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Abstract (English Version)

In this thesis, we investigate existence and uniqueness of solutions to the stochastic nonlinear
Schrodinger equation (NLS), i.e. the NLS perturbed by a multiplicative noise.

First, we present a fixed point argument based on deterministic and stochastic Strichartz esti-
mates. In this way, we prove local existence and uniqueness of stochastically strong solutions
of the stochastic NLS with nonlinear Gaussian noise for initial values in L*(R¢) and H!(R9),
respectively. Using a stochastic generalization of mass conservation, we show that the L?-
solution exists globally under an additional restriction of the noise.

In the second part, we develop a general existence theory for global martingale solutions of the
stochastic NLS with a saturated Gaussian multiplicative noise. The proof is based on a modified
Galerkin approximation and a limit process due to the tightness of the approximated solutions.
As an application, we get existence results for the stochastic defocusing and focusing NLS
and fractional NLS on various geometries like bounded domains with Dirichlet or Neumann
boundary conditions as well as compact Riemannian manifolds.

The martingale solution constructed by the Galerkin method is not necessarily unique. For this
reason, we independently show pathwise uniqueness of solutions to the stochastic NLS with
linear conservative Gaussian noise. The proof works in special cases as 2D and 3D Riemannian
manifolds and is based on spectrally localized Strichartz estimates.

In the last chapter, we replace the Gaussian noise by a Poisson noise in the Marcus form and
transfer the proof of existence of martingale solutions to this case.

Abstract (German Version)

Wir untersuchen die Existenz und Eindeutigkeit von Losungen der stochastischen nichtlinearen
Schrodinger-Gleichung (NLS), d.h. einer durch multiplikatives Rauschen gestorten NLS.

Zundchst prasentieren wir ein Fixpunktargument basierend auf deterministischen und stochas-
tischen Strichartz-Abschédtzungen. Auf diese Art und Weise zeigen wir die lokale Existenz und
Eindeutigkeit starker Losungen der stochastischen NLS mit nichtlinearem GaufSsschen Rauschen
fiir Anfangswerte in L?(R?) beziehungsweise H'(R?). Basierend auf einer stochastischen Ver-
allgemeinerung der Massenerhaltung beweisen wir anschlieSend, dass die L?-Losung fiir alle
Zeiten existiert, falls das Rauschen einer zusétzlichen Einschrankung geniigt.

Im zweiten Teil der Arbeit entwickeln wir eine allgemeine Existenztheorie fiir Martingallgsun-
gen der stochastischen NLS mit global Lipschitz-stetigem Gauflschem Rauschen. Der Beweis
beruht auf einer modifizierten Galerkin-Approximation, der Straffheit der Naherungslésungen
und einem Grenzwertprozess. Als Anwendung des allgemeinen Resultats erhalten wir Exis-
tenzresultate fiir die stochastische defokussierende und fokussierende NLS sowie die gebroch-
ene NLS fiir verschiedene Geometrien wie beschrinkte Gebiete mit Dirichlet- oder Neumann-
Randbedingungen und kompakte Riemannsche Mannigfaltigkeiten.

Die Martingallosung, die wir durch das Galerkin-Verfahren erhalten, ist nicht notwendiger-
weise eindeutig bestimmt. Dies motivert uns, die pfadweise Eindeutigkeit von Lésungen
der stochastischen NLS mit linearem, konservativem Gaufischen Rauschen zu gesondert zu
zeigen. Der Beweis funktioniert in Spezialféllen wie zwei- oder dreidimensionalen Riemann-
schen Mannigfaltigkeiten und beruht auf spektral lokalisierten Strichartz-Abschdtzungen.

Im letzten Kapitel ersetzen wir das Gaufische durch ein Poissonsches Rauschen und tibertragen
den Existenzbeweis fiir Martingallosungen.
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1. Introduction

This thesis is devoted to existence and uniqueness theorems for the stochastic nonlinear Schro-
dinger equation

(1.1)

i0u(t,z) = —Agu(t,z) £ |u(t,z)|*  u(t, 2) + “noise”,
u(0, z) = ug(x).

The noise is Gaussian and Poissonian and acts as a random potential used to incorporate spa-
tial and temporal fluctuations of certain parameters in a physical model. Typically, the noise
depends on the solution u itself and is therefore called multiplicative. As its deterministic coun-
terpart, occurs in applications such as nonlinear optics in a Kerr-medium as well as the
description of Bose-Einstein condensates and deep-water waves. For example, the cubic equa-
tion

0u(t, r) = —Agu(t,z) — |u(t, 2)|?u(t, ©) + O (x, t)u(t, ), t>0, x€R? (1.2)

with linear noise was proposed in [10] as a model for Scheibe aggregates under random tem-
perature effects. Here, 0,0 is a real-valued Gaussian process with correlation

E[atd(xl,tl)ata(l‘g,tg)] ZC($1,$2)6(t1 —tg), t1,ta > O, xr1,T2 € RQ.
In this thesis, we consider spatially correlated noise
o(t,r) =Y em(@)Bm(t), t>0, zeR?
m=1

with essentially bounded coefficients (e, ),, .y and a sequence (8, ),,,cy of independent Brow-
nian motions. In this case, the spatial correlation reads

c(z1,22) = Z em(21)em(x2), t>0, x1,zs € R2

m=1

Since the Brownian motion is not differentiable in time, the expression d;0(x, t) only represents
a distribution and the question arises how to interpret the product on the right hand site of
(L.2). We use the formulation as a Stratonovich stochastic evolution equation

du(t) = (iAu(t) + i\u(t)w*lu(t))dt —13" epu(t) o dBun(t),

u(0) = uyp,

(1.3)

in a Hilbert space containing the spatial dependence. The Stratonovich differential o is defined
through its connection

—i i emt o df, = —% i efnu —1i f: emudf,,
m=1 m=1

m=1
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to the Ito differential. The NLS with Stratonovich noise is the natural generalization of the
deterministic equation since the L?-norm of the solution is conserved. For this reason, the real-
valued noise is often called conservative and the quantity |u|? is a probability density if the initial
value is also normalized in L?.

Apart from the NLS with Gaussian noise, we also treat the NLS perturbed by discrete random
jumps. In the physical literature, this has been proposed in [125] and [126] as a model to in-
corporate amplification of a signal in a fiber at random isolated locations caused by material
inhomogeneities. In this case, the term ¢ in the problem has the from

=

o(t) = emLm (), t>0,

m=1

with spatial coefficients e, and an R"-valued Lévy process (L(t)),, of pure jump type. The
problem is formulated as stochastic evolution equation -

N
du(t) = (iAu(t) + i|u(t)|a*1u(t))dt —13" enult) o dLu(2),

m=1 (14)
u(0) = uyg,

with the Marcus product ¢ which guarantees the conservation of the L?-norm of solutions and
is therefore the best substitute for the Stratonovich product in the case of discontinuous noise.

Historic sketch and overview of the literature

To give an idea of the techniques which are relevant for solving stochastic equations like
and (L.4), we would like to give a historical and methodical overview of the previous math-
ematical research. In detail, we describe the analysis of the deterministic NLS and the study
of stochastic partial differential equations (SPDE) since these fields particularly influenced this
thesis.

The deterministic NLS

{ do(t,x) = iAu(t, z) — iAu(t, z)|* ou(t, z), 15)

v(0,2) = vo(x),

has been a very rich subject of study for many mathematicians and physicists in the previous
decades. On the one hand, this has been motivated by its appearance in applications, where
the dimensions d = 1,2, 3 and the power a = 3 are important. On the other hand, the mathe-
matical interest in the NLS comes from the difficulties posed by the combination of the linear
part without regularization effect and the power-nonlinearity. Moreover, the NLS serves as a
model dispersive Hamiltonian partial differential equation since it has a particularly strong dis-
persive behavior and is technically simpler than comparable equations like the nonlinear wave
equation, the Korteweg-de Vries equation and the wave maps equation. The most important
focus of mathematical research on the NLS has been the appearance of different phenomena
like global wellposedness and blow-up depending on the choice of the parameters A € {—1,1}
and a > 1.

Let us describe the main properties of the NLS. As a consequence of the Hamiltonian structure,
sufficiently smooth solutions v obey the conservation laws

M(v) := ||v]|32 = const,



1 3 A a+l
g(’U) = iH (—A)2 U||2Lz - mHv”LjJrl = const. (16)

Typically, M(v) and &(v) are called mass and energy. The conservation of mass indicates that L?
is a natural space to look for global solutions of (I.5). We observe that the parameter \ enters
into the energy. Nonlinearities with A = —1 are called defocusing and the notion focusing refers
to the case A = 1. The sum of mass and energy dominates the H!-norm if A = —1 and in view
of the Sobolev embedding H! — L®T! the energy is well-defined in H! for

ac (1,1+(d42)+] (1.7)

Moreover, the NLS (1.5) is invariant under the scaling
v(t, @) = pE T (Rt o) (1.8)

and the energy tolerates the scaling if and only if o = 1+ % for d > 3. These observations lead
to the conjecture that is the right range of exponents to study global wellposedness of the
NLSin H'. The mass is invariant under the scaling for = 1+ 2 and thus, wellposedness
in L? can be studied for o € (1,1 + 4]. For further details on the scaling heuristic, we refer to
Tao [114].

Starting in the 1970s, there have been many attempts to use the conservation laws (1.6) for an
existence theory of (1.5) based on the following strategy:

1) Choose a suitable approximation of (1.5).

2) Deduce variants of the conservation laws (1.6) for the approximation and use them for
uniform bounds.

3) Pass to the limit via a compactness argument and obtain a solution of (1.5).

The most popular choice in point 1) has been the Galerkin method in Gajewski [55], Gini-
bre/Velo [58] and Vladimirov [127]. We also would like to mention different approximation
techniques like mollifying in Ginibre/Velo [57] or Yosida type approximations in Cazenave’s
monograph [36] and in Okazawa/Suzuki/Yokota [102]. The advantage of the procedure de-
scribed above lies in the fact that it only employs basic tools from the theory of partial differ-
ential equations and functional analysis and hence, it can be formulated for various geometries
and boundary conditions. However, this method leads to a solution which is not necessarily
unique and only weakly continuous in H'. In a second step, uniqueness can be approached by
the formula

o1 (t) — va(t) 72 =2 Re/o (v1(s) = va(s), —i|v1(s)[*tv1(s) + ijva(s)|* Tva(s))ds  (1.9)

for the difference of two solutions v; and v, of (1.5) and improvements of the classical Gronwall
argument. As a key ingredient in this argument, one has to show that solutions have spatial
LP-estimates of the form

lullz2(soey S 1+ (]J|p)? (1.10)

for all p € (1,00). In one and two dimensions, the Sobolev inequality and its limiting case,
the Moser-Trudinger inequality, provide these bounds and as a consequence, the uniqueness
of weak solutions in L® H!. We refer to Vladimirov, [127], and Ogawa/Ozawa, [100],[101], for
articles in this direction. We further remark that, originally, the strategy to use estimates of the
type to prove uniqueness was developed by Yudovitch, [131], for the Euler equation.
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To overcome the deficits of the previous strategy and get unique strong solutions, an alternative
approach the NLS has been developed in the mid of the 1980s. The idea was to construct local
solutions up to a maximal existence time 7™ via the fixed point equation

t
v(t) = Py — i)\/ e =8y (s)|* Tu(s)ds, te[0,7%), (1.11)
0

and a contraction argument. Due to the algebra property of L?-based Sobolev spaces H* for
s > ¢ and the fact that iA generates a unitary Cy-semigroup, the abstract theory for evolution
equations guarantees a unique local solution for initial values in H*. In [24], Brézis and Gallouet
combined an argument of this type with the conservation laws to prove global wellposedness
in H?. At lower regularity, however, it is not clear how to find local solutions in the first place
since the nonlinearity maps neither L? nor H' into itself.

At this point, another characteristic property of the NLS comes into play: the dispersive char-
acter of the linear part. Physically, this means that waves of different frequency propagate with
different velocity and thus, wave packages spread out to infinity while the complete mass is
constant. In the model case M = R, this can be mathematically expressed by the estimates

The second estimate reflects a gain of spatial integrability by the solution of the linear equation
which can be improved to gain integrability in space-time using tools from harmonic analysis
and interpolation theory. As a result, we obtain the Strichartz estimates

e[ 2 = [lvollzz, [e"Avg| o < (rlt) "% Joollr,  t#0. (1.12)

t
It — eitAvo|\L31 o S lvollze, Ht — / el =8 f(s)ds
’ 0

SN ot o (1.13)

Lgl Lgl
for exponent pairs (p;, g;) € [2, 0]? with

2 d d )

G eri 9 (¢i,pi, d) # (2,00,2), i=1,2. (1.14)
The first estimate in (1.13) occurred in the special case p1 = ¢1 = 2 + % in the article [111] by
Strichartz. Later on, Yajima [129] and Ginibre/Velo [58], [59] obtained the general Strichartz es-
timates for the free evolution and the convolution term in for non-endpoints, i.e. g1, ¢z #
2. Finally, Keel and Tao proved the endpoint case in [76]. Based on Strichartz estimates and the
conservation laws (1.6), a unique global solution v € Cy(R, H'(R?)) N LY(R, W1oT1(R?)) of the
NLS can be constructed for an initial value vy € H' (M) if

4 —_ —
ae{@1+f4”% A=—1,
(1,14 3), A=1

As another benefit of this argument besides the uniqueness and the strong continuity of the
solutions, we would like to mention that it can also be used to obtain an L2-theory for the NLS.
For a € (1,1 + %), one can prove global wellposedness in Cy(R, L2(R%)) N LY(R, LT (R?)).
For critical exponents, the technique presented above only leads to local wellposedness since
the blow-up criterion is not strong enough to be accessed with the conservation laws. The
fixed point argument can be traced back to the articles [119] by Tsutsumi and [75] by Kato. We
also refer to Cazenave [36], Tao [114] and Linares/Ponce [88] for a detailed treatment of the
deterministic NLS as well as other dispersive equations. These monographs also include an
overview of the progress on the critical NLS on the full space R¢ in the last twenty years.



We would like to mention another development in the research on the NLS which has strongly
influenced this thesis. Unlike the case of the full space R? described above, the dispersion of
the Schrodinger group is far less well understood on other geometries like Riemannian mani-
folds or domains in R¢. Obviously, a global dispersive estimate as in cannot be true for
operators like the Neumann Laplacian on a bounded domain or the Laplace-Beltrami operator
on a compact manifold since constant functions are integrable in this case and solve the linear
Schrodinger equation. For compact manifolds, however, Burq, Gérard and Tzvetkov, [35], were
able to prove a spectrally localized short-time dispersive estimate

||eitAg<p(h2Ag)vo||L°° < |t\7% llvoll 1, t € [—ah,ah]\ {0}, (1.15)

for some oo > 0 and all » € (0, 1]. Combining this result with the abstract Strichartz estimates
by Keel and Tao [76] and Littlewood-Paley theory, they could prove Strichartz estimates of the

type

|t — eita (1.16)

¢
, Ht»—>/ ei(t_s)Af(s)ds
0

vollzaq,Lry S llvoll S

1 1

! La(1,L7) LH®)
for exponents (p, ¢) as in (1.14) with p < co. In particular, the weaker dispersive behavior is re-
flected in the regularity loss % and the fact that the convolution estimate does not involve gen-
eral exponents on the right hand side. These deficits restrict the application area of Strichartz
estimates for the construction of local strong solutions to higher regularity compared to the

R%-case. Burq, Gérard and Tzvetkov obtained a unique solution
v e C([—To, To], H‘;(M)) N Lp(—To, To; LOO(M))
of (1.5) forvg € H*(M),p > o — 1 and

d 1

> -
579 max {o — 1,2}

In particular, the conservation laws only yield global wellposedness in dimension one and
two. Remarkably, could be used in three dimensions to provide the LP-estimates for the
uniqueness argument based on (1.9). Compared to the Sobolev-type arguments used before
this reflects a gain of 3-regularity by Strichartz estimates. In their article [16], Bernicot and
Samoyeau generalized to manifolds with bounded geometry under a slightly higher loss
% + ¢ of regularity. For similar estimates on domains and manifolds with boundary, we refer to
Anton [4] and Blair/Smith/Sogge [18], [19].

Besides the theory of the deterministic NLS, the second branch of mathematical analysis under-
lying this thesis is the theory of stochastic partial differential equations (SPDE). Typically, these
equations are formulated as Hilbert or Banach space valued stochastic differential equations
For example, the integral form

u(t) = up + /t (iAu(s) — iMu(s)|* tu(s) — % i efnu(S)>d$ —1i i /t emu(s) dBm(s)
0 m=1 m=1"0
(1.17)

and the mild form

t fe%s) [e'e) t
. 4 1 .
u(t) = e"uy +/0 e‘(t_')A< —iAfu|* " — 3 > e%u) ds — img_l/o )% udB,  (1.18)

m=1
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are two equivalent ways of viewing our problem (L.3). The last equation somehow corresponds
to the deterministic fixed point problem (L.1I). Both and employ the It6 integral
which goes back to the pioneering works [68] and [69] by Kiyosi It6 in the finite dimensional
setting. Since his construction merely depends on the existence of an inner product, the con-
struction of the stochastic integral was soon generalized to general Hilbert spaces. For a com-
prehensive treatment of SPDE in Hilbert spaces, we refer to the monographs [40] by da Prato
and Zabczyk, [90] by Liu and Rockner and [37] by Chow. We also highlight some results on
stochastic integrals in Banach spaces which are useful to estimate the stochastic convolution
term in (I.I8). In the class of martingale type 2 Banach spaces which include L? for p > 2,
the stochastic integral was investigated among others by Dettweiler [46] and Brzezniak [25],
[26]. In [124], van Neerven, Veraar and Weis were able to generalize the stochastic integral to
UMD spaces. In the particular case of LP-spaces for p € (1, 00), Antoni improved this theory in
his diploma thesis [5] and his PhD thesis [6] by proving a stronger maximal inequality for the
stochastic integral.

There is another branch of stochastic analysis which should be mentioned here. The Brown-
ian motion in Itd’s stochastic integration theory could be replaced by more general continu-
ous semi-martingales and, more importantly in view of problem (L.4), by Lévy processes. We
refer to the monographs [74] by Karatzas and Shreve and [7] by Applebaum for the finite-
dimensional case. Stochastic PDE with Lévy noise are treated comprehensively by Peszat and
Zabczyk [107].

Let us continue with an overview of the literature dealing with the stochastic NLS and
with a focus on the techniques which have been developed so far. First, we would like
to remark that real-valued constant coefficients e,, are not interesting since in this case, the
equation can be reduced to the deterministic NLS by a simple gauge transform

u(t) — 67i Z?no:l evnﬂm(t)y(t). (1.19)

For more general noise, however, the mathematical study of the stochastic NLS is also strongly
inspired by the deterministic NLS and employs the methods we described above. In particular,
generalizations of the conservation laws and stochastic analogues of the Strichartz esti-
mates in (1.13) and are crucial to transfer deterministic techniques to the stochastic case.
For example, the mass of a solution to the stochastic NLS satisfies the evolution formula

00 t
lu(®)|72 =lluolfe =2 /0 Re (u(s),iemu(s)) > dBm(s) (1.20)
m=1

almost surely for all ¢ > 0. Thus, we have to give up the property of mass conservation in the
non-conservative case with Ree,, # 0 for some m € N. At least, the mass is still a martingale
and thus constant in the expected value. According to [11] and [14], this kind of noise rep-
resents a stochastic continuous measurement along the observables e,,,, m € N. Similarly, the
deterministic energy conservation has a generalization in form of an evolution formula con-
taining stochastic and deterministic integrals. Under suitable assumptions the terms induced
by the noise can be treated as perturbations of the main part of the equation. In the case of
linear noise, for example, the additional terms behave reasonably well and can be treated in a
Gronwall argument. This results in estimates of the type

E[ sup [lu(t)]|%.] < Cre®T, E[ sup [lu(t)]|%.] < C3e“ T (1.21)
te[0,T] te[0,T]

for all ¢ € [1,00) and T > 0. These estimates are still sufficient to globalize local solutions and
to prove existence by the compactness method. The appearance of the expected value in (1.21)



is quite characteristic for the theory. This is due to the fact that pathwise estimates for the It6
integral are generally not available.

As in the deterministic case, most of the interest has been caught by the problem on R?. The
research started with the article [41] by de Bouard and Debussche who studied the stochastic
NLS with conservative linear noise in L?(R?). They transfered the fixed point argument we
explained above to using the inequality

0ot
t— Z / el =98 u(s) dBm(s)
m=170

S lull e, Lo (0,7:22)) (1.22)
L7(Q,L2(0,T;LP))

to complement the deterministic Strichartz estimates from (L.13). In this way, they were able
to estimate the third term on the right hand side of (L.I8). The proof of is based on
the Burkholder inequality in LP(R?) and the dispersive estimate from (T.12). We observe that
similarly to (L.21), the expected value shows up in the estimate and Strichartz estimates
do not gain integrability in ). Nevertheless, de Bouard and Debussche managed to close a
fixed point argument for an approximated equation arising by a cut-off of the nonlinearity. The
solution of this equation solves the original one up to a certain stopping time and therefore, it
is a local solution. Although this leads to a more complicated blow-up alternative including
the L] Lot 1-norm, the authors were able to show that the solution exists globally. Since the
estimate does not work for arbitrary Strichartz pairs (p, ¢), the authors had to impose an
unsatisfactory additional restriction of the admissible exponents. Similar results were obtained
by de Bouard, Debussche in [43] for the conservative stochastic NLS in H!(R?). Subsequently,
the same authors studied blow-up behavior in [42],[44].

In [30]], Brzezniak and Millet derived the estimate

o0 t )
=D /O =B (5) dBp(s)

m=1

§ ||(bm)m||Lr(Q,L2([O,T]XN;LQ)) (123)

L7(Q,L9(0,T;LP))

for the stochastic convolution associated to the Schrédinger group. Compared to (1.22),
has two important advantages. On the one hand, it is true for arbitrary Strichartz pairs (p, ¢)
and an L7-norm appears on the right-hand side instead of an L;°-norm. This reflects a gain
of integrability in both time and space and makes it possible to deal with nonlinear noise. On
the other hand, the proof is based on the Strichartz estimate for the free evolution in (L.13)
and also works if one has only access to Strichartz estimates with loss of regularity as (L.16).
The estimate does not enjoy this flexibility since the dispersive estimate is a particular
feature of the Schrodinger group on RY. Brzezniak and Millet used their stochastic Strichartz
estimate to generalize the argument by Burq, Gérard and Tzvetkov to the stochastic setting
and proved global existence and uniqueness of the stochastic NLS with nonlinear noise on 2D
compact manifolds. In one of the main results of this thesis, see Theorem we use in R4
to improve the results from [41] significantly.

Motivated by the goals to get rid of the restriction of the exponents from [41]] and to incorporate
non-conservative noise, Barbu, Réckner and Zhang approached the problem on R% in their
article [11]. For a finite dimensional noise W = "M ¢,.4,,, they reduced to a non-
autonomous NLS with random coefficients via a generalization of the transform (1.19). The
authors call this procedure rescaling approach. Generally speaking, the main advantage of this
strategy is the fact that the equation can be solved pathwisely. This allows to use the fixed point
argument for the deterministic NLS without the cut-off procedure by de Bouard and Debussche
as soon as Strichartz estimates for non-autonomous operators of the form

A(s) = =1(A+b(s) -V +c(s)) (1.24)
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are available. In particular, the full range of subcritical exponents o € (1,1 + ) is accessible
and a transfer of the argument to higher regularity is easier compared to [41]. This has been
investigated by the same authors in [12]. The Strichartz estimates for can be obtained
from Marzuola, Metcalfe and Tataru [95]. In this context, we would like to mention the recent
preprint [134] by Zhang who adapts the argument from [95] to obtain pathwise Strichartz es-
timates with an emphasis on the rescaling approach for stochastic dispersive equations on R
Most notably, the rescaling approach can be used to show that large conservative noise has a
stabilizing effect on the NLS in the sense that it prevents blow-up with a high probability. In
[13], Barbu, Réckner and Zhang discovered this effect for the focusing NLS in H*(R?) with
super-critical & € (1 + %, 1+ ﬁ). However, the assumptions on b and c in the articles [95]
and [134] lead to severe additional requirements on the noise coefficients e,,, m € N, which can
be viewed as the main disadvantage of this approach besides the fact that the transformation
only works for linear noise.

To the best of our knowledge, there is only one article so far which employs an approximation
argument to construct an analytically weak solution of a stochastic NLS. In [77], Keller and
Lisei transfered the classical Galerkin argument by Gajewski [54] to the stochastic setting and
obtained existence and uniqueness for the NLS on a closed interval with Neumann boundary
conditions.

Stochastic nonlinear Schrodinger equations with jump noise as in are less well studied in
the literature compared to their Gaussian counterpart (1.3). In [45], de Bouard and Hausenblas
consider a similar problem as with more general assumptions on the noise. They also allow
more general jumps in a function space Z — L?(R%) and particularly, infinite dimensional
Marcus noise is admissible in their framework. For v < 1 for initial values uq € H'(R?) which
additionally satisfy | - |ug € L?(R?), the authors obtain a martingale solution with cadlag-paths
in H7(R?). Other articles like [125] and [126] by Villarroel and Montero studied the NLS with
jump noise with a focus on modeling aspects and the qualitative behavior of solutions rather
than developing a wellposedness theory.

Formulation of the problems

To prepare the presentation of the contents and the main results, we introduce some notations
and give a precise unified formulation of the equations we consider in this thesis and solve in
various special cases.

Suppose that ug is an initial value, A € {—1,1}, @ > 1 and A is a non-negative selfadjoint
operator on a Hilbert space L?(M). Moreover, we take a sequence of independent Brownian
motions (B),,cy and coefficient functions e,,, : M — C as well as g : [0,00) — R specify-
ing the multiplicative Gaussian noise. In this setting, we consider the It6 stochastic evolution
equation

1 o0 o0
du = ( —iAu — i\u|* Ty — B Z |em|2g(|u|2)2u)dt —1i Z emg(|u*)udBm,
m=1

m=1

(1.25)
u(0) = up.

To model random jumps, we employ a compensated time-homogeneous Poisson random mea-
sure on RY for some N € N which induces a Lévy process L via

L(t):(Ll(t),...,LN(t))T:/O /{|l<1}lﬁ(ds,dl), L0,



Using the Marcus product ¢ which can be viewed as an analogue of the Stratonovich noise in
the discontinuous case, we treat the equation

N
du(t) = (—iAu(t) — iA|u|* 'u)dt — i Z emu(t—) o dL,(t),

m=1

(1.26)

Content and main results of this thesis

In order to improve the presentation of the main results, we have outsourced various contents
to the second chapter. There, we prepare the study of the stochastic NLS by providing the
most important solution concepts, formulae for the mass of solutions as well as deterministic
and stochastic Strichartz estimates in a unified framework. Moreover, we present compactness
results in particular function spaces suitable for the Gaussian and the Poissonian noise together
to highlight the similarities, but also the differences between the continuous and the cadlag
case.

The third chapter is based on the article [62]] by the author of this thesis. We study the problem
(T:25) in the most classical situation with A = —A and initial values uy € L?*(R?%) and ug €
H'(R%). We allow the particularly difficult case of power-type nonlinear noise, i.e.

y—1

glry=r=, ~y>1

Our approach to the problem is inspired by de Bouard and Debussche [41],[43]. However, we
replace their estimate of the stochastic convolution by the improved one due to
Brzezniak and Millet. This leads to different conditions of the coefficients ¢,,,, m € N, and
more notably, the complete range of exponents and nonlinear noise with v > 1. Our results for
ug € L*(R?) can be combined in the following theorem.

Theorem 1. Let ug € L?(R%), A = —A and (e;n)men C L¥(RY) with 3 [lem[|2e < 0.
Then, the following assertions hold:

a) Leta € (1,1 + 3] and v € [1,1 + 2]. Then, there exists a unique local solution of (.25
in L?(R%). Both stochastically and analytically, the solution is understood in the strong
sense from Definition 2.11

b) Leta € (1,1 + 2) and vy = 1. Then, the solution from a) is global.
¢) Let e, be real valued for eachm € N, o« € (1,1 + %) and

a—14+d(1—-a)

1<y <
K a+1lda+d(1 —a)

+ 1L

Then, the solution from a) is global.

Above, we presented the approaches of the articles [41] by de Bouard and Debussche and [11]
by Barbu, Réckner and Zhang who also considered the stochastic NLS in R?. Now, we would
like to classify Theoremin view of [41] and [11]]. In terms of the exponents « in the determin-
istic part of the equation, the Theoremis identical to the result in [11]. However, it improves
[41] since de Bouard and Debussche additionally assume o € (1,1 + %) for d > 3. More-
over, Theorem [1|is the first result which incorporates nonlinear noise excluded inherently by
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the rescaling approach and the fixed point argument based on (1.22). The assumption Barbu,
Rockner and Zhang impose on the coefficients reads

em € C°(RY), — lim (&) (lem ()] +[Vem(©)] +[Aen()]) =0
with
© ,_{1+I£2, d+2,
T A+ 1EP)og(2 + [€)), d=2.

This reflects a significant restriction to regular and decaying coefficients. For technical reasons,
the authors replace the series in (1.25) by a finite sum. In [133], they remark that the infinite
case can also be handled under the strong summability condition

o0 o0
Do llemlie <00, Y l10%em]Fe < o0
m=1

m=1

for all multi-indices 3. The assumptions by de Bouard and Debussche correspond to the square

function estimate
0 1
2
(5
m=1

for some 6 > 2(d — 1). There is no strict inclusion between and Yo [lem |3 < oo from
Theorem([I] However, one might say that the latter condition is more natural since it guarantees
that each e,, is a multiplier on L?(R?). Furthermore, the L>°-assumption leads to the fact that a
Hilbert-Schmidt operator B(u) : £2(N) — L?(R?) can be defined by

< 0 (1.27)
L2(M)NL2+3 (R4)

B(u) fm = enu, m e N,

for the solution u and the canonical ONB (f,,),,cy of £2(N). This is useful since it allows to
construct the stochastic integrals in (I.17) and (T.18) in L?(R%).

Let us state and review our results for initial values ug € H'(R9).

Theorem 2. Let ug € H'(R%), A= —A and assume 3.°°_, (|lem ||z~ + [|[Vem||r)® < 0o, where

LYRY),  d=3,
F:=< L?>T5(RY), d=2,
L2RY), d=1,
for somee > 0. Leta € (1, 1+ 3]U (2, 1+ g7 ] and v € [1, 1+ 3]U (2, 1+ z%;-]. Then, there
is a unique local solution of in H'(R?). Both stochastically and analytically, the solution
is understood in the strong sense from Definition[2.1]

This result is quite similar to Theorem [I|a) apart from the gap in the ranges for the exponents
a and +. This gap occurs due to technical difficulties arising if one combines the truncation
method to deal with the stochastic terms with the fixed point argument in a ball which is usu-
ally used in the deterministic case. A similar, but even stronger restriction was observed by de
Bouard and Debussche in their H'-article [43]. With the rescaling approach of Barbu, Réckner
and Zhang, see [12]], the gap can be avoided and they obtain local wellposedness including a
result on pathwise continuous dependence for all @ € (1,1 + ﬁ). Concerning the other
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aspects, the comparison of Theorem 2| with [12] and [43] is similar to the L?-case. The main
advantages of Theorem [2| are the more convenient assumptions on the coefficients e,,, m € N,
and the fact that it is the first result for nonlinear noise. Furthermore, we remark that Theorem

can also be used for global existence if one proves a rigorous evolution formula for the energy
as in [12].

The contents of the fourth and fifth chapter are motivated by the question whether the global
existence and uniqueness result by Brzezniak and Millet [30] on 2D compact manifolds could
be generalized to higher dimensions. We recall from the overview of the deterministic NLS
that this is significantly harder compared to the R¢-case where the dimension only enters in the
conditions for the admissible exponents. The difficulties arise from the loss in the Strichartz
estimates and the weaker convolution estimate in that make a fixed point argument less
attractive. In fact, one cannot avoid to use Sobolev embeddings H*? — L° which get more
and more restrictive in higher dimensions. Thus, we follow a different strategy and separate
the proofs of existence and uniqueness which are contained in the fourth and fifth chapter,
respectively. In Chapter[4 we construct a solution via an approximation argument purely based
on stochastic variants of the conservation laws and observe that the manifold structure is
not needed at all. As a main result, we get the existence of a martingale solution in the energy
space in a quite general framework containing the stochastic NLS on compact Riemannian
manifolds and bounded domains as the leading examples. Similar to Brzezniak and Millet, we
treat a nonlinear noise under Lipschitz assumptions allowing e.g.

T r(24or)

r) r) log(1+or)
= r)=——2 r)=-——>"——"’_
1+or’ g (1+or)?’ g 1+log(l+or)’

g(r) r € [0, 00),

for a constant o > 0. Let us formulate this in the following theorem which is a generalization of
the results in the preprint [29] by Brzezniak, Weis and the author of this thesis, where we only
considered linear noise.

Theorem 3. Suppose that a) or b) or c) is true.
a) Let M be a compact Riemannian manifold, A = —Aj and E4 = H'(M).

b) Let M C R? be a bounded domain, A = —Ap be the Dirichlet-Laplacian and E4 =
H(M).

c) Let M C R%be a bounded Lipschitz domain, A = —Ax be the Neumann-Laplacian and
Eq = HY(M).

Choose the nonlinearity from ¢) or 7).
i) F(u) = |u|*tuwitha € (1, 1+ ﬁ) ;
i) F(u) = —|ul*tuwitha e (1,1+3).
Assume ug € E4 and that the coefficients satisfy Y _, [|eq[|% < oo for

HY(M)NL®(M), d>3,
F = HY(M), d=2, (1.28)
HY(M), d=1,

for some ¢ > 2 in the case d = 2. Suppose that g : [0,00) — R is continuously differentiable and
satisfies

sup |g(r)| < oo,  suprlg'(r)| < oco.
>0 >0

11
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Then, (1.25) has a global martingale solution (Q, F,P,W.F, u) in E4 which satisfies
u € Cy([0,T), E4) almost surely and u € L?(, L>®(0,T; E4)) for all ¢ € [1, 00).

Notably, the different Laplacians in the settings a), b), ¢) of Theorem [3|can be replaced by more
general elliptic operators. At least by changing the scale of exponents, the same result also
applies to the fractional stochastic NLS, see Corollary [4.32]below.

We shortly sketch the proof of Theorem 3} In a first step, we approximate the original problem
(1.25) by a modified Faedo-Galerkin equation

du, = (f iAu, — i/\Pn[|un|a*1un] — % Z Sn[|em|29(|un|2)2un])dt

m=1

—i > Sulemgfunl?)itn] dBn,

m=1

(1.29)

Un(o) = Snan

in a finite dimensional subspace H,, of L?(M) spanned by some eigenvectors of A. Here,
P, : L*(M) — H, is the standard orthogonal projection and S,, : L*(M) — H, is a selfad-
joint operator derived from the Littlewood-Paley-decomposition associated to A. The reason

for using the operators (S,,),, oy lies in the uniform estimate

sup [|Sn | (za+1y < 00
neN

that turns out to be necessary in the estimates of the noise and which is false if one replaces S,
by P,. Roughly speaking, S,, arises by smoothing the characteristic function which is associated
to P, via the functional calculus. This allows us to apply spectral multiplier theorems and get
the uniform L**!-boundedness. On the other hand, the orthogonal projections P, are used in
the deterministic part, because they do not destroy the cancellation effects which lead to the
mass and energy conservation (1.6) in the deterministic setting. Combining the It6 formulae
for mass and energy with Gronwall arguments, we obtain uniform a priori estimate

supE[ sup un ()||%, | < o0 (1.30)
neN te(0,T]

for every T' > 0. Together with the Aldous condition [A], a stochastic version of equicontinuity,
the estimate (1.30) leads to the tightness of the sequence (), in the locally convex space

Zp = C([0,T], E4) N LOTH0, T; L*H (M) N Cy ([0, T, Ea),

where C,, ([0, T, E4) denotes the space of continuous functions with respect to the weak topol-
ogy in E 4. The construction of a martingale solution is similar to [31] and employs a limit
argument based on Jakubowski’s extension of the Skorohod Theorem to non-metric spaces and
the Martingale Representation Theorem from [40], Chapter 8.

Theorem 3| holds in a very general setting, but it suffers from two the characteristic defects of
solutions to stochastic PDE constructed by an approximation argument: On the one hand, v is
only a martingale solution, i.e. stochastically weak solution. On the other hand, it is a priori
unclear if v is unique. In view of the Yamada-Watanabe Theorem, see [85], [108] and [115] for
results of this type which hold in infinite dimensions, one can overcome both of these defects by
proving pathwise uniqueness. In the special case of two- and three-dimensional Riemannian
manifolds, this is the content of the main result in Chapter

12



Theorem 4. Let (M, g) be a Riemannian manifold without boundary of dimension d € {2, 3}
and A := —A, be the Laplace-Beltrami operator on M. Suppose that g(r) = r for all r > 0 and
(em)men C L= (R?) is a sequence of real-valued functions.

a) Suppose that d = 2, M has bounded geometry and satisfies the doubling property. Let
a € (1,00) and

‘e (1-5,1] fora € (1,3],
(1-@,1} fora>3.

We choose ¢ := 2 for s < 1 and ¢ > 2 arbitrary if s = 1 and assume

oo

Z HemHQLwnHw < 00.

m=1

Then, the solutions of (T.25) are pathwise unique in L" (2, L?(0, T; H*(M))) for r > « and
B > max{a, 2}.

b) Let d = 3 and a € (1, 3]. Suppose that M is compact and

o0

2
Y- (llemllze + I Vemllzs)® < oo,

m=1

Then, solutions of (I.25) are pathwise unique in L*(Q, L>(0,T; H*(M))).

Note that in contrast to the existence, the uniqueness result does not distinguish between fo-
cusing and defocusing nonlinearities. However, it is restricted to low-dimensional Riemannian
manifolds since Strichartz estimates are used in the proof. We would like remark that this is not
necessary in 2D for a € (1, 3] since the argument based on the Moser-Trudinger inequality de-
scribed above in the deterministic overview can be transfered to the stochastic setting. For this
result, we refer to Theorem 5.4 which contains uniqueness for bounded domains, for example.
Besides the geometrical restrictions, we would like to point out that all our uniqueness results
in Chapter [5|are only true for linear conservative noise. This is due to the fact that the proofs
crucially rely on the formula for the difference of two solutions without any stochastic in-
tegral. In this way, we can avoid using expected values and get pathwise integrability estimates
of the type for large p. As in the deterministic case described above, this estimate used
in finally leads to uniqueness by an improved Gronwall argument. In three dimensions,
the proof of is inspired by Burq, Gérard and Tzvetkov’s uniqueness result in the deter-
ministic case, see [35]. The techniques are spectrally localized Strichartz estimates emerging
from (L.15), Bernstein inequalities and the Littlewood-Paley decomposition. The noise term is
controlled by a localized analogue of (1.23).

In the two dimensional case, we use the global Strichartz estimates with loss rather than
the spectrally localized ones to prove v € L9(0,T; L>(M)). This has the advantage that the
uniqueness follows directly from the Gronwall Lemma and holds for all « € (1, c0). Moreover,
the argument is not as sharp as in 3D such that we are able to deal with the additional loss
from Bernicot and Samoyeau [16] and allow possibly non-compact manifolds with bounded
geometry.

The last chapter differs from the previous ones since it is devoted to the equation (1.26). We con-
sider linear conservative noise of jump type in the Marcus canonical form and aim for a general
existence result similar to Theorem [3in the Gaussian case. Let us state the main result.

13



1. Introduction

Theorem 5. In the setting of Theorem 3| we suppose that a) or b) or c) is true and choose the
nonlinearity from i) or ii). Let (L(t)):>0 be an R -valued Lévy process of pure jump type given

by

L(t) = /Ot /{llgl}lﬁ(ds,dl),

where 7} is a compensated time homogeneous Poisson random measure on R”". Take real-
valued functions (em)ﬁz1 C F asin (1.28). Then, the problem (1.26) has a global martingale

solution (Q, F,P, LT, u) in E4. The process u is almost surely weakly cadlag in E4 and satis-
fies u € L9(Q, L=(0,T; E4)) forall g € [1,00).

Since the Marcus form of equations with jump noise is not as common as the Gaussian Stratonovich
noise, we would like to explain how to understand the equation (1.26). A solution of this prob-
lem is defined via the integral equation

u(t) =ug —1 t u(s w(s)|* tu(s s t e BUy(s—) —u(s—)| n(ds
=1 [ (aus) £ N ds s [ e Outon) o] s an

0
+ /Ot /{”gl}{e_iB(DU(S) — u(s) + iB(1)u(s) } v(dl)ds (1.31)

with

N
B(l) =Y lmem, LR

m=1
The proof of the existence is based on uniform estimates for the finite dimensional approxima-

tion

Up(t) = Ppug — 1/0 (Aun(s) + AP, [Jun(s)|* Tun(s)]) ds

+/Ot/{llgl}[e—il?n(l)un(s—) —un(s—)} ii(ds, dl)
+/0 /{l|<1}{ei8"(”un(8) — un(s) + iBa(Dun(s) } v(al)ds (1.32)

of problem , where we choose the same spaces H,, and operators P,, and S,, as in the
Gaussian setting and denote B, (I) = 22:1 LSnemSn for n € Nand | € RY. Most of the
differences to the latter case have their origin in the fact that now, we deal with cadlag-functions
instead of continuous ones. Nevertheless, it is possible to obtain tightness criteria in

Zp :=D([0,T), E4) N LFH0,T; L*H (M) Ny, ([0, 7], Ea)

instead of Zr and use a variant of the Skorohod-Jakubowski Theorem for the limiting proce-
dure.

In the appendix, we finally provide background information on topics like stochastic integra-
tion, fractional domains of selfadjoint operators, basic notions of Riemannian geometry and
function spaces on manifolds. Essentially, these contents are known from the literature and
presented with a particular emphasis on the results needed in this thesis.
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Notational remarks

Let us briefly introduce some notations used throughout this thesis which are valid unless we
state otherwise in the particular chapter.

e We consider a finitg time horizon T' > 0 and denote the set of extended natural numbers
NU {0} U {0} by N.

¢ The minimum and maximum of z,y € R are denoted by z A y := min{z,y} and z vV y :=
max{z,y}. We write ay := a V 0 for the positive part of a € R.

e We assume that (Q2, F,F, P) is a filtered probability space with the usual conditions, i.e.
(€, 7, P) is a complete probability space with a filtration F = (7)o 7 such that

i) foreacht € [0, 7], F; contains all P-nullsets,

ii) the filtration is right-continuous, i.e.

Fo= () F telo,T].
se(t,T)

o If (A, A)is a measurable space and X : {2 — A is a random variable, then the law of X on
A is denoted by P¥.

e If functions a, b > 0 satisfy the inequality a < C'(A)b with a constant C'(A4) > 0 depending
on the expression A, we write a S b and sometimes a 54 b if the dependence on A shall
be highlighted. Givena S band b S a, we write a =~ b.

e For two Banach spaces E, F over K € {R,C}, we denote by L(E, F) the space of linear
bounded operators B : E — F' and abbreviate £L(E) := L(E, E) as well as E* := L(E,K).
We write

(,x") == 2" (x), reE, ax"ekFE",
and F — F, if I/ is continuously embedded in F'; i.e. £ C F with natural embedding
JjEL(E,F).

e In a Hilbert space H, the inner product is typically denoted by (-, -) . If the scalar field
is C, the inner product is linear in the first and anti-linear in the second component. We
use the notation HS(H+, H) for the space of Hilbert-Schmidt-operators between Hilbert
spaces H; and Ho.

e In this thesis, (M, X, 1) often denotes a o-finite measure space. Typically, M is equipped
with a topology and ¥ is the Borel o-algebra. By A, we denote a non-negative selfadjoint

operator on L?(M) and E 4 stands for the domain of (Id +A)% .
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2. Preliminaries

The purpose of this chapter is to provide a solid foundation for the mathematical theory which
will be developed in the Chapters 3 to 6. We introduce several solution concepts which will
reappear on various occasions. Moreover, we present tools like stochastic Strichartz estimates,
mass formulae and tightness criteria. We decided to outsource these contents to an independent
chapter to highlight their significance for the study of the stochastic NLS and to improve the
presentation of the proofs of the mains results.

2.1. Solution concepts

This section is devoted to different concepts of solutions to a general stochastic nonlinear
Schrédinger equation with Gaussian noise

{du(t): —iAu(t) + F(u(t)))dt + B(u(t))dW(t),  te[0,T], 21)

To this end we fix a complex separable Hilbert space X, a real separable Hilbert space Y, a
non-negative selfadjoint operator A : X D D(A) — X and an Y-valued cylindrical Wiener
process W. Let (Xp),p be the scale of fractional domains of A introduced in Appendix To

make use of the stochastic integration theory in real Hilbert spaces treated in Appendix
we equip H with the real inner product Re (-, -) - Moreover,

F:X,— X, B:X;—HSY,X)

are supposed to be possibly nonlinear maps and ug € X;. As usual in the field of stochastic
differential equations, (2.1) is understood in the integral sense

u(t) = up + /0 [—1Au(s) + F(u(s))]ds + /0 B(u(s))dW (s) (2.2)

using the Bochner-integral, see for example [48]], and the stochastic integral in Hilbert space. In
the second part of this section, we introduce two notions of uniqueness for (2.1) and finally, we
show how to reformulate (2.2) in the mild form based on the Schrodinger group.

The first two solution concepts, namely the (analytically) strong and weak solution, are build
on (2.2), but they differ in the regularity of the paths. Since it is convenient to allow solutions
without integrability in 2, we will used the L°-notation from Definition

Definition 2.1. Letuy € X3, F': X; — X and B : X; — HS(Y, X) continuous.
a) A triple (u, (7o), cn » Too) consisting of

i) a process u : 2 x [0,T] — X; which is adapted and continuous in Xy for all § € [0,1)
and satisfies u € L*(0,T; X;) almost surely,
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ii) stopping times 7, Too € [0, T with 7,, /* T almost surely for n — oo,

is called (analytically) weak solution of in X, if we have
F(u) € LY(Q, L0, 70; X)), B(u) € LY(Q, L*(0,7,; HS(Y, X)))
and holds almost surely in X on {¢t < 7,,} foralln € N.

b) An (analytically) weak solution (u, (7),,cp » Too) in X is called (analytically) strong if
u is continuous and adapted in X;.

¢) The solutions from part a) and b) are also called analytically weak (strong) and stochasti-
cally strong.

d) A strong (weak) solution (u, (7,,),,c » Too ) is called global if we have 7, = T almost surely.

e) Let U be a subset of L°(£2, L*(0,T; X;). Assume that given two strong (weak) solutions
(U, (Tn)pen » Too) @and (v, (00) pen s Toc) Of @.1) with u,v € U, we have u(t) = v(t) almost
surely on {t < 7o A 0} . Then, the strong (weak) solutions of are called unigue in
U.

If there is no risk of ambiguity, we skip the sequence (7,), .y and simply write (u, 7). The
characteristic property of the solution concept we introduce next, the martingale solution, has a
stochastic nature. It is weaker compared to Definition 2.1, where the stochastic setting, i.e. the
probability space and the cylindrical Wiener process, was given and we looked for a stochastic
process u. Now, the stochastic setting is part of the martingale solution. The freedom to enlarge
the probability space and choose the Wiener process W will be very useful in the approximation
argument in the fourth chapter based on tightness and Skohorod’s theorem.

Definition 2.2. Letup € X3, F : X; — X and B : X; — HS(Y, X) continuous. A system
(. 7,B, W, F,u, ) with
e a probability space (2, F,P);

e afiltration F = (ft) with the usual conditions;

te[0,T]
e a Y-valued cylindrical Wiener I process on 2 adapted to F;
e an analytically strong (weak) solution (u, 7o, ) of 2-1) in X; with respect to (2, F, P, W, F);

is called analytically strong (weak) martingale solution of in X;. Another notion which is
frequently used is analytically strong (weak) and stochastically weak solution. If u is a global
solution, we write (Q, F,P, W, F, u).

In the framework of martingale solutions, there are several possibilities how to define unique-
ness. This is due to the fact that solutions may be defined on different probability spaces which
complicates the natural understanding of uniqueness via the indistinguishability of stochastic
processes from Definition 2.1

Definition 2.3. Let U be a subset of L(0,T’; X;) and 7 € [0, o).

a) The solutions of problem are called pathwise unique in L],U if given two analytically
weak global martingale solutions (Q, F,P,W,F, uj) of in X, with u; € L"(Q,U) for
j =1,2, we have uy (t) = uz(t) almost surely for all ¢ € [0, 1.
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b) The solutions of are called unique in law in L],U if for two analytically weak global
martingale solutions (Q;, ;,P;, W;,F;, u;) of in X; withu; € L™(Q;,U) forj = 1,2,
we have P}t = P32 in C([0,T7], X).

A very popular conclusion in the field of stochastic PDE states, roughly speaking:

existence of a stochastically weak solution and pathwise uniqueness
= existence of stochastically strong solution. (2.3)

This statement gives additional importance to uniqueness results in the stochastic context. Re-
sults like were first established by Yamada and Watanabe in [130] in the finite dimensional
case and have been carried over to stochastic PDE in the weak or mild formulation by [108],
[103], [85] and [115] to list some articles without pretense of completeness. In the following
Theorem, we state (2.3) rigorously in our framework.

Theorem 2.4 (Yamada-Watanabe). Let p € (0,1) and U be a subset of L' (0, T’; X1). We assume:
i) F: X, — X is strongly measurable and bounded on bounded subsets of X ,;
ii) B: X, — L(Y, X) is Y-strongly measurable and bounded on bounded subsets of X,,.

Then, the following assertions hold:
a) Pathwise uniqueness in L,U implies uniqueness in law in L],U.

b) Suppose that there exists an analytically weak global martingale solution (Q, F,P,W.F, u, T) of

@.1) with u € L"(Q,U). Furthermore, we assume that the solutions of 2.1) are pathwise unique
in L7, U. Then, there exists a stochastically strong and analytically weak global solution (u,T') of

(2.1) withw € L"(Q,U).
Proof. The assumptions allow a direct application of Theorem 5.3 and Corollary 5.4 in [85]. O

In the next Lemma, we prepare the fixed point argument of the third chapter by deriving the
equivalence of the mild formulation of the linear stochastic Schrodinger equation with the stan-
dard formulation via the Itd process. For the notation L%(2, LP(0,T; E)) for a Banach space E
and p € [1, c0) which will be used below, we refer to Definition[A.15]

Lemma 2.5. Let ug € X, F € LY(Q, L*(0,T; X)) and B € L%(Q, L*(0,T; HS(Y, X))). Then, the
following are equivalent:

a) u € LY(Q, LY(0,T; X1)) is an Itd process in X with

u(t) = ug —|—/0 [—iAu(s) + F(s)]ds —|—/0 B(s)dW (s) (2.4)

almost surely for all t € [0, T.
b) ue LY(Q, LY(0,T; X1)) satisfies
. t . t .
u(t) = ey, —|—/ e =94 R (5)ds —|—/ e E=AB()dW (s) (2.5)
0 0

almost surely for all t € [0,T).
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Proof. By Proposition and Stone’s Theorem, (e~"4), _; can be extended to a unitary C-
group (T'(t)),cp on X1 with generator —i4_; and D(A_;) = X.

a) = b) : We apply the It6 formula from [34], Theorem 2.4, to f € C12([0,¢] x X, X_1) defined
by

f(s,z) =Tt — s)x, s€0,t], zeX,

and obtain
u(t) =T (t)ug + /0 iA_T(t — s)u(s)ds + /0 T(t —s)[—1Au(s) + F(s)]ds
+/0 T(t — s)B(s)dW(s)
:T(t)’LLo+/T(t75 dS‘F/Tt*S s)dW(s)
0 0

in X_, forallt € [0, T] almost surely. By Lemmal|A.6/and the continuity of the processes on LHS
and RHS which is a consequence of Proposition|A 3 the null set can be chosen independently
of t € [0, T]. By the regularity of ug, F and B, we obtam [25) as equation in X.

b) = a) : Inserting yields

t ¢
—/ iA_lu(S)dS:—/ iA_je 1gAuods—/ 1A_ / —i(s— 7")AF( )drds
0
/1A / —i=nAB(r) AW (r)ds

almost surely in X_; for all ¢ € [0,T)]. Due to Hille’s Theorem and Proposition we can
interchange A_; with the integrals and by

[(s,7) = iA_1e7 I AB(r)|| L1 (0,502 (0,6, HS (v, X 1))
S l(syr) = eii(57T)AB(7ﬂ)HLé(O,t;L%(O,t,HS(Y,X)) = [|(s,7) = B(r)ll L1 0,6:02(0,, H8(v,x))
< T|Bll20,ru8(v,x)) <00 as.

and similarly,

(s, 7) — iA—le_i(s_T)AF(T)||Lg(0,t;L;(0,t,Hs(Y,X ) STIF L o,1,HS(Y, X)) < 00 a.s.,

we can employ the deterministic and stochastic Fubini Theorems, see [122], to get

t t
—/ iA_lu(S)dS:—/ iA_qe ‘SAuods—/ / iA_je i~ TAF( Ydsdr
0
/ / 1A_1e 1 C=AB(r)dsdW (1)

in X_; for all t € [0, 7] almost surely. Note that now, the null set may depend on ¢. Next, we
simplify the inner integrals by

t
— / iA_je ¥ y0ds = T(t)up — uo,
0
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2.2. The mass of solutions to the stochastic NLS

+

AL e GTDAR)ds = T(t — r)F(r) — F(r),

—

- /t iA_1e 1 AB(r)ds = T(t — r)B(r) — B(r)

r

and conclude
- / 1A_qu(s)ds = T(t)uo — uo + / [T(t —r)F(r) — F(r)]dr
0 0
+ / [T(t = r)B(r) - B(r)] dW (r)

in X_; forall ¢ € [0, T] almost surely and using again,

u(t) = g — /0 iA_yu(s)ds + /0 Flr)dr + /O B(r)dw (1) 2.6)

in X_; forall ¢ € [0, 7] almost surely. By the almost sure continuity of the processes on the LHS
and RHS of and Lemma the identity holds almost surely for all ¢ € [0, 77, i.e.
with a null set independent of ¢. By the regularity of ug, u, F' and B, we get (2.4) as an equation
in X. O

2.2. The mass of solutions to the stochastic NLS

In the study of the NLS, the L?-norm, often called mass, plays a particularly important role
since it is conserved by the solutions of the deterministic NLS. We motivate this by the follow-
ing formal calculation. Assume that a sufficiently smooth function , for example

u € CH([0,T], L>(R%)) N C([0,T], H*(R?)), solves

Owu(t, z) = iAu(t, z) — iXu(t, z)|* tu(t, z), teR, zecR%
Then, we obtain

%Hu(t)HQLQ =2Re (u(t), 3tu(t))L2 =2Re /Rd u(t, ) (—iAu(t, ) + iXu(t, )| Lult, m)) dz

:2Re/ i|Vu(t,x)|2dx+2Re/ iNu(t,z)|*Tdz =0, t€[0,T]. (27)
Rd R4

In this section, we rigorously prove similar formulae for the stochastic NLS which are useful
e to globalize local solutions in the third chapter;
e as foundation of the uniqueness proofs in the fifth chapter.

Naturally, we will use the It6 formula to substitute the differentiation in (2.7) and an regular-
ization procedure based on Yosida approximations to get similar identities for solutions which
are only in L. This strategy is classical and for the stochastic NLS, it was used in [11].

In the following, M will be a o-finite measure space, A : L?(M) D> D(A) — L*(M) will be
a non-negative selfadjoint operator. In the main theorem of this section, we prove a general
formula for the L2-norm of the difference of solutions to the stochastic NLS.
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Theorem 2.6. Let o > 1 and v > 1 such that

X, = LMY (M) Xy — LP(M).

[e3

For each p € {a + 1, 2L 2y 25%1} , we assume that there is a Co-semigroup (T,(t)),~, on LP(M)

which is consistent with (e_tA)tZO ,ie.
T, f=ef  fel*(M)nLP(M).
We denote the generator of T, by —A,,. Let F : [0, T] x Lt (M) — L (M) satisfy
1PGs )l ot S Nllfonarys € L),
and take
pj € LY(Q, L7770, T, L71 (M))),  Bj € LY(Q, L2(0, T; HS(Y, L3 (M)
Assume that u; for j = 1,2, satisfy
uj € Lp(Q, C([0,T], L*(M)) N L*T1(0,T; LT (M)) N L*7(0,T; L*(M)))

and
u;(t) :uj(0)+/0 [—1A_1u;(s) —iF(s,u;(s)) + p;(s)] dS*i/O Bj(s)dW (s)

in X_q almost surely for all t € [0,T]. Then, w := uy — ug has the representation

O =l @)1 +2 [ Refwls), iR (s,10(6) +F (s, 10061, o515
+2 [ Relwls).m(s) - a(s) | e,
=2 [ Re (s (Bi(s) ~ Ba(s) W (s)
" mi [ 13161 Bl 28)

almost surely for all t € [0,T).

