1981) of 8.26%. Of
course, any likelihood-based significance test comparing the
two trees shows that they are not significantly different from
each other.

As a consequence, in an ideal world we should also carry
out a theoretical round-off error analysis for our codes. As
shown above, this is particularly critical for ML codes that
strive to obtain a single point estimate. Round-off error anal-
yses have been conducted decades ago for classic numerical
problems such as the Gram–Schmidt orthogonalization
method (Abdelmalek 1971) or, more recently, for
Cholesky’s QR decomposition algorithm (Yamamoto et al.
2015). Numerical issues are far less problematic for Bayesian
inferences because they sample a posterior probability distri-
bution and should thus tend to also marginalize over round-
off errors. In the supplementary material, Supplementary
Material online we also provide an example of how so-
called denormalized floating point values can affect program
performance.

Finally, since the issue of software engineering quality is just
emerging, it might be extremely helpful to consult with soft-
ware engineering experts to discuss appropriate development
models (e.g., extreme, agile or classic waterfall models) and to
improve the organization of academic programmer teams
with a high fluctuation (see Rother et al. 2012). In addition,
there already exists a plethora of tools that can assess the
quality of the given software architecture and more advanced
tools for explicitly finding bugs.

For instance, there is the pmccabe tool for assessing func-
tion complexity in C and Cþþ codes (https://people.debian.
org/�bame/pmccabe/; last accessed February 11, 2018). It cal-
culates the so-called McCabe cyclomatic complexity (McCabe
1976) of functions. Typically, when the complexity of a func-
tion exceeds a score of 10 or 15 the function should be split
into several submodules. A quick analysis of the main RAxML
source file axml.c with the following command pmccabe -f
axml.c revealed that in this source file alone there are 22 func-
tions with a cyclomatic complexity score that exceeds 15.

Furthermore, static code analysis tools analogous to the
seminal Lint (Johnson 1977) tool should be deployed. The
clang compiler partially does this, as do some Linux kernel
development tools such as sparse and smatch. The coccinelle
framework (Lawall et al. 2010) for assessing equivalence of
code transformations might also be particularly useful. As
described in the supplementary material, Supplementary
Material online, FindBugs (http://findbugs.sourceforge.net;
last accessed February 11, 2018) can be used for scrutinizing
Java codes such as BEAST. Code duplication identification
tools such as Simian should also be routinely used during
code development. Finally, we recommend use of dead
code identification tools that identify code that will never
be executed (e.g., using the –coverage switch in gcc).

Another major method for improving code quality and
being more confident about correctness is testing, such as
unit tests or integration tests. There is a vast amount of re-
search on, and methods for, software testing. A good starting
point is the book on the art of software testing by Myers et al.
(2011). The current testing practice in our field appears to be
that testing is mostly delegated to users. However, we strongly
advocate in favor of increased use of testing techniques.

Finally, we suggest to deploy multiple compilers and com-
piler versions to compile and test software (execute unit
tests). This strategy can be seamlessly adopted by using
Continuous Integration (CI) tools, such as Travis CI
(https://travis-ci.org/; last accessed February 11, 2018). For
instance, via this strategy we detected a bug in our own
code for phylogenetic inference which caused a segmentation
fault only when compiled with an older version of clang. As
different compiler versions may produce binaries with oper-
ations that are ordered slightly differently, the likelihood of
detecting errors increases.

Thus, for programmers, we further recommend the follow-
ing best practices:

• read “What Every Computer Scientist Should Know
About Floating Point Arithmetic”

