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Abstract. Diagnostics of hydrological models are pivotal
for a better understanding of catchment functioning, and the
analysis of dominating model parameters plays a key role
for region-specific calibration or parameter transfer. A major
challenge in the analysis of parameter sensitivity is the as-
sessment of both temporal and spatial differences of parame-
ter influences on simulated streamflow response. We present
a methodological approach for global sensitivity analysis of
hydrological models. The multilevel approach is geared to-
wards complementary forms of streamflow response targets,
and combines sensitivity analysis directed to hydrological
fingerprints, i.e. temporally independent and temporally ag-
gregated characteristics of streamflow (INDPAS), with the
conventional analysis of the temporal dynamics of parameter
sensitivity (TEDPAS).

The approach was tested in 14 mesoscale headwater catch-
ments of the Ruhr River in western Germany using simula-
tions with the spatially distributed hydrological model mHM.
The multilevel analysis with diverse response characteristics
allowed us to pinpoint parameter sensitivity patterns much
more clearly as compared to using TEDPAS alone. It was
not only possible to identify two dominating parameters, for
soil moisture dynamics and evapotranspiration, but we could
also disentangle the role of these and other parameters with
reference to different streamflow characteristics. The combi-
nation of TEDPAS and INDPAS further allowed us to de-
tect regional differences in parameter sensitivity and in sim-
ulated hydrological functioning, despite the rather small dif-
ferences in the hydroclimatic and topographic setting of the
Ruhr headwaters.

1 Introduction

1.1 Analysis of parameter influences

The role of hydrological model parameters has been studied
for a long time. The ill-posed nature of problems in hydro-
logical modelling led to the awareness that parameter sets
are not uniquely identifiable (Beven, 1993) and to the re-
lated branches of uncertainty assessment (e.g. Gupta et al.,
1998) and automated parameter estimation (e.g. Hogue et al.,
2000). Both are closely related to the sensitivity of model re-
sults to parameter variations. While a number of topics are
often subsumed under sensitivity analysis, underlying objec-
tives and methodological approaches can substantially dif-
fer from case to case (van Griensven et al., 2006; Saltelli
et al., 2008; Zajac, 2010; Razavi and Gupta, 2015). Local and
global strategies of sensitivity analysis have been shown to
be helpful at different stages of the modelling process (Mc-
Cuen, 1973; Hamby, 1994; Sieber and Uhlenbrook, 2005;
Razavi and Gupta, 2015). Analogous to the number of dif-
ferent objectives and methods to assess parameter sensitiv-
ity, the results are subject to different forms of interpreta-
tion (Razavi and Gupta, 2015). The way that the outcome of
sensitivity analysis is evaluated and illustrated can strongly
affect the conclusions that are drawn. In this regard, results
of sensitivity analysis can widely differ if varying objective
functions are considered for the evaluation of parameter in-
fluences (Demaria et al., 2007; Wagener et al., 2009); for a
comprehensive overview see Reusser et al. (2011).

Time-integrated sensitivity measures (van Griensven et al.,
2006; Sudheer et al., 2011; Nossent and Bauwens, 2012)
alone allow little more than rough estimates about the overall
importance of parameters. Contrarily, McCuen (1973) early
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pointed out that parameter sensitivity should be analysed in
a time-dependent context, as hydrological systems are sub-
ject to temporally dynamic processes. Guse et al. (2016b)
argued that the study of temporal variations in sensitivity is
essential to learn about the relation between dominant pa-
rameters and governing processes under changing hydrologi-
cal conditions. The characterisation of temporal dynamics of
parameter sensitivity (TEDPAS) has been accomplished in
diverse ways (Cloke et al., 2008; Cibin et al., 2010; Reusser
et al., 2011; Reusser and Zehe, 2011; Herman et al., 2013;
Sanadhya et al., 2013; Guse et al., 2014; Pfannerstill et al.,
2015; Pianosi and Wagener, 2016). The choice of the tem-
poral resolution is an important factor which clearly influ-
ences the way parameters are identified and how inferences
on related processes are made (Tang et al., 2007; Massmann
and Holzmann, 2012; O’Loughlin et al., 2013). Necessarily,
the timescale of sensitivity analysis is selected in accordance
with the objective of the study and the dynamics of the sys-
tem under investigation. The importance of parameters tem-
porally varies as short periods of high flow alternate with
longer periods of low flow (Massmann et al., 2014).

When model calibration and verification come into play,
analysis of parameter sensitivity provides valuable informa-
tion on the importance of each input factor in regard to sim-
ulated model output. On this basis, it can be decided for each
parameter whether its value should be determined exactly,
or if it could even be completely excluded, fixed at prede-
termined values (Reusser et al., 2011). Preferably, sensitiv-
ity analysis minimises the necessary number of parameters
as hydrological models are often subject to overparameteri-
sation (Beven, 2001; Kirchner, 2006; van Werkhoven et al.,
2009; Samaniego et al., 2010b).

A common goal of sensitivity-guided studies dealing with
an identification of dominant processes is the achievement
of a suitable representation of real-world hydrological pro-
cesses by understanding the reasons for model defective-
ness. If non-sensitive parameters are detected, an indication
of model structural deficits (Kirchner, 2006; Gupta et al.,
2012), or a lack of the adequate model response target data
might be given. Sensitivity analysis is, not just recently, con-
sidered as a helpful diagnostic tool to identify structural and
performance deficits of hydrological models (McCuen, 1973;
Sieber and Uhlenbrook, 2005; Yilmaz et al., 2008; Kavetski
and Clark, 2010; Guse et al., 2014; Pfannerstill et al., 2015).
Reusser and Zehe (2011) showed that a combined analysis
of the temporally varying parameter dominance (sensitivity
analysis) and model performance (error analysis) can effec-
tively detect structural inadequacies of model components
for a specific landscape.

1.2 Fingerprint-based sensitivity analysis

The characterisation of catchment functioning and the un-
derlying hydrological processes can be addressed in various
ways, at multiple scales and levels of complexity. Fingerprint

metrics (hereinafter also referred to as fingerprints) are signa-
tures of dynamic catchment response that change on different
temporal and spatial scales (Sivapalan, 2005; Wagener et al.,
2007; Winsemius et al., 2009).

In hydrological modelling, multiple fingerprint metrics
have been adopted to enhance model evaluation beyond the
minimisation of streamflow residuals. Fingerprints of catch-
ment functioning may be classified into measures based on
single-value (statistical) streamflow indices, and those based
on characteristic curves, e.g. (cumulative) frequency curves,
regime curves, or double mass curves. Examples for the
two kinds of fingerprint metrics are the runoff ratio and the
flow duration curve, respectively. Representatives of both
categories can be selected to describe single components of
streamflow regimes, namely the magnitude, frequency of oc-
currence, duration, timing, and flashiness of flow events (Poff
et al., 1997; Olden and Poff, 2003), or of the general hydro-
logical variability at different spatial and temporal scales.

In a comprehensive analysis of catchment functioning in
order to understand dominant processes, the use of a sin-
gle criterion is often not sufficient. Therefore, hydrologi-
cal fingerprints have been jointly used as multivariate ob-
jectives to estimate the parameters of hydrological models
(Shamir et al., 2005a, b; Pokhrel et al., 2008; Castiglioni
et al., 2010) or to assess model performance and evaluate
model structures (Farmer et al., 2003; Gupta et al., 2008; Yil-
maz et al., 2008; Clark et al., 2011; Euser et al., 2013; Vrugt
and Sadegh, 2013).