Before we continue with the proof of the Theorem, we illustrate the assumption on the existence
of consistent semigroups by the following remark.

Remark 2.7. Let M be an open subset of a metric measure space (M, p) with the doubling
property, i.e. u(B(z,r)) < oo forallz € M and r > 0 and p(B(x,2r)) < p(B(z,r)). Suppose
that the heat semigroup (e~'4) >0 ON L%(M) has upper Gaussian bounds, i.e. for all t > 0 there is
a measurable function p(t,-,-) : M x M — R with

e_tAf(CU) = / p(t,z,y) f(y)p(dy), t>0, ae z€M,
M
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2.2. The mass of solutions to the stochastic NLS

forall f € H and

c o d [Py =1
'p(t’x’y)'ﬁu(g(x,t;))ep{ (A=) }

forallt > 0 and almost all (x,y) € M x M with constants ¢,C' > 0 and m > 2.

Then, (e~*4),., can be extended from L?(M) N L?(M) to a bounded analytic semigroup on
LP(M) for all p € [1,00). We refer to [104], Corollary 7.5, for a proof of this assertion. In
this thesis, the doubling property is typically satisfied and the choices for A have Gaussian
bounds; for example the Laplacian —A on R?, the Laplace-Beltrami operator —A, on a compact
Riemannian manifold (M, g) or the Laplacian on a domain M C R? under various boundary
conditions.

Proof of Theorem[2.6] Step 1. For each p € {a + 1, 2t 2y, 2311 }, there are M, > 1 and w,, > 0
with || T, (t)| 2y < Mpe“?* for all t > 0. Consequently, we have (w,,o0) C p(—A,) with the

uniform estimate

AM,
A—wp

N+ Ap) " Iz < <2M,, A2 2w, (2.9)

Moreover, the convergence

— — M, A—00
N+ A7 F = flloe = O+ A4 7 Ap e < 524, F e 22550
p

holds for f € D(A,) and yields
AA+ A FAESF in LP(M),  f € LP(M). (2.10)

Let us recall from Proposition that A_; is a non-negative selfadjoint operator on X_;. We
define Ry : X_1 — L*(M) by

Raf:=AAN+A_)""f, feX_1, x>0
By e~ '4=1|12(3s) = ' and the Laplace transform, we get
Raf=AA+A)"f,  RA_f=AR\f, feL*M),
as well as
Ryf— f in L*(M), A—oo, feL*(M),
sup {||Rallz(z2y : A >0} < 1. (2.11)

Moreover, Ry is defined on L (M) since we have L (M) < X_;. We take f € L2(M) N
L (M) and by the consistency of the semigroups, we obtain the identity

o]
0

—1 oo
/\(/\+AQT+1) f:)\/ e—“TQTH(t)fdt:)\/ e Me At = XA+ A) ' f = Ryf
0

for A > wat1. Since L2(M) N L% (M) is dense in L (M) and the operators

« 71 «
R,\|LLH(M):L%1(M)—>X_1, )\()\+AL+1) LN (M) - X,

23



2. Preliminaries

are bounded, we conclude that
-1 a+1
kazA(AJrALH) fo feL® (M), A> wai.

Hence, (2.9) and (2.10) yield

Raf 2225 f in L5 (M), fe L™ (M),
sup{HR)\HL(LLﬂ) : )\22waT+1} < 2Mos. (2.12)

To estimate the L®"!-norm of R), we will use the part of A in L>*! (M) defined by
Aayrof =Af,  f€D(Aay10):={f e DA)NL*(M): Af € L*TH(M)}.

The operator A, 1,9 is the generator of a Cp-semigroup on L>T!(M) N L?*(M) and in particular,
we have

Rof 225 f in LOHY(M)NL3(M), fe LoTH(M)n LA(M),
sup {[|Rallc(ro+1inrey @ A > 2was1} < 2Maqr. (2.13)

Analogously, one can show (2.12) for the exponent 2511 instead of GTH and (2.13) with o + 1
replaced by 2.

Set w := u; — uy and fix

A > 2Wmax 1= 2max {wa“,wa:l ,wgy,whzzl }

Then, the process Ryw has the representation
t
Ryw(t) =R w(0) + / [—1R A_1w(s) — iRAF(s,u1(s)) + 1R\ F(s,u2(s))] ds
0

+/ [Rap1(s) — Rypa(s)]ds — i/ [RxB1(s) — RaBa(s)]dW(s) (2.14)
0 0

almost surely in L?(M) for all ¢ € [0, 7], where we used the dual versions of the embeddings
X1 < L"Y(M) and X; < L*'(M) to ensure that the terms F(-,u;) and p; are in L?(M)
for j = 1,2. The function M : L?*(M) — R defined by M(v) := ||v||3. is twice continuously
Fréchet-differentiable with

M’[’U]hl =2Re (11, h1) M”[U} [hl, h2] = 2Re (hl, h2)L2

L27

for v, hq, he € L?(M). Therefore, we get
[ Raw(t)|172 =[ Raw(0)] 7

+ 2/0 Re (Raw(s), —iRxA_jw(s) — iR\F(s,u1(s)) + iR\F (s, uy(s))) . ds
+2 /0 Re (Raw(s), R [ (s) — ra(s)]) s
- 2/0 Re (Raw(s),iRx [Bi(s) — Ba(s)] AW (s)) ,,

0t
+ZAH&%@M—&@M%m (2.15)

m=1
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2.2. The mass of solutions to the stochastic NLS
almost surely for all ¢ € [0, 7).

Step 2. In the following, we deal with the behavior of the terms in (2.15) for A — oo. Since R
and A commute, we get

(Raw(s), —iRAAw(s))LQ = (Rw(s), —iAR>\11)(s))L2 =0, se€[0,7], A>0. (2.16)
For s € [0,T], we have

Re (Raw(s), —iRAF(s,u1(s)) + iRx\F (s, uQ(s)))L2

2720 Re(w(s), —iF (s, u1(s)) +1F (s, us(s))) o,y o (2.17)
by [@2.12). We estimate
| Re(Raw(s), —iRx\F(s,u1(s)) + iRA\F (s, u2(8)>>La+l7LaT+l |
< AV Mo [0 (3) e [P s, (8)) s, w5 i

S o) lesons (lua()IFaraqan + 623 an) ) € LHO,T)  as.

for A > 2wp,ax and thus, Lebesgue’s Theorem yields

/0 Re (Raw(s), —iRxF(s,u1(s)) + iR\F (s, uz(s)))  »ds

Az, /0 t Re(uw(s), —iF (s,u1(s)) +1F(s,uz(s))) ., | oss ds (2.18)
almost surely for all ¢ € [0, T]. In the same way, one can also deduce
[ Re (), a5~ o)) s
222 [ Refu(s) (o)~ als), | o, . 21)

From (2.11), we infer the pointwise convergence

A—00

B [B1(8) fm — B2(8) fm] |22 = [|B1(8) fm — B2(8) fmlz2,  m €N, s€][0,T],
and the estimate
> IR [Bi(8) fm — Ba(s) fm] 172 =[Rx [B1(s) — Ba(s)] s (v.2)
m=1
<||Bi(s) — Ba(s)llfis(y,r2) € L'(0,T)  as.

Together, this leads to

e} t 0 t
Z/ 1R [B1(5) fm — Ba(5) fin] I3 2ds 2= Z/ 1B1(s) fim — Ba(s) finll72ds  (2.20)
m=1 0 m=1 0

almost surely for all t € [0,T] by Lebesgue’s Theorem. For the stochastic term, we fix K € N
and define the stopping time

i :=inf {t € [0,T] : |lw(t)l|r2 + |B1 — Ballr2(0,6ms0v,02)) > K} AT.
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Then, we use

Re (R)\w(s)v 1R\ [Bl(s)fm - BQ(S)fm] )Lz )\_)O% Re (w(s), i [Bl(s)fm - BQ(S)fm] )L2 a.s.,
form € Nand s € [0,7] and
|1 gacricy Re (Raw(s), iRy [Bi(s) fm — B2(s) fm] ) 121
< Lszrepllw(s)lI72 1 Ba(s) fn — Ba(s) fmlZ2

together with
H]‘{'STK} ”wH%ﬁ ”Bl(s)fm - B2(3)fm||2L2 HLl(Qx[O,T]XN)

~ TK o
<E [ )l Y 1B o) — Bao)fullfads < K* < o
0 m=1

to get

A—00

Re (R)\”LU, iR)\ [Bl(s)fm - BQ(s)fm] )L2 —— Re (wa i-Bl (S)fm - iBQ(S)fm)L2
in L2(, L*([0, 7] x N)). The It6 isometry and the Doob inequality yield
/ Re (Ryw(s),iRx [Bi(s) — Ba(s)] dW(s))L2 — [ Re(w(s),i[Bi(s) — Ba(s)] dVV(S))L2
0 0
in L?(Q, C([0, 7k])) for A — oo. After passing to a subsequence, we get

/0 Re (R yw(s), iR,\Bw(s)dVV(s))L2 Az, /0 Re (w(s), iBw(s)dW(s))L2 (2.21)

almost surely in {t < 7x}. By
U {t <7} =10,T) a.s.,
KeN

we conclude that (2.21) holds almost surely on [0, 7.

Step 3. Using for the convergence of the initial value and (2.16), (2.18), (2.19), (2.20) and
(2.21) in (2.15), we obtain the assertion. O

We continue with three Corollaries of the previous Theorem. In the first one, we state a repre-
sentation formula for the mass of a solution to the stochastic NLS with nonlinear Stratonovich
noise.

Corollary 2.8. Let a > 1 and v > 1 such that

X; — L*TY(M) 0 L2 (M).

We assume that for each p € {o + 1, %L 2, 27211 }, there is a Co-semigroup (Tp(t)),, on LP (M)

which is consistent with (e~*4) _ . Let F : [0, T] x L**' (M) — L (M) satisfy
HF(S,U)HLQTH S | Fatr, Re(iu,F(s,u)}La+1 Lol = 0, u € LTN(M), s € [0,T],
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2.2. The mass of solutions to the stochastic NLS

and choose g : [0, T] x [0,00) — R such that |g(s, z)| < 2= . We take
u € Ly(Q, C([0,T], L*(M)) N LT (0,T; L*TH(M)) N L*7(0,T; L* (M)))
and define B € LY(Q, L*(0, T; HS(Y, L*(M))) by
B(8)fm = emg(s, [u(s)PJu(s), ~ meN, se0,T],

for a sequence (e,),, ey © L°(M) with Y07, |lem |7 < 00. We assume that the identity

u(t) =uo + /Ot

—i/o B(s)dW (s) (2.22)

—iA_qu(s) — iF (s, u( %Z lem|? {g(s, [u(s)|?)} uls) | ds

is satisfied in X _; almost surely for all t € [0, T). Then, we have

t
)32 =l =2 [ Re (u(s). BV (), .2
almost surely for all t € [0,T].

Proof. We denote

)=~y 3 len " ol o))} uto).

We observe p1 € LY(Q, L7 1(0,T; L7 1(M))) and B € LY(Q, L2(0, T; HS(Y, L2(M)))) as a
consequence of u € LY(2, L*Y(0,T; L*'(M))) and the growth bound on g. Hence, we can apply
Theorem [2.6|for u; := u, us := 0 and obtain

lu(®)IIZ2 =lluollZ> — 2/0 Re(u(s),iF (s, u(s))) at1ds

Lol [ a
2 / Re(u(s),lenl* {g(s. [u(s))} u(s)) 20, do
+2/ Re (u B(s)dW (s ))
+ Z/O llemg(s, [u(s)?)u(s)||-ds

almost surely for all ¢ € [0, T']. This formula simplifies to due the cancellations

Re(u(s),iF (s, u(s))) a1 =0,

L+1L

lemg(s, [u(s)[*)u(s)|7. = Re/ lem|? {g(s, |u(s) } ul*da
= Re(u(s), [em]? {g(s, [u(s)|*)}” u(s))

_2v
L2v,[27—1
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and we get

t
lu(®)l1Z2 =lluoll7- + 2/0 Re (u(s),iB(s)dW (s)) .,
almost surely for all ¢ € [0, 7). O
As a special case of the previous Corollary (set v = 1 and g = 1), we obtain the evolution

formula the mass of a solution to the stochastic NLS with linear noise.

Corollary 2.9. Let o > 1 such that X, — L*T'(M). We assume that for each p € {o+1, 2L}
there is a Co-semigroup (Ty(t)),s, on LP(M) which is consistent with (e~'4) Let F : [0,T] x

Lo (M) — L (M) satisfy

t>0"

[E(s,u)ll ats S [[uf|Tass,  Re(iu, F(s,u)) =0, wueL*N(M).

a+1
LO{+1’L P
We take v € LY(Q2, C([0,T], L?) N L0, T; LYt1)) and define B € LY(2, L(0, T; HS(Y, L?)) by
B(S)f’m = B’mu(s)v me N) s € [OaT]a

for a sequence (By,),,en © LIL*(M)) with 327, (| Biml|7 12y < 0o. Moreover, we assume that

) =uo + | t

is satisfied in X_; almost surely for all t € [0,T]. Then, we have

—iA_ju(s) —iF(s,u(s)) — % Z B;Bmu(s)] ds — i/o B(s)dW (s)

t
lu(®)lIZ =lluollZ> — 2/0 Re (u(s),1B(s)dW (s)) ., (2.24)
almost surely for all t € [0,T).

In a typical uniqueness proof, see Chapter [5, one considers a suitable norm of the difference of
two solutions and wants to prove that it equals zero. The following Corollary is the basis of this
type of argument. Since it will be crucial that there are no stochastic integrals in the formula,
we have to restrict ourselves to the case of linear conservative noise.

Corollary 2.10. Let o > 1 with Xy < LT (M). We assume that for p € {o+ 1, <L} there is a
Co-semigroup (T,(t)),s on LP (M) which is consistent with (e~*4),_ = and denote the generator of T,,

by —A,. Let F : [0,T] x L*tY(M) — L& (M) satisfy

(s, u) Slullfesian, — we LN M), se[0,T].

|L“T+1(M)

Assume that u; € C([0,T], L*(M)) N L*T1(0,T; L*TY(M)) for j = 1,2 almost surely satisfy

u;(t) :Uo/o [—iAu;(s) —iF(s,uj(s)) + p(u;(s))] dS*i/O Buj(s)dW (s)

in X_y almost surely for all t € [0,T), where we used the operators B € L(L*(M),HS(Y,L*(M)))
and p € L(L?(M)) given by

B(u) fm := Bnu, p(u) == —% i B2 u, u € L*(M).

m=1
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2.3. Deterministic and stochastic Strichartz estimates

Then, if the operators By,, m € N are symmetric, we have

t
Jua(®) = wa() 2 =2 [ Relur() = uals), 1P (s, (5) + iF(ssus() ., opnds 225)
0 k)
almost surely for all t € [0, T.

Proof. The Corollary follows from Theorem 2.6|by w(0) = 0 for w := u; — u and
t
/ Re (w(s),iBw(s)dVV(s))L2 =0, te 0,77,
0

where we used the symmetry of B,,,, m € N. The cancellation of ;(u) and the correction term
in the It6 formula can be seen as in the proof of Corollary O

We close this section with a small Lemma which will help us throughout the whole thesis when
formulae like (2.23) are used for Gronwall arguments.

Lemma 2.11. Let r € [1,00),q € (1,00),e > 0,T > 0and X € L"(Q, L>°(0,T)). Then, we have

1 1\t gt
I XL, La(0,)) < €I X | Lr, L0, + &' qa (1 - q) /0 | X zr (0,25 0,s))ds, t€[0,T].

Proof. As a consequence of Young’s inequality, we obtain

Q=

1—1 1— 1 1 a-1
a " abi <ea+te qg 1—- b, a,b>0, >0. (2.26)

q
Then, interpolation of L(0, t) between L>(0,¢) and L'(0,¢) and (2.26) yield

- 1 1 1\
1X 0 a0,y < NX N pocton 1X 1 10,0y < €l Xz, +779= (1= = [ X2 0,)-
©0.0) (0.1) p p

Now, we take the L"(€2)-norm and apply Minkowski’s inequality to get

B 1 1 q—1 t
Lr@,L=(0,0)) €' 71= (1 - ) / [ X (s)]
q q 0

_ 1 1 g—1 t
< el| Xlzr (=00 T € Y (1 - q) /0 X1z (@, Lo 0,5))ds-

X1

r@,La(0,)) < €[l X] Lr(@)ds

2.3. Deterministic and stochastic Strichartz estimates

In this section, we collect Strichartz estimates for the Schrodinger group. They express a gain
of integrability as a consequence of the dispersive nature of the linear Schrédinger equation.
In a fixed point argument, this property will help us to deal with power type nonlinearities.
Moreover, Strichartz estimates will be important when we prove uniqueness of the solutions
obtained from the Galerkin approximation technique. Unfortunately, Strichartz estimates typ-
ically depend on the underlying geometry. Thus, we have to leave the rather general setting
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of the previous sections and consider special selfadjoint operators A. In view of the applica-
tions in this thesis, we will restrict ourselves to Laplacians on the full space and on Riemannian
manifolds with bounded geometry.

Let us start with the scaling condition for the pairs of exponent appearing in Strichartz esti-
mates.

Definition 2.12. A pair (p, q) € [2, 00]? is called admissible if
2 d d
7—"_7:77 ) 7d 270072'
12 (¢,p.d) # ( )

In Figure we visualize the admissible pairs in different dimensions. They correspond to
line segments which are closed for d # 2. In contrast, the end point associated to the pair (oo, 2)
is excluded for d = 2.

1
a d=1 a d=2 a d>3

=
[

IS

[
A
o

ol
S
=)

Figure 2.1.: Admissible pairs (p, q) € [2, 00]?.
Figure indicates that the set { (5, 2) : (p, ¢) admissible} is convex. This leads to the following
interpolation Lemma.

Lemma 2.13. Let M be a o-finite measure space and J C R be an interval. For admissible pairs
(P, 9), (1, q1), (P2, 42) € [2,00]* with py < p < py and

1 0 1-16
=4
p D b2
for some 0 € (0,1), we have
lull Loqrzry < lullfan ool pas (g posys € L9 (T, LPY (M) N L% (J, LP* (M).

Proof. Obviously, the Strichartz scaling condition yields ¢; < ¢ < ¢2 and by a straightforward
computation, we get

q q1 q2

1 6 1-46

From Lyapunov’s inequality and Hélder with exponents Z—; and ﬁ, we infer

0 1-6 0 1-0
[ /J () 195, () 195" ds < [l 9%, 5 pony 1l Sy 5o
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2.3. Deterministic and stochastic Strichartz estimates

We continue with the prototypical Strichartz estimates for Schrédinger group on R.

Proposition 2.14. Let (p;,q;) € [2,00]%, j = 1,2, be admissible pairs and J C R be an interval with
0 € J. Then, the following estimates hold for k € {0,1} :

a) [[t— eimffHLﬂ(J,Wk»m) Szl gx, HS Hk(Rd);

b) Ht — fot ei(t—s)Af(s)ds’ < ||f||Lqé(J’Wkwp/2), fe LQQ(J, Wk:pa (R4)).

La1 (J,Wk.p1)

Furthermore, t v "z and t — [} et=*)2 f(s)ds are elements of Cy,(.J, H*(R%)) and we have

c) ||t — eitAx”Cb(J,H’“) S el gx, T € Hk(Rd)§

A) e fy =92 p(s)ds| € L9 (J, ks (R7)).

Cb(J,Hk) 5 ||f||LIIé (J7wk:.p/2)’

The implicit constants in a)-d) are independent of J and k.
Proof. These estimates are well-known, see for example [36], Theorem 2.3.3. O

The following Propositions are devoted to Strichartz estimates for the Laplace-Beltrami opera-
tor on manifolds. From now on, let M be a d-dimensional Riemannian manifold such that

M is complete and connect, has a positive injectivity radius and a bounded geometry. (2.27)

For a definition of these notions, we refer to Appendix Moreover, we equip M with the
canonical volume . and suppose that M satisfies the doubling property: For all x € M and
r > 0, we have y(B(z,r)) < co and

w(B(z,2r)) < p(B(x, 1)) (2.28)

We start with the deterministic homogeneous Strichartz estimate due to Bernicot and Samoyeau
from [16], Corollary 6.2. In contrast to the flat case from Proposition we have to accept a
regularity loss of % derivatives in the Strichartz estimates since the dispersive behavior of the
Schrodinger group is not as strong as before.

Proposition 2.15. Let M be a d-dimensional Riemannian manifold with (2.27) and (2.28). Let € > 0
and (p,q) € [2,00) x [2,00] be admissible. Then,
14e

[t €92 Lago.rLr (i) S (/o= oy T€ H™ (M). (2.29)

The implicit constant C depends on T and e with C — oo as € — 0.

From Lemma one can deduce the following Strichartz estimates in fractional Sobolev
spaces.

Lemma 2.16. Let M be a d-dimensional Riemannian manifold with 2.27) and (2.28). Let (p,q) €
[2,00) x [2,00] be admissible, ¢ € (0,q — 1), and § € (+=,1].

a) We have the homogeneous Strichartz estimate
St l@llge, € HY(M). (2.30)

£
La(0,T;H"~ ~a ")
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2. Preliminaries
b) We have the inhomogeneous Strichartz estimate
‘ / el =R flrdr

0
for f € LY(0,T; H(M)).

o Lie Ste 1 lzro,r;mo (2.31)
La(0,T;H a ')

Proof. ad a). The Propositions a) and yield

eitas e = (1 Ag)%flgtf eitAgmHLq(O}T;Lp)

a(0,7;H " 1 °F)

7l

~ 0_1tc
= ||elmg(1 —Ag)27 20 x| Lao,1sL0)

o _ lte
Sre (1= Bg)2 72w z|| ape = [|2]|po-

ad b). From (2.30) and Minkowski’s inequality, we get

‘ / % f(r)dr / e f(r)dr »

0 0
In the special case of a compact manifold M, we will use the following spectrally localized
Strichartz estimates due to Burq, Gérard and Tzvetkov.

1+e §T75 rg ||f||L1(O,T;Hg)'

La(0,T;H’ ™ @ P)

O

Proposition 2.17. Let M be a compact d-dimensional Riemannian manifold and take admissible pairs
(p1,q1), (p2,q2) € [2,00]% Then, for any ¢ € C°(R), there are 3 > 0, Cy > 0 and Cy > 0 such that
the following assertions hold for all h € (0, 1]:

a) For any interval J of length | J| < Bhand x € L*(M)

[t = e*Bap(h® Ag)|| par (s,Lo1y < Ol 2
b) For any interval J of length |J| < % and f € L9(J, LP2(M))

< Clle(h?Ay)

¢
Ht — / =98 (h2A,) f(s5)ds
- La1(J,LP1)

o0

f”m’z(J,LPé)‘

Proof. ad a). See [35]], Proposition 2.9. The result follows from the dispersive estimate for the
Schrodinger group from [35], Lemma 2.5, and an application of Keel-Tao’s Theorem from [76]
with U(t) = e*®93(h2A,)1,(t) for some ¢ € C°(R) with ¢ = 1 on supp(yp).

ad b). See [35], Lemma 3.4. O

In the following Remark, we would like to provide some background information about the
previous Propositions.

Remark 2.18. In the special case of a compact manifold M, Burq, Gérard and Tzvetkov used
Littlewood-Paley Theory and the spectrally localized estimate from Proposition[2.17)a) to prove
a sharp version of Proposition with ¢ = 0, see [35], Theorem 1. Similarly, the proof of
Proposition is based on an analogue of the spectrally localized estimate for £ > 0. The
restriction to p < oo is due to the Littlewood-Paley characterization of L?-spaces which fails for
P = 0.
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2.3. Deterministic and stochastic Strichartz estimates

In the second part of this section, we aim for a Strichartz estimate for the stochastic convolution.
Originally this estimate is due to Brzezniak and Millet, [30], Theorem 3.10, but we present two
alternative proofs. The first one is based on the strong BDG-inequality from Theorem[A.20} The
second one employs a duality argument and the surjectivity of the Itd isomorphism. To give
a unified proof for all kinds of deterministic Strichartz estimates, we work in the following
setting.

Assumption 2.19. i) Letp € [2,00), (M, X, i) be a o-finite measure space and A be a closed
operator on L?(M) N LP(M) with —1 € p(A). For § > 0, we define a Banach space by

HOPA = {a: e LP(M): (Id+A)% z ¢ Lp(M)}

equipped with the norm || gro.r.a = || (Id +4)% 2| 1.

ii) Let J = [a,b] C [0,7] be a closed interval and (U(t)),. ; a strongly continuous family of
bounded operators on H*?(M) for some i > 0. Furthermore, we assume that

Uz)(s) :==U(s)x, x € H"*(M), s¢cl,
defines a bounded operator U € L(H*2(M), L4(J; LP(M))) for some q € [2,00).
iii) We assume that A commutes with U, i.e. U(t)z € D(A) and U(t)Ax = AU(t)x for = €
D(A)andt € J.

Obviously, the notation H%?4 is motivated by the connection to fractional Sobolev spaces.
Indeed, we have HP—2 = H%P(R%) and HOP~2s = HYP(M) for Riemannian manifolds M
satisfying (2.27). The next definition provides the space in which the stochastic convolution
will be defined.

Definition 2.20. Let r € [1,00), §; > pand 6, > 0. By L%(Q,C(J, H%%4) N L4(J, H%2:P4)),
we denote the set of all u € L"(Q,C(J, H>4) n L4(.J, H%>?4)) such that the continuous
representant in L?(M) is an F-adapted process and there is also an F-predictable process @ :
[0,T] x Q — H%P4 which represents u.

We remark that L5 (Q, C(J, H?24) N L4(J, H%?4)) is a Banach space since it is a closed sub-
space of L"(Q, C(J, H%>4) N L4(J, H%274)). Moreover, we recall that the space of stochasti-
cally integrable processes in H%:*# is denoted by M , (J, H%*#). Next, we present a result
that lays the foundations for the subsequent estimates of stochastic convolutions.

Theorem 2.21. In the setting of Assumption the map
t
Ko(t) = U(t)/ (s)dW(s), ted, deMpy(JH">),
defines a bounded operator

K: Mgy (J,H?A) = Ly(Q,C(J, H">4) n LA(J, HO~#PA))

forall 8 > p.

Proof. Step 1. We start with the case 6 = ;1 and define

£ K

t N M
Klds(ﬂ?) = / Z/{@(s)dW(s) = Z Z 1Amm Z [W(f/\ tn)yk - W(E/\ tn—l)yk} uxk,’rn,n

n=0m=1 k=1
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for ¢ € J and for an elementary process

N M K
w) = Z Lt 120 (8) Z 14, ., (w) Zyk ® Tk,m,n
n=0 k=1

m=1

in Mgy (J, H*24). Moreover, we have

N M K
Ko@) =Y "> 14, > Wt Atn)ys — Wt Aty 1)yel Ut)Tkm.n- (2.32)

n=0m=1 k=1

In particular, we observe that the maps ¢t — K&(t,t) and ¢t — K&(t) coincide in L(J, LP(M))
and in C(J, H**4). By sup;c; |U(t)| z(mnz) < oo and the BDG-inequality for the H#24
valued stochastic integral, we infer

T

[ 2w

a

S EINPN 2 ms(v, mmy)-
C(J,H#2)

~

B KB sy S E]

To get a similar estimate in L9(J, L?(M)), we employ Theorem i.e. the strong BDG-
inequality in mixed LP-spaces, and obtain

E| KD\ a1 SEHsup K\®(- T ’T
1Ko a0y < Blsup K@=

Sup‘/l/lgb )W (s ‘
tedJ

([ 102611 g5)

Since we have p, ¢ > 2, we can apply the Minkowski inequality and afterwards, the determin-
istic Strichartz estimate from Assumption ii) yields

La(J.L7)

La(J,LP)

r

Z/”u@ fm”Lq(JLP)dS) <E<Z/”¢ fm|Hu2d5>

m=1

EIK®| a0y S (

= IE||¢||L‘Z(J,HS(Y,HM))~

In particular, the estimate

B KP|Las,rync(s,mnz) S EIPl L2 ms v, L2y

holds and obviously, K& is F-predictable in H*24 by pathwise continuity and adaptedness.
By continuous extension, we obtain these properties for all ¢ € Mgy (J, H w24y,

Step 2. It remains to prove that there is an F-predictable representant of K¢ in LP(M). Since
K@ is predictable in H*24 and H*?4 — L?(M), we obtain that the map

[0,¢] x Q3 (s,w) — (K@(s,w), \I/)Lz

is B(]0, t]) @ F;-measurable forall t € J and ¥ € L2(M)NLF (M). Moreover, L?(M) is separable,
L2(M) N LP (M) dense in L*' (M) and we have

(KD(s,w), V), = (KP(s,w), ) 1, 1
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2.3. Deterministic and stochastic Strichartz estimates

for almost all (s, w) € J x Q. By the Pettis measurability Theorem, see [48], Chapter II, Theorem
1.2, we infer that there is a representant of K'® such that

[0,t] x Q3 (s,w) — KP(s,w) € LP(M)
is strongly B([0, t]) ® F;-measurable. Hence, K® is F-predictable in LP(M).

Step 3. The case § > p is a direct consequence of Step 1 and 2 since A is a closed operator
O0—n
commuting with /. Indeed, we can interchange (Id+A4) 2

Proposition and obtain

with the stochastic integral by

(0+4)7 Ko = U [ (10+4)F 050w (s) = K(14+4)F @)

a

By the previous results,
O—n
IK®|| Lr.cr.m02)nLa(smo-nryy S || (Id+A) 2 D Lr(a,r2(1m8 (v, Hi2)))
= 9/l Lr.c2(sm8(v,H02))) -

O
As an immediate consequence of the previous Theorem, we obtain the Strichartz estimate for
the stochastic convolution.
Corollary 2.22. Let r € [1,00) and 0 > p. Suppose that Assumption holds with a unitary Cy-
group (U(t)),cg and generator —iA. Then, the stochastic convolution

t
Kstoen®(t) :/ U(t — s)®(s)dW (s), teld, ®eMpy(J,H"?Y),

has a continuous version in H%%4 which is in L5(Q, C(J, H®>A)NL4(J, HY~#P-4)) and satisfies the
estimate

HKStoch@|

Lr(@,0(JHO2)nLa (1 HO ) S 1Pl e (9,02 (1S (v, HO2))) - (2.33)

Proof. The restriction of (U(t)),cp to H*?# is also a unitary Cy-group. By Theorem the
stochastic convolution has a continuous modification in H*24. Moreover, we have

) / U (—s)B(s)dW (s) = / Ut — 5)®(s)dW (s)

in H*2>4 forall t € [0, 7] almost surely. By the continuity of the processes on the LHS and RHS
of the equation and Lemma[A.6] the Q-nullset can be chosen independently of ¢ € [0, T'. Finally,
the estimate (2.33) follows from Theorem and the continuity of the operators U(—s), s €
J. O

In the following Corollary, we apply the results from Theorem and Corollary to con-
crete situations where we have deterministic Strichartz estimates.

Corollary 2.23. Let J C [0,T] be a closed interval, r € [1, 00) and (p, q) admissible.
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a) For k € {0,1}, we have

forall B € My y(J, H¥(RY)).

b) Let M be a Riemannian manifold satisfying (2.27) and (2.28). Let ¢ > 0 and § > %. Then, we
have

/ 08 B\ (s)

0

S IBllLr .02 (g5 (v, HFY))
L7 (Q,La(JWkr(RENC(J,HF))

/ | e84 B(5)dW (s)

0

o lte Se 1Bl Lr .22, m8(v,H9)))
LT (Q,La(J,H ~~a "PYynC(J,H®P))

forall B € Mgy (J,H(M)).

c) Let M be a compact Riemannian manifold of dimension d. Let ¢ € C°(R) and > 0 as in
Lemma Let h € (0,1} and J C [0,T] be an interval of length |J| < Bhand x5, € C°(R)
with supp(xp) C J. Then, we have

forall B € Mg, y(J, L*(M)).

| )8 Bs)aW ()

L™ (Q,La(J,LP)NC(J,L2))

S ||90(h2Ag)BHL’"(Q,L2(J,HS(Y,L2)))

Proof. ad a). We apply Corollary with g = 0,0 = kand U(t) = €* for t € R. The
homogeneous Strichartz estimates holds due to Proposition[2.74]

ad b). Thiz is a consequence of Proposition and Corollary applied to = 1= and
U(t) = e,

adc). Set p =6 =0 and
Ut) =15(t) e p(h*A,),  te[0,T],

for some ¢ € C°(R) with ¢ = 1 on supp(y). The homogeneous Strichartz estimate for U(-) is
guaranteed by Proposition but it is not possible to apply Corollary directly since U
does not possess the group property. Nevertheless, we have the identity

/fJei(t‘s)AgXh(S)w(hQAg)B(S)dW(S) =/O U(OU ()" xn(s)p(h?*Ag) B(s)AW ()

=U() [ U6 (6)p2 ) BEW ()

for all t € J almost surely. By Theorem the LHS has a continuous modification in L?(M)
and the RHS is continuous as a consequence of Theorem Thus, we can choose the Q-nullset
independent of time and Theorem yields

/ '”e“'-smxh(s)w(thg)B(s)dW(s)

L™(Q,C(J,L2)NL1(J,LP))

S ls = €29 xu(s)p(h*Ag) B(8)| e, r2(smsvr2y) S 1e(h*Ag)Bllpr (.2 (11s(v,12))-

O
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2.3. Deterministic and stochastic Strichartz estimates

If IF is the Brownian filtration, i.e. the augmentation of

Fli=o(W(s):se0,t]), telo,T],
we can give the following alternative proof of the stochastic Strichartz estimate. For simplicity,
we restrict ourselves to the case of Corollaryn a),i.e. U(t) = ' on L*(RY).

Second proof of the stochastic Strichartz estimates. Step 1. In view of the estimates

r
<E
La(0,T;LP)

T

t+— sup
toE[O,T]

t to |
EHt'—) / A B(s)dW (s) / =2 B(s)dW (s)
0 0

La(0,T;LP)

T
<E / e =2 B(5)dW (s)
0

La(0,T;LP)

as a consequence of the maximal inequality from Theorem it is sufficient to prove

Step 2. From the It6 isomorphism, see Corollary and in particular, its surjectivity in the
case of the Brownian filtration, we infer

/ ’ eI B(s)dW (s)
0

Lr(Q,Le(J,LP))

T
| e peaw)
0 L™(Q,La(J,LP))

=~ Sup{ E </0T ei('_s)AB(s)dW(sL/OT gZidW>

Let us define the bilinear form

: ”@HMEY(O,T;Lq’(OaT?L”/)) S 1} .

(2.34)

LaLp

0 T T
a(B,P) :=E Z / /0 (T2 B(5) frn, €T HAD(5, 1) frn)dtds (2.35)

for B € Mpy(0,T; L2(R?)) and & € M (0,7 L7 (0, T; L¥ (R?))). By the It6 formula for the
Banach space duality duality, see [34], Corollary 2.6 and equation (2.6), we can simplify

T T o0 T
IE</ ei<'—3>AB(s)dW(s),/ @dW> :EZ/ (e CTI2B(8) frn, D(8) fin) Larrds.
LaLr m=1 0

0 0

Hence, it is sufficient to prove
SUP{|G(B7¢)| NPl gy, 0,7500 0,120y < 1} < |IBllpr (o, r2(7,18(v,12)))- (2.36)

Step 3. We fix B € Mg ,(0,7; L*(R%)) and & € M (0, T; L7 (0,T; L' (R?))) and recall that
the deterministic Strichartz estimate is equivalent to the dual version

T .
/ e R g(t)dt
0

S gl 0,100y g € LT(0,T;L"). (2.37)
L2
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By (2.37), we obtain

(B, P)| =

-~ g —isA T —itA
]E,,;/o <e B(s)fm,/o e "2 P(s,t) frndt ) ds

o) T
<EY / 1B(5) fonll 121805, fn | 0.1, 15

m=1

S 1Bl

L7 (Q,L2(0,T;HS(Y,L?))) (D@ fm)m HLT' (Q,L2([0,T]xN, L4’ (0,T;LP")))"

Next, we employ the Minkowski inequality with p’, ¢ < 2 as well as the Itd isomorphism (A.T1)
to deduce

1

[e%e] T 2

la(B,®)| < || BllLr,22(0,1;HS(Y,L2))) (Z/ ¢fm2d5>
m=1 0

= [ Bl

L™ (Q,L9(0,T;L7"))

Lr(@.20,7:88(v.L2) [Pl agr, 0,720 (07319

which yields (2.36). O

Remark 2.24. Although this proof is obviously more complicated than the first one and only
holds for the Brownian filtration, we decided to present it here to point out the remarkable
connection of the stochastic Strichartz estimate with the bilinear form a from (2.35). This is
similar to the well-known TT*-argument, see for example [113], Lemma 4.3.4, which links
deterministic Strichartz estimates with the inequality

b(f.9) < ”fHLq’(R,LP') ||9||L<i’(]R<,Lﬁ’)
for the bilinear form defined by

b(f.g) = / / (€718 f (1), e~ 1#5 g(s)) dsdt.

2.4. Skorohod-Jakubowski Theorem and Tightness Criteria

In this section, we lay the foundation for the construction of a martingale solution to the
stochastic NLS in the Chapters [#and [f} We present two variants of the Skorohod-Jakubowski
Theorem which enable us to extract an almost surely converging subsequence of a tight se-
quence of random variables. Afterwards, we deduce a tightness criterium in a space of contin-
uous functions suitable for the Gaussian noise from Chapter ] To be able to deal with jump
noise, we generalize this criterium to cadlagfunctions.

Definition 2.25. Let Z be a topological space equipped with a o-algebra Z which contains the
topology.

a) We say that a set {f; : i € I} of functions f; : Z — R separates points of Z if z # y € Z
implies f;(x) # fi(y) for some i € I.

b) A sequence (IP,,),, . of probability measures on (7, Z) is called tight if for every ¢ > 0,
there is a compact set K. C Z with

inf P, (K.)>1—c.
WILI’EIN (5)_ ©

A sequence (X,,), ¢y of Z-valued random variables is called tight if (P*~) | oy 1S tight.
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2.4. Skorohod-Jakubowski Theorem and Tightness Criteria

In metric spaces, one can apply the Prokhorov Theorem I1.6.7 from [106] and the Skorohod
Theorem 6.7 from [17] to show that tightness implies almost sure convergence of a subsequence.
Since we will be faced with non-metric spaces, we will use the following generalization of this
classical procedure.

Theorem 2.26 (Skorohod-Jakubowski). Let X' be a topological space such that there is a sequence
of continuous functions f, : X — R that separates points of X. Let A be the o-algebra generated by
(fm)y, and (), be a tight sequence of probability measures on (X, A) .

Then, there are a subsequence (fin,, )¢y , random variables Xy, X for k € N on a common probability

space (Q, F, P) with PX» = p,,, for k € N, and X, — X P-almost surely for k — oco.

We stated Theorem in the form of [31]]. For the original source, however, we refer to [72].
Starting from [32], this theorem has been frequently used as a tool for the compactness method
for stochastic partial differential equations. For the application to the NLS with jump noise, we
also state the following variant of Motyl, [99], Appendix B, Corollary 2.

Corollary 2.27. Let X} be a complete separable metric space and Xy a topological space such that there
is a sequence of continuous functions f,, : Xo — R that separates points of X. Define X := X} x Xj
and equip X with the topology induced by the canonical projections m; : Xy x Xy — X for j = 1,2. Let
(Xn)nen be a tight sequence of random variables x,, : Q — (X, B(X1) ® A), where A is the o-algebra
generated by f,,, m € N. Assume that there is a random variable 1) in Xy such that PT1°X~» = P" for all
n € N.

Then, there are a subsequence (Xn,,),cy and random variables Xy, X in X for k € N on a common
probability space (Q, F, P) with

i) PXx = PXn for k € N,
ii) Xx — X in X almost surely for k — oo,
iii) m o X = m o X almost surely.

We continue with a Lemma that gives us additional information on the topological assumption
in the previous results.

Lemma 2.28. Let X be a separable locally convex topological vector space with Hausdorff-property.

a) Then, there is a sequence F' := {f, : m € N} in X* which generates the Borel o-algebra B(X)
and separates points of X.

b) For each topological space which has the property from a), compactness and sequential compactness

coincide.

Proof. Assertion b) is stated in [72]. So, we concentrate on a). Let us choose a dense sequence
(7n), ey € X and denote a family of seminorms generating the topology in X by (px),cy - As
a consequence of the Hahn-Banach Theorem in locally convex spaces, see [128], Theorem VIIIL.
2.8, thereis F' = {{,, ; : n,k € N} C X* with

Pr(Tn) = ln k(x0), sup{p i (x) : pr(z) <1} = 1.

In particular, we get pi.(z) = sup,,cy n,x(2) for each z € X and thus,

Bi(x,r) i ={ye X :pr(y —x) <r} = ﬂ {ye X i ly,ly—z) <r}eo(F).
neN
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Since each open ball is the union of countably many closed ones, also By (z,,) for k,n € N
and rational » > 0 is contained in o (F'). These sets build a basis of the topology in X such that
we obtain B(X) C o(F). The other implication” O ” is obvious, since each f € F is continuous
and therefore Borel-measurable.

To prove that F' separates points, we take z # y € X. By the Hausdorff-property, there is
k € Nwith 0 < pip(z — y), see [128], Lemma VIIL.1.4. Hence, there is an n € N such that
lp(x—y) > 0. O

In the following subsections, we would like to apply Theorem and Corollary in con-
crete functional settings associated to the stochastic NLS to get the tightness criteria mentioned
above.

2.4.1. Tightness in a space of continuous functions

Throughout this section, M is a finite measure space, A : L?>(M) > D(A) — L*(M) is a non-
negative selfadjoint operator with the scale (Xy),p of fractional domains from Appendix
We denote E4 := X and £} := X_ .. Inview of the applications in Chapter 3, it is convenient
1 Re ')EA and Re (-, ')—é’
respectively. In particular, the notation E7 is justified since 4 and X_; are dual in the sense
that each real-valued linear functional f on E4 has the representation f = Re(-,ys)1 _1 for
some yr € X_1.

to equip L?(M), E4 and E7% with the real inner products Re (-, -)

1
20

The goal of this section is to find a criterion for tightness of random variables in
Zr = O([()? T]7 EZ) N La+l(0a T La+1(M)) N Cw([oa T]a EA)

for @ > 1 under the assumption that E, is compactly embedded in L**!(M). This will enable
us to apply Theorem The first definition tells us how to interpret Zr as a topological
space.

Definition 2.29. Let (X1,0;) and (X3, O2) be topological spaces. In this thesis, we always
equip X; N X, with the supremum-topology, i.e. the smallest topology that contains O; and O,
where

O0,={0NX5:0€01}, O0;={0NX,;:0¢€0}.

The first two spaces in the definition of Z; are Banach spaces and thus, we consider the topolo-
gies induced by the norms. The third space Cy,([0,7], E4) is understood in the sense of the
following definition.

Definition 2.30. Let X be a Banach space with separable dual X*.
a) We define

Cw([0,T],X) :={u:[0,T] = X | [0,T] 5t — (u(t),z*) € Cis cont. forall z* € X*}

and equip Cy([0,77], X) with the locally convex topology induced by the family P of
seminorms given by

P :={py 2" € X*}, pe(u) :== sup |[{u(t),z*)|.
te[0,T]
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b) Forr > 0, we consider the ball B, := {u € X : ||u||x <} and define

C([0, 7], By) = {u € Cul([0,71, X) : sup Ju(t)lx <7}.
te[0,T]

Remark 2.31. By the separability of X*, the weak topology on B is metrizable and a metric is
given by

o0

Q(fﬂl,@):ZT’CKM*@,IZH, r1,12 € X,
k=1

for a dense sequence (77), .y € (B}(*)N , see [23], Theorem 3.29. In particular, the notation in
Definition isjustified in the sense that C([0, T, B’y ) coincides with C([0, T, M) for (M, d) =

(B, q). Since M is also separable by [23], Theorem 3.26, C(]0,T], B% ) is a complete, separable
metric space with metric

p(u,v) = t:;é%]Q(”@%”@)% u,v € C([OvT]v TEA)'

We continue with some auxiliary results.

Lemma 2.32. Let r > 0 and u,,u € Cy([0,T], X) with sup,cjo ry |lun(t)|x < rand u, — win
Cy([0,T], X). Then, we have u,, — win C([0,T],B%).

Proof. By Lebesgue’s Convergence Theorem,

pluinyw) < 3°27F sup [(un(t) — u(t), 70} =0, 0 oo,
k=1 t€[0,77]

where we used the definition of convergence in C\, ([0, T], X) for fixed k£ € N and

sup [ {un(t) = u(t), z3)| < ( sup |Jun (8)[|x + sup U(t)Hx) gl x- < 2
t

te[0,T] , telo,
O
Lemma 2.33 (Strauss). Let X,Y be Banach spaces with X — Y. Then, we have the inclusion
L>(0,T; X) N Cw([0,T],Y) C Cw([0,T], X).
Proof. See [116], Chapter 3, Lemma 1.4. O

The following Lemma can be found in [89], p. 58. Since the reference does not contain a proof,
we give it for the convenience of the reader.

Lemma 2.34 (Lions). Let X, X, X1 be Banach spaces with Xy — X — X1, where the first embedding
is compact. Furthermore, we assume that Xy, X1 are reflexive and p € [1,00). Then, for each € > 0
there is C. > 0 with

Ik <elel, + Celelk,, =€ Xo.
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Proof. Step 1: Let p = 1 and assume that the assertion does not hold, i.e. there is ¢y > 0 such
that for each n € N we can choose z,, € Xj \ {0} with

[znllx > eollznllxo + nllznllx, - (2.38)

We define a normed sequence (), oy in Xo by Z,, := xn||xn|\)_((1) for n € N. By the reflexivity
of X there is an # € X, and a subsequence again denoted by (Z,,),, .y With Z, — 2 in X for
n — oo. The compactness of Xy — X yields &, — = in X for n — co. Due to the embedding
X — X, the strong convergence also holds true in X;. As a consequence of Assumption
and the fact that (#,),,.y is bounded in X, there is a constant C' € (eo, 00) such that

C > ||Znllx > e0 + nl|Znllx, (2.39)

for all n € N. Hence,
C - €o

[0l x, < —0

for n — oo. Thus, we get + = 0 and therefore #,, — 0 in X, which is a contradiction to
|Zn]lx > €0 > 0 foralln € N, see (2.39).

S=

Step 2: For arbitrary p € [1,00) and ¢ > 0, we set € := (5=1)” and apply the first step for &.

201
With C. := 2P~1CL, we obtain
lzl1% < @Ellzllx, + Cellzllx,)” <2°7% (P2l + CElll%,)

=elel%, + Cllel,-

We continue with a criterion for convergence of a sequence in C([0, 7], BT, ).
Lemma 2.35. Let 7 > 0and (un),, .y C L™(0,T; E4) N C([0,T], EY) be a sequence with
a) suppen [[unllLoo(0,1;84) <7,
b) u, — win C([0,T),E%) for n — oco.
Then u,,,u € C([0,T],BY, ) for all n € Nand u,, — win C([0,T], By, ) for n — oo.

Proof. The Strauss-Lemma and the assumptions guarantee that
un, € C([0,T], E4)NL>®(0,T; Eq) C Cyu([0,T], E4)

forall n € Nand sup,c(o 11 [|u(t)||z4 < 7. Hence, we infer u,, € C([0,T], B, ) for all n € N. For
h € E4, we have

sup Re(un(s) = u(s), )| < llun = ullogor),zy)1hlles =0
s€l0,

By Assumption a) and Banach-Alaoglu, we get a subsequence (uy, ),y and v € L>(0,T; E,)
with u,, —* vin L*°(0,T; E4) and by the uniqueness of the weak star limit in L>°(0,T; E%),
we conclude u = v € L>(0,T; Ea) with |[u| < 0,7:5,4) < 7

Lete > 0 and h € E. By the density of E4 in E’, we choose h. € E4 with ||h — h¢|
and obtain for large n € N

£
EZ§4T

[Re(un(s) — u(s), h)| < [Re(un(s) = uls),h — he)| + [Re(un(s) — u(s), he)l
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< lun(s) = w(s)l|zallh = hel

<o 4=
T4r+2

4 + [Re(ua(s) — u(s), o)

independent of s € [0, 7). This implies sup,¢(y ) |[Re(un(s) —u(s),h)| — 0 for n — oo and all
h e EY,ie uy, — uin Cy([0,T], E4). By Lemma we obtain the assertion. O

Let us recall that M is a finite measure space and the embedding E£4 < L*"!(M) is compact.
This leads to the following criterion for compactness in Z7 which is a variant of the Arzela-
Ascoli Theorem.

Proposition 2.36. Let K be a subset of Zr and r > 0 such that
a) SUPyc K Hu||L°°(O,T;EA) S T

b) K is equicontinuous in C([0,T], E%), i.e

lim sup sup |u(t) — (S)HE; —0.
020 ueK |t—s|<s

Then, K is relatively compact in Zp.

Proof. Step 1. First, we show that there is a sequence of continuous real-valued functions on Zr
which generates the Borel o-algebra and separates points. We set

Zy = C([0,T], E%), Zy := L0, T; LT (M), Z3 := CyW([0,T), Ea)

and note that by Lemma E 2.28|a), there are sequences (f,;),,cy C Z; that separate points of Z;
and generate B(Z;) for j =1,2,3. We define F; = {f j|z, : m € N} and F = F} U Fy U F3. By
the definition of the supremum-topology, we get

B(Zr)=o( |J B(Z)lz:)=0( | (0(fmsj:meN)|z,)

7=1,2,3 j=1,2,3
=o( |J o(fmjlzs :meN)) =o(F).
j=1,2,3

Step 2: Let K be a subset of Zr such that the assumptions a) and b) are fulfilled. By Lemma[2.2§]
b), it suffices to show that K is sequentially relatively compact. We choose a sequence (2,),,.y C
K. We want to construct a subsequence converging in L>™1(0,T; L>T(M)), C([0,T], E%) and
C([0. T, En).

By @), we can choose a null set I,, for each n € N with ||z, (¢t)||g, < rforallt € [0,T]\ I,. The
set I := J,,cn In is also a null set and for each ¢ € [0,77]\ I, the sequence (2, (t)),,cy is bounded

in E. Let (t;);y C [0,7]\ I be a sequence that is dense in [0, 7.

From the compactness of E4 < L“1(M) and the continuity of L**1(M) — E%, we infer that
the embedding F4 — E7 is also compact. Therefore, we can choose for each j € N a Cauchy
subsequence in E% again denoted by (z,(¢;)) By a diagonalisation argument, one obtains
a common Cauchy subsequence (z,(t;))

neN”
neN -’

Let ¢ > 0. Assumption b) yields § > 0 with

sup sup ||u(t) —u(s)||g; < § (2.40)
ueK |t—s|<§
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Let us choose finitely many open balls U}, ..., U} of radius § covering [0, T]. By density, each
of these balls contains an element of the sequence (tj)jen > say tj, € Ulforl e {1,...,L}.In
particular, the sequence (2y(t,)),,cy is Cauchy forall l € {1,..., L} . Hence,

£
||Z7l(tjl) _Z’m(tjl)|E2 S ga l= 17"'7L7 (241)

if we choose m,n € N sufficiently large. Now, we fix t € [0,T] and take [ € {1,..., L} with

|tj, —t| < 4. We use 2:40) and 2:47) to get

120 (8) = 2m ()| &5 <llzn(t) = 2n(tj) |y + 120 () = 2m ()]

By 2m(ty) — 2m(t)| By <e.

(2.42)

This means that (z,),cy is a Cauchy sequence in C([0, 7], £’} ) since the estimate (2.42) is uni-
formint € [0, 7).

Step 3: The first step yields z € C([0,T], E%) with z, — zin C([0,T], E%) for n — oo and
assumption a) implies, that there is 7 > 0 with sup,,c [|2n | L (0,7;54) < 7

Therefore, we obtain z € C([0,7],B%,) and z, — z in C([0,7],B%,) for n — oo by Lemma
Hence, z, — zin Cy,([0,T], Ea).

Step 4: We fix again ¢ > 0. By the Lions Lemma [2.34|with X = E4, X = L*T (M),
Xi=FEj,p=a+landeg = Wweget

IIE2 () < eollvllzh! + Cey vl (2:43)
for all v € E 4. The first step allows us to choose n, m € N large enough that

a+1 €
||Zn Zchv(()T} > 7205071.

The special choice v(t) = z,(t) — 2, (t) for ¢ € [0,T] in (2.43) and integration with respect to
time yields

||Zn 7Zm||(z:41-1(OTLQ+1(JW)) < €0||Zn Zm‘lzjil(O,T;EA) +C€U||Zn Zm||La+1(OTE' )
<eoT'||lzn — ZmH%:;l(O,T;EA) + CeTll2n — Zm||gaé7T]aEZ)
<egoT (2T)a+1 +CE()T||Z7Z ZmHgﬂ(»(l) T],E%)
SRR
Hence, the sequence (zy,),,cy is also Cauchy in L*+*(0, T'; LT (M)). H

To transfer the previous result to the stochastic setting, we introduce the Aldous condition
which can be viewed as a stochastic analogue to equi-rightcontinuity.

Definition 2.37. Let (X,,),en be a sequence of stochastic processes in a Banach space E. Assume
that for every ¢ > 0 and n > 0 thereis § > 0 such that for every sequence (7, ),en of [0, T']-valued
stopping times, one has

sup sup P{|| X, ((tn +O)AT) — Xp(mn)llE > n} < e.
nEN0<0<6

In this case, we say that (X,,),en satisfies the Aldous condition [A].
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The following Lemma from [99], Appendix A, gives us a useful consequence of the Aldous
condition [A4].

Lemma 2.38. Let (X,,)nen be a sequence of stochastic processes in a Banach space E satisfying the
Aldous condition [A]. Then, for every € > 0, there exists a Borel measurable subset A. C C([0,T], E)
such that

PXn(A) >1—¢, lim sup sup ||u(t) —u(s)|g =0.
0=0ueA, |t—s|<s

The deterministic compactness result in Proposition and the last Lemma can be used to get
the following criterion for tightness in Zr.

Proposition 2.39. Let (X,,)nen be a sequence of adapted continuous E-valued processes satisfying
the Aldous condition [A] in EY and

sup E [”XTLH%OC(O,T;EA)} < 00.
neN

Then the sequence (PX~) = _is tight in Zr.

W=

Proof. Lete > 0and Ry := (% sup,,en E {HXn”?Loe(o,T;EA)D . Using the Tschebyscheff inequal-
ity, we obtain
1 2 €
]P){HX’HHLOO(O,T;EA) > Rl} S EE |:HXnHL°°(O,T;EA)i| S 5
1

Weset B := {u € L*(0,T;Ea) : |lullp(01.54) < R1} . By Lemma|2.38} one can use the Aldous
condition [4] to get a Borel subset A of C([0,T], E) with

PXn (A) >1—

, nmeN, lim sup sup [lu(t) — u(s)]

Ey = 0.
=0 yeA |t—s|<s

DN | ™

From the Strauss Lemma and E4 — L*tY(M), weinfer ANB C Zr. We define K := AN B
where the closure is understood in Z7. The set K is compact in Z7 by Proposition and we
can estimate

PX(K) > P¥n (AN B) > PX (A) —P¥ (B%) > 1 -

=1-—c¢, n € N.

Do ™
Do ™

O

We close this section with the following Corollary which brings together the ingredients we
prepared.

Corollary 2.40. Let (X,,)nen be a sequence of adapted E’-valued processes satisfying the Aldous con-
dition [A] in E% and

S E (X0l 110 ] < o0
Then, there are a subsequence (Xn, )ken, a second probability space (Q,F,P) and Borel-measurable
random variables X’k, X: 00— Zr for k € N such that PXr = PXne fork € N, and X — X P-almost

surely in Zr for k — oo.

Proof. The assertion is an immediate consequence of Proposition and Theorem [2.26| O
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2.4.2. Tightness in a space of cadlag functions

We continue the study of tightness criteria. Since we will also consider the stochastic NLS with
jump noise, we need a generalization of the previous results to spaces of cadlag functions. As
in the previous section, M is a finite measure space and A is a non-negative selfadjoint operator
with the scale (X¢),cp of fractional domains. We denote E4 := X, and £} := X_,. Further-

more, we take a > 1 and assume that 4 is compactly embedded in L**!(M). Throughout the
section, (S, d) denotes a complete, separable metric space.