• conduct a theoretical round-off error analysis
• be aware of denormalized floating point numbers and

their impact on performance
• be aware of nonreproducibility of results when running

parallel codes with different core counts
• talk to your local software engineering colleagues
• use static analyzers
• use dead code identification tools
• use a tool such as pmccabe iteratively during code devel-

opment to keep module complexity low
• use a tool such as Simian to identify duplicated code
• use a tool such as Pylint (http://www.pylint.org/; last

accessed February 11, 2018) for improving Python scripts
• systematically test software
• compare your implementation with other independent

implementations
• use different compilers and compiler versions to compile

and test software

Ideal Practices
Finally, if we intend to go even one step further, we can
consider how software for critical systems such as aircraft
autopilots is designed. Typically, a specification is provided
to two or three completely independent software develop-
ment teams. Then, they all develop software that complies
with these specifications using different programming lan-
guages. Thereafter, given a broad range of input parameters,
the outputs of all three independent implementations are
compared. This ensures, with high probability, that the auto-
pilot complies with the specification. One must keep in mind
though that the specification itself can be incorrect or might
not cover all cases. For instance, consider the A320 runway
overrun in Warsaw in September 1993. Because of a certain
combination of parameters (not covered in the specification)

Evolutionary Biology Software Quality . doi:10.1093/molbev/msy014 MBE

1043Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://people.debian.org/~bame/pmccabe/
https://people.debian.org/~bame/pmccabe/
https://people.debian.org/~bame/pmccabe/
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
http://findbugs.sourceforge.net
https://travis-ci.org/
http://www.pylint.org/

the breaks and thrust reversers of the aircraft could not be
activated immediately after touchdown (Ladkin 2000). The
system nonetheless worked according to its specification.

Thus, in our field, the results of any new tool should be
treated with extreme caution until at least one additional,
independent implementation is available that yields analo-
gous results. Furthermore, such an independent alternative
implementation may also reveal errors in the specification/
theory the tool is based upon. An example for this is the
detection of an incorrect Hastings ratio calculation for
Bayesian inference (Holder et al. 2005) which was unraveled
in the course of such an independent implementation effort.
We believe that this strategy of comparing the results of in-
dependent implementations (e.g., PHYML, IQ-Tree, RAxML
for Maximum Likelihood or ExaBayes, MrBayes, PhyloBayes
for Bayesian inference) represents a valuable approach to in-
creasing our confidence regarding the correctness of these
tools. In two independently developed tools for detecting
terraces in phylogenetic tree space we directly applied this
approach (Biczok et al. 2017).

In contrast to this, community projects such as R have
been very successful, but R also represents a single point of
failure. That is, errors in R core modules may have a more
dramatic downstream impact than in MrBayes or RAxML, for
instance. To this end, we advocate redundancy as the mech-
anism for increasing confidence about correctness.

Policy Issues
The 16 codes we analyzed have accumulated >90,000 cita-
tions (not including all papers describing updated versions)
based on Google Scholar to date. One may argue that the
amount of funding used to generate papers using these codes
is disproportional to the amount of funding spent for main-
taining and improving these codes, given the catastrophic
effects that potential programming or conceptual bugs can
have on the published results.

There is a clear lack of sustainable funding for pro-
grammers that could maintain and improve the codes devel-
oped by principal investigators or students that leave
academia after their PhD. Firstly, one is limited by university
or public sector salary schemes which are too low to hire
outstanding programmers. Secondly, current funding
schemes do not allow for hiring programmers on unlimited
time contracts.

One may consider to allocate temporal funding for rede-
signing scientific codes to increase maintainability if they rap-
idly accumulate citations. This could be extended to funding
several independent redundant implementations of emerg-
ing models and methods. The cost for this is small compared
with the potential gains in quality and probability of code
correctness.

Another problem is that there is insufficient funding for
scientific software development per se. Numerous fund-
ing bodies do not consider scientific software develop-
ment as being “real” research and it is thus extremely
hard to obtain financial support. Ironically, a larger num-
ber of funded research projects (e.g., a search for the co-
occurrence of the terms “phylogenetic” and “Deutsche

Forschungsgemeinschaft” yields �17,800 results in
Google Scholar) relies on the availability of such tools.

Thus, due to the steadily increasing reliance on computa-
tional tools, we believe that novel funding schemes are re-
quired to develop new tools as well as improve quality and
correctness of existing software. Moreover, the user commu-
nity must be aware of the fact that, while current tools are
freely available, they are developed on a best-effort basis only.
There is a plethora of error sources, given that we simply do
not have the time nor the resources to implement them
properly and occasionally completely redesign them.