Sensitivity analysis related to streamflow characteristics
was formerly mostly applied prior to model evaluation (e.g.
Atkinson et al., 2003). For sensitivity analysis, different op-
tions have been selected as hydrological target variables.
Sensitivity analysis to assess the influence of parameters can
be directed to (i) simulated streamflow, (ii) different objective
functions (e.g. van Werkhoven et al., 2009; Wagener et al.,
2009; Herman et al., 2013; Sanadhya et al., 2013), (iii) simu-
lated hydrological processes (e.g. Massmann and Holzmann,
2015; Pfannerstill et al., 2015; Guse et al., 2016a), or (iv) dif-
ferent hydrological fingerprints (this study). Previous stud-
ies applied fingerprint metrics but based the analysis of pa-
rameter sensitivity on only a few aspects of streamflow (e.g.
limb densities; Shamir et al., 2005a) or on single (statisti-
cal) streamflow indices of different aggregation timescales
(Shamir et al., 2005b).

In our view, multivariate sensitivity analysis geared to-
wards fingerprint metrics as response targets has not received
adequate consideration for model diagnostics. Especially in
terms of joint fingerprints, using both single-value indices
and characteristic curves along independent variables, the
full potential for process-oriented model diagnostics has not
been exploited. Some progress has been made by Guse et al.
(2016b), who combined TEDPAS for different temporal res-
olutions with segments of the flow duration curve (FDC) to
identify parameters and related processes that dominate at
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variable streamflow magnitudes of two distinct streamflow
regimes.

1.3 Objectives, research questions and approach

The main objectives of this study are to analyse the parameter
sensitivity of a mesoscale hydrological model for the simula-
tion of streamflow response and hydrological fingerprints at
a set of headwater catchments of the Ruhr in Germany. The
approach extends TEDPAS along two avenues: the first is to
investigate TEDPAS results in more detail to derive parame-
ter sensitivities in different hydrological conditions; the sec-
ond is to direct the analysis to other, temporally independent
characteristics of streamflow response (INDPAS).

With this approach we explore the following three research
questions:

– Which sensitive parameters can be identified with re-
gard to specific hydrological response characteristics?

– How does parameter sensitivity change with different
hydrological objectives (response targets) applied in
global sensitivity analysis?

– How does parameter sensitivity change among different
catchments with slightly distinct physiographic and hy-
droclimatic conditions?

The methodological approach combines streamflow hy-
drographs and fingerprint metrics as response targets for the
analysis of first-order partial parameter sensitivity. The anal-
ysis rests on a state-of-the-art distributed hydrological model
and is structured in the following steps:

– combining the application of a hydrological model with
global sensitivity analysis to generate an ensemble of
parameter sets;

– deriving fingerprint metrics (single-value indices and
characteristic curves) from simulated streamflow time
series;

– analysing parameter sensitivity to temporally resolved
dynamics of streamflow response (TEDPAS);

– analysing parameter sensitivity to both temporally ag-
gregated (single-value indices) and temporally indepen-
dent (characteristic curves) characteristics of stream-
flow (INDPAS);

– assessing differences in parameter sensitivity between
the two different methodological approaches (TEDPAS
and INDPAS), and between the analysed headwaters.

In the study we will thus complement sensitivity analysis
based on TEDPAS with fingerprint metrics of streamflow re-
sponse (INDPAS), which include both temporally aggregated

single-valued indices and temporally independent character-
istic curves. In cases where characteristic curves (e.g. the
FDC) are used, changes in parameter sensitivity will be anal-
ysed for changes in the independent variable (e.g. streamflow
exceedance probability). We focus the study on the headwa-
ters of the Ruhr catchment in western Germany based on
available data sets.

From this we expect to pinpoint dominant parameters re-
lated to individual process components and to ease the in-
terpretation of parameter sensitivity detached from the vari-
ability of timescales. Bearing in mind the complexity of the
evaluation of spatially and temporally distributed model re-
sponses, our multilevel approach aims at providing further
insight into the dominance of model parameters and related
streamflow response processes.

2 Methods and models

First we detail the fingerprint metrics used to characterise
streamflow response (Sect. 2.1). We implemented the Fourier
amplitude sensitivity test (FAST; Sect. 2.2) to analyse the
mesoscale hydrologic model (mHM, Sect. 2.3) in the Ruhr
headwater catchments. Focusing on eight global mHM pa-
rameters (Sect. 2.4), we employed two different forms
(TEDPAS and INDPAS) of simulated streamflow response
(Sect. 2.5) in the sensitivity analysis. Finally, we introduce
the catchment of the Ruhr River and the headwaters which
were selected for this study (Sect. 2.6.1), and specify the data
used for the analysis (Sect. 2.6.2).

2.1 Fingerprint metrics

Fingerprint metrics are often used in hydrology for charac-
terising the hydrological response of catchments (Olden and
Poff, 2003; Yadav et al., 2007; Yilmaz et al., 2008; Win-
semius et al., 2009). The fingerprint metrics used in this study
included single-value indices and the flow duration curve as
an example for catchment-characteristic curves. These fin-
gerprints were derived from model results and precipitation
data (see Sect. 2.6.2), respectively.

We chose eight indices reflecting different aspects of the
integral and long-term hydrological functioning of catch-
ments in a single, time-aggregated number (Table 1). These
fingerprints characterise the overall water balance (runoff ra-
tio, RR), the variability of streamflow (coefficient of varia-
tion, CV), the frequency of flow events (high pulse count,
HPC), the change rate of streamflow (slope of flow dura-
tion curve between 33 and 66 %, SLFDC), the streamflow
during high-flow (high flow discharge, HFD) and low-flow
(baseflow index, BFI) conditions, the streamflow recession
behaviour (recession time constant, RTC), and the autocorre-
lation structure of streamflow (autocorrelation time, ACT),
respectively. In this study, the slope of the flow duration
curve (SLFDC) is the only single-value fingerprint that could
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Table 1. Temporally aggregated single-value fingerprint metrics derived from FAST-mHM simulated streamflow and observed precipitation
time series, serving as model response targets for sensitivity analysis (INDPAS).

Response characteristic Fingerprint metric Abbreviation Unit Derivation

Water balance Runoff ratio RR (–) QTotal /PTotal
Streamflow variability Coefficient of variation CV (–) σ /µ

Frequency of flow events High pulse count HPC (yr−1) (number of time steps
Q> 3 × Qmean)/ years

Rate of change in streamflow Slope of flow duration SLFDC (%) Slope of FDC between 33 and 66 %
curve Q exceedance

High-flow conditions High flow discharge HFD (–) Q5th percentile /Qmedian
Low-flow conditions Baseflow index BFI (–) QBaseflow /QTotal
Streamflow recession Recession time constant RTC (d) Mdn (time required for Q to

reach 1/e×QPeak)
Streamflow autocorrelation Autocorrelation time ACT (d) Lag time required for AC function
structure to decrease below 0.5

Q: streamflow; P : precipitation; σ : standard deviation; µ: mean; Mdn: median; AC: autocorrelation.

not be directly determined from streamflow hydrographs. In-
stead, the FDC was used as a basis for its derivation. The
eight single-value fingerprints were implemented as model
response targets for sensitivity analysis (Sect. 2.5.2).