Definition 2.41.  a) The space of all cadlag functions f : [0,T] — S, i.e. f is right-continuous
with left limit in every ¢ € [0, T, is denoted by D([0, T, S).

b) For v € D([0,T],S) and ¢ > 0, we define the modulus

ws(u,d0) :=infmax  sup  d(u(t),u(s)),
(u,0) := inf = P (u(t), u(s))

where II; is the set of all partitions Q@ = {0 =ty < t; < --- <ty =T} of [0, T] with

tis1—t;>06,  j=0,...,N—1

The following Proposition is about the so-called Skorohod topology on ([0, T, S).

Proposition 2.42.  a) We denote the set of increasing homeomorphisms of [0,T] by A. If we equip
D([0, T, S) with the metric defined by

b) A sequence (u,),, o € D([0,T],S)N is convergent to u € D([0, T],S) in the metric p if and only
if there is (\,) € AN with

log

At) = Als)

p(u,v) := inf | sup d(u(t),v(A(t))) + sup |t — A(#)| + iilt) -

AEA [tef0,1] te[0,T]

foru,v € D([0,T],S), we obtain a complete, separable metric space.

sup |[An(t) —t| — 0, sup d(un,(An(t)),u(t)) — 0, n — oo.
te[0,T) te[0,T]
Proof. See [17], page 123 and following. O

As an analogue to C,,([0,T], X)) we also define the space of cadlag functions w.r.t. the weak
topology.

Definition 2.43. Let X be a reflexive, separable Banach space.

a) Then, we define D,, ([0, 7], X) as the space of all w : [0, 7] — X such that
[0,T] >t — (u(t),z*) € Ris cadlag for all z* € X™.
We equip D,, ([0, 7], X) with the weakest topology such that the map
Dy, ([0,T],X) 3 u— (u(-),z*) € D([0,T],R)

is continuous for all z* € X*.
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b) Forr > 0, we consider the ball B, := {u € X : ||u||x <} and define

D([0, 7], BY) := {uequo,T],X): sup ||U(t)||xﬁ?”}~
t€[0,T]

In the following remark, we show that ([0, 7], B’y ) is a complete separable metric space. This
will illustrate why we assumed the reflexivity of X in the definition D,, ([0, 7], X) whereas it
was not needed for the continuous analogue C,, ([0, T, X).

Remark 2.44. By reflexivity, X* is also separable, see [23], Corollary 3.27. Thus, the weak
topology on B’ is metrizable via

o0
q($1,l‘2)222_k|<9€1—1’27$2>|, r1, 72 € X,
k=1

for a dense sequence (z7), .y € (B}(*)N. We would like to show that D([0, 7], B’ ) coincides
withD([0, T, S) for (S, d) = (B, ¢), which justifies the notation in Definition In particular,
D([0,T], B% ) is a complete, separable metric space by Proposition [2.42]

To show this, we note that the right-continuity of (u(-), z*) for all * € X* is equivalent to the
right-continuity of v in (B, ¢) by the definition of ¢. It is also easy to see that the existence of
left limits transfers from (B%, ¢) to (-, z*) for all z* € X*.

For the converse direction, let ¢,,  t. Then, for each z* € X* there is v,+ € R with
(u(ty), z*) — vz=. Since X is reflexive, x* + ~,+ is linear and |y« | < r||a*||x~, thereisav € X
such that v+ = (v,2*). Hence, ¢(u(t,),v) — 0 by Lebesgue.

The final goal of this section consists in applying the Skorohod-Jakubowski Theorem in the
variant of Corollary[2.27to the space

Z2 :=D([0,T], E%) N L0, T; LoTH(M)) N Dy, ([0, T], Ea) := Z2 N 22 N Z2.

As the first ingredient, we investigate, whether Z2 possesses the crucial topological property,
i.e. whether we can find a countable set F of real-valued continuous functions on Z2 separating
points. Moreover, we determine an appropriate o-algebra A on Z2. Of course, it would be
natural to equip Z? with the Borel o-algebra B(Z7), but it turns out that A will be strictly
contained in B(Z2).

Given real-valued functions f,,, on a topological space Z, we will frequently use the notation
f = (f1, f2,...) and the fact that o(f,, : m € N) = f~}(B(R*)), where R™ is equipped with
the locally convex topology induced by the seminorms py(x) := |xy| for k € N.

Lemma 2.45. Let X be a set and f,, : X — R, m € N. Let Ox be the coarsest topology such f, is
continuous for all m € N. Then, we have

B(X):=0(0x)=0(fm:meN).

Proof. The direction” O ” is obvious by the continuity of f,, for m € N. In view of the good
set principle, it is sufficient for the other inclusion to show that each O € Ox is contained in
Y B(R>)). Since each O € Ox is of the form

K
0= U ﬂ f_l(Oi,k), O, open in R,

icl k=1
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see [53], Proposition 4.4, we can write represent O as the inverse image of the open set
Uier ﬂ,iil 0, 1, under the continuous function f, which verifies the assertion. O

Lemma 2.46. There is a countable family F of real-valued continuous functions on Z2 that separates
points of Z2 and generates the o-algebra

A=o (B(ZP NZ5)| 5 U J(Fg)) : (2.44)
where F consists of real-valued continuous functions on Z3 separating points of Z5.

Proof. Step 1. For each Z;, we give a sequence ( fmvi)meN of continuous functions f,, ; : Z; - R
separating points and determine the generated o-algebras.

Let {¢y : k € N} be a sequence with ||¢x| g, < 1and ||z|

< E% = SuPken | Re(w, )| forallz € E.
Let {t; : | € N} be dense in [0, T]. We set

frp1(uw) == Re(u(ty), ox), u e ZP, k,l €N,
and the enumeration of (fkvlvl)k,leN will be called (fmvl)mGN .For n € N, we denote

Tyt zP = (E%)", wrr (u(ty),. .. u(ty)).

From [71], Corollary 2.4, we know that

B(ZY) = o(m,,..p, i €N).

n

Since m, ... ¢, is strongly measurable in (E% )" if and only if the map
n
ZV 3w Re(my, o, (1), (Pras - - P0)) ()7 By = D Sy (1)
j=1

is measurable forall k1, ..., k, € N, wededuce B(Z?) = o(fr11 : k € N, | € N). By the choice of
¢k, k € N, we obtain that f;; 1(u) = 0 forall k,! € Nimplies u(¢;) = 0 for all/ € N. Since (tl)l%N
is dense and u right-continuous, this yields v = 0 and thus, (f,.,1),, o Separates points in Zy".
Moreover, functions of this form are continuous since the convergence u,, — u in Z} implies
pointwise convergence u, (t) — u(t) in £ for all ¢ € [0,T)]. In particular, f;1(un) — fri1(w)
forall k£, € N.

The existence of (fyn,2),,cy is @ consequence of the Hahn-Banach-Theorem in Z3 as we have
proved in Lemma[2.28]

Let {hy : k € N} and {¢t; : [ € N} be dense subsets of E* and [0, T, respectively. We set
fri3(w) == Re(u(ty), hi), ueZy, kileN,

and denote the enumeration of (fx,13); ey bY (fm,3),,cn - By the definition of the topology

in Z3 and the fact that convergence in D([0, 7], R) implies pointwise convergence, we obtain
that f,,, 3 is continuous. Suppose that f,, 3(u1) = fm 3(u2) for all uy,us € Z5. From the right-
continuity of the map [0,7] > ¢ — Re(u,;(t), hx) and the density of (t;), as well as (hs),, we
infer u (t) = ua(t) forallt € N, ie. (fin,3),,cy Separates points in Z3.

Step 2. We define F; := {fm7j|Zg% :m € N} for j = 1,2,3 and set A := o(F), where F :=
Fy U F, U F3. We would like to prove (2.44). Above, we obtained o(f,, ; : m € N) = B(Z;) for
j =1, 2. Since we have

o (fmjlzenzs i m € N) = 0(fm,;:m € N)| gz
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and

B(zPn28) =o( | BZ)lznz):

j=1,2

we conclude

B n25)=o( U o (fmalznz :meN))

j=1,2

and thus,
B(ZP N 28 =0 (fm,1|Z¥,fm72|Z¥ ‘m e N) = o(F, U Fy).

Similarly, we obtain A = o (B(Z N Z3)| zp U a(F3)).
U

Remark 2.47. By Lemma [2.45, we have o (fp3 : m € N) = o(O zp), Where o zp 1s the coarsest
topology such that f,, 3 is continuous for each m € N. In particular, we have

g (fm,3 tme N) - B(Z?),

since convergence in D([0, T], R) implies pointwise convergence, but not vice versa. In particu-
lar, we get A = B(Zr), where Zr is the topological space arising when we replace the topology
on Z3 by Op.

Our study of compactness in Z2 will be based on the following classical result which can be
viewed as a cadlag-analogue to the Arzela-Ascoli Theorem. For a proof, we refer to [97], chapter
2.

Proposition 2.48. Let S be a metric space. Then, a set A C D([0, T, S) has compact closure if and only
if it satisfies the following conditions:

i) There is a dense subset J C [0,T] such that for every t € J, the set {u(t) : u € A} has compact
closure in S.

ii) lims_o sup,e4 ws(u,d) = 0.
Next, we repeat a criterion for convergence of a sequence in ([0, T, By, ) from [99], Lemma
3.3.
Lemma 2.49. Let r > 0 and take u,, : [0,T] — E4 for n € N such that
D) Subcr SwDrepo.r om0y < 7.
b) u, — winD([0,T], E%) for n — occ.
Then un,u € D([0,T],BY ) for all n € N and u, — win D([0,T],BY ) for n — oc.
The previous results culminate in the following deterministic compactness criterion. Let us

recall that M is a finite measure space and the embedding E4 — L*T!(M) is supposed to be
compact.

Proposition 2.50. Let K be a subset of Z2. and r > 0 such that

a) Sup.e g SUPyepo,1 121 Es <73
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b) lims_osup, ¢ wes (2,9) = 0.

Then, K is relatively compact in Z2.

Proof. Let K be a subset of Z2 such that the assumptions a) and b) are fulfilled. From Lemma
b) and Lemma we know that it is sufficient to check that K is sequentially relatively
compact. Let (z,),cy C K.

Step 1: The relative compactness of K in D([0, 7], E%) is an immediate consequence of Proposi-
tion and the compactness of E4 in E%. Hence, we can take a subsequence again denoted
by (25),cy and z € D([0, T], %) with 2, — z in D([0, 7], E%). By Lemma[2.49] we get z, — 2
in Dy, ([0, 77, E4) and sup,co. 77 [|2(8) |24 <7

Step 2: We fix e > 0. As in the proof of Proposition we get

a+1

lollgths ary < collolgE + Ce llolisst

for £9 = 57yt and all v € E4. Integration with respect to time yields

|20 — Z”(zi—il(o,T;LaH(M)) < eollzn — Z”%i_il(oj-,EA) + Ceoll2n — Z”%ril(oj;Ez)Q

1
collzn — ZH%iil(O,T;EA) <eoT||zn — Z”%:’l(o,T;EA) < el (QT)CH <

N ™

By [17], page 124, equation (12.14), convergence in ([0, T], £ ) implies z,,(t) — z(t) in E? for
almost all ¢ € [0, T]. By Assumption a), Lebesgue’s Theorem yields z, — z in LoT1(0, T; E%).
Hence,

€
limsup ||z, — 2 ajl e <5
mSup [z = 2l|70t 0,700 ) < 5

for all ¢ > 0 and thus, the sequence (z,),, .y is also convergent to w in L***(0, T; L*T1 (M)).
O

The following Lemma (see [99], Lemma A.7) gives us a useful consequence of the Aldous con-
dition [A4] from Definition[2.37

Lemma 2.51. Let (X,,)nen be a sequence of adapted, cadlag stochastic processes in a Banach space
E which satisfies the Aldous condition [A]. Then, for every ¢ > 0 there exists a measurable subset
A, C D([0,T), E) such that

PXn(A) > 1 —¢, lim sup wg(u,d) =0.

6—0 ¢ A,
The deterministic compactness result in Proposition and the last Lemma can be used to get
the following criterion for tightness in Z2.

Proposition 2.52. Let (X,,)nen be a sequence of adapted cadlag E*-valued processes satisfying the
Aldous condition [A] in EY and

sup E
neN

sup IIXn(t)II%A] < 0.
t€[0,T]

Then, the sequence (PX») = is tight in Zp.

50



2.4. Skorohod-Jakubowski Theorem and Tightness Criteria

Proof. The assertion follows from a similar reasoning as in Proposition where the Strauss
Lemma can be substituted by Lemma O

We continue with a short interlude in measure theory. Let S be a Polish space with metric p, i.e.
a separable, complete metric space equipped with the Borel o-algebra 5(S). Let us denote the
set of all finite measures on S by M (S) and define the Prokhorov-metric

F(p,v):=inf{e >0: v(A) < pu(A%) +eand p(A) <v(A%) +e VA€ B(S)}

for p,v € M4 (S), where A* :={z € S|3Ja € A: p(z,a) < e} . From [17], p. 72 and 73, we infer
that (M,.(S),7) is a complete separable metric space. We fix a o-finite measure ¢ on S and a
sequence (Sy), oy C B(S) such that S, S and ¥(S,,) < oo for all n € N. Then, we denote the
set of all N-valued Borel measures ¢ on S with £(S,,) < oo for all n € Nby M (S).

Lemma 2.53. Together with the metric

o0

(&1, &) : Z "min {1, 7(&(-NSa),&(-NS))}, &6 € ME(S),

M(S) is a complete separable metric space.

Proof. We denote the set of all NU{0}-valued measures on S by My} (S). This set is separable

and complete since it is closed in (M (S), 7). Then, we equip M := (Myy{o} (S))N with the
metric

d((ﬂn)neNa(Vn>neN 22 ”mln{l 7T(,UmVn)}-

n=1

We show that (M, d) is separable and complete. Let us take a Cauchy sequence (%) engen ©
MY, For eachn € N, we get @(uk, ul) — 0 for k,1 — co. The completeness of My o} (S) in the
Prokhorov metric yields (pn),,cy € M with #(uf, 1) — 0 for k — oo and each n € N. Now,
we deduce d((1y;), _» (#n),cry) — 0 from Lebesgue’s Theorem and thus, M is complete. The

separability of M is a consequence of the fact that My} (5) is separable. The map
I: Mg(S) = M, I(n) = (u(- N Sn)) e »
defines a homeomorphism onto a closed subset of M and thus, M?(S) is also complete and
separable. 0
Let n be a time-homogeneous Poisson random measure on R with intensity measure v. Finally,
we would like to apply Corollary with
Xy o= ME([0,T) x RN), X, = Z2,
and a sequence (X,,),, ¢y of processes as in Proposition For convenience, we use the abbre-

viation M%([0,T] x RY) := Mé;eb ®([0,T] x RY). Combining Corollary Lemma and
Proposition we get the following Corollary as the main result of this section.
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Corollary 2.54. Let 1) be a random variable in M ([0, T] x RN ) and (X, )nen be a sequence of adapted
cadlag E*-valued processes satisfying the Aldous condition [A] in E* and

sup E
neN

< 0.

sup | X (1)1,
te[0,T]

We equip Z2 with the o-algebra A from [2.44) . Then, there are a probability space (Q, F,P), a subse-
quence (X, ) e and random variables v, vy : Q — Zp and ., 7 : @ — ME([0,T] x RN) with

l) P(ﬁkﬁ“k) — ]P’("]:Xnk)for ke N7
ii) (g, vx) = (7, 0) in ME(0,T] x RN) x Zp almost surely for k — oo,

iii) 7, = 7 almost surely.

52



3. The fixed point method for the
stochastic NLS on the full space

In this chapter, we study existence and uniqueness for the following stochastic NLS

1 o (o)
du = (iAu — Aty — 3 Z |em|2|u|2(7_1)u>dt —1 Z em|ul? " udB,,, 3.1)
m=1 m=1 :

u(0) = uy,

with A € {-1,1}, a > 1, v > 1, (ém)men C L>®(R% C) and independent Brownian motions
(Bm)men - We consider initial values in L?(R?) and H'(R?). As a particular feature of this equa-
tion, we observe the power-type noise which is somehow similar to the deterministic nonlin-
earity.

For the standard NLS, ie. e, = 0forall m € N, global wellposedness in L?(R?) for a €
(1,1 + %) and local wellposedness in the critical case & = a, = 1 + § are classical results
which can be found e.g. in the monographs [36],[88],[114]. In H'(R?), similar results hold for
ae (L1+g=7 d72)+ Jand o = 1+ (C= d72)+ Comparing the degree of the deterministic terms in (3.1)),

we observe that the value 2(y — 1) plays the same role as o — 1. We start with a remark to make
this more precise by a formal calculation which transfers the invariance of the deterministic
NLS under the scaling

v(t,z) = vg(t,x) := Gﬁv(ﬁzt, 0x), vo(x) — v o(z) == Gﬁvo(Gflx), (3.2)
to the stochastic setting.

Remark 3.1. We assume that e,,(0x) = e, () for all > 0 and x € R?. Let u be a solution to

(3.7), i.e.
t 1™ oot
u(t) = ug +/ (iAu — M|y — 3 Z |em|2|u|2(771)u)ds -1 Z / em|u)’ " udB,,
0 m=1 m=170

almost surely forall ¢ > 0. For all § > 0, the sequence (5%, )men defined by 82, (t) = 6~ 3(6t) for
t > 0 consists of independent Brownian motions. The stochastic integral satisfies the inequality

az / Z / " B (s)m (e (33)

almost surely for all ¢ > 0, which can be easily checked for simple processes and transfered
to general integrands by approximation. From and a change of variables in the Bochner
integral, we infer

u(6t) = ug + 6* / lAu 0%s) — iX|Ju(6%s)|* Lu(6%s) %Z lem|?|u(6?s) 20— (925))ds
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—if Z /Ot €m‘u(025)|7*1u(925) dgfn

m=1

almost surely for all t > 0. Now, we set iy (z, t) := u(fz,6?t) for v € R? and ¢ > 0 and obtain
t 1 o0
g (t) = ug(6-) + / (iAae AT TR |em(9~)|202\ae|2<"—1>a9)ds
0 2 m=1

oo t
iy / em (800" ip A7,
m=1

almost surely for all ¢ > 0. We abbreviate uy := 0571y and multiply the previous equation
with 657 to deduce

4(v—=1)

t o0
1
ug(t) = Qﬁuo(ﬂo) Jr/o (iAU9 —iX|ug|® Tup — 3 Z e |?0% a1 |u9|2(7*1)u9>d5
m=1
— [ 1—-20=D 1 30
_12/ emt " o1 |l~l’9|v_ Ug dﬁm
m=1"0

almost surely for all ¢ > 0. Thus, the system (Q, F, P, (~9 Ymens (Fo2e)t>0, ue) is a martingale

m

solution of (3.1) with initial value G%uo(&) forl = % The latter condition is equivalent
atl
5

toy =

In view of the previous calculation and the fact that the L?-norm is invariant under the scaling
(3.2) if and only if & = 1 + % it is natural to call the stochastic NLS (3.1) mass-critical if the
exponents are given by o = 1+ 4 and v = 1 + 2. The stochastic NLS with o = 1 + ﬁ and

2 . e . . . . . . .
v =1+ =g is called energy-critical since in this case, the energy is scaling invariant.

In this chapter, we prove local existence and uniqueness in L?(R?) for all subcritical and critical
exponents a € (1,1 + 2] and v € [1,1 + 2] under modest assumptions on the coefficients
em, m € N. This reflects a significant improvement of the previous results since has only
been treated for v = 1 so far. We refer to the introduction of this thesis for a more detailed
overview of the literature on this problem. Moreover, we prove a global result in L?(R%) for
all subcritical o under a substantial restriction of the admissible exponents 7. In H!(R%), we
prove local existence and uniqueness, but we are not able to cover all exponents. Let us recall
our results which have already been stated in the introduction, see Theorem [1}

Theorem 3.2. Let ug € L*(RY), X € {—1,1}, (Bm),,en be a sequence of independent Brownian

motions and (e, )men C L®(RY) with Y07 [lem||2 < oo. Then, the following assertions hold:
a) Let o € (1,1 + 3] and ~ € [1,1 + 2]. Then, there is a unique local solution of B.1) in L?(R?).
Both stochastically and analytically, the solution is understood in the strong sense from Definition

21
b) Let a € (1,14 %) and - = 1. Then, the solution from a) is global.
¢) Let ey, be real valued for eachm € N, a € (1,1 + ) and

a—14+d(1—-a)

1.
a+14a+d(1—a)+

1<y«

Then, the solution from a) is global.
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Theorem 3.3. Let ug € H'(RY), A € {—1,1}, (Bm),,en be a sequence of independent Brownian
motions and suppose that we have Y °_ (|lem]|zo + Vel r)? < oo, where

LYRY),  d>3,

F = L**(RY), d=2,
L*RY), d=1,

for some e > 0. Let a € (1,14 3]U(2, 1+ ggy-] and v € [L, 1+ F]U(2, 1+ 7% -]. Then, thereis a

unique local solution of (3.1) in H' (R?). Both stochastically and analytically, the solution is understood
in the strong sense from Definition

The chapter is structured as follows. In the first section, we prove part a) of Theorem [3.2|and
the second one is devoted to b) and c). In the third section, we prove Theorem

3.1. Local existence and uniqueness in L?(R%)

In this section, we prove Theorem [3.2]a). On a technical level, the case v = 1 is significantly
simpler. However, we would like to treat v = 1 and v # 1 at once to keep the presentation at a
reasonable length. Moreover, it is possible to substitute the sequence (,,),,cy of independent
Brownian motions by a cylindrical Wiener process W on a real valued Hilbert space Y with
ONB (fm),,ecn - We refer to Example for this correspondence. To incorporate these two
aspects, we solve the slightly more general problem

du = |iAu — iMu|* tu+ g (|u\2(771)u> + u2(u)} dt —i [By (Ju["""u) 4+ Bau] dW,

(3.4)
u(0) = up € L*(R?),
for v > 1, where By, By : L2(R%) — HS(Y, L?(R?)) are linear bounded operators defined by
Bi(u)fm = enu,  Ba(u)fm :=Bpnu, ueLl?*RY), meN, (3.5)

with
o0 oo
D llemllie <00, D I1BmlZ ey < oo
m=1 m=1
Moreover, we denote

1 & ) 1,
po=—g D leml’ 2= —5;Bm3m. (3.6)

m=1

Before we proceed with the proof, we briefly sketch our strategy. First, we truncate the nonlin-
earities and look for a mild solution of

it = (188 = IX@n (st |* s+ [t )01 (i 20 D) + iz () )

— i (¢ (tn, ) Br (Jun]"tun) + Bauy,) AW, (3.7)
u(0) = uo,
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for fixed n € N. The truncation is given by ¢, (un,t) = 6,(Z:(u,,)) for a process

Zi(un) = [unllLa(,s;00+1) + lunllLaco,sr2m) (3.8)
and
1, x €[0,n],
Op(z) =14 2— %, x € [n,2n], (3.9)
0, x € [2n,00).

The functions 6,, and 62 obey the Lipschitz conditions

0u@) =) < o=yl [Gn@P ~ 0P| < Sl -yl zyz0.  (310)

In Figure we sketch 6,, and 2. It is beneficial to use the squared cut-off function in the
correction term since (3.7) has still Stratonovich structure. This ensures that the L2-norm of the
solution u,, is conserved as long as e,, is real-valued for each m € N.

On(z) [0 ()]
1 | 1 |
0 T ! % 0 T \ W
0 n 2n 0 n 2n
Figure 3.1.: Cut-off functions 6,, and 62.
In (3.8), ¢, G € (2, 00) are chosen according to

2 d d 2 d d
2 =2 + < (3.11)

¢ atl 20 G 2y 2
Hence, (a+1, ¢) and (2v, §) are Strichartz pairs. In order to construct a solution of (3.7), we use
a fixed point argument in the natural space L?($, E, 1), where
L(a,b; L*TH(R?)), a+1>2y,

Li(a,b; L*7(RY)), a+1< 2y,
(3.12)

E[a,b] = Y[a7b] N C([a7 b]v L2(Rd))’ Y[a’b] = {

for 0 < a < b < T. The argument is based on the Strichartz estimates from Proposition and
Corollary and the truncation replaces the restriction to balls in Er used in the deterministic
setting. Since the solution of (3.7) also solves the untruncated problem up to the stopping
time

Tni=1nf{t >0: Zy(u,) > n} AT, (3.13)

this yields a local solution u to (3.4) up to time 7, := sup,,cy 7. The uniqueness of the solution
to (8.4) can be reduced to the uniqueness of (3.7). In the critical setting v =1+ 5 ory =1+ 2,
a similar argument yields a local solution. Note that in this case, we use the truncation ¢, for a
small v € (0,1) instead of ¢,, for a large n € N.
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We remark that in the critical case, the Strichartz exponents for time and space coincide and
we get Y, 5 = L2+ (a,b; L2173 (RY)). A further relationship between the spaces from above is
clarified by the following interpolation Lemma.

Lemma 3.4. We have

Elqy = L(a,b; L*TH(RY) N LI(a, b; L (RY)).

Proof. We treat o + 1 > 2~. The other case can be proved analogously. From Lemma we
infer

-0
“u||L5(a,b;L27) < ||u||};oo(a,b;L2)HUH%Q((L,b;LQH) < HU”E[G,IJ]
for u € Ej, ;) and thus, we have

Hu”Lq(a,b;L“+1) + ||u||L‘5(a,b;L2V) < 2||u||E[n,,b]7 u € E[a,b]'

O

Furthermore, we abbreviate Y, := Y} ,j and E, := Ejg, for r > 0. Let 7 be an F-stopping time
and p € (1, 00). Then, we denote by ME(Q, Ejo ;) the space of processes  : [0, T]x € — L*(R%)N
L* (R%) with continuous paths in L?(R?) which are F-adapted in L?(R?) and F-predictable in
L?Y(R?) such that

E | sup [u(®)|7: + [lully, | < oc.

[Jully, =
Mg (2,Eo,+)) tefo.r]

Often, we abbreviate v € M{(Q, E;) := ME(Q, Ejo ;). Moreover, we say u € ME(Q, Ejg ;) if
there is a sequence (7,),, .y of stopping times with 7,, ,* 7 almost surely as n — oo such that
u € M(Q, Ejo,,)) foralln € N.

The first following Lemma contains the differentiability properties of the power type nonlin-
earities in LP-spaces which will be needed frequently in this chapter. Since these properties
are also important throughout the thesis and do not depend on the underlying space R%, we
formulate the results in a more general setting.

Lemma 3.5. Let (S, A, i) be a measure space and o > 1.

a) Let p > 1. The map Gy : LP(S) — R defined by G1(u) := ||u||1£p(5) is continuously Fréchet
differentiable with

Gilulh = Re/ |u|*~tuhdp
s

forallu,h € LP(S).
b) Let p > aand @ : R? — R? be continuously differentiable. Assume that there is C' > 0 with
|P(2)] < Clz|%, &' (2)| < Clz|* 71, z e C.

Then, the map
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3. The fixed point method for the stochastic NLS on the full space

is continuously Fréchet differentiable with

G'[ulh = [P (u) + iP5 (u)] h, u, h € LP(S).

In particular, we have |G'[ull| ., 2 < Cllu||$5 " for uw € LP(S) and
IG(w) = Gl 2 < (lullee + [0le)* " lu=vlls, w0 € LP(S). (3.14)

Proof. This lemma is well known, see for example the lecture notes [66], Lemma 9.2. O

The next Lemma is the justification of solving (3.4) via a fixed point argument. We use the
following abbreviations for > 0 and ¢ € [0,77] :

K u(t) ==— i)\/o elt=s)A [gpn(u,s)|u(s)|a71u(s)} ds, (3.15)
IOES / =% [y (T (s ) [u(9) 20D u(s) ) + pz (u(s))] ds, (3.16)
K" u(t) = —i /0 S5 By (0w, 8)[u(s) " u(s)) + Byu(s)] AW (s). (3.17)

Lemma 3.6. Let o € (1,1 + 2],y € (1,1 + 2] and p € (1,00). Then, u" € ME(S, E) is a global
strong solution of in L2(R?), if and only if

u" = U()UO + K:iletun + thratun + K;ltochun (318)
holds almost for all t € [0,T].

Proof. Fors € [0,T],wesetd:=1+%(1—a)>0andd =1+ 4(1—~)aswellas

F(s) i= =i [pu(u, )l ()]~ ()] + [ ([ (s O " () PO~V (s) ) + gz (" (5))]
B(s) :=—1[By (gn(u™, s)|[u™(s)]" " u"(s)) + Bou"(s)]
Based on (3.5), and the Holder inequality, we estimate

1 6
ol Nl o <l T

2v—1 5
Sl T°,

o1 (Lpn@)2u2o=10)| Thiomren)

2y
L3 (0,T;L27-T)
||M2(U)||L1(0,T;L2) N T||U||L°°(0,T;L2),

1By (n (w)|u]” = u) 4+ Ba ()| 20,15y, L2))

1 1
0o 2 o] 2
< (Z ||€m||%°°(Rd)> ||90n(u)|u|7_lu||L2(0,T;L2) + (Z |Bm|%([,2)> l[ullr2(0,7522)
m=1 m=1

5 ||UHL2’Y(O’T;L2’Y)) + T% ||U/||Loo(0’T;L2).

Hence, we obtain F' € L'(0,7;X) and B € L?(0,T;HS(Y, X)) almost surely. Hence, we can
apply Lemma[2.5|with X = H2(R%) and Af = —Af for f € L?(R%) := D(A). O
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In the following Proposition, we state existence and uniqueness for (3.7) in the subcritical
case.

Proposition 3.7. Let a € (1 1+ d2) € (1,14 2) and p € (1,00). Then, there is a unique global
strong solution (u™, T) of (3.7) in L?(R?).

Proof. We fix n € N and construct the solution from the assertion inductively.
Step 1: We look for a fixed point of the operator given by

K™= e Pug + Ku+ K2you+ Koopu,  u € MB(Q, E,),

where r > 0 will be chosen small enough. Let u € ME(Q, E,). A pathwise application of
Proposition and integration over {2 yields

le" 2oz .,y S lluollrz-

We define a stopping time by

= inf {t >0: ||U||Lq(07t;Lu+1) + ||UHL<7(O,t;L2’Y) > 2n} AT

and set
d ~ d
5::1+1(17a)€((),1), o0=1+ 5(17 v) € (0,1).
We estimate
1 Ggulls, Slhea@lul ™l e < Ml o e
a, s

§||u|‘%q(O7T;L(¥+1)T < (2n)

using Proposition b) and d) and the Holder inequality with exponents -+ and +. In the
same spirit, we get

HthratuHEr Sj HMI ([@n(U)]2|u|2(V—1)u) ‘

+ [l p2 () || 1 0,r;L2)

2y
L7 (0,r;L27—T)

= 2 2(y—1) 1 & 2
Siﬂ;HemHLm(Rd)lHul v u”m’(o,f;m%l)+§ z:: 1B Iz (2y7 1l o 0,r;£2)

2y—1

5 2y—1 5
Sl Py ™+l e oy < (20)%7

+ T’”’LL”LOQ(O rL2)-
Integrating over (2 yields

, 2v—1
”ngtuHMfF’(Q,ET) S (Qn)a T67 ||K§Ltmtu”M§(Q,Er) < (2n) 7 5 + 7”||UHMP(Q E,)-

By Corollary we obtain

1K oentillez 0.2,y SIB1 (on(w)u]”™ ) + Ba(u)l| Lo a,2(0,rm5(v,22))

1
2

< <Z ||€m|im(md>> ln (w)lul" ™ ull Lo @, L20,r512))
m=1

1

+ (Z IIBmlf;(Lz)) lull L (2, L2 (0,r;22))
m=1
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_ 1
Sllen (Wl ull Lo, 020,22y + 72 [0l Lo (0, Lo (0,r522))

From the pathwise inequality

s s
len (@l ullz2orr2) < Nullfar o rpevy < T2l a(0 20y < 72(20)

we conclude

s
2

1
1K Stocnvllmz 0,z S 72 (20)7 4+ r2{lullye@,5,)

and altogether,
IK ulhz o) S Mol ey + (20)°77 + (20)2 7108 473 20)7 + (r 478 uluz o5,y < o0

for u € ME(Q, E,). In particular, ME(Q, E,) is invariant under K™. To show the contractivity of
K™, we take uq, uy € M[(, E,) and define stopping times

7j := inf {t >0 flugllLao,gspetry + lugllLaco,er2vy > Zn} AT, ji=1,2

and fix w € Q. Without loss of generality, we assume 71 (w) < 73(w). We use the deterministic
Strichartz estimates from Proposition[2.14]

|a71,qu |a71

[KGer (1) = Ky (u2) |5, Slion(ua)ua = n(u2)ug|* s

+1
Lq/(O,r;Laa )

<lpn(un) (| oy = fuzl*Hu) [l et

+ fon (u1) = on(u2)] Juz|* us|

’ a+1 .
L3 (0,r;L a )
By (3.10) and Lemma 3.4} we get

o (u1,8) = @n(uz, s)]

IN

- uallao,so+1) + lull Lago,s;n2v) = 1zl Laqo,sipo+1y — luall aco,sn2m)]

| /\

1 2
- = (llur = uallpaco,s;p0+1) + lur — uallLa(o,s;227)) < *||U1 — uz| g, (3.19)
and we can use this as well as Lemma[B.5with p = @ + 1 and o = « to derive

at1 < |||’U,1|a 1’(1,1 |u2|a71u2\| at+1

o () (Jua|* ™ g = Jua|*uiz) ”Lq (0,5L% ) L4’ (0,ry;L )

<70 (llunll pago.m, oty + 2l Lago,m,zo) ™ lur = wall oo o)

< r0(4n)* Muy — uzl pago,ry,po+ry < r0(An)* 7wy — usl|E,

and
| lpn (u1) = @n(u2)] |ug|® g <2 [l[ur = uall g ug|® tus| a1
" " La' (0L a ) — m : L' (0,79;L a )
2 a—1
< E||u1 —uzl|g, || [uz| U2||Lq,(O’T2;LaT+1)
2 2
< - <= (2n)~.
< n||U1 n”Ul 7%(2n)
We obtain

1K (u1) — K (u2)lle, S (2% + 4971 0 Huy — usl|g, -
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3.1. Local existence and uniqueness in L?(R%)

Analogously, we get

H@n(ulv 5)]2 — [on(uz, 8)]2| < %”ul — usl| B, (3.20)

for the squared cut-off function and deduce the inequality

1K Srrar (1) = Klpar ()5, S || lon ()Pl PO Dur = [pn () 22 20 Dy |

2y
L3 (0,r;L27—T)
+ [Jug — U2HL1(0,T;L2)
< (22'y+1 n 42(7—1)) P20 |y — s LaoreLo)
+ 7"||U1 - U2||L<>o(0,r;L2)
< [(22'y+1 + 42(7—1)) r3n2(7—1) + ’I“} ||U1 _ u2HE7"
for the Stratonovich correction term. For the stochastic convolution, we estimate
llon (ur)Jun "~y — o (u2)[ua " usll 20,02y Sllen(ua) (Jual” ™ ur — [ua] " ug) [ 120,22
+ 1(on(u1) — on(u2))|ua| " usll 2(0,r12)-
The terms on the RHS can be treated by Lemma 3.5 with 7 = 2y and o = v and Lemma 3.4
lon(ur) (Jus "~ ur — e~ ug) |22 (0,ms22)
-1
S (lullovo,mizeny + luallovio,rizen) ™ llua = uzllpevo,mizev)
3 -1
S8 (luallpao,rspevy + luellpao.m:rey)’ lur — uzllLa,m;zem
5 _
Sr2 (4n) 7 lus — uallp,

and by the estimate (3.20)

_ 2 _
(o (u1) = @n(u2))|ua| " us || L2(0,r12) < EHul — usll g, lJu| Mzl L2 (0,75 12)

IN

2 5
Sllur = ualle, 75 uall e 1o

2 5
EHul — up||g, 7% (2n)7.

IN

By Corollary this yields

||K£Ltoch<u1) - K;foch(UQ)”Mﬁ(Q,Er)
S B (o (un)|ur | ur — o (ug) |ua|" u2)ll Lo ,2(0,mm8(v.22))

+ || B2(u1 — u2)| e (0,02 (0,rHS (v, L2)))
1

0 2
s A _
< (Z ||€m|%oc> rE? (T 4277wy — oz 5,
m=1
[e’e} 2
1
+ <Z an%(L?)) 2 ||lur — uzllyr(q,5,)
m=1
S [T%n’y—l (4_7—1 + 27"'1) + T%:| ||’LL1 — u2||M§(Q,ET)'
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3. The fixed point method for the stochastic NLS on the full space

Collecting the estimates for the other terms leads to
1" () = K7 (w2) g,y S| (204! +4771) o) o (22741 4 2070 ) 02070

+r—+ (47_1 —+ 27+1) ’[“gn"/_l + 7”%:| ||’LL1 — U2HM§(Q,E7‘)'
(3.21)

Hence, there is a small time r = r(n, «,y) > 0 such that K™ is a strict contraction in ME(Q, E,)
with Lipschitz constant < } and Banach’s Fixed Point Theorem yields u™! € ME(Q, E,) with
K™(u}) = uy.

Step 2: Let us start with preliminary comments. For some T, > 0, we denote the shifted filtra-
tion (Fi17,),50 by FZ0. Then, the process given by WTo (t) :== W(T, +t) — W (Ty), fort > Oisa
cylindrical Wiener process with respect to F7° as we have proved in Proposition Note that
for an [F-predictable process @, we have

t Tott
/ el(t—s)Aq;(TO + S)dWTO (s) = / el(To+t—s)A¢(8)dW(s) (3.22)
0 To

almost surely for all ¢.

We choose r > 0 as in the first step and assume that we have k € N and u}! € ME(Q, Ej,) with
UZ = 61.Au0 + K(Tiletuz + thratuz + KStOCth
on the interval [0, kr]. In order to extend u} to [kr, (k + 1)r], we define a new cutoff function by
Pnk (U, 1) == 0y (Zi(u)) , where (Zy(u)),¢ (o , is a continuous, F*"-adapted process given by
n 1 nnd G 1
Zi(u) 5:(||“k||qu(o,kr;La+1) + ||“||qu(o,t;Lo<+1))“ + (||uk||%q(07kr;L2w) + ||u||%§(07t;L2W))q

fort € [0,r] and u € Mgkr(Q7 E.). Moreover, we set

Kigt) = =i [ 09 [, )u(s) | u(s)] s,
K Sy (t) = / I o w5 (Juls) PO Vu(s) ) + 2 (u(s))] ds,

Kgoen ru(t) = _i./o ellt=)Aa [nk(u, 8)By (Ju(s)|" " u(s)) + Bau(s)] AW (s)

fort € [0,r] and u € M, (Q, E,.) and
Kl = e A ul(kr) + Kooy 5+ Ko 1t + K pon 1t u € My, (U E,).
We take vy, v; € ME,, (Q, E,) and define the F*"-stopping times
7 :=inf{t > 0: Z,(vj) > 2n} A, ji=12. (3.23)

Without loss of generality, we assume 71(w) < 72(w) and follow the lines of the initial step
where we replace u; by v; and ¢, (u;) by ¢n k(v;) for j = 1,2. We obtain

) —1
1K kv1 — Ky pv2lle, <79 (1ol ao,m,posy + vallpao,r,o+y) " llor = va|

E.
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3.1. Local existence and uniqueness in L?(R%)

2 )
+ ;HUl — 02|, 2 [[V2(|Ta 0,701y

and by [|v;{|La(o,r,,0+1) < Zr, (v5) < 2n for j = 1,2, we conclude

_ 2
1 Kas — Kigallz, <7 (n)* = for —valls, + 2 Jor — a5, 7 (20)°
_ 2
< (a4 2 20" or = vl

Analogously, the estimates for K¢, ., and K7, from the first step can be adapted to get

stoch

1K oot 1(01) = Krar s (02) s, S (22771 +42070) 1802070 40 oy — 0],

”thoch,k(vl) - Kﬁoch,k(W)HM;M(Q,E,g < (r%m—l (47—1 + 2V+1) +7r %) ||Ul - ”2||MP (LE)
and thus
K5 (v1) = Ki (02) e, 2.m) S { (20T 44271 oot (227“ + 42(”*1)) rop20=1)
e (B
+r+ (47_1 + 2’Y+1) r%n'y_l + T%} ||1}1 - ’UQ”MP (Q,E,.)-
phr SO ET
(3.24)

Since the constant is the same as in the initial step, the definition of » > 0 yields that K} is a
strict contraction in M, (Q, E,.). We call the unique fixed point v}, ; and set

0 | O, ‘€ [0.krl,
U (1) = P (— kr), t € [kr, (k + 1)r).

Obviously, u}., | is a process which is continuous and F-adapted in L?(R%) and F-predictable
in L?7(R%) and satisfies uf 1l zr (@B, < oo Therefore ui,, € ME (€, E(ry1)r)- Let t €
[kr, (k + 1)r] and define ¢ := ¢ — kr. Then, the definition of K* and the induction assumption
yield

Uﬁﬂ(t) =vi1 (B) = K vpa (f)
ltA n(kr) + Kdet kvk-‘rl( ) + thrat,kvlg-i-l(f) + K;Ltoch,kvlg-i-l(f)
Bug + [ Kt (k1) + K it (D] + (€72 K et (b1) + Ky 0740 (0]
" [eifAszchum - K lyoer 0 (7)) -
Using the identities
Qon(u;clv 8) = (pn(uZ—&-la 5)7 Son,k(vlg+1, §) = Spn(u;cl—o—la kr + ,§)
for s € [0, kr] and § € [0, 7], we compute
g ~ g k’,‘ .
K (k) + Ky vy () = *i)\elm/ BT o (uft, 8)uf ()| (s)] ds

0

E ~ -~
i / ST [ (o sy, B ol ()] s (5)] da
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3. The fixed point method for the stochastic NLS on the full space

kr
——in [ o ) () (5] s
t T~
- i)\/ elt=5)A [on (Uit gy, kr + 8)|upyy (kr + 8)|*  ugyy (kr + 5)] d3
0

t
— A / S8 [0 ()l ()] ey ()] ds = K byuf s (1),

where we used the substitution s = kr + 5 in the second integral for the last step. Analogously,

itA
el thrat,ku;fl(kr) + thrat,kv2’+1(t) = thratuz+l(t)a

eitAK;ltocth(kr) + KStOChykvlrrcL—&-l(E) = K;Ltochu;cl—&-l(t)?
where one uses (3.22) for the stochastic convolutions. Hence, we get
itA
’U’?kl:-ﬁ-l(t) = elt Uo + ngtuz—i-l(t) + Kﬁtrut“?—i—l(ﬂ + thochuz-i-l (t) = Kn“ZH(t)
for t € [kr, (k + 1)r] and therefore, uf_, is a fixed point of K™ in M(Q, Ej1),). Define k :=
| L +1]. Then, u™ := uf is the process from the assertion.
Step 3: Now, we turn our attention to uniqueness. Let (&, 7) be another strong solution of (3.7).
Asin (3.21), we get
lu =tz (o,p, ., =IK" (@) = K"(@)[lmz@,8,.,)

SC{ (2a+1 + 40471) Ténafl + (22’Y+1 + 42(771)) ?"577,2(771) T+

AT)

+ (47—1 4 2’Y+1) rapy 1 4 r%} |lw — ﬂ;HM?(Q’E
1 -
§§||u — Wflmz (2,00

which leads to u(t) = a(t) in ME(Q, E;,), i.e. u = @ almost surely on {t < 7 A r}. This can be
iterated to see that u(¢) = @(t) almost surely on {t < o} } with oy, := 7 A (kr) for k € N. The
assertion follows from o}, = 7 for k large enough. O]

In the following two Propositions, we use the results on the truncated equation to derive
existence and uniqueness for the original problem (B.1). The proofs are quite standard and in
the literature, analogous arguments have been used in various contexts for extensions of exis-
tence and uniqueness results from integrable to non-integrable initial values and from globally
to locally Lipschitz nonlinearities, see for example [123], Theorem 7.1, [26], Theorem 4.10, and
[110], Theorem 1.5.

Proposition 3.8. Let a € (1,14 2), v € (1,1 + 2) and (u"),, .y C ME(Q, Er) be the sequence
constructed in Proposition[3.7} For n € N, we define the stopping time 7., by

T, = inf {t € [O,T] : Hu”HLq(O’t;LaH) —+ ||u"||L<;(0,t;L2w) > TL} AT.
Then, the following assertions hold:

a) We have 0 < 7,, < 73, almost surely for n < k and u™(t) = u*(t) almost surely on {t < 7, } .

b) The triple (u,(Tn), ey »Too) With u(t) := u"(t) for t € [0,7,] and 7oc = Sup, ey Ty is an
analytically and stochastically strong solution of in L2(R?) in the sense of Definition
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3.1. Local existence and uniqueness in L?(R%)

Proof. ad a): We note that 7,, is a welldefined stopping time with 7,, > 0 almost surely, since
2"(t) = l[u"ll Lo spesry + [1u™l| Lao, 220y < 2lulls, < 2[u”|[pr <00, €[0T,

defines an increasing, continuous and F-adapted process Z™ : 2 x [0,T] — [0, o0)
with Z"(0) = 0. For n < k, we set

Thn = 1inf {t € [0,7]: Z¥(t) > n} A T.

Then, we have 73, < 7 and ¢, (u*,t) = 1 = ¢p(u*,t) on {t < 7;.,,}. Hence, (u¥,7;,,) is a
solution of and by the uniqueness part of Proposition 3.7, we obtain u”(t) = u"(t) almost
surely on {t < 73 » } . But this leads to Zk(t) = Z™(t) on {t < Tk,n} and 74, = 7, almost surely
which implies the assertion.

ad b): By part a), u is well-defined up to a null set, where we define v := 0 and 7., = 7.
The monotonicity of (7,), oy yields 7, — 7o, almost surely. Moreover, v € ME(Q, E, ) by
Propositionand therefore u € M(Q, Eg ). Since u,, is a global strong solution of (3.7), the
identity

on(u,t) = op(u™,t) =1 ason {tA7,},

yields
u(t) =ug + / t [i8u(s) = iMlu(s) " uls) + i (Ju(s) 20 Du(s) ) + pa(u(s))] ds

i /0 By (Ju(s)]" " u(s)) + Byu(s)] AW (s)

almost surely on {t < 7,,} forall n € N. Therefore, the triple (u, (Tn)nen » Too) is a strong solution

of in L2(R%). O

Proposition 3.9. Leta € (1,1+3),v € (1, 1+ 2) and (uy, (0n),en - 0) » (u2, (70)
solutions to (3.4) in L*(R?). Then,

nen > T) be strong

up(t) = ua(t) as.on{t <o AT},
i.e. the solution of is unique.
3.9B.8
Proof. We fix k,n € N and define a stopping time by
Vk,p = inf {t €10,7] : ([[urlla(o,e;po+1y + llutllLaco,er2m)
\ (||U2||LQ(0,t;La+l) + HU2||Lq‘(o7t;L2w)) > n} Nogp N\ Tk.

Hence, ¢, (u1,t) = op(uz,t) =1 on {t < vy, } and therefore, (u1, vg,,) and (ug, vk, ) are strong
solutions of (3.7). By the uniqueness part of Proposition[3.7, we get

Ui (t) = ’U,Q(t) a.s. on {t < Vk,n};

which yields the assertion since v, ,, — o A 7 almost surely for n, k — oo. O
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3. The fixed point method for the stochastic NLS on the full space

In the Propositions and [3.9} we have proved Theorem a) in the subcritical case, i.e.
o€ (1,14 2), v € (1,1 + 2). We continue with the critical setting. In contrast to the proof
of Proposition the argument to construct the solution of the truncated equation already
involves stopping times. Thus, we have to make some preparations.

Definition 3.10. Let A be a family of non-negative random variables on 2. Then, we define the
essential supremum esssup A of A by the following properties:

a) Forall X € A, we have X < esssup A almost surely.
b) If Y is a random variable with X < Y almost surely for all X € A, then we also have

esssup A <Y almost surely.

Obviously, the essential supremum is unique in the sense that two essential suprema coincide
almost surely. The following Lemma is devoted to the existence of the essential supremum.
The proof can be found in [73], Theorem A.3.

Lemma 3.11. Let A be a family of non-negative and bounded random variables on €Q.
a) The essential supremum esssup A exists.
b) Suppose that A is additionally closed under pairwise maximization, i.e.

X1,Xo € A implies X1V Xy € A
Then, there is an increasing sequence (X, ), oy C A with esssup A = lim,, o X,, almost surely.
Let us formulate our local existence and uniqueness result in the critical setting.

Proposition 3.12. Leta € (1,1+ 3],y € (1,1+ 2Jwitha =1+ 2 ory =1+ 2.
a) There is a unique maximal mild solution (u, (), cx » Too) of (3.4).

b) We set
277 CE:].—‘r%,
p1 = 9 (3.25)
Oé+1, ’Y:l"‘aa

and choose qa such (p1,q1) is a Strichartz pair. Then, we have the blow-up alternative

P (TOO <T, |lull, <00, ||ullpn ©r.Lm) < oo) —0.

243 (0,700, L2 )
Proof. Step 1. We remark that (2 4+ 4,2 + %) is a Strichartz pair. For r > 0, we define
Y, = L2a(0,r; L2YE(RY), B, = 0O([0,7], LX(RY) N Y,

We proceed as in the proof of Proposition 3.7 with the difference that n € N is now substituted
by a possibly small v > 0, which does not change the estimates at all. We set

v, . 1A v v v
Kl u=e “ug+ Kdetu + KStT'atu + Kstochu

with the convolution operators from (3.15), (3.16) and (3.17) and obtain the estimates

v o 1.4 s 1
1KY ullvz 0,2,y S lluoll L2 ey + (2v) 4+ (2v) 7 e (20) + (7“ + 7"2) [ullbez 2,2,
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3.1. Local existence and uniqueness in L?(R%)

1Y (1) = K ()l gy S| (2 4071 o=t g (2250 4 42070 ) 382070 g
+ (47—1 + 2W+1) rgzﬂ—l + r%} lug — u2||M]§(QvET)

for u,u1,us € ME(Q, E,), where we set § := 1+ (1 — ) and 6 =1+ 4(1 — ) as before.
Since we have § = 0 or § = 0 by the assumption, we cannot ensure that K} is a contraction by
taking r small enough. But if we choose v and r sufficiently small, we get a unique fixed point
up € ME(Q, E,) of K.
By the definition of the truncation function ¢, in (3.9), u; is a solution of the original equation,
as long as ||u1||L2+%(0}t;L2+%) + [|utl| Lo 0,65201) < v, where (p1, q1) is the Strichartz pair defined
in (3.25). In particular, the pair (uq, 1) with

= inf{t >0 [lual 24

(O,t;L2+%) + ||u1||Lq1(o,t;Lp1) > I/} AT

is a local solution of (3.4).

Step 2. We want to extend the solution from the first step up to a maximal stopping time
following [70], Theorem 14.21. We define the set

S ::{T :Q—[0,T] F-stopping time’ Ju € ME(Q, Ej 1))
(u, 7) is the unique solution to 3.4}

which is non-empty by Step 1. Moreover, one can show that S is stable under the maximum-
operation. Indeed, given stopping times 7; and processes u; € M(Q, Eg -,1) such that (u;, 7;)
are solutions for j = 1,2, we set

U(t) = Ul(t A\ Tl) + U2<t /\7'2) — ul(t AN T1 /\7'2), te [O,T]

Uniqueness implies u1 (t) = uz(t) almost surely on {t < 71 A 72} and therefore, we have u = u4
on{m >} x[0,71)and u = uy on {1y < 72} x [0, 7). It is easily checked that (u,m V 72)isa
solution to (3.4) and uniqueness is inherited from u; and u,.

Thus, we can apply Lemma and obtain 7, := esssup S as well as a nondecreasing sequence
(Tn)pen € S with 7o = limy, ;o 7,, almost surely. In particular, 7 is a stopping time by Lemma
2.11 in [74]. We denote the solutions associated to 7,, by u,, and define u € ME(Q, Ejy ;) by

u(t) = 1goyuo + Y un(t)1r,_, .7 (t) on{t < 7o}

n=1

The triple (u, (74),,c » Too) is @ unique local mild solution.

Step 3. In order to show the blow-up criterion, we set
Qi={re <T Null2g . yavd) <0 Nullinreim) < o0}

and assume P(Q) > 0. This implies, that we have

N
||U||L2+%(T7L7TooaL2+%) + ”UHL‘H (Tn,Too,LP1) Li‘i) 0
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3. The fixed point method for the stochastic NLS on the full space

on Q) and by Egoroff’s Theorem, we get g € F with P(Qp) > 0 such that the limit is uniform
on . In particular, there is n € N with

(3.26)

IIN

”uHLH%(TmTW,LH%) + ||uf[ Lo (Tn\Too, LP1)

for all w € Qg, where v > 0 is chosen similarly to the first step. Let us recall from Proposition
[A4]that W™ := W (- + 7,) — W(7,) defines a cylindrical Wiener process relative to the shifted
filtration F., := (F,4+), - As above, we can construct a unique mild solution v,, solution of

Qv (t) = [180a(8) = Xoa(B)]* vn(t) + i (Jon ()P0 Dvn(0)) + 2 (va(1))] dt
—1[B1 (Jon(t)]" " 'vn(t)) + Bavy, ()] AW ™ (2),
un(0) = (),
(3.27)
with existence time

o, := inf {t € [0,T] : |vnllLaqosna) + llvnll Lo (0,45001) > V} AT.

We would like to show that 7,, 4 0, is an F-stopping time. In view of the right-continuity of IF,
it is sufficient to verify {7, + 0, < s} € F; forall s € (0,T]. Given s € (0,T], we have

{mton<st= |J {on<an{m+aqg<s}. (3.28)
q€(0,TINQ

Now, we fix ¢ € (0, T]NQ. Since o,, is an F . -stopping time by construction, we have {o,, < ¢} €
Fr., +q- From the definition of F,, , we infer {o,, < ¢} N {7, + ¢ < s} € F;. In combination with
(3.28), we obtain {7, + o, < s} € Fs.

As in the proof of Proposition[3.7, we can glue the solutions v and v,, together and get a unique
solution (@, 7, 4+ 0,) with @ := uljo 7,y + vn1(7, . +0,) In particular, we infer 7, 4 0, € S. The
definition of o,, yields

Ha||L<I(Tn,Tn+Un;L‘1) + ||a||Lq1 (Tn,Tnton;LP1) =V

and by uniqueness, we obtain & = u on [0, (7, + 04,) A Too ). Due to (3.26), we have 7, + 0, > 750
on g contradicting the definition of the essential supremum. Hence, we conclude P(©2) = 0.

Step 4. In order to prove that the solution (u, (7, )nen, Too) is maximal, we take another local

mild solution (w, (7),,cy , 7) and assume that there is A € F with P(A) > 0 and 7 > 7 on A.

In particular, for all w € A, we can choose n = n(w) € N with 7, (w) > 7o (w) which implies
HUHL2+% (0,7a0s L2 1) < 00, [[wll o (0,700;LP1) < OO

on A. By the blow-up alternative, we conclude 7., = T almost surely on A. This is a contradic-

tion to the assumption since 7 is also bounded by T O

We would like to remark that the proof of the blow-up alternative and the elegant iteration
procedure based on the essential supremum of stopping times is inspired by [65], Theorem
4.3. In this article, the author used similar techniques in the context of quasilinear stochastic
evolution equations. We close this section with remarks on possible slight generalizations of
Theorem [3.2]a) and continuous dependence of the initial data and comment on the transfer of
our method to the energy space H'(R?).
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3.2. Global existence in L*(R?)

Remark 3.13. In the proof of the local result, we did not use the special structure of the terms
B, By from and fi1, po from (3.6). In fact, we only used By, By € L£(L*(R?), HS(Y, L?(R%))),
w1 € L(L2(RY))NL(LY (RY)) and pp € L(L?*(R?)). But since the definition of i1, i is motivated
by the Stratonovich product and will be important for the global existence in the following sec-
tion, we decided to start with the special case from the beginning.

A generalization of the result from Theorem from determistic initial values uy € L*(RY)
to ug € LI(S2, Fo; L2(R?)) is straightforward. By the standard localization technique (see e.g.
[123]), a further generalization to Fy-measurable ug : 2 — L?(R9) can be done if one relaxes
the condition u € ME(€, Ejo,r) tou € MY (9, Ejy,7)),i.e. u is a continuous F-adapted process in
L*(R%) and F-predictable in L??(R?) with

sup [u(®ls + lulf, < oo as.
te[0,7]

For the sake of simplicity, we decided to restrict ourselves to deterministic initial values.