Alternatively, one may consider a commercial approach
and raise license fees that could be used for providing support
and maintenance. One disadvantage of this is that researchers
from developing countries may not be able to afford the
licenses. In addition, based on our experience with selling
nonacademic licenses for the PEAR software (Zhang et al.
2014), license management can be time-consuming. Other
potential licensing models include crowd-funding, pay-what-
you-want strategies, or offering basic, free and advanced, non-
free versions of a tool (e.g., including a graphical user
interface).

Conclusion
We have presented an initial and simple software engineering
quality assessment of widely used evolutionary biology soft-
ware. We show that by using simple techniques and tools the
quality of existing software could already be improved. We
also provide a list of best practices for future software devel-
opment projects. Furthermore, we address issues and provide
real-world examples pertaining to numerical reproducibility
(or lack thereof) to increase awareness about these issues in
the user community. One must also keep in mind that, given
the NGS data tsunami, there is a clear trade-off between
program performance and maintainability. Programs like
RAxML, that explicitly use vector intrinsics for maximum
performance on standard laptop/server processor architec-
tures, are substantially harder to maintain. As a consequence
of this increased complexity, they are more error-prone than
a straightforward naı̈ve implementation of Felsenstein’s prun-
ing algorithm (Felsenstein 1981).

Further, we emphasize that the current and rather worri-
some state of widely used software in our field is not the fault
of the developers, but due to a substantial lack of sustainable
funding for software development, improvement, mainte-
nance, and support. This is especially true if one considers
the disproportion between funding spent for generating the
data with respect to funding spent for improving the quality
of software for analyzing these data. We also make sugges-
tions on how journals, editors, and reviewers could take meas-
ures for improving software engineering quality in the course
of the review process. Furthermore, the independent devel-
opment of software by different teams and the comparison of
the results can substantially contribute to identifying correct-
ness and not merely quality issues as we discuss them here.

We are convinced that, in the times of long and complex
NGS data analysis pipelines with an ever increasing number of

Darriba et al. . doi:10.1093/molbev/msy014 MBE

1044Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

Deleted Text: `real'
Deleted Text: `phylogenetic'
Deleted Text: `Deutsche Forschungsgemeinschaft'

components, software engineering quality issues are becom-
ing critical to the success of the field. Thus, as long as there are
no additional efforts on improving software engineering qual-
ity, and given the current unsatisfactory quality of tools, users
should not treat evolutionary analysis tools as black boxes,
but rather as potential Pandora’s boxes. Apart from improv-
ing software engineering quality, we also need to invest more
effort into the systematic validation of the results produced
by our codes in the future.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We wish to thank Volker Springel, Bastien Bousseau, and
Tracy Heath for suggestions and discussions regarding this
project. We would also like to thank our software engineering
colleague Ralf Reussner at KIT for insightful discussions. We
are particularly grateful to Mark Holder for extremely useful
suggestions and comments on an earlier version of this man-
uscript. We wish to thank Stephane Guindon and Fredrik
Ronquist for their reviews of the initial version of this man-
uscript. This work was funded by the Klaus Tschira
Foundation.

References
Abdelmalek NN. 1971. Round off error analysis for Gram–Schmidt

method and solution of linear least squares problems. BIT Numer.
Math. 11(4):345–367.

Barone L, Williams J, Micklos D. 2017. Unmet needs for analyzing bio-
logical big data: a survey of 704 nsf principal investigators. PLoS
Comput Biol 13(10):e1005755.

Biczok R, Bozsoky P, Eisenmann P, Ernst J, Ribizel T, Scholz F, Trefzer A,
Weber F, Hamann M, Stamatakis A. 2017. Two Cþþ libraries for
counting trees on a phylogenetic terrace. bioRxiv. https://www.bio-
rxiv.org/content/early/2017/11/02/211276.

Briand LC, Wüst J, Ikonomovski SV, Lounis H. 1999. Investigating quality
factors in object-oriented designs: an industrial case study. In:
Proceedings of the 21st International Conference on Software
Engineering, ACM. p. 345–354.