As an example for more complex characteristics than
single-valued indices, we also used entire flow duration
curves as model response targets for sensitivity analysis
(Sect. 2.5.2).

2.2 Fourier amplitude sensitivity test (FAST)

FAST is a partial variance-based method to determine first-
order sensitivities of parameter changes on the outcome
of monotonic and non-monotonic numeric models (Cukier
et al., 1973; Schaibly and Shuler, 1973; Cukier et al., 1975).
The general idea of FAST is (a) to vary parameters of interest
with independent frequencies along a predefined number of
model runs, and (b) to perform a Fourier analysis of the simu-
lated target variable across the ensemble of model runs to ob-
tain a power spectrum. In the case of TEDPAS, the spectrum
is calculated for each simulation time step. The variance σ 2

i

that is explained by a parameter i is determined by normalis-
ing the corresponding power with the total power in the spec-
trum, which corresponds to the total variance σ 2

tot within the
model ensemble. The sensitivity to model output of param-
eter i is then calculated as the partial variance, which is the
ratio σ 2

i /σ
2
tot. Parameter interactions, i.e. higher-order sensi-

tivity, are not detected by this method. For more details on
FAST the reader is referred to Reusser et al. (2011).

FAST was originally applied to study parametric model
sensitivities of chemical reaction systems. In recent decades,
the method has been used and evaluated in a variety of fields
such as hydrogeology (Fontaine et al., 1992), atmospheric
sciences (Rodríguez-Camino and Avissar, 1998), geologic
nuclear waste disposal modelling (Lu and Mohanty, 2001),
food safety risk assessment (Frey and Patil, 2002), or eco-

logic forestry (Song et al., 2013). A number of studies treat
the application of FAST in hydrological modelling (Reusser
et al., 2011; Reusser and Zehe, 2011; Sanadhya et al., 2013;
Guse et al., 2014; Pfannerstill et al., 2015; Guse et al., 2016a,
b).

FAST is a highly efficient computational method that re-
quires significantly fewer model runs to yield similar results
for parameter sensitivity than other approaches (Saltelli and
Bolado, 1998; Reusser et al., 2011). The number of model
runs (hence parameter sets) in FAST is determined by the
number of analysed model parameters. This means that al-
ways the same number of model runs is required for a given
number of parameters, independent of model, catchment or
type of parameter.

2.3 Mesoscale hydrologic model (mHM)

The mHM (Kumar et al., 2010; Samaniego et al., 2010b)
accounts for diverse processes of the hydrological cycle:
canopy interception, evapotranspiration, snow, soil moisture
dynamics, overland flow, infiltration, interflow, subsurface
storage, groundwater recharge, baseflow, discharge attenua-
tion, as well as flood routing. The mHM is conceptualised
on the basis of grid cells, and has been applied to a wide
range of mesoscale river catchments (101–104 km2; Kumar
et al., 2010; Samaniego et al., 2010a, 2011; Cuntz et al.,
2015; Rakovec et al., 2016). Gridded information is imple-
mented in mHM at three levels: morphology (level 0), hy-
drology (level 1), meteorology (level 2), with l0 � l1 ≤ l2
denoting the relative sizes of the grid cells at the respective
data level (Kumar et al., 2010).

The parameterisation of mHM is based on a simultaneous
regionalisation technique called multiscale parameter region-
alisation to account for the physiographic sub-grid and hy-
drological process variability (Samaniego et al., 2010b; Ku-
mar et al., 2013). Hydrological process parameters at level
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1 are derived from physiographic characteristics at level 0
using (pedo-)transfer functions with coefficients (in the fol-
lowing referred to as global mHM parameters). Hence, mHM
is calibrated indirectly, by altering the 52 level-0 parameters
of the transfer functions instead of the hydrological level-
1 parameters. This procedure not only reduces the problem
of overparameterisation and the dependence on specific hy-
drological scales (Beven, 2001) but also reduces the amount
of time that is needed for grid-wise calibration (Samaniego
et al., 2010b).

2.4 Model setup for sensitivity analysis

To facilitate the selection of the most sensitive parameters,
we first carried out a preliminary FAST analysis at the lo-
cal scale for gauge Wenholthausen (WEN; Fig. 1) includ-
ing all 52 global mHM parameters to reveal parameter sen-
sitivities to streamflow simulations. For this initial analysis,
21 803 model runs were conducted and the streamflow hy-
drographs were analysed with FAST. We found 14 parame-
ters with a maximal sensitivity value of more than 0.01 (1 %).
When inspecting the model equations we identified correla-
tions between these parameters, which led to the removal of
six parameters from this set.

The eight uncorrelated parameters (Table 2) were used for
the regional sensitivity analysis in the 14 headwater catch-
ments. All other mHM parameters were kept fixed on cali-
brated values found via global automatic optimisation using
the dynamically dimensioned search algorithm (Tolson and
Shoemaker, 2007) at WEN for the period 2002 to 2006. The
value ranges for the parameters were selected from mHM lit-
erature (Samaniego et al., 2014), partly extended based on
the results from the preliminary analysis. For eight param-
eters, the FAST method requires 243 model runs based on
different parameter combinations originating from variation
with independent frequencies inside the parameter ranges
(Fig. 2). The same 243 combinations of mHM parameter sets
were used for streamflow simulations in each of the 14 catch-
ments. Differences between catchments in terms of hydrocli-
matic forcing and physiographic attributes were included in
the model by the locally specific meteorological and morpho-
logical input on data levels l2 and l0.

The hydrological model level l1 and the meteorological l2
of mHM were set to a spatial resolution of 1 km, whereas for
level 0 with the physiographic catchment data (morphology),
a finer resolution of l0 = 200 m was selected as an adequate
spatial discretisation. Model simulations were conducted for
each of the 14 headwater catchments (see Sect. 2.6.1) with a
daily time step for the 10-year period of 1997 to 2006.

2.5 Sensitivity analysis

We analysed the parameter sensitivity in different forms to be
able to evaluate the dominance of parameters and to poten-
tially detect local differences among the headwaters related

to various aspects of streamflow response in a more specific
way. We used simulated streamflow hydrographs (TEDPAS;
Sect. 2.5.1) and both temporally aggregated and temporally
independent fingerprint metrics of simulated streamflow re-
sponse (INDPAS; Sect. 2.5.2) as model response targets for
the sensitivity analyses.

2.5.1 TEDPAS – temporal dynamics and sensitivity
duration

Using simulated hydrographs with FAST provided daily time
series of partial parameter sensitivities for each headwater
catchment for the simulation period 1997–2006. These tem-
poral dynamics of parameter sensitivity (TEDPAS; Reusser
et al., 2011) were analysed and compared for the Ruhr head-
water catchments (Sect. 3.1).

We also calculated sensitivity duration curves (SDCs) for
each parameter, which we defined in analogy to other well-
known cumulative frequency curves like the FDC. Each SDC
is specific for one of the eight parameters, for one catch-
ment and for the period (1997–2006) in which sensitivity
analysis is performed. SDCs were developed for each catch-
ment by arranging the daily sensitivity values from FAST by
magnitude in ascending order and by plotting them as a line
against the percentage of time during which the sensitivity
equalled or exceeded the specified values. Sensitivities were
normalised by the highest sensitivity value found for each pa-
rameter among all headwaters. These curves reveal whether a
parameter is consistently (non-)sensitive or if its importance
changes during the simulation period (Sect. 3.2).