Remark 3.14. Using the estimates of the fixed point argument in Proposition 3.7 it is straight-
forward to show that we have the following Lipschitz continuous dependence on the initial
data: For two solutions (u1, (7y,1)n, 71) and (uz, (Tn,2)n, 72) of (3.4) corresponding to initial data
uo,1 and ug,» constructed as in Proposition 3.8, we have

lur = wellmz(a,k,,) < C(n)lluo,y — uozl L2, (3:29)

where 7,, := 7,1 A T, 2. We can compute the constant

L=tmy 1

Cn)= > (ff?)l_l

=1

explicitly. This yields C(n) — oo for n — oo as a consequence of Cgy > 1 and L € (0,1).
In particular, the estimate is not strong enough to imply Lipschitz continuous dependence on
[0,7) with 7 := 7 A To.

3.2. Global existence in L?(RY)

The goal of this section is to prove part b) and c) of Theorem [3.2} To this end, we study global
existence of the solution to the subcritical stochastic NLS

dut) = [iAu(t) = M@ u(t) + p (Ju®) 20D u(t) + pa(u(®)] at
—1[By (Ju(t)]" " u(t)) + Bau(t)] dW (¢),
u(0) = uo,
(3.30)
with o € (1,1 + %) and v € (1,1 + 2). Let us recall that the local solution (u, (,),,cx > Too) S
given by v = u,, on [0, 7,,], where

o i=1nf {t € [0, 7] : [|unlla(o,6;00+1) + lJunllLago,er2y = n} AT, n €N, (3.31)
for exponents ¢, G € (2, o) satisfying the Strichartz conditions

2, d _d 2 d_d
g a+1l 2 i 2y 2
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3. The fixed point method for the stochastic NLS on the full space

Moreover, Toc = sup,,cy Tn and u,, is the solution of the truncated problem

duy, = (iAu” — ipn (tn, ')|Un|ailun + [on (Un, ')]2H1(|Un|2(v71)un) + 1o (Un)) dt
— i (pn(tn, ) By (lun]"" ) + Bouy) AW, (3.32)
u(0) = ug.

The strategy to prove global existence is determined by the definition of the existence times in
(3-31): We need to find uniform bounds for u,, in the space L?(0,T; L") N L9(0,T; L*). Note
that this is a drawback of our approach based on the the truncation of the nonlinearities and can
be avoided in the deterministic case, where the local existence result comes with a natural blow-
up alternative in L?(R?) and the mass conservation directly yields global existence. However,
we overcome this problem by applying the deterministic and stochastic Strichartz estimates
once again. The strategy of the proofs presented below is essentially due to de Bouard and
Debussche, [41], Proposition 4.1. We start with global bounds for the mass of the solutions u,,
for n € N in the case of linear noise.

Proposition 3.15. Let o € (1,1 + %), By = 0and py = 0. Let n € N and u,, be the global mild
solution of (B.7) from Proposition|3.7} Then, we have

t
un(t) |22 = [luo||2z — 2/0 Re (un(s),iBgun(s)dW(s))LQ, t € [0,T], (3.33)

almost surely. Moreover, for all p € [1, 00), there is a constant D, = D,(T, ||uol|r2) > 0 independent
of n with

E[ sup [un()ll}:] < Dy (3.34)
t€[0,T)

Note that the estimate for p = 2 previously occurred in [11] and in the special case of
Stratonovich noise with selfadjoint operators B,,, m € N, simplifies to ||u,(t)||2 =
|luo|| > almost surely for all ¢ € [0,7]. This generalizes the L?-conservation of the NLS, see
[88], equation (6.2), to the stochastic setting.

Proof. Step 1. To prove (3.33), we set M = R%, A = A, F(t,u) = A\p,(u,t)|u|* tu for u €
Lot (RY) and ¢ € [0, 7] and obtain

IEE | e S Jull§ars,  Refiu, F(tw) , asr =0, we LoF

Lo+l ,Lia

By construction, we have u,, € C([0,T], L*(R%)) n L4(0,T; L***(R%)) almost surely and ¢ >
o + 1, since «v is in the subcritical range (1,1 + 3). Hence, Corollaryyields 3.33).

Step 2. First, let p € [2,00) and fix t € [0,T]. Applying the L% (Q, C([0,]))-norm to (3.33), we
(E[ sup |un(s)iz}> < |luoll32 +2 (E [ sup
s€[0,t] s€[0,t]

get
The second term can be estimated by the Burkholder-Davis-Gundy inequality

] <E (2/0 |(un(r),iBmun(r))L22dr>

/OS (un(r),iBun(r)dVT/'(r))L2

E | sup
s€0,t]

/OS (un(r),iBun(r)dVV(r))L2
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3.2. Global existence in L*(R?)

2 D
o0 t 4 t T
<E (ZIIBmI%<Lz) / ||un<r>|‘zzdr) SEK / ||un<r>||izdr) ]
m=1
such that we obtain

(E[si‘ﬁfﬂ ||un<s>|ia}>

P

s o

Sluollfs +¢ (E[ sup, ||un<s>|iz}>

2
I v
vz [ (B s i) ) s
4e Jo rel0,s]

for ¢ > 0 by an application of Lemma with Y (s) = [lu,(s)||32. If we choose ¢ > 0 small
enough, the last estimate implies

2 2
P t P
(E[ sup un<s>||iz]> S ol + | (E[ sup |un(r>||’;2]) ds,
s€[0,t] 0 r€l0,s]

and by Gronwall’s Lemma, there is a C' > 0 with
»
E[ sup flun(s)I%:] ) < Clluoli3oc®,  teo,7)
s€[0,t]
For p € [1,2), the assertion is an immediate consequence of Holder’s inequality. O
Unfortunately, the Gronwall argument from the previous Proposition cannot be transfered to
nonlinear noise. For real-valued coefficients, however, this is not necessary since we even get

conservation of the mass of u,,, n € N. At this point, we employ that the approximated equation
has Stratonovich structure due to the use of squared cut-off functions in the correction term.

Proposition 3.16. Let a € (1,1 +4),v € (1,1 + 2), up = 0, B, = 0 and e,, € L*(R%,R) for
eachm € Nwith Y~ |lem |3~ < oo. Let n € N and u, be the global mild solution of B.7) from
Proposition[3.7) Then, we have

un ()22 = [luollz2 (3.35)
almost surely for all t € [0, T).

Proof. As in the previous proof, we set M = R, A = A and F(t,u) := Ap,,(u, t)|u|* tu for u €
LotH(RY). Let g(t, x) == pn (un, t)wa_l. With these definitions, u,, satisfies (2.22) and therefore,
we have

lun ()17 =lluoll7> — 2/0 Re (un(s),iB(s)dW (s)) ..,

where B(8) fm = em@n(Un, 8)|un(s)| " tu,(s) for m € Nand s € [0, 7). Finally, the stochastic
integral cancels due to

Re (un(8)7iB(5)fm)L2 =Im /Rd em@n(unas)‘un(s)p—i_lds =0, meN, se [OaT]
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3. The fixed point method for the stochastic NLS on the full space
Before we continue with the proof of global existence for linear noise, we introduce the abbre-
viation
Y, = L%0,r; L*TH(RY),  r >0,
which will be frequently used below.

Theorem 3.17. Let o € (1,1 + %), By = Oand g = 0. Let (uy,),, oy be the sequence of global mild
solutions to (3.7) from Propositionand (Tn)nen e the sequence of stopping times from (3.31). Then,

we have
IP’( U {TH:T}) ~ 1.

neN

In particular, 7o, = T almost surely and the pair (u, T) is a global strong solution of (3.30) in L?(R%).

Proof. Step 1. We want to prove that there is a constant C' = C(||ug|| 2, T) > 0 such that

sup El||uy ||y, < C. (3.36)
neN

We fix n € N and recall that u,, has the representation
Uy = " Pug + Kyun + K2yortin + K&oontin  in ME(S, Er). (3.37)

We fix a path w € Q and 0,(w) € [0,7] to be chosen later. Let § := 1 + 4(1 — «). Then,
we apply the deterministic Strichartz inequalities from Proposition to estimate K., and
Kstrat (compare the proof of Proposition[3.7) and obtain

o
lunlly,, < Clluollzz +Copllunll§,, + Cllunllri.en.22) D |1 Bmllz ) + | Kstocntunlly,,

m=1

< K+ Copllual$, (3.38)

where K, is defined by

Ky = Cllunll p=(o,7512) (1 +T Y Bm||i<L2)> + | Kstocntin | vr-

m=1
W.l.o.g we assume ug # 0 and thus K,, > 0. We conclude
lallvey <, gt oo (Tnllve, \°
K, — non K,

Now, the following fact

(03

Ve >03c; <2,c0 >0 xgl—s-ﬁ

= x<¢ Or T>cy (3.39)
from elementary calculus yields
||un||Yan S ClKn S 2Kn7

if we choose 0, according to Co K&~' < L. This condition is fulfilled by

on = CF (20T UKO N AT,
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3.2. Global existence in L*(R?)

Note that the second alternative in (3.39) can be excluded because of ||u, ||y, = 0 and the conti-
nuity of the map ¢ — ||u,|y,. Next, we decompose 2 = Oy U 2y with

o ={o ke ) et} o= {oh et P 2T
Fix w € 4 and define N := L%J Using the abbreviation
Yj = L9(jon, (j + Don; LT R?Y),  j=0,...,N,
we get

lunlly; < Cllun(jon)llzz + Coplluall$,

o0
+ CT”Un||L°°(jon,(j+1)<7n;L2) Z ”BmH%(L?) + ”KStochunHYj

m=1
<K, + C’Ui||un||%
forall j = 0,...,N by analogous estimates as in (3.38) and thus again |u,|y, < 2K,. We

conclude

N
T a a—1
unllve <Y lltnlly, < 2(N+1) K, <2 ( + 1) K, < 2K, + 257 I3 TR 1 (3.40)
On

=0

Since we have |lu, |y, < 2K, on s, the estimate (3.40) holds almost surely. Then, we integrate
over {2 to obtain

llun 10,y S 2E [Kn} +oTE {K:%H]

By Corollary and Proposition we get for each p € (1, 00)

P ezl
E|:||K5tochunHI;/T:| S E[”“n”i‘z(oj;m)} < T2E|:HunHL§°(O,T§L2):| =T

This yields

yaa
2

D,. (3.41)

- 1
E [K,] < CE[lun||Lo(0,7,22) (1 +T Z ||Bm|%(L2)> + (E[| Kstocntnll3, ) 2

m=1
> 1L
< CD; (1 +T > |Bm|i(L2)> +T2Dj3 (342)
m=1

for the first term, whereas for the second one, we write

azlyy azlig azlig a=1,1
]E[Kn‘s ] 5 E|:HU7LHL;;C(O,T;L2):| +E[||KstochunHY:i :| fj DaT—l_i_l(]_ + T 735 +2).
Hence, we have proved

SupE”un”YT < C(Hu0||L27T7 «, d)
neN

Step 2. Recall 7. := sup,cy7n. The exponent v appears in 7,, as well as in the truncation
function ¢,,, but it is arbitrary since the nonlinear part of the noise vanishes due to y; = By = 0.
It is pragmatic to set v = %4+ in order to get

T = inf{t € 0,77 : 2l|unlly, >n} AT
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3. The fixed point method for the stochastic NLS on the full space

and by the Tschebyscheff inequality and (3.36)

20
P(r, =T) :IP’(||un||y < g) >1- 22

™ — n

Using the continuity of the measure, we conclude

P (7o =T) zp( U {7 :T}) = lim P(r, =7) = 1.
neN

In the previous result, we used the linearity of the noise to estimate the stochastic convolution
via the stochastic Strichartz estimate from Corollary 2.23]and the mass estimate from Proposi-
tion[3.16, To cover nonlinear noise, we combine the techniques we have seen above with an
interpolation argument between L>(0,T’; L?(R¢)) and L%(0, T; L**(R?)).

Theorem 3.18. Let o € (1,1 + 3), po = 0, By = 0 and e,, € L®(R%,R) for each m € N with
> lleml|3 e < oc. Let (un)nen be the sequence of global mild solutions of (B3.7) from Proposition

Suppose that + satisfies

a—14+d(1l—-a)
1 1. 4
<’Y<a+14a+d(1—a)+ (343)

Then, we have

IP(U {TnzT}) = 1.

neN

In particular, 7o = T almost surely and the pair (u,T) is a unique global strong solution of (3.1).
In Figure[3.2] we illustrate the condition (3.43) by plotting the set

{(oz,v) € (1,50 o e (114 ) and holds}

for the dimensions d = 1,2, 3. We observe that the condition is fairly restrictive, in particular
closetoa=1landa =1+ 3.

d=1 =
5 5 d=2 ~y d=3
1.14 LT T 1.125 RN 1.11 N
II \\\ II \\ 'l \\
1 \\\ [ AN £ \\
; e ' T R N
1 i =t 1 [ ! o «

Figure 3.2.: Values of a and v leading to global wellposedness in L?(R9).

Let us proceed with the proof of Theorem 3.18]
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3.2. Global existence in L*(R?)

Proof of Theorem Step 1. Forall o € (1,1+ %), we have

a—14+d(1-a) 1 a-1 a+1
1<y < 1<7 1< < .
7 oz—|—14o¢+d(1—a)+ —|—1+ 2 2

Thus, the distinction of the cases in (3.12) vanishes and we have Y,. := L4(0,7; L*"1(R%)). Asin
the previous proof, we want to prove that there is a uniform constant C' > 0 such that

sup Elju, ||y, < C. (3.44)
neN

Let us fix n € N as well as

d ~ d a+1—2y
0:=14-(1- 0:=14+_-(1- 0= ——~—.
+50-a), +S-n), ao
Here, 0 is chosen according to 2 =%+ (Trl In particular, we have ¢ € (0, 1) and from Lemma
2.13|and Proposition we infer
||Un||Lq(0 on,L27) S HunHLOC(O a'n,L2)||un||Lq 0,00;Lo+1) = ||u0||L2||un||Lq(0 O Lot (3.45)

almost surely for all ¢ € [0,T]. As in the previous proof, we fix w € Q and o, (w) € (0,T] and
use the fixed point representation (3.37) of u,, and Strichartz estimates to deduce

oo
”unHYan < Clluol|z2 + CUZ”“?L”)Q/% + CUg||un||iW§zo{gn7L2w) Z Hem”%oo + ”KStochunHYan

2 1)6 2 1 1-6 >
< Olluollze + Cadllunllg, + CollluollE ™ unll 27"V 3™ Jleml|2
+ ||KStochunHYan~ (346)

We denote

oo
5 2v—1)0
Kn i=Cllullzz + CT uo| & S llem|2 + 1K stocntinllve

m=1

Cy =C |14 T |Jug |5~ 1>9Z em||%oo].
m=1

Duetol <y < % and § € (0,1) we have (2y — 1)(1 — 6) < «, which leads to
e Y |

Using this estimate and 6 > 6 in (3.46), we deduce

lunlly,,, < Clluollze + Cop,

o0
5 2y—1)6
1L+ o2 0 luo| 571 S IemII%oo} lunlly,,

oo
+ 0 luo| 7S Nleml3 + | Kstochtnlly,,

< Ko+ Ci0) |Juall$,
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3. The fixed point method for the stochastic NLS on the full space

We choose

1

on = Oy 7 (200 KT AT,

which leads to ||u,|ly,, < 2K, by analogous arguments as in Theorem Iterating this
argument as in (3.40), we end up with

T
| v §2(0+1>K < 2K, +2%% +105TK T 4

We set p := 21 + 1 and integrate over () to obtain

1
lunllzr 0,y < 2E[ K] + FTE[K)T ] S 1+ Bl Ksioentinllyy + Bl Kstocnun

S 1+ HKStochun”LT'(Q,YT) + ||KStochunHLp(vaT)-

Now, we choose € (py,00) according to = = %+ 1% Using Lemma and Proposition
B:16] we estimate

_ 3
||KStochun||LP(Q,YT) S ||50n(u s)|un|ﬁf lun”LP(Q L2(0,T;L2)) <T> ||un||2pv(9 La(0,T;L27))

1 0 s 1 0
[un 1% 0L 0.7 1in 1 ey = T2 0175 117 gy

1-6
S lunll 1S -

<T2|

Finally, we end up with
(1-0) (1-6) 1-6
lnllzr@.vey S 1+ lunll P oy + nl Xy S 1+ lun 5 G-
In particular, there is C' = C(||uol| 2, [|€m |2 (v, 15¢), T, o, v) > 0 with
sup ||un||L1(Q’YT) S 07 ne Na
neN

if we have

a—144+d(1-a)
1- 1 1.
pl =) < < 7<a+14a+d(1—a)+

Step 2. Using the result of the first step and taking the expectation in (3.45), we obtain

lwnllzr 0,300,120y < lluollf2C*°

and the definition of 7;, followed by the Tschebyscheff inequality and (3.44) yield

lunllLr@,yr) + lunllLr@,za0,7;027))
n

P (1 =T) =P (|lunllve + lunllLio,r2y <n) =1 -

C + ||uol|7-C*~°
p :

>1-

By the continuity of the measure, we conclude

IP’(Too:T)>]P<U {Tn:T}> = lim P(r, =T) = 1.

n—oo
neN
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3.3. Local existence and uniqueness in H'(R%)

Let us comment on the critical case o = 1 + 4 which has been excluded for the global existence
results in Theorem [3.17/and Theorem Our proof cannot be transfered to this setting since
we have § = 0 and the strategy crucially relies on § > 0 to apply (3.39). But global existence
for general L2-initial data cannot be expected in this case, anyway, since there are blow-up
examples in the deterministic setting for the focusing nonlinearity, see [96]].

However, it is easily possible to apply similar arguments to prove global existence of the lo-
cal solutions from Section [3.3| for initial values in H'(R?), as soon as one has an analogue of
Proposition 3.15/in H'(R%), i.e. a uniform estimate

E[ sup [lun()lf] < Dy (347)
te[0,T]

for the solutions (u,,),,.y from the Propositions and respectively. However, we de-
cided to skip this part since it is rather extensive to rigorously justify evolution formulae for
the energy. Instead, we refer to [12], Theorem 3.1 for a formula of this type.

3.3. Local existence and uniqueness in 7!(RY)

In this section, we prove Theorem by a similar strategy as in the L?-case based on the trun-
cation of the nonlinear terms. In this way, we overcome the problem that Strichartz estimates
do not gain integrability in 2. Once we have the solutions of the truncated problems, existence
and uniqueness can be shown analogously as in L?(R?).

Throughout the whole section, we consider a fixed cylindrical Wiener process W on a real

Hilbert space Y with ONB (f;,),,,cry - We assume
- LYRY), d>3,
D (lemlle= + llemlle)? <o, Fi= qLP(RY), d=2,
m=1 L*(RY), d=1.

Thus B(u)fm = emu for u € H'(R?) and m € N defines a linear bounded operator B :
H'(RY) — HS(Y, H*(R%)). Moreover, we denote

pi= g S lenl”

m=1

Comparing Theorem a) and Theorem we observe that there is a gap in the range of
exponents « and 7 occurring in the H!-setting. As we will see below, this is due to technical
difficulties in extending the fixed point argument from the deterministic case to the stochastic
setting via the truncation argument from Section For the deterministic NLS, local well-
posedness for all energy-subcritical exponents a € (1,1 + —+—) is usually proved by a fixed

- i (d—2)+
point argument in the ball
X, g = {ue L®0,r; H'(RY)) N LU0, r; W T (RY) : [|ul|poe srppawran < R}

with ¢ € (2,00) such that (a + 1,¢) is a Strichartz pair. As a consequence of the Banach-
Alaoglu Theorem, the ball X is complete with respect to the metric induced by the norm in
L>=(0,T; L?(RY)) N L0, T; Lo+ (R?)) which significantly simplifies the contraction estimate.

For further details on this argument which employs the Strichartz estimates from Proposition
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3. The fixed point method for the stochastic NLS on the full space

and the Sobolev embedding H'(R?) < L**1(M), we refer to the monographs [114], [36]
and [88].

To prepare a similar reasoning for the stochastic NLS, we introduce some notations and show
that a stochastic version of the ball X, p is also a complete metric space. We choose o € (1,1 +
ﬁ) and v € (1,1 + ﬁ), which ensures

HY'(RY) — LoTH(RY), HY'(RY) — L?7(RY).
Moreover, there are ¢, § € (2, 00) such that (o + 1, ¢) and (2, ¢) are Strichartz pairs. We set

v L(a, b; WETH(RT)), a+1>2y,
T 2, bW (RY)), a+1<2y,

and
E[]fz7b] = }/[];,b] nL> (av b7 Hk(Rd))v F[a,b] = Yr[lll,b] N C([aa b]7 Hl (Rd))

for0 < a <b < Tandk = 0,1. Letr > 0. We abbreviate Y;* := Y{§ ,, Ef := Ef; , and

F, = Fy,. For p € (1,00), we denote by Mﬁ(Q,E[’B’T]) the space of predictable processes
u:[0,7] x Q — WhatL(RY) N W2 (RY) with

||u||M]’F’(Q,E[’B,T]) = maX{||U||LP(Q,LOO(0,T;H%))7 ||UHLP(Q,Y,5»')} < 0.

Moreover, we use the notation M%(Q, F}.) for the space of predictable processes u : [0,7] x Q —
Whetl(RY) 0 W27 (R?) such that

ulliaz 0,7,y = max {[[ull Lo @,z 0.r1)): Jull Lo,y } < o0
Similarly to Lemma 3.4} we deduce the embedding
BE = La,b; WRetH (RY) 0 Li(a, by WE2I(RY),  k=0,1. (3.48)
Lemma 3.19. Let R > 0and r > 0. Then, the set
Xy o= {u € ME(Q,EL) : [[ullupo,m < R}

equipped with d(u, v) := |[u — v|wz (o, go) for u,v € X g is a complete metric space.

Proof. To show that X, g is complete, let (u,,)nen C X, g be a Cauchy sequence. As ME(Q, E?)
is a Banach space, there is u € ME($, E?) with u,, — u for n — oo. We obtain the assertion, if
we show [[ullyep(q,m1) < R.

The sequence {un)neN is contained in the balls

BLP(Q7L°°(O7T7H1)) = {’U S LP(Q,LOO(O,T',HI)) : ||'U||Lp(Q7Loo(OJ»7H1)) S _R}7
Broayny = {ve LP(Q.Y,)) : [vlltro,yy) < R}

Hence, the Banach-Alaoglu Theorem implies that there are a subsequence (un, )ren and ele-
ments v € BLP(QVLOO(()’T,HI)) and w € BLP(Q’YTI) with

Up, =" v in LP(Q,L20,r, H'(RY)),  wu,, —w in LP(Q,Y}) (3.49)
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3.3. Local existence and uniqueness in H'(R%)

for k — oo. By the embeddings

’

LP(Q, (Y0)") = L7 (2, (V1))
and
LY (Q, L*(0,r; L*(R))) < L (Q, LY(0,r; H*(R%)))
we conclude

Up, = v in LP(Q,L%°(0,r; L*(RY)), un, —=w in LP(QYY).

By the uniqueness of limits, we get u = v = w. Therefore, we have u € ME(Q, E}) with
ullmz(,m2) < R O

Next, we state a Lemma about the mapping properties of the gradient of the power nonlinear-
ity.
Lemma 3.20. Let p > 0 > 1 and w € WHP(R?). Then, we have |w|”~'w € W7 (R?) and

IV [wl” o]l 2 < w7 [ Vwl| e (3.50)

HL%
If we assume p > o > 2, we get

[V [Jwi]” wi] = V[[we] " ws] Slhwill HIVwr = Vws| e

+ (lwillZe? + w2l 72%) Vwell oo lwy — wallze (3.51)

[

fOT’ wi, We € Wl’p(Rd).
We sketch the proof for convenience since it is not easy to find a reference for the assertion
although it seems to be a classical result. We need some preliminaries. Below, we identify

C with R? and differentiability is always understood in the real sense. For a continuously
differentiable function f : C — C, we denote

0.1(2) = 5 0uS(2) ~0,(2),  0:f()i= 5 (0uf() +10,0()),  ==uw+iyeC.
Then, the chain rule can be formulated as
Vf(u) =0.f(u)Vu+0:f(u)Vi,  ue CX(RT) (3.52)
and consequently, we get the integral inequality
F(22) = f(z1) = /01 (0.7 (521 + (1 8)22) (21 — 22) + 0 (521 + (1~ 8)22) (2 — 22)|ds (3.53)
for 21,29 € C.

Proof. Step 1. First, we prove the estimates

|Vilw]" w]] < fw]7™ 1V,

|V [Jwi|" " wn ] = V[|we] " wa] | S Jwi |~ Vwr — Vws| + (Jwn]77% + [wa|7~2) [Vwa||wi — wsl
(3.54)
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3. The fixed point method for the stochastic NLS on the full space

for w, w1, we € C(RY). We define & : C — C by &(z) = |2|°'z. For ¢ > 1, & is continuously
differentiable with

0.9(z) :%(a +1)]z77 0:P(z) = %(o —1)|z|7 7322
In particular, we have
Vil ] = So+ D" Yo+ L0~ Dwl 0?Ve,  weCERY, (359
and thus
Vil w0l < olwl”Vul,  we O (RY).

For o > 2, & is twice continuously differentiable with
2 1 o—33
9;0(2) =5 (0 +1)(0 = 1)|2|"7"%,

0.0:P(z) :%(0 +1)(o —1)]2|7 32,

029(z) :i(a —1)(o —3)|z]7 525, (3.56)

From (3.52) and the triangle inequality, we infer

|V[|w1|"_1w1] - V[|w2|”_1w2]| <0,9(w1)||Vwy — Vws| + |0,P(w1) — 0,P(w2)|| Vws|
+10:P(w1)||Vwr — Vws| + |0:P(w1) — 0:P(ws)||Vws|.

The integral identity (3.53)) and (3.56) yield

1
10.(w1) — D.B(ws))| g/ [1020(sw1 + (1= $)ws)| +|0:0:8(sw1 + (1 = )ws)| | dslor — w
0
S (Jwn]772 + [we]772) |wi — wy.

Together with a similar reasoning for |0;®(w;) — 0:@(w-)|, we obtain the second inequality in
(3.59).

Step 2. By the estimates (3.54) from the first step and the Holder inequality based on the
exponent identities 7 = zl) + % and 7 = % + zl) + ‘7772, we deduce (3.50) and (3.51) for
w,wy,ws € CX(RY). The assertion for general w,w;, wy € WHP(R?) can be obtained by an

approximation argument. O

We continue with the notations for the approximation of (3.I). As in Section[3.1} we employ the
cut-off function

1, x € [0,n],
On(z): =< 2— f, x € [n,2n],
n
0, x € [2n,00),
and the process
2u(0) = [ollzooszern) + Wl iouzeys € [0,T], v € B
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3.3. Local existence and uniqueness in H'(R%)

Moreover, we set

@n(vvt) = en(Zt('U))v wn(vvt) = en(HUHE})’ te [OvT]v te Ei}“v (3.57)

and consider the following two different ways of truncating (3.1):

du, = (IAUTL — 1A (tn, ')|un|a71un + [‘Pn(uru ')]2ﬂ(|un‘2(771)un)> dt
— i (tn, ) B (Jun| " uy ) dW, (3.58)

un(0) = o,

and
dv, = (iAvn — iAp (Un, )| Vn]* " p + [ (Vn, .)]QIU’(‘U’H,lQ(’y_l)’Un)) dt
— ity (vn, ) B (Jvn| " vy ) AW, (3.59)
v (0) = ug.

Let us compare (3.58) and and outline our strategy to solve these problems. In Proposition
will be tackled with a fixed point argument in the ball X, p from Lemma For
two reasons, this is not possible for . On the one hand, the cut-off with v, is not strong
enough to get a contraction estimate in M (Q, E?). On the other hand, the truncation argument
needs the continuity of ¢ — ||v||; to guarantee that the existence times are stopping times. This
is only true for v € F., which forbids the use of the Banach-Alaoglu argument in Lemma[3.19}

Under the restrictions o > 2 and v > 2, however, Lemma provides Lipschitz estimates
for

v = V[o]* 1], v Vw20 Y], v Vo[ 1]

Hence, we can apply Banach’s fixed point theorem in ME(Q, F,.) without the restriction to a
ball. This will be the content of Proposition

Proposition 3.21. Let ug € HY(RY), o € (1, 1 + (1,14 2)and p € (1,00). For fixed n € N,
there is a unique global strong solution (uy,, T in H1 ]Rd satzsfymg u, € ME(Q, EL).

Proof. We define

Kiu(t) 1= =% [ €093 [, (u,9)luo)]"~u(e)] ds.
Kpagult) = [ €095 ([pun, O u(s) PO Vu(s)) ds,

t
Kstochu( ) == 1/ ei(t_S)AB (<pn(u,s)|u(s)|'y_1u(8)) dW(S)
0
and construct a unique solution u,, € M&(Q, E7.) of the mild equation
Up = € Pug + Kyt + K qytin + Kl ooptin.

We remark that by Proposition 2.14/and Corollary2.23} a solution of this equation has contmu—
ous paths in H'(R?) and as in Lemma[3.6] one can show that u,, is a strong solution of (3.58) in
H(RY).
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3. The fixed point method for the stochastic NLS on the full space

Step 1. We take u € X, p for some r > 0 and R > 0 to be specified later and define a stopping
time by

=inf {t >0 ||ullLa(o.ssze+1) + [ullLao,n2v) > 2nf A

Moreover, we set

N

6::1—}—%(1—(1)6(0,1)7 d=14_-(1-7)€(0,1).

A pathwise application of Proposition and integration over {2 yield

lle" 2 uolluez o, m1) < lluollzr-

Using Proposition Lemma 3.20for p = o + 1 and ¢ = «, Holder’s inequality in time based
on the identity ; = o + -+ + J and finally (3.48), we estimate

q
|

a—1
£ Slea@ul* ™l o e

< a—1
S [ P

4 — 4
<lalSagorzosty™ +NalSod 2. passy IVl Lago,rspasnyT

< (20)*H Jull pagomwretyr® < (20)7 [l g,
Similarly, we get
B 52077 flul
Integrating over {2 yields
n a-1 2y—2
K Gulz o,y S )" R, 1K Sy aulur e S (2n)°7 72 R

By Corollary and the boundedness of B, we obtain
||K§eochu||M]§(Q7E$) SIB (@n(u)\uwflu) HLP(Q,L2(0,7-;HS(Y,H1)))
Sllon @)l ull Lo, L20,0501)-

From Lemma with p = 2y and ¢ = +, the Holder inequality and (3:48), we infer the
pathwise inequality

H@n(“)‘UW_IUHL?(O,T;HU Sllullz L2v(0,m2v) T HUHLQW 0,7;L27) IVullL2v(0,75227)
el Yo gyl ooy
<8 2n) " ull 2
and therefore
| K fhoertllaz .1 S 75 (20)7 'R,

Altogether, there are constants C; > 0 and Cy = Cs(r,n) > 0 with Cs(r,n) — 0 for r — 0 such
that

||K”u||M]g(Q7E%) < C1 [|luo|lgr + RCo(r,n)], u € X, g (3.60)
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3.3. Local existence and uniqueness in H'(R%)

The same arguments as in the proof of Proposition[3.7]lead to the estimate
[ K" (u1) — K™ (u2)|lmz (0, m0) < [ (2071 4271 oot 4 (227+1 + 42(7_1)) rop20=1)
bt v rgnvfl} s — vz, m0)-
Hence, there is a constant C3 = C3(r,n) > 0 with C5(r,n) — 0 for r — 0 and
[K™(u1) — K™ (u2)|lmz(0,z0) < Cs(r,n)|lur — uz|lyz 0, m0)- (3.61)

Now, we choose 7 > 0 small enough to ensure Cs(r,n) < 1 and C3(r,n) < i and take

R = 2C4||ug||r2. Then, K™ is contractive and leaves X, p invariant and Banach’s Fixed Point
Theorem yields u™! € X, g with K™ (u}) = u}. This argument can be iterated to get a global
mild solution v € ME(Q, EL) of (3.58) since the existence time r > 0 is independent of
[uo[ 2 O

We continue with the proof of existence and uniqueness for (3.22) under the restrictions o > 2
and vy > 2.

Proposition 3.22. Let ug € H'(RY), a € (2,1 + z5;7), 7 € (2,1 + z55) and p € (1, 00). For

fixed n € N, there is a unique global strong solution (v™,T) of B:59) in H'(RY) with v,, € ME(S, Fr).

Proof. We define

Kizo(®)i= =i [ 6098 [0, w5l o(s)] ds,

Klipartl®) = [ 083 ([ 0O o)D) s,

0

t
Kl pepo(t) = — i / SIAB (1, (v, 5)[u(s)) Lo (s)) AW (s)
0
and construct a unique solution v,, € M{(€2, Fr) of the mild equation
Un = €% + Kyvn + KpraiVn + KlyoenUn.

Asin Lemma one can show that v, is a strong solution of (38.59) in H'(R%).

Step 1. Let us fix r > 0 to be specified later and take v € ME(Q, F).). We define the stopping time
T by

T:=1inf{t > 0: ||v]|p > 2n} AT
A pathwise application of Proposition and integration over (2 yields

le" 2 uollz .7,y S lluollar-

Using Proposition Lemma 3.20|with p = & + 1 and ¢ = « and the Holder inequality with

% = é +$+ (% ~ 4 , we estimate
1K G0l 7, Sltn (0)[0]* o at1

Lq,(O,T;Wl' a )
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3. The fixed point method for the stochastic NLS on the full space

-1
SR Liﬁ||||v||La+1||w||m+1HLq/(O,T)

1 _ 1
<||U||Loo(0 T La+1) q ”UHL‘I(O T;Latl) + ”UHLool(o,T;La-f—l)Tq, ¢ HV'UHL‘I(O,T;L"‘“)'

The Sobolev embedding H!(R?) — L**1(R%) and (3.48) yield

1
PU

| K g0l P, ||U||Loo(07.H1) qHU”Lq(O’T;Wl,a{»l)

§(2n)°‘_1rq’ qu F

and similarly, we get

1
i

2y—2 -1
1K Strarvlle. S 20)7 7 Jollprd ™5

Integrating over €2, we obtain

1_1
1K et Iz (2, 7, S(2n)*7 ||U||MP(Q e T,
1
7/

Q=

1K Strar?llvz,r) S (2n)* HUHMP(Q )T
For the stochastic convolution, we deduce
1K Ssoenvlbez .,y SIB (@n (0)0]™0) Lo (0,22 0,mm8 (v, 1)
Slton (@)™ 0l Lo (,2 0,0511)) -
From Lemma [3.20|with p = 2y and o = v and the Hélder inequality, we infer
[4hn () [0 0l L2 0,501y SIn (0)0]" 0] 2(0,7;22) + (10 () V[0 0] | 20,7122

[ [Py [ iy A P

L2(0,7)
<||UHMTmnvnmf.w )
<(2n)71 re "||UHL(107W1 27).
This leads to

1
71715_,

1
1K ocn?llvz(,ry S (2n)7 lvllmez 0,7,

The previous estimates yield the invariance of ME(Q, F,) under K™.

Step 2. To check that K™ is a contraction in ME(Q, F,.) for sufficiently small » > 0, we take
v1,v2 € ME(Q, F) and define stopping times 71 and 7> by

7 =1inf {t > 0: ||vj||p, > 2n} AT

for j = 1,2. We fix w € © and w.l.o.g., we assume 71(w) < 7o(w). We use the deterministic
Strichartz inequalities from Proposition and ¢, (v1) = 0 on [1y, 72] to estimate

n _n < a=1, a—1 .
1K Gt (01) = Kot (v2)ll 7, Sll¥n(vn) 0a|* ™ on = n (v2) v2|* " 0all s 021
<lln(v1) (Jor[* " oy = foa]*THoa) |,
_ a—1
+ [ [n(v1) = o (v2)] [02] U2||Lq/(0,7—1;W1’QT+1)

+ [[¢n (v2) [02]* s | Lol = IT+I1T4+1IT

1, a+1

"0, ;W )

LY (11,m0;W "
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3.3. Local existence and uniqueness in H'(R%)

As in (3.20), we deduce

s € [0,7],

1
[n(01,5) = G (v2,5)| < = lon
which leads to

1 a—1
IT <—ljoy = walls, Mol vall gy o

1
Sl
n

’(Ole;Wl,a#»l)
< 1 a—1 qfl’_%
Sl = eallp, ezl <l 102 Lo o rrwreony
Slor = valpnHrv 7

by similar arguments as in the first step. By v,,(v1)|v2|* tve = 0 on 11, 2] followed by the

same estimates as above, we obtain

TIT = [n(01) = Y 02)] [0l Mol e

1 _
S llon = vellp, fl[va]® to (
1 1 _ 1
Sllvr = vel[pn® ra e
Let us continue with the estimate of the first term. We start with

1 Slln(en) (joa]*on = ool M0) e

+ln (1) (V [Jor[* o] = V7 [Joa|* g 2]) o oryp 22ty = 1o 12
The local Lipschitz-property of C 5 z — |z~ !z and the Holder inequality yield

-1
I S (loall oo (0,mys o1 Ry + 02l oo (0,mszo1 @) 101 = V2l Lot (0701 1))
< (4n)* 7 oy — val g7 T

From the second assertion in Lemma (recall o > 2), the Holder inequality and (3.48), we
infer

I SHWHz;}(o Tl-Laﬂ)HVUl - VU2||Lq’(o,T1;La+1)
(HUlHLw 0,m;Lat1) T ||v2HL°°2(0,7—1;Lu+1)> V2l Lot (0,7 001y V1 = V2l Loc (0,75 L041)
<(2n) 7 T |V, — Vol La(o,r;L0+1)
+2(20)° 77 1oy — 2| Lo (0,00
571“_17“%_%”111 — va|F,.

Putting together all the estimates for I, Il and III, we obtain

1

1 _
Ko (v1) = Koy (02) |7, S 7@ an® oy — v,

and by integrating over (), we end up with

i
PU

1 _
[ K ey (V1) — KchLet(UQ)HM[’;(Q,F,) Sra T an® 1||'U1 - UZ”M%’(Q,FT)-
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3. The fixed point method for the stochastic NLS on the full space

With the same techniques, we deduce

%*%nQ('yfl) ||U1

1K Strat(v1) = K§prar(v2) Mz 0,y S — v2llmz(,F,)
and
1.1 .
||K§toch(v1) - thoch(UQ)”Mp(Q,Fr) S r2-an’ 1””1 - (UQHM?(Q,FT)a
F T
which finally leads to

K" _ K" ) < % a—1 ~/*% 2(y—1) %—% y—1 _
| K" vy vallmp(o,py ST N 4 rd T in +r2 oan [v1 = vollmr(a,F,)-

Hence, K™ is a strict contraction in ME(Q, F,.) for sufficiently small » = r(n) > 0. With the same
arguments as in Proposition[3.7} we can iterate the procedure and get the assertion. O

In the following two Propositions, we use the results for the truncated problems to get existence
and uniqueness for (3.I). We omit the proofs since they are similar to Propositions[3.8|and 3.9}
Combining both Propositions yields Theorem 3.3]

Proposition 3.23. Assume that either i) or ii) holds.

i) Let o € (1,14 %), v € (1,14 2) and (uy),cy C ME(Q, E}.) be the sequence constructed in
Proposition[3.21} For n € N, we define the stopping time 7, by

Ty, := inf {t €[0,7]: ||unHLq(0,t;La+1) + ||Un||Lﬁ(0,t;L2v) > n} AT.

ii) Let « € (2,1 + ﬁ% v € 2,1+ =t 2) ) and (vp),en C ME(Q, EL) be the sequence
constructed in Proposition For n € N, we define the stopping time 1, by

—inf{t € [0, 7] : |[nllp, = n} AT.

If i) holds, we denote w,, by u™ and otherwise, we write w™ for v,,. Then, the following assertions hold:
a) We have 0 < 7, < 73, almost surely for n < k and u™(t) = u*(t) almost surely on {t < 7, } .

b) The triple (u, (Tn), ey »Too) With u(t) := u"(t) for t € [0,7,] and 7oe = Sup, ey Ty is an
analytically and stochastically strong solution of in H*(R?) in the sense of Definition

Proposition 3.24. Let o € (1,1 + %) U (2,1 + ﬁ), ye @L1+2)u(21+ = 2) ) and
(u1, (On)pen - 0) > (U2, (Tn),en - T) be strong solutions to (3.4) in H*(RY). Then,

up(t) = ua(t) as.on{t<oAT}.

We close this chapter with a remark on the critical setting and classify Theorem3.3]in the context
of the results by Barbu, Rockner and Zhang, [12], and de Bouard and Debussche, [43]], for the
stochastic NLS in H!(R?).

Remark 3 25. a) The statement of Theorem contains the critical values a € {1 + ﬁ, 1+
CEm 2) Jandy e {1,1+ 2,1+ = 2) } Wthh have not been treated so far. The case of
linear noise is simpler and could be treated simultaneously as in Section 3.1} In the critical
setting, it is not hard to combine the estimates from this section with the argument from
Proposition [3.12] to prove local existence and uniqueness in this setting. Although the
exponent a = 1 + 3 is energy-subcritical, the local result result cannot be used for global
existence since there is no blow-up criterium which is strong enough.
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b) The comparison of Theorem with the local results from [12] and [43] is similar as in

the L2-case we described briefly in the introduction. The main advantage of the present
result is the fact that nonlinear noise is allowed. Moreover, the assumptions on the coeffi-
cients e, are significantly weaker compared to [12] and the range of exponents « is larger
compared to [43]]. In contrast to the L?-case, however, the rescaling approach has an ad-
vantage here since it allows to adapt the deterministic fixed point argument pathwise in
aball of L*H!' n L4We+! equipped with the metric from L>L? N L9L>"!. Therefore,
the authors of [12] obtain local wellposedness for linear noise and all expected exponents
a € (1,1+ 75| without the unsatisfactory gap in (1,1 + 3] U (2,1 + z=5] from above
that is restrictive for dimensions d > 4. Similarly to the L2-setting, [12] also contains
pathwise continuous dependence of the initial value up to the maximal existence time.
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4. A general framework for existence
results

In the following chapter, we derive an existence result for the general nonlinear stochastic
Schrédinger equation

{du(t):(—iAu(t)—iF(u(t))+u(u(t)))dt—iB(u(t))dW(t), eIy

U(O) =g € Ey,

in the energy space E4 := X :=D (Id+A4) %), where A is a selfadjoint, non-negative operator
with a compact resolvent in an L?-space H and W is a cylindrical Wiener process on some real
Hilbert space Y with ONB (f),,,cy - Moreover, I : E4 — E7 is a nonlinearity we will specify
later and the nonlinear noise is defined by

B fr := emg(|ul*)u, u€ L*(M), meN,

for certain g : [0,00) — R and a sequence (e, ),y Oof complex valued functions. The correction
term p is given by

1 oo
plu) =~ D lemlPa(uf)u,  we L*(M).
m=1

We construct a martingale solution of the problem (4.1) by a modified Faedo-Galerkin approx-
imation

{ dun(t) = ( - iAun(t) - IPnF(un(t)) + Snu(un(t)))dt - 1SnB(un(t))dW(t)v (42)

Un(O) = Sn“Oy

in finite dimensional subspaces H,, of H spanned by some eigenvectors of A. Here, P, are the
standard orthogonal projections onto H,, and S,, : H — H,, are selfadjoint operators derived
from the Littlewood-Paley decomposition associated to A. The reason for using the operators
(S”)neN lies in the uniform estimate

sup ||Sullrr—rr < oo, 1<p< o0,

neN
which turns out to be necessary in the estimates of the noise and which would be false in gen-
eral if one replaced S,, by P,.

The chapter is organized as follows. Section[4.1]is devoted to the relevant assumptions on the
operator A, the nonlinearity F' and the noise B. Moreover, we formulate the main result of this
chapter. In Section[4.2} we study the Galerkin equation and obtain its global wellposedness
as well as uniform estimates for the mass and the energy of the solutions u,,, n € N. In Section
we prove the main result by a limit argument based on the Martingale-Representation
Theorem In Section we present some concrete examples of our theory.
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4. A general framework for existence results
4.1. Assumptions and main result

In this section, we formulate the abstract framework for the stochastic nonlinear Schrodinger
equation and the main result of this chapter. Let (M, X, ) be a o-finite metric measure space
with metric p satisfying the doubling property, i.e. u(B(x,r)) < oo forallz € M and r > 0 and

p(B(z,2r)) S w(B(z,r)). (4.3)
This estimate implies
w(B(z,tr)) < tdu(B(z, 7)), reM, r>0, t>1 (4.4)

and the number d € N is called doubling dimension. Let M C M be an open subset with finite
measure and abbreviate H := L?(M). The standard complex inner product on H is denoted

by
(u,v)Hz/ ud p(dx), u,v € H.
M

Let A be a C-linear non-negative selfadjoint operator on H with domain D(A) and denote the
scale of fractional domains of A by (Xy),.p - In the context of the NLS, it is necessary that all
our function spaces consist of C-valued functions. However, in view of the stochastic integra-
tion theory, the compactness results from Section 2.4 and the computations below, it is more
convenient to interpret these spaces as real Hilbert or Banach spaces. Hence, we often interpret
H as as real a Hilbert spaces with the inner product Re (u,v) ,, for u,v € H. Obviously, both
products introduce the same norms and hence, both spaces are topologically the equivalent.
The Hilbert space E4 := X1 with

(u,v)EA = ((Id—i—A)%u, (Id+A)%v)H, u,v € By,

is called the energy space and || - || g, the energy norm associated to A. We further use the notation
E) = X_, which is justified since £4 and X_, are dual by Appendix We remark that

(Ea, H, EY) is a Gelfand triple, i.e.
Ep— H=H* — EY

and recall from Proposition |A.41| that A_, is a non-negative selfadjoint operator on £’ with
domain F,4. For simplicity, we also denote A_1 by A. Similarly to H, the spaces E4 and E
can also be interpreted as real Hilbert spaces.

1
2

Assumption 4.1. We assume the following:

i) There is a selfadjoint operator S on the complex Hilbert space (H, (-, ) ;) which is strictly
positive, has a compact resolvent, commutes with A and fulfills D(S*) — E, for suffi-
ciently large k. Moreover, we assume that S has generalized Gaussian (po, pj)-bounds for
some pg € [1,2), i.e.

_ R pla,y)™\ 7
11 00a0¢ 10 m e ooh) < Cu(Ba, )77 exp { (t
(4.5)

forallt > 0 and (z,y) € M x M with constants ¢, C > 0 and m > 2.
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ii) Leta € (1,p) — 1) be such that E4 is compactly embedded in L+ (M). We set
Pmax :=sup{p € (1,00] : E4 — LP(M) is continuous}

and note that ppax € [a + 1, 00]. In the case ppax < 00, we assume that £y < LPmax (M)
is continuous, but not necessarily compact.

In the following, we abbreviate the real duality in E4 with Re(:, ) := Re(, -) . Note that the

duality between L*+1(M) and L (M) given by

Nl

_1
2

(0), ot ;:/ wpdp,  we LY(M), ve L% (M),
’ M

extends (-, ) in the sense that we have

(u,v) = (u,v) atl, we By, veL s (M).

Lo+l [ a
Let us comment on Assumption [4.1]i).
Remark 4.2. If py = 1, then it is proved in [20] that is equivalent to the usual upper

Gaussian estimate, i.e. for all ¢ > 0 there is a measurable function p(t,-,:) : M x M — R with

e f(x) = / pt,z, ) f(y)p(dy), t>0, ae.xeM
M

forall f € H and

C z,y)™ =

it <~ Co e o (A0 T @)
u(B(z,tm))

forallt > 0 and almost all (z,y) € M x M with constants ¢, C > 0 and m > 2.

We continue with the assumptions on the nonlinear part of our problem.

Assumption 4.3. Let o € (1,p{ — 1) be chosen as in Assumption Then, we assume the
following:

i) Let F: LotY(M) — Lo (M) be a function satisfying the following estimate

£ (w)]

L S llullforian, uwe€ Lo+ (M). (47)

Note that this leads to F' : E4 — E% by Assumption i), because E4 — L*1(M)
a+1

implies (L®TY(M))* = L™a (M) < E%. We further assume F(0) = 0 and

Re(iu, F(u)) =0, wu € L*"(M). 4.8)

a+1

ii) The map F : L™ (M) — L™= (M) is continuously real Fréchet differentiable with

L] et S Jlullzos u € LUFH(M). (4.9)

Lo+l %% Let1(M)’

iii) The map F has a real antiderivative F, i.e. there exists a Fréchet-differentiable map
F: Lot (M) — R with

F'lulh = Re(F(u),h), u,he LTH(M). (4.10)
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By Assumption [4.3]ii) and the mean value theorem for Fréchet differentiable maps, we get

IF@) ~ FW asr < sup [Ftw+ (1= )]l cqpenlle = ylpesan

”LT(M) te[o,1]

—1 a
N (HxHLaH(M) + Hy”LaH(M))a llz — y”L““(M)v z,yelL +1(M)-
(4.11)

In particular, the nonlinearity is Lipschitz on bounded sets of L**!(M). We will cover the
following two standard types of nonlinearities.

Definition 4.4. Let F satisfy Assumption Then, F is called defocusing, if F'(u) > 0 and
focusing, if F(u) <0 forallu € L*T1(M).

Assumption 4.5. We assume either i) or i’):

i) Let F' be defocusing and satisfy

lull$Eh ) S Fw),  we LN (M), (4.12)

i) Let F be focusing and satisfy

—F(u) Sllullfdh g, we Lo (M) (4.13)

Suppose that there is 6 € (0, 227) with

(H,Ea)y, — L1 (M). (4.14)

Here, (-, ), ; denotes the real interpolation space and we remark that by [118], Lemma 1.10.1,
(4.14) is equivalent to

el gy S Nl el u € Ea, (4.15)
(M)

for some 5; > 0 and B2 € (0,2) with o« + 1 = 1 + B2. Let us continue with the definitions
and assumptions for the stochastic part. The type of nonlinearity which we allow here is often
called saturated.

Assumption 4.6. We assume the following:

i) LetY be a separable real Hilbert space with ONB ( ;) men and W a Y'-cylindrical Wiener
process adapted to the filtration F.

ii) Let p € {a+ 1,2} and suppose that g : [0,00) — R is a function such that the linear
growth conditions

lg(u*Yvlles S lvlles,  lo(ul®Yullee S llullee, v € Ba,ue LP(M),  (416)
and Lipschitz conditions
lg(ul®) u = g(lwl*Y vllee S lu=vle, v e LP(M), (4.17)

are satisfied for j = 1, 2.
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4.1. Assumptions and main result

iii) For m € N, take e,,, € L> (M, C) such that the associated multiplication operator defined
by M., v = enufor u € E4 is bounded on E 4. Assume

S oM, 2y <00 D lemllie < oo (4.18)
m=1 m=1

iv) Let B : H — HS(Y, H) be the nonlinear operator given by

B(u) fm = emg(|ul*)u, meN, ueH.

Obviously, part ii) of the previous assumption is fulfilled for the constant function g = 1 which
leads to linear multiplicative noise. In Section we will present other choices of g which
satisfy Assumption[d.6]

Remark 4.7. Choose E € {H,L**'(M)} and let u € L"(Q, L?(0,T; E)) be a random vari-
able represented by a strongly measurable and adapted process. From the estimates (4.16) and

(4.18), we get
8

| B(u)|l 20, m:m8(v, 1)) S wllL20,0; 1),
1

2
(Z/ ) fnl d3> S llullzz0,re+1)-
La+1
Moreover, the process

o0

=3 (v fm)yemg(ulPu,  yey,

m=1

is strongly measurable and adapted since the estimate

> (W fm)yem [9(wi?)wr — g(|wa|*)ws,]
m=1 E
< (Z |(y’fm)yl2> <Z |em||2L°°> lg(lwi*)wr = g(|wal*) w2l &

S llwr —welle
for wy,ws € E implies that the map

Esw— Y (4, fm)yemg(w)w e E

m=1
is Lipschitz continuous for fixed y € Y. In view of Appendix B(u) is stochastically inte-
grable in E and this allows to define the stochastic integral fot B(u(s))dW(s) in E.

Finally, we have sufficient background in order to formulate and study the problem

{ du(t) = (—iAu(t) — iF(u(t)) + p(u(t)) dt — iB(u(t))dW(t),

U(O) =ug € Egy, (419)
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where
1 (o]
B(u) fm = emg(Ju*)u, wlu) = ~5 Z lem|2g(Jul?)?u, u€ L*(M), méEN.
m=1

In the following, we would like to motivate the choice of the correction term y. This is prepared
by the next Lemma.

Lemma4.8. a) Take p € [1,00) and a continuously real differentiable function @ : C — C with
[2(z)] <Clzl,  |#'(2)|<C,  zeC

Then, the map G : LP(M) — LP(M) defined by G(u) = P(u) for u € LP(M) is Giteaux
differentiable with G'[u)h := &' (u)h for u,h € LP(M).

b) Suppose that g : [0, 00) — R is continuously differentiable with

sup |g(r)| < oo, supr|g'(r)] < . (4.20)
r>0 r>0

Then, the operator B : H — HS(Y, H) defined by
B frm := emg(|ul*)u, meN, ue H.
is Gateaux differentiable and the derivative B'[u] € L(H,HS(Y, H)) for u € H is given by
(B'[u)h) fm = emg (Jul*)2Re(u, h)cu + emg(jul?)h, he H, meN
In particular,
B[] (<iB(W) fn) f = —eRg(ul)?u,  weH, meN,

if ey, is real-valued for each m € N.

Proof. ad a).Let u,h € LP(M). Since ¢ is continuously differentiable, we have

t—0

% 29 & (u)h (4.21)

[G(u + th) — G(w)]

almost everywhere in M. Moreover, we can estimate

1
;[G(quth)fG(u)] < sup |9 (u+ sh)||h| < C|h|
s€[0,t]

and obtain (4.21) in LP(M) by Lebesgue’s convergence theorem.

ad b). In view of Assumption [4.6]iii), (Bov)fm = emv for v € H and m € N defines a linear
operator By € L(H,HS(Y, H)). We set &(z) := g(|z|?)z for z € C and compute

P'(21)22 = 29'(|21]*) Re(21, 20)c21 + g(|21f*)z2, 21,22 €C,
From (4.20) and the boundedness of g, we infer

|9/ (21) 22| < 2|9 (|21 [|21 P 22| + g(l21]?) |22 S |22l
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In particular, we have |¢(z)| S |z| and |9(2)| < 1for z € C. By parta), G(u) := &(u) foru € H
defines a Gateaux differentiable map G : L?(M) — L?(M) with

G'[ulh = ¢’ (Jul*)2 Re(u, h)cu + g(|ul*)h, we€ H, heH.

Then, the first assertion is a consequence of the fact that the composition of a Gateaux differen-
tiable map with a bounded linear operator is still Gateaux differentiable. The second assertion
follows from

Re(u, =iB(u) fm)c = Re [iemg(|ul?)ul?] =0
for real-valued e,,. O

Remark 4.9. The choice of the correction term p(u) is motivated by the following. On the one
hand, Corollary [2.8]yields the simple formula

lu(®)Il =luollZ — 2/0 Re (u(s),iB(s)dW (s)) . t€[0.T],

for the evolution of the mass of solutions to (4.19). In particular, ¢t — ||u(t)||% is a martingale
and in the special case of real valued coefficients e,,, m € N, it is almost surely constant.

On the other hand, there is the following relationship to the Stratonovich noise defined by

—iB(u(t)) 0 AW (1) = —iBu(t))AW (£) + 5 S Mu(t)](fns fin)dt (4.22)
m=1

1
2
with

Mul(y1,y2) == —1B'[u)(—iB(w)y1)y2, w€ H, y1,y2 €Y.

For real-valued coefficients e,,, m € N, Lemma[4.§]yields

—iB(u(t)) o dW (t) = — iB(u(t))dW (¢) — % Z e2 g(|u(t)|*)?u(t)dt

= — iB(u(t)dW (1) + p (u(t)) dt.

Thus, (4.19) coincides with the NLS with Stratonovich noise.

The main content of this chapter is the proof of the following Theorem.

Theorem 4.10. Let T > 0 and ug € E4. Under the Assumptions there exists
an analytically weak global martingale solution (Q, F,P,W,F, u) of @.1) in E which satisfies u €
Cw([0,T], E.4) almost surely and u € L(S2, L(0,T; E4)) forall q € [1,00).