Briand LC, Wüst J, Daly JW, Porter DV. 2000. Exploring the relationships
between design measures and software quality in object-oriented
systems. J. Syst. Softw. 51(3):245–273.

Casalnuovo C, Devanbu P, Oliveira A, Filkov V, Ray B. 2015. Assert use in
github projects. In: Proceedings of the 37th International Conference
on Software Engineering – Volume 1, ICSE ’15, Piscataway (NJ): IEEE
Press. p. 755–766.

Chen TY, Cheung SC, Yiu SM. 1998. Metamorphic testing: a new ap-
proach for generating next test cases. Technical report, Technical
Report HKUST-CS98-01, Department of Computer Science, Hong
Kong University of Science and Technology, Hong Kong.

Chen TY, Ho JW, Liu H, Xie X. 2009. An innovative approach for testing
bioinformatics programs using metamorphic testing. BMC
Bioinformatics. 10(1):24.

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis
by sampling trees. BMC Evol. Biol. 7(1):214.

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum
likelihood approach. J. Mol. Evol. 17(6):368–376.

Fletcher W, Yang Z. 2009. INDELible: a flexible simulator of biological
sequence evolution. Mol. Biol. Evol. 26(8):1879–1888.

Giannoulatou E, Park S-H, Humphreys DT, Ho JW. 2014. Verification and
validation of bioinformatics software without a gold standard: a case
study of BWA and bowtie. BMC Bioinformatics. 15(Suppl 16):S15.

Goldberg D. 1991. What every computer scientist should know about
floating point arithmetic. ACM Comput. Surv. 23(1):5–48.

Grimm GW, Renner SS, Stamatakis A, Hemleben V. 2006. A nuclear
ribosomal DNA phylogeny of acer inferred with maximum likeli-
hood, splits graphs, and motif analysis of 606 sequences. Evol.
Bioinform. Online 2:7.

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O.
2010. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst. Biol. 59(3):307–321.

Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth–death
process for coherent calibration of divergence-time estimates. Proc.
Natl. Acad. Sci. U. S. A. 111(29):E2957–E2966.

Hoare CAR. 1969. An axiomatic basis for computer programming.
Commun. ACM 12(10):576–580.

Holder MT, Lewis PO, Swofford DL, Larget B. 2005. Hastings ratio of the
LOCAL proposal used in Bayesian phylogenetics. Syst. Biol.
54(6):961–965.

Hudson RR. 2002. Generating samples under a Wright–Fisher neutral
model of genetic variation. Bioinformatics 18(2):337–338.

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC,
Nabholz B, Howard JT. 2014. Whole-genome analyses resolve early
branches in the tree of life of modern birds. Science
346(6215):1320–1331.

Johnson SC. 1977. Lint, a C program checker. Citeseer.
Juergens E, Deissenboeck F, Hummel B, Wagner S. 2009. Do code clones

matter? In: IEEE 31st International Conference on Software
Engineering, 2009. ICSE 2009. IEEE. p. 485–495.

Kamali AH, Giannoulatou E, Chen TY, Charleston MA, McEwan AL, Ho
JW. 2015. How to test bioinformatics software? Biophys. Rev.
7(3):343–352.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol.
Biol. Evol. 30(4):772–780.

Kozlov AM, Aberer AJ, Stamatakis A. 2015. Examl version 3: a tool for
phylogenomic analyses on supercomputers. Bioinformatics
31(15):2577–2579.

Kumar S, Dudley J. 2007. Bioinformatics software for biologists in the
genomics era. Bioinformatics 23(14):1713–1717.

Ladkin PB. 2000. Causal reasoning about aircraft accidents. In: Computer
Safety, Reliability and Security, Berlin, Heidelberg: Springer. p.
344–360.

Lawall J, Laurie B, Rydhof Hansen R, Palix N, Muller G. 2010. Finding error
handling bugs in openssl using coccinelle. In: Proceeding of the 8th
European Dependable Computing Conference, EDCC 2010,
Valencia, Spain. p. 191–196.