2.5.2 INDPAS – parameter sensitivity to fingerprint
metrics

For each catchment we calculated eight single-valued finger-
print metrics (Sect. 2.1 and Table 1) from each of the 243
simulated streamflow hydrographs. Using these fingerprint
metrics as target variables for FAST yielded the partial sen-
sitivities of the model parameters with regard to each finger-
print (Sect. 3.3.1).

In a similar way, for each headwater catchment, 243 flow
duration curves were derived from the simulated streamflow
time series and analysed with FAST. This yielded parameter
sensitivities along the axis of streamflow exceedance proba-
bility as an independent variable, revealing which parameters
dominate streamflow simulations during high-, intermediate-
or low-flow conditions. As a supplementary step, the param-
eters showing the highest sensitivity for a given streamflow
exceedance probability were extracted, revealing patterns of
dominant parameters across the spectrum of streamflow in
each headwater catchment (Sect. 3.3.2).
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Table 2. Eight global mHM parameters (dimensionless): function, value range for FAST, range and arithmetic mean of sensitivity values
(TEDPAS) across 14 Ruhr headwater catchments (1997–2006).

Parameter Process Description Value Sensitivity Sensitivity
range (–) range (–) mean (–)

DegdayForest snow Determination of degree daily factor 0–4 0–0.74 0.012
and maximum degree-day factor

ThetaSconst soil moisture Estimation of water content at 0.65–0.95 0–0.68 0.018
saturation of soil (constant part)

Ksconst soil moisture Estimation of saturated −1.9–0.0 0–0.77 0.392
vertical hydraulic conductivity

InfilShapeFactor soil moisture Determination of numerical 1–4 0–0.29 0.017
index of rooting distribution

AspectcorrPET meteo correction Account for aspect dependent 0.70–1.50 0–0.78 0.138
correction of PET

ExpslowInterflow interflow Determination of exponent 0.05–0.3 0–0.22 0.062
for the interflow reservoir

RechargeCoeff percolation Determination of percolation 0–70 0–0.38 0.057
coefficient

GeoParam baseflow Determination of baseflow 0–1000 0–0.47 0.012
recession parameter

Figure 1. The Ruhr catchment with altitudinal zones, river network and 14 gauged headwater catchments: Amecke (AME), Bamenohl
(BAM), Börlinghausen (BOE), Herrntrop (HER), Hüppcherhammer (HUE), Kickenbach (KIC), Kraghammer (KRA), Meschede1 (MES),
Möhnesee-Neuhaus (MOE), Nichtinghausen (NIC), Olpe (OLP), Rüblinghausen (RUE), Völlinghausen (VOE), and Wenholthausen (WEN).

2.6 Study area and data

2.6.1 The Ruhr headwater catchments

The Ruhr (Fig. 1) has a catchment area of 4485 km2, and
originates from a spring at about 670 m a.s.l. on the north-
ern slope of the Ruhrkopf (842 m a.s.l.). The Ruhr joins
the Rhine at Duisburg-Ruhrort (20 m a.s.l.) after 219 km.
The landscape characteristics of the catchment range from
densely wooded and scarcely populated lower mountain
ranges in the Sauerland to widely sealed urban areas in the

river valleys and in the western part close to the mouth. The
area belongs to the geology and geography of the Rhenish
Slate Mountains to the east of the Rhine (Brudy-Zippelius,
2003). The average discharge at the confluence with the
Rhine is about 80.5 m3 s−1 (Bode et al., 2003). With a total
of eight dams and five reservoirs the Ruhr and its tributaries
form a complex hydrological system. The total stored water
surface area of about 35 km2 equates to about 480 million m3

of water retained behind damming structures (Ruhrverband,
2011). An intensive use of water resources (e.g. reservoirs,
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Figure 2. (a–c) Variations of the eight selected global mHM parameters for 243 model runs with independent frequencies according to the
FAST sampling plotted as connected curves (see also Table 2).

barrages, withdrawals, inlets) supplies almost 5 million peo-
ple with drinking and processing water along the Ruhr,
within its catchment and to adjacent watersheds.

Our investigations concentrate on 14 headwater catch-
ments (Fig. 1) of the Ruhr River and its tributaries (e.g.
Bigge, Lenne, and Möhne), where the hydrological regimes
are much less affected by water management measures. The
headwaters are situated in the eastern, rural part of the Ruhr
basin with higher altitudes, and cover an area of 1742 km2

in total. Individual catchment sizes range from 28.7 km2

at gauge Amecke (AME) to 453.1 km2 at gauge Bamenohl
(BAM). Average catchment slopes vary between 10.8 %
(Rüblinghausen, RUE) and 26.1 % (Kickenbach, KIC). The
dominant form of land cover is forest (39.7–87.3 %) followed
by pasture (0.8–47.5 %), cropland (7.6–43.9 %) plus a few
predominantly dispersed settlements (0.0–13.2 %; Table 3).
The climatic conditions are humid warm-temperate (Göppert
et al., 1998) with warm summers and moderate winters. An-
nual mean temperature ranges between 8.45 and 5.45 ◦C at
the lower and higher altitudes in the study area, respectively.
Annual precipitation ranges from 1025 mm in the northeast
to 1425 mm in the southwest (1997–2006; Table 3).

2.6.2 Data

Different kinds of observation data were used to set up and
calibrate the hydrological model, to perform simulations for
sensitivity analysis, and to derive the fingerprint metrics and
a set of physiographic catchment descriptors.

Meteorological input data were daily values for precipita-
tion (HYRAS; Rauthe et al., 2013), temperature (HYRAS;
Frick et al., 2014), and potential evapotranspiration (AM-
BAV; Löpmeier, 1994), all at a spatial resolution of 1 km2.
Streamflow observations were available for all headwater
catchments from 2002 to 2006. Spatial physiographic data
were a digital elevation model (50 m× 50 m), CORINE
land cover data (100 m× 100 m; European Environment
Agency, 2009), a soil map (1 : 200 000; Bundesanstalt für
Geowissenschaften und Rohstoffe, 2015a), and a geologi-
cal map (1 : 1 000 000; Bundesanstalt für Geowissenschaften
und Rohstoffe, 2015b).

A set of 14 descriptors to characterise the hydroclimatic
and physiographic setting of the headwaters and to capture
characteristics that might jointly control relevant hydrolog-
ical functions as defined by Black (1997) has been com-
piled in Table 3. Each descriptor in Table 3 was assigned
to one of five main classes of catchment characteristics, i.e.
climate (1), landform (2), topography (3), land cover (4), and
soil (5), as proposed by Yadav et al. (2007). The choice of
climate and physiographic descriptors originates from cor-
relation analysis of catchment descriptors within each cat-
egory (Yadav et al., 2007), multivariate statistical analysis
techniques (Di Prinzio et al., 2011), regionalisation models
(Plate et al., 1988), GIS-based analysis of the digital eleva-
tion model and, in the case of the baseflow index (BFI), from
comparison of methods for baseflow separation (Duband
et al., 1993). Table 3 includes the BFI as an intermediate
form between physiographic descriptors of soil hydrological
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Table 3. Physiographic and climate descriptors characterising the topographic and hydroclimatic (1997–2006) setting of 14 Ruhr headwater
catchments.