This theorem can be viewed as the first step in our study of the stochastic NLS for other settings
than R?. Because the result is rather general, we will illustrate it in Sectionby various exam-
ples. One might say that the disadvantage of Theorem [4.10|lies in the fact that it only provides
a martingale, i.e. stochastically weak solution. In the special cases where we can also prove
pathwise uniqueness, however, the Yamada-Watanabe Theorem leads to the existence of a
stochastically strong solution and consequently, this disadvantage can be compensated. Let us
close this section with a remark on the case of linear noise.
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4. A general framework for existence results

Remark 4.11. Following the lines of the proof of Theorem .10]below, one can check that in the
case g = 1, it is not necessary that the coefficients of the noise are multiplication operators. We
can also consider a sequence (B,,),, .y of operators with

> 1Bmllz 2y < oo, > 1Bl < o0, > Bl (patsy < o0
m=1 m=1 m=1

and set

B(u) fm := Bpu,  p(u) = —% > BunBhu,  ueL*(M).
m=1

4.2. Galerkin approximation

In this section, we introduce the Galerkin approximation which will be used for the proof of
Theorem Moreover, we prove the wellposedness of the approximated equation and uni-
form estimates for the solutions that are sufficient to apply Corollary

We start with some immediate conclusions from the assumptions.

Lemma 4.12.  a) The embedding E4 — H is compact.

b) There is an orthonormal basis (hy),cy of the complex Hilbert space (H, (-,-) ;) and a nonde-
creasing sequence (A ),y With A, > 0 and A\, — oo asn — oo and

S‘T:iAn(Iahn)Hhvm xGD(S):{xEH:iAfL|($,hn)H|2<oo}.

n=1 n=1

Proof. ad a). The embedding E4 < L**1(M) is compact by Assumptionii) and

LY (M) < H is continuous due to u(M) < co. Hence, E4 — H is compact.

ad b). This is an immediate consequence of the spectral theorem since S has a compact resolvent.
O

For n € Ny, we set
H, = span{hm :meN, \,< 2"+1}

and denote the orthogonal projection from H to H,, by F,, i.e.

P,z = Z (J:, hm)Hhm, r € H.

A <2n+1

Although all norms on H,, are equivalent, it is natural to equip H,, with the restriction of the
H-norm, i.e.

lullf, = > (@ hm) > uwe Hy.

Am <20t

Lemma 4.13. We fix n € Ny.

a) P, is an orthogonal projection in H with range H, C E4 and || Py z(g,) < 1.
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4.2. Galerkin approximation

b) P, can be extended to an operator P, : EY — E% with || P,

ey <1, Po(EY) = Hy, and

(v, Ppv) € R, (v, Pyw) = (P, w) veFE,, weH. (4.23)

HJ

Proof. As an eigenvector of S, each h,, satisfies h,,, € ﬂkeND(Sk) and thus, we obtain by
Assumption that H,, is a closed subspace of E4 for n € Ny. In particular, H, is a closed

subspace of E7. Moreover, we have P, = 1y 2n+1(S) and hence, P, commutes with (Id +A)%
and (Id +A)7% since S and A commute by Assumption We obtain

1Pozllp, = [ (Id+A)? Pozllg < | (Id+A)? 2llu = [lzz,, = € Ea,
and

[Pnz]| gy = || (Td+4) "2 Poz|la < || (Id+A)"> zf| g = [l]

E%> x € H.

By density, we can extend P, to an operator P, : E% — E% with || P, || gy ey < 1and we have
P,(E%)=H, C Es.Forw € Hand v € E* with H 5 v, — v as k — oo, we conclude
(v, Pyv) = klim (vk, ank)H eR

— 00

and

= (an7 w)

(v, Pow) = lim (vk, in)H = klirrgo (ank7w)H e

k—o0

O

Despite their nice behavior as orthogonal projections, it turns out that the operators P,, n € Ny,
lack the crucial property needed in the proof of the a priori estimates of the stochastic terms: In
general, they are not uniformly bounded from L**!(M) to L~ (M). To overcome this deficit,
we construct another sequence (Sn)neNo of operators S,, : H — H,.

Proposition 4.14. There exists a sequence (Sy),, o, of selfadjoint operators S, : H — H,, for n € Ny
with Spyp — 1 in E4 for n — oo and ¢ € E 4 and the uniform norm estimates

sup [|Snllzay <1, sup [|Sulleeay <1, sup [[Snllz(pe+ry < oo. (4.24)
neNg neNy n€eNy

In Figure[4.1} we display the functions py, s, : (0,00) — [0, 1] with P, = p,,(S) and

Sy, = sp(5). Somehow, s,, represents a smoothed version of the indicator function p,,. This
allows to use spectral multiplier theorems to prove the uniform L®*!-boundedness of the se-
quence (S,,)

n€eNp *

Proof. Step 1. We take a function p € C2°(0, 00) with suppp C [3,2]and Y, ., p(27™t) = 1 for
all ¢ > 0. For the existence of p with these properties, we refer to [15], Lemma 6.1.7. Then, we
fix n € Ny and define

n

$n1(0,00) = C,  sp(M) = > p27"A).

m=—0oQ

Let k € Zand X € [2¢71,2%). From supp p C [4, 2], we infer

oo

L= 3" p(27™N) = p(27"N) + p(2-*FDN).

m=—0o0
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(M) T sn(A)
1 ] 1
0 % : | 0 % : |
0 on on+1 0 gn gn+1
Figure 4.1.: Plot of the functions p,, and s,, with P, = p,,(S) and S,, = 5,(.5).
In particular
1 A€ (0,27),
sn(A) =< p(27"N), A€ [2n, 27t (4.25)
0 A > 2ntl

)

We define S,, := s,,(5). Since s, is real-valued and bounded by 1, the operator S,, is selfadjoint
with ||Sy,|lzm) < 1. Furthermore, S,, and A commute due to the assumption that S and A
commute. In particular, this implies ||S,[|z(z,) < 1 and S,y — 9 for all v € E, by the
convergence property of the Borel functional calculus. Moreover, the range of S, is contained
in H,, since we have the representation

SnZE = Z (I, hm)Hhm + Z p(2in>\7n)(1‘7 hm)Hth WS H7

Am <27 Am €[27,27F1)

as a consequence of(4.25).

Step 2. Next, we show the uniform estimate in L**! (M) based on a spectral multiplier theorem
by Kunstmann and Uhl, [83], for operators with generalized Gaussian bounds. In view of
Theorem 5.3 in [83], Lemma 2.19 and Fact 2.20 in [120], it is sufficient to show that s,, satisfies
the Mihlin condition

sup MsI (V)| < Cr,  k=0,...,7, (4.26)
A>0

for some v € N uniformly in n € Ny. This can be verified by the calculation

e
sup AP = sup WP = sup [AFp(2 A)\ < 2¥]|p®)] .
)\>0 AG[Q’L,Z"L+1) A€[21L72n+1) d)\
for all £ € Ny. O

Remark 4.15. In view of the examples we treat in this thesis, it would be sufficient to assume
that the heat semigroup associated to A has the upper Gaussian bounds from Remark .2]and
use the spectral multiplier theorem 7.23 from the monograph by Ouhabaz, [104]. On the other
hand, it would also be possible to use the weaker assumption that A is a 0-sectorial operator
on L*1(M) with a Mihlin functional calculus, i.e. a bounded functional calculus for functions
satisfying the Mihlin condition

sup NWeFO O < Cp,  k=0,...,7, 4.27)
A>0
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for some v € N. Then, Lemma 4.1 in [80] implies

0 oo
|z||pat1 =~  sup agp Z p(27™MS)x + Z amp(27S)x (4.28)
H“HE"O(NO)Sl m=—oo m=1 Lo+l
if we choose p as in the previous proof. Thus, the boundedness of the sequence (S,), cy, in

L(L*T1(M)) can be obtained by the particular choice @, = 1 for 0 < m < n and a,, = 0 for
m > nin (4.28). Indeed,

0

i Y pRTS)T+ Y amp27"S)x
m=—o00 m=1

0

ag Z p(27™S)x + Z amp(27"8)x

m=—00 m=1

|Snz|| Lo+ =

La+1

<  sup < x| patr-

lalleoe vg) <1

La+1

We further remark that a similar construction with S = Id — A, where A i denotes the Hodge-
Laplacian, has been used in [63] and [64] for the approximation of a semilinear Maxwell equa-
tion.

Using the operators P, and S,,, n € Ny, we approximate our original problem by the
following stochastic differential equation

dun(t) = ( - lAun(t) - IPnF(un(t)) + Sn/jd(un(t)))dt - ISnB(un(t))dW(t)a (4 29)
1, (0) = Spuo. '
in the finite dimensional real Hilbert space (H.,,Re (-,-) ). Here, we need that A leaves the
space H, invariant since A commutes with P, and H,, C E4. By the well known theory for
finite dimensional stochastic differential equations with locally Lipschitz coefficients, we get a
local wellposedness result for (4.29).

Proposition 4.16. For each n € Ny, there is a unique maximal solution (un, (Tnk) pen » Tn) of (4.29)
with continuous paths in H,, i.e. there is an increasing sequence (T, k), - Of Stopping times with
Tn = SUPgeN Tn,k ANd

keN

Un () = Spuo + /0 [ —iAup(s) = iP,F (un(s)) + Snp(un(s))]ds — i/o Sy B(un(s))dW (s)
(4.30)

almost surely on {t < 7, 1} for all k € N. Moreover, we have the blow-up criterion

P(rox <T VE€EN, sup |un(t)||m, <oo)=0. (4.31)
t€[0,75)

Proof. Let n € Ny. The assertion follows, if we can show that the functions f, : H, — H,, and
on : H, = HS(Y, H,) defined by

fulz) :=—iAx — iP,F(x) + Spu(z), on(z) == —1S, B(x), x € H,,

are Lipschitz on balls in H,,. Given R > 0 and z,y € H,, with ||z||g, < R and |ly||n, < R, we
estimate

[Snpu(2) = Snp()lla < 9(|z*)%z — g(ly*)*y)

H
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oo
<> llemli=lg(el®e — g(ly*)?ylle < I yllm
m=1

where we used (4.18) and (4.17). Since all norms on H,, are equivalent, (4.11) yields

|1PoF(x) = PaF(y)lle Sn [[PnF(2) = PaF(y)

s SIF@) ~ F@)| on

—1
S (lzllzosr + llyllpes) ™ llz = yllpon

—1 — —
So (2l + ylm)*™ e = ylg < 0227 'Rz — ylla.

Hence, we obtain

1fn(2) = Fa@W)llg Snr 2 = yllm
since A|p,, is a bounded operator. From (4.18) and (4.17), we infer

OO

llon(z) — Un(y)”%{S(Y,Hn) = emg |$| )T ) Sh (emg(|y|2)y) ||%I

:1

<Z ||em||L°°> lg(lz*)z = g(y®liEr < lle = yla-

IN

O

The global existence for equation (#:29) is based on the boundedness of the L?-norm of solu-
tions.

Proposition 4.17. For each n € Ny, there is a unique global solution w, of (4.29) with continuous
paths in H,, and for each q € [1,00), there is a constant C' > 0 such that

B sup_ flun(s)I3] < Cluollfec . (4.32)

Proof. Step 1: We fix n € Ny and take the unique maximal solution (uy, 7,) from Proposition
4.16] First, we show that the estimate {#.32) holds almost surely on {¢t < 7,}. From Theorem
2.6} we infer

00 t
lun ()1 = SnuollF =27 /O Re (lem[*Snun(s), g(Jun(s)[*)*un(s)) ;ds
m=1

+2/0 Re (un(s)afiSnB(un( gt Z/ HS emg(|un(s )| Ju (S)] ”%‘Ids

m=1

almost surely in {¢ < 7, 1 }. Note that one can also obtain this identity from a direct application
of the finite dimensional It6 formula without the regularization procedure from Theorem[2.6]

Next, we would like to apply the norm in L(Q, L>°(0,t A 7,,1)) to this identity for ¢ € [0,T]
and start with the estimates of the terms on the RHS. By Assumption [4.6} Proposition .14 and
the Minkowski inequality, we obtain

Re (Jem 2Snttn(5), g(lun(5)2)2tn(s)) s

La(Q,L5° (0,tATh 1))
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IN

L (Z ||em|%w> ()l (5) 20 (5) 10l

tATh K
2
< H / ot (5)] 2l

Similarly, we conclude

La()

t
2
e §/0 HHun”HHLq(Q,LOO(s/\Tn,k))ds'

S / 1180 [emg[tn()PYun(s)] [Zrds

m=1

ATk 212 2
< H / 190t (5)/2) 20 (3) 2yl

La(Q,L5° (0,tATp 1))

t
2
L 5/0 ||HunHHHLq(Q,LW(s/\m,k))ds'

Fix € > 0 to be specified later. For the stochastic term, we additionally use the BDG-inequality
and Lemma R2.17]for the estimate

‘ / Re (tn(s), —18, Bun (5))dW(3)) ,

0

La(2,L>°(0,tATn 1))
1

S (Z |(un,*iSn [emg(|un|2)un] )H|2>

m=l L(92,L2(0,tATn 1))

IA

o 3
(Z ||€m||2L°°> wn 2 llg(ln|* |22
m=1

La(Q,L2(0,tATn 1))

A

S H||Un||%{HLq(Q,LZ(o,t/\Tn,k))

1 t
=€ HHunH%IHLQ(Q,LOO(O,t/\Tn,k)) + Zg/o H”Un||%1HLQ(Q,L°°(5AT7L,IQ)) ds.
Hence, we get

e lZ2 0 Loz 0enm, vy SHeolEr + & unliEll Lo 0.0nm 1))

t
2
+/0 H||“n||HHLq(sz,Loo(sATn,k))ds'
If we choose € > 0 small enough, we can apply the Gronwall Lemma and infer

||”un”%'IHLG(Q,LOO(O,tATn’k)) < Clluo||3e" (4.33)

with a constant independent of n € Ny.

Step 2. To show 7, = T almost surely, we proceed as follows. We decompose

Q= (U {T = Tnk}> U{rni <T VkeN, sup |u,(t)||m, < oo}

keN tel0,7y)
U{rns <T VkeN, sup [[uy(t)]m, = oo}
t€[0,75,)

and use that the second and the third set have measure zero by the blow-up-criterion (4.31) and
the first step, respectively. Thus, the first set has measure one and in particular, we have 7, = T'
almost surely. Then, the estimate (4.32) is a consequence of (4.33). O

101



4. A general framework for existence results

The next goal is to find uniform energy estimates for the global solutions of the equation (4.29).
Recall that by Assumption the nonlinearity F has a real antiderivative defined on L>*! (M)
and denoted by F.

Definition 4.18. We define the energy £ : E4 — R by

1. .1 A
E(u) == §||A5u||%,+F(u), u€ Ey.

Note that £(u) is welldefined by the embedding E4 < L**1(M). The next Proposition is the
key step to show that we can apply Corollary to the sequence of solutions (uy, )nen, to the
equation (4.29) in the defocusing case.

Proposition 4.19. Under Assumption|4.5]i), the following assertions hold.

a) Forall q € [1,00) there is a constant C' = C(q, ||uol| 2, E(uo), @, F, (em) T) > 0 with

meN

sup E| sup [llun(8)[} + E(ua(1)]*] < C.
n€Ng te[0,T

In particular, for all r € [1,00) there is C; = Cy(r, ||uo||r2, E(uo), o, F, (em)
that

men > 1) > 0 such

sup E[ sup ||un(t)HEA} < ;.
n€Ng te[0,T]

b) The sequence (uy,)nen, satisfies the Aldous condition [A] in E%.

Proof. ad a): By Assumption [4.3|ii) and iii), the restriction of the energy £ : H, — R is twice
continuously Fréchet-differentiable with

E'v]h1 =Re(Av + F(v), hy);
E"[v] [h, ho] =Re (A2hy, A2 hy) ,, + Re(F'[v]ho, h1)

for v, hy, ho € Hy,. We compute
tr (5" [t (5)] (=180 B (tn(5)) , —iSn B (un(s))) )

"[un(5)] (=150 B (un(5)) fn, =1SnB (un(s)) fm)

|M8

Z HA 2Sn 6mg (Jun(s)] )un(s)] Hi]

+ Z Re <F/[un(5)] (Sn [emg(\un(sﬂz)un(s)]) :Sn [emg(|un(s)\2)un(s)] >

and therefore, Itd’s formula leads to the identity
[t (D)1 7r+E (un (8)) = ua (8) 37 + € (Sno)
t
+ / Re (Auy(s) + F(un(s)), —1Aun(s) — iPy F (uy(s)))ds

0
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4.2. Galerkin approximation

Re (Aun,(s) + F(un(s)), Spp(un(s)))ds

t

Re (Auy (s) + F(un(s)), —iSnB (uy(s)) dW (s))

+

+

S— >

0

|~

#3 3  141S. lomalhun(IFun(e)] Vs

t oo
£ 5 [ 3 Re(E )] (50 fema 1 () (1)) emoan(5)P ()] s
m=1
(4.34)
almost surely for all ¢ € [0, T]. We can use Lemma [4.13]b) for

Re (F(v), —iP,F(v)) = Re [i(F(v), P,F(v))] = 0;
Re [(Av, =P, F(v)) + (F(v), ~i4v)] = Re |~(Av,iF(v)) + (Av,iF(0))| = 0;

Re (Av, —iAv) , = Re [i[|Av[|3] =0
forall v € H, to simplify and get

[t ()| F+E (un(t)) = [Jun (BT + & (Snuo) +/0 Re (Aun(s) + F(un(s)), Snpu(un(s)))ds
+ /O Re (Aun () + F(un(s)), —iS0B (tn(s)) AW (s))
Lo [ ias 2 2
#322 [ 1ALSn lemol(uns) )] s

+s / tﬂiRﬂF’[un(sn (Sn [em(un(5)2)un(5)]) + S [emg ([1n(5)[2)un(5)] s
(4.35)
almost surely for all ¢ € [0, 7]. We introduce the short notation
Y(s) = ()3 + € (un(s), s € 0.7,

and would like to take the L(€2, L*°(0, t))-norm in the identity (4.35). As a preparation, we start

with the estimates for the integrands for fixed s € [0,7] and m € N. Note that Az (Id —i—A)_% is
a bounded operator on H due to the functional calculus for selfadjoint operators. This fact and
Proposition will be frequently used without further reference. We use (4.16) to estimate

| (Aun(s), =iSnB (un(5)) fm) ;| < A2 un(s)]| | A% S [emg(|un(s)P)un(s)] 1
< | A% un () 1l1Sn [emg([un(s)[*)un(s)] Il
< 1A% un () |l Sull 2z | Men Nl 250 |9 (1t (8)2 ) ()] .4
< (Ml ()13 + 142 wn () 3) 1Ml
SY(s)|Me,, |l 2(g4) (4.36)
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and {7) as well as (:12) to obtain

[(F(un(s)), =iSnB (un(5)) fm)| < [F (un ()] otr anllon [emg(un(s)[)un(s)] [[Lats

< fun ()| Facrt 18l 2zoryllem | oo g (Jn () tn (5) ]| Lot
S N () N5E5 1Snll Lot llemll Lo
S F(un(s))llem|l pee
SY(9)|lemllne- (4.37)
Again by (.16), we get
Re (Aun(5)75n [|em‘29(|“n( )l ) n(s)] )H
< 142w ()| 11 A% S [Jem 2g(lun(8)[*)2un(s)] |l
< 142w ()| 1 1Sl ) [ M2l 220 19t (5)]) 21t () 2
(s)

1
< 143 un (a1l 1M e 2 ) lun () 2.4
< (lun ()3 + 143 () I3) 1M,z ey
Y (8)[[Mie,,. 12|l 2(£4) (4.38)

and (.7), (¢.12) and (@.16) yield
Re (F(un(s)), Sn [lem[*g(lun(s)[*)un(s)] )
S IE@a()) s 150 [lemPg(lun(s)) un(s)] Los

S un ()15 1Snll zosn 1 Mie,, 2 2czesn)llg(un(s)[*) un ()] Lot
S Nun(IFE N Snll 2czosnllem o
< F(un(s))llemlie SY(s)llemlZ (4.39)

and
142 Sy, [emg(fun ()P un(s)] 13 < 1SnllZ ) | M 12 20 19 (11n (8)]tin () 1,

1
< Mo ) (lun () + A3 un (o)1)
S IMe, 120 Y (5)- (4.40)

From @.9), (£.12) and (4.16), we infer

Re <F/[un(5)]sn [emg(\un(s)|2)un(s)] »Sn [emg(lun( |2 ] >
)

SIF ooyt 15 em(un(&)Pun()] s

< Nlun () ats 1SullZ poeny lem I Zoe g () Yun (5) [Foa
< Nlun ()2 1Sl Z poeny lem 1 Eo

S Fun(s))lleml7e S Y (5)llemlFoe- (4.41)

After these preparations, we can estimate the terms on the RHS of (4.35) in the L?(£2, L>°(0, t))-
norm, where the summations over m € N are handled with (4.18). Applying (4.38), (£.39) and

IMie,,. 2 lc(za) = 1Me,, ME N 2eay = 1 Me, |1 Z(24),
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4.2. Galerkin approximation

we obtain

/0 “Re (Aun(s) + F(un(s)), Spilun(s)))ds

La(Q,L>(0,t))

+ 0o
< / S [ Re (Auun(s) + Fun(5)), Sn [leml20([tn(5)?)?un(s)] Y]ds
0 m=1 L1(Q)
t oo t
< / Y(5) 3 1M ellea + lemlB=]ds| S / 1Y 1|20 (0.0
0 m=1 La(Q) 0

(4.42)
The BDG-inequality, (4.36), (.37) and Lemma [2.11]yield

/0 “Re (Aun(s) + F(tn(s)), —iS B (un(s)) AW (s))

La(2,L>=(0,t))

=

S <Z | Re (Au, + F(un), —1Sn [emg(|un]?)us] >|2>

m=1 La(Q,L2(0,t))

N|=

A

v (Z 1Ml 2eea) + 6mIILoo]2>

m=1 LU(Q,L2(0,t))

1 t
SIY N Laqa,z20,0) S €Y lza@,z=(0,6)) + E/o 1Y[re@,z=(0,s)ds  (443)

where ¢ > 0 is arbitrary. Moreover, we employ (4.40) to get

mz_:l/o 1AZS,, [emg(Jun(s)|?)un(s)] [ %ds

La($2,L5°(0,t))

o0 t
< / 1A2S, [emg([tin(s) 2)uun(s)] [2ds
m=1""0 La()
t oo t
= AR TOED DTN AP0 Y A P PSSR
0 m=1 La(92) 0

and (4.41) to estimate

La(Q,L>(0,t))

<[ 1R (0] (S [emglln ()P )un (5)]) S [emg(n (52 un(5)] s
0 m=1 La(Q)
t oo ) t

< / Vis)ds 3 flemlf m)s / 1Y o602 (0,00 (4.45)

From (4.35) and the estimates (4.42)-(4.45), we infer

1 t
1Y || oo,z (0,6)) SMunllZrllLage, o 0,)) + &€ (Snuo) + (1 + g)/o 1Y (| a0,z (0,5))ds
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4. A general framework for existence results

+ellYlLa(,L=(0,1)

and if we choose ¢ > 0 sufficiently small and employ Proposition we obtain
t

¥l za(@, 2 0.0 SClluollFre” + € (Snuo) +/ Yl La(@.Lo (0,5))ds-
0

Proposition[.14] yields
€ (Snuo) < max{l, ”Snll%alaﬂ)}g (uo)
and thus, we can deduce from the Gronwall Lemma that there is a C; > 0 such that

||Y||LQ(Q,LOO(()¢)) <C; (CHUOH%GCT + €& (Uo)) 6Clt, t e [O,T].

ad b): We continue with the proof of the Aldous condition. We have
t t t
Up () — Spug = — i/ Aup(s)ds — i/ P, F(un(s))ds —|—/ Spp(un(s))ds
0 0 0

i /0 S, B (n(5)) AW (5)
= Ji(t) + Ja(t) + Ja(t) + Jult)

in H,, almost surely for all ¢ € [0, 7] and therefore

[un((7n + 0) AT) — un ()l < Z [Tk (7 + 0) AT) = Jie(70)|

E3
k=1
for each sequence (7;,),,cy, of stopping times and 6 > 0. Hence, we get
- n
P{Jlun((rn +0) AT) = wn(ra) 5, =0} < D P{IJel(ra +0) AT) = Ji(ra) 5, = 7} (446)

k=1

for a fixed n > 0. We aim to apply Tschebyscheff’s inequality and estimate the expected value
of each term in the sum. From the functional calculus for selfadjoint operators, we infer

| Av|

By = [ 1@+4) "% Avlly <sup {1+ )T} Abolly < ARoll, v e Ha,
A>0

and the uniform estimates from part a) yield

(Th+0)AT
g <E / | Aun(s)

n

E|Ji((7n + ) ANT) — J1(70)]

(Tn+0)AT L
prds < E/ [|AZup ()] rds

n

1
SOE[ sup fun(s)]lz,] <OE[ sup [un(s)l,]? <0CH.
s€[0,T] s€[0,T]

Moreover, Lemma b), the embedding L (M) — E7% and the estimates (£.7) and (.12) of
the nonlinearity lead to

E||J2((Tn +6) A T) - J2(Tn)‘

(Tn+O)AT
g <E / | PuF (1 ()] - s

n
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4.2. Galerkin approximation

(Tn+O)NT
<E / IF (un(s))]

n

(Tn+0)AT
s SE [ F ()] s ds

n

(Tn+O)AT
<E / Jen(5) 25 5 OB s [un)],] < 0C5,
Tn se[0,T

By Propositions and we get

1
E|J5((rn + 0) AT) = Js(70) g5, = SE

(Th+O)ANT 0
2 / Z Sn [lem[g(|un(s)1?)?un(s)] ds

n

£y

(Th+ONT
g%E/ ZHS [lewm 2g(lun () 2un(s)] | . ds

n

(Tn+O)AT

3 18 llenatfun (@) Pun ()] 05

A

E

A

E Jan (3) s

/’(Tn +9

n

IN

OE[ sup |un(s)|lu] = Cs0.
s€[0,T]

Finally, we use the It isometry and again the Propositions and for

2
El[Ja((7n +0) AT) = Ja(7)]

2
E;SE

(Tn+O0)A
/ 5B (un(s)) AW (s)

H
(Tn+O)AT

=E 150 B (un( ))ll?{smmdé’]

/.
E /(m+9)ATiHS emg ()P 3)]“2(15]
/.

(Tn+O)NT )
SE l[n (5)||7rds
<OE[ sup [lun(s)[%] = 6Cs.
s€[0,T

By the Tschebyscheff inequality, we obtain for a given n > 0

4 4Cr0
P{H‘Jk((Tn_Fo)/\T)_Jk'(Tn)|Ej, > Z} < 5E”Jk((7—n+9)/\T)_Jk(Tn)”EZ < k (4.47)
fork € {1,2,3} and
n 16 2 1604(9
P{||J4((Tn +O)NT) = Jo(r)llEy 2 Z} < ?EHJA;((T” +O)AT) = Ja(ra) |3, < o
(4.48)

Let us fix ¢ > 0. Due to the estimates and (4.48) we can choose 61, ..., 5, > 0 such that

P {1l + ) AT) — i)l > 1} <

4
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4. A general framework for existence results

for0 <@ <dpand k=1,...,4 With § := min{d,..., 04} and (4.46) we get

P{Hun((Tn + 9) A T) - un(Tn)‘

By >np<e

foralln € Ny and 0 < 6 < § and therefore, the Aldous condition [A] holds in E%. O

We continue with the a priori estimate for solutions of (4.29) with a focusing nonlinearity. Note
that this case is harder since the expression

1 1 .
vl + E@) = SlvllE, + F(v), v e Hy,

does not dominate [|v]|%, , because F is negative.

Proposition 4.20. Under Assumption[4.5|i’), the following assertions hold:

a) Forallr € [1,00), there is a constant C' = C(r, ||uo|| g4, @, F, (€m) T) > 0 with

meN

sup E[ sup ||un(t)||%A} <C.
n€Np t€[0,T]

b) The sequence (u,)nen, satisfies the Aldous condition [A] in EY,.
Proof. Lete > 0. By the same calculations as in the proof of Proposition[4.19 we get
1, .1 .
Az un($)l[7 = E(un(s)) = F(un(s)
= —F(un(s)) + & (Snuo) + / Re (Aup (1) + F(un(r)), Spp(un (r)))dr
0

+ /OS Re (Auy (r) + F(un(r)), —1SnB (un (r)) dW (r))
+ % Z /OS |AZ S, [emg(un (r)[*)un (r)] ||7dr

g | R un0)] (S [emglin)un ()] S0 [emaln (1) ()] )
m=1 (449)

almost surely for all s € [0, 7. In the following, we fix ¢ € [1,00) and ¢t € (0,7] and want to
apply the L(€2, L>(0,t))-norm to the identity (4.49). We will use the notation

X(s) = ()3 + A3 un ()l + llun()35L |, s € (0,7 (4.50)

and estimate the stochastic integral by the Burkholder-Davis-Gundy inequality, the estimates
(.36) and ([@.37), the Assumption ([£.18) as well as Lemma[2.11]

/O Re (Aun(r) + F(un(r), —iSu B (un(r) AW (r))

La(S,L(0,1))
1
2

<

(Z [{(Aun (r) + F (un (1)), —iSnB(un(r))fm>l2>

La($,L2(0,t))
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4.2. Galerkin approximation

1
e’} 2
S |X (Z IV, 2(ea) + IemIILoo]2>

m=1 La(9,L2(0,t))

1t
S X ao,200.0)) < €l X Lago, 0,0 + Zg/o [ X1 La(@,z(0,5))ds.  (4.51)
To control the term —F'(u,,), we use that Assumption [4.5/i") and Young’s inequality imply the
existence of v > 0 and C. > 0 such that
—F(u) S Jullfih <ellullg, + Cellullly,  we Ea
Thus, Proposition [4.17)applied with exponents g and %! yields

|- (Un)||L<1(Q L=(0,t)) S HH“”%ﬂlHLq(Q Lo°(0,t))

<e |14l

2
‘L’I(Q,LM(O,t)) te H Hu”HHHL‘I(Q,LW(M))
+ Ce lllwnll3 1 oo, e 0,0y

<e |[labunl| + 0,0 T luollw).  (452)

La(Q,L>>(0,t))

The following estimates are quite similar as in the defocusing case. We use the estimates (4.38)-
(4.41), the Assumption (4.18) on the noise coefficients and the Minkowski inequality to deduce

/0 “Re (Aun(s) + F(tun(5)), Sapi(tn(s)))ds

La(Q2,L>>(0,t)) La(Q)

t
< / IX()[opds;  (453)
0

. t
445, (i (6 Dl S [ IXG e

/X

a(Q,L°(0,1)) La()
(4.54)
‘ / > " Re (F'[un(5)] (Sn [emg([tn()*)un(5)]) s Sn [emg(un(s)[*)un(s)] )ds
0 5= La(,L%(0,))

t
S| [ X aaods.
La(Q) 0
(4.55)

By the Itd representation (4.49) and the estimates (.51 , we get

1 1
14t S HIIAZ’un(t)H?{\

C T E(S
Lq(Q,LN(O,t))8+ (€7q577 7||U0||H)+ ( nuo)

t
+ / 1X () oy ds + £ X o= (0.0
0

La(Q,L>>(0,t))
1 t

+Z/ 1 X a2,z (0,5))ds (4.56)
€ Jo
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4. A general framework for existence results

In order to estimate the terms with X by the LHS of (4.56), we exploit Proposition and
(4.52) to get

1
1XIl 0@, 0 < Clluolize™ + 1143 un ]

a+1
La(0,L5(0,)) + H||Un||m+1 HLq(Q,Lw(o,t))

1
< (e [iabuali, o+ CE @ T o).

Hence, by (4.50), we obtain

[ o) [FEENOIA + Cle,a, T, [luoll ) + E(Sutwo)

g
La(9,L(0,t))

t
1
+/ H Az, |2 H ds
0 | I L9(9,L5(0,5))

Choosing ¢ > 0 small enough and exploiting Lemma [4.14| for

La(9,L°°(0,t))

€ (Snuo) < max{L, [[SulF{7as1)}€ (u0) < € (uo),

we end up with

t
Abuy || <C € (ug) . T / Ca(a) |14l d
Hll Unllzz | g e oy SC1 (@Yol € (o), T) + ; 2a) |[[A7unlli| , o ) 95

for ¢t € [0, T]. Finally, the Gronwall Lemma yields

[EEPNOIH < Culg,llwo i, € (o) 1), te[0,7).

La(Q,L=°(0,t))

In view of Proposition this implies that there is C' > 0 with

sup E[ sup ua(0)},] < .
neNy tE[O,T]

Therefore, we obtain the assertion for » > 2. The case r € [1,2) is an application of Holder’s

inequality.

ad b): Analogous to the proof of Proposition b). O

4.3. Construction of a martingale solution

The aim of this section is to construct a solution of equation by a suitable limiting process
in the Galerkin equation based on the uniform estimates from the previous section and
the compactness results from Section Let us start with a classical convergence Theorem
which we will use very often throughout this section.

Lemma 4.21 (Vitali). Let E be a Banach space, (S, A,v) be a finite measure space, p € [1,00),
(fr)nen C LP(S,E) and f : S — E strongly measurable such that

i) fn — [ in measure;
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4.3. Construction of a martingale solution

it) (fn),ey i uniformly integrable, i.e. for each ¢ > 0 there is 6 > 0 such that for all A € A with
v(A) <9, we have

sup /A | fullPdv <.

neN
Then, f € LP(S,E) and f,, — fin L?(S, E) for n — oo.

For a proof of this Lemma in the scalar-valued case, we refer to [51]], Theorem VI, 5.6. How-
ever, the proof can be transfered to the Bochner integral without any changes. The uniform
integrability will often be checked via the following observation.

Remark 4.22. Assume that there is r € (p, oo] with

sup || full - (s,m) < 0.
neN

Then, the sequence (f,.),, cy is uniformly integrable, since the Holder inequality with exponents
Land (1— %)_1 yields

J 10w < W) F ULl sy A A

As a first step in the proof of existence, we apply the results of Section[2.4]to the solutions u,, of
the Galerkin equation and obtain a sequence (v, )ren On an enlarged probability space 2 that
converges almost surely in

Zy = C(0,T), E3) 0 L™ (0, T L (M) 1 C, (0, T, En).

Proposition 4.23. Let (uy,) be the sequence of solutions to the Galerkin equation (4.29).

neN

a) There are a subsequence (up, ), <y, @ probability space (Q, F, IP’) and Zrp-valued random variables

vk, k € N, and v on Q with P = P such that vy, — v P-a.s. in Zr for k — oo.

b) We have vy, € C ([0, T], Hy,) P-a.s. and for all v € [1, 00), there is C' > 0 with

supE [[on [ 0.1, | < C-
keN

¢) Forallr € [1,00), we have

E Il 0.7:24)] < €
with the same constant C' > 0 as in b).

d) Let § < §. For almost all w € Q, we have v(w) € C([0,T], Xy).

For the precise dependence of the constants, we refer to the Propositions and
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4. A general framework for existence results

Proof. ad a): The estimates to apply Corollary are provided by Propositions and

ad b): Since we have u,, € C([0,T], H;) P-as. and C ([0,T], Hy) is closed in C([0,T], E%)
and therefore a Borel set, we conclude v, € C ([0,T], Hy) P-as. by the identity of the laws.
Furthermore, the map C ([0,T], H,) > u — ||“||2L°°(0,T; g4 € [0,00) is continuous and therefore
measurable. Hence, we can conclude that

E [”vk”%N(O,T;EA)} :/ ||U‘|7Loc(0,T;EA)d]fDUk(U) :/ ||u||2°°(O,T;EA)dPunk (u)
C([OvT]ka) C([OaT]ka)

= E [llunu e 0,20 -
Use the Propositions in the defocusing case respectively in the focusing case to get the

assertion.

ad c): We have v, — v almost surely in L***(0,7; L“"*(M)) by part a). From part b) and
the embedding L>(0,T; E4) < L*T(0,T; L*T'(M)), we obtain that the sequence (vy,),,cy is
bounded in L+ (2 x [0,T] x M). By Lemma we conclude

vy 25w in L2(Q, LOTH0, T; LOTYH(M))).

On the other hand, part b) yields # € L"(Q, L°°(0,T; E4)) for all 7 € [1,00) and a subsequence
(Uny) gen » Such that v, —* o for k — oo. Espedially, v,, —* o in L*(€2, L>T1(0,T; L***(M)))
for k — oo and hence,

v="0¢€L"(Q,L%0,T;Ex)).

ad d). We only have to prove the assertion for § € (—3,3). For almost all w € Q, we have

v(w) € Zp N L*(0,T; E4). We shortly write v = v(w). There is a nullset N C [0,T] with
lo) ey < lvllLee(o,7;E4) for t € [0,T]\ N. From Proposition|A.41} we infer
< 30 3+
[o(t) = v(s)llo Sllv(E) —vls)llE () —v(s)lE,
1_9 1.9
<o) = v(s)I 3 Clvll=@rzn)® . stel0,TI\N. (4.57)

Let us define © by o(t) = v(¢) for t € [0,7] \ N and o(t) := lim,, o v(t,) for t € N, where
[0,T]\ N > t, — t asn — oo. Note that the limit is well-defined in Xy since (v(t,)),,cy is a
Cauchy sequence in Xy by (4.57). It is straightforward to show that ¢ is continuous in X,.

Next, we show that v(t) = 0(¢) forall ¢ € [0,T]. For ¢t € [0,T] \ N, this is the definition of ¢. For
t € N, we choose [0,7]\ N > t,, — tasn — c0. Since Xy — E%, we get v(¢,) — 9(t) in E%. By
v e C([0,T], E%), however, we also have v(t,) — v(t) in E%. Hence, v(t) = 0(t) € Xp. O

The next Lemma shows how convergence in Zr can be used for the convergence of the terms
appearing in the Galerkin equation.

Lemma 4.24. Let z, € C([0,T],H,) forn € Nand z € Zp. Assume z, — z forn — oo in Zp.
Then, fort € [0,T] and 1 € E 4, we have

(zn (), ¥) ; == (2(8), ),

| (Amn(6).0) s 22 [ as(s),0)as,
0 0
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[ e Gl ) s 225 [ (et 0,
0 0

/0 (PuF (2n(s)). ) s "% /0 (F(2(s)), ¥)ds.

Proof. Step 1: We fix ©» € E4 and ¢t € [0,7]. Recall that the assumption implies z, — z for
n — oo in C([0,T], E%). This can be used to deduce

n— oo

| (2 (), %) 5 = (2(), )] < llzn = 2lleqorep Il EL = 0.

By zn, — 2in Cy ([0, T, E4) we get sup,eio 1y [(2n(s) — 2(s), )| = 0 forn — coand all p € E7.
We plug in ¢ = Ay and use the identity <Azn(s), ) = (zn(s), AY) from Proposition to get

/ |(Aza(s), 9) ,, — (2(s), Ag)| ds = / [(zn(s) — 2(s), Ag)| ds
0 0

<T sup [(zn(s) — 2(s), AY)| 2=
s€[0,T

Step 2: First, we fix m € N. Using the selfadjointness of S,, and the properties of g from As-
sumption [f.6] we get

1/ ( / lenPg(zn&)PPn(s)] ) ds = emPall=(s))P2(5), 04

0
t
<),

(S llemPo(za()P20(s)] )~ (lewmPall=(s)P)2(s), 0)] ds
< [ [ = D DenPalzne 220060 )

‘ds
H

‘ds
H

[ |len? (a0 - (162051 )

t
<11Suth — dlallemlin / Von(s) s + [ lleml 13 / l2n(s) — 2(s) s
n—oo O
since we have the embedding

L0, T; LY (M) — LY(0,T; L*(M))

and z,, — zin L*TY(0,T; L>T1(M)) as well as S,,¢) — ¢ for n — oco. By the estimate

t
[ (o lemPatznPa0)] ) 5] £ Wolllente [ lln(s) s
S el € 1)

and Lebesgue’s convergence Theorem, we obtain

n—o00
—0

Z\ [ (50 lenPaan(oP220(60] ) s = [ GemPo=()2)22(5), v
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4. A general framework for existence results

and therefore, we can employ the triangle inequality to deduce

/0 (1 (2n(5)) ) s "2 [ (i (2(s)) ) ds.

Step 3. In order to prove the last assertion, we estimate

/0 | (PaF (za(9)), 1) 4y = (F(=(5)),4)| ds
S/ [(F(2n(s)), (Pn — I))|ds +/ (F(zn(s)) — F(2(s)), %) ds (4.58)
0 0

where we used (4.23). For the first term in (4.58), we look at

t
/ [(F(2n(5)), (Pn — D) ds < [[F(zn)[[ 10,1585 | (Pn = D 24

0
< _
SIEG g g 20 | (Pr = D2
S ”ZnH%a(O,T;Lle)H(Pn = DYllea

—
S MenllZoss o iz |(Pr = Dl iz, ——

— 0.
By Assumption {.3), we get

1P () = FEO st S U)o + 126 o)™ zn(s) = 2(5) e

for s € [0, T]. Now, we apply Holder’s inequality in time with — + —i5 + 27§ = 1 and obtain

TH a+1
_1 a—1
1 F(2n) — F(Z)”Ll(o - (M) < Te+t (||Zn||La+1(o,T;La+1) + ||ZHL0+1(0,T;L<~+1))
Hzn — Z||La+1(07T;LC¥+1) — O, n — 0.
This leads to the last claim. O

Remark 4.25. We identify the random variables v, v : Q - Zp with stochastic processes
U, 0 : Q% [0,T] — Ea by

, w e Q.

S

~—

v (w) = g (w, ), v(w) = o(

y e

For sake of readability, we also denote v, = v, and © = v. For the details, we refer to [33],
Proposition B.4.

So far, we have replaced the Galerkin solutions u,, by the processes v;,, on ) via the Skorohod-
Jakubowski Theorem. In the next step, we want to transfer the properties given by the Galerkin
equation (4.29). Therefore, we define the process N,, : @ x [0,T] — H,, by

Ny (t) := —vp(t) + Spuo + /0 [—1Av,, () — 1P F (v (8)) + pin(vn(8))] ds

forn € Nand ¢t € [0, T]. In the following lemma, we prove its martingale property.
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4.3. Construction of a martingale solution

Lemma 4.26. For each n € N, the process N,, is an H-valued continuous square integrable martingale
w.r.t. the filtration F, ; := o (v,(s) : s < t). The quadratic variation of Ny, is given by

o= [ ZRe (S0 [ems(Ion(&Pen(s)] ) 1S [emg(lon(s)PIoa(s)] ds, v € H.

Proof. Fix n € N. We define K, : C([0,T], H,,) — C([0,T], H,) by
K, (u)(t) := —u(t) + Spug —|—A [—1Au(s) — iP, F(u(s)) + pn(u(s))] ds, u€ H,, tel0,T],

and a process M,, : Q x [0,T] — H,, by M, (w,t) := K(u,(w))(¢). Since w,, is a solution of the
Galerkin equation (4.29), we obtain the representation

t
M, (t) = i/ Sy B(un(s))dW (s)
0
P-as. for all ¢ € [0, T]. The estimate

o] T o T
E mz_l/o 1S5 [emg(Jun () )un(s) lHd] 7;|em||%xEV0 19 ([tn(5)[)un(s)]|2ds

SE l sup Iun(s)if] < o0
t€[0,T)

yields that M, is a square integrable continuous martingale w.r.t. the filtration (%), (o ) - The
adjoint of the operator &,,(s) := iS5, B(u,(s)) : Y — H for s € [0, 7] is given by

b (s) = Z Re (iS, [emg(|un(s)|2)un(s)} ,w)Hfm, veH, sel0,T].
m=1
Therefore,

Do), (510 = 3 Re (1S [emg(un(5) ()] ) S emltn(5) P (5)].

m=1

By Theorem M, is a square integrable F-martingale with quadratic variation

Ny = / Z Re (1S [emg(Jun(s)| )un(s)] ,7,/})HiSn [emg(|un(s)|2)un(s)] ds, Y e H.

Since the operator K, is Lipschitz on balls with constant depending on n, M, is even adapted
to the smaller o-field F,, ; := o (un(s) : s < t) and therefore a square integrable martingale w.r.t.

(Fnt)seqo ) - From Lemma we infer
E [Re (Mn(t) - Mn(s)a ¢)Hh(un|[0,s])} =0

and

0=E [h(un[o’s}) (Re (M, (1), 1/))H Re (M, (t), <p)H — Re (My(s), 1/1)H Re (M,(s), go)H
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4. A general framework for existence results

- Z Re (iSn [emg(|un(s)|2)un(s)} ,1/))H Re (iSn [6mg(|un(5)\2)un(s)] 7<,0)Hds
m=1 0

forally,p € H,0 < s <t < T and bounded, continuous functions h» on C([0, T}, H,,). We use
the identity of the laws of u,, and v,, on C ([0, T, H,,) to obtain

E [Re (No(t) = Nu(5):%) yh(valjo,)] = 0

and
0=E lh(vnho,s]) (Re (N (2), 1/))H Re (N, (t), go)H — Re (N, (s), 1/1)H Re (N, (s), go)H

= | Re(iSu [eng(va(s)P)oa(s)] ,¥) g Re (1Sn [emg(va(s)P)on(s)] ) ds
0

m=1

for all ¢, ¢ € H and bounded, continuous functions h on C([0, 7], H,,). As a consequence of
Lemma N, is a continuous square integrable martingale w.r.t F,, ; := o (v,(s) : s < t) and
the quadratic variation is given as we have claimed in the lemma. O

From Proposition we infer that v € Zr almost surely and

||F(U)||L1(0,T;E;,) S ”F(U)”LOO(()’T;LQTH) = \\U||%w(o,T;La+1) < oo asg

||A’U||L1(O,T;Ej‘4) S HU”LOO(O,T;EA) < 00 a.s.;

1 o0
le@)llzromey) S lp)lorm < 5 > llemlz<llg(lol*)?vll oo
m=1

S ol S 10l e+ 0,1 ne+1(any) < o0 as.
Hence, we can define a process N : Q x [0, 7] — E* with continuous paths by

N(t) := —v(t) + ug —l—/o [—1Av(s) —iF(v(s)) + p(v(s))]ds, t€[0,T].

Let . : E4 — H be the usual embedding and ¢* : H — Ej4 its Hilbert-space adjoint operator.
Further, we set L := (1*)" : E% — H as the dual operator of :* with respect to the Gelfand triple
E4 — H =~ H* — E%. The definition of ¢* and L can be rephrased by the identities

Re (m/}, go)H = Re (1/1, L*<p) By Re(t"p,w) g, 5y, = Re (gp, Lw)H (4.59)

fory € E4and ¢ € H and w € E%. We remark that the range of +* is dense in F4 since ¢ is
injective. Hence, L is injective by the second identity in (#.59). Moreover, L is a bounded op-
erator with || L[| z(g+ m) < ||ltllc(za,m) < 1. In the next Lemma, we use the martingale property
of N, for n € N and a limiting process based on Proposition[f.23|and Lemma to conclude
that LN is also an H-valued martingale.
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4.3. Construction of a martingale solution

Lemma 4.27. The process LN is an H-valued continuous square integrable martingale with respect to
the filtration F = (]j})te[o,T], where F; := o (v(s) : s < t). The quadratic variation is given by

((LN))¢¢ = Z/O iL [emg(lv(s)[*)v(s)] Re (iL [emg(|v(s)|*)v(s)] ,€) ,ds

forall ¢ € H.

Proof. Step 1: Let t € [0,T]. We will first show that E {||N(t)||2 Z} < o0. By Lemma |4.24] we

have N, (t) — N(t) almost surely in E* for n — oo. By the Davis inequality for continuous
martingales (see [105]), Lemma and Proposition , we conclude

2

sup IINn(t)II‘?{“] SE [(Z/O 150 [emg(vn(s)[*)vn(s)] II%d«S) ]

te[0,T]

E

a+1

< (ZHemIIQLx) E[(/O Ig(lvn(S)IQ)vn(S)I?z%) }

a+1
2

T
<E (/O |vn(s>||%,ds> ] SE[anH‘LVjcl(O’T;H)} <1 (460)

Since a + 1 > 2, we deduce N(t) € L*(, E%) by Lemmaand N, (t) = N(t) in L*(Q, E%)
for n — co.

Step 2: Let ¢, ¢ € E4 and h be a bounded continuous function on C([0, T, E%).
For 0 < s <t < T, we define the random variables

fn(t,s) :==Re (Nn(t) — N, (s), 1/))Hh(vn|[0,s])7 f(t,s) :=Re(N(t) — N(s),¥)h(v]jp,q)-

t < T by Lemma|4.24} We use (a + b)" < 2P=1 (gP + bP) for a,b > 0 and p > 1 and the estimate

The P-a.s.-convergence v,, — v in Zg for n — oo yields f,,(t,s) — f(t,s) P-as. forall0 < s <
(4.60) for

Elfa(t: )| < 27 RIS H NG E [ING @I + 1Na () l15H]
S IRl Il

In view of Lemma we get

0= lim E[f,(t,s)] =E[f(t,s)], 0<s<t<T.

n— oo
Step 3: For 0 < s <t < T, we define

gl,n(tv 5) = (Re (Nn(t)v w)H Re (N"(t), @)H —Re (Nn(s), w)H Re (Nn(s), ‘P)H) h(vn|[0,s])
and

91(t,5) == (Re(N(1), %) Re(N (1), &) — Re(N(s), %) Re(N(s), @) ) h(v]j0.0))-

117



4. A general framework for existence results

By Lemma , we obtain g1 ,,(¢,s) — gi(t,s) P-as. forall0 < s < t < T. In order to get
uniform integrability, we set r := 2 > 1 and estimate

Elgin(t, )" <27 HRISE [|Re (Na(t), %),y Re (Nu(t), 9) 4 |']
+ 27 [BILE [| Re (Na(s), &)y Re (Na(s), ) ']
<Pl E eI HE [INAOIF + N 15 S RIS E el
where we used again. As above, Lemma [4.21]yields

0= nILIgoE[gl’n(t’S)] = E[gl(t,s)], 0<s<t<T.
Step 4: For 0 < s <t < T, we define

920 (8,5 i= hwloat) 3 [ [Re (S [emg(lon(r)Phon(r)] 10)

Re (S, [emg(|vn(T)[2)vn (7)] ,ga)H] ar,

o0

92(t, 8) := h(v]o,s]) / Re (iemg(|o(7)[*)o(7), ¥) 4 Re (iemg(o(7)[*)o(7), @) dr.

m=1

Because of h(vnlj,s]) — h(vjo,s)) P-a.s. and the continuity of the inner product L?([s, t] x N),
the convergence

Re (iSn [emg(\vn|2)vn] ,¢)H — Re (iemg(|v|2)v, ¢)H
P-a.s. in L?([s, ] x N) already implies g2 ,,(t, s) — ga(t, s) P-a.s. Therefore, we have to estimate
H Re (iSn [emg(lvn|2)vn] ) —Re (lemg(h}‘ )U w)HHL2( [s,t] xN)

< || Re (iemg(|vnl*)vn, (Sn — D) ¥) 4 llL2 (55
+ || Re (iem (9(Jvnl*)vn — g(|v1*)v) ;1) ;L2 (s, %)

1 1
o 2 o 2
< <Z ||€m||%oo> [onll2 (s, || (S = 1) 9l + <Z Iemllsz) [on = vll2 (s, Y]] 1
m=1 m=1

S ol peti oot aopll (Sn = 1) ®lla + |vn — vl Latro,m5ne+1 (ar)) ||| -

Hence, we conclude

| Re (iSn [6m9(|vn|2)vn} a"/’)H —Re (iemg(|v\2)v, 'l/))HHLZ([s,t]XN) 22250

almost surely. Furthermore, we estimate

oo t T oo
3 / IRe (8 [emg([on(r)2)un(r)] ) ,2dr < / l9(lon (D)) on 2012 S lem 2

T
< / lon (27 S [onllZess .10 a0
and continue with r := O‘T“ > 1and

IE|g2,n(ta S)V < E[H Re (iSn [emg(lvn|2)vn] aw)H|‘z2([s7t]xN)
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4.3. Construction of a martingale solution

| Re (iSn [6m9(|vn|2)vn} a‘P)H”TL?([s,t]xN)|h(vn|[0,s])|r
< sup]E |:||/U7l||La+1(OT Loz+1)i| <1

From Lemma we infer

lim E (g2 (t,5)] = E[g2(t, 5)] , 0<s<t<T.

n—oo
Step 5: From Step 2, we have

E [Re(N(t) = N(s), ¥)h(vljo,.4)] =0 (4.61)
and Step 3, Step 4 and Lemma [£.26]yield

E <R6<N(t)7 ) Re(N(t), ) — Re(N(s), ) Re(N(s), )

+ Zl/ Re (iemg([v(r)|*)v(7),9) ; Re (iemg(lv(T)F)v(T%s@)HdT>h(v[o,s])] =0.
" (4.62)

Now, let 1, ¢ € H. Then, we have t*n,.*¢ € E4 and the identities (£.59), (€.61) and (#.62) imply

E [Re (LN(t) — LN(s),n) ;,h(uljo,q)] =0

and

E (Re (LN(t),n) ; Re (LN(t),¢) ; — Re (LN(s),n) ,; Re (LN(s),¢)

+ Zl/ Re (iL [emg(Jo(T)[*)v(7)] ;1) ; Re (AL [emg([o(T)[*)o(T)] ,g)Hdr> h(v|[o,s])] —0

for all bounded and continuous functions h on C([0, T], E% ). Hence, LN is a continuous, square

integrable martingale in H with respect to F; := o (vlj0,¢7) » Where v is viewed as a random
element of C'([0, T, E% ). The quadratic variation is given by

(LN = /O iL [emg(Jv(T)*)o(r)] Re (il [emg(lo(T)[*)o(r)] ,¢) ydr, ¢ € H.

Since we showed in Proposition that v has in fact continuous paths in Xy for each 6 <
%, one can also regard F; as the smallest o-algebra such that v|  is strongly measurable in
Xy. O

Finally, we can prove our main result Theorem using Theorem|A.12

Proof of Theorem[4.10] We choose H = L*(M), and &(s ) B (v(s)) for all s € [0,7]. The
adjoint ®(s)* is given by @(s)*¢ :=>_»_; Re (iL [emg(|v(s ] ,¢) 1y fm and hence,

D(s)P(s)"¢ = Z Re (iL [emg(|v(s)|2)v(s)] 7C)HiL [emg(\v(s)\Q)U(s)} , (e H.
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4. A general framework for existence results

By Proposition v is continuous in Xy for # < % and obviously, v is adapted to
Fi=o0((s):0<s<t).

From Assumption[4.6] we infer that the process [0, 7] 3 t — iB(v(t)) € HS(Y, H) is continuous
and adapted to F and therefore progressively measurable. Since L is a bounded operator from
E* to H, this property transfers to ¢. By an application of Theorem to the process LN
from Lemma we obtain a Y -cylindrical Wiener process W defined on a probability space

(, F | P) = (Q X 6,?@%,1@@1@)
with
t ~ t ~
LN(t) = / B(s)dTT (s) = / LB (u(s)dIW(s), e 0,7,
0 0
if we can show B(v) € M%Y (0,T; H). This is a consequence of
T ©o° T
1Bvll72 (0,71 x 0. 15(v, 1)) ZE/O > llemg(lv(s)P)v(s) 1 Fds SE/O lg(lo(s)*)v(s)]1Fds
m=1
T
<E [ o) s S 1
0

Using the continuity of the linear operator L and Proposition we get

/Ot iLB (v(s)) dW (s) = L (/Ot iB (v(S))dW(s)>

almost surely for all £ € [0, 7]. The definition of N and the injectivity of L yield the equality

/0 iBu(s)d (s) = —v(t) + uo + /0 [idv(s) — iF(u(s) + p(o(s))]ds  (463)

in E% almost surely for all t € [0,7]. The weak continuity of the paths of v in F4 and the
estimates for v € L?(2, L>°(0,T; E4)) have already been shown in Proposition Hence,

the system (Q, F,P,W,F, v) is a martingale solution of equation (4.1) with the properties we
claimed. 0

4.4. Examples

In this section, we consider concrete situations and verify that they are covered by the general
framework presented in Section As a result, we obtain several Corollaries of Theorem
4.101

First, we show that the class of the general nonlinearities from Assumption[4.3|covers the stan-
dard power type nonlinearity.