Leprevost FdV, Barbosa VC, Francisco EL, Perez-Riverol Y, Carvalho PC.
2014. On best practices in the development of bioinformatics soft-
ware. Front. Genet. 5:199.

Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J. 2009. SOAP2:
an improved ultrafast tool for short read alignment. Bioinformatics
25(15):1966–1967.

Li Z, Tan L, Wang X, Lu S, Zhou Y, Zhai C. 2006. Have things
changed now? An empirical study of bug characteristics in
modern open source software. In: Proceedings of the 1st
Workshop on Architectural and System Support for
Improving Software Dependability, ASID ’06, New York (NY):
ACM. p. 25–33.

Löytynoja A, Goldman N. 2005. An algorithm for progressive multiple
alignment of sequences with insertions. Proc. Natl. Acad. Sci. U. S. A.
102(30):10557–10562.

Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y. 2005. Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on the Evaluation of
Software Defect Detection Tools.

McCabe TJ. 1976. A complexity measure. IEEE Trans. Softw. Eng. SE-
2(4):308–320.

Evolutionary Biology Software Quality . doi:10.1093/molbev/msy014 MBE

1045Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy014#supplementary-data
https://www.biorxiv.org/content/early/2017/11/02/211276
https://www.biorxiv.org/content/early/2017/11/02/211276

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen
PB, Ware J, Flouri T, Beutel RG, et al. 2014. Phylogenomics resolves
the timing and pattern of insect evolution. Science
346(6210):763–767.

Myers GJ, Sandler C, Badgett T. 2011. The Art of Software Testing.
Hoboken, New Jersey: John Wiley & Sons.

Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C.
2005. Genomic scans for selective sweeps using SNP data. Genome
Res. 15(11):1566–1575.

Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for
fast and accurate multiple sequence alignment. J. Mol. Biol.
302(1):205–217.

Rambaut A, Grass NC. 1997. Seq-Gen: an application for the Monte
Carlo simulation of DNA sequence evolution along phylogenetic
trees. Comput. Appl. Biosci.: CABIOS. 13(3):235–238.

Robinson D, Foulds L. 1981. Comparison of phylogenetic trees. Math.
Biosci. 53(1–2):131–147.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S,
Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2:
efficient Bayesian phylogenetic inference and model choice across
a large model space. Syst. Biol. 61(3):539–542.

Rother K, Potrzebowski W, Puton T, Rother M, Wywial E, Bujnicki JM.
2012. A toolbox for developing bioinformatics software. Brief. Bioinf.
13(2):244–257.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS:
a parallel assembler for short read sequence data. Genome Res.
19(6):1117–1123.

Springel V. 2005. The cosmological simulation code gadget-2. Month.
Not. R. Astron. Soc. 364(4):1105–1134.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics
30(9):1312–1313.

Wilson G, Aruliah D, Brown CT, Hong NPC, Davis M, Guy RT, Haddock
SH, Huff KD, Mitchell IM, Plumbley MD. 2014. Best practices for
scientific computing. PLoS Biol. 12(1): e1001745.

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. 2017.
Good enough practices in scientific computing. PLoS Comput. Biol.
13(6): e1005510.

Yamamoto Y, Nakatsukasa Y, Yanagisawa Y, Fukaya T. 2015. Roundoff
error analysis of the choleskyqr2 algorithm. Electron. Trans. Numer.
Anal. 44:306–326.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood.
Mol. Biol. Evol. 24(8):1586–1591.

Yang Z, Rannala B. 2010. Bayesian species delimitation using multilocus
sequence data. Proc. Natl. Acad. Sci. U. S. A. 107(20):9264–9269.

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. Pear: a fast and
accurate illumina paired-end read merger. Bioinformatics.
30(5):614–620.

Darriba et al. . doi:10.1093/molbev/msy014 MBE

1046Downloaded from https://academic.oup.com/mbe/article-abstract/35/5/1037/4828033
by Karlsruher Institut fur Technologie - KIT user
on 23 May 2018

	msy014-TF1
	msy014-TF2
	msy014-TF3
	msy014-TF4