Characteristic Descriptor Abbreviation Unit Headwater

NIC VOE MOE AME BOE RUE HUE OLP KRA KIC HER BAM WEN MES

(1) Climate Wetness index P/PET (–) 2.3 2.1 2.1 2.4 2.5 2.2 2.3 2.2 2.2 2.4 2.3 2.3 2.2 2.5
Annual precipitation PMEAN (mm) 1170 1025 1062 1240 1425 1286 1334 1232 1263 1261 1278 1237 1156 1192

(2) Landform Area A (km2) 37 293 66 29 48 86 47 35 38 187 61 453 184 426
Longest drainage path LDP (km) 13 44 16 10 13 19 9 10 13 36 13 52 21 39

(3) Topography Slope SLOPE (%) 22.6 10.9 11.2 17.3 14.9 10.8 13.2 17.5 16.0 26.1 21.1 22.5 16.2 20.9
Weighted slope Ig (%) 1.7 0.5 1.1 2.1 0.9 0.5 0.8 1.2 0.9 0.7 1.6 0.5 0.6 0.7
Elevation range ELR (m) 430 426 316 361 297 394 204 274 391 533 415 425 440 585
Aspect ASP (◦) 195 189 187 189 167 175 170 197 159 201 199 188 186 190
Flow accumulation FACC (km−1) 0.7 0.3 0.6 0.7 0.6 0.5 0.5 0.7 0.9 0.5 0.5 0.2 0.3 0.2

(4) Land cover Forest FOR (%) 55 50 87 51 54 43 40 62 52 72 75 67 41 60
Urban area URB (%) 0 7 1 3 2 13 5 7 4 4 3 6 3 5
Pasture PAST (%) 21 13 2 20 8 26 48 6 1 15 6 10 16 10
Cropland CROP (%) 24 29 10 26 36 18 8 25 44 9 17 17 40 24

(5) Soil Baseflow index BFI (–) 0.39 0.34 0.33 0.38 0.37 0.38 0.39 0.39 0.42 0.35 0.36 0.34 0.34 0.31

characteristics and temporally aggregated fingerprint metrics
introduced in Sect. 2.1.

3 Results

3.1 Temporal dynamics of parameter sensitivity
(TEDPAS)

TEDPAS analysis for the 14 headwaters in the period of
1997–2006 showed a strong temporal dependence of the
fraction of the total variance explainable by first-order sen-
sitivities for hydrograph simulation. The sum of all eight pa-
rameter sensitivity values per time step ranged between 0.26
and 0.87, while the average sum of the eight sensitivity val-
ues per time step was 0.71. The spread between the maximal
and minimal sum per time step was found to be smaller in
the southwestern (e.g. Rüblinghausen RUE, 0.48) than in the
northeastern (e.g. Völlinghausen VOE, 0.61) headwaters.

Minimal and maximal (sensitivity range) and the aver-
age (sensitivity mean) sensitivity values of the eight parame-
ters, summarised across all headwaters (Table 2), give a first
impression that the soil moisture parameter Ksconst gener-
ally exhibited the highest influence (sensitivity mean 0.392),
while AspectcorrPET showed the largest range (sensitivity
range 0–0.78). The interflow parameter ExpslowInterflow
had the smallest sensitivity range (0–0.22), whereas parame-
ters for snow (DegdayForest) and baseflow (GeoParam) had
the overall lowest sensitivity mean values of 0.012. Across
all headwaters, the parameters listed in terms of their average
sensitivity to streamflow simulations are (in descending or-
der): Ksconst, AspectcorrPET, ExpslowInterflow, Recharge-
Coeff, ThetaSconst, InfilShapeFactor, GeoParam, and Deg-
dayForest.

TEDPAS did not reveal many differences between the
headwaters. For instance, Ksconst consistently had a highly
dynamic course of sensitivity with frequently high values
(Fig. 3a and b). Nevertheless, some of the parameters showed

differences between the headwaters, for example for Deg-
dayForest (January–March; Fig. 3a and b) and Aspectcor-
rPET (November–April; Fig. 3c and d). AspectcorrPET al-
lows us to include the aspect of slopes, controlling insula-
tion, in evapotranspiration estimations, while DegdayForest
is a parameter related to snow dynamics in forested areas.

The example of these two parameters also illustrates the
seasonality in sensitivity dynamics. AspectcorrPET showed
highest sensitivity in the summer period from April to
August, when evapotranspiration processes dominate and
streamflow dynamics are low (Fig. 3c and d, g and h). Dur-
ing that period, the parameter showed an alternating course
of sensitivity compared to Ksconst (Fig. 3b and d) with local
maxima connected to (simulated) streamflow peaks (Fig. 3h).

Higher sensitivities of DegdayForest were found for pe-
riods (e.g. February) when snow processes (accumulation
and melting) can occur. This was predominantly observed in
catchments at higher altitudes – for example, for the headwa-
ter VOE (up to 630 m a.s.l.) rather than for RUE (450 m a.s.l.;
Fig. 3a and b). Also, VOE (50 %) exhibits a higher per-
centage of forest cover (FOR) than RUE (43 %; Table 3). A
similar distinction between summer and winter patterns was
found for InfilShapeFactor, although at lower sensitivity lev-
els (Fig. 3c and d). For the rest of the parameters either no
seasonal patterns (e.g. RechargeCoeff; Fig. 3e and f) could
be seen or only very low sensitivity values were found (e.g.
ThetaSconst; Fig. 3a and b).

The ensembles of simulated streamflow compared reason-
ably well with the observed hydrographs (Fig. 3g and h), al-
though the simulation ensemble underestimated some high-
flow periods.

3.2 Sensitivity duration

SDCs for the 14 headwaters revealed distinct influences of
the eight parameters on streamflow simulations (Fig. 4).
Different sensitivity characteristics were identifiable among
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Figure 3. Time-dependent FAST sensitivities (TEDPAS) of eight global mHM parameters for two headwater gauges RUE (a, c, e) and
VOE (b, d, f), and observed and FAST-mHM simulated streamflow ensembles at gauges RUE (g) and VOE (h). The results are shown for
the hydrological year 2003 consisting of a wet season (November 2002–March 2003) and a long dry period from April 2003 to September
2003. Please note the different axis scaling for streamflow for the two headwaters (g, h).

the parameters, with either very low (e.g. DegdayForest;
Fig. 4a and ThetaSconst; Fig. 4b), intermediate (Recharge-
Coeff; Fig. 4g) or high (Ksconst; Fig. 4c) influence with re-
spect to sensitivity exceedance probability.

Some of the parameters showed a regional variation of
SDCs. Four of eight parameters, i.e. Ksconst (Fig. 4c), In-
filShapeFactor (Fig. 4d), AspectcorrPET (Fig. 4e), and Ex-
pslowInterflow (Fig. 4f), revealed certain differences among
the headwaters. The SDCs of the two most influential param-
eters Ksconst (Fig. 4c) and AspectcorrPET (Fig. 4e) showed
a systematic spread for the different headwaters, with the
curve of gauge RUE plotting at the lower (Fig. 4c) and upper
(Fig. 4e) margins of the group of headwaters, respectively.
For InfilShapeFactor (Fig. 4d), the headwater Möhnesee-
Neuhaus (MOE), and for ExpslowInterflow (Fig. 4f) both
RUE and MOE deviated from the other headwaters and
showed lower SDC values.