Proposition 4.28. Let o € (1, 00) be chosen as in Assumption Define the following function

- 1
+ — a—1 + R a+1 a+1
Fa (U) = i'u‘ u, FO( ('LL) = irﬂ||u|‘Lj+l(M)’ u € L + (M)

Then, FE satisfies Assumption [4.3|with antiderivative Fx.
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o

Proof. Obviously, FE : LoTL (M) — L*+ (M) and

V@) s = fullfarnny,  u€ L (M),

(M)

Furthermore,
Re(iu, FE(u)) = iRe/ iufu|*tady = £ Re [ l[ul|$5L M)} =0.
M

We can apply the following Lemma 3.5\ with p = a 4 1 and

a

&(a,b) = (a2+b2)%1 ( b ) a,beR,

to obtain part ii) and iii) of Assumption [4.3| O

4.4.1. The Laplace-Beltrami Operator on compact manifolds

In this subsection, we deduce the following Corollary from Theorem

Corollary 4.29. Let (M, g) be a compact d-dimensional Riemannian manifold without boundary and
A := —A be the Laplace-Beltrami operator on M. Under Assumption[4.6|and either i) or ii)

) Flu) = [l wwitha € (1,1+ 245-),

i) F(u)=—|ul* luwitha e (1,14 %),

the equation

{ u(t) = (iAgu(t) — iF(u(t)) + p(u(t))dt — iB(u(t))dW (t) in H=*(M),
u(

(4.64)
O) =ug € H (M)7

has an analytically weak martingale solution which satisfies u € Cy, ([0, T], H'(M)) almost surely and
we LI(Q,L>(0,T; H(M))) forall g € [1,00).

In order to fulfill the assumptions of Theorem we choose S := I — A,. Then, S is selfad-
joint, strictly positive with compact resolvent and commutes with A. The manifold A has the
doubling property and S has upper Gaussian bounds by [61], Corollary 5.5 and Theorem 6.1,
since these results imply

)

2
p(t,x7y><tgetexp{—c”<””;”}, >0, (r.y)€ Mx M

for the kernel p of the semigroup (e~*%),_ . In view of the doubling property #4), this is
sufficient for (£.6). In particular, S has generalized Gaussian bounds with py = 1.

We have the following relation between the scale of Sobolev spaces from Appendix B and
the fractional domains of the Laplace-Beltrami operator. By Proposition a), the scale of
Sobolev spaces on M is given by

H*(M)=range (S™2) =D (S2) =D (Id-Ay)2), s>0.
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4. A general framework for existence results
In particular, we have £4 = H'(M). Let 1 < a < 1+ z=%;-- Then, by Proposition d) and
Lemma the embeddings

Ejy=HYM)— H Y (M) = E}, Ea=HYM) < L“T(M)

are compact. Hence, Assumption 4.1 holds with our choice of A, S and «. The range of admis-
sible powers in the focusing case is the content of the following Lemma.

Lemma 4.30. F satisfies Assumptioni) and F; satisfies i’) under the restriction o € (1,1+ 3) .

Proof. Obviously, the assertion for F is true. We consider F, .

Case 1. Let d > 3. Then, pmay := d%d2 is the maximal exponent with H* (M) < LP=ax(M). Since

@ € (1, pmax — 1), we can interpolate L*T! (M) between H and LP==x()M) and get

-6 0
leall ot (ary < Ml 2 el Gomae gy S Null 2 el B ay-

with § = SEZJFB € (0,1). The restriction 33 := f(a + 1) < 2 from Assumptioni’) leads to
a<l+? I
Case 2. In the case d = 2, Assumption i’) is guaranteed for « € (1, 3). To see this, take p > 2
which is equivalent to 6(a + 1) < 2 when 6 € (0,1) is chosen as

_(a=1p

(a+1)(p—2)

We have H'(M) < L?(M) and as above, interpolation between H and LP(M) yields

o +1)(1-6 +1)6
lall$Eh oy S ll 70l 5717

Case 3. Letd = 1 and fix ¢ € (0, 3). Propos1t10nmy1elds

HEF(M) <3 1°(M),  HEE(M) = [L2(M), (M), .

Hence,

24(3=)a=1)) 1 (3+e)(a=1)
lIEEs < olZellvlz<" S Tolizalloll® 3L, S vl o

Tt The S ol

The condition (3 + £)(a — 1) < 2 is equivalentto a < 1 + ﬁ. Choosing ¢ small enough, we
see that Assumption [4.5]i") is true for o € (1,5). O

4.4.2. Laplacians on bounded domains

We can apply Theorem to the stochastic NLS on bounded domains.
Corollary 4.31. Let M C R? be a bounded domain and choose between
a) the Dirichlet Laplacian A :== —Ap and E5 := H}(M);

b) the Neumann Laplacian A := —Ay and E 4 := H' (M), where we additionally assume that M
is Lipschitz.

Under Assumption[A.6land either i) or ii)

122



4.4. Examples
1 — a—1 H 4 .
i) F(u) = |u|* ‘uwitha € (1,1 + (d_2)+>,

ii) F(u) = —|u|* ‘v with o € (1, 1+ %) :

the equation
{du@)(iAu@)iP%u@ﬁ*u@dﬂDdtiBﬁ4@ﬁ”V@) in B4, (4.65)
u(0) = ug € Ea,

has an analytically weak martingale solution which satisfies u € C,([0,T], Ea) almost surely and
uw € LYQ,L>*(0,T;E4)) forall g € [1,00).

We remark that one could consider uniformly elliptic operators and more general boundary
conditions, but for the sake of simplicity, we concentrate on the two most prominent exam-
ples.

Proof. We consider the Dirichlet formay : V xV = C,
ay (u,v) :/ Vu-Vodz, wu,veV,
M

with associated operator (A, D(Ay)) in the following two situations:
i) V= Hy(M);
ii) V = H'(M) and M has Lipschitz-boundary.

The operator A1) = Ap is the Dirichlet Laplacian and Ap1(ay = Ay is the Neumann
Laplacian. In both cases, V = E4,, by the square root property (see [104], Theorem 8.1) and the
embedding E4, — L*T(M) is compactif and only if 1 < & < pax—1 With pax = 2+ ﬁ.
Hence, we obtain the same range of admissible powers « for the focusing and the defocusing

nonlinearity as in the case of the Riemannian manifold without boundary.

In the Dirichlet case, we choose S := A = —Ap which is a strictly positive operator and
[104], Theorem 6.10, yields the Gaussian estimate for the associated semigroup. Hence, we can
directly apply Theorem to construct a martingale solution of problem (4.65).

In the Neumann case, we have 0 € o(Ay) and the kernel p of the semigroup (e~*4~),_  only

t>0
satisfies the estimate

C. et —c p(x’y)m w1
Ip(t,z,y)| < me exp{ (t ) }

for all ¢ > 0 and almost all (x,y) € M x M with an arbitrary ¢ > 0, see [104], Theorem 6.10. In
order to get a strictly positive operator with the Gaussian bound from Remark 4.2} we fix & > 0
and choose S := ¢l — Ay. O
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4.4.3. The fractional NLS

In this subsection, we prove an existence result for the fractional stochastic NLS. In particular,
we show how the range of admissible nonlinearities changes when the Laplacians in the previ-

ous examples are replaced by their fractional powers (fA)ﬁ for 8 € (0,1). Exemplary, we treat
the case of a compact Riemannian manifold without boundary. Similar results are also true for
the Dirichlet and the Neumann Laplacian on a bounded domain.

In the setting of Corollary we look at the fractional Laplace-Beltrami operator given by

A = (—Ag)ﬁ for 8 > 0 which is also a selfadjoint nonnegative operator by the functional
calculus. Once again, we choose S := I — A,. We apply Theorem [4.10| with E4 = H?(M).
Therefore, the range of admissible pairs (¢, §) in the defocusing case is given by

d d 46
6>§—a+1 & O‘e<1’1+(d—2ﬂ)+>’

since Proposition d) implies that this is exactly the range of o and 3 with a compact em-
bedding E4 — L (M). In the focusing case, analogous calculations as in the proof of Lemma
(with the distinction of # > 4, 8 = ¢ and 8 < ) imply that the range of exponents reduces

to
453
1,1+ — ).
046(7 +d)

Hence, we get the following Corollary.

Corollary 4.32. Let (M, g) be a compact d-dimensional Riemannian manifold without boundary, 5 €
(0,1) and ug € HP(M). Under Assumptionand either i) or ii)

i) F(u) = |U,‘O‘—1u with o € (1, 1+ ﬁ),
i) F(u) = —[u*tuwitha € (1,1+2),
the equation

du(t) = (=i (=Ay)" u(t) — iF(u(t)) + p(u(t)))dt — iBu(t)dW (t),
u(0) = ug € H?(M),

has an analytically weak martingale solution (N ,F,P,W,F, u) in HP (M) which satisfies
u € Cy([0,T); HP(M)) almost surely and u € L(, L>(0,T; H?(M))) for all q € [1,00).

4.4.4. Concrete examples for the multiplicative noise

In Corollaries and we considered the general nonlinear noise from Assumption
We would like to illustrate this class of noises by concrete examples. For presentation purposes,
we only treat the case that M is a bounded domain. Similar arguments work in the Riemannian
setting. For the fractional NLS, however, our argument based on the fact that E4 = H'(M)
breaks down.
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4.4. Examples

Proposition 4.33. In the setting of Corollary we assume that g : [0,00) — R is continuously
differentiable and satisfies

sup |g(r)| < oo, supr|g'(r)] < oc. (4.66)
>0 >0
In particular, we can choose
r r(24or log(1l +or
o(r) gr) = LBEID gy = LB ) e

T 1+tor (1+o0r)2’ ~ 1+log(l+or)’

for a constant o > 0. Moreover, we suppose that the coefficient functions e,,, m € N, fulfill

HY(M)NL®(M), d>3,
em € F = { HY9(M), d=2, (4.68)
HY (M), d=1,

for some q > 2 in the case d = 2 and

oo
Y lemlls < oo

m=1

Then, the nonlinear operator B : H — HS(Y, H) given by
B(u) fm == emg(|u|2)U7 m e N,u e H,

fulfills Assumption

Proof. Letus fixp € {a+ 1,2} and j = 1, 2. By the boundedness of g, we immediately obtain
lg(ful®Y uller < lullze, — ue LP(M). (4.69)

To show the Lipschitz condition (#.17), we set ®;(z) := g(|z|*)?z for z € C. We take 21,2, € C
and compute

P (21)z2 = 2¢'(|21]%) Re(z1, 22)c 21 + g(|21)%) 22,
P (21)22 = 4g(|211)g' (|21 ) Re(z1, 22)c 21 + g(|21]%) % 2.

As in part b) of the proof of Lemma 4.8 we obtain [#1(z)| < || and |[#(z)| < 1for z € C. The
corresponding estimates for $; can be shown analogously. Hence, we can apply Lemma
to deduce that the map LP(M) > u — g(Ju|?)’u € LP(M) is Gateaux differentiable. From the
mean value theorem, we infer

lg(lul®Y u—g([v]*) v e < S 125 (b + (1 = t)v) (u = v)l| e < [lu—vl|L»,
€10,

which proves (4.17). To show the remaining estimate
lg(ul*Yule, S e, — w€ Ea, (4.70)

we use E4 = H'(M) in the Neumann case and E4 = H} (M) in the Dirichlet case. From the
weak chain rule, see [56], Theorem 7.8, we obtain that g(|u|?)/u € H'(M) for u € H'(M) and

IVlg(jul®) ulll 2 = 195 () Vul L2 < [Vl 2.
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4. A general framework for existence results

In view of #.69), we have proved [.70) and it is not hard to check that the particular choices
for g from (4.67) satisfy (£.66).

We continue with the conditions on the coefficients e,,, m € N. We get
lemullzr < llemllLe@nlulee, — ue LP(M),

for p € [1,00]. First, let d > 3. The Sobolev embedding H'(M) < LPwax(M) for pyax = d%dz
and the Holder inequality with £ = 1 + pm% yield

IV (emu) |2 <[[uVem| Lz + emVullLe < [IVemllLallullzrme + llemll Lo an [Vl L2
SIVemllpa + llemllz=qan) lullm, — we H'(M).

Now, let d = 2 and ¢ > 2 as in (&.68). Then, we have F' < L (M). Furthermore, we choose
p > 2according to 5 = ¢ + 1 and observe H'(M) < LP(M). As above, we obtain

IV (emt) 2 S (IVemlla + lemlloean) lullar S llemllarallullmr, v e HY(M).
Hence, we conclude in both cases
lemullgr < llemllpllullar,  meN, we H'(M).

For d = 1, this inequality directly follows from the embedding H' (M) — L*°(M). Therefore,
we obtain

oo
m=1

for arbitrary dimension d. The properties of M. as operator in £(L*T(M)) and in £L(L?*(M))
can be deduced from the embedding F' — L*>(M). O
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5. Uniqueness results for the stochastic
NLS

In the previous chapter, we proved existence of a martingale solution to the stochastic NLS in a
general framework. However, the construction of the solution via an approximation argument
does not guarantee that the solution is unique. In this chapter, we address the question of
pathwise uniqueness for our problem on different geometries and dimensions.

In the field of stochastic PDE, pathwise uniqueness has the particular significance that it even
improves existence results. Roughly speaking, the Yamada-Watanabe theory states

existence of a martingale solution and pathwise uniqueness
= existence of a strong solution.

Hence, uniqueness solves the problem that approximation arguments typically only lead to
martingale solutions. For a mathematically rigorous statement of this result, we refer to Theo-

rem 2.4

In contrast to the existence proof in the previous chapter which was only based on the con-
servation laws of the NLS and certain compactness properties of the underlying geometry,
uniqueness results only hold in special situations. Our proof will be based on the formula

Lot [ o

[l (t) — ua(t)]|22 :2/0 Re(ui(s) — ua(s), —iF (u1(s)) + iF (ua(s))) at1ds (5.1)

almost surely for all ¢ € [0, T] for two solutions w1, uz of the stochastic NLS

(5.2)

du(t) = (—iAu(t) — iF(u(t))) dt — iBu(t) o dW (),

This formula has been proved in Corollary It can be viewed as an extension of mass
conservation and is only true for linear conservative noise, i.e. the operators B,, defined by
Byu = B(u) fm, for u € L?(M) and m € N are linear and symmetric. Note that the absence of
stochastic integrals in is crucial since pathwise estimates of It6 integrals are not available.
The identity leads to sufficient criteria for pathwise uniqueness that will be proved in
Lemmal5.2land Lemmal5.3] Due to the nonlinear structure of the integrand in (5.I), one needs
a control of the L>°-norm or at least the LP-norms for large p of u; and us to prove u; = us.

For d = 2, we can use the Moser-Trudinger-inequality to get a precise dependence of the embed-
ding constant in H!(M) < LP(M) and prove pathwise uniqueness since the general existence
theory provides ui,us € L*(0,T; H!(M)). This argument works in a wide range of our ex-
istence results, i.e. M can be chosen to be a Riemannian manifold with the Laplace-Beltrami
operator and it also possible that A is a bounded domain with Dirichlet or Neumann Lapla-
cian.

If we restrict ourselves to the Riemannian setting, we can also employ the integrability gain
induced by Strichartz estimates to prove pathwise uniqueness for d = 2,3. Note that for d =
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5. Uniqueness results for the stochastic NLS

2, we can even work in a more general setting than in the previous chapter and allow not
necessarily compact manifolds M. Moreover, we can lower the regularity level to H*(M) for

(1— —2t= 1] fora > 3.

e{(l_;‘”"l] fora € (1,3,
S
ala—1)?

However, our arguments do not work in high dimensions d > 4, since in this setting, the
improvement of Strichartz estimates with respect to Sobolev embeddings is not large enough
any more.

The chapter is organized as follows. The first section is devoted to two Lemmata which identify
the properties solutions should have in order to be pathwise unique. In the sections[5.2land [5.3}
we prove pathwise uniqueness for the stochastic NLS on various two and three dimensional
geometries.

Throughout this chapter, we consider the problem under the following assumptions.

Assumption 5.1. Let M be a o-finite metric measure space and s € (0,1], @ € (1,00). Sup-
pose that A is a non-negative selfadjoint operator L?(M) with the scale (Xg),.p of fractional
domains. We assume the following:

a) LetY be a separable real Hilbert space and B : X; — HS(Y, X ) a linear operator. For an
ONB (fin)men of Y and m € N, we set B,,, := B(-) f,. Additionally, we assume that B,,,
m € N, are bounded operators on L?(M) and X3 with

D IBmlzas <00 D0 IBmlzx,) < oo (5.3)
m=1 m=1
and that B,,, is symmetric as operator on L?(M), i.e.
(Bmu, v)

= (u7 Bmv) u,v € X%. (5'4)

L2 L2 Y

b) Letug € X and F(u) = F(u) = £|u|/* uforu e X:.

[e3

5.1. Model proofs for Uniqueness

To clarify which integrability solutions should have in order to be pathwise unique, we state the
following two deterministic Lemmata. In the subsequent sections, they will be used to prove
pathwise uniqueness in the special situations mentioned above. The first Lemma contains the
classical Gronwall argument.

Lemma5.2. Let T > 0, € (1,00) and ¢ > 1V (o — 1). Then, for all
Ui, U2 € C([OaT]aLQ(M)) n Lq(OaTa LOO)

with
lun(t) — us ()22 < / / s (7, 2) — wa(r, 2)? [Jus (r, )] + fua(r,2)[ ] dzdr  (5.5)
0 M

fort € [0, T, we have u; = us.
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5.1. Model proofs for Uniqueness

Proof. We have
lluy () — ua(t)]|32 N/ / lug (7, ) — us (T, )|2[1 + |ur (7, 2)|7 + |ug (7, x)|?|dadT
S/ [ur (1) = ua(T)[[ 72 [1 + [Jur (7| e + [Jua (7)1 ] dT
0

By the assumption, the function b defined by

b(r) = [l (MIF=" + ua(DIIF=] . 7 €[0T,
isin L'(0,7T) and therefore, the Gronwall inequality yields u; () = us(t) for all ¢t € [0, 7). O

Next, we present a refinement of Lemma developed by Yudovitch, [131], for the Euler
equation. It has also been frequently used to show uniqueness for the deterministic NLS, see
Vladimirov [127], Ogawa and Ozawa [100], [101], Burq, Gérard and Tzvetkov [35] and Blair,
Smith and Sogge in [19].

Lemma 5.3. Let T > 0, a € (1, 3] and ¢ > max{l, o — 1}. Let
u1,ug € C([0,T], L>(M)) N L>(0,T; L°) N L*(0, T; LP"), (5.6)
where (py),,en € [6,00) with p, — oo as n — co. Let us suppose that
lujllzeciem) ST+ (Tpa)? . neN, (5.7)
for all intervals J C [0,T) and j = 1, 2. Furthermore, we assume that the map
(0.7) >t = G(t) = [Jua(t) — ua(t) |12

is weakly differentiable with
‘G/(t)| S / |u1(t,x) - UQ(t7I)|2 [|u1(t,z)|a71 + ‘UQ(tvx”ail] dZC, te [OaT] (58)
M
Then, we have u; = us.

Proof. Step 1. We ﬁx n 6 N and define ¢, := 5
with exponents r o =1, weget

(5.8) and Holder’s inequality

|G ()] Sllua(t) — ua(®)]F 20

The choice of g, yields 2q;, € [2,6] and for § := 52~ € (0, 1),
obtain

|a ! + ‘uQ( |a71Han ) te [OaT]

1 _1-6 , 6
5 = 2 +5 Hence, we

9 23 3
lur — usgl| fo < lur — gl ™ flur — 2| f% 07510

L2 < Jua —u2||L2 [|ug

by interpolation. We choose a constant C; > 0 such that

llutllLos 0,718y + luzl| Lo 0,7;26) < Ch,

which leads to the estimate

G/ (1) SO Gt 7 [[lur (DI + llua(8)15571] (59)
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5. Uniqueness results for the stochastic NLS

Step 2. We argue by contradiction and assume that there is to € [0, T] with G(¢2) > 0. By the
continuity of G, we get

dt, € [O,tg) : G(tl) =0 and Vte (tl,tg) : G(t) > 0. (510)

We set J. := (t1,t1 + €) with e € (0, t2 — t1) to be chosen later. By the weak chain rule (see [56],
Theorem 7.8) and (5.9), we get

s 3 [t

, 3 3 [t
G(t)zn = G'(5)G(s)7n tds S O [ [lun(s)l|570 + [ua(s)155.1] ds
2Gn 2Gn th

for t € J.. From another application of Holder’s inequality with exponents —=; and
infer

3= a,we

3

e — _ 33—«
T PR () N

2 .

3 3
Zan < ——
Gty $ 5.-C

Now, we are in the position to apply (5.7) and we obtain

3 3—«

3 3 a
Gt S 5O (1+ (ep) T ) 7%,
2qn
In particular, there is a constant C' > 0 such that

G(t) < O (;’Z (14 (c(a = 1)gn)*7") 5> ’

<02 (;,qc (1 +eT (a— 1)qn) 532"> =i by, (5.11)

where we used p,, := ¢, (a — 1) and % € (0,

1].
Step 3. We aim to show that the sequence (b,),, .y on the RHS of (5.11) converges to 0 for ¢
sufficiently small. Then, we have proved G(t) = 0 for t € J. which contradicts (5.10). Hence,
we have u (t) = ug(¢) forall t € [0,T].

To this end, we choose ¢ € (0, min{t; — t1, gera—yy})- Then,
3¢ a

2qn

2012 (305(0&—1)); _ 1 +1 ° n—00 0.
2 ET(Oé - 1)Qn

5.2. Uniqueness in two dimensions

In this section, we consider the problem of pathwise uniqueness for solutions of the stochastic
NLS in two dimensions. The proofs are based on the Moser-Trudinger inequality in the first
subsection and on Strichartz estimates in the second one.
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5.2. Uniqueness in two dimensions

5.2.1. Uniqueness via the Moser-Trudinger inequality

In this section, we prove uniqueness for the stochastic NLS on various geometries in dimension
d = 2 by an application of Lemma[5.3} Our result is based on the Moser-Trudinger equality and
inspired by [36], [100] and [101] who gave a similar proof in the deterministic setting. As in
chapter IZ_T} we fix the notation E4 := X .

Theorem 5.4. Let Assumption[5.1|be fulfilled with s = 1, o € (1, 3] and an open subset M of a o-finite
metric measure space M with doubling-property and dimension d = 2. We assume that A supports a
Moser-Trudinger-inequality, i.e. for all R > 0, there exists § > 0 and K = K(R) > 0 such that

/ (@ ~1)de < K(R),  weEa llulls, <R (5.12)
M

Forp € {a+1, %L} we suppose that there is a Co-semigroup (T,(t)),~, on LP (M) which is consis-

tent with (e~*4) . Then, solutions of problem (5.2) are pathwise unique in L), L>(0,T; Ex).

Proof. In Corollary we computed

i (t) — ua(t)]|32 :2/0 Re (u1(s) — ua(s), —iA|u1(s)|* tui(s) + i/\|u2(s)|a71u2(s))L2ds
(5.13)

almost surely for all ¢ € [0,77]. Let Q; be a set of full probability such that we have for
w e O aswell as uj(-,w) € L=(0,T; E4).

We fix w € 0 and check the assumptions of Lemma for u;(-,w), j = 1,2. In the following,
we drop the dependence on w. We use the elementary fact

p g(ﬁzz )
P = -1 >
T <2> e , x>0,

and Trudinger’s inequality to get

1
p 2
losllzmoraman < (25) Klluslimoriey)
for p € [6,00). In particular, u; € L°(0,T; L°(M)) N L(0,T; LP(M)) with

lujlle ey < (I1p)2
for an arbitrary interval J C [0, T]. The solutions u; are continuous in L?(M) due to the mild

formulation of (5.2). Indeed, Lemma 2.5]yields

t t
w(t) = e g + / e A (uy (s))ds + / e A By (5))dW (5)
0 0

almost surely in £ forall t € [0,7] and j = 1, 2. Since each term on the RHS of this identity is
almost surely in C([0,T], L*(M)), we deduce u; € C([0,T], L?(M)) almost surely. The formula
(5.13) leads to the weak differentiability of G := |lu; — uz|3. and to by the estimate

|FE(21) — FE(22)] S (la]® " + 22|71 |21 — 22, 21,29 € C.

Hence, the assertion follows from Lemma 5.3 O
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5. Uniqueness results for the stochastic NLS

Remark 5.5.  a) The Moser-Trudinger inequality can be viewed as the embedding £4 —
Lp(M), where

Lp(M) := span {u : M — C measurable: B(|u(x)])dx < oo}

M

denotes the Orlicz space given by the weight B(t) = exp(t?) —1,¢ > 0. Lg(M) is a Banach
space equipped with the norm

lull g ar) = inf{k >0: / B (k™ u(z)|) da < 1}, u € Lp(M).
M

In general dimensions, the Moser-Trudinger inequality typically holds for u € WP (M)
with kp = d. Hence, it is an improvement of Sobolev’s embedding in the limit case.

b) In the proof of Theorem 5.4} we showed that (5.12) implies
luler < C(R)P?,  we Ea, |ullp, <R (5.14)
In fact, (5.12) and (5.14) are equivalent since we get

(e - )dx—Z i, < 30 GO @sOWRPR)"
M —

if we choose 3 < (ZC(R)Ze)f1

In the following Corollary, we apply the abstract uniqueness result from above to different
special geometries.

Corollary 5.6. Let F(u) = Ff(u) = +|u|* tu with o € (1,3]. Let M and A satisfy one of the
following assumptions:

a) M is a compact 2D Riemannian manifold and A = —A, with E4 = H'(M).
b) M C R?isabounded C*-domain and A = — A is the Neumann Laplacian with E4 = H*(M).
¢) M C R?isadomain and A = —Ap is the Dirichlet Laplacian with E 4 = H&(M ).

Suppose that Assumption 5.1 holds with s = 1. Then, solutions of problem (5.2) are pathwise unique in
LOL>(0,T; Ey).

Proof. Inview of Theorem[5.4} it is sufficient to give references for the Moser-Trudinger inequal-
ity in the three settings. Note that the assumption on the consistency of the semigroups is true
due to the Gaussian bounds of the operators from a), b) and c), see Remark

ad a): See [132], Theorem 1.2.

ad b): See [1]], Theorem 8.27. For simplicity, we assumed C?-regularity of the boundary. In the
reference, it is only assumed that the domain satisfies the cone condition. For further details,
see [1]], Chapter 4.

ad c): See [109], Theorem 1.1. O

The pretense of Corollary [5.6|is rather to emphasize the typical range of applications of The-
orem [5.4| than to be complete. For example, there is a recent result by Kristaly, [81] for non-
compact manifolds with curvature bounds from below which we omit to avoid new notations
and definitions. As a consequence of the uniqueness result from above and the existence re-
sults from the previous chapter, the Yamada-Watanabe Theorem [2.4] yields the existence of a
stochastically strong solution.
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5.2. Uniqueness in two dimensions

Corollary 5.7. Let M and A satisfy one of the conditions a), b) and c) from Corollary[5.6| and suppose
that Assumption 5.1 holds with s = 1 and either i) or ii)

i) F(u) = |u|* luwitha € (1,3],
it) F(u) = —|u|*lu witha € (1,3).

Additionally, we assume Y °_, ||Bm||2L( pa+1) < 00 Then, the equation

{ du(t) = (—idu(t) — iF(u(t)) dt —iBu(t) o dW(t) in Ea, (5.15)

U(O) =ug € Fa,

has a stochastically strong and analytically weak solution which satisfies u € C,([0,T], E4) almost
surely and w € L1(Q, L>°(0,T; E4)) for all g € [1, 00). Moreover, we have

|w(t)||2(ary = lluollL2(an)

almost surely for all t € [0, T.

Proof. We apply Theorem 2.4|with the operator A : E4 — E% and U = L>(0,T’; E4). We set

F(u) := —iF(u) — % > Blu

m=1

and choose p :=1 — (x-l‘rl € (0, 2). Then, we have the embeddings

+1

X, = LY (M), L% (M) <= X_, < EY

and hence,

1 ()

my SIF@ ax -+

Lo < Nl ary + lullze < Tl + ullx,

2

oo
2
g B u
m=1

for u € X,. Hence, F : X, — X is bounded on bounded subsets of X,. Similarly, one can
check that B : X, — L(Y, X) is bounded on bounded subsets of X,. In the setting a), we use
the stochastically weak existence result from Corollary and in b) and c), we use Corollary
Concerning the more general coefficients of the linear noise, we refer to Remark .11} The
pathwise uniqueness is provided by Corollary 5.6, Consequently, the assumptions of Theorem
are satisfied and we obtain the existence of a stochastically strong solution. O

5.2.2. Uniqueness via Strichartz estimates

The uniqueness result from the last section has the benefit to hold on various geometries. On
the other hand, there is a restriction to nonlinearities with o € (1, 3], which is rather inconve-
nient in dimension two, where existence is typically true for all o € (1, c0).

The goal of this section is to significantly improve Theorem [5.4|by employing the smoothing
effect of Strichartz estimates. We restrict ourselves to manifolds M with bounded geometry
in order to apply the Strichartz estimates by Bernicot and Samoyeau from Proposition In
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5. Uniqueness results for the stochastic NLS

this setting, we will prove pathwise uniqueness of solutions in L"(Q, L?(0,T; H*(M))) for all
a € (1,00), 7> a, f > max{a,2} and

‘e (1—5,1] fora € (1,3],
(17ﬁ,1] fora>3.

In particular, we drop the assumption that M is compact and replace it by

M is complete and connected, has a positive injectivity radius and a bounded geometry.
(5.16)

We refer to Appendix[A.4Jfor the definitions of the notions above and background references on
differential geometry. We equip M with the canonical volume p and suppose that A satisfies
the doubling property: For all z € M and r > 0, we have u(B(z,r)) < oo and

u(B(x,2r)) < n(Blx,r)). (5.17)

We emphasize that by Proposition our assumption is satisfied by compact mani-
folds. Examples for manifolds with the property are given by compact manifolds and
manifolds with non-negative Ricci-curvature, see [39]. Let A = —A, be the Laplace-Beltrami
operator F¥ (u) = |u|*~!u be the power-type model nonlinearity.

We start with a Lemma on the mapping properties of the nonlinearity between fractional
Sobolev spaces.

Lemma 5.8. Let d = 2, o > 1land s € (°=L,1]. Then, we have FE : H*(M) — H*(M) for all
5€(0,1—a+sa)and

IFZ @llas S gy, e HY(M).

Proof. We prove the assertion in the special case M = R2. For a general M, the estimate follows
by the definition of fractional Sobolev spaces via charts, see Definition We refer to [21],
proof of Lemma I11.1.4 for the details.

We start with the proof of
1S () 712 2y S MlelGre ey (5.18)
for r € (1, 7=3573)- To show (5.18), we employ

- S 1 1 o — 1
IV P )l S g N9 ule, =5+ S
from [38]], Proposition 3.1. Furthermore, we have || FajE ()| r = |[u]|$« and thus, (5.18) follows

from the Sobolev embeddings

H*(R*) < LY(R?),  H*(R?) < L™(R?)
forr € (1, ﬁ] The assertion follows from (5.18) and the embedding H*"(R?) — H*(R?).
O

In the following Proposition, we reformulate problem in a mild form and use this to show
additional regularity properties of solutions of (5.2). Let us therefore recall the notation

oo

/’L:_%Z‘B?n'

m=1
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5.2. Uniqueness in two dimensions

Proposition 5.9. Let o € (1,00) and M be a 2D Riemannian manifold satisfying (5.16) and (5.17).
Choose s € (2=2,1],a > 1,r > 1, B := max{a, 2} and 2 < p, q < co with

Zi+i=1
P q

Suppose that Assumption holds with A := —A, and that (Q, F,P,W,F, u) is a martingale solu-
tion to such that

ue L(Q, LP(0,T; H¥(M))). (5.19)

Then, foreach 5 € (0,1 — a+ sa) and € € (0, 1), we have

14

©P(M))) (5.20)

ue L"(Q,0(0,T], HS(M)) N L0, T; H*~

and almost surely in H*(M) for all t € [0,T]

t

iu(t) = ie” g —|—/

t
; e_i(t_T)AFai(u(T))dT—l—/o e =AY (u(r))dr

+ / t e {EDAB(7))dW (7). (5.21)
0

Remark 5.10. Of course, (5.20) also holds for e > 1, but then v € L"(Q, L4(0, T} HS_%W(M)))
would be trivial by the Sobolev embedding H®(M) — H = (M). Being able to choose

¢ € (0,1) means a gain of regularity which will be used below via H SR (M) — L>*(M) for

an appropriate choice of the parameters.

Proof of Proposition Step 1. We fix X = H~2(M). By Proposition —A, is a selfadjoint
operator on X with domain H*(M). Thus, we can apply Lemma [2.5/and obtain (5.21)) almost
surely in H572(M) for all ¢t € [0, T].

Step 2. Using the Strichartz estimates from Lemma and Corollary b), we deal with the
free term and each convolution term on the RHS of (5.21) to get (5.20) and the identity (5.21) in
H?(M). For this purpose, we define

Yo == L9(0, T; H¥ " P(M)) N L®(0, T; H¥ (M)).

By Lemma (2.16)) a), we obtain

—itA

le™ ol ey S ltollizs S lluollar- < o

and from Lemma (2.16) b) and Lemmal5.8| we infer

Integration over Q and (5.19) yields

t
/ e AR E(u(r)) dr

; SIFE @z o.rsm5) S el Fao e

Yr

t
/ e DA E(u(r)) dr 0.
0

Sl
L7 (.Yr)

«
Lre(@,Lo (0, H=)) =
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5. Uniqueness results for the stochastic NLS

To estimate the other convolutions, we need that 1 is bounded in H*(M) and B is bounded
from H3(M) to HS(Y, H*(M)). This can be deduced as a consequence of complex interpolation
(see [91], Theorem 2.1.6), Holder’s inequality and Assumption 5.1] With 6 := £, we get

D BmlZars < 3 1Bl Zne
m=1 m=1
50 0 0o 1-0
< (Z ||Bm||2L(HS)> (Z ”Bm%(L2)> < 0. (5-22)
m=1 m=1

Therefore, by Lemma[2.16] (5.22) and (5.19)

N ”uHL"X(Q,Lﬁ(O,T;Hs)) < 00

Corollary[2.23]b) and the estimates (5.22) and (5.19) imply

Hence, the mild equation (5.2I) holds almost surely in H*(M) for each ¢ € [0, 7] and thus, we
get (5.20) by the pathwise contmulty of deterministic and stochastic integrals. O

2(1-0)
m”[ (L?)

~ S ||N(u)||Lr(Q,L1(0,T;H5)) S ||u||Lr(Q,L1(0,T;H5))
L7(Q,Y7)

/ e DA (u(r)) dr
0

SIB@I (6,200, mms(v,m5y)) S llpr@,2200,m;m9))

/ t e AB(u(r)) dW (1)

0

L™(Q,Yr)

N HU”LM(Q,M(O,T;HS)) < o

Finally, we are ready to prove the pathwise uniqueness of solutions to (5.2) in the present set-
ting.

Theorem 5.11. Let o € (1,00) and M be a 2D Riemannian manifold satisfying (5.16) and (5.17). Let
r > a, f > max{a, 2} and

Se{u_;a,u fora € (1,3,
(1— —2=,1] fora>3.

ala—1)?

Suppose that Assumption [b.1) holds with A := —A,. Then, solutions of problem (5.2) are pathwise
unique in L7, LP(0,T; H*(M)).

Proof. Take two solutions (Q,]:", P,W,F, Uj) of (5.2) with u; € L’”(Q,L‘X’(O,T; H*(M))) for
j = 1,2, and define w := u; — uy. From Proposition[5.9 we get

w e L"(Q,C([0,T), H (M)) N LI(0, T; P (M))).

Similar to the proof of Theorem [5.4] we get
[[w(t IILZN// lw(r,2)[? [Jur (7, )| + Jug(r, )| ] dzdr.

almost surely for all ¢ € [0,77]. In view of Lemma we need to check u; € L9(0,T; L>(M))
almost surely for some ¢ > 1V (a — 1) and distinguish the cases a € (1, 3] and « > 3.
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5.2. Uniqueness in two dimensions

Leta € (1,3]. By s > 1 — 5=, we can choose ¢ > 2 and ¢ € (0, 1) with

2a?

1 1 €
l-—<1—-—+ —<s.
2c0 qo  qo
Hence, thereis 5 € (0,1 —a+ sa) with § > 1—$+§.Ifwe choose p > 2 according to %—F% =1,

Proposition leads to H®™ "4 P (M) — L*°(M) because of

1 2 1
(5 +5)§5+1>0.
q D q

Moreover, we have u; € L?(0,T; H® T (M)) almost surely for j = 1,2 by Proposition

Next, we treat the case a > 3. We set ¢ := o — 1 and choose p > 2 with % + % = 1. Using

s>1—ﬁ,weﬁxa€(0,l)witb
1 1
- <l-— 4= <.
ala—1) qga  qu

As above, we can choose § € (0,1 — a + sa) with Hg_%’p(M) — L*°(M) and
1+

uj € L9(0,T; H* "« P(M)) almost surely for j = 1,2. O

Remark 5.12. In [30], Brzezniak and Millet proved pathwise uniqueness of solutions in the
space L1(Q, C([0, T, H (M) N L?([0, T], H'~+P(M))) with 2+ 2 = 1and ¢ > o+ 1. Since they
used the deterministic Strichartz estimates from [35] instead of [16]], their result is restricted to
compact manifolds M. Comparing the two results, we see that the assumptions of Theorem
[5.11) are weaker with respect to space and time. On the other hand, the assumptions on the
required moments is slightly weaker in [30].

We close this section by applying the Yamada-Watanabe Theorem [2.4]based on the uniqueness
from Theorem and the existence from Corollary

Corollary 5.13. Let (M, g) be a compact two dimensional Riemannian manifold and suppose that As-
sumption[5.1|holds with A := —A, and s = 1 and either i) or ii)

i) F(u) = |u|* v with a € (1,00),
ii) F(u) = —|u|*"luwitha € (1,3).

Additionally, we assume 37 || Bil|Z o+ < 00. Then, the equation

{ du(t) = (1Agu(t) —iF (u(t)) dt —iBu(t) o dW(t) in H'(M), (5.23)

u(0) = ug € H' (M),

has a stochastically strong and analytically weak solution which satisfies u € C,, ([0, T], H'(M)) almost
surely and uw € L1(Q2, L>=(0,T; H'(M))) for all q € [1, 00). Moreover, we have

lw(t)|l z2(ary = lluollL2(ar

almost surely for all t € [0,T].
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5. Uniqueness results for the stochastic NLS

Proof. We repeat the argument from Corollaryfor U= L0, T; H (M)) with 8 := max{2, a}
in order to show that the assumptions of Theorem [2.4]are satisfied. The existence of a stochas-
tically weak solution is provided by Corollary and pathwise uniqueness by Theorem .11}
Concerning the more general coefficients of the linear noise compared to the existence result,
we refer to Remark [4.11] O

In the previous results, we supposed that Assumption 5.1/ holds. In particular, the operators
B,,, m € N, have to satisfy

m=1

m=1

We close this section with a Lemma that illustrates what this actually means if B,,, m € N,
are multiplication operators. In combination with Theorem this yields the assertion of
Theorem[4]a) stated in the introduction of this thesis.

Lemma 5.14. Let M be a 2D Riemannian manifold satisfying (5.16) and (5.17). Let s € (0,1), ¢ = 2
and ey, € L (M) N H*9(M) with

oo

Z ||em||2L°°mHS=q < 00.

m=1

Then, the operators defined by B, u := eyu for uw € H?(M) and m € N satisfy (5.24).

Proof. Let us fix m € N and choose p = 524 as well as ¢ = 2. This implies H*(M) < LP(M)

and 1 = % + %. From Theorem 27 in [39], we infer

lemullms S llullzellemllmea + llemll oo |[ull s

S (lemllesa + llemllze) ull -

5.3. Uniqueness for 3D compact manifolds

In this section, we consider the question of pathwise uniqueness of H*-solutions to the stochas-
tic NLS with « € (1, 3] in three dimensions. By the role of the dimension in Sobolev embed-
dings, this problem is significantly harder than the 2D-situation. The previous section, how-
ever, already suggests that Strichartz estimates might be good enough to prove the estimates to
apply Lemma Below, we need the sharp spectrally localized Strichartz estimates by Burq,
Gérard and Tzvetkov, see Proposition and thus, we have to restrict ourselves to compact
manifolds.

Throughout this section, (M, g) is a compact three-dimensional Riemannian manifold without
boundary and A := —A, denotes the Laplace-Beltrami operator on M. The main result is the
following Theorem.

Theorem 5.15. Let (M, g) be a compact three dimensional Riemannian manifold without boundary and
A := —A, be the Laplace-Beltrami operator on M. Suppose that Assumption [5.1|holds with s = 1 and
F(u) = +|u|*"tu for a € (1,3].
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5.3. Uniqueness for 3D compact manifolds

a) Let (Q, F,P,W,F,u) be a martingale solution of (5.2). Then, there is a measurable set Q; C
with P(Qq) = 1 such that for allw € Qq, p € [6,00) and intervals J C [0, T, we have u(-,w) €
L2(J; LP(M)) with

1
[uCs@)llL2r) S 14 ([1P)* -
b) Solutions of (5.2) are pathwise unique in L2 L>(0,T; H'(M)).
As in the previous sections, we obtain the stochastically strong existence as a consequence of

pathwise uniqueness and the existence of a martingale solution proved in Corollary

Corollary 5.16. Let (M, g) be a compact three dimensional Riemannian manifold and suppose that
Assumption[5.1|holds with A := —Ay and s = 1 and either i) or ii)

i) F(u) = |ul* tuwitha € (1,3],
ii) F(u) = —|u[*tuwitho € (1, ).

Additionally, we assume Y °_, ||Bm||2£(La+1) < o0o. Then, the equation

(5.25)

du(t) = (iAgu(t) —iF (u(t)) dt — iBu(t) o dW () in H(M),
u(0) = ug € H' (M),

has a stochastically strong and analytically weak solution which satisfies u € C,, ([0, T], H*(M)) almost
surely and u € L9(Q, L>=(0,T; H'(M))) for all ¢ € [1, 00). Moreover, we have
lu(®)ll2(ary = lluollL2(ary

almost surely for all t € [0, T.

Proof We repeat the argument from Corollary [5.7] with H=+2¢(M) — Lot (M) for p =
£ gD +1) in order to show that the assumptions of Theor are satisfied. The existence

of a stochastically weak solution is provided by Corollary 4 and pathwise uniqueness by
Theorem Concerning the more general coefficients of the linear noise compared to the
existence result, we refer to Remark [4.11] O

Before we give the proof of Theorem we would like to illustrate the assumptions on the
noise term in the special case of multiplication operators.

Example 5.17. We define multiplication operators B,,, m € N by
Bru = enu, u € H(M).

with real valued functions e,, satisfying

oo

> (IVemllzs + lemllz=)? < oo (5.26)

m=1

and would like to justify that they fit in the assumptions of Theorem Rephrasing Assump-
tion[5.1} we only need to show

Z HBm||2z:(L2) < 00, Z ”BMH%(Hl < 00, (5.27)

m=1
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5. Uniqueness results for the stochastic NLS

since the symmetry condition (5.4)) is immediate for real-valued multipliers. For the first part of
(5.27), we just have to recall || B, ||£(12) = |lém ||z The Sobolev embedding H* (M) < L°(M)
and the Holder inequality yield

IV (emu) 2 <[uVem|r2 + llemVulL2 < [[Vem|psllull e + lem | L< | Vul| L2
< (IVemllzs + llemllze) llullzr,  we H'(M).

Thus,
| Bmullg = lemullz + |V (emu) 2 S (IVemllzs + lemllre) lullm, v e HY(M)

and summing over m € N, we obtain the second estimate of (5.27).

The following Lemma gives an estimate for the power type nonlinearity in the problem
which will be very useful in the proof of Theorem

Lemma 5.18. Let g € [2,6] and r € (1,00) with & = § + 2%, Then, we have

Nl ull g S Hlullfp,  we HY(M).
Proof. See [21], Lemma II1.1.4. O

The proof of Theorem will employ the following equidistant partition of the time inter-
val.

Notation 5.19. Let J = [a,b] with0 < a < b < c0. For p > 0and N := Lb*T“J, the family (Ij);.vzo
defined by

Ii=[a+jpa+(G+1p], je{0,...N—-1},
IN :[(l-i-Np,b]

is called p-partition of I. Observe

N
LI<p, j=0,....,N, J=JI;, InIZ=0, j#k
j=0

After these preparations, we are finally in the position to prove Theorem [5.15|

Proof of Theorem We start with the proof of pathwise uniqueness provided a) holds. Let
us take two solutions uy,us € L*(, L>(0,T; H'(M))) and (py),,cy € [6,00)N with p,, — oo as
n — oo. Using a), we choose a null set N; € F with

1
w22 Loy S T4 (IIpn)? 5 w e @\ Ny

By Corollary we choose a null set Ny € F such that

[[ur () — ua(t)]|72 :2/0 Re (u1(s) — ua(s), —iA|ug (s)|* " ua(s) 4+ iX|uz ()| ua(s)) ,ds
(5.28)
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5.3. Uniqueness for 3D compact manifolds

holds on 2\ N3 for all ¢t € [0, T]. In particular, this leads to the weak differentiability of the map
G = |lur — us||2, on 2\ N and to the estimate on Q\ N, via
[Fa(z1) = Fa(2)| S (I + [z2* ) [z — 2], 21,22 €C
The Sobolev embedding H'(M) < L5(M) yields u; € L>(0,T; L5(M)) almost surely. More-
over, a similar argument as in Proposition[5.9|leads to the mild representation
¢ ¢
i (t) =ie" g + / 780 Nfuy ()| s (T)dr + i / =% py(u;(7))dr
0 0
t
+/ =12 Bu;(7))dW (1)
0

almost surely for all t € [0,7] in H~}(M) for j = 1,2. As a consequence of a € (1, 3] and
u; € L*(0,T;L%(M)), each of the terms on the RHS is in L?(M). In particular, we obtain
u; € C([0,T],L?(M)) almost surely and thus, we can take another null set N3 € F such that

u; € L*(0,T; L°(M))nC([0,T],L*(M)) on Q\ Nj.
Now, we define
0y :=Q\ (N7 UNy U N3)
and fix w € Q. By Lemma[5.3] we get u1 (-, w) = ua(-,w). Due to Q; € F with P(Q;) = 1, the

assertion is proved.

We are left to show assertion a).

Step 1. We choose 8 > 0 and h € (0, 1] as in Proposition and take a %—partition (L j)j'V:TO of

[0, T] in the sense of Notation|5.19| Furthermore, we define a cover (I ]’) Nj of (I j)].V_TO by
7=0 7=

I = (Ij—k[—ﬁh BhDH[O,T], mj;=@+@ j=0,...,Np,

J 878 4 87
and a sequence (XIJ»);-V:TO C C([0,00)) by x1, := x ((Bh)~*(- — m;)) for some x € C2°(R) with
x =lon[—%, 4] and supp(x) C [—3, ;). Then, we have

xi, =1 onl;,  supp(xs,) C I}, X7 [lze@ < (BR) 7 IX Lo g)- (5.29)

Let o, € C°(R\ {0}) with ¢ = 1 on supp(¢). In order to localize the solution u spectrally and
in time, we set

Ulj(t) = le(t)ﬁp(h2Ag)u(t)7 j :O7"’7NT'
We recall that u has the representation
t t
u(t) =uop + / {iAgu(s) — iA|u(s)|* Tu(s) + p(u(s))} ds — i/ B(u(s))dW (s)
0 0

in H~'(M) almost surely for all ¢ € [0,7] and from the It6 formula as well as x;, = 0 on
[0, min I}], we infer

o0 = [ {igon,(5) 4 X (6P, )uls) + 0t ()2 8,) [-iNul)|* (o) + ()] }es

min I;
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5. Uniqueness results for the stochastic NLS

t

— i/ X1, (8)p(h*Ag) Bu(s)dW (s) (5.30)
min I’

in H~'(M) almost surely for all ¢ € I;. Next, we employ Lemma with X = H Y(M) and

Af =—A,f for f € H'(M) =: D(A) to rewrite (5.30) in the mild form

t
o, (1) = / =803 (5)(h A Ju(s)ds

min I;.
t
[ R (1) [FiAu(s) " ) + ()] ds
t ’ .
i / G930y 1 (5)p(WAg) Bu(s)dW (s) (5.31)
min I;
forj=1,...,Npin H~'(M) almost surely for ¢ € I;. Because of o < 3, each term is so regular

that this identity also holds in L?(M). Analogously, we get

t
o1 (£) =00y, (min ) + / S0\ 1 () (h2 A, u(s)ds

minl(’J
t
+ / . 7% x 1 (5)@(h*A) [—iMu(s)| " uls) + pluls))] ds
min 0
t
—i / =98y 1 (s)p(h?Ag)Bu(s)dW (s) (5.32)
min I

in L?(M) almost surely for ¢ € I),. We abbreviate
t
Gr(0) = [ 0 ()2, Buls)dIw ()
min IJ’.

for minIj < t € [0,7]. We use the stochastic Strichartz estimate from Corollary c), the
properties of (I j);\]:TO and (I ;);\ZO and Lemma [A.55|b) to estimate

NT NT
EY G Berae) SEY / (2 8g) B(3)) sy 2yels
j=0 j=0""4;
Nr
<R} / o (h? Ag) B(u(s)) [Zs(y. 12y ds
7=0 i

T

_9E /O lo(h*Ag) B(u(s)) sy 12y ds
T

<hE / lio(h* A g) B(u(s)) |2y 1y ds.

Since ¢(h?A,) is a bounded operator from H'(M) to H'(M) and B is bounded from H' (M) to
HS(Y, H'(M)) by Assumption we conclude

Nr

T
B G g SHE [ llu(s) s

Jj=0
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5.3. Uniqueness for 3D compact manifolds

Hence, there is C = C'(w) with C < oo almost surely such that

Np

> G, IZ2(zr.20) SH°C s, (5.33)
j=0

Step 2. We fix a path w € €, where (), is the intersection of the full measure sets from (5.31),
(©.32) and (5.33). In the rest of the argument, we skip the dependence of w to keep the notation

simple. Let us pick those intervals Jy, ..., Jy from the partition (I;) ;\;TO which cover the given
interval J. The associated intervals in (I j’_)é\fzo will be denoted by Ji, ..., Jy. From (5.33), we
infer

N

DG, 122 00) < H2C. (534)

=0

Applying the homogeneous and inhomogeneous Strichartz estimates from Proposition in
(5.31) and in (5.32)), we obtain

v llz2(sy,00) < Nvgllzeer, ooy S I, e (B2 Ag)ull e, 2y + HXJ]-@(h2A9)|u|a_1u||L2(J;’L%)
+Ixg;e(BAg) ()l L (7,22 + G s, L2y, 10) (5.35)
forj=1,...,N and
Vo]l 22 (o,20) < g lle2 (g z0) S Nvae (min Jg)ll e + x5, 0 (h* Ag)ull L (g, 12)
+ HXJosD(hQAg)|U\a_1u\|L2(J6,Lg) + [0 (B2 Ag) ()| L1, 22)
+ |G o lL2 (g, L9).- (5.36)

Note that v, (min Jy) = 0 if Iy # Jo. Next, we estimate the terms on the right hand side of
(535) and (5.36). By (6.29), Lemma[A.55b) and Holder’s inequality, we get

X, 0(B* Ag)ull i, r2y S B Hle(W*Ag)ullpr(r,r2y S (B Ag)ullpr s, m)
1
< h2llp(h® Ag)ull L2y ).

Holder’s inequality with |J}| < h, Lemma b) and the boundedness of the operators
o(h?A,) and pin H' (M) yield

I, (2 Ag)u(w)l L1z n2) S hlxas,e(h*Ag)u(u)l| L (r,12) < hllp(h® Ag)p(u) || L= 0,7;12)
5h2||50(h2A9)lu(u)||L°°(07T;H1) N h2||uHL°°(O,T;H1)~

We apply Lemma withr’ = 8- > S and ¢ = 6 and obtain the estimate

(1 e

g S "o

5 HUH(;IM vE HI(M)7

1 _6
H otz

where we used o < 3. Together with Holder s inequality, Lemma[A4.55)b) and the boundedness
of p(h?A,), this implies

||X‘]].gO(h2Ag)|U|a_1u||L2(J]{1L%) g h§||§D(h2Ag)|U‘a_1UHLOO(O’T;Lg)
3 a—
S (S T I
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5. Uniqueness results for the stochastic NLS

3 _ 3
S Bl s, S AUl
Inserting the last three estimates in (5.35) and (5.36) yields

1 3
v, 22,20 Sh2 (b Ag)ullpz (s mry + P2 |[ull Eoe 0,750
+ h2||UHL<>c(0,T;H1) +11G; ||L2(JJ<,L6), (5.37)

. 1 3 pe
0.0 | 22 (s0,28) S hllp(h?Ag)u(min Jo) || + b2 [[o(h* Ag)ull L2 s vy + W2 [l F o 0,10y
+ B2||ull oo 0,701y + G o ll L2, 26)- (5.38)

We square the estimates and (5.38) and sum them up. Using x;, = 1 on J;, (5.34) and
N < Np = {EJ , we conclude

lp(h?Ag)ullfz s Lo _Z I, 0(h*Ag)ull 2 (g, 1oy = Z o220, 10)
j=0 7=0

S /f"llw(h2 oJu(min Jo) |3

+ Z [hHSO (h*A U||L2 J.HY T 3 |lull7% OTHl)}

7=0
N
+ 3 [Pl o iy | + H2C

=0

N
S lo(h? Ag)u(min Jo) |3 + 1Y lo(h* Ag)ullz )

§=0
+ W2l o 7o) + WP ullg 0 1) + R2C. (539)
Below, we will use the notations
N N N+1
Ivi= U N US| =
j=0 j=0 J=0
By
N+1
Z le(h?Ag)ulliz (s pry < 2 D le(PAg)ullZags, mry = 2o Ag)ull Tz n gy
=0
we obtain

(R Ag)ull7z s ey S P2 |l@(h* Ag)u(min Jo) |7 + hllo(h*Ag)ullFz s gy
+ h2||u||Loo(0,T;Hl) + hg”“H%OO(O,T;Hl) + h?C.

Let p > 6. Then, Lemma a)and u € L>=(0,T; H*(M)) imply

_1
(B2 Ag)ull 12(srey S W28 [ @(h2A )ull 12 (.10
3,1 . 3
< B (h2A g )u(min Jy) | s + B lo(h>Ag)ull L2 (sn s
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5.3. Uniqueness for 3D compact manifolds

3,1 3 341
+ 0 2l e o gy + Pl oo o,y + RPTEC
S ATE R lp(h?Ag)ull agn gy + AFTE 4 AT (5.40)

Step 3. In the last step, we use (5.40) and Littlewood-Paley theory to derive the estimate stated
in the Proposition. To this end, we set hy, := 2=% and kg := min {k S| > 'szk} . Moreover, we
choose ) € C°(R), ¢ € C*(R\ {0}) such that

Nu+d 925N,  AeR.

Then, Lemma [4.54] the embedding ¢!(N) — ¢*(N) and (5:40) imply

2

lullz2(rrey S (Iiﬂ ulleLz:ll%7 27"A) u”LP)

L2(J)

(NI

= <¢( )u”L?(]LP +Z||SD 27FA,) U”L2 LP)>

k=1

<o(Ag)ullrecim + D lle@* Ag)ull s,y
k=1
ko—1

Sv(Ag)ullr2s,eey + Z ||%0(2_kAg)u||L2(J,Lp)
k=1

+ Z 27%||90(2_kAg)u||L2(,]hk7H1) + Z [27%(%%) + 95 (5+1) + 9-5(5+3)

k=ko k=ko
ko—1
<[l (Ag)ull 2 g,ey + Z ||90(27kAg>u”L2(J,LP)
k=1
e 3k s k k k
+ 3 B @ A ullagmen + Y [27 42 E 2
k=ko k=ko
ko—1
S (Ag)ullpe sy + Z (27 Ag)ull 2,0y
k=1
1 1
oo 2k 2 o0 2
+ (Z 2P> <Z ||%0(2_kAg)“||2L2(Jhk,H1)> + 1. (541)
k=ko k=ko

From Lemma[A.55]a) with & = 1, we conclude
[P(Ag)ullL2ry S 10(Ag)ullz(rrey S lullzzeres S 1. (5:42)

From Lemma a) and the Sobolev embedding, we infer

(3 _1 _
(2 Ay ull 2oy S 27FE D (27" Agull 12, 10)
k _
<25 27  Agul 2
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5. Uniqueness results for the stochastic NLS

for k € {1,...,ky — 1} . From the definition of ko, we have |J| ~ 2~ =" Thus, we get

ko—1 ko—1 % ko—1 %
k
S el 5 (zzz) (z oA, umm))
k=1
S 2% |ull oy S IR S 1 (5.43)

We proceed with the estimate of the sums over k > kg. The fact that we have J"+1 C J" for
all £ € N, leads to

ZH‘P 27%Ay) UHiz(Jhk,Hl): Z ||<p(2_kA9)u”iz(Jhk,H1)

k=ko k::|J|>LZk

S Z ||90( kA )u||L2(J’Lk0 Hl)
ke J|> 2k

Sl g ey < 1 [l 000
Using |J"*o| < 3% +|J| < 4|J] and u € L>(0,T; H'(M)) almost surely, we obtain

Znso 27 A Yull 3o g gy S (5.44)
k=ko

Finally, the calculation

1 1/ 1 1 1
limz23;:1im<3—1):lim . -
oo p £~ p=oop \1 -2 proo (2; _ 1) 3log(2)

yields the boundedness of the function defined by [6,c0) > p — % Sy 2~% and hence,

Z % < p (5.45)
Using the estimates (5.42) (5.43), (5.44), and (5.45) in (5.41), we get
1
lullz(rery S 14 (1P)7 € [6,00),
which implies the assertion. O

We close this chapter with some remarks on the failure of seemingly natural extensions of the
previous result to higher dimensions, nonlinear noise and non-compact manifolds.

Remark 5.20. We would like to comment on the case of higher dimensions d > 3. The Strichartz-
endpoint is (27 -24.) and the use of Lemma- leads to the restriction a < 1 + —25. The final
estimate (5.41) has to be replaced by

=k d_,, _
Nl ogsimy S 1A ullpagiry + > 2 FE D)o@ A ul| 2,
k=1

[ee]
i Z [273(%7u(d)+%) n o= 5 (2-v(d)+1) n 273(%7u(d)+%)}
k=1
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5.3. Uniqueness for 3D compact manifolds

for p > 2% where we set v/(d) := %5%. Hence, the convergence of the sums requires an upper

bound on p, which destroys the uniqueness proof from above. In fact, this problem occurs since
the scaling condition for Strichartz exponents, Sobolev embeddings and Bernstein inequalities
are more restrictive in higher dimensions. In particular, the restriction to d = 3 is of purely
deterministic nature.

Remark 5.21. In the proof of Theorem we did not need the optimal estimates for the
correction term 4 and the stochastic integral. In fact, it is possible to generalize the proof and
show the estimate

1
lullpagroey S 1+ (1Jp)2 as, pe6,00), q€][l,2]

also for martingale solutions of the equation

du(t) = (iAgu(t) — IMu(®)[*u(t) + p (|u(t)|2<v-1>u(t))) dt —iB (Ju(t)]" " u(t)) dW (1),

u(0) = up.

(5.46)
with nonlinear noise of power v € [1,2). However, we do not know if this equation has a
solution, since the existence theory developed in Chapter [4 only applies for v = 1. Moreover,
we do not know, how we can apply these estimates to prove pathwise uniqueness since there is
no cancellation of the stochastic integrals in the Itd-formula for the L?-norm of the difference of
two solutions to (5.46). Thus, there is no analogue of Corollary[2.10|and a pathwise application
of Lemma 5.3|is no longer possible.

Remark 5.22. Let us comment on the case of possibly non-compact manifolds with bounded
geometry. In the two dimensional setting, the Strichartz estimates from Lemma[2.15with an ad-
ditional loss of ¢ regularity were sufficient for our proof of uniqueness. In fact, these estimates
are derived from localized Strichartz estimates of the form

||t — eitAgwm,%(_h’2Ag)x||Lq(J,LP) < CEHx”LQv ‘J| < ﬁ8h1+67 (547)

for all ¢ > 0 and some C. > 0 and 3. > 0, where we denote ¥, ,(\) := A™e~%* for m € N and
a > 0. A continuous version of the Littlewood-Paley inequality which can substitute (A.36) is
o felr(M),  (548)

given by
1 ) 2dh %
| 1omal-t8g) 525
0 o

for . a(A) = f;o wmﬁa(t)d%, see [16], Theorem 2.8. Based on (5.47) and (5.48), we can argue
similarly as in the proof of Theorem and end up with the estimate

[fllze = lom.a(=8g) fllLr +

3
||u||LQ(J,LP) S 1+ ‘Jﬁ (6qqp2€p> a.s.

foreache > 0, ¢ € [1,2] and p € [6,3¢e~") with an implicit constant which goes to infinity for
¢ — 0. The upper bound on p is due to the fact that the additional ¢ in weakens the esti-
mates of the critical term containing the derivative x; of the temporal cut-off and enlarges the
number of summands in (5.39). As in the case of higher dimensions than d = 3, the uniqueness
argument breaks down since a limit process p — oo is no longer possible.
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6. The NLS driven by a jump process

In the last chapter of this thesis, we would like to transfer the existence result we derived in the
fourth chapter for Gaussian noise to stochastic perturbations induced by a jump process. We
consider the Marcus stochastic NLS

N
du(t) = (—iAu(t) — iF (u(t)))dt — i Z Bpu(t—) o dLy,(t), te[0,T7,

6.1)
u(0) = ug € Eq,

in the energy space E4 := X1, where A is a selfadjoint, non-negative operator A with a compact
resolvent in an L?-space H, F : E4 — E7% is a nonlinear map and B,, € L(E,) are linear
operators for m = 1,..., M. Moreover, L(t) := (L1(t), -, Ly (t)) a RM — valued Lévy process
of pure jump type

t
= [ [ s,
0 J{|IJ<1}

where 7 denotes a time homogeneous Poisson random measure on RM with intensity measure
vand 7 := n — Leb ® v is the corresponding compensated time homogeneous Poisson random
measure.

The goal is to construct a martingale solution of and similarly to Chapter [ the proof
employs a Galerkin-type approximation and a priori estimates derived by the It6 formula and
the Gronwall Lemma. However, we have to use more sophisticated methods to obtain tightness
since we are faced with spaces of cadlag functions instead of continuous ones.

6.1. General Framework and Assumptions

Let (M, ¥, 1) be a o-finite metric measure space with metric p satisfying the doubling property,
ie pu(B(z,r)) < ocoforallz € M and r > 0 and

w(B(z,2r)) < p(B(x, 7). (6.2)

Let M C M be an open subset with finite measure. We further abbreviate H := L?(M, C) and
denote the standard complex L?-inner product by (,-) . Let A be a non-negative selfadjoint
operator on H with the scale (Xy),cp of fractional domains. The space F4 := X 1 is called
energy space and its dual is denoted by £7 := X .

As in the fourth chapter, it is appropriate to treat H, E4 and X_, as real Hilbert spaces with

the real scalar products Re (-, ) ,,, Re (-, ) and Re (,+)_ .1, respectively. Our assumptions on

E
the functional analytic setting are identical to Chapter [ but we recall them for the reader’s
convenience.
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6. The NLS driven by a jump process

Assumption 6.1. We assume the following:

i) There is a strictly positive selfadjoint operator S on H with compact resolvent commuting
with A and D(S*) < E, for some k € N. Moreover, we assume that S has generalized
Gaussian (po, pj,)-bounds for some py € [1,2), i.e.

e Ly oy eao,uoty < CulBlantF)76 ™ exp {—c (A=) } ,
(6.3)
forallt > 0 and (z,y) € M x M with constants ¢, C > 0 and m > 2.
ii) Let o € (1,p} — 1) be such that F4 is compactly embedded in L+ (M). We set
Pmax = sup{p € (1,00] : E4 — LP(M) 1is continuous}.

In the case pmax < 00, we assume that E4 — LP»=<(1M) is continuous, but not necessarily
compact.

Assumption 6.2. Let a € (1,p; — 1) be chosen as in Assumption Then, we assume the
following:

i) Suppose that F' : L*T1(M) — L+ (M) satisfies the following estimate
IF(@)]l, axr < Cpallullfer, we LTH(M). (6.4)
We further assume and F(0) = 0 and
Re(iu, F(u)) =0, wue L*M(M). (6.5)

ii) The map F : LT (M) — L (M) is continuously real Fréchet differentiable with

I [l s oty < Crallulliats we LTH(M).

iii) The map F has a real antiderivative F.
Assumption 6.3. We assume either i) or i’):
i) Let F' be defocusing and satisfy

1 .
@IIUH%ﬂl < F(u) < Cpallulfil, we LT (M). (6.6)

i) Let F' be focusing and satisfy
—F(u) < C’F74||u\|%ﬂ1, u € LT (M).

Assume that there is § € (0, 727) with

(H,Ea)yy = LOTH(M).
The only difference between the previous assumptions and the corresponding ones from the
fourth chapter lies in the fact that we need a two-sided estimate in (6.6). This is a minor restric-

tion, however, since the standard power nonlinearity is obviously still covered. We continue
with the assumptions on the stochastic part of equation (6.1).
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6.1. General Framework and Assumptions

Assumption 6.4. (a) Assume that (L(t));>o is an R" -valued, F-adapted Lévy process of pure
jump type with the corresponding time homogeneous Poisson random measure 7 from
the Lévy-Ité6 decomposition in Theorem

(b) Assume that the intensity measure v of 7 is supported in the closed unit ball of RY. In
particular, it satisfies

/ [12v(dl) < oo. (6.7)
{l<1y

c) Let By,..., By € L(H) be selfadjoint operators on H with B,,|g, € L(E) and
Bon|petr € L(LYFL(M)).

In view of the Lévy-It6 decomposition from Theorem the previous assumption implies

o= [ [ vitasan,

since we have 7([0, t] x B) = 0 for all Borel sets B C {|I| > 1} and ¢ > 0 as a consequence of the
Poisson distribution of 7. We abbreviate

N N N
be, == Z 1Bl (£ broti := Z 1Bl Z(pas1ys brz = Z IBumlZzy  (68)
m=1 m=1 m=1

and for [ € RY, we introduce the notation

N
= Z Lin B

m=1
As in Appendix [A.2.2] we reformulate (6.1I) as an Itd stochastic evolution equation based on
the stochastic mtegral driven by a compensated Poisson random measure. To this end, we note

that the Marcus mapping @ : [0,1] x RY x H — H, i.e. the continuously differentiable solution
of the differential equation

Wi S B, teo.] (69)
dt — ] mDOmY ’ ) ? :

with y(0) = = € H,and | = (I1,ls,...,lx) € RY, is given by ®(t,1,2) = e "Bz, Then, the
equation with the notation ¢ is defined in the integral form

w(t) = ug — i ' U S _IB(Z) n(ds
(t) = uo /(A() d+//{”<l} u(s—) — u(s—)| i(ds, di)

/ / { —iB( l) — u —|— i Z lmBmU } l/(dl)dS (610)
0 J{JI|<1}

In the next definition, we fix our notion of solution.

Definition 6.5. Let ug € E4. A martingale solution of the equation (6.1) is a system
(Q, F,P,7,F, u) consisting of
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6. The NLS driven by a jump process
e a complete probability space (Q, F, ]f”) ;

e afiltration F = (]:"t) with the usual conditions;
te[0,T]

e a time homogeneous Poisson random measure  on RY over (2 with intensity measure v,

e an F-adapted, E*-valued cadlag process such that u € L?( x [0, 7], E%) and almost all
paths are in D,, ([0, 7], E4)

such that the equation (6.10) holds almost surely in E forall ¢ € [0, T].

The main result of this chapter is the existence of a martingale solution of (6.1)).

Theorem 6.6. Choose the operator A and the energy space E 4 according to Assumption the non-
linearity F according to Assumptions|[6.2)and [6.3|and the noise according to Assumption[o.4} Then, the

problem (6.1) has a martingale solution (Q,]:" , ]f”,ﬁ,fﬁ,u) which satisfies u € Dy, ([0,T], E4) almost
surely and

ue LIY(Q,L2(0,T; Ey))

forall g € [1,00).

6.2. Energy Estimates for the Galerkin solutions

In this section, we consider the Galerkin approximation of (6.1). We prove its wellposedness
and mass conservation as well as uniform energy estimates. The results of this section can
be viewed as ingredients to apply Corollary and get the tightness of the approximated
solutions.

Recall from Lemma[4.12|that S has the representation
Sz =" An (2, hm) yhm, @€ D(S) = {x €H: Y A l(2,hm),I* < oo} :
m=1 m=1

with an orthonormal basis (/i ),,, ¢y of the complex Hilbert space (H, (-,-) ), eigenvalues
Am > 0 such that \,,, — oo as m — oo. For n € Ny, we set

H, :=span{hy,, :m € N, \,, < 2""'}

and denote the orthogonal projection from H to H, by P,. Moreover, we use the sequence
(Sn)pen C L(L?(M)) constructed in Proposition and set

N
Bn(l) = Z L SpnBmSh, nelN, le RY.
m=1

As an approximation of (6.10), we consider the Galerkin equation

un (t) = Ppug — i/o/ (Aun(s) + P F(un(s))) ds
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6.2. Energy Estimates for the Galerkin solutions

+/0t/{|l<1} {e—iBn(l)un(s—)—un(s—)} f(ds,dl)
+/Ot/{|l<1}{e—isn(z)un(s)—un(s)+iBn(l)un(s)} v(dl)ds. 6.11)

We emphasize that the symmetric truncation by S, in the definition of B,,({) is useful since it
leads to a similar structure of the noise in the approximated equation as in the original one and
therefore to mass conservation as we will observe below. In order to prove global wellposed-
ness of and estimates for the solution u,, uniformly in n € N, we need some Lemmata.
We start with properties of the operators 5,,(1).

Lemma 6.7. Letn € Nand 1 € RN . Then, we have
1Ba(Dllecezy < U622 1BaWllezay < |UbE,s  IBa(Dlloipa+sy < 1Ubgyysup [[SullZ(pasr)-
eN
Moreover, (e715»1)) __ is a group of unitary operators on L* (M) with

1 1
—ith, 162 —i t]I[b2, | su Snll? .
He ltB”(l)||£(EA) < 6' [12] B ||€ ltBn(l)||£(La+l) < €| [12[62 ) sup,en |l HL(L +1>’ teR.

Proof. By the boundedness of (Sy,),,cyy € L£(L**!(M)), we obtain

1
2

N N
1Bl c(zosry < D S0 BmSnllciposry < |1 (Z ||Bmf;(m+1)> SggHSHHQE(LQJﬂ)
m=1 n

m=1

1
= |l|bé+1 Slég”Sn”QL(Laﬂy (6.12)

The estimate of B,(l) in E4 can be shown analogously using [|Sy||z(z,) = 1. Since S, and
B,, are selfadjoint on L?(M) for n € Nand m € {1,..., M}, Stone’s Theorem yields that
(e7B~()), . is a unitary group on L*(M). Moreover,

1
2

lemitBr W gl < elB-Oleen ||z 5, < 24 ||2)| 5, re by teR,
e tBa D || pars < Bl 2 patr, ||| Lot
1
< €|tHl|b§+1 Sup,, ey HSnHZL(LQ+1)||l‘||La+1, T € La+1(M)7 t e R.

O

In the next Lemma, we show how to control the integrands appearing in (6.11) in the L?-
norm.

Lemma 6.8. Foreveryn € N, 1 € RN and z € L?(M), the following inequalities hold:

. 1
le™5" D — |2 < b7 1|l 2,

i . 1
e Wa — 2 +iB, (D] L2 < Sbrall*[o] L.
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6. The NLS driven by a jump process
Proof. The identities
) 1aq . 1
o 1By _ 4 / d itB. ) g — —iBn(l)/ o—itBa (D) 1 gt
o dt 0

and

1 s 2 1 S
e By — o +iB, (1) = / / — e By dtds = —B,(1)? / / e By dtds
o Jo dt? o Jo
and Lemma[6.7]lead to

. 1 s 1
e BnWg — g2 < ||Bn(l)||£(L2)/ |e= B D g|| L2dt < b2l 2,
0

1 s
le™ W — o 18, (a2 < BB z2) / / e 8 x| 2dds
0 JO

IN

1
Sbalil ]
O

Next, we prove the wellposedness of the Galerkin equation. Moreover, we show that the Mar-
cus noise and the approximation do not destroy the mass conservation of the deterministic
NLS.

Proposition 6.9. For each n € N, there is a unique global strong solution u,, € D([0,T], H,,) of (6.11)
and we have the estimate

Jun(®)llz2 = [[Patollze < [luol|z2 (6.13)

almost surely for all t € [0, T).

Proof. Step 1. We fix n € N. To obtain a global solution, we regard H,, as a finite dimensional
real Hilbert space equipped with the scalar product (u,v),, := Re (u,v), and check the as-
sumptions of [2], Theorem 3.1 for the coefficients defined by

¢ = Pug, o(u) =0,

b(u) = —1Au —iP, F(u) + /

{e—iB"(l)u —u+ iBn(l)u} v(dl),
{l<1}

g(u’ l) — {e_iB"(l)u _ u}
foru e H, and ! € RY. Let R > 0. We take u,v € H,, and estimate
[b(w) — b(v)[|L2 <[[Alm, [lccm)llw — vllpe + || F(u) — F(v)| 22

+ / |e7 B (4 — v) — (u—v) + 1B, (1) (uw — v)| > v(dl). (6.14)
{u<1}

By Lemma 6.8 and (6.7)
—iB, (1) . 1 2
lle (u—v) = (u—20)+iB,()(u —v)| 2 v(dl) < ibLQ [I]“v(dl)||u — v]| L2
{l11<1} {lI<1}
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6.2. Energy Estimates for the Galerkin solutions

< lu — vl ge. (6.15)
To estimate the nonlinearity, we use the equivalence of all norms in H,, and (4.11)

a—1
[1E(u) = F(u)llL2 Sn [F(w) = F)]| | ax2 S (ullorr + [[ollpas)™ " lu = vl pan

S (ullze + loll2)* " lu = vllze S llu = ollz. (6.16)
We insert (6.16) and (6.15) in (6.14) to get a constant C' = C(R) such that
Ib(u) = b(©) 22 < Cll — o] 2. (6.17)
Moreover, we have
[t = gt Ev@) b [ @) ol S Ju-olfs (618)
{lil<1} {li=<1}

where we used Lemma [6.8]and (6.7). To check the one-sided linear growth condition, we use
(6.5) and (6.15) for v = 0 and get a constant K; > 0 with

n

2(u, b(w)) +/{Il<1} llg(u, DII72v(dl) <2||Alm, lecm lull7= +2Re (u, —iF (u)) ,
+ 2||ul| 2 / |e™ B Wy, — w +iB,, (1)u) L2 v(dl)
{li1<1}

<K |ul|Ze. (6.19)

In view of (6.17), (6.18) and (6.19), we can apply Theorem 3.1 of [2] and get a unique global
strong solution of (6.11)) for each n € N.

Step 2. It remains to show (6.13). The function M : H,, — R defined by M(v) := |v||2, for
v € H,, is continuously Fréchet-differentiable with

M'[v]hy = 2Re (v, h1) .,
for v, hi, ho € Hy,. By Itd’s formula, see Theorem and (6.10), we get

t
lun (B)IIZ2 =l Pruol|Z> + 2/0 Re (un(s), —1Aun(s) = iPF (un(s)) ) . ds

t
e ) (s3] )
0 J{JiI<1}
t
[ e O — o] vanas
{l<1}

—2/ / Re (un(s), —i L SnBmSnun(s)) ,,v(dl)ds
<1} Z .

almost surely for all ¢ € [0, T]. By

Re (v, —iAv),, = Re [i||A%U||%2] =0, Re (v, =iP,F (v)) ., =0, Re (v,iBpnv),, =0

for v € H,, and the fact that S,,B(1)S,, is selfadjoint and hence, e~"5»(!) is unitary, this simplifies
to

lun (B)[IZ2 = Pauiol|Z

almost surely for all ¢ € [0,T]. O
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6. The NLS driven by a jump process

Let us recall that by Assumption the nonlinearity F has a real antiderivative denoted by F'.
This helps us to associate an energy £ : E4 — R to the NLS which is given by

1. .1 -
E(u) = §||A5u||§{+F(u), ue Ej.
The main ingredient for uniform estimates in £ 4 besides the mass conservation is to control the

energy. As a preparation, we need estimates of the differences which occur in the representation
of £(u,,) based on the Itd formula.

Lemma 6.10.  a) There is a constant C = C(bg,, ba+1,, F') > 0 such that for every n € N, we
have

£ (e W) — E()] <Ol (el + lellFdis)

forallx € Hy,,,and | € RN with |I] < 1.
b) There is a constant C = C(bg ,, ba+1,4, o, F') > 0 such that for every n € N, we have

E(e7 B Va) — £(z) + €] (B (V)| <CU (ol + lallgth)

forallz € H,,andl € RN with |I] < 1.

Proof. ad a): The map £ is twice continuously Fréchet-differentiable with

E'v]h =Re(Av + F(v), h),
E"[v)(h1,h2) =Re (AZhy, A2hy) ,, + Re(F'[v]hy, ho)

for v, hy, hy € H,. Hence, we get
) 13 ) 1 ) )
E(e B Wy) — &(x) = / —&(e7 P Wg)dt = / &' 18] (—iBn(Z)e’ltB"(l)x) dt
o dt 0
1

= / Re <Aeiit3"(l)x + F(eBny), —iBn(l)efitB”(l)x>dt. (6.20)
0

We define f : [0,1] x RY — [0, 00) by
% % S 12
f(t, l) — max {17 thl”bEA + e(a+1)t|”b(y+1 SUpP, N ” nlL(Lfl+1)} , te [07 1]’ l c RN,

and by the properties of B,,(1) from Lemmal6.7] we estimate the integrand of (6.20):
|(Ae™ 1B Dy —iB,, (1)e B Dz) | < |AZe B Oy .|| A2 B, (1)e B O 12
< MR ol g, 1, e O s,
< PR b ol (621
and
[(F(e 8 O0), iB, (1) B O )| < | F(e B D) asn [Ba (D O s

< CralBu()| gposylle B W0t
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6.2. Energy Estimates for the Galerkin solutions

1
< Cralllbata sup 1Sl Z zoen) 2l 32

B

We obtain

1
atl) / £t D)dt
0

. 1 1
|5(6_18”(l)$) — 5({13)| §|l| max {béA,CF’1b§+1 Sléll\)] ||Sn||%,(LQ+1)} (||$||2E'A + ||{,C|
and the assertion follows from

1 1
| ena= | max{l 2IE, | (et Dl supnc lsnli<m+1>}dt
0 0

1
2 2
< max{l,e”’m 4 el@t Db supncn 'Sn'aww} <o, <1 (623)

ad b): We start with the identity

1
E(e—iBn(l)x) —E(z) + gl[ﬂ(lsn(l))x _ / ig(efian(l)x) _ ig(e—islgn(l)w)
o \ds ds

715 {1
/ / dt2 Bn () 1) dtds
:/ / El[e_itB"(l)m] (—Bn(l)2 —itB,, )dtdS
0 0

1 s
+/ / E" e Bn(D) ] (—iBn(Z)e_itB"(l)x, —iBn(l)e_itB"(l)x) dtds
o Jo

=: Il + 12.

> ds
s=0

As above
1
‘]1| §|l|2 max {bEA7CF,1ba+1 Slég S’VLH%(LaJrl)} (Hx||]25A + Hl‘”%;ﬂl) /0 f(t,l)dt
n

We further decompose I = I 1 + I3 2 with

1 s
Iy, = / / HA%Bn(l)e*itB"(l)wH%zdtds,
o Jo

1 s
12,22/ / Re<F’[e_itB”(l)m]Bn(l)e_itB“(l)x,Bn(l)e_itB"(l)x>dtds.
o Jo
By Lemmal6.7}
1 s . 1
Bl < [ [ WP e B Ol dtas <l WPbe [ (e Dt

Moreover, the estimate

(e8], (e 5 Oz, B, (1) 5Oz )|
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6. The NLS driven by a jump process

< ||F'[€7it8"(l)x]5n(l)efitB"(l)fCHLLH 1B (1)e B D] o
< CF,zllb’n(l)Hi(mH)I\e‘“’g"(”xlliﬂl

< Croll*bata sup 1Sl (posny f(t DIl g
ne

1 s
|15,2] S/ /
o Jo

1
<Crall|*bat1 SugIISnll‘i(Lwl)llxII‘iﬂl/ [t D)dt
ne 0

yields

(F'le B0 g]B, (1)e B Dy, B, (1)e BV ) ) dtds

and finally, we find a constant C' = C(ba 41, b, 5up,en [|Snll £(zo+1), F') such that

1
£ V) — £(a) + £1al(18, 1)) < CUP (lelfp, + lelgEh) [ rienat
0
and the second assertion also follows from (6.23). O

Now, we are ready prove that the solutions of (6.11) have uniform energy estimates and satisfy
the Aldous condition.

Proposition 6.11. Let g € [1,00). Then, the following assertions hold:
a) Thereis C = C(||luollgs, T, bEL, bat1,q, a, F) > 0 with

supE[ sup [[|un(t)]7- +€(un(t))]q} <C.
neN t€[0,T]

b) The sequence (un)nen satisfies the Aldous condition [A] in E%.
Proof. ad a): We only prove the assertion for ¢ > 2. The case ¢ € [1,2] is a simple consequence

of the Holder inequality. Recall that the energy & is twice Frchet differentiable. In particular, £’
is Holder continuous. Hence, we can use Proposition[6.9)and It6’s formula to deduce

()32 + € (un(5)) = 31 Pasiol + € (Paso)
—|—/0 Re(Auy, (r) + F(un(r)), —iAu, (r) — iPy F (un(r)))dr
+/05 /{l|<1} [5(e*i5'n<l>un(r—))—5(un(r—))] f(dl, dr)
| E(e BBy (r)) — E(un(r ENun ()] (B, (D, (r)) | v(dl)dr
[ L (1)) — E(un(r) + & Tun ()] (B Dun ()] ()
= %Hpnuoniz + & (Pauo) + In(s) + Iz(s) + Is(s) (6.24)

almost surely for all s € [0,T]. The first integral I;(s) cancels for the same reasons as in the
Gaussian case. We refer to the proof of Proposition By the maximal inequality for the
Poisson stochastic integral, see Theorem [A.35, and Lemma we get

1

su 5(s q “ t efiBn(l)un o)) (s 21/ .
<E LG[OI;] =) D . (]E </0 /{z|<1} ‘g( () = &{un ))’ (d)d )
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6.2. Energy Estimates for the Galerkin solutions

t e B Wy, () = E(un(s qu S '
+<E [ e O - £ <dl>d)
( (// 1 (Jn (), + () 51) wl)d )

{li<1}
( [ ), + @) vand )
{lil<1}

(SIS
Q=

Q=

(6.25)
We introduce the abbreviation
1 2
X i= 5 |lunl3s + E(un)
and observe
Junll%, + llunllfil S X. (6.26)
Moreover, we have
/ 17 v(dl) < / 12 v(dl) < oo, q>2. (6.27)
{l<1} {1}

Thus, we can conclude

i g\ L 1
q t 2\ ¢ t q
E | sup |[I2(s)|? < IE(/ X(3)2d8> + (E/ X(s)qu>
s€[0,t] 0 0
= 1 Xllzao,r200,6)) + 1 X || e, La(0,6))- (6.28)
By Lemma b), (6.26) and the Minkowski inequality

(qﬁ& |13<s>|q}> "< /., evian (E ([ (o, + i) @ )) E

t
S [ 1K) g dr
<1} 0
t
5/0 ||XHLq(Q,L°°(0,r)) dr

and from (6.24) and the previous estimates, we get

1 1
1 q q
1X oo, e < 51 PattollFa + E(Pao) + (E[ sup |12<s>|q}> + (E[ sup |13<s>q}>
s€[0,t] s€[0,t]

1
< QHPnuO”%ﬂ + E(Ppuo) + | X L, 2200, + 11X La@,La(0,¢))

t
+/ 1 X || La(e,Lo0 (0,5))ds- (6.29)
0
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6. The NLS driven by a jump process

Using Lemma|2.11|with sufficiently small e > 0 to estimate || X || ,a(0,12(0,+)) and || X || Lo, £a(0,1))»
we get

1 t
X La(o,L0,0) S §||Pnuo||2L2 + E(Pruo) + €l| X || Lo,z (0,1)) +/o | X\ a0,z (0,5))ds
and end up with

X1

1 t
Lo@Q,L=(0.8) S §||PnU0H%2 + E(Pruo) +/0 1 X1 a0,z (0,5))d5-
Finally, the Gronwall lemma yields
1
IXlesaoay <€ (31Prls + P ) e, te .71,

where the constant C = C(bg,,ba+1,9,, F) > 0 is uniform in n € N. The assertion is a
consequence of

E(Pyug) < ||P A% g3 + CrgCal | Pauol| 3 (6.30)

and the uniform boundedness of (P,),,.\ as operators in L?(M) and E 4.

ad b): Now, we continue with the proof of the Aldous condition. We have
t t
Up(t) — Poug = — i/ Auy(s)ds — i/ P, F(u,(s))ds
0

//{|l<1} [e o (l) o _un( )} (dS dl)
//|l<1} < — u(s) +iBn(lu(s )} v(dl)ds

)+ Jo(t) + J3(t) + Ja(t)

in H,, almost surely for all ¢ € [0, 7] and therefore

[un (70 +0) AT) = un ()

ey <D 1 Te((70 +0) AT) = J(70)
k=1

for each sequence (7,,),, .y of stopping times and ¢ > 0. Hence, we get

ey =0} < 3B {1k((n + 0) AT) = Ji(7)
k=1

P {Hun((Tn +OAT) — up(m)

5y > } (6.31)

for a fixed n > 0. We aim to apply Tschebyscheff’s inequality and estimate the expected value
of each term in the sum. Similarly to Proposition we derive

Bl (7 +0) A T) = D)l < 98] s ()] <003
s€[0,T
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6.2. Energy Estimates for the Galerkin solutions

as well as

E|lJo((7n +0) ANT) — Jo(1)]

By SOE[ sup un(s)|%,] < 0C:.
s€[0,T]

By the Levy-Ito-isometry, Lemma and Proposition[6.9]
E[[J5((rn +0) ANT) — J3(7)] 7

Ei

(Tn+0)AT .
/ / [0 (5-) — un(s-)| i(ds, )
Tn {l1<1}

:E/T

n

2
<E

L2

(Tn+0)AT .
/{l|<1} He_an(l)’u,n(S) - Un(8)||2L2 v(dl)ds

(Tn+O)NT
< by / 1w (dD)E / it (s) | 22dls
{l<1} T

n

< 0l Pauol|Z2 < Olluol,
E[[J4((rn +6) AT) = Ja(7)]

/T(THJFQ)AT /{l|<1}{e_i6n(l)un(8) —un(s) + iBn(l)u"(s)} v(dl)ds

n

By

=E

E%
(Tn+O)AT

<E / / o7+ O () — was) + 1B Wun(s)]| , v(at)as
™ <1y L2

<

N =

(Tn+0)AT
bLz/ \l|21/(dl)E/ lun(s)||2ds < 0juo| L2
{l<1} T

n

We follow the lines of the proof of Proposition . 19|to combine the previous estimates with the
Tschebyscheff inequality and (6.31) to show the Aldous condition in £%. O

We continue with the a priori estimate for solutions of (6.11) with a focusing nonlinearity. By the
additional restriction to the exponents « in[6.3]i’), we overcome the deficit that the expression

1 1 .
ol +E@) = SlvlE, + F(v), v e Hy,

does not dominate [|v||%, , in this case.

Proposition 6.12. Suppose that Assumption i’) is true and let r € [1,00). Then, the following
assertions hold:

a) There is a constant C = C(|lug||L2, |wollE4s s 0 Ty FybE 4y bat1,7) > 0 with

supE[ sup [lun(®)], | < C.
neN t€[0,T]

b) The sequence (uy)nen satisfies the Aldous condition [A] in EY.

Proof. ad a): Let ¢ > 0. Assumption [6.3[i") and Young's inequality imply that there are v > 0
and C. > 0 such that

lull 3ot S ellullf, + Cellullzz,  u e Ea, (6.32)
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6. The NLS driven by a jump process

and therefore by Proposition [6.9) we infer that

—F(un(s)) S llun(s)lI55 S ellun(s)l|, + Cellun(s)ll7

S el A7un(s)l5 + elluolze + Celluoll}., s € [0,7): (6.33)
By analogous calculations as in the proof of Proposition we get
1, 1 -

§‘|A2un(5)||%2 =— F(un(s)) + & (un(s))

(
— F(un(s)) + € (Pauo)

S/Il<1} [S(e*iBn(l) (rf))fg(un(r—))} A(dl, dr)

+

/ /{ |z\<1} e Ot (1)) — £t (1)) + €' fun (1)] (1B (Dun ()] v(dl)ar
=t — F(un(s)) + € (Pauo) + L1 (s) + Ia(s)

(6.34)
almost surely for all ¢ € [0, T]. We abbreviate

X(s) = atl

1
luollzz + A2 un(s)l|72 + lun(s)lI7its, s €[0,T].

Let ¢ > 2 and recall (6.27) as well as the mass conservation from Proposition As in the proof
of Proposition we estimate

su s)|* q 2y t w, ()2 U a+11 2 AN
(IE Le[ol,)t]fl( )l D S </{l|g1}|l| (dl)> <1E (/O (lun(8)l1%, + llun(s)95E)a ) )
qy a t - ) y a+11 q %

+</{”<1}|z| (dl)> (E/ ()%, + lun(s)554)"d )

S X N zag,z20,6)) + 1 X Lo, za(0,0))3

Nl

(6.35)

1
q t
(E[ sup |Ig(s)|q]> ,S/ |l|2V(dl)/ HHunH%EA+|| nH%IilHLfI(Q LOO(OT‘))dT
s€[0.4] {l1<1} 0 o
¢
S/ | X || La(, o0 (0,ry)dr-
0

Using (6.30), (6.33), (6.35) and (6.36) in (6.34), we obtain

143 a3

(6.36)

1
< [1atunzs
La(Q,L>(0,t))

2
2+ Ce 7
(L (0, t))€+€||u0||L + Celluoll 72
+ | PaAZug| 3z + [ Pavioll ! + X [l a2 (0.0))
+ | X o e,za(0,6)) +/ 1 X La(e, Lo (0,r))dr
0
If we employ Lemma [2.11]to estimate || X|| a(q,2(0,4)) and [ X || La(o, La(0,1)), We get

(S 2

< A% u, |2 e +elluoll 22 + Celuol}
poieiomy S AR wl]| oo et eluoliEa + Colluol s
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6.3. Construction of a martingale solution
P A3 2 P a+1 X
+ [ PrnAZuol[72 + | Pauollz, + el Xl a,Lo=(0,6))
t
+/ 1 X240, (0,,))dr
0
Thanks to (6:33) it is possible to control || X || za(o, > (0.r)) bY ||| AZun |22 || La(e,(0.1)) - Indeed,

1X oo, 0.) < (1+¢) [l AFunl|

C
Lq(o,Loc(o,t))+ (uoll2)

follows from a similar reasoning as in the Gaussian case, see Proposition Now, we choose
€ > 0 sufficiently small and end up with

t
<C (1+/ H||A%unuiz dr)
La(Q,L>°(0,t)) 0 La(Q,L>°(0,r))

for some C' = C(J|ugl| 2, |wollgs, v, @, T, F,bE,, bat1,q) independent of n. From the Gronwall
Lemma, we infer

145 unli3:|

H||A%un\|§2‘ <Cet, teo,T) (6.37)

La(Q,L>°(0,t))

In view of Proposition[6.9 we have proved the assertion for r = 2¢ > 4. The case r € [1,4] is an
easy consequence of the Holder inequality.

ad b). The proof of the Aldous condition is similar to the defocusing case, see Proposition[6.11]
b). O

Corollary 6.13. The sequence (uy,),, - 0f Galerkin solutions is tight on

neN

Zp :=D([0,T], E4) N L0, T; L*T (M) Dy, ([0,T], Ea) -

Proof. This is an immediate consequence of the Propositions[2.39}6.11|and [6.12] O

6.3. Construction of a martingale solution

In this section, we will use the compactness results from Section[2.4.2|and the uniform estimates
from the previous section to complete the proof of Theorem Let us recall

Z2 =D([0,T], E%) N L0, T; LoTH(M)) N Dy, ([0, T), Ea) =: Z1 N Zo N Zs.

By Lemma we can apply Proposition to the sequence (u,), oy of Galerkin solutions.
As a result, we obtain a candidate v for the martingale solution.

Corollary 6.14. Let (uy),, o be the sequence of solutions to the Galerkin equation (6.11) on (2, F,P)
and A be the o-algebra on Z3 defined in (2.44).

a) There are a probability space (0, F,P), a subsequence (un,).cy » Zp-valued random variables
v, vp and ME([0,T] x RN )-valued random variables 7jy,,7j on Q such that

i) POwvk) = Puny) for k€ N,
ii) (7, ) = (7, 0) in ME([0,T] x RN) x Z] almost surely for k — oo,
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6. The NLS driven by a jump process

iii) 7, = 7 almost surely.

Moreover, ijx, 1) are time-homogeneous Poisson random measures on RN with intensity measure
v which are adapted to the filtration F defined by the augmentation of

Fi =0 (Mk(s),vm(s),v(s) : ke Nym e N,s € [0,1]) .

b) We have vy, € D ([0,T), Hy) P-a.s. and for all r € [1,00), there is C = C(T, ||uo|lg,,7) > 0
with

sup [0k e 07,50 < €
keN

c) Forallr € [1,00), we have

E [”UHZ"O(O,T;EA)} <c
with the same constant C' > 0 as in b).

Remark 6.15. We show that it is justified to view the process u,, n € N, as a random variable in
(Z2, A).For j = 1,2,3, we have D([0, 7], H,,) C Z; with continuity of the canonical embedding.
In particular, this implies

{BND([0,T],H,) : B A} C {BND([0,T},H,) : B € B(Z)}
— 0 ({B ND([0,T), H,) : B closed in Z?})
c a({B : B closed in D([O,T],Hn)})
— BD((0, T}, H,)).

Since u,, is a random variable in D([0, T], H,,) equipped with the Borel o-algebra, we infer for
eachBe A

{un € B} ={u, € BND([0,T],H,)} € F.

Proof of Corollary[6.14, ad a). As an immediate consequence of the Corollaries and
we obtain the existence of the random variables vy, v, 77, 7, for k € N such that i),ii) and iii) are
fulfilled. For the proof of the assertion that 7 and 7, for & € N are adapted time-homogeneous
Poisson random measures, we refer to [27], Section 8, Step III.

ad b). Since D ([0, T], Hy) is contained in Z; for j = 1,...,3, the definition of A yields that
D ([0,T], H;) € A. Hence, we obtain v, € D ([0, 7], H) P-a.s. by the identity of the laws of vy,
and u,,, . The uniform estimate follows from the respective estimates for (up, ),y , see Propo-

sitions and via the identity of laws, since D ([0, T, Hx) 3 w > sup;c(o, 7 [[w(t)[|E, isa

measurable function.

ad c). We can follow the lines of the proof of Proposition [4.23] O

It remains to verify that (Q, 7, P, 7, F, u) is indeed martingale solution. The compensated Pois-
son random measure induced by 7 is denoted by 7 := 77 — Leb ® v. We need the following
convergence results.
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6.3. Construction of a martingale solution

Lemma 6.16. Let 1) € E 4. Then, we have the following convergences in L?(2 x [0,T]) :

Re (vn — P,ug, 1/))H 272 Re (v — ug, ¢)H; (6.38)
/. Re (Avy(s) + PoF(vn(s)), 1) ,ds o, | Re(Av(s) + F(v(s)), ¥)ds; (6.39)
0 0

/‘ / Re (e_iB”(l)vn(s—) —vp(8—), w)H n(ds, dl)
0 J{l<1}

o0 /O/{llgl}Re(G—iB(l)v(s—)—v(s—),¢)Hﬁ(ds,dl); (6.40)

// Re (e*iB"(l)vn(s) —op(s) + iBn(l)vn(s),w)HZ/(dl)ds
0 J{<1}

n—00 ’ o e_iB(l)U s) — u(s i s y N .
/0/{1|<1}R ( () (s) +iB({v( )’¢)H (d)d (6.41)

Before we continue with the proof, we would like to remind the reader of Vitali’s convergence
result stated in Lemma and the subsequent remark.

Proof. ad (6.38). We get (6.38) in L?(0, T') almost surely from v,, — v almost surely in L2(0,T’; H).
In view of

T T
]E/ | Re (vn(t) — Pauo, ) |"dt < ||¢||22E/ (o (@®)lIL2 + lluollL2)" dt

0 0
<72 T2" [Juol7z < o0

for r > 2, Vitali’s convergence Theorem yields the assertion.

ad (6.39). Let us fixw € Q and t € [0, 7). Then,

/ Re (P, F(vn(s)), ) ,ds —>/ Re(F(v(s)),)ds
0 0

follows from v,, — v in L®T1(0,T; L*T1(M)) in the same way as in Lemma Moreover,
Re(A(vn(s) —v(s)),v) = Re(vn(s) — v(s), AY) — 0

forall s € [0,T] by v,, = vin D, ([0,T], E4). Via

T t
= r r 277
B[ [ Retav, (9. 0)lrasat < o, 75|

B T
g
0

sup[on(3)l, ] < o0,

s€|0,

dt < T |5, K sup_ 1 (v ()15 ]
se|0,

/ Re (P F(1n(s)), ) s

0

ST WIRE] sup Ten(IE] <o

s€E]
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6. The NLS driven by a jump process
for r > 2, Vitali yields (6.39) in L*(Q2 x [0,77).

ad (6.40). In view of the It isometry, it is equivalent to prove

/0. */{l|<1} ‘Re (eiiBn(l)'Un(S) - Un(S) - [eiiB(l)U(S) — U(S)] R ’(/))Hr y(dl)ds n—»_oo) 0 (642)

in L1 (Q x [0, 7). Before we proceed with this convergence, we remark that we have
B,()x "= B(l)x,  xeL*(M), 1RV, (6.43)

as a consequence of S,z — x in L?(M) for z € L?(M) which is included in Proposition
For x € H, Lebesgue and (6.43) yield

1
[ [
0 S

L2

1
< / | (B (1) = B(l)) e 1B Demi=o)B 0 g 1, ds 2225 0,
0
From v,, — v almost surely in L?(0,T; H) and again Lebesgue, we infer
t . .
/ | Re (e*‘B"(l)vn — Uy — [e*‘B(l)v - v] ,¢)H|2ds
0
t
<2 / (le™BD 0 = v) 2 + llvn = vllfe + || 750 = 75O w12 ) 9] 2ds
2720 (6.44)
almost surely for all ¢ € [0,T] and | € R". Since we have
t . .
/ |Re (6716"(1)’()" — Uy — [eﬂB(l)v - v] ,¢)H|2ds
0
< 2 lFabaz P (IonllFao i + 01320 S 1P € L'®Y:0)  (645)
by Lemma 6.8 and (6.7), we get

t
/ / | Re (e_iB"(l)Un — v — [e‘iB(l)v - v} ,1/J)H|2dsu(dl) =0
{li=1y Jo

as n — oo almost surely for all t € [0, T]. For r > 1, we employ similar estimates as in (6.45) for

T t T
E / / / [Re (¢ 5D, — v, — [e 500 — o] ) [Pasv(ar) | ar
0 {l<1}y Jo
~ T T
SWIEE [ (o + ol Eom) dr

SN E

sup (Ivnlliﬂrllle%)T] <0

s€[0,T]

and thus, we get (6.40) by Vitali’s Theorem.
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6.3. Construction of a martingale solution

ad (6.41). From (6.44),

/0 | Re (iBn(l)vn —1iB(l)v, ¢)H|ds

< llzz (1Ba (@) (0n = 0)ll 210,68y + | [Ba(l) = BO)] vl 210,881
< [zt (IBONeenllon = vllzm + | Bal) = BOVollL20,6m)) “=0

and the bound

t
—i . 1 1
/O | Re (75D, (5) = vn(s) + Bn(l)vn(s), ¥) lds < bt [0z P ol 0,6.m)

c L'(RY;v)

by Lemma we infer (6.41) pointwise in Q x [0, T]. The L?(2 x [0, T])-convergence follows
similarly as in the previous step by a Vitali-argument based on the uniform bounds on v,,
n € N. O

Finally, we are ready to summarize our results and obtain the existence of a martingale solu-
tion.

Proof of Theorem Let us define the maps

My, (w,t) =Pyug — i/o Re{Aw(s) + P, F(w(s)),v)ds

t e (s—) —w(s— i(ds, dl
+/0 /{|z<1}Re( (5=) —w(s=),¢) yi(ds,dl)

t e (e Ww(s) — w(s) + iBu(w(s v s:
+/0 /{|l<1}R ( (s) = w(s) +iBn(Dw(s), ) ,v(dl)ds;

My (w,t) —uo—l/ Re(Aw(s) + F(w(s)),v)ds
/ /l|<1} (e7BWw(s—) —w(s—),¥) ,n(ds,dl)

/ / e Bw(s) — w(s) +iB(w(s),v) ,v(dl)ds.
{\l|<1}
The results of Lemma can be summarized as
Re (’Un,i,ZJ)H 7Mn,1/1(vn7') — Re (vaw)Hwa(vV% n — o0,

in L2(Q x [0, ]) for all 1/) € E 4 and from the definition of u,, via the Galerkin equation, we infer
Re (un(t),¥) . (Un, t) almost surely for all ¢ € [0, T]. Due to the identity

Leb[o)T] Q P¥» = Leb[O’T] & Pv",

we obtain

_ T _ T
]E/ IRe (u(t), ), — My (v,£)*dt = lim IE/ IRe (0n(t),0) ) — My (0, D)2l
0 0

n—o0
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6. The NLS driven by a jump process
T
:nlggoE/o IRe (un (£), 1), — Moy (e, £)?dt = 0
and thus,
P{Re (v(t),®),, = My(v,t) faa.te(0,T]}=1.
Since both Re (v, v) ,, and M (v, -) are almost surely in D([0, T']), we obtain
P{Re (v(t),®) ,; = My(v,t) Vte[0,T]} =1,

which means that (Q, 7, P, 7,F,u) is a martingale solution to (6.10). O

6.4. Examples

In this section, we collect concrete settings which are covered by the general existence result
from Theorem [6.6] We skip the proofs since checking the Assumptions|[6.1}[6.2/and [6.3]is similar
to Section 4.4l

Corollary 6.17. Suppose that a) or b) or c) is true.
a) M compact manifold, A = —Ay, E4 = H (M),
b) Let M C R® be a bounded domain and A = —Ap be the Dirichlet-Laplacian, E4 = H} (M),

¢) Let M C RY be a bounded Lipschitz domain, A = — Ay be the Neumann-Laplacian and
E,=HY(M).

Choose the nonlinearity from i) or ii).

)+

i) F(u) = —|ul*luwitha € (1,1+42).

Set B,x = e forx € Hand m =1,..., N, with real-valued functions
HY(M)NL®(M), d>3,
em € F = { HY(M), d=2, (6.46)

H'(M), d=1,
for some g > 2 in the case d = 2. Then, the problem

N
du(t) = (—1Au(t) — F(u(t))dt —1 Y Buu(t) o dLn(t),

m=1

(6.47)
U(O) =ug € Egy,

has a martingale solution which satisfies u € D, ([0, T], E 4) almost surely and
ue L(Q,L=(0,T; Ea))

forall ¢ € [1,00).
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6.4. Examples
Additionally to the stochastic NLS, we can also cover the fractional NLS with the Laplacians
replaced by their fractional powers.

Corollary 6.18. Choose one of the settings a), b) or c) in Corollary. Let 8 > 0 and suppose that we have
either i) or ii) below.

i) F(u) = |[ul*luwith a € (1, 1+ ﬁ)/

ii) Flu) = ~|ul*uwitha € (1,14 4.
Choose B, form = 1,..., N as in Assumption[6.4, Then, the problem

N
du(t) = (—iA%u(t) — iF(u(t))) dt =1 Y Bumu(t) o dLm(t),

m=1

(6.48)
u(0) =ug € Xg,
has a martingale solution which satisfies u € D,,([0,T], X %) almost surely and
we LU, L2(0,T; X 7))

forall g € [1,00).
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A. Appendix

In the appendix, we provide additional material which is frequently used throughout this the-
sis. We restrict ourselves to the results we actually need and do not aim for a complete presen-
tation. For most of the proofs and further details, we give references to the literature.

A.1. Stochastic integration with respect to cylindrical
Wiener processes

In this section, we introduce the stochastic integral with the properties we will need in this
thesis. Because the results are classical, we omit most of the proofs and give references to the
literature. Instead of presenting the theory in the most general case, namely UMD-Banach
spaces, we restrict ourselves to prominent special cases: mixed LP-spaces, i.e. spaces of the
form L?(M;, LP(Ms)), and Hilbert spaces. Their additional structure allows to build a stronger
stochastic integration theory which will be useful later on.

For the sake of completeness, we start with the definition of the standard real-valued Brownian
motion.

Definition A.1. An F-adapted process  : [0, 00) x Q — Ris called real-valued Brownian motion
relative to F, if the following conditions are satisfied:

i) B(0) = 0 almost surely;

ii) for 0 < s < t, the increment 5(t) — §(s) is Gaussian with mean 0 and variance ¢t — s and
Fs—independent;

iii) for almost all w € €, the path [0, 0) € t — S(w, t) is continuous.

Throughout this section, we fix a real separable Hilbert space ¥ with ONB ( f,,,)
generalize the notion of a Brownian motion to Y.

men - Next, we

Definition A.2. Let Y be a real separable Hilbert space. A family W = (W (?)),, of bounded

linear operators from Y to L?(Q) is called Y -cylindrical Wiener process relative to F if the follow-
ing conditions are satisfied.

i) Forall y € Y, the process (W (t)y),~ is a real-valued Brownian motion relative to F.

ii) Forall s,t > 0 and y;,y2 € Y, we have

E [W(s)y1 W (£)ye] = (s A ) (y1,92), -

To illustrate the notion of a Y'-cylindrical Wiener process, we recall the following example from
[121], Example 6.12.
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Example A.3. For independent real-valued Brownian motions 3,,, m € N, a cylindrical Wiener
process is given by

o0

=3 (W fm)y Bmlt),  t=0, yeY.

m=1

An important way to obtain a Y-cylindrical Wiener process is stated in the next Proposition.
As a preparation, we set

Fr={AeF: An{r<t}eF Vt>0}
for any stopping time 7 and call F o-algebra of the T-past.

Proposition A.4. Let W = (W (t)),~, be a Y-cylindrical Wiener process relative to F and 7 be an
almost surely finite F-stopping time. Then,

W7T(t) :=W(r+t)—W(r), t>0,

defines a Y -cylindrical Wiener process relative to F™ := (Fi4r ), which is independent of F.

Proof. Suppose that we are given two independent real-valued Brownian motions (3:(t)),~,
and (B2(t)), relative to 7. Then, Theorem 6.16 in [74] implies that -

Bi(t) == Bi(r +1t) — Ba(7), B3 (t) == Ba(T +t) — Ba(T), t >0,

define independent Brownian motions relative to F. Let ( f,,,)
Y. We compute

men bean ONB of Y and y1, 2 €

o0

IE[W ( )Z/lW Z yhfm y%fl) [ T(S)meT(t)fl]

m=1 =1

Forallm # [ € N, W f,, and W f; are independent real-valued Brownian motions, since W is a
Y -cylindrical Wiener process. In particular, we get

E W7 (s)fmWT () fi] = 6mi (t A s)
as a consequence of the reasoning from above. This leads to
E[WT ()W (t)ya] = (s At) (y1.92)
and thus, we have proved that W7 is a cylindrical Wiener process. O
Next, we define the following notions for Banach-space-valued and operator-valued stochastic
processes.
Definition A.5. Let E be a real Banach space.

a) A process X : [0,T] x Q — E is called F-adapted, if X (¢t) is strongly F;-measurable in E
forallt € [0,T].

b) A stochastic process X : [0,T] x Q — E is called F-predictable, if the map
0,t] x Q2> (s,w) = X(s,w) € E

is strongly B([0, ¢]) ® F;-measurable for all ¢ € [0, 1.
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c) A process B : [0,T] x Q — L(Y, E) is called elementary, if it has the form

N M K
B(t,w) = Z Z Lty 1 ta]x A, (HW) Zyk @ Tk,m,n (A1)
n=0m=1 k=1
with 0 < ¢ty < --- < t, < T, disjoint sets Ay p,... Ay € Fi,_, forn = 0,..., N,
orthonormal vectors y1,...,yx € Y and zj ., € E. Here, we denoted (t_1,%o] := {

and F;_, = Fo.

d) A process B : [0,T] x Q — L(Y, E) is called Y-strongly measurable, if By is strongly mea-
surablein F forally € Y.

e) A Y-strongly measurable process B : [0,7] x Q — L(Y, E) is called F-adapted, if By is
F-adapted.
We continue with a classical Lemma on the identity of two stochastic processes.

Lemma A.6. Let E be a separable Banach space, I C R an interval and XY : I x Q — E stochastic
processes with almost surely right-continuous paths and X is a version of Y, i.e. P(X(t) =Y (t)) =1
forallt € I. Then, X and Y are indistinguishable, i.e.

P(X(t)=Y({) vtel)=1.
Proof. See [79], Lemma 21.5. O

The stochastic integral for elementary processes is the content of the next definition.

Definition A.7. For a Y-cylindrical Wiener process W and an elementary process B with rep-
resentation (A.1), we define the stochastic integral as the E-valued random variable

T N M K
/ BdW = Z Z 1A,,,L,,,L Z (W(tn)yk - W(tnfl)yk) Tkm,n-
0 n=0m=1 k=1

Obviously, the stochastic integral defines a linear operator. To extend the integral to a class
of integrands which is suitable for applications, we seek for estimates leading to a definition
of fOT BdW on the closure of the space of elementary processes by continuous extension. Of
course, these estimates depend on the concrete Banach space E.

A.1.1. Stochastic integration in Hilbert spaces

Let H be a real separable Hilbert space with ONB (/,,),,cy - In the following, we identify the
right spaces to extend the H-valued stochastic integral for elementary processes from Defini-
tion[A.7]and state some properties which will be relevant later on. The presentation is close to
[40], where most of the proofs can be found.

We start with a short repetition on nuclear and Hilbert-Schmidt operators. Recall that an
operator A € L(H) is called nuclear or trace class if there are sequences (x,,),,.y C H and
(Ym)men C H such that

oo
Y lemlallymllz < oo

m=1
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and A can be written as
oo
Z T, Loy, Hym, x € H.
m=1

The space of all nuclear operator is a Banach space with the norm

1Al nr ey = inf{z |zl llym 7+ Az =) (x,xm)Hym}

m=1 m=1
and will be denoted by N'(H). For A € N'(H),

Hx H> (z,y) — (Ax,y)HEK

0)y 20

defines a continuous bilinear form and A is called positive if A is symmetric and (Az, z
(t) = V(s)is

for all # € H. In particular, a function V' : [0,T] — N (H) is called increasing if V (¢
positive for all ¢ > s > 0. For A € N'(H), we define the trace by

o0

tr(A4) = Z (Ahmahm)H

m=1

The trace is independent of the ONB and a nonnegative operator A is nuclear if and only if the
trace is finite. In this case, we have tr(A) = || A[|x-(z). Given another separable Hilbert space £
with ONB (e,,),,,cn » an operator A € L(E, H) is called Hilbert-Schmidt if

| Allase,m) == (Z ||Aem||§,> < oo0.

m=1

The space HS(E, H) of all Hilbert-Schmidt operators is a separable Hilbert space with ONB
(hj @ €m); ey and inner product

oo
§ Aema Bem
m=1

Now, we are ready for the stochastic integration theory. First, we fix the space of admissible
integrands.

Definition A.8. Letr € (1,00). Then, a random variable B € L" (2, L?(0, T; HS(Y, H))) is called
L7-stochastically integrable in H if it is represented by a Y'-strongly measurable and F-adapted
process B : [0,T] x Q — HS(Y, H). The space of stochastically integrable random variables is
called Mg (0,75 H).

As before, we fix a real separable Hilbert space Y with ONB ( fm)meN and a Y-cylindrical
Wiener process W.
Theorem A.9.  a) For all elementary processes B : [0,T] x Q — HS(Y, H), we have the isometry

. 2
| paw
0

H

T
E :E/o ”B(S)H%{S(Y,H)ds'
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b) Letr € (1,00). The space My, y(0,T; H) is a Banach space and the set of elementary processes is
dense.