In the case of AspectcorrPET (Fig. 4e), the SDCs were
sorted from the southwestern (e.g. RUE) to the northeastern
(e.g. MES) headwaters (Fig. 1). In the southwestern headwa-
ters (e.g. RUE) the slopes are gentler with lower relief en-
ergy than further northeast, where valleys are more deeply
incised (e.g. NIC, SLOPE and ELR; Table 3). The slopes in
the southwestern headwaters are on average facing southeast,
compared to the more southwest-facing slopes in the north-
ern and eastern Ruhr headwaters (ASP; Table 3). Besides
showing a different aspect, the southwestern headwater RUE

also has the highest proportion of urban areas (URB, 13 %;
Table 3). Both factors influence the estimation of evapotran-
spiration in mHM and hence streamflow simulations.

The SDCs of the most sensitive parameter Ksconst
(Fig. 4c) showed concave curvatures, in contrast to the other
parameters which had convex SDCs. The SDCs of the largest
headwater Bamenohl (BAM) fell in between the other catch-
ments, showing a kind of transitional behaviour of sensitivity
duration (Fig. 4), except for ExpslowInterflow.

3.3 Parameter sensitivity to fingerprints (INDPAS)

3.3.1 Single-value indices

Similar patterns of parameter sensitivities to single-value fin-
gerprints were consistently found across all 14 headwaters.
Figure 5 shows the matrix representations for four represen-
tative headwaters (RUE, VOE, HER, and WEN). All of them
comprise eight rows for the parameters and eight columns for
the fingerprint metrics. Sensitivity to a specific fingerprint is
arranged column-wise.

As in the TEDPAS analysis, Ksconst was by far the most
sensitive parameter for the simulation of five of the finger-
prints (CV, HPC, HFD, BFI, RTC) in all 14 headwater catch-
ments. The parameters ExpslowInterflow and RechargeCoeff
were identified as the second and the third most sensitive pa-
rameter in these cases. In terms of the fingerprint RR, in con-
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Figure 4. Sensitivity duration curves (SDCs) for eight global mHM parameters of 14 Ruhr headwater catchments (1997–2006): DegdayFor-
est (a), ThetaSconst (b), Ksconst (c), InfilShapeFactor (d), AspectcorrPET (e), ExpslowInterflow (f), RechargeCoeff (g), and GeoParam (h).
SDCs are shown normalised by the highest sensitivity value for each parameter among the headwaters. The eight parameters in terms of
their average importance to streamflow simulations (TEDPAS) among all headwaters listed in descending order: Ksconst, AspectcorrPET,
ExpslowInterflow, RechargeCoeff, ThetaSconst, InfilShapeFactor, GeoParam, and DegdayForest.

trast, AspectcorrPET was the most sensitive parameter, while
others, including Ksconst, showed almost no sensitivity to
the simulation of the overall water balance. The parame-
ters RechargeCoeff and Ksconst had similarly highest impor-
tance for the simulation of the fingerprint SLFDC (slope of
the flow duration curve). Other parameter–fingerprint com-
binations revealed parameters with very low sensitivity val-
ues, e.g. DegdayForest or GeoParam, which showed very low
sensitivities to all of the eight fingerprint metrics (Fig. 5).

Only minor differences in these patterns occurred between
the catchments, and these related to small deviations in abso-
lute sensitivity values or in the order of the second and third
rank, e.g. for the fingerprint ACT (Fig. 5).

3.3.2 Flow duration curve

Using FDCs as model response targets revealed parame-
ter sensitivities to different streamflow magnitudes. Again,
a high proportion of similarities among the headwaters was
found. The highest influence was alternately exerted by the
parameters Ksconst and AspectcorrPET (Fig. 6a–d); their
courses of parameter sensitivity were highly anticorrelated
(mean correlation across all headwaters r =−0.975). The
soil moisture parameter Ksconst clearly dominated the very

high flows (0–10 % of time Q is exceeded) and the entire
mid- and low-flow sections (40–100 %); moderate high flows
between 10 and 40 % were most affected by changes in the
evapotranspiration parameter AspectcorrPET. These changes
in the dominating parameter are additionally illustrated in
Fig. 6 by a catchment-specific strip showing the pattern of
parametric dominance along the FDC, which showed only
slight differences in the lengths of the intermittent parts (As-
pectcorrPET) between the headwaters.

The other parameters reached overall lower sensitivity lev-
els. The patterns were again similar for all headwaters, with
minor differences regarding the absolute sensitivity values
and the order of importance in the third and higher ranks. The
parameters RechargeCoeff and ExpslowInterflow revealed
a bimodal sensitivity distribution. RechargeCoeff showed a
first peak between 0 and 20 %, and a steady increase from
40 % to its maximum sensitivity value at very low flows with
100 % of streamflow exceedance, which was a sensitivity
value of about 0.25 in the case of gauge HER (Fig. 6c). Ex-
pslowInterflow had its highest parametric influence at very
high flows (0–15 %), and at moderate- to low-flow magni-
tudes. The curves of InfilShapeFactor alternated with Exp-
slowInterflow along the FDCs (Fig. 6a–d), while the rest of
the parameters did not show notable sensitivity values.
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Figure 5. Sensitivity of eight global mHM parameters to eight single-value fingerprint metrics (RR, CV, HPC, SLFDC, HFD, BFI, RTC,
ACT) in four Ruhr headwater catchments: RUE (a), VOE (b), HER (c), WEN (d). The simulation period was 1997 to 2006.

Figure 6. (a–d) Sensitivity of eight global mHM parameters along streamflow exceedance probability (flow duration curve, FDC) for four
Ruhr headwater catchments RUE, VOE, HER, and WEN. Catchment-specific strips show the parameters with the highest sensitivity along
the FDC. (e–h) Observed flow duration curves and the corresponding ensembles of each 243 simulated FDCs for the period 2002 to 2006,
normalised by the highest streamflow value observed at each of the four headwater gauges.
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Interestingly, the ensembles of normalised FDCs showed
distinct differences between the catchments (Fig. 6e–h), al-
though the sensitivity dynamics were similar, and the same
243 parameter variations from FAST were used for each
headwater. The largest spread of FDCs was found for the
northeastern headwater VOE (Fig. 6f) with the largest catch-
ment size among the four shown headwaters. The smaller
headwaters WEN, HER, and RUE (Fig. 1) showed a decreas-
ing spread of the FDCs from northeast to southwest (Fig. 6h,
g, e). Additionally, the widths of the simulation envelopes
changed for different streamflow magnitudes. All ensembles
of FDCs showed a constriction point located at about 20 %
of streamflow exceedance (Fig. 6e–h), which is the same
point where Ksconst and AspectcorrPET showed lowest and
highest sensitivity values, respectively (Fig. 6a–d). The en-
sembles of simulated FDCs encompassed the observed FDC
in most cases (e.g. VOE, HER, WEN; Fig. 6f–h). In some
cases the observed FDC was outside the simulated range (e.g.
RUE; Fig. 6e).

4 Discussion

4.1 Parameter sensitivities from TEDPAS and INDPAS

The combination of TEDPAS and INDPAS created a detailed
sensitivity pattern for the response characteristics of the hy-
drological model mHM. Overall, the soil moisture dynamics
parameter Ksconst and the evapotranspiration parameter As-
pectcorrPET were found most relevant for the simulation of
the streamflow response of 14 Ruhr headwaters.

The TEDPAS analysis confirmed, as expected, a season-
ality of sensitivity for parameters controlling snow (Deg-
dayForest) or evapotranspiration (AspectcorrPET) processes.
More interestingly, TEDPAS also showed an alternating
dominance of Ksconst and AspectcorrPET during the tem-
poral course of the simulation. Using flow duration curves as
response targets (INDPAS) clarified that this was related to
different streamflow magnitudes. The soil moisture dynamics
(Ksconst) dominated at both high and low flows, which may
be attributed to the dual role of Ksconst in parameterising
both storage (field capacity) and transmission (conductivity)
of soil water in mHM. During intermediate-flow conditions,
evapotranspiration (AspectcorrPET) governed the stream-
flow simulations, probably because of the high influence of
evapotranspiration on the shallow soil storage and thus the
system state of the catchment. This high sensitivity of an
evapotranspiration parameter during intermediate-flow con-
ditions coincides with the findings of former studies (e.g.
Guse et al., 2014, 2016b).

The specific influence of AspectcorrPET was mainly on
the water balance (fingerprint RR) in all of the headwaters.
Ksconst was the most sensitive parameter for most of the
other single-value fingerprints, encompassing those quanti-
fying low-flow (BFI) as well as high-flow conditions or the

flashiness of hydrological response (CV, HPC, HFD, RTC).
Only for one single-value fingerprint (SLFDC, related to the
rate of change in streamflow) another parameter (Recharge-
Coeff) was found to be as sensitive as Ksconst. The moder-
ate relevance of the groundwater-related RechargeCoeff in-
creased during low-flow periods, as illustrated by INDPAS
using FDCs and TEDPAS.

A temporally resolved sensitivity makes it difficult to re-
veal clear patterns of dominant parameters when dealing with
long time periods. Guse et al. (2016b) also recognised that
parameter sensitivity by TEDPAS based on the streamflow
hydrograph should be analysed on different temporal aggre-
gation levels and should be related to different streamflow
magnitudes for a detailed assessment of dominant model
parameters and temporal process dynamics. While their
methodological approach was purely based on aggregation
and reordering of TEDPAS sensitivity and streamflow time
series, we added additional value with INDPAS aiming at
multiple response targets including FDCs. The consideration
of flow duration curves enabled analysing streamflow free of
autocorrelation and time dependence. The FDC as a model
response target for sensitivity analysis provided information
on parameter sensitivity along the independent variable of
streamflow exceedance probability. In contrast, for classical
hydrograph inspection, which is the basis of TEDPAS, time
is the independent variable. INDPAS along FDCs allowed us
to draw conclusions about parametric influences at specific
streamflow magnitudes.

Regardless of the chosen model response target, in the case
of 14 Ruhr headwaters only one or a very small group of pa-
rameters were identified as relevant for streamflow response.
In this context, Herman et al. (2013) showed that the long-
term water balance is dominated by only very few param-
eters, irrespective of the hydrological conditions and of the
model. Cuntz et al. (2015) performed a global Sobol sensitiv-
ity analysis on the hydrologic model mHM. For three distinct
humid and arid European catchments this analysis always re-
sulted in about 20 informative parameters, though the dom-
inant parameter sets were composed very differently. Their
criteria to select the sensitive parameters was substantially
different from our approach, which renders a direct compar-
ison between the studies difficult. The different number of
dominant parameters might also be due to correlated mHM
parameters which we sorted out before sensitivity analysis.
In contrast, Cuntz et al. (2015) considered the degree of cor-
relation between mHM parameters as rather minor to be in-
terfering with parameter identification.

Especially the application of fingerprints as model re-
sponse targets for sensitivity analysis revealed further de-
tails of parametric dominance that can help in more directed
model applications. Dominant parameters can be addition-
ally adjusted pinpointed to fingerprint metrics in a subse-
quent calibration step, while insensitive parameters can be
disregarded for model calibration directed to the respective
response target (van Werkhoven et al., 2009). This reduces
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the parameter space and need for constraining parameter val-
ues and thus facilitates model calibration. A missing sensi-
tivity signal to a fingerprint (e.g. RechargeCoeff to RR) can
reveal that the chosen response target might not be relevant
to further constrain the parameter identification in a certain
catchment.

The spread of the simulated response ensembles allows
us to judge whether a fingerprint metric is a reliable re-
sponse target for sensitivity analysis or whether different fin-
gerprints, e.g. the master recession curve or the double mass
curve, should be considered instead. For example, the hy-
drographs and FDCs showed significant spread that also dif-
fered between the catchments (Figs. 3 and 6). In contrast,
the spread in simulated values for the Autocorrelation Time
(ACT) was small for all catchments. Accordingly, INDPAS
analysis directed to ACT also showed only moderate sensi-
tivities for the set of eight parameters (Fig. 5). Our preselec-
tion of eight parameters can potentially lead to the elimina-
tion of other storage parameters that might be most sensitive
to ACT. Thus, one might conclude that parameter selection
based on INDPAS would result in a different choice in the set
of the most sensitive parameters. In the case of ACT this is
not very likely, since storage parameters (e.g. ExpslowInter-
flow and GeoParam) were still included. Instead, the precip-
itation time series has a large impact on the autocorrelation
structure of streamflow; the ACT metric is thus less informa-
tive than others that depend less on the hydroclimatic bound-
ary conditions.

The resulting partial variances for each fingerprint are
comparable as they portray the relative influence of the pa-
rameters on the variation of the target, regardless of the spe-
cific values of the targets. In order to take into account the im-
pact of the spread of the simulation results on the parameter
sensitivities, a weighting factor for partial parameter sensitiv-
ities might be helpful. An impact-weighted INDPAS might
then be used along with catchment class-specific response
fingerprints to select relevant parameters for the specific hy-
drological conditions. In Fig. 6 we normalised the FDCs by
the maximum value of each time series. For the visual com-
parison of sites this is a necessary step, but it might lead to a
different form of appearance, including the spread of the sim-
ulation ensemble. If absolute fingerprint values are replaced
by normalised quantities (Samaniego et al., 2010a; He et al.,
2011), dimensions should be considered explicitly when de-
termining sensitivity weighting factors.

Our findings using different model response targets con-
firm the necessity of a multivariate sensitivity analysis. This
was similarly recognised by Wagener et al. (2009), who ap-
plied three standard error metrics as objective functions for
sensitivity analysis. Their results for parameter sensitivity
were found to change spatially when the objective function
was replaced. Razavi and Gupta (2015) similarly pointed out
that even conflicting conclusions could be drawn if different
properties of the model response were applied in sensitiv-
ity analysis. To avoid misinterpretation of sensitivity results

we propose that the selection of specific fingerprint metrics
should be determined by the purpose of the modelling; for
instance, sensitivity to fingerprint metrics for peak flow is
suitable if flood prediction is the focus. Redundancy is not
problematic if several similar metrics for a specific stream-
flow characteristic are selected, e.g. HPC, CV, and HFD for
high flows. A multivariate analysis with metrics of several,
even partly similar streamflow characteristics (frequency of
high flow, magnitude of high flows etc.) is rather helpful to
ensure complete parameter identification for different catch-
ments. Aggregated and temporally independent fingerprints
like the FDC proved to be especially applicable.

4.2 Regional differences in parameter sensitivity

Although the most sensitive parameters and the correspond-
ing sensitivity patterns of streamflow response were found
to be similar for the 14 investigated Ruhr headwater catch-
ments, the analysis with TEDPAS and INDPAS revealed cer-
tain regional differences.