Proof. See [40], Section 4.2.1 and in particular equation (4.30) for a). In view of the fact that
v (L2 (0,T;Y), H) isisomorphic to L?(0, 7; HS(Y, H)), the assertion b) is a consequence of Propo-
sitions 2.11 and 2.12 in [124]. O

By continuous extension, Theorem leads to the definition of the stochastic integral for B €
Mz (0, T; H) and the It0 isometry

T 2
/ BdW
0

H

T
E _E / IBO)2symds, B e M2y (0,T; H). (A2)
0

The next step is to explore the properties of the process
T
I(t) := / (9,9 BdW, te[0,77], (A3)
0

associated to the stochastic integral. To prepare the following Theorem, we introduce the
quadratic variation of an H-valued continuous square-integrable martingale.

Definition A.10. Let M be an H-valued continuous L?(§2)-martingale with A (0) = 0. Then, an
N (H)-valued continuous adapted and increasing process (V(t))iepo,ry with V(0) = 0 s called
quadratic variation if for all hy, he € H, the process defined by

(M(t),h1) oy (M (&), h2) y — (V(E)ha,ho) s € [0,T],
is an F-martingale. We denote ((M)); := V (¢) for t € [0,T].

By [40], Proposition 3.13, the quadratic variation is well defined and for each ¢ € [0,T], the
quadratic variation ((M)), is a symmetric operator. It can be constructed as

oo

(M))e = D (M, My))ehi ® by,

ij=1

where ((M;, M;)); denotes the classical scalar-valued cross quadratic variation of M, and M;
for M; := (M, h;) ,,. We continue with the properties of the process induced by the stochastic
integral.

Theorem A.11 (Properties of the integral process). ~ a) For B € Mz (0,T; H), the stochastic
process (I(t)),e(o,7) from (A.3) is an F-martingale with a continuous version (M(t)),¢(o 1 and
quadratic variation

(). = [ Bls) Bls)as. (A4)

We denote fg BAW := M (¢t) fort € [0, T).

T

T . T 2
~E(tr{(M))r)? =E (/0 |B(5)12{S(Y,H)d5> (A.5)

b) Letr € [1,00). Then, we have the Burkholder-Davis-Gundy inequality
E sup

t
/ BdW
t€[0,T] 0

forall B € Mg y(0,T; H).

H
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Proof. The martingale property and quadratic variation can be found in [40], Theorem 4.27 and
consequently, the norm equivalence in b) follows from Doob’s maximal inequality and
in the case r = 2. For general r € (1, 00), the assertion is contained as a special case in [124],
Theorem 4.4. For r = 1, we refer to [40], Theorem 3.15, and [105], p. 17-18, for the original
source with proof. Finally, we use a) to calculate

(M)r =3 / (s B*(5)B(3) f) yds = 3 / 1B(5) fonll3ydls = / 1B(5) s vy
O

The next result is sort of a converse of the previous Theorem. It states that every square inte-
grable continuous martingale with quadratic variation of the structure (A.4) can be represented
as a stochastic integral.

Theorem A.12 (Martingale Representation Theorem). Let M be a square integrable continuous
martingale with values in H on a stochastic basis (Q0, F, P, ) . Assume that thereis B € M%’Y (0, T;H),
such that the quadratic variation of M is given by

<<M>>t:/0 B(s)B(s)*ds,  tel0,T].

Then, there are a another stochastic basis (Q,f P, IF‘) and a Y -cylindrical Wiener process W in Y

defined on (Q xLFQFP® ]f”) adapted to (]—} ® J}t)te[o - with

t
Mt w,5) = (/ BdW> (w,)
0
fort €0, T] and (w,&) € Q x Q, where we denote
M(t,w,®) = M(t,w), B(t,w,®):= B(t,w).
Proof. See [40], Theorem 8.2. O

In the next Proposition, we present the stochastic convolution with a contraction semigroup.
In the special case of the Schrodinger group, the study of the stochastic convolution will be
continued in the following sections.

Proposition A.13. Assume that A generates a contraction semigroup (U(t)),~, in H and let B €
M5y (0, T; H) for some v > 2. Then, the process defined by B

Koon B(t) = /0 Ult— s)B(s)dW(s),  te[0,T],

has a continuous version which satisfies the estimate

||KStachB‘

r.cqo,1), 1) S IBllor,20,m:1s(y, HY) -

Proof. We refer to [40], Theorem 6.10, for the case r = 2. An extension to r > 2 is straightfor-
ward. O
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By the Theorem of Hille, we can interchange the Bochner-integral with a closed operator A. A
similar result is true for the stochastic integral.

Proposition A.14. Let r € (1,00) and A be a closed operator on H with domain D(A) and B €
£y (0,75 H) such that B(t) € D(A) almost surely for all t € [0,T] and AB(-) € Mg (0,75 H).
Then,

A/o B(s)dW (s) :/0 AB(s)dW(s) (A.6)

almost surely for all t € [0, T.

Proof. By [40], Proposition 4.30, holds for all ¢ € [0, 7] almost surely. In view of Lemma
this is enough to prove the assertion if the processes on the LHS and RHS are continuous in
H. This is true for the RHS by Theorem and due to the fact that [, B(s)dW (s) is continuous
in D(A) equipped with the graph norm || - |4 and A : D(A) — H is a bounded operator, the
LHS is also continuous. O

At some, but not many points in this thesis, it is important to extend the stochastic integral to a
larger set of integrands which are not integrable in 2. This is based on a localization argument
and leads to the stochastic integral on L2(Q, L?(0, T; HS(Y, H))). In the following definition, we
explain this notion.

Definition A.15. Let E be a Banach space.

a) Then, we denote the space of all equivalence classes of strongly measurable random vari-
ables in E by L°((2, F)). Endowed with the metric

AX,Y) :=E[[X =Yz Al],

L°(Q, E) is a complete metric space and convergence in this metric coincides with con-
vergence in probability.

b) Let p € [1,00). The closure of the space of E-valued elementary processes in

LO9(Q, LP(0,T; E)) is called L2(92, LP(0,T; E)).

For the localization procedure, we refer to [40], page 99-100, in the Hilbert space case and to
[124], Section 5, for a presentation with more details, but in a more general setting. We close
this section with a Lemma which characterizes the martingale property if the filtration has a
specific form. This will be useful in chapter [

Lemma A.16. Let Hy, Hy be separable real Hilbert spaces and v : [0, T] x Q — H; be a stochastic
process with continuous paths. We set

Fiw =0 (v(s):s€][0,t]), te€0,T).
Then, the following assertions hold:

a) We have F,,, := o (v|jo.q) for t € [0,T], where v|q is viewed as a random variable in
C([0,T7], Hy).
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b) Let M : [0,T] x Q — Ho be a square integrable continuous process and V : [0, T] x Q — N (Hz)
be a continuous, integrable and increasing process with V(0) = 0. Suppose that M and V are

adapted to (Ft,v), 0,7 and set

Fi(t5,.0) r=(M(0), ) , (M0, ), ~ (M(5),) 5, (M (), 0)
— (V)9 =V (), 9) .

2

for s,t € [0,T) and ¢, € Hy. Then, M is a martingale w.r.t. (‘Ft»v)te[o,T] with quadratic
variation V if and only if

E |:(M(t) - M(S)a w)th(v|[0,s]):| = 0> E [F(t, S, l/}7 Sﬁ)h(UHO,s])] =0 (A7)
forall s,t € [0, T with s < tand ), ¢ € Hy and bounded, continuous functions hon C([0,T], Hy).

Proof. ad a). Fix t € [0,T]. Then, the linear span L of all functionals

Hy 3 u (u(s),z)

u, €K weH, |z[a <1, sel0,],

is norming for the separable Banach space C([0,t], H1). In particular, the Pettis measurability
Theorem yields that v|[; is strongly F; ,-measurable in C([0,1], 1) if and only if (v(s),z)
is F; ,-measurable for all z € Hy with ||z||g, < 1 and s € [0,¢]. But this is equivalent to the
strong F; ,-measurability in H; of v(s) forall s € [0, ¢].

ad b) M is a martingale if and only if (M , w) H, is a martingale for all ¢ € H, since one can
interchange conditional expectations with bounded operators. In view of the definition of the

quadratic variation and the conditional expectation, we have to show that (A.7) is equivalent
to

E[(M(t) = M(s).4) 10| =0, E[F(t,5,0,0)14,] =0 (A8)
forall s,¢t € [0,T] with s < tand ¢, ¢ € Hy and A, € F; ,. This reduces to the equivalence of
E[X1s(lo)] =0,  BeB(C(0,5], H),
and
E[Xh(elp)] =0, heCy(C(0,s), Hy)),

where X € L'(Q) is an arbitrary scalar valued random variable. Here, we used that 4, € F;_,
if and only if there is a Borel set B C C([0,t], H1) such that A, = {v|jpq € B} . This is an
implication of part a) of the Lemma.

The first direction follows from the fact that continuous functions can be approximated point-
wise by simple ones. For the second direction, let us first assume that B is closed. Then,
Urysohn’s Lemma implies that there is a sequence (h.,),,cy of uniformly bounded, continuous
functions on C([0, s], Hy) with h, (u) — 1p(u) forallu € C([0, s], Hy). Thus, the claim for closed
B follows from Lebesgue’s convergence Theorem.

For some system of sets D, we denote the Dynkin system generated by D as §(D). It is not hard
to show that

D:={B e B(C([0,5],H1)): E[X1p(v|p)] =0}
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is a Dynkin system. Hence, we get E [X15(v]|o )] = 0 for all Borel sets B C C([0, s], H1), since

B(C([0,s], Hy)) = o ({B c C([0, ], Hy) : B closed})
=0({B c C([0,s],H1) : B closed})
Cc §(D) =D c B(C([0, s], Hy)).

A.1.2. Stochastic integration in mixed L’-spaces

Throughout this section, M; and M, are supposed to be o-finite measure spaces and as above,
we fix a real separable Hilbert space Y with ONB (f,.),,cy and a Y-cylindrical Wiener pro-
cess W. We present the essential elements of the stochastic integration theory in the spaces
LI(M,, LP(M,)) for q,p € (1, 00). Often, we will abbreviate LYILP := L(M, L?(Ms)). The par-
ticular feature of this theory is the fact that it contains a stronger version of the BDG-inequality
which will be useful in the proof of Strichartz estimates for the stochastic convolution. For a
more detailed presentation of stochastic integration in mixed LP-spaces, we refer to the disser-
tation [6] by Antoni.

Once again, we start with the notion of stochastic integrability of an operator-valued process. It
is motivated by a characterization of stochastic integrability in the more general case of UMD
Banach function space, see Corollary 3.11 in [124].

Definition A.17. Let p,q € (1,00) and r € (1,00). Then, an Y-strongly measurable and F-
adapted L(Y, L9(My, LP (M2, R)))-valued process B = (B(s)),c(o,r) is called L"-stochastically
integrable in L9 (M, LP (M2, R)) if there is a strongly measurable function

B:[0,T] x Qx M; x My =Y
with
(BOy)() = (B(t,"),y)y, yeY, tel0,T], (A9)

and

T

2

00 T
=E (n;/o |B(s)fm2ds> < 0. (A.10)

LaLp

E ( / ||B<s,~>||%ds>

The space of stochastically integrable processes is called Mg y-(0, T; LY(My, LP (M2, R))).

LaLP

Similar to the Hilbert space case, the following Theorem is the key to extend the stochastic
integral.

Theorem A.18. Let p,q € (1,00) and r € (1,00).
a) For all elementary processes B, we have the two-sided norm estimate

T r
/ BdwW
0

[e’e] T 2
~E (Z/ |B(s)fm|2ds> . (A.11)
LaLp m=1 0

LaLp

1"

E
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b) The space Mg (0,15 L4 (M, LP (M2, R))) is the closure of the elementary processes with respect
to the norm the RHS of (A.11).

Proof. Since L9(My, LP(M2,R)) is a UMD function space, (A.11) is a consequence of [124],
Corollary 3.11. We show that each B is scalarly in L" (2, L*(0,T;Y)), i.e.

B*z* = (B,z*) € L"(Q, L*(0,T;Y))

for all z* € LY (M, L* (My)). In view of the characterizations of stochastic integrability in
Corollary 3.11 and Theorem 3.6 in [124], Propositions 2.11 and 2.12 in [124] then yield assertion
b). Indeed, by Minkowski’s and Hélder’s inequality, we obtain

SE(/ / ||B|L2(0,T;Y)~’U*d,u1du2)
L2(0,T;Y) My J M

1T

ENB, ) 1201 =E\

/ Ba*dpydps
Mo

My

2

T
<E </ IIB(S,-)|§d8> 12" 0 (aty L7 a1y < ©
0

LaLp
for z* € LY (M, L? (My)). O

Corollary A.19 (It6 isomorphism).  a) The linear map B — fOT BdW can be extended to an iso-
morphism from M, y-(0,T; LY(M, LP (M3, R))) onto a closed subspace of

L"(Q; Fr; LY(M,y, LP(Ms, R))) with
T " T
/BdW ~E (/ |B(s,-)|§/ds> (A.12)
0 0
LaLp

LaLp

[N

E

for B € Mg (0, T; LY(My, LP (M2, R))).
b) IfF is the Brownian filtration, the range of the isomorphism from a) is
LT(Q; ]:T; Lq(]\fl7 Lp(]\427 R)))

Proof. Assertion a) is an immediate consequence of Theorem For a proof of b), we refer
to [124]], Theorem 3.5. O

In order to have a meaningful definition of stochastic integrability, it should coincide with
Definition [A.§|for ¢ = p = 2. Indeed, Fubini yields

1
o T 2 e} T 2
<Z/o |B(S)fm|2d5> = (Z/o ||B(3)fm||2L2L2d5> :||B||L2(0,T;HS(Y,L2L2))-
m=1 m=1

L2L2

(A.13)

Norms of the type with interchanged time and space integration typically appear for
p,q # 2, and they are called square functions. We also would like to remark that an assumption
of the type is not necessary for p = ¢ = 2, since a process B with belongs to
L (9, L*(0,T;Y)) scalarly by and || B(s)*|lz(r2r2,v) = [|1B(8)|l £(v,r212) forall s € [0,T].

The reason for us to present the stochastic integration in mixed LP-spaces rather than in general
UMD-spaces is the following stronger version of the BDG-inequality with the supremum inside
the mixed LP-norm.

180



A.1. Stochastic integration with respect to cylindrical Wiener processes

Theorem A.20 (Strong Burkholder-Davis-Gundy inequality). Let p,q € (1,00), r € [1, 00) and

B e M}, (0,T; LY(My, LP (M2, R))). Then, the integral process (fg BdW) 011 is an F-martingale
. telo,
and has a continuous version which satisfies the maximal inequality
t T "
E|| sup / BdW SE / BdwW
tefo,7] 1Jo LaLp 0 LaLp
In particular, we get
T
t T 2
E| sup / Bdw ~E (/ | B(s, ~)|§/ds> (A.14)
tel0, 7] 1J0 LaLp 0 LaLp
as a consequence of (A.12)).
Proof. See [6], Theorem 1.3.7. O

Remark A.21. In contrast to the presentation above, the author in [6] develops the stochastic
integration theory and in particular the strong BDG-inequality for the series

Z/ $)dB (s te[0,7),

in L"(Q, L9(M;, LP(M,,R)) with independent real-valued Brownian motions £,,, m € N. The
series converges if and only if (b, ),,cy € Li(Q, L9(My, LP(My, L?([0,¢] xN)))). In the following
sense, this approach is equivalent to the integration of operator-valued processes with respect
to a cylindrical Wiener process.

a) Given a Y-cylindrical Wiener process and a process B € My (0,75 L9 (M, LP(M2, R))),
we have the series representation

/OthW—;/Othmd(me)

in LY(M,, L? (M, R)) almost surely for all ¢ € [0,T.
b) Given independent real-valued Brownian motions 3,,, m € N, and a sequence
(bm)meN € LE‘(Qa Lq(Mla LP(MQa LQ([O7 T} X N))))a

we can define a Y-cylindrical Wiener process and a process
B € Mgy (0,T; LY(My, LP(M2,R))) by

=Y (W )y B BO@W) =Y (0 fm)ybm(t),  yEY. (A5
m=1 m=1

In particular, we get B= Z:Zl b fm- Moreover,

t 0 t
/ BdW =) / b dBm
0 me10

in L1(M,, LP(Ms)) almost surely for all ¢ € [0, T].
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For the proof of a), we refer to [124], Corollary 3.9. By Example we know that W is indeed
a Y-cylindrical Wiener process and it can be checked that B is an element of

Mgy (0, T; LY(My, LP(M2,R))), see [5], Theorem 4.12. Hence part b) is a consequence of a).
Obviously, a similar statement is also true for the stochastic integral in Hilbert spaces.

As in the previous section, we omit the localization procedure to extend the stochastic integral
to non-integrable processes. Instead, we refer to [124], Section 5, and [6], Section 1.2, and just
state that the resulting class of stochastically integrable processes is

LR(Q, LY(M,, LP(Ms, L*([0, T] x N)))),

i.e. the closure of the space of elementary processes in L(M;, LP(Ms, L*([0,T] x N))) in prob-
ability.

Remark A.22. In our application of the stochastic integration theory, it will be important to
allow complex valued integrands. A process B = B; + iB; will be called L"-stochastically
integrable in LY(M;, LP(M,,C)) if By and B; are L"-stochastically integrable in the sense of
Definition[A.17] The stochastic integral in L4(My, LP(M3, C)) is defined as

t t t
/BdW ::/ BldWJri/ BydW,  tel0,T).
0 0 0

Straightforward calculations using the equivalence of the norms in C = R? yield the complex
Itd isomorphism and the strong BDG-inequality in the same form as in the Theorems and
if we replace the real absolute value by the complex one.

A.2. Stochastic integration with respect to Poisson random
measures

In this appendix, we give a short introduction to the Hilbert space valued stochastic integral
w.r.t. the compensated time-homogeneous Poisson random measure. Moreover, we define the
noise of Marcus type and derive a corresponding It6 formula. We concentrate on the notions
we will need in chapter [ and do not aim for the most general results. For a more detailed
treatment of the topics of this appendix, we refer to the monographs by Applebaum, [7], Ikeda
and Watanabe, [67], Peszat and Zabczyk, [107] and the dissertation of Zhu, [135].

A.2.1. Time homogeneous Poisson random measure and stochastic
integration

Let N := NU {0} U {oc} denote the set of extended natural numbers. Let (S, S) be a measurable
space and as in Section[2.4.2) we employ the following notation. For a o-finite measure ¥ on S
and a sequence (S,),cy C S such that S, 7 S and ¥(S,,) < oo for all n € N, we denote the set
of all N-valued measures ¢ on S with £(5,,) < oo for all n € Nby MY (S).

On the set Mg (S), we consider the o-field Mg(S ) defined as the smallest o-field such that for
allC € §, the map B
ic: ME(S) > p— pu(C)eN

is measurable. We start with the general definition of the Poisson random measure.
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A.2. Stochastic integration with respect to Poisson random measures

Definition A.23. Let (S, S, i) be a o-finite measure space. A Poisson random measure w on (S, S)
with intensity measure p is a random variable

T (QF) = (Mg(S),Mf{,(S))
such that

a) for each C € S, the random variable 7(C) := ic o 7 : 2 — N is Poisson with parameter
w(C), ie.

k
pr(0) =k = " (), ke

b) nis independently scattered, i.e., if the sets C,Cs, ..., C, € S are disjoint, then the random
variables 7(C1), 7(Cs), ..., n(Cy) are independent.

Note that by the properties of Poisson variables, we obtain 7(C) < oo almost surely for all
C € S with p(C) < oo. For this reason 7 is welldefined as a map to M (S). Moreover, we
infer

E[r(C)] = u(C), C€S.

We continue with a special Poisson random measure on space-time used frequently in the se-
quel.

Definition A.24. Let (Y, ), v) be a o-finite measure space.

a) A time homogeneous Poisson random measure n on (Y, Y) with intensity measure v is a Poisson
random measure on ([0, 00) x Y, B([0,00)) ® )) such that

i) the intensity measure of 7 in the sense of Definition is given by Leb ® v, i.e.

E[n((0, ] x U)] = tv(U), U e;

i) forall U € ), the N—valued process (N (t,U))¢>o defined by
N(t,U) :==n((0,1] xU), t=0,

is F-adapted and its increments are independent of the past, i.e., if ¢ > s > 0, then
N(t,U) — N(s,U) =n((s,t] x U) is independent of Fs.

b) The difference 7} := 17 — Leb ® v, is called compensated time homogeneous Poisson random
measure.

We proceed with several classes of integrable processes. To this end, we recall that a process
£:[0,T] x Q xY — Eis called predictable, if the map

[0,{]] x AXY 3 (s,w,y) = &(s,w,y) € E
is strongly B([0, t]) ® F; ® Y-measurable for all ¢ € [0,T].

Definition A.25. Let E be a real Banach space.
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a) We denote the space of all predictable processes & : [0,7] x 2 x Y — E such that

| [ ' [ sl tas,an]| <o

by £} 2([0,T] x Y; E). Elements of £] ([0, T] x Y; E) are called 1-Bochner integrable.

b) We denote the space of all predictable processes § : [0,7] x Q x Y — E such that

| | ' [ et vianas) < o

by £} ¢([0, T] xY; E). Elements of £} ([0, T] x Y; E) are called Leb @ v-Bochner integrable.

For an n-Bochner integrable process £; and an Leb ® v-Bochner integrable £,, we interpret

/Ot/yf(s,y)ﬁ(ds,dy), /Otfyg(s,y)y(dy)dg te (0,1, (A.16)

pathwise as a Bochner integral. For an introduction to the theory of Bochner integration, we
refer to [48], chapter 2.

Definition A.26. Let¢ € £] 3([0,T] x Y; E) N £, x([0,T] x Y; E). Then, we define

(B) /0 t | el itas.ay) = /O t | stnias.ay) - /0 t [ mvtanas @)

almost surely for all ¢ € [0, 7].

Note that we have equipped the Bochner integral w.r.t. to 77 with the unusual prefix (B) to
avoid confusion with the It6-integral that will be declared below and used much more often in
this thesis. Via the Bochner integrals we have just defined, one can connect Poisson random
measures with general Lévy processes. This highlights the significance of Poisson random
measures in the theory of stochastic processes.

Definition A.27. Let E be a real Banach space. An E-valued Lévy process is a stochastic process
L :[0,00) x Q — E with the following properties:

a) L(0) = 0 almost surely;

b) the increments of L are stationary and independent, i.e. for 0 < s < t, the law of L(t) — L(s)
depends only on ¢ — s and for 0 < ¢y < t; < --- < t,, the random variables

L(t,) — L(tn—1), L(tn—1)— L(tn—2),..., L(t1)— L(to)
are independent;

c) L is stochastically continuous, i.e. foralle > 0and ¢ > 0

lim P{IL(1) ~ L(s) | > } = 0.

d) L has cadlag paths.
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Let us remark that part d) in Deﬁnitionis minor since a)-c) already implies the existence of
a cadlag modification of L. The following celebrated Theorem which we quote in the version
of Theorem 4.1 of [3]], states that a deterministic drift term, the Banach space valued Brow-
nian motion and the Poisson random measure are the only building blocks of general Lévy
processes.

Theorem A.28 (Lévy-Itd decomposition). Let E be a separable real Banach space.

a) Let n be a time-homogeneous Poisson random measure on E \ {0}. Then, the formulae

t t
Li(t) = / / vids,da),  La(t) = / / v(ds, dz)
0 JH{llzlle<1} 0 J{llz|lc>1}

define E-valued Lévy processes.

b) For each E-valued Lévy process,

77([0715],14): Z 14 (L(S)—L(S—)), t >0,

0<s<t

defines a time homogeneous Poisson random measure with intensity measure v. Suppose that one
of the following conditions

i) E has type 2 and

/ (1 A Jl2l%) du(l) < oo,
E\{0}

i) fE\{O} A Az||g) dv(l) < oo,

is true. Then, there are b € E and an E-valued Brownian motion Bg with covariance () indepen-
dent of n such that

t t
L(t) = bt + Bg(t) +/ / x7(ds,dz) +/ / xn(ds,dz), t>0.
0 J{llzlle<1} 0 J{llzllc>1}

If b and Q vanish, we say that the Lévy process L is of pure jump type.

To prepare the definition of the stochastic integral, we collect some martingale properties of the
compensated Poisson random measure.

Lemma A.29. Let 7 be a compensated Poisson random measure.

a) Forall T > 0and U € Y with v(U) < oo, the R—valued process { N (t, U)}iepo,1) defined by
N(t,U) :==#((0,t] x U), tel0,T],

is a square-integrable martingale on (0, F,F,P). Thus, 7] is a martingale-valued measure.

b) ForU € Y and 0 < s < t, we have

E[(N(t, U) - N(s, U))Qm} — (t — s)u(U).

Proof. We refer [135], Lemma 3.1.13 and Proposition 3.1.16. O
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Lemma(A.29 suggests that it is possible to develop an It6-type stochastic integral with the com-
pensated time-homogeneous Poisson random measure as driving noise. Below, we will define
this integral, deduce its main properties and compare it with the Bochner integral from Defini-
tion[A.26] As in the Gaussian case from Appendix the integral will be defined for simple
processes and extended to a more general class of integrands by a new type of It6 isometry. In
the sequel, H always denotes a separable real Hilbert space.

Definition A.30.  a) By £2 ([0, 7] x Y; H), we denote the space of all predictable processes
€:[0,T] x Q xY — H such that

sl [ € (s, )17 dv(y) ds| < oo
Uk

Elements of £ ([0, 7] x Y; H) are called 7j-stochastically integrable.

b) Aprocess§ : [0,7] x Q x Y — H is called simple process if it has the representation

J K
t w y = ZZé‘f—l(w)l(t]‘—l,t_j](t)1A§71(y)? te [OvT]a w e Qa Yy e K (A18)
=0 k=1

for some J,K € N, 0 = tg < --- < t;_; < T and square-integrable H-valued F;,_,-

measurable random variables (£ ]’-“,1) - and disjoint sets (A « C Y of finite

kK Dy,

v-measure foreach j =0,...J — 1.

From [135], Theorem 3.2.23, we get that the predictable processes can be approximated by sim-
ple ones.

Lemma A.31. The space of all simple processes is dense in £ ([0, T] x Y; H).

For simple processes, the stochastic integral is defined in the natural way.

Definition A.32. Let 7} := 17 — Leb ® v be a compensated time homogeneous Poisson random
measure. For a simple process { : [0,T] x 2 xY — H of the form (A.18), we define the stochastic
integral as

I(§) = /0 | &(s,p)ii(ds,dy) ;ZZ&;? Vi (G At At x AR ), e 0, T

The following identity is the core of the stochastic integration theory.

Lemma A.33 (Itd isometry). Let £ : [0,T] x Q x Y — H be a simple process. Then, we have
B =B [ [ Il awas o (A19)

Proof. The proof of the It6 isometry is quite similar to the classical Gaussian Itd isometry. A
proof in the scalar case can be found in [7], Lemma 4.2.2. However, we sketch it to get used
to the concepts introduced above. To simplify the notation, we restrict ourselves to t = T. We
compute

S T S RIS |

7,k,l,m
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A.2. Stochastic integration with respect to Poisson random measures

Assume j = [ and k = m. Then

E[(€81,60) 1 (151, t5] % AS_) 7 ((tea i) < AP) | = B[IEE %7 ((65,15) x A5,)° ]
= B[ IHE [ (41, t5] % A5_)" 175, = B[ lghoy ] (65 — ti-)w(Aly)

by the F;,_,-measurability of £¥ ; and Lemma For j = [ and k # m, we employ the
property of independent scattering to compute

B[ (65 1070 ((t5-1,t5) > AS 1) (0o, t] x A7) |
= E[@fﬂvfﬁl)H}E[ﬁ ((tj-1.t5] x AF_y) }E[ﬁ ((tj—1,t5] x Aﬂl)} =0.

For j < I, we get

B[ (50, 60) 1 (1, 5) % AB_2) 7 (ton, ) x AL |
ZE[(Eﬁpffh)Hﬁ((ﬂ 1, t5] % A )} [77 ((ti-1,t] % A{’il)} =0,

where we used that increments are independent of the past and the fact that the compensated
Poisson random measure has mean 0 by definition. The case j > [ can be treated analogously.
After all, we obtain

B = 3 S E[Iehl3] 65 -t w(4d,) = [ [ Eliee.iz]vaas
j=1k=1

O

In view of the Lemmata [A.19]and [A.31] it is natural to define the stochastic integral for inte-
grands ¢ € £2 ([0, 7] x Y7 H) via contmuous extension. Then, we get the following proper-
ties.

Theorem A.34. Let & € £ ([0, T] x Y; H). Then, we have the isometry formula

E|L©)|% =E / / €% dvy)ds,  te[0,T]. (A.20)

Moreover, the integral process (I;(£)),e(o.r) i @ square-integrable H-valued martingale and has a
cadlag modification.

Proof. The It6 isometry is an immediate consequence of the Lemmata and For the
martingale and the cadlag-property, we refer to [135], Theorem 3.3.2. O

Combining (A.20) with the Doob inequality, we get

B s 1] <= [ [ 1t nlvia o

te[0,7]

In the Gaussian theory of stochastic integration, a similar type of equivalence can be strength-
ened to arbitrary moments by the Burkholder-Davis-Gundy inequality, see Theorems and
Here, this role is played by the maximal inequality we present next.
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Theorem A.35. Forp € (1,00) and a stopping time 7 : ) — [0, T, we have
1
<E[ sup |It(§)|§{}> ~p 1€l e 9,0, (0,71 v, H))>
te(0,7]
where v,([0,T] x Y, H) is given by
L*([0,T] x Y, H) N L*([0,T] x Y, H), 2 < p< oo,

Vp([O,T] XY,H) = {LQ([O,T] XKH)-FLP([O,T] x}/’H)7 1 Sp<2

Proof. We refer to [49], Theorem 4.5 and Example 4.6. O

As we have introduced two types of stochastic integrals w.r.t the compensated time-homogeneous
Poisson random measure, it is natural to ask the question under which assumption they coin-
cide. This is the content of the following Proposition.

Proposition A.36.  a) We have the inclusion £, ([0, T] x Y; H) C £, ([0, T] x Y; H) and

//ﬁsyndsdy //ﬁsy (dy)d

for f € £,5([0,T] x Y; H) and t > 0.
b) For f € £ x([0,T] x Y; H) N £2 ([0, T] x Y; H), we have

//gsy (ds, dy) = /0/£sy (ds, dy)
_ /0 | ctmnias.an - [ t | €t vianas

Proof. We refer to [135], Proposition 3.4.7. O

almost surely for all t € [0, T).

In each stochastic integration theory, the It6 formula is one of the most important features. In
the following Theorem, we state it in the form of [28], Theorem B.1.

Theorem A.37. Let us define a process X : [0,T] x Q — H by

X(t) :Xo+/0 a(s)der/O /Yf(s,y)ﬁ(ds,dy), t € [0,T],

where a : [0,T] x Q — H is a progressively measurable process with

T
/ Ja(s)]| zds < oo
0

almost surely and f € £2 ([0, T|xY; H). Let G be another separable real Hilbert spaceand ¢ : H — G
be a C-function such that the first derivative ' : H — L(H, G) is Lipschitz. Then, we have

P(X(8)) =p(Xo) + / /(X (s))a(s)ds + / / {o(X(s2) + f(5,9)) — o(X(s—))} fi(ds, dy)
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/ / [o(X(5-) + f(5,9)) — 9(X(5-)) — ¢[X(s—)]f(5,0)} (dy)ds  (A21)

almost surely in G forall t € [0,T).
Remark A.38. One can also write (A.21) as

(X () =p(Xo) + / '[X (5)]a(s)ds + / / {o(X(s2) + f(5,9)) — o(X(s-))} 7i(ds, dy)
[ (X604 76000) = X (6D =~ X050} vl

almost surely in G forall ¢ € [0, T]. This is due to the fact that X is cadlag and thus (X (¢)),¢(o 7
and (X (t—)), e[o,r) only differ on a nullset w.r.t. the Lebesgue-measure in time.

A.2.2. Marcus stochastic evolution equations

In this thesis, we will always consider the noise induced by the compensated Poisson random
measure in the Marcus form. In this section, we introduce this notion and deduce an It6 formula
for this special type of noise.

We begin with an informal motivation of the Marcus product which will be denoted by ©. Let
us explain its main properties: the change of variables formula without correction term and the
consistency with Wong-Zakai-type approximations. In the case of a continuous driven process,
these properties are considered to be the most important advantages of Stratonovich noise
compared to It6 noise and lead to the fact that Stratonovich noise is often preferred in the
modeling of noise phenomena in physics. However, in the case of a discontinuous driving pro-
cess, Stratonovich noise does not have these favorable properties any more. This leads to a third
type of stochastic differential equation introduced by Steven Marcus, see [93] and [94]. Roughly
speaking, the Marcus form of discontinuous noise is the natural analogue to the Stratonovich
form of continuous noise.

Let us explain the properties mentioned above in more detail. In this section, we consider
the RV-valued Lévy process L(t) := (L1(t),--- , Ly(t)) associated to the compensated Poisson
random measure, i.e.

L(t) = /O /{ oy L) (A22)

where B :=B(0,1) C RV. The first property in the spirit of Stratonovich is a change of variables
formula

PX0) = p(X0) + | & [X(s2)]o(X (=) o dL(s
as long as X solves the Marcus equation
X(t) = X +/O (X (s—)) o dL(s).

After we have given a precise meaning to ¢, this will be the main result of this section. The
second property in this direction is the consistency of the Marcus noise with a Wong-Zakai-type
approximation, i.e. the solution of a Marcus SDE is the limit of solutions to the equations with L
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being replaced by continuous approximations. For more details on this approximation result,
we refer to [86] and [82]. We just want to give a short formulation of the main idea. Let M =1
and (X (%)), be scalar valued process with

X0+/X ) o dL(s).

We approximate L by L, (t) = n ft s)ds forn € Nand ¢t > 1. Then, the solution to the
equation

Xn(t) = Xo Jr/o X (s)dLy(s).

converges almost surely to X.

Now, we would like to continue with a rigorous definition of the Marcus noise in a Hilbert
space. Let H be a separable real Hilbert space and vg,vy,...,vy : H — H. Moreover, we
definev : H x RY — H via

Vo (Wlm,  1€RY, y € H.

WE

v(y,l) =

m=1
We assume that the evolution equation

{y'(t) =v(y®),10),

4(0) = yo, (A.23)

has a unique classical solution for any [ € R™ and yo € H on the time interval [0,1]. The
solution operator associated with (A.23) is called Marcus mapping and denoted by

®:[0,1] xRN x H — H.

In this framework, we can give the definition of a Marcus stochastic evolution equation.

Definition A.39. Let 7} :== 7 — Leb ® v be a compensated time homogeneous Poisson random
measure and L be the Lévy process defined by (A.22). Then, a solution of the Marcus stochastic
evolution equation

{ dX (t) = vo(X(t)) dt + v(X (t—)) o dL(t), (A24)
X(0) = Xo,
is an adapted process X : [0,7] x Q — H such that the integral equation
X(t) = Xo +/ ds+/ /{|l|<1} (1,1, X (s—)) — X(s —)]ﬁ(ds,dl)
/ / ® (1,1, X(s)) — X(s) — v(X(s),l)}z/(dl)ds (A.25)
{HlH<1}

holds in H almost surely for all ¢ € [0, 7.

In the main result of this section, we formulate the change of variables formula announced in
the motivation from above.
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Theorem A.40 (It0’s formula). Let G be a separable real Hilbert space and ¢ : H — G be a C*-
function such that the first derivative ¢’ : H — L(H, Q) is Lipschitz. If X is a solution of the Marcus
stochastic evolution equation (A.24), then we have

(X (1)) — p(Xo) = /0 ¢ [X(s)] (vo(X(s5))) ds
®(1,1,X(s—))) — 7(ds, dl
w0 [P X)) e ]atas.a
1,Z,X I X (s v(dl)ds
+/0 /{”,q} [p(@(1.1X(5))) Z @ [X(5)] (vin (X (5))) | (@)

(A.26)

in G almost surely for t € [0, T]. In particular, the process (Y (t));¢(o 1) iven by Y (t) = (X (t)) for
t € [0,T] is a solution to the Marcus stochastic evolution equation

dY'(t) = ¢'[X (s)]vo(X (1)) dt + ' [X (t=)]v(X (t-)) o dL(t),
Y(0) = ¢(Xo).

Proof. For h € H and | € RY with ||I|| < 1, we define

f(h7 l) = 1B(l) {(I) (17 l7 h) - h}

a(h) :=vq(h) +/ ®(1,l,h) —h— I Vi (R) [v(dD).
{h<1} [ Z ]

Then the H-valued process X given in takes the form

X(t) = Xo + / ) ds + / / ), D)ii(ds, db). (A.27)

{Hl\|<1}
From Theorem[A.37] we infer
t

PX(E) =¢(X0) + [ @IX(lals)ds

t

[ ] AR )+ 1K (52).0)) = (X (5} fds.a)

/ x {o(x + [(X(s=),1)) — (X (s—)) — ' [X(5=)]f (X (s—),1) } v(dl)ds
©(Xo) + 11 (t) + I2(t) + I3(t)

P-as. forall ¢t € [0, T, where I, I5, I5 can the simplified to

L(t) = / o [X(5)] (a(X(5))) ds

- / o [X(5)] (vo(X (5))) ds + / /{ o & KEFCE6). D v s

- /Ot /{MQ} [ i Imp [X (s)] (vm(X(s»)}u(dz) ds; (A.28)
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L(t) = / /{ oy, 1@ (LX) — plX (s} s,

- (1,1, X s)yv(dl)ds — "X (s=)]f(X(s), Dr(dl)ds.
(0 //{|z|<1} (5)) = X(s)} v(dl) /O/{””q}‘?[ (s=)]f(X(s), Dr(dl)

By the cadlag-property of X, compare Remark the second terms in I; and I3 cancel and
we obtain

P(X (1)) =p(Xo) + / o X (5)] (vo(X (5))) ds
‘ N
oy [ e O] as
/ / B (1,1, X(s-))) — p(X(s—))} ii(ds, di)
{Hll\<1}
D (1,1, X(s—))) — (X (s—))}v(dl)ds
*/o/{.m}{“’( (L1, X (5-))) — @(X(s-))} w(d])
—o(Xo) + / o 1X(5)] (vo(X(s))) ds
/ / B (1,1, X (5-))) — p(X (s-))} ii(ds, di)
{Hll\<1}

+/o /{|z|<1}{(p( (1,4, X () Zlmw (X(S)))}”(dl)ds

almost surely for all ¢ € [0, 7.

The second assertion follows from the observation that y(t, h,1) := ¢ (®(t, h,1)) for t € [0,1],
h € H and [ € RY fulfills

Y (th, 1) = @ [®(t, h, D] (¢, b, 1) = @' [y(E, h D)V (y(E, 1), 1), y(0,h,1) = @(h)
by the chain rule. Using y, the equation (A.26) can be rewritten in the form

P(X (1)) — p(Xo) = / & [X(s)] (vo(X (s))) ds

// y (1,1, X(s-))) — p(X(s ))}ﬁ(ds dl)
{HlH<1}
+/o /{|I|S1} y (1,1 X(s)) = @(X(5)) = ¢ [X(5)] V(X (s), 1) |p(l)ds,

which yields the assertion by Definition O

A.3. Fractional domains of a selfadjoint operator

In this section, we introduce the fractional domains of a selfadjoint operator on a complex
Hilbert space H. These spaces are the key ingredient for our functional analytic formulation of
the nonlinear Schrodinger equation on different levels of regularity.
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Throughout this section, M is a o-finite measure space and A : L?(M) D D(A) — L*(M)is a
non-negative selfadjoint operator. We fix # > 0 and equip Xy := D((Id +A)?) with the norm

lzllo = 1A +4)°z |2, @ € Xo,

where the fractional powers are defined via the Borel functional calculus for selfadjoint opera-
tors. Note that X, is a Hilbert space with the inner product

(:L’, y)e = ((Id +A)9xv (Id +A)9y) L2

since (Id +A)? is a closed operator with 0 € p((Id +A)?). Moreover, we define the extrapolation
space X _g as the completion of L?(M) with respect to the norm

lzll—p == | Ad +4) " x|l 2, @€ L*(M),
and obtain a Hilbert space with the inner product

(x,y)79: lim ((Id—|—A)7exm(Id—|—A)79ym)

25
n,m— oo L

T,y € X g,

for sequences (7,),,cy > (YUm)men C L?(M) with z,, — x and y,, — yin X_g as n, m — oco. Note
that we have X_y = (Xj)* and the duality is given by

(ac,y>91_9 = lim (xayn)Lza reXg, yeXoo,

n—oo
with (yn),,eny © L?(M) such that y, — yin X_g as n — oco.

We denote the closure of the operator A in X_y by A_y and the restriction of A to Xy41 by As.
If there is no risk of ambiguity, we will drop the index § and simply write A.

Proposition A.41.  a) For all § € R, Ay is a non-negative selfadjoint operator on Xo with domain
Xot1-

b) We have

, x,yeX%.

c) Forall a, 8 € Rwith B > acand 6 € [0,1], we have [Xo, Xp], = X(1-9)at0p. In particular,
|l a-0yares S lel& N2l =€ X

Proof. ad a). For § > 0, Ap is obviously symmetric and non-negative since it commutes with
(Id +A)?. Moreover, Id + Ay is a surjective isometry from X1 to Xy. Thus, —1 € p(Ay) and Ay
is selfadjoint.

Let 6 € [—1,0). By the definition of Xy and the density of Xy, in L?(M), Xy and 4y are the
closures of X1 and Ay with respect to the norm ||(Id+A4) ™" - [lg41. Let (Ty41()),>, be the
Co-semigroup generated by — Ay 1. By [52], Theorem 5.5, (Ty11(t)),~, can be extended to a
Co-semigroup (Ty(t)),~, on Xy with generator —Ay and D(Ag) = Xg 1.

To check the symmetry of Ay, let 2,y € D(Ay). Then, there are (2,,),,c > (YUm)pen € Xo4+1 With

Tn — T, A9+1.’I]n — A9$7 Ym — Y, A9+1yn — A@yu n,m — 00,
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in [[(Id+A)~! - |lp+1 and we obtain

(Aoz,y), = lim ((Id+A)""Agprzn, (Id+A) " ym)

n,m—00 0+1
= n}r}bgoo (Id+4)""z,, (Id +A)71A9+1ym)0+1 = (=, Agy),
as well as
(Ag, x)e = nh_>rr010 ((1d +A) "t Ap 2y, (Id +A)_1mn)0+1 >0,

because Ag+1 is symmetric, non-negative and commutes with (Id +A)~L. Since — Ay is genera-
tor of a Cp-semigroup on Xy, the symmetry of Ay directly implies selfadjointness. Inductively,
we obtain the assertion for all § < 0.

ad b). By the definition of A_1, we can choose (zy),cy C X1 and (y1),ey C X1 such that
Ty — 1, AJ;k—>A_%x, Y=y, Ayl—>A_%y

in X_% as k,l — oo and obtain

)

= lim (ylvAxk)Lz = klllgloo (IkvAyl)Lz = <y,A_%I‘>

1
2 k,l—oc0

S

1
2

ad ¢). This is a consequence of [84], Theorem 15.28, and the fact that each non-negative selfad-
joint operator A has bounded imaginary powers by the Borel functional calculus. O

A.4. Function spaces on Riemannian manifolds

In Chapter [f|and the examples in the Chapters | and [, we frequently consider the stochastic
nonlinear Schrédinger on Riemannian manifolds. For this reason, we would like to introduce
fundamental notions from Riemannian geometry. Moreover, we present the Laplace-Beltrami
operator which generalizes the classical Laplacian from R? to Riemannian manifolds and con-
nect it to Sobolev spaces. We are guided by the exposition of similar contents in [21], sections
A.4 and II1.1. For further details, we refer to the textbooks [8] and [87].

Let us start with some elementary definitions from differential geometry.

Definition A.42.  a) A C°°-manifold without boundary (M, 1) of dimension d € N is a topolog-
ical Hausdorff-space with countable basis such that for every x € M, there are an open set
U C M with z € U, an open set V C R? and a C*°-diffeomorphism ¢ : U — V. Often, we
shortly say manifold instead of C'*°-manifold without boundary and use the abbreviation
M instead of (M, ).

b) The pair (¢, U) from above is called chart around x and a collection of charts

M= {(pa,Us) € J}, M= |]Ua,
acJ

is called atlas of M. The local coordinates of x € U are given by the vector (¢(z)),,_;  4-

We continue with the notions of smooth functions, tangent spaces and vector fields.
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Definition A.43. Let M and N be manifolds of dimensions d and d’.

a) A function f : M — N is called smooth, if for all z € M, there are charts (U, ¢) around x
and (U’, ¢') around f(z) such that

¢'ofop e C™(UU).

The space of all smooth functions f : M — N is denoted by C*>°(M, N) and we abbreviate
C>*®(M) :=C>*(M,R).

b) Let x € M. Then, the space T,; M of all linear maps X, : C*°(M) — R such that
Xo(f9) = Xa(£g(@) + f(2)Xa(g),  fr9 € CF(M),

is called tangent space of M in p. The space of all bilinear forms B : T,M x T,M — Ris
denoted by T2 M. Moreover, we set

™™ := | .M, T°M:= ] M,
zeM xeM

where the unions are understood in the disjoint sense.

c) A vector fieldisamap V : M — TM with V(z) € T, M for all z € M. The space of all
vector fields is denoted by V M.

We remark that for all z € M and charts ¢ : U — V, the tangent vectors 0|, j = 1,...,d,
defined by

9jla(f) =85 (fo™") (¢(2)) (A-29)

form a basis of the tangent space T,, M. Analogous to (A.29), we denote
0%a(f) = 07" .. 07" (foe™) (¢(x)

for an arbitrary multi-index o € N¢. In order to measure the distance of two points on a man-
ifold and to generalize classical notions like the gradient of a function to the manifold setting,
we need additional structure on the tangent space.

Definition A.44. A Riemannian metric on M is a smooth map g : M — T?M such that g(z) is a
scalar product on T, M for each x € M. This scalar product is denoted by (-, )OL and we write
||, for the associated norm. A pair (M, g) consisting of a manifold M and a Riemannian metric
g is called Riemannian manifold.

In local coordinates, the Riemannian metric g is uniquely determined by the matrix
Gx) = (gra(@) o1, ar  gra(@) = 9(2) (Oklz, Oilz) -

The inverse of G is written as G(z)~! = (¢*!(z)), ,_, - The gradient Vf of a C'-function

[ R* — R satisfies D f[v] = (Vf,v)g, forall v € R?. An analogue of this identity can be used
to define the gradient of a function f : M — R.

Definition A.45. Let (M, g) be a Riemannian manifold and f € C°°(M). The gradient V f is the
unique vector field such that

(Vf(2),X.), = Xo(f), xeM, XeT,M.
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We state next, how the Riemannian metric g can be used to define a distance on the manifold
M.

Proposition A.46. Let (M, g) be a Riemannian manifold and set
Chr(z1,22) = {7y € C([a,b], M) : y(a) = z1, ~(b) =a2, 7 ispiecewise C'}.
Then,
b
dy(z1,0) := inf / "(t dt, x1, T2 € M,
g( 1,T2) eCha1es) Ja Iy ( )|'y(t) 1,22

defines a metric on M.
Further properties of Riemannian manifolds which turn out to be important in the study of
Sobolev spaces and Strichartz estimates are introduced in the following definition.
Definition A.47. Let (M, g) be a Riemannian manifold.

a) If the metric space (M, d,) is complete, then (M, g) is called complete.

b) We say that (M, g) has bounded geometry, if for all multi-indices o« € N¢ and k,1 € {1,...,d}

there is C' > 0 such that |[0%gx ;| < C.

As a preparation for the definition of geodesics, we introduce the Christoffel-symbol I'}",(z) for
k,l,m=1,...,dby

d
1
(@) =5 > [Okgna (@) + Orgn k() = Ongra(x)] g™ (), @€ M.

n=1

Definition A.48. Let (M, g) be a Riemannian manifold. Let I be a compact interval, v : I — M
and denote the local coordinates of v by 71, ... v4. Then, v is called geodesic if we have

d
V() + Y TR () () (8) = 0 (A.30)
k=1

forme{l,...,d}andt € I.

By the Hopf-Rinow Theorem, see [§], Theorem 1.37, we obtain a unique geodesic, : [0,1] - M
with v(0) = v for each z € M and v € T, M. This motivates the following definition of the
exponential map.

Definition A.49. Let (M, g) be a complete Riemannian manifold and z € M.
a) The map

exp, : T.M — M, exp, (v) = v, (1),

is called exponential map.

b) The injectivity radius of (M, g) is defined as

inj(M, g) := Iiél{{ sup {6 >0:  exp,|B(e) is injective} .
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In this thesis, the two most common assumptions on a Riemannian manifold (17, g) are either
compactness or

M is complete, connected, has a positive injectivity radius and a bounded geometry. (A.31)

The following Proposition tells us that compactness is a stronger assumption.

Proposition A.50. Let (M, g) be a connected and compact Riemannian manifold. Then, it satisfies

@31

Proof. By the Hopf-Rinow Theorem 1.37 in [8], M is complete and Theorem 1.36 in [§] implies
inj(M, g) > 0. The boundedness of the geometry is an immediate consequence of compactness.
O

After having introduced the basic notions from Riemannian geometry we will need in this
thesis, we continue with the definition of function spaces on manifolds. We refer to [8]], Section
3.4, and [87], Section 3.1.5, for a brief introduction to integration against the canonical volume
measure V, on manifolds. The spaces LP(M), p € [1,00] are defined in the usual way via
the measure V,. For the sake of simplicity, we omit this measure in our notation and will just
write dz instead of dV,(x). First, we turn our attention to the Laplace-Beltrami operator, which
generalizes the standard Laplacian from R¢ to the manifold setting.

Theorem A.51. Let (M, g) be a complete Riemannian manifold.

a) Then, the closure of the operator which is defined in local coordinates via

1 & :
AT e Yo, JecEan,

>

is a negative selfadjoint operator on L*(M). It is called Laplace-Beltrami operator and again de-
noted by A,. In particular, A, generates a contractive Co-semigroup (') 10 01 L2 (M).

b) For each p € (1,00), the restriction of (etA_q)t>0 to L2(M) N LP (M) extends to contractive Co-

semigroup on LP(M). Its generator is called Laplace-Beltrami operator on LP(M) and is denoted
by Ag p-

Proof. We refer to [112], Theorem 2.4, for part a) and Theorem 3.5 for b). O

We remark that we will often avoid the index p in A, if there is no risk of confusion. Our
next goal is to define Sobolev spaces on manifolds and relate them to the Laplace-Beltrami
operator.

Definition A.52. Let (M, g) be a d-dimensional Riemannian manifold that satisfies (A.31).

a) Lets > 0,p € (1,00), M := (Us, p;);c; be an atlas of M and (¥;),; a partition of unity
subordinate to 9t. Then, we define the fractional Sobolev spaces H*? (M) by

HP(M) = {f € L"O0) [ flenqan = (D NF) 0 07 pnguey) " < 00}, (A32)
el

where H*?(R?) is the Bessel potential space on R%. We write H*(M) := H*2(M).
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b) For p € [1,00), we define W7 (M) as the completion of C>°(M) in the norm
£y = [ @Pde+ [ [Vi@lds, 5 e
M M

In the study of the Sobolev spaces from Definition the fractional powers of I — A, turn
out to be very useful. These operators are defined by

1 o0
(I—-Agp)f ::—/ te e tetBar £t
0

I(a)
for o > 0. Note that in the case p = 2 this coincides with the definition via the Borel functional
calculus because of the identity 15y Jootote M fdt = A= for A > 0. For further details on
fractional powers of generators of Cy-semigroups, we refer to [98], chapter 6. In the following

Proposition, we list characterizations and embedding properties of the Sobolev spaces from
Definition[4.52]

Proposition A.53. Let (M, g) be a d-dimensional Riemannian manifold that satisfies (A.31)). Let s > 0
and p € (1,00).

a) We have H*?(M) = R((I — Ag )~ 2) with || fllzer = ||v]|Le for f = (I — Dgp)~2v.
Furthermore, we have HYP (M) = W1P(M).

b) Fors > %, we have H*P (M) — L*°(M).

c) Let s > 0and p € (1,00). Suppose p € |2, ﬁ) orp= 724 if s < 4. Then, the embedding
H*(M) — LP(M) is continuous.

d) If M is compact and we have 0 < s < 1 as well as p € [1, ﬁ), the embedding H*(M) —
LP (M) is compact.

1-6 6

s=(1—-0)sg+ 0s1, » o
0 1

e) For s, sg,s1 > 0and p,po,p1 € (1,00) and 6 € (0,1) with
1
p

we have [HSOJJO (M)7H51,p1 (M)Lg _ Hs,p(M)'

Proof. ad a): See [117], Theorem 7.4.5. We remark that in the reference, H*"? is defined via the
range identity from the Proposition and the identity from Definition is proved.

ad b): See [21], Theorem II1.1.2. d1).

ad c): See [21]], Theorem II1.1.2. d1).

ad d): Since M is compact, we can choose a finite collection of charts and a finite partition of
unity. Hence

N 1 N 1
17l = (D 0 0 eway)” = (NN 00 o) (A33)
=1 =1

for a sufficiently large smooth bounded domain © C R<. By [47], Corollary 7.2 and Theorem
8.2, the embedding H*(0) < LP(O) is compact for s € (0,1) with s < 4 and p € [1, ;24.).
Note that in the reference, the result is proved in terms of the Slobodetski space W#2(0), but
we can use the identity W*2?(O) = H*(O). The embedding result combined with yields

the assertion.

ad e): See [117], Section 7.4.5, Remark 2. O
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In the theory of LP-spaces on R?, Bernstein inequalities and the Littlewood-Paley Theorem
are classical techniques to estimate functions. For example, one can find these results in [9],
Lemma 2.1 and [60], Theorem 6.1.2, respectively. If one replaces the frequency analysis based
on the Fourier transform by spectral theoretic methods, similar results can also be proved for
the manifold case. In the following, we collect some of the results in this spirit which we will
need in chapter[5} The following Lemma deals with a Littlewood-Paley type decomposition of
L?(M) for p € [2,00).

Lemma A.54. Let M be a compact Riemannian manifold and ) € C2°(R), p € C°(R \ {0}) with

A) + i o(27FN), AER. (A.34)
Then, we have
[1fllr2 = <||¢(Ag)f||ia +§:1 ||<p(2"“Ag)f||%2> E , fel*M), (A.35)
and
1Flze Sp 19(Agp) Fllze + (Z le(27" Ay p) f||Lp>2, ferLr(M),  (A36)
forp € [2,00).

Before we proceed with the proof, we refer to [9], Proposition 2.10, for certain 3 and ¢ which

fulfill (A34).

Proof. Letp € (1,00). From [22], page 2, we infer

Nl

[fllzr = ( g.p f|2+Z\<P 27" Agp f|2> , [ eLP(M). (A.37)

Lr

Note that this equivalence can also be found in a more general setting in [80], Theorem 4.1 com-
bined with estimate (2.9). The estimate (A.37) yields (A.35) by Fubini and (A.36) by Minkowski’s
inequality. O

The previous Lemma indicates the importance of estimating operators of the form p(h%A,) for
h € (0, 1]. In the next Lemma, we state how they act in LP-spaces and Sobolev spaces.

Lemma A.55. Let M be a compact Riemannian manifold.

a) Let 1 < g <r < oco.Forany ¢ € C°(R), there is C > 0 such that for h € (0, 1]

1

1_
le(h*Ag)| (pazry < CRYG

b) Let p € C*(R\ {0}),p € (1,00) and s > 0. Then, there is C' > 0 such that for h € (0, 1]

le(h?Agp) flle < Ch*|l9(h* Ay p) fllaew, — f € H*P(M).
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Note that these kind of estimates are usually called Bernstein inequalities.

Proof. ad a): See [35], Corollary 2.2.

ad b): We want to use the spectral multiplier Theorem from [104], Theorem 7.23. Compact man-
ifolds are homogeneous spaces and the Laplace-Beltrami operator has upper Gaussian bounds
by [61], Corollary 5.5 and Theorem 6.1. Take ¢ € C2°(R\ {0}) with ¢ = 1 on supp(y) and define

f:(0,00) =R, f(t):=t"2p(—h%),
Then, we have ¢(—h%t) = f(t)t2p(—h?t) and

sup [tF FF) ()] < he.
t>0

By (7.69) in [104], we can apply Theorem 7.23 in [104] and obtain

lp(h2Ag ) flire = 1F(=Agp) (=Agp) % @(h*Ag ) fllze S B3| (—Agp) % 0(h?Ag ) fllLe
S hSH‘P(hQAg,p)fHHSvP-
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