Especially the analysis of sensitivity duration curves de-
rived from TEDPAS revealed regional differences of param-
eter sensitivity between headwaters. For half of the eight
selected parameters we found regional differences in SDCs
(Sect. 3.2 and Fig. 4). The most sensitive parameters exhib-
ited the largest spread of SDCs (e.g. Ksconst and Aspect-
CorrPET; Fig. 4c and e), and their SDCs were systematically
ordered according to the geographical location (southwest–
northeast) and the physiographic setting (ASP, URB; Ta-
ble 3). Some catchments deviate from the general pattern in
SDCs for evapotranspiration and interflow parameters (e.g.
RUE; Fig. 4e and f). In these cases, the specific combina-
tion of catchment characteristics (degree of soil sealing, to-
pographic gradients, land cover) might have led to different
processes in streamflow simulations. For the catchment of
RUE, the smallest slope value among the headwaters in con-
junction with the highest percentage of urban area (SLOPE,
URB; Table 3) can explain the deviation from the general
pattern of SDCs for the two parameters. SDCs thus provided
a convenient means to identify regionally different sensitivity
characteristics for each of the analysed parameters.

The results from the INDPAS analysis directed to single-
valued fingerprints also showed some differences between
the headwaters. In particular, the sensitivity patterns of the
second and third ranked parameters were found to differ,
although not with the same systematic ordering as for the
SDCs. The patterns of the most sensitive parameters along
streamflow exceedance probability (catchment-specific strips
in Fig. 6) provided visually condensed diagnostic informa-
tion for different streamflow magnitudes, but showed only
minor differences between the catchments.

Together this shows that even the small physiographic gra-
dients in the Ruhr headwater catchments can cause differ-
ences in parameter sensitivity to streamflow response charac-
teristics. This finding is partly contrary to those of Guse et al.
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(2014), who reported almost no differences of parameter sen-
sitivities among different subcatchments of the Treene in
northern Germany in a similar analysis. This was explained
by the absence of a pronounced heterogeneity in their study
area.

Given that the same parameter sets are applied to all head-
water catchments, any regional differences in parameter sen-
sitivity originate from differences either in the hydroclimatic
or in the physiographic setting. In the case of the Ruhr
headwaters, the local hydroclimatic and physiographic dif-
ferences (Table 3) seem to be sufficient to be discriminated
by the hydrological model structure in the form of a differ-
ent variation in streamflow response. Due to their geograph-
ical proximity, the 14 Ruhr headwaters are generally similar
in terms of the long-term hydroclimate (Wetness Index) and
the physiography, e.g. in their soil hydrological characteris-
tics (BFI). They show, however, some differences in annual
precipitation amount, topographic gradient, and land cover.
The average annual precipitation in the simulation period be-
tween 1997 and 2006 reveals a hydroclimatic gradient with
lower to higher precipitation rates from northeast to south-
west (PMEAN), similar to the geographical ordering of the
SDCs in Fig. 4. Song et al. (2013) also attributed local dif-
ferences of parameter sensitivity to the spatial distribution of
meteorologic forcing. Demaria et al. (2007) similarly con-
cluded that parameter sensitivity was more strongly deter-
mined by climate gradients than by changes in soil properties
in their Monte Carlo-based sensitivity study. Under differ-
ent hydrological conditions, regional sensitivity patterns or
the number of parameters which influence streamflow simu-
lations might be different from the present example (Cuntz
et al., 2015).

As parameter sensitivity is a prerequisite for parameter
identifiability, even slight differences in sensitivity reveal in-
formation about how identifiability can change among differ-
ent catchments. Scale-dependent limitations have to be kept
in mind to avoid a levelling out of the explanatory value of a
physiographic descriptor (Blöschl and Sivapalan, 1995), pos-
sibly resulting in an intermediate course of sensitivity dura-
tion as seen for the largest headwater of Bamenohl (BAM;
Sect. 3.2 and Fig. 4). van Griensven et al. (2006) remarked
that local differences indicate that results of global sensitiv-
ity analysis for one catchment cannot be directly applied to
other, even nearby locations, but may be used as reason-
able estimates within the same catchment category. Loca-
tions with intermediate-sensitivity characteristics (e.g. BAM)
could at least serve as a starting point for parameter trans-
fer to closely located ungauged sites. As the local differ-
ences between the Ruhr headwaters are not very large, the
most sensitive parameters found for WEN in the first step
of the analysis with all model parameters were also domi-
nant in the other subcatchments, which was corroborated by
the TEDPAS analysis with eight selected parameters on all
subcatchments. Any local differences in parameter sensitiv-
ity revealed by the analysis of sensitivity duration or INDPAS

could then be handled during individual model calibration for
each catchment.

5 Conclusions

We used FAST for a global sensitivity analysis of the hy-
drological model mHM in 14 headwater catchments of the
Ruhr River in Germany. Our multilevel approach not only
reveals the dominating parameters for streamflow simulation
but also pinpoints the influences of the analysed parameters
to diverse aspects of hydrological response processes. Espe-
cially the application of several hydrological fingerprints as
response targets allows for detailed model diagnostics. Com-
parison of streamflow response characteristics and analysing
along the range of streamflow magnitudes shows how the
parametric dominances and the most influential parameters
can change with streamflow conditions, for example the com-
plementary sensitivity of soil moisture dynamics and evapo-
transpiration in our case. The combination of TEDPAS and
INDPAS also provides a means to unveil the slight differ-
ences in catchment-specific patterns between the closely lo-
cated headwaters. The general similarity in the sensitivity
patterns indicates, however, that a parameter transfer to other
catchments might be possible, provided that the interplay of
catchment structure and local hydroclimate has evolved in a
similar way.

The results provide in-depth diagnostics on the model and
its parameters, which can support future improvements of
model structures, and facilitate case-specific model calibra-
tion in a reduced parameter space. The methodological ap-
proach of the multilevel sensitivity analysis with fingerprints
as response targets may be generalised to any hydrological
model or kind of catchment. The findings of this study moti-
vate to include further catchments as regional end-members
within different physiographic and climate settings to eval-
uate how parameter identifiability and the simulated hydro-
logical functioning regionally changes among distant catch-
ments. The consideration of multivariate response variables
in diagnostics of hydrological models is beneficial for a com-
plete identification, not only of parameter influences on sim-
ulated hydrological functioning but also of the regional rele-
vance for model calibration.
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Data availability. The streamflow data and the digital elevation
model used in this study are not publicly accessible, and were pro-
vided by the Ruhrverband in Essen.

The further spatial physiographic data can be downloaded
from the web: land cover data (https://land.copernicus.eu/
pan-european/corine-land-cover/clc-2006?tab=download); soil
data (https://produktcenter.bgr.de/terraCatalog/OpenSearch.do?
search=3E80DA1A-A9A7-45A3-9CC7-79796FE9ABA4&type=
/Query/OpenSearch.do); geological data (https://
produktcenter.bgr.de/terraCatalog/DetailResult.do?fileIdentifier=
1C60DDA9-EF73-47B9-9ED7-FCD22B3226C1).

Meteorological input data are available from Deutscher Wet-
terdienst. Data for precipitation (HYRAS; Rauthe et al., 2013)
and temperature (HYRAS; Frick et al., 2014) can be obtained via
https://www.dwd.de/DE/leistungen/hyras/hyras.html. The database
for potential evapotranspiration (AMBAV; Löpmeier, 1994) can be
accessed via ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/daily/
evapo_p.
